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Small, dark, and heavy...
but is it a black hole ?







Astronomers have certainly seen things that are 
small, dark, and heavy...

Abstract:

But are these small, dark, heavy objects really black holes 
in the sense of general relativity ?

In this talk I’ll discuss one of the alternatives... 

(The consensus opinion is simply  “yes”, 
and there is very little “wriggle room”.) 



Do alternatives
“exist”?

Quark stars,  Q-balls,   boson-stars?

Gravastars:    Mazur-Mottola variants.

Gravastars:    Laughlin-et-al variants.

Fuzz-balls:    Mathur-et-al variant.

Fuzz-balls:     Amati variant.

Vachaspati & Krauss...

Boulware... Marek  Abramowicz...

Hajicek...
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Now, one can always write the field operator as

φ̂(t, r) =

∫
dΩ

[
âΩ ϕΩ(t, r) + â†

Ω ϕ∗
Ω(t, r)

]
, (1)

where ϕΩ are the modes that near I − behave asymp-
totically as5

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 |r|
e−iΩU , (2)

with U = t − r and Ω > 0. One can then identify the
state |C〉 as the one that is annihilated by the destruction
operators associated with these modes: âΩ|C〉 = 0. (One

could also expand φ̂ using a wave packet basis [2], which
is a better choice if one wants to deal with behaviour
localized in space and time.) Since the spacetime out-
side the star is isometric with a corresponding portion
of Kruskal spacetime, and is static in the far past, the
modes ϕΩ have the same asymptotic expression as the
Boulware modes [20] near I − (i.e., for t → −∞). Hence
|C〉, the quantum state corresponding to the physical col-
lapse, is (near I −) indistinguishable from the Boulware
vacuum |0B〉. (But this will of course no longer be true
as one moves significantly away from I −.)

Now, the semiclassical collapse problem consists of
studying the evolution of the geometry as determined
by the semiclassical Einstein equations

Gµν = 8π
(
T c

µν + 〈C|T̂µν |C〉
)

, (3)

where T c
µν is the classical part of the SET. Significant

deviations from the classical collapse scenario can ap-
pear only if the RSET in equation (3) becomes compara-
ble with the classical SET. In this analysis there are (at
least) two important results from the extant literature
that have to be taken into account:

• If a quantum state is such that the singularity
structure of the two-point function is initially of
the Hadamard form, then Cauchy evolution will
preserve this feature [22], at least up to the edge
of the spacetime (which might be, for instance, a
Cauchy horizon [23]). The state |C〉 certainly sat-
isfies this Hadamard condition at early times [24],
hence it must satisfy it also in the future, even if a
trapping/event horizon forms. (A trapping/event
horizon is not a Cauchy horizon, and is not an ob-
struction to maintaining the Hadamard condition.)
As a consequence of this fact the RSET cannot be-
come singular anywhere on the collapse geometry,

5 We work in natural units.

independently of whether or not a trapping/event
horizon is formed.6

• For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value
of the RSET remains negligibly small throughout
the entire collapse process, including the moment
of horizon formation [25].7 Subsequently, in this
scenario quantum effects manifest themselves via
the slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the
formation of trapped regions (or trapped/apparent/event
horizons). Given that quantum-induced violations of the
energy conditions [27, 28] are taken to be small enough
at this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will
not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event hori-
zon will form. The collapsed star settles down in a quasi-
static black hole and then ultimately evaporates.

This last feature can be easily derived by considering
an expansion of the field in a basis which contains modes
that near I + (i.e., for r → +∞, t → +∞), behave
asymptotically as

ψω(r, t) ≈
1

(2π)3/2(2ω)1/2 r
e−iωu , (4)

with u = t − r and ω > 0, so defining creation and
annihilation operators that differ from those associated
with the modes ϕΩ of equation (2). In a static configura-
tion a (spherical) wave coming from I − is blue-shifted
on its way towards the center of the star, and is then
equally red-shifted on its way out to I +, arriving there
undistorted. However, in a dynamically collapsing con-
figuration the red-shift exceeds the blue-shift, so that an
initial wave at I − is distorted once it reaches I +. In
this sense the dynamical spacetime acts as a “processing
machine” for the normal modes of the field. Expanding
the distorted wave in terms of the undistorted basis at
I + tells us the amount of particle creation due to the
dynamics. In particular one can take a wave packet cen-
tered on frequency Ω on I − and ask what its typical

6 It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate system
(where the matrix of metric coefficients is nonsingular and has
finite components), then the coordinate components of the RSET
are likewise finite. But note that finite does not necessarily imply
small.

7 Similar results were, after some discussion, found in (1 + 1)-
dimensional models based on dilaton gravity [26].

Star before collapse:

Vacuum polarization effect negligible in an 
ordinary uncollapsed star...

(This,  after all,  is why we can get away with just 
solving the classical Einstein equations 

most of the time...)

Does this remain true during collapse?

Uncollapsed
state:



Fulling--Sweeny--Wald (no-singularity) theorem:

CMP 63 (1978) 257-264.

Loosely:    “Everything in curved-spacetime QFT 
is hunky-dory at the event horizon,
and all the way down to either the 
singularity or Cauchy horizon...”

Based on showing that the Hadamard form 
of the QFT two-point function is not affected 

by the presence of an event horizon...

(So for a Hadamard quantum state, everything is fine...)

Issues:



Unfortunately,   Fulling--Sweeny--Wald  also 
“begs the question”... 

FSW shows that *if* an event horizon forms,
then the QFT is well behaved there...

This is *not* the same as showing that an event horizon 
will naturally form in semiclassical collapse...

Compact horizonless objects,  and/or naked singularities, 
are also compatible with the FSW theorem.

Finite  <=/=>  “small”...

Issues:



Related to questions of the (quantum) vacuum...

*** Boulware vacuum?   (singular at any Killing horizon)

*** Unruh vacuum?      (designed to be well behaved at 
                             any future Killing horizon)

Renormalized stress-energy diverges at 2m/r ~ 1

Renormalized stress energy finite at future horizon.

Our proposal:



Sometimes apparent horizons 
(or better yet,

dynamical horizons, 
trapping horizons)

are better candidates for
characterizing the black hole.

Spherical symmetry with Schwarzschild coordinates:

2m(r,t) / r = 1
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physics. We shall here suggest such an alternative de-
scription by proposing a new class of compact objects
(that might be called “black stars”) in which no hori-
zons (or ergoregions) are present.4 The absence of these
features would make such objects free from some of the
daunting problems that plague black hole physics.

II. SEMICLASSICAL COLLAPSE: THE
STANDARD SCENARIO

Let us begin by revisiting the standard semiclassical
scenario for black hole formation. For simplicity, in
this paper we shall consider only non-rotating, neutral,
Schwarzschild black holes; however, all the discussion can
be readily generalized to other black hole solutions.

Consider a star of mass M in hydrostatic equilibrium
in empty space. For such a configuration the appropriate
quantum state is well known to be the Boulware vacuum
state |0B〉 [20], which is defined unambiguously as the
state with zero particle content for static observers, and
is regular everywhere both inside and outside the star
(this state is also known as the static, or Schwarzschild,
vacuum [21]). If the star is sufficiently dilute (so that the
radius is very large compared to 2M), then the spacetime
is nearly Minkowskian and such a state will be virtually
indistinguishable from the Minkowski vacuum. Hence,
the expectation value of the renormalized stress-energy-
momentum tensor (RSET) will be negligible throughout
the entire spacetime. This is the reason why, when cal-
culating the spacetime geometry associated with a dilute
star, one only needs to care about the classical contribu-

tion to the stress-energy-momentum tensor (SET).

Imagine now that, at some moment, the star begins to
collapse. The evolution proceeds as in classical general
relativity, but with some extra contributions as spacetime
dynamics will also affect the behaviour of any quantum
fields that are present, giving place to both particle pro-
duction and additional vacuum polarization effects. Con-
tingent upon the standard scenario being correct, if we
work in the Heisenberg picture there is a single globally
defined regular quantum state |C〉 = |collapse〉 that de-
scribes these phenomena.

For simplicity, consider a massless quantum scalar field
and restrict the analysis to spherically symmetric solu-
tions. Every mode of the field can (neglecting back-
scattering) be described as a wave coming in from I −

(i.e., from r → +∞, t → −∞), going inwards through
the star till bouncing at its center (r = 0), and then
moving outwards to finally reach I +. As in this paper
we are going to work in 1 + 1 dimensions (i.e., we shall
ignore any angular dependence), for later notational con-
venience instead of considering wave reflections at r = 0
we will take two mirror-symmetric copies of the space-
time of the collapsing star glued together at r = 0 (see
Fig. 1). In one copy r will run from −∞ to 0, and in the
other from 0 to +∞. Then one can concentrate on how
the modes change on their way from I

−
left (i.e., r → −∞,

t → −∞) to I
+
right (i.e., r → +∞, t → +∞). Hereafter,

we will always implicitly assume this construction and
will not explictly specify “left” and “right” except where
it might cause confusion.

4 These “black stars” are nevertheless distinct from the recently
introduced “gravastars” [19].

FIG. 1: Standard conformal diagram for a collapsing star, and its mirror-symmetric version.

Standard collapse picture:

(Modes   “bounce” 
off the centre...)

Collapse 
picture:

(1+1) dimensions to keep
calculation tractable...
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Our preferred
“symmetric”

version...

Modes 
propagate 

straight through 
the centre...
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be

Affine null 
coordinates:

Collapse 
picture:
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Now, one can always write the field operator as

φ̂(t, r) =

∫
dΩ

[
âΩ ϕΩ(t, r) + â†

Ω ϕ∗
Ω(t, r)

]
, (1)

where ϕΩ are the modes that near I − behave asymp-
totically as5

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 |r|
e−iΩU , (2)

with U = t − r and Ω > 0. One can then identify the
state |C〉 as the one that is annihilated by the destruction
operators associated with these modes: âΩ|C〉 = 0. (One

could also expand φ̂ using a wave packet basis [2], which
is a better choice if one wants to deal with behaviour
localized in space and time.) Since the spacetime out-
side the star is isometric with a corresponding portion
of Kruskal spacetime, and is static in the far past, the
modes ϕΩ have the same asymptotic expression as the
Boulware modes [20] near I − (i.e., for t → −∞). Hence
|C〉, the quantum state corresponding to the physical col-
lapse, is (near I −) indistinguishable from the Boulware
vacuum |0B〉. (But this will of course no longer be true
as one moves significantly away from I −.)

Now, the semiclassical collapse problem consists of
studying the evolution of the geometry as determined
by the semiclassical Einstein equations

Gµν = 8π
(
T c

µν + 〈C|T̂µν |C〉
)

, (3)

where T c
µν is the classical part of the SET. Significant

deviations from the classical collapse scenario can ap-
pear only if the RSET in equation (3) becomes compara-
ble with the classical SET. In this analysis there are (at
least) two important results from the extant literature
that have to be taken into account:

• If a quantum state is such that the singularity
structure of the two-point function is initially of
the Hadamard form, then Cauchy evolution will
preserve this feature [22], at least up to the edge
of the spacetime (which might be, for instance, a
Cauchy horizon [23]). The state |C〉 certainly sat-
isfies this Hadamard condition at early times [24],
hence it must satisfy it also in the future, even if a
trapping/event horizon forms. (A trapping/event
horizon is not a Cauchy horizon, and is not an ob-
struction to maintaining the Hadamard condition.)
As a consequence of this fact the RSET cannot be-
come singular anywhere on the collapse geometry,

5 We work in natural units.

independently of whether or not a trapping/event
horizon is formed.6

• For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value
of the RSET remains negligibly small throughout
the entire collapse process, including the moment
of horizon formation [25].7 Subsequently, in this
scenario quantum effects manifest themselves via
the slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the
formation of trapped regions (or trapped/apparent/event
horizons). Given that quantum-induced violations of the
energy conditions [27, 28] are taken to be small enough
at this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will
not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event hori-
zon will form. The collapsed star settles down in a quasi-
static black hole and then ultimately evaporates.

This last feature can be easily derived by considering
an expansion of the field in a basis which contains modes
that near I + (i.e., for r → +∞, t → +∞), behave
asymptotically as

ψω(r, t) ≈
1

(2π)3/2(2ω)1/2 r
e−iωu , (4)

with u = t − r and ω > 0, so defining creation and
annihilation operators that differ from those associated
with the modes ϕΩ of equation (2). In a static configura-
tion a (spherical) wave coming from I − is blue-shifted
on its way towards the center of the star, and is then
equally red-shifted on its way out to I +, arriving there
undistorted. However, in a dynamically collapsing con-
figuration the red-shift exceeds the blue-shift, so that an
initial wave at I − is distorted once it reaches I +. In
this sense the dynamical spacetime acts as a “processing
machine” for the normal modes of the field. Expanding
the distorted wave in terms of the undistorted basis at
I + tells us the amount of particle creation due to the
dynamics. In particular one can take a wave packet cen-
tered on frequency Ω on I − and ask what its typical

6 It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate system
(where the matrix of metric coefficients is nonsingular and has
finite components), then the coordinate components of the RSET
are likewise finite. But note that finite does not necessarily imply
small.

7 Similar results were, after some discussion, found in (1 + 1)-
dimensional models based on dilaton gravity [26].
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where ϕΩ are the modes that near I − behave asymp-
totically as5
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e−iΩU , (2)

with U = t − r and Ω > 0. One can then identify the
state |C〉 as the one that is annihilated by the destruction
operators associated with these modes: âΩ|C〉 = 0. (One

could also expand φ̂ using a wave packet basis [2], which
is a better choice if one wants to deal with behaviour
localized in space and time.) Since the spacetime out-
side the star is isometric with a corresponding portion
of Kruskal spacetime, and is static in the far past, the
modes ϕΩ have the same asymptotic expression as the
Boulware modes [20] near I − (i.e., for t → −∞). Hence
|C〉, the quantum state corresponding to the physical col-
lapse, is (near I −) indistinguishable from the Boulware
vacuum |0B〉. (But this will of course no longer be true
as one moves significantly away from I −.)

Now, the semiclassical collapse problem consists of
studying the evolution of the geometry as determined
by the semiclassical Einstein equations

Gµν = 8π
(
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µν + 〈C|T̂µν |C〉
)

, (3)

where T c
µν is the classical part of the SET. Significant

deviations from the classical collapse scenario can ap-
pear only if the RSET in equation (3) becomes compara-
ble with the classical SET. In this analysis there are (at
least) two important results from the extant literature
that have to be taken into account:

• If a quantum state is such that the singularity
structure of the two-point function is initially of
the Hadamard form, then Cauchy evolution will
preserve this feature [22], at least up to the edge
of the spacetime (which might be, for instance, a
Cauchy horizon [23]). The state |C〉 certainly sat-
isfies this Hadamard condition at early times [24],
hence it must satisfy it also in the future, even if a
trapping/event horizon forms. (A trapping/event
horizon is not a Cauchy horizon, and is not an ob-
struction to maintaining the Hadamard condition.)
As a consequence of this fact the RSET cannot be-
come singular anywhere on the collapse geometry,

5 We work in natural units.

independently of whether or not a trapping/event
horizon is formed.6

• For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value
of the RSET remains negligibly small throughout
the entire collapse process, including the moment
of horizon formation [25].7 Subsequently, in this
scenario quantum effects manifest themselves via
the slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the
formation of trapped regions (or trapped/apparent/event
horizons). Given that quantum-induced violations of the
energy conditions [27, 28] are taken to be small enough
at this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will
not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event hori-
zon will form. The collapsed star settles down in a quasi-
static black hole and then ultimately evaporates.

This last feature can be easily derived by considering
an expansion of the field in a basis which contains modes
that near I + (i.e., for r → +∞, t → +∞), behave
asymptotically as

ψω(r, t) ≈
1

(2π)3/2(2ω)1/2 r
e−iωu , (4)

with u = t − r and ω > 0, so defining creation and
annihilation operators that differ from those associated
with the modes ϕΩ of equation (2). In a static configura-
tion a (spherical) wave coming from I − is blue-shifted
on its way towards the center of the star, and is then
equally red-shifted on its way out to I +, arriving there
undistorted. However, in a dynamically collapsing con-
figuration the red-shift exceeds the blue-shift, so that an
initial wave at I − is distorted once it reaches I +. In
this sense the dynamical spacetime acts as a “processing
machine” for the normal modes of the field. Expanding
the distorted wave in terms of the undistorted basis at
I + tells us the amount of particle creation due to the
dynamics. In particular one can take a wave packet cen-
tered on frequency Ω on I − and ask what its typical

6 It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate system
(where the matrix of metric coefficients is nonsingular and has
finite components), then the coordinate components of the RSET
are likewise finite. But note that finite does not necessarily imply
small.

7 Similar results were, after some discussion, found in (1 + 1)-
dimensional models based on dilaton gravity [26].
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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with U = t − r and Ω > 0. One can then identify the
state |C〉 as the one that is annihilated by the destruction
operators associated with these modes: âΩ|C〉 = 0. (One

could also expand φ̂ using a wave packet basis [2], which
is a better choice if one wants to deal with behaviour
localized in space and time.) Since the spacetime out-
side the star is isometric with a corresponding portion
of Kruskal spacetime, and is static in the far past, the
modes ϕΩ have the same asymptotic expression as the
Boulware modes [20] near I − (i.e., for t → −∞). Hence
|C〉, the quantum state corresponding to the physical col-
lapse, is (near I −) indistinguishable from the Boulware
vacuum |0B〉. (But this will of course no longer be true
as one moves significantly away from I −.)
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where T c
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deviations from the classical collapse scenario can ap-
pear only if the RSET in equation (3) becomes compara-
ble with the classical SET. In this analysis there are (at
least) two important results from the extant literature
that have to be taken into account:

• If a quantum state is such that the singularity
structure of the two-point function is initially of
the Hadamard form, then Cauchy evolution will
preserve this feature [22], at least up to the edge
of the spacetime (which might be, for instance, a
Cauchy horizon [23]). The state |C〉 certainly sat-
isfies this Hadamard condition at early times [24],
hence it must satisfy it also in the future, even if a
trapping/event horizon forms. (A trapping/event
horizon is not a Cauchy horizon, and is not an ob-
struction to maintaining the Hadamard condition.)
As a consequence of this fact the RSET cannot be-
come singular anywhere on the collapse geometry,
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independently of whether or not a trapping/event
horizon is formed.6

• For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value
of the RSET remains negligibly small throughout
the entire collapse process, including the moment
of horizon formation [25].7 Subsequently, in this
scenario quantum effects manifest themselves via
the slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the
formation of trapped regions (or trapped/apparent/event
horizons). Given that quantum-induced violations of the
energy conditions [27, 28] are taken to be small enough
at this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will
not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event hori-
zon will form. The collapsed star settles down in a quasi-
static black hole and then ultimately evaporates.

This last feature can be easily derived by considering
an expansion of the field in a basis which contains modes
that near I + (i.e., for r → +∞, t → +∞), behave
asymptotically as

ψω(r, t) ≈
1

(2π)3/2(2ω)1/2 r
e−iωu , (4)

with u = t − r and ω > 0, so defining creation and
annihilation operators that differ from those associated
with the modes ϕΩ of equation (2). In a static configura-
tion a (spherical) wave coming from I − is blue-shifted
on its way towards the center of the star, and is then
equally red-shifted on its way out to I +, arriving there
undistorted. However, in a dynamically collapsing con-
figuration the red-shift exceeds the blue-shift, so that an
initial wave at I − is distorted once it reaches I +. In
this sense the dynamical spacetime acts as a “processing
machine” for the normal modes of the field. Expanding
the distorted wave in terms of the undistorted basis at
I + tells us the amount of particle creation due to the
dynamics. In particular one can take a wave packet cen-
tered on frequency Ω on I − and ask what its typical

6 It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate system
(where the matrix of metric coefficients is nonsingular and has
finite components), then the coordinate components of the RSET
are likewise finite. But note that finite does not necessarily imply
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7 Similar results were, after some discussion, found in (1 + 1)-
dimensional models based on dilaton gravity [26].
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.
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It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.
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This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
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each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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Now, one can always write the field operator as

φ̂(t, r) =

∫
dΩ

[
âΩ ϕΩ(t, r) + â†

Ω ϕ∗
Ω(t, r)

]
, (1)

where ϕΩ are the modes that near I − behave asymp-
totically as5

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 |r|
e−iΩU , (2)

with U = t − r and Ω > 0. One can then identify the
state |C〉 as the one that is annihilated by the destruction
operators associated with these modes: âΩ|C〉 = 0. (One

could also expand φ̂ using a wave packet basis [2], which
is a better choice if one wants to deal with behaviour
localized in space and time.) Since the spacetime out-
side the star is isometric with a corresponding portion
of Kruskal spacetime, and is static in the far past, the
modes ϕΩ have the same asymptotic expression as the
Boulware modes [20] near I − (i.e., for t → −∞). Hence
|C〉, the quantum state corresponding to the physical col-
lapse, is (near I −) indistinguishable from the Boulware
vacuum |0B〉. (But this will of course no longer be true
as one moves significantly away from I −.)

Now, the semiclassical collapse problem consists of
studying the evolution of the geometry as determined
by the semiclassical Einstein equations

Gµν = 8π
(
T c

µν + 〈C|T̂µν |C〉
)

, (3)

where T c
µν is the classical part of the SET. Significant

deviations from the classical collapse scenario can ap-
pear only if the RSET in equation (3) becomes compara-
ble with the classical SET. In this analysis there are (at
least) two important results from the extant literature
that have to be taken into account:

• If a quantum state is such that the singularity
structure of the two-point function is initially of
the Hadamard form, then Cauchy evolution will
preserve this feature [22], at least up to the edge
of the spacetime (which might be, for instance, a
Cauchy horizon [23]). The state |C〉 certainly sat-
isfies this Hadamard condition at early times [24],
hence it must satisfy it also in the future, even if a
trapping/event horizon forms. (A trapping/event
horizon is not a Cauchy horizon, and is not an ob-
struction to maintaining the Hadamard condition.)
As a consequence of this fact the RSET cannot be-
come singular anywhere on the collapse geometry,

5 We work in natural units.

independently of whether or not a trapping/event
horizon is formed.6

• For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value
of the RSET remains negligibly small throughout
the entire collapse process, including the moment
of horizon formation [25].7 Subsequently, in this
scenario quantum effects manifest themselves via
the slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the
formation of trapped regions (or trapped/apparent/event
horizons). Given that quantum-induced violations of the
energy conditions [27, 28] are taken to be small enough
at this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will
not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event hori-
zon will form. The collapsed star settles down in a quasi-
static black hole and then ultimately evaporates.

This last feature can be easily derived by considering
an expansion of the field in a basis which contains modes
that near I + (i.e., for r → +∞, t → +∞), behave
asymptotically as

ψω(r, t) ≈
1

(2π)3/2(2ω)1/2 r
e−iωu , (4)

with u = t − r and ω > 0, so defining creation and
annihilation operators that differ from those associated
with the modes ϕΩ of equation (2). In a static configura-
tion a (spherical) wave coming from I − is blue-shifted
on its way towards the center of the star, and is then
equally red-shifted on its way out to I +, arriving there
undistorted. However, in a dynamically collapsing con-
figuration the red-shift exceeds the blue-shift, so that an
initial wave at I − is distorted once it reaches I +. In
this sense the dynamical spacetime acts as a “processing
machine” for the normal modes of the field. Expanding
the distorted wave in terms of the undistorted basis at
I + tells us the amount of particle creation due to the
dynamics. In particular one can take a wave packet cen-
tered on frequency Ω on I − and ask what its typical

6 It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate system
(where the matrix of metric coefficients is nonsingular and has
finite components), then the coordinate components of the RSET
are likewise finite. But note that finite does not necessarily imply
small.

7 Similar results were, after some discussion, found in (1 + 1)-
dimensional models based on dilaton gravity [26].
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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excited when the surface of the star is above the classical
location of the horizon by a proper distance D of about
one Planck length, as measured by Schwarzschild static
observers. We can see this by observing that the red-shift
factor satisfies

(1 − 2M/r)1/2 ∼ ω/Ω = ṗ(u) ∼ κ/Ω0 , (8)

where κ = (4M)−1 is the surface gravity. This then
implies (r − 2M) ∼ κ/Ω2

0, where we have used κ M ∼ 1.
Hence

D ∼ (r − 2M) (1 − 2M/r)−1/2 ∼ 1/Ω0 . (9)

Hence, the trans–Planckian problem has its roots at the
very onset of the formation of the trapping horizon. Fur-
thermore, any complete description of the semiclassical
collapse cannot be achieved without at least some as-
sumptions about trans–Planckian physics.

Of course, one can simply assume that there is a natu-
ral Planck-scale frequency cutoff for effective field theory
in curved spacetimes. Although one cannot completely
exclude this possibility, we find that this way of avoid-
ing the trans–Planckian problem is perhaps worse than
the problem itself, as it would automatically also imply
a shut-down of the Hawking flux in a finite (very small)
amount of time. This would eliminate the thermody-
namical behaviour of black holes, thus undermining the
current explanation for the striking similarity between
the laws of black hole mechanics and those of thermody-
namics — that they are, in fact, just the same laws [32].

Moreover, such a “hard cutoff” obviously corresponds
to a breakdown of Lorentz invariance at the Planck scale.
If one is ready to accept such a departure from stan-
dard physics, then it seems more plausible (less objection-
able?) to conjecture a milder breaking of Lorentz invari-
ance in the form of a modified dispersion relation, a pos-
sibility explored in several works on the trans–Planckian
problem [33]. While it is seemingly well understood that
the Hawking radiation would survive in this case [34],
it is however less clear what effect such modified disper-
sion relations might have on the possibility of forming a
(presumably frequency-dependent) trapping horizon, and
indeed, on the very definition of such a concept [35].

In what follows we shall adopt a conservative approach
and stick, as is usually done, to the standard framework
of quantum field theory in curved spacetime, assuming
its validity up to arbitrarily high frequencies. Even in
the presence of Lorentz violating effects, this would re-
main a valid framework if, for example, the scale at which
Lorentz violations might appear was much higher than
the Planck scale [36].

B. Vacuum polarization

The other difficulties of the standard scenario previ-
ously listed have been linked by different authors to the
presence of horizons and of trapping regions in general.

As we have previously discussed, several departures from
semiclassical gravity have often been called for in order
to solve these problems. However, the specific question
we now want to raise here is rather different: Is the sce-
nario just described guaranteed to be the one actually
realized in semiclassical gravity? Or is it possible that
semiclassical gravity allows for alternative endpoints of
gravitational collapse, in which these problems are not
present? In order to answer these questions we look for
possible semiclassical effects which could modify the col-
lapse before the very formation of a trapped region.

In any calculation of semiclassical collapse the choice
of the propreties of the matter involved (which will be
encoded in the characteristics of the classical SET) is,
obviously, of crucial importance. Normally the initial
conditions at early times are chosen so that one has a
static star with any quantum field in their “natural” vac-
uum state. As we have discussed, this will be virtually
indistinguishable from the Boulware vacuum state. In
this initial configuration we are sure that the RSET is
practically zero throughout spacetime, at least before the
collapse is initiated. We now want to inquire into the pos-
sibility that such a RSET becomes non-negligible during
the collapse.

In the standard semiclassical scenario, it is crucial that
the initial Boulware-like structure of the field modes at
I − is somehow “excited” by the collapse and converted
into a Unruh-like structure at both H+ and I + — this is
necessary for compatibility with the presence of a trap-
ping horizon. In fact, if this excitation and conversion
were not to be sufficiently effective so as to to get rid
of Boulware-like modes in the proximity of the would-be
horizon, then a potential obstruction to the very forma-
tion of the horizon may arise. We know in fact that
in static geometries there is an intrinsic incompatibil-
ity between the Boulware vacuum and the existence of
a trapping horizon, as the RSET near the horizon (in
a simplified calculation in 1+1 dimensions) is found to
be [37]

〈0B|T̂µ̂ν̂(r)|0B〉ren ∝ −
1

M2

1

1 − 2M/r

[
1 0
0 1

]
, (10)

where we work in an orthonormal basis. A similar result
remains valid in the more complicated (3+1)-dimensional
case [30]. The important point is that the denomina-
tor vanishes at the horizon. Hence the RSET acquires
a divergent (and energy condition violating [27]) contri-
bution. Note that the divergence is present even if the
components of the RSET are evaluated in a freely-falling
basis [30]. (To see that something intrinsic is going on at
the horizon it is sufficient to calculate the scalar invariant
Tµν T µν = Tµ̂ν̂ T µ̂ν̂ , and to note that this scalar diverges
at the horizon.)

Of course the above result applies to a static space-
time, while we are interested in investigating an intrinsi-
cally dynamical scenario, which we moreover know, due
to the Fulling–Sweeny–Wald theorem [22], should act in
such a way as to avoid the above divergence. We are
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frequency, say ω, will be when it arrives on I +. The
Bogoliubov coefficients that allow us to express the an-
nihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I +, which is nothing else than the thermal
flux of Hawking radiation [1, 2, 21].

This can be rephrased saying that the physical state
|C〉 corresponding to the collapse behaves like the Unruh
vacuum |0U〉 [29] of Kruskal spacetime near the event
horizon, H+, and near I + (i.e., for t → +∞). In-
deed, in the Kruskal spacetime the Unruh state |0U〉 is
a zero-particle state for a freely-falling observer crossing
the horizon, and corresponds to a thermal flux of par-
ticles at the Hawking temperature for a static observer
at infinity [21, 30]. Given that at late times classical
black holes generated via classical gravitational collapse
are virtually indistinguishable from eternal black holes
(see, for instance, the classical theorem in [31]), the Un-
ruh vacuum is the only quantum state on Kruskal space-
time which appropriately (near I + and H+) simulates
the physical vacuum in a spacetime with an event horizon
formed via gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well known problems (or at the
very least, disquieting features):

• Modes corresponding to quanta detected at I +

have an arbitrarily high frequency on I − (this is
the so-called trans–Planckian problem [29]).

• The run-away end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of
a black hole [1].

• If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime,
then it would seem that nothing would prevent
a unitarity-violating evolution of pure states into
mixed states, contradicting a basic tenet of (usual)
quantum theory (this is one aspect of the so-called
information-loss paradox [3, 4]). Such a difficulty
for reconciliating quantum mechanics with general
relativity seems to persist even when imagining
many alternative scenarios for the end point of the
evaporation, so that one can still continue to talk
about an information-loss problem [3, 4].

All in all, it is clear that this semiclassical collapse sce-
nario is evidently plagued by significant difficulties and
obscurities that still need to be understood. For this rea-
son we think it is worthwhile to step back to a clean slate,
and to revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearence of a
curvature singularity. Once the formation of a trapped
region is assumed , any solution of the problems men-
tioned above seems (naively) to demand an analysis in
a full-fledged theory of quantum gravity. Here, however,
we are questioning the very formation of a trapped re-
gion in astrophysical collapse. In analyzing this question
we will see that semiclassical gravity provides a useful
and sensible starting point. Moreover, we will also show
that it provides some indications as to how the standard
scenario might be modified.

A. The trans–Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans–Planckian problem. While this
problem is usually formulated in static spacetimes, for
our purposes we wish to look back to its origin in a col-
lapse scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U = p(u) between the affine null coordi-
nates U and u, regular on I − and I +, respectively.
Neglecting back-scattering, a mode of the form (2) near
I − takes, near I +, the form

ϕΩ(r, t) ≈
1

(2π)3/2(2Ω)1/2 r
e−iΩp(u) . (5)

This can be regarded, approximately, as a mode of
the type presented in equation (4), but now with u-
dependent frequency ω(u, Ω) = ṗ(u) Ω, where a dot de-
notes differentiation with respect to u. (Of course, this
formula just expresses the redshift undergone by a signal
in travelling from I − to I +.)

In general we can expect a mode to be excited if the
standard adiabatic condition

|ω̇(u, Ω)|/ω2 % 1 (6)

does not hold. It is not difficult to see that this happens
for frequencies smaller than

Ω0(u) ∼ |p̈(u)|/ṗ(u)2 . (7)

One can then think of Ω0(u) as a frequency marking, at
each instant of retarded time u, the separation between
the modes that have been excited (Ω % Ω0) and those
that are still unexcited (Ω ' Ω0).

Moreover, Planck-scale modes (as defined on I −) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
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hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].

6

hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].
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hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].
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hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].
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physics. We shall here suggest such an alternative de-
scription by proposing a new class of compact objects
(that might be called “black stars”) in which no hori-
zons (or ergoregions) are present.4 The absence of these
features would make such objects free from some of the
daunting problems that plague black hole physics.

II. SEMICLASSICAL COLLAPSE: THE
STANDARD SCENARIO

Let us begin by revisiting the standard semiclassical
scenario for black hole formation. For simplicity, in
this paper we shall consider only non-rotating, neutral,
Schwarzschild black holes; however, all the discussion can
be readily generalized to other black hole solutions.

Consider a star of mass M in hydrostatic equilibrium
in empty space. For such a configuration the appropriate
quantum state is well known to be the Boulware vacuum
state |0B〉 [20], which is defined unambiguously as the
state with zero particle content for static observers, and
is regular everywhere both inside and outside the star
(this state is also known as the static, or Schwarzschild,
vacuum [21]). If the star is sufficiently dilute (so that the
radius is very large compared to 2M), then the spacetime
is nearly Minkowskian and such a state will be virtually
indistinguishable from the Minkowski vacuum. Hence,
the expectation value of the renormalized stress-energy-
momentum tensor (RSET) will be negligible throughout
the entire spacetime. This is the reason why, when cal-
culating the spacetime geometry associated with a dilute
star, one only needs to care about the classical contribu-

tion to the stress-energy-momentum tensor (SET).

Imagine now that, at some moment, the star begins to
collapse. The evolution proceeds as in classical general
relativity, but with some extra contributions as spacetime
dynamics will also affect the behaviour of any quantum
fields that are present, giving place to both particle pro-
duction and additional vacuum polarization effects. Con-
tingent upon the standard scenario being correct, if we
work in the Heisenberg picture there is a single globally
defined regular quantum state |C〉 = |collapse〉 that de-
scribes these phenomena.

For simplicity, consider a massless quantum scalar field
and restrict the analysis to spherically symmetric solu-
tions. Every mode of the field can (neglecting back-
scattering) be described as a wave coming in from I −

(i.e., from r → +∞, t → −∞), going inwards through
the star till bouncing at its center (r = 0), and then
moving outwards to finally reach I +. As in this paper
we are going to work in 1 + 1 dimensions (i.e., we shall
ignore any angular dependence), for later notational con-
venience instead of considering wave reflections at r = 0
we will take two mirror-symmetric copies of the space-
time of the collapsing star glued together at r = 0 (see
Fig. 1). In one copy r will run from −∞ to 0, and in the
other from 0 to +∞. Then one can concentrate on how
the modes change on their way from I

−
left (i.e., r → −∞,

t → −∞) to I
+
right (i.e., r → +∞, t → +∞). Hereafter,

we will always implicitly assume this construction and
will not explictly specify “left” and “right” except where
it might cause confusion.

4 These “black stars” are nevertheless distinct from the recently
introduced “gravastars” [19].

FIG. 1: Standard conformal diagram for a collapsing star, and its mirror-symmetric version.
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hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].
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hence interested in seeing the precise way in which this
happens, and in exploring whether it might leave a route
to possibly obtaining large, albeit finite, contributions to
the RSET at the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse sev-
eral choices must be made. The major assumption is that
we shall for the time being restrict attention to 1 + 1 di-
mensions, since then there is a realistic hope of carrying
out a complete analytic calculation. Physically, this is
not as bad a truncation as it at first seems, since we can
always view it as an s-wave approximation to full (3+1)-
dimensional problem, with at most a few actors of r−2

being inserted at strategic places. (For instance, this
analytic approximation underlies the subsequent numer-
ical calculation of Parentani and Piran [25].) A second
significant choice we will make is to specifically work in
a regular coordinate system, in particular, in Painlevé–
Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)

where U = p(u) describes the coordinate transformation.
Then

∂U = ṗ−1 ∂u . (14)

Furthermore, as long as we are outside the collapsing star
it is safe to assume that a Birkhoff-like result holds, and
take C̄(u, W ) as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware)
has components [21, 37]

TUU ∝ C1/2 ∂2
U C−1/2 , (15)

TWW ∝ C1/2 ∂2
W C−1/2 , (16)

TUW ∝ R . (17)

The coefficients arising here are not particularly impor-
tant, and will in any case depend on the specific type of
quantum field under consideration.

The components TWW and TUW will necessarily be
well behaved throughout the region of interest; in partic-
ular they are the same as in a static spacetime and are
known to be regular. On the contrary TUU shows a more
complex structure due to the non-trivial relation between
U and u. A brief computation yields

C1/2 ∂2
U C−1/2 =

1

ṗ2

[
C̄1/2 ∂2

u C̄−1/2 − ṗ1/2 ∂2
u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2

u ṗ−1/2)
arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time
will the leading contributions of these two terms cancel
against each other — this is the standard scenario.

Indeed the first term is exactly what one would com-
pute from using standard Boulware vacuum for a static
star. As the surface of the star recedes, more and more
of the static spacetime is “uncovered”, and one begins to
see regions of the spacetime where the Boulware contri-
bution to the RSET is more and more negative, in fact
diverging as the surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart — a Painlevé–
Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
a direct physical meaning in terms of regularity of the
stress-energy-momentum tensor .8 By setting the space-
time interval to zero, it is easy to see that the null rays

8 These coordinates are also useful as they allow to straightfor-
wardly apply our calculations to acoustic analogue spacetimes
(provided one is in a regime in which one could neglect the exis-
tence of modified dispersion relations) [17, 39].
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Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)
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u ṗ−1/2

]
.

(18)
The key point here is that we have two terms, one
(C̄1/2 ∂2

u C̄−1/2) arising purely from the static spacetime
outside the collapsing star, and the other (ṗ1/2 ∂2
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Gullstrand coordinate chart (x, t) in terms of which the
metric is [17, 38, 39]

g = −c2(x, t) dt2 + [ dx − v(x, t) dt ]2 . (19)

This coordinate chart is particularly useful because it
is regular at the horizon, so that the finiteness of the
stress-energy-momentum components in this chart has
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Gullstrand coordinates [38, 39]. In regular coordinate
systems (where the matrix of metric coefficients is both
finite and non-singular), the values of the stress-energy-
momentum components are direct and useful diagnostics
of the “size” of the stress-energy-momentum tensor.

A. Preliminaries

With reference to the diamond-shaped conformal di-
agram of Fig. 1, we shall start by considering a set of
affine coordinates U and W , defined on I

−
left and I

−
right

respectively. These coordinates are globally defined over
the spacetime and the metric can be written as

g = −C(U, W ) dU dW . (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of
our diagram, we can also choose a second double-null
coordinate patch (u, W ), where u is taken to be affine on
I

+
right, in terms of which the metric is

g = −C̄(u, W ) du dW . (12)

Of course,

C(U, W ) = C̄(u, W )/ṗ(u) , (13)
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7

are given by

dx = (±c + v) dt. (20)

Although inside the collapsing star the metric can de-
pend on x and t in a complicated way, the geometry
outside the surface of the star is taken to be static, so
the functions c and v do not depend on t. Under these
conditions we can integrate along the history of an out-
going ray from an event (t, x) just outside the collapsing
star to another event (tf , xf ) at asymptotic future infin-
ity I

+
right:

tf − t =

∫ xf

x

dx′

c(x′) + v(x′)
. (21)

Assuming asymptotic flatness, c(+∞) = 1 and v(+∞) =
0, we find for the u null coordinate in the “out” region,

u := lim
tf→+∞

(tf − xf ) = t −

∫ x dx′

c(x′) + v(x′)
. (22)

Hence, denoting partial derivatives by subscripts:

Ux = ṗ(u)ux = −
ṗ(u)

c(x) + v(x)
; (23)

Ut = ṗ(u)ut = ṗ(u) . (24)

In contrast, along an incoming ray leaving asymptotic
past infinity I

−
right at an event (ti, xi) and remaining out-

side the star,

t − ti = −

∫ x

xi

dx′

c(x′) − v(x′)
, (25)

so we have, for the W null coordinate:

W := lim
ti→−∞

(ti + xi) = t +

∫ x dx′

c(x′) − v(x′)
. (26)

Hence

Wx =
1

c(x) − v(x)
; Wt = 1. (27)

In addition, by substituting and comparing coefficients
of the line element, it is easy to see that the (U, W ) and
(x, t) coordinates are related by

Ut = −(c + v)Ux , (28)

Wt = (c − v)Wx , (29)

and

C(x, t) = −
1

Ux Wx
. (30)

Therefore the components of the RSET can be calculated in any of the equivalent forms:

Ttt = U2
t TUU + 2 Ut Wt TUW + W 2

t TWW (31)

= (c + v)2 U2
x TUU − 2 (c2 − v2)Ux Wx TUW + (c − v)2 W 2

x TWW (32)

= ṗ2 TUU − 2 ṗ TUW + TWW ; (33)

Ttx = Ut Ux TUU + (Ut Wx + Ux Wt) TUW + Wt Wx TWW (34)

= −(c + v)U2
x TUU − 2 v Ux Wx TUW + (c − v)W 2

x TWW (35)

= −
ṗ2

c + v
TUU +

2 ṗ v

c2 − v2
TUW +

1

c − v
TWW ; (36)

Txx = U2
x TUU + 2 Ux Wx TUW + W 2

x TWW (37)

=
ṗ2

(c + v)2
TUU − 2

ṗ

c2 − v2
TUW +

1

(c − v)2
TWW . (38)

Some of these formulae are more useful for calculating the static Boulware contribution, others are more useful for
calculating the dynamical contribution. Since c + v → 0 at a horizon, while c − v → 2c is regular, this is enough
to guarantee that the Ttt and Ttx components of the RSET are always better behaved (less divergent) than the Txx

component. Note that no divergence can arise from the terms proportional to TWW .

Painleve-- 
Gullstrand:

Technical computation:
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Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)
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∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)

8

Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)

8

Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)
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Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)

8

Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]

κ2 e−2κu

=
κ2

4
+

[

−
1

2

A3

A1
+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)

Static 
contribution:

Collapse: Note!

Collapse 
calculation:
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Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect
to the regular coordinates x and t:

∂u =
c + v

2 c
∂t −

c2 − v2

2 c
∂x . (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention
to the case c(x) ≡ 1. Placing the horizon at x = 0 for
convenience, we can write the asymptotic expansion

v(x) ≈ −1 + κ x + κ2 x2 + · · · , (40)

where κ can be identified with the surface gravity [17, 39].
Consider first the static Boulware term in equation

(18). We have (placing the horizon at x = 0 for con-
venience)

C̄ = −
ṗ

Ux Wx
= −

1

ux Wx
= 1 − v(x)2 ≈ 2 κ x . (41)

The relevant derivative in ∂u is then that with respect to
x, and we can write

C̄1/2 ∂2
u C̄−1/2 ≈ (2 κ x)1/2 κ x ∂x

(
κ x ∂x(2 κ x)−1/2

)

= κ2/4 . (42)

In fact, keeping the subleading terms one finds

C̄1/2 ∂2
u C̄−1/2 =

κ2

4
+ O(x2). (43)

By equations (36) and (38), it is clear that because of the
constant term κ2/4, the components Ttx and Txx of the
RSET contain contributions that diverge as x−1 and x−2,
respectively, as x → 0. (The sub-leading terms lead to
finite contributions of order O(x) and O(1) respectively.)

In counterpoint, assuming horizon formation, let us
now calculate the dynamical contribution to the RSET
(ṗ1/2 ∂2

u ṗ−1/2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

p(u) ≈ UH − A1 e−κu , (44)

where UH and A1 are suitable constants. Taking into
account the asymptotic expression (40) for v(x) near x =
0, it is very easy to see that the potential divergence at
the horizon due to the static term is exactly cancelled
by the dynamical term. In this way we have recovered
the standard result that the RSET at the horizon of a
collapsing star is regular.

However, the previous relation is an asymptotic one,
and for what we are most interested in (the value of the
RSET close to horizon formation) it is important to take
into account extra terms that will be subdominant at late
times. Indeed, we can describe the location of the surface

of a collapsing star that crosses the horizon at time tH
by

x = r(t) − 2M = ξ(t) = −λ(t − tH) + · · · , (45)

where the expansion makes sense for small values of
|t − tH|, and λ represents the velocity with which the
surface crosses the gravitational radius. Let t0 be the
time at which a right-moving light ray corresponding to
null coordinates u and U crosses the surface of the star.
Then on the one hand

tf − t0 =

∫ xf

ξ(t0)

dx′

1 + v(x′)
, (46)

which for t0 ≈ tH (implying r(t0) ≈ 2M) can be approx-
imated by

u ≈ (t0 − tH) −
1

κ
ln (−λ (t0 − tH)) + C1 , (47)

so that

t0 − tH ≈ C2
e−κu

λ
+ · · · (48)

On the other hand, since U(t0) is simply some regular
function, we have

U(t0) = UH + U ′
H (t0 − tH) +

U ′′
H

2
(t0 − tH)2 + · · · (49)

Inserting (48) into (49) we obtain an asymptotic expan-
sion

p(u) = UH − A1 e−κu +
A2

2
e−2κu +

A3

3!
e−3κu + · · · (50)

which it is useful to write as

p(u) = UH − F (e−κu) , (51)

where F is a regular function such that F (0) = 0. Then

ṗ1/2 ∂2
u ṗ−1/2 = −

1

2

p···

ṗ
+

3

4

(
p̈

ṗ

)2

=
κ2

4
+

[

−
1

2

F ′′′

F ′
+

3

4

(
F ′′

F ′

)2
]
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κ2

4
+

[

−
1

2

A3
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+

3

4

(
A2

A1

)2
]

κ2 e−2κu

+O
(
e−3κu

)
. (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important
to note, however, that the corresponding additional con-
tributions to the RSET are finite, in contrast to the one
associated with the first term. Indeed, for small values
of x,

u ≈ t −
1

κ
lnx + const , (53)
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contribution:

Note:  Leading term cancels against static contribution...

small?
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so

e−κu ∝ x e−κt , (54)

and so the second term in the right-hand side of equa-
tion (52) is O(x2), and by equation (38) gives an O(1)
contribution to Txx that does not depend on x, but de-
pends on time as e−2κt. In addition, from a comparison
of equations (48)–(50) we see that

A2

A1
∝

1

λ
,

A3

A1
∝

1

λ2
, (55)

so the leading subdominant term in the RSET is inversely
proportional to the square of the speed with which the
surface of the star crosses its gravitational radius. In par-
ticular, at horizon crossing, that is at t = tH, the value
of the RSET can be as large as one wants provided one
makes λ very small. This would correspond to a very
slow collapse in the proximity of the trapping horizon
formation. Thus, there is a concrete possibility that (en-
ergy condition violating) quantum contributions to the
stress-energy-momentum tensor could lead to significant
deviations from classical collapse when a trapping hori-
zon is just about to form.

D. Calculation assuming asymptotic horizon
formation

Another interesting case one may want to consider is
one in which the horizon is never formed at finite time,
but just approached asymptotically as time runs to in-
finity. In particular, in reference [17] it was shown that
collapses characterized by an exponential approach to the
horizon,

r(t) = 2M + Be−κDt , (56)

lead to a function p(u) of the form

p(u) = UH − A1e
−κeffu , (57)

where κeff is half the harmonic mean between κ and the
rapidity of the exponential approach κD,

κeff =
κ κD

κ + κD
, (58)

so that one always has κeff < κ. In this case, the cal-
culation of the dynamical part of the RSET leads to ex-
actly the same result that when using expression (44),
modulo the substitution of κ by κeff . However, the non-
dynamical part of the RSET remains unchanged. This
implies that now, at leading order

RSET(x ≈ 0) ≈
1

κ2x2

(
κ2

eff − κ2
)

= −
κ (2 κD + κ)

(κD + κ)2 x2
, (59)

which obviously diverges in the limit x → 0. We stress
that this result does not contradict the Fulling–Sweeny–
Wald theorem [22], as the calculation applies only out-
side the surface of the star (i.e., for x ≥ ξ(t)), and so the
divergence appears only at the boundary of spacetime.
Nevertheless, particularizing to x = ξ(t), this again in-
dicates that there is a concrete possibility that energy
condition violating quantum contributions to the stress-
energy-momentum tensor could lead to significant devi-
ations from classical collapse when a trapping horizon is
on the verge of being formed.

E. Physical insight

The key bits of physical insight we have garnered from
this calculation are:

• In the standard collapse scenario the regularity of
the RSET at horizon formation is due to a subtle
cancelation between the dynamical and the static
contributions.

• Contributions that can be neglected at late times
can indeed be very large at the onset of horizon
formation. The actual value of these contributions
depends on the rapidity with which the configura-
tion approaches its trapping horizon.

• Once the horizon forms, the above contributions
will be exponentially damped with time. How-
ever, the analysis of the configuration that ap-
proches horizon formation asymptotically tells us
that, while horizon formation is delayed, there are
contributions that will keep growing with time.

Hence apparently the RSET can acquire large (and en-
ergy condition violating [27]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not
all the classical matter configurations compatible with
the formation of a trapping horizon in classical general
relativity necessarily lead to the same final state when
semiclassical effects are taken into account. In particu-
lar, for classical collapses that exhibit a slow approach to
horizon formation, our calculation indicates that there
will be a large (albeit always finite in compliance with
[22]) contribution from the RSET, a contribution which
can potentially lead the semiclassical collapse to classi-
cally unforeseeable end points. For these reasons we wish
next to further explore the alternative situation in which
the horizon is only formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several
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this calculation are:

• In the standard collapse scenario the regularity of
the RSET at horizon formation is due to a subtle
cancelation between the dynamical and the static
contributions.

• Contributions that can be neglected at late times
can indeed be very large at the onset of horizon
formation. The actual value of these contributions
depends on the rapidity with which the configura-
tion approaches its trapping horizon.

• Once the horizon forms, the above contributions
will be exponentially damped with time. How-
ever, the analysis of the configuration that ap-
proches horizon formation asymptotically tells us
that, while horizon formation is delayed, there are
contributions that will keep growing with time.

Hence apparently the RSET can acquire large (and en-
ergy condition violating [27]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not
all the classical matter configurations compatible with
the formation of a trapping horizon in classical general
relativity necessarily lead to the same final state when
semiclassical effects are taken into account. In particu-
lar, for classical collapses that exhibit a slow approach to
horizon formation, our calculation indicates that there
will be a large (albeit always finite in compliance with
[22]) contribution from the RSET, a contribution which
can potentially lead the semiclassical collapse to classi-
cally unforeseeable end points. For these reasons we wish
next to further explore the alternative situation in which
the horizon is only formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several

(PG coordinates)

(Still get Hawking-like radiation...;  no true horizon...)
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so

e−κu ∝ x e−κt , (54)

and so the second term in the right-hand side of equa-
tion (52) is O(x2), and by equation (38) gives an O(1)
contribution to Txx that does not depend on x, but de-
pends on time as e−2κt. In addition, from a comparison
of equations (48)–(50) we see that

A2

A1
∝

1

λ
,

A3

A1
∝

1

λ2
, (55)

so the leading subdominant term in the RSET is inversely
proportional to the square of the speed with which the
surface of the star crosses its gravitational radius. In par-
ticular, at horizon crossing, that is at t = tH, the value
of the RSET can be as large as one wants provided one
makes λ very small. This would correspond to a very
slow collapse in the proximity of the trapping horizon
formation. Thus, there is a concrete possibility that (en-
ergy condition violating) quantum contributions to the
stress-energy-momentum tensor could lead to significant
deviations from classical collapse when a trapping hori-
zon is just about to form.

D. Calculation assuming asymptotic horizon
formation

Another interesting case one may want to consider is
one in which the horizon is never formed at finite time,
but just approached asymptotically as time runs to in-
finity. In particular, in reference [17] it was shown that
collapses characterized by an exponential approach to the
horizon,

r(t) = 2M + Be−κDt , (56)

lead to a function p(u) of the form

p(u) = UH − A1e
−κeffu , (57)

where κeff is half the harmonic mean between κ and the
rapidity of the exponential approach κD,

κeff =
κ κD

κ + κD
, (58)

so that one always has κeff < κ. In this case, the cal-
culation of the dynamical part of the RSET leads to ex-
actly the same result that when using expression (44),
modulo the substitution of κ by κeff . However, the non-
dynamical part of the RSET remains unchanged. This
implies that now, at leading order

RSET(x ≈ 0) ≈
1

κ2x2

(
κ2

eff − κ2
)

= −
κ (2 κD + κ)

(κD + κ)2 x2
, (59)

which obviously diverges in the limit x → 0. We stress
that this result does not contradict the Fulling–Sweeny–
Wald theorem [22], as the calculation applies only out-
side the surface of the star (i.e., for x ≥ ξ(t)), and so the
divergence appears only at the boundary of spacetime.
Nevertheless, particularizing to x = ξ(t), this again in-
dicates that there is a concrete possibility that energy
condition violating quantum contributions to the stress-
energy-momentum tensor could lead to significant devi-
ations from classical collapse when a trapping horizon is
on the verge of being formed.

E. Physical insight

The key bits of physical insight we have garnered from
this calculation are:

• In the standard collapse scenario the regularity of
the RSET at horizon formation is due to a subtle
cancelation between the dynamical and the static
contributions.

• Contributions that can be neglected at late times
can indeed be very large at the onset of horizon
formation. The actual value of these contributions
depends on the rapidity with which the configura-
tion approaches its trapping horizon.

• Once the horizon forms, the above contributions
will be exponentially damped with time. How-
ever, the analysis of the configuration that ap-
proches horizon formation asymptotically tells us
that, while horizon formation is delayed, there are
contributions that will keep growing with time.

Hence apparently the RSET can acquire large (and en-
ergy condition violating [27]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not
all the classical matter configurations compatible with
the formation of a trapping horizon in classical general
relativity necessarily lead to the same final state when
semiclassical effects are taken into account. In particu-
lar, for classical collapses that exhibit a slow approach to
horizon formation, our calculation indicates that there
will be a large (albeit always finite in compliance with
[22]) contribution from the RSET, a contribution which
can potentially lead the semiclassical collapse to classi-
cally unforeseeable end points. For these reasons we wish
next to further explore the alternative situation in which
the horizon is only formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several

Now only have partial cancellation outside the star:

Does not violate FSW   (finite <=/=> small)

RSET can become large (albeit finite in 
compliance with FSW) as one 

approaches 2m/r ~ 1

Dynamic
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so

e−κu ∝ x e−κt , (54)

and so the second term in the right-hand side of equa-
tion (52) is O(x2), and by equation (38) gives an O(1)
contribution to Txx that does not depend on x, but de-
pends on time as e−2κt. In addition, from a comparison
of equations (48)–(50) we see that

A2

A1
∝

1

λ
,

A3

A1
∝

1

λ2
, (55)

so the leading subdominant term in the RSET is inversely
proportional to the square of the speed with which the
surface of the star crosses its gravitational radius. In par-
ticular, at horizon crossing, that is at t = tH, the value
of the RSET can be as large as one wants provided one
makes λ very small. This would correspond to a very
slow collapse in the proximity of the trapping horizon
formation. Thus, there is a concrete possibility that (en-
ergy condition violating) quantum contributions to the
stress-energy-momentum tensor could lead to significant
deviations from classical collapse when a trapping hori-
zon is just about to form.

D. Calculation assuming asymptotic horizon
formation

Another interesting case one may want to consider is
one in which the horizon is never formed at finite time,
but just approached asymptotically as time runs to in-
finity. In particular, in reference [17] it was shown that
collapses characterized by an exponential approach to the
horizon,

r(t) = 2M + Be−κDt , (56)

lead to a function p(u) of the form

p(u) = UH − A1e
−κeffu , (57)

where κeff is half the harmonic mean between κ and the
rapidity of the exponential approach κD,

κeff =
κ κD

κ + κD
, (58)

so that one always has κeff < κ. In this case, the cal-
culation of the dynamical part of the RSET leads to ex-
actly the same result that when using expression (44),
modulo the substitution of κ by κeff . However, the non-
dynamical part of the RSET remains unchanged. This
implies that now, at leading order

RSET(x ≈ 0) ≈
1

κ2x2

(
κ2

eff − κ2
)

= −
κ (2 κD + κ)

(κD + κ)2 x2
, (59)

which obviously diverges in the limit x → 0. We stress
that this result does not contradict the Fulling–Sweeny–
Wald theorem [22], as the calculation applies only out-
side the surface of the star (i.e., for x ≥ ξ(t)), and so the
divergence appears only at the boundary of spacetime.
Nevertheless, particularizing to x = ξ(t), this again in-
dicates that there is a concrete possibility that energy
condition violating quantum contributions to the stress-
energy-momentum tensor could lead to significant devi-
ations from classical collapse when a trapping horizon is
on the verge of being formed.

E. Physical insight

The key bits of physical insight we have garnered from
this calculation are:

• In the standard collapse scenario the regularity of
the RSET at horizon formation is due to a subtle
cancelation between the dynamical and the static
contributions.

• Contributions that can be neglected at late times
can indeed be very large at the onset of horizon
formation. The actual value of these contributions
depends on the rapidity with which the configura-
tion approaches its trapping horizon.

• Once the horizon forms, the above contributions
will be exponentially damped with time. How-
ever, the analysis of the configuration that ap-
proches horizon formation asymptotically tells us
that, while horizon formation is delayed, there are
contributions that will keep growing with time.

Hence apparently the RSET can acquire large (and en-
ergy condition violating [27]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not
all the classical matter configurations compatible with
the formation of a trapping horizon in classical general
relativity necessarily lead to the same final state when
semiclassical effects are taken into account. In particu-
lar, for classical collapses that exhibit a slow approach to
horizon formation, our calculation indicates that there
will be a large (albeit always finite in compliance with
[22]) contribution from the RSET, a contribution which
can potentially lead the semiclassical collapse to classi-
cally unforeseeable end points. For these reasons we wish
next to further explore the alternative situation in which
the horizon is only formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several

Collapse 
calculation:



9

so

e−κu ∝ x e−κt , (54)

and so the second term in the right-hand side of equa-
tion (52) is O(x2), and by equation (38) gives an O(1)
contribution to Txx that does not depend on x, but de-
pends on time as e−2κt. In addition, from a comparison
of equations (48)–(50) we see that

A2

A1
∝

1

λ
,

A3

A1
∝

1

λ2
, (55)

so the leading subdominant term in the RSET is inversely
proportional to the square of the speed with which the
surface of the star crosses its gravitational radius. In par-
ticular, at horizon crossing, that is at t = tH, the value
of the RSET can be as large as one wants provided one
makes λ very small. This would correspond to a very
slow collapse in the proximity of the trapping horizon
formation. Thus, there is a concrete possibility that (en-
ergy condition violating) quantum contributions to the
stress-energy-momentum tensor could lead to significant
deviations from classical collapse when a trapping hori-
zon is just about to form.

D. Calculation assuming asymptotic horizon
formation

Another interesting case one may want to consider is
one in which the horizon is never formed at finite time,
but just approached asymptotically as time runs to in-
finity. In particular, in reference [17] it was shown that
collapses characterized by an exponential approach to the
horizon,

r(t) = 2M + Be−κDt , (56)

lead to a function p(u) of the form

p(u) = UH − A1e
−κeffu , (57)

where κeff is half the harmonic mean between κ and the
rapidity of the exponential approach κD,

κeff =
κ κD

κ + κD
, (58)

so that one always has κeff < κ. In this case, the cal-
culation of the dynamical part of the RSET leads to ex-
actly the same result that when using expression (44),
modulo the substitution of κ by κeff . However, the non-
dynamical part of the RSET remains unchanged. This
implies that now, at leading order

RSET(x ≈ 0) ≈
1

κ2x2

(
κ2

eff − κ2
)

= −
κ (2 κD + κ)

(κD + κ)2 x2
, (59)

which obviously diverges in the limit x → 0. We stress
that this result does not contradict the Fulling–Sweeny–
Wald theorem [22], as the calculation applies only out-
side the surface of the star (i.e., for x ≥ ξ(t)), and so the
divergence appears only at the boundary of spacetime.
Nevertheless, particularizing to x = ξ(t), this again in-
dicates that there is a concrete possibility that energy
condition violating quantum contributions to the stress-
energy-momentum tensor could lead to significant devi-
ations from classical collapse when a trapping horizon is
on the verge of being formed.

E. Physical insight

The key bits of physical insight we have garnered from
this calculation are:

• In the standard collapse scenario the regularity of
the RSET at horizon formation is due to a subtle
cancelation between the dynamical and the static
contributions.

• Contributions that can be neglected at late times
can indeed be very large at the onset of horizon
formation. The actual value of these contributions
depends on the rapidity with which the configura-
tion approaches its trapping horizon.

• Once the horizon forms, the above contributions
will be exponentially damped with time. How-
ever, the analysis of the configuration that ap-
proches horizon formation asymptotically tells us
that, while horizon formation is delayed, there are
contributions that will keep growing with time.

Hence apparently the RSET can acquire large (and en-
ergy condition violating [27]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not
all the classical matter configurations compatible with
the formation of a trapping horizon in classical general
relativity necessarily lead to the same final state when
semiclassical effects are taken into account. In particu-
lar, for classical collapses that exhibit a slow approach to
horizon formation, our calculation indicates that there
will be a large (albeit always finite in compliance with
[22]) contribution from the RSET, a contribution which
can potentially lead the semiclassical collapse to classi-
cally unforeseeable end points. For these reasons we wish
next to further explore the alternative situation in which
the horizon is only formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several

In the standard collapse you can argue that the RSET at 
horizon-crossing felt by infalling matter is negligible if you have:

1) a Hadamard state (which we have by assertion --- FSW)
2) matter is basically free falling
3) the equivalence principle holds

The first point tells you that the quantum vacuum has the same UV 
form as in Minkowski spacetime, the second point tells you that 
matter is approximately in a local inertial frame, the third point tells 
you that the local RSET the matter then "feels" must be 
approximately the value it has in Minkowski spacetime, 
i.e. approximately zero (after renormalization).

Collapse 
scenario:



Our result is saying exactly that large deviations from this 
standard conclusion can arise if matter is not freely falling, but 
actually accelerated (as it must be to sustain itself against the 
gravitational attraction).

So we are explicitly violating point 2 
(while we explicitly keep 1 and implicitly keep 3).

If the surface of the star deviates significantly from free-fall, 
then a large stress-energy builds up, which can force it further 
away from free-fall --- either stopping or exponentially delaying 
the collapse. 

Precisely predicting what happens in a specific collapse 
scenario relies on messy model-dependent physics...

Collapse 
scenario:



 Many people are now 
(for numerous independent reasons) 

arguing against the standard 
Carter-Penrose diagram 

for the formation and evaporation 
of a semi-classical BH....

Collapse 
scenario:
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FIG. 1: The standard space-time diagram depicting black hole formation and evaporation.

event horizon should steadily decrease. This then leads to black hole evaporation depicted

in figure 1 [11].

If one does not examine space-time geometry but uses instead intuition derived from

Minkowskian physics, one may be surprised that although there is no black hole at the

end, the initial pure state has evolved in to a mixed state. Note however that while space-

time is now dynamical even after the collapse, there is still a final singularity, i.e., a final

boundary in addition to I+. Therefore, it is not at all surprising that, in this approximation,

information is lost —it is still swallowed by the final singularity [10]. Thus, provided figure

1 is a reasonable approximation of black hole evaporation and one does not add new input

‘by hand’, then pure states must evolve in to mixed states.

The question then is to what extent this diagram is a good representation of the physical

situation. The general argument in the relativity community has been the following (see

e.g. [12]). Figure 1 should be an excellent representation of the actual physical situation

as long as the black hole is much larger than the Planck scale. Therefore, problems, if any,

are associated only with the end point of the evaporation process. It is only here that the

semi-classical approximation fails and one needs full quantum gravity. Whatever these ‘end

effects’ are, they deal only with the Planck scale objects and would be too small to recover

the correlations that have been steadily lost as the large black hole evaporated down to the

Planck scale. Hence pure states must evolve to mixed states and information is lost.

Tight as this argument seems, it overlooks two important considerations. First, one would

hope that quantum theory is free of infinities whence figure 1 can not be a good depiction

of physics near the entire singularity —not just near the end point of the evaporation

3

don’t ask,
don’t tell

“Standard” 
Carter-Penrose 
diagram for an

evaporating 
black hole...



Apart from the nut-jobs 
(which we shall quietly discount), 

there are hints from string-inspired models, 
from attempts at unitarity preservation 

(in our asymptotic region...),
from one-loop curved-space QFT,

from analogue spacetimes, 
all hinting at a more subtle history 

for collapse and evolution...

Collapse 
scenario:



J
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!
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+

0

H

I

FIG. 2: Space-time diagram of black hole evaporation where the classical singularity is resolved

by quantum geometry effects. The shaded region lies in the ‘deep Planck regime’ where geome-

try is genuinely quantum mechanical. H is the trapping horizon which is first space-like (i.e., a

dynamical horizon) and grows because of infalling matter and then becomes time-like (i.e., a time-

like membrane) and shrinks because of Hawking evaporation. In region I, there is a well-defined

semi-classical geometry.

two considerations: i) the situation in the CGHS model where detailed calculations are

possible and show that the quantum space-time has this property; and ii) experience with

the action of the Hamiltonian constraint in the spherically symmetric midi-superspace in

four dimensions. However, only detailed calculations can decide whether this assumption

is borne out. Since our goal in this paper is only to point out the existence of a possible

space-time description in which information can be recovered at future null infinity, for our

purposes it suffices to note only that none of the existing arguments rule out this mechanism.

We will refer to figure 2 as a ‘Penrose diagram’ where the inverted commas will serve

as a reminder that we are not dealing with a purely classical space-time. Throughout the

quantum evolution, the pure state remains pure and so we again have a pure state on I+.

In this sense there is no information loss. Noteworthy features of this ‘Penrose diagram’ are

the following.

i) Effect of the resolution of the classical singularity: Region marked I is well-
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FIG. 4: A mass profile m(v) in advanced time v.

flux (or energy-momentum density) T r
v given by

Gr
v =

2r4m′

(r3 + 2l2m)2
(12)

where m′ = dm/dv. This describes pure radiation, recov-
ering the Vaidya solutions for l = 0 and at large radius.
In the Vaidya solutions, the ingoing radiation creates a
central singularity, but in these models, the centre re-
mains regular, with the same central energy density given
by (3). It seems that the effective cosmological constant
protects the core.

The ingoing energy flux is positive if m is increasing
and negative if m is decreasing. A key point is that trap-
ping horizons still occur where the invariant grr = F (r, v)
vanishes [7]. Then one can apply the previous analysis to
locate the trapping horizons in (v, r) coordinates param-
eterized by m, given by m(r±) in (6) and a mass profile
m(v); qualitatively, by inspecting Figs. 3 and 4.

Ingoing radiation. One can now model formation and
evaporation of a static black-hole region. Introduce six
consecutive advanced times va < vb < . . . < vf and
consider smooth profiles of m(v), meaning m′(v) at least
continuous, such that (Fig. 4)

∀v ∈ (−∞, va) : m(v) = 0 (13)

∀v ∈ (va, vc) : m′(v) > 0 (14)

∀v ∈ (vc, vd) : m(v) = m0 > m∗ (15)

∀v ∈ (vd, vf ) : m′(v) < 0 (16)

∀v ∈ (vf ,∞) : m(v) = 0. (17)

Then

∃vb ∈ (va, vc) : m(vb) = m∗ (18)

∃ve ∈ (vd, vf ) : m(ve) = m∗. (19)

These transition times mark the appearance and dis-
appearance of a pair of trapping horizons: for v < vb

and v > ve, there is no trapping horizon, while for
vb < v < ve, there are outer and inner trapping horizons,
in the sense of the author’s local classification [7]. These
horizons join smoothly at the transitions and therefore
unite as a single smooth trapping horizon enclosing a
compact region of trapped surfaces (Fig. 5, for r < r0).

Outgoing radiation. Thus far, only the ingoing Hawk-
ing radiation has been modelled, since outgoing radiation
does not enter the equation of motion of the trapping

inner
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FIG. 5: Penrose diagram of formation and evaporation of a
regular black hole in the given models.

horizon; in terms of retarded time u, Tvv and Tuv enter,
but Tuu does not [7]. Outgoing Hawking radiation will
now be modelled by adapting an idea of Hiscock [13]:
select a certain radius r0 > 2m0 outside the black hole,
and adopt the above negative-energy radiation only in-
side that radius, balanced by outgoing positive-energy
radiation outside that radius, with the same mass pro-
file (Fig. 5). This is an idealized model of pair creation
of ingoing particles with negative energy and outgoing
particles with positive energy, locally conserving energy.

In more detail, consider an outgoing Vaidya-like region

ds2 = r2dS2 − 2dudr − Fdu2 (20)

with F (r, u) as before (5), with m replaced by a mass
function n(u). Fix the zero point of the retarded time
u so that r = r0 corresponds to u = v. Now take the
above model only for v < vd (13)–(15). For v > vd, keep
the profiles (16)–(17) for r < r0, but for r > r0, take an
outgoing Vaidya-like region with

∀u < vd : n(u) = m0 (21)

Hayward
version of the 

Carter-Penrose 
diagram for an

evaporating 
black hole...

Information
“problem” ?



Apparent horizons
without an 

event horizon

Bergmann-Roman
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Specific predictions are frustratingly 
model-dependent, 

but there is some “wriggle room” 
for interesting new physics...

Collapse 
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Once you add rotation, 
the ergosurface is probably 
more important than the 

“would be horizon”.

It’s the ergosurface, dummy...

Cardoso,   Pani ,  Cadoni,   Cavliaga:   

arXiv:0709.0532;  0808.1615

Ergoregion instabilities...

Collapse 
scenario:



A black hole for (almost) all practical purposes?

But some deep issues of principle remain...

Conclusion:



   “It is important to keep an 
open mind;  just not so open 

that your brains fall out”
 

                         --- Albert Einstein



xxx

In my more
cynical 

moments...


