UNiversity of welling Te Whare Wänanga o te Üpoko o te Ika a Māui
 巷图第

4_{4}^{4}

3%
4 0 wor

\square 20

4

Deriving a wave equation for sound in the presence of background vorticity is actually rather difficult.

Need Clebsch decomposition --- multiple scalar potentials.
Any vector field in thre dimensions $\quad \mathbf{v}_{0}=\nabla \phi_{0}+\beta_{0} \nabla \gamma_{0}$.

Fluctuations: $\quad \mathbf{v}_{1}=\nabla \phi_{1}+\beta_{0} \nabla \gamma_{1}+\beta_{1} \nabla \gamma_{0}$

$$
\begin{aligned}
& =\nabla\left(\phi_{1}+\beta_{0} \gamma_{1}\right)-\gamma_{1} \nabla \beta_{0}+\beta_{1} \nabla \gamma_{0} \\
& \equiv \nabla \psi_{1}+\xi_{1} .
\end{aligned}
$$

Constraint: $\quad \xi_{1} \cdot\left(\nabla \times \vee_{0}\right)=0$

The PDEs governing linearized fluctuations (sound) are:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{1}\right)=\frac{1}{\rho_{0}} \nabla\left(\rho_{0}\left(\nabla \psi_{1}+\xi_{1}\right)\right), \\
& \frac{\mathrm{d} \xi_{1}}{\mathrm{~d} t}=\nabla \psi_{1} \times \omega_{0}-\left(\xi_{1} \cdot \nabla\right) \mathbf{v}_{0} .
\end{aligned}
$$

If the vorticity is zero you recover the previous formalism.

$$
\Delta \psi \equiv \frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \psi\right)=0 .
$$

If the wavelength and period of the sound wave are small compared to variations in the background flow, you recover Peirce's approximate equation.

Adding vorticity:

For any barotropic fluid:

$$
S=\int \mathrm{d} t \mathrm{~d}^{3} x\left\{-\frac{1}{2} \rho \mathbf{v}^{2}-\phi(\dot{\rho}+\nabla \cdot(\rho \mathbf{v}))+\rho \beta(\dot{\gamma}+(\mathbf{v} \cdot \nabla) \gamma)+u(\rho)\right\} .
$$

Vary the velocity field v:

$$
\mathbf{v}=\nabla \phi+\beta \nabla \gamma .
$$

Algebraically eliminate the velocity field v :

$$
S_{\text {new }}=\int \mathrm{d} t \mathrm{~d}^{3} x\left\{\frac{1}{2} \rho(\nabla \phi+\beta \nabla \gamma)^{2}+\rho(\dot{\phi}+\beta \dot{\gamma})+u(\rho)\right\} .
$$

Adding vorticity:

Now vary the remaining variables:

$$
\begin{array}{ll}
\delta \phi: & \dot{\rho}+\nabla \cdot(\rho \mathbf{v})=0, \\
\delta \beta: & \rho(\dot{\gamma}+(\mathbf{v} \cdot \nabla) \gamma)=0 \quad \Rightarrow \quad \dot{\gamma}+(\mathbf{v} \cdot \nabla) \gamma=0, \\
\delta \gamma: & \partial_{t}(\rho \beta)+\nabla(\mathbf{v} \rho \beta)=0 \quad \Rightarrow \quad \dot{\beta}+(\mathbf{v} \cdot \nabla) \beta=0, \\
\delta \rho: & \frac{1}{2} v^{2}+\dot{\phi}+\beta \dot{\gamma}+\mu=0,
\end{array}
$$

Here $\sharp=\mathrm{d} u / \mathrm{d} \rho$ is the specific enthalpy. Both β and γ are advected by the motion.

These equations are still exact.

Now need to consider (
) fluctuations...

$$
\begin{aligned}
& \rho=\rho_{0}+\epsilon \rho_{1,}, \\
& \phi=\phi_{0}+\epsilon \phi_{1}, \\
& \beta=\beta_{0}+\epsilon \beta_{1}, \\
& \gamma=\gamma_{0}+\epsilon \gamma_{1},
\end{aligned}
$$

Expand the action to quadratic order in fluctuations:

$$
\begin{aligned}
& S_{\text {new }}=S_{0}+S_{1}+S_{2}+\cdots \\
& S_{2}=\int \mathrm{d} t \mathrm{~d}^{3} x
\end{aligned} \begin{aligned}
& \left\{\frac{1}{2} \rho_{0} \mathbf{v}_{1}^{2}+\rho_{1} \mathbf{v}_{0} \cdot \mathbf{v}_{1}+\rho_{1}\left(\dot{\phi}_{1}+\beta_{0} \dot{\gamma}_{1}+\beta_{1} \dot{\gamma}_{0}\right)\right. \\
& \left.+\rho_{0} \beta_{1} \dot{\gamma}_{1}+\frac{1}{2} \frac{c^{2}}{\rho_{0}} \rho_{1}^{2}\right\},
\end{aligned}
$$

Here v_{1} is shorthand for $\nabla \phi_{1}+\beta_{1} \nabla \gamma_{0}+\beta_{0} \nabla \gamma_{1}$.

Now simply read off the EOM and rearrange them. Useful definitions: $\quad \psi_{1}=\phi_{1}+\beta_{0} \gamma_{1}, \quad \xi_{1}=\beta_{1} \nabla \gamma_{0}-\gamma_{1} \nabla \beta_{0}$.

Useful results: $\quad \rho_{1}=-\frac{\rho_{0}}{c^{2}} \frac{\mathrm{~d} \psi_{1}}{\mathrm{~d} t}$,

$$
\begin{gathered}
\frac{\partial \rho_{1}}{\partial t}+\mathbf{v}_{0} \cdot \nabla \rho_{1}+\rho_{1} \nabla \cdot \mathbf{v}_{0}+\nabla \cdot \rho_{0} \mathbf{v}_{1}=0, \\
\frac{\partial \rho_{0}}{\partial t}+\nabla \cdot\left(\rho_{0} \mathbf{v}_{0}\right)=0,
\end{gathered}
$$

Implies:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{1}{\mathrm{c}^{2}} \frac{\mathrm{~d}}{\mathrm{dt}} \psi_{1}\right)=\frac{1}{\rho_{0}} \nabla\left(\rho_{0}\left(\nabla \psi_{1}+\xi_{1}\right)\right) .
$$

If we ignore the ξ_{1} then we have Pierce's equation:

$$
\left(\frac{\partial}{\partial \mathrm{t}}+\mathrm{v}_{0} \cdot \nabla\right) \frac{1}{\iota^{2}}\left(\frac{\partial}{\partial \mathrm{t}}+\mathrm{v}_{0} \cdot \nabla\right) \psi_{1}=\frac{1}{\rho_{0}} \nabla\left(\rho_{0} \nabla \psi_{1}\right) .
$$

By using the background continuity equation:

$$
\left(\frac{\partial}{\partial \mathrm{t}}+\nabla \cdot \mathrm{v}_{0}\right) \frac{\rho_{0}}{c^{2}}\left(\frac{\partial}{\partial \mathrm{t}}+\mathrm{v}_{0} \cdot \nabla\right) \psi_{1}=\nabla\left(\rho_{0} \nabla \psi_{1}\right)
$$

where each nabla now acts on to its right... but this is now equivalent to:

$$
\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \psi_{1}\right)=0, \quad \sqrt{-g} g^{\mu \nu}=\frac{\rho_{0}}{c^{2}}\left(\begin{array}{cc}
1_{1} & v_{0}^{\top} \\
v_{0} & v_{0} v_{0}^{\top}-c^{2} l
\end{array}\right) .
$$

Adding vorticity:

As usual:
$g_{\mu \nu}=\frac{\rho_{0}}{c}\left(\begin{array}{cc}c^{2}-v_{0}^{2} & v_{0}^{\top} \\ v_{0} & -I\end{array}\right)$
Spacetime interval:
$\mathrm{d} s^{2}=\frac{\rho_{0}}{c}\left\{c^{2} \mathrm{~d} t^{2}-\delta_{i j}\left(\mathrm{~d} x^{i}-v_{0}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}-v_{0}^{j} \mathrm{~d} t\right)\right\}$.
The "scalar part" of the velocity perturbation still "sees" the same "acoustic metric", though the "vortex part" of the velocity perturbation now acts as a source:

$$
\Delta_{g} \psi_{1}=\frac{1}{\rho_{0}^{2} c_{0}} \frac{\partial}{\partial x^{i}}\left(\rho \xi_{1}^{i}\right) .
$$

To complete the job you need an EOM for ξ_{1}. A brief but turgid agony leads to:

$$
\frac{\mathrm{d} \xi_{1}}{\mathrm{dt}}=\nabla \psi_{1} \times \omega_{0}-\left(\xi_{1} \cdot \nabla\right) \mathbf{v}_{0}
$$

so gradients in the "scalar part" of the velocity perturbation excite the "vortex part" of the velocity perturbation...

UNiversity of welling Te Whare Wänanga o te Üpoko o te Ika a Māui
 巷图第

4_{4}^{4}

3%
4 0 wor

\square 20

4

