


Adding vorticity:

Deriving a wave equation for sound in the presence of 
background vorticity is actually rather difficult.

Need Clebsch decomposition --- multiple scalar potentials.

result is an exact and concise expression for the small correct ion to potent ial
flow, and a simple equat ion of mot ion obeyed by it . This, coupled with the
Pierce equat ion, provides a closed system for wave propagat ion in a general
inhomogeneous and unsteady background flow. The condit ion that the cor-
rect ion to potent ial flow be ignorable, and thus the acoust ic metric equat ion
accurate, is that the frequency of the sound beappreciably higher than the lo-
cal vort icity. There isno requirement that thespat ial inhomogeneity besmall.
Even if the frequency condit ion is violated, wecan st ill study thewavemot ion,
but with a more complicated system of part ial different ial equat ions.

The paper is organized as follows: In sect ion 2 we provide a very brief four-
equat ion out line of key results. Sect ion 3 reviews the act ion principle for the
Clebsch formulat ion of barotropic fluid mechanics. (The straight forward but
messy derivat ion of the Euler equat ions is presented in appendix A.) In sec-
t ion 4 we consider first-order perturbat ions to a background flow, and ident ify
two “ gauge invariant” combinat ions of the potent ials which have physical sig-
nificance. (Technical discussion of the the infinite family of conserved quant i-
t ies that generate global gauge transformat ions on the Clebsch potent ials is
deferred unt il appendix B.) In sect ion 5 wederive a closed system of equat ions
for these combinat ions, and in sect ion 6 present a physical interpretat ion for
one of the perturbat ions in terms of the displacement field. Finally sect ion 7
illustrates our formalism by applying it to a well-understood situat ion: waves
in a uniformly rotat ing fluid.

2 Outline

In brief: Any vector field in three dimensions can be represented in Clebsch
form

v0 = ∇φ0 + β0∇γ0. (1)

Once this is done, fluctuat ions around this background vector field can be
represented as

v1 = ∇φ1 + β0∇γ1 + β1∇γ0

= ∇(φ1 + β0γ1) − γ1∇β0 + β1∇γ0

≡∇ψ1 + ξ1. (2)

A nice feature of this representat ion is that ξ1 · (∇× v0) = 0. Now interpret
v as the fluid velocity, in the body of the paper wewill derive an exact closed
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Fluctuations:
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cal vorticity. There is no requirement that the spatial inhomogeneity be small.
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one of the perturbations in terms of the displacement field. Finally section 7
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in a uniformly rotating fluid.
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Constraint:
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Adding vorticity:

system of coupled differential equations for the perturbation:

d

dt

(
1

c2

d

dt
ψ1

)
=

1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) , (3)

dξ1

dt
= ∇ψ1 × ω0 − (ξ1 · ∇)v0. (4)

Deriving, interpreting, and analyzing these coupled wave equations is the cen-
tral theme of this article.

3 Clebsch representation

In this section we will review the Clebsch potential approach to fluid dynamics.
The Clebsch formalism has the advantage that the equations of motion may be
derived from an action principle [12], and with an action principle conservation
laws are related to symmetries by Noether’s theorem.

We begin with

S =
∫

dt d3x
{
−1

2
ρv2 − φ(ρ̇ + ∇ · (ρv)) + ρβ(γ̇ + (v · ∇)γ) + u(ρ)

}
. (5)

Here ρ is the fluid mass-density, v the velocity, and u(ρ) the internal energy
density. This is the customary expression giving rise to irrotational fluid dy-
namics (see, for example [7]) — but with an additional term containing new
fields: β and γ. The variable β may be thought of as a Lagrange multiplier
enforcing the Lin constraint [13] that there be a label (γ) painted on the par-
ticles permitting us to distinguish one from another. (Lin originally employed
three Lagrange multipliers β1,2,3 leading to the conservation of three Lagrange
co-ordinates, γ1,2,3, which served to label the material particles uniquely. As
shown by Seligar and Whitham [14], only one of these Lagrange multipliers is
really necessary.)

Requiring that S be stationary when we vary v gives

−ρv + ρ∇φ + ρβ∇γ = 0, (6)

or

v = ∇φ + β∇γ. (7)
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The PDEs governing linearized fluctuations (sound) are:

If the vorticity is zero you recover the previous formalism.

If the wavelength and period of the sound wave are small 
compared to variations in the background flow, 

you recover Peirce’s approximate equation.

Q: How do acoustic disturbances propagate
in a non–homogeneous flowing fluid?

A: If the fluid is barotropic and inviscid, and
the flow is irrotational, the equation of motion
for the velocity potential can be put in the
(3 + 1)–dimensional form

∆ψ ≡ 1√−g
∂µ

(√−g gµν ∂νψ
)
= 0.

• The acoustic metric is:

gµν(t, $x) ≡ ρ

c

 −(c2 − v2) ... −$v

· · · · · · · · · · · · · · · · · · ·
−$v ... I


.

• The underlying fluid dynamics is Newtonian,
non–relativistic, in flat space + time.

• The fluctuations (sound waves) are gov-
erned by a Lorentzian spacetime geometry!



Adding vorticity:

Technical details: 

For any barotropic fluid:

system of coupled differential equations for the perturbation:
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dt
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1
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tral theme of this article.
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co-ordinates, γ1,2,3, which served to label the material particles uniquely. As
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Vary the velocity field v:

system of coupled diÿerential equations for the perturbation:
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ρ0
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or
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This is the Clebsch representation [15,16] of the velocity field. It allows for
flows with non-zero vorticity

ω = ∇× v = ∇β ×∇γ. (8)

We use (7) to algebraically eliminate the v in S in favour of the Clebsch
potentials φ, β, γ. This leads to a new action [12]

Snew =
∫

dt d3x
{

1

2
ρ(∇φ + β∇γ)2 + ρ(φ̇ + βγ̇) + u(ρ)

}
. (9)

Varying the remaining variables in (9) gives the equations of motion

δφ : ρ̇ + ∇ · (ρv) = 0,
δβ : ρ(γ̇ + (v · ∇)γ) = 0 ⇒ γ̇ + (v · ∇)γ = 0,

δγ : ∂t(ρβ) + ∇(vρβ) = 0 ⇒ β̇ + (v · ∇)β = 0,

δρ :
1

2
v2 + φ̇ + βγ̇ + µ = 0, (10)

where, in the last line, µ = du/dρ is the specific enthalpy. We see that the
values of both β and γ are advected with the motion. In appendix A we verify
that the above equations reproduce Euler’s equation.

It is important to realise that the Clebsch decomposition is radically different
from the Helmholtz decomposition (Hodge decomposition)

v = ∇Φ + ∇×A (11)

that is more commonly used in electrodynamics and related fields. The Cleb-
sch representation, though less commonly used, is more fundamental when
it comes to investigations in fluid dynamics. See for example, Möhring [17],
Marsden et al. [18], and Bachall and Susskind [19].

4 Fluctuations

We want to study the evolution of small fluctuations superposed on a back-
ground flow. We will take the background flow to be described by the set of
variables (ρ0, φ0, β0, γ0), and take

ρ = ρ0 + ε ρ1,

5

Algebraically eliminate the velocity field v:



Adding vorticity:

Now vary the remaining variables:
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Both are advected by the motion.

These equations are still exact.

Now need to consider (linearized) fluctuations...
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Adding vorticity:

φ = φ0 + ε φ1,

β = β0 + ε β1,

γ = γ0 + ε γ1, (12)

where ε is a (small) dimensionless expansion parameter, to describe the back-
ground flow plus perturbation. We will not assume that the background flow
is steady, only that it satisfies the equations of motion. We now expand the
action Snew out to quadratic order in the fluctuations

Snew = S0 + S1 + S2 + · · · . (13)

The action S1, containing terms linear in the fluctuations, vanishes because of
our assumption that the zeroth order variables obey the equation of motion.
The term quadratic in the fluctuations is

S2 =
∫

dt d3x

{
1

2
ρ0v 2

1 + ρ1v0 · v1 + ρ1(φ̇1 + β0γ̇1 + β1γ̇0)

+ρ0β1γ̇1 +
1

2

c2

ρ0
ρ2

1

}
, (14)

where v1 is shorthand for ∇φ1 + β1∇γ0 + β0∇γ1, and

c2 = ρ0
d2u

d ρ2
, (15)

is the square of the local speed of sound.

In making this expansion we have ignored the fact that the non-linearity of
the constitutive relations for the fluid, and the non-linearity of the equation
of continuity, mean that equations (12) should be supplemented O(ε2) correc-
tions, and that these are of the same order as the terms retained in (14). This
seeming inconsistency, however, is the usual approximation of linear acous-
tics: Any order O(ε2) term in equations (12) contributes to S2 only linearly,
through terms that vanish because the zeroth order variables obey the equa-
tion of motion. The omitted terms can be significant at higher order, when
computing such effects as radiation stress and mass transport by the sound
wave, which are intrinsically of second-order in the wave amplitude, but are
unimportant for computing the O(ε) wave amplitude.

From S2 we can deduce the equations of motion for the first-order fluctuat-
ing quantities. These equations are not easy to work with, however. Because
they are advected with the flow, the potentials β0 and γ0 which appear as
coefficients in the equations will generally be time-dependent — even if the
background flow is steady. Furthermore, there is an overall gauge ambiguity
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Adding vorticity:

Now simply read off the EOM and rearrange them.

Useful definitions:

inherent in theClebsch decomposit ion which obscuresany physical interpreta-
t ion. (The genesis and nature of this gauge ambiguity is more fully developed
in appendix B.) It is therefore fruit ful to seek combinat ions of the potent ials
that are gauge invariant and can be expressed in terms of physical quant it ies.
For example the first order velocity field,

v1 = ∇φ1 + β0∇γ1 + β1∇γ0, (16)

is gauge invariant because v is.

By varying ρ1 in (14) we find

ρ1 = −ρ0

c2

(
φ̇1 + v0 ·∇φ1 + β0(γ̇1 + v0 ·∇γ1) + β1(γ̇0 + v0 ·∇γ0)

)
. (17)

Since

β̇0 + v0 ·∇β0 = 0,
γ̇0 + v0 ·∇γ0 = 0, (18)

we can write this as

ρ1 = −ρ0

c2

dψ1

dt , (19)

where

ψ1 = φ1 + β0γ1, (20)

and
d
dt =

∂

∂t
+ v0 ·∇ (21)

is the convect ive derivat ive.

Note that the density fluctuat ion ρ1, being a physical variable, must be gauge
invariant in thesenseof appendix B. Consequent ly equat ion (19) suggests that
the combinat ion ψ1 is itself gauge invariant . This is easily confirmed. In the
notat ion of appendix B:

δψ1 = δ(φ1 + β0γ1)

=
{

∂F
∂β

β1 +
∂F
∂γ

γ1 − β1
∂F
∂β

− β0

(
∂2F
∂β2

β1 +
∂2F
∂β∂γ

γ1

)

7

− ∂F
∂γ

γ1 + β0

(
∂2F
∂β2

β1 +
∂2F
∂β∂γ

γ1

)}
=0. (22)

We can use ψ1 to write

v1 = ∇ψ1 + ξ1, (23)

where

ξ1 = β1∇γ0 − γ1∇β0. (24)

This is a decomposition of the first-order velocity fluctuation into two gauge
invariant parts. Because sound in a fluid is a scalar excitation, it is natural
to identify the scalar field ψ1 with the acoustic degree of freedom, and ξ1, the
correction to potential flow induced by angular momentum conservation, with
a partial hybridization of the sound with other modes. (Note that there is no
requirement that ∇ · ξ1 = 0, which fundamentally distinguishes this procedure
from a Helmholtz-type decomposition.) Although the vector field ξ1 has three
components, it only represents two degrees of freedom. This is because

ξ1 · ω0 = (β1∇γ0 − γ1∇β0) · (∇β0 ×∇γ0) ≡ 0. (25)

Since ξ1 is gauge invariant, it should be possible to write it in terms of physical
variables. In section 6 we will show that it is equal to x1 × ω0 where εx1 is
the particle displacement caused by the disturbance.

5 Wave Equation

The first-order continuity equation

∂ρ1

∂t
+ v0 ·∇ρ1 + ρ1∇ · v0 + ∇ · ρ0v1 = 0, (26)

together with the zeroth order continuity equation

∂ρ0

∂t
+ ∇ · (ρ0v0) = 0, (27)

the equation for ρ1

ρ1 = −ρ0

c2

dψ1

dt
, (28)
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Implies:

and the decomposition v1 = ∇ψ1 + ξ1, may be combined to give

d

dt

(
1

c2

d

dt
ψ1

)
=

1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) . (29)

If we ignore the ξ1, (29) is Pierce’s approximate wave equation(
∂

∂t
+ v0 · ∇

)
1

c2

(
∂

∂t
+ v0 · ∇

)
ψ1 =

1

ρ0
∇(ρ0∇ψ1). (30)

(For other approximate wave equations see, for instance, Howe [20].) By using
equation (27) again, this can be rewritten as(

∂

∂t
+ ∇ · v0

)
ρ0

c2

(
∂

∂t
+ v0 · ∇

)
ψ1 = ∇(ρ0∇ψ1), (31)

where each ∇ is acting on everything to its right. Although (30) may seem
more natural, the form (31) has the advantage that it can be written as

1√−g
∂µ

(√−g gµν∂νψ1

)
= 0, (32)

where

√−g gµν =
ρ0

c2

(
1, vT

0

v0, v0vT
0 − c2I

)
. (33)

We use the convention that Greek letters run over four space-time indices
0, 1, 2, 3 with 0 ≡ t, while Roman indices refer to the three space components.
Equation (32) has the same form as that of a scalar wave propagating in a
gravitational field with pseudo-Riemann (Lorentzian) metric gµν . We will refer
to gµν as the acoustic metric. The idea of writing the sound wave equation in
this way is due to Unruh [2,3].

As is customary in general relativity, the symbol g denotes the determinant of
the covariant form of the metric, gµν , so det gµν = g−1. Taking the determinant
of both sides of (33) thus shows that the 4-volume measure

√−g is equal to
ρ2

0/c. Knowing this, we may then invert the matrix gµν to find the covariant
components of the metric

gµν =
ρ0

c

(
c2 − v2

0, vT
0

v0, −I
)

. (34)
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v0, −I
)

. (34)
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and the decomposition v1 = ∇ψ1 + ξ1, may be combined to give

d

dt

(
1

c2

d

dt
ψ1

)
=

1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) . (29)

If we ignore the ξ1, (29) is Pierce’s approximate wave equation(
∂

∂t
+ v0 ·∇

)
1

c2

(
∂

∂t
+ v0 ·∇

)
ψ1 =

1

ρ0
∇(ρ0∇ψ1). (30)

(For other approximate wave equations see, for instance, Howe [20].) By using
equation (27) again, this can be rewritten as(

∂

∂t
+ ∇ · v0

)
ρ0

c2

(
∂

∂t
+ v0 ·∇

)
ψ1 = ∇(ρ0∇ψ1), (31)

where each ∇ is acting on everything to its right. Although (30) may seem
more natural, the form (31) has the advantage that it can be written as

1√−g
∂µ

(√−g gµν∂νψ1

)
= 0, (32)

where

√−g gµν =
ρ0

c2

(
1, vT

0

v0, v0vT
0 − c2I

)
. (33)

We use the convention that Greek letters run over four space-time indices
0, 1, 2, 3 with 0 ≡ t, while Roman indices refer to the three space components.
Equation (32) has the same form as that of a scalar wave propagating in a
gravitational field with pseudo-Riemann (Lorentzian) metric gµν . We will refer
to gµν as the acoustic metric. The idea of writing the sound wave equation in
this way is due to Unruh [2,3].

As is customary in general relativity, the symbol g denotes the determinant of
the covariant form of the metric, gµν , so det gµν = g−1. Taking the determinant
of both sides of (33) thus shows that the 4-volume measure

√−g is equal to
ρ2

0/c. Knowing this, we may then invert the matrix gµν to find the covariant
components of the metric

gµν =
ρ0

c

(
c2 − v2

0, vT
0

v0, −I
)

. (34)

9



Adding vorticity:

and the decomposition v1 = ∇ψ1 + ξ1, may be combined to give

d

dt

(
1

c2

d

dt
ψ1

)
=

1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) . (29)

If we ignore the ξ1, (29) is Pierce’s approximate wave equation(
∂

∂t
+ v0 ·∇

)
1

c2

(
∂

∂t
+ v0 ·∇

)
ψ1 =

1

ρ0
∇(ρ0∇ψ1). (30)

(For other approximate wave equations see, for instance, Howe [20].) By using
equation (27) again, this can be rewritten as(

∂

∂t
+ ∇ · v0

)
ρ0

c2

(
∂

∂t
+ v0 ·∇

)
ψ1 = ∇(ρ0∇ψ1), (31)

where each ∇ is acting on everything to its right. Although (30) may seem
more natural, the form (31) has the advantage that it can be written as

1√−g
∂µ

(√−g gµν∂νψ1

)
= 0, (32)

where

√−g gµν =
ρ0

c2

(
1, vT

0

v0, v0vT
0 − c2I

)
. (33)

We use the convention that Greek letters run over four space-time indices
0, 1, 2, 3 with 0 ≡ t, while Roman indices refer to the three space components.
Equation (32) has the same form as that of a scalar wave propagating in a
gravitational field with pseudo-Riemann (Lorentzian) metric gµν . We will refer
to gµν as the acoustic metric. The idea of writing the sound wave equation in
this way is due to Unruh [2,3].

As is customary in general relativity, the symbol g denotes the determinant of
the covariant form of the metric, gµν , so det gµν = g−1. Taking the determinant
of both sides of (33) thus shows that the 4-volume measure

√−g is equal to
ρ2

0/c. Knowing this, we may then invert the matrix gµν to find the covariant
components of the metric

gµν =
ρ0

c

(
c2 − v2

0, vT
0

v0, −I
)

. (34)
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As usual:

(overall minus sign irrelevant)

The associated space-time interval is therefore

ds2 =
ρ0

c

{
c2dt2 − δij (dxi − vi

0dt) (dxj − vj
0dt)

}
. (35)

In the geometric acoustics limit, sound propagates along the null geodesics of
this metric.

Metrics of the form (35), although without the overall conformal factor ρ0/c,
appear in the Arnowitt–Deser–Misner (ADM) formalism of general relativ-
ity [22]. There, c and −vi

0 are referred to as the lapse function and shift vec-
tor respectively. They serve to glue successive three-dimensional time slices
together to form a four-dimensional space-time [23]. In our present case, pro-
vided ρ0/c can be regarded as a constant, each 3-space is ordinary flat R3

equipped with the rectangular Cartesian metric g(space)
ij = δij — but the resul-

tant space-time is in general curved, the curvature depending on the degree
of inhomogeneity of the mean flow v0.

This formalism is very pretty, but (30) is exact only when the background flow
is potential. Equation (29), on the other hand, is valid for a general barotropic
flow — but to be of use it must be complemented by an equation determining
the time evolution of ξ1. We now derive such an equation. We start with the
observation that, since β, γ are convectively conserved, we have

∂β0

∂t
+ (v0 ·∇)β0 = 0, (36)

and

∂β1

∂t
+ (v0 ·∇)β1 + (v1 ·∇)β0 = 0. (37)

Taking the gradient of (36) gives(
∂

∂t
+ v0 ·∇

)
∇iβ0 = −(∇iv0j)∇jβ0. (38)

Thus, using the definition (24),

(
∂

∂t
+ v0 ·∇

)
ξ1i =−[(v1 ·∇)β0]∇iγ0 + [(v1 ·∇)γ0]∇iβ0

−β1(∇iv0j)∇jγ0 + γ1(∇iv0j)∇jβ0

=−v1j(∇jβ0∇iγ0 −∇jγ0∇iβ0) − (∇iv0j)ξ1j

=−v1j(∇jv0i −∇iv0j) − (∇iv0j)ξ1j

10

Spacetime interval:

The “scalar part” of the velocity perturbation still “sees” 
the same “acoustic metric”, though the “vortex part” 

of the velocity perturbation now acts as a source:

∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

1



Adding vorticity:

To complete the job you need an EOM for     .

and the decomposit ion v1 = ∇ψ1 + ξ1, may be combined to give

d
dt

(
1
c2

d
dt

ψ1

)
= 1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) . (29)

If we ignore the ξ1, (29) is Pierce’s approximate wave equat ion(
∂

∂t
+ v0 ·∇

)
1
c2

(
∂

∂t
+ v0 ·∇

)
ψ1 =

1
ρ0

∇(ρ0∇ψ1). (30)

(For other approximatewave equat ions see, for instance, Howe [20].) By using
equat ion (27) again, this can be rewrit ten as(

∂

∂t
+ ∇ · v0

)
ρ0

c2

(
∂

∂t
+ v0 ·∇

)
ψ1 = ∇(ρ0∇ψ1), (31)

where each ∇ is act ing on everything to its right . Although (30) may seem
more natural, the form (31) has the advantage that it can be writ ten as

1√−g
∂µ

(√−g gµν∂νψ1

)
= 0, (32)

where

√−g gµν = ρ0

c2

( 1, vT
0

v0, v0vT
0 − c2I

)
. (33)

We use the convent ion that Greek let ters run over four space-t ime indices
0, 1, 2, 3 with 0≡ t, while Roman indices refer to the three space components.
Equat ion (32) has the same form as that of a scalar wave propagat ing in a
gravitat ional field with pseudo-Riemann (Lorentzian) metric gµν . Wewill refer
to gµν as the acoust ic metric. The idea of writ ing the sound wave equat ion in
this way is due to Unruh [2,3].

As is customary in general relat ivity, the symbol g denotes thedeterminant of
thecovariant form of themetric, gµν , so det gµν = g−1. Taking thedeterminant
of both sides of (33) thus shows that the 4-volume measure√−g is equal to
ρ2

0/c. Knowing this, we may then invert the matrix gµν to find the covariant
components of the metric

gµν =
ρ0

c

(
c2 − v2

0, vT
0

v0, −I
)

. (34)
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A brief but turgid agony leads to:

=(−∇jψ1 − ξ1j)(∇jv0i −∇iv0j) − (∇iv0j)ξ1j,

=−∇jψ1(∇jv0i −∇iv0j) − ξ1j(∇jv0i), (39)

which can be written as

dξ1

dt
= ∇ψ1 × ω0 − (ξ1 ·∇)v0. (40)

In summary: The two coupled equations

d

dt

(
1

c2

d

dt
ψ1

)
=

1

ρ0
∇ (ρ0(∇ψ1 + ξ1)) , (41)

and

dξ1

dt
= ∇ψ1 × ω0 − (ξ1 ·∇)v0, (42)

form a complete exact closed system of equations, containing only gauge-
invariant quantities, describing the first-order fluctuations about the back-
ground mean flow.

6 Displacement field

It is not yet clear that, under most circumstances of interest in acoustics, the
quantity ξ1 is a small correction to ∇ψ1. It becomes so, however, once we
establish the result

ξ1 = x1 × ω0, (43)

where εx1 is the displacement of a material particle due to the sound wave.
By “displacement” we mean that the material point which in the unperturbed
reference flow was at time t located at x is, as a result of the perturbation,
now to be found at position x + εx1. Given (43), we see that the order of
magnitude of ξ1 is that of the product of the displacement amplitude with
the background flow rotation frequency. The fluctuating velocity associated
with the acoustic field is, on the other hand, of the order of the displacement
amplitude times the frequency, Ω, of the sound wave. Thus ξ1 is smaller than
∇ψ1 by a factor of |ω0|/Ω.

Observe that this argument tacitly assumes that x1 remains small and oscil-
lating. This is certainly what we expect for a sound wave, but, in the absence
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   so gradients in the “scalar part” of the velocity     
   perturbation excite the “vortex part” of the velocity  
   perturbation...

So even in the presence of vorticity, the “acoustic metric” is 
still part of the analysis --- however it is no longer the only 
relevant feature, with the vorticity and scalar parts of the 

flow now feeding each other...




