


Multiple fields:

Some of the features we encountered in looking at 
sound in a vortex flow are really generic features of 
the fact that vorticity is a specific example of dealing 
with multiple interacting fields.

Example 3:
Multiple fields

The reason the previous examples are interest-
ing is because they are part of a much more
general pattern.

Suppose we have many interacting fields φA(t, "x).

Lagrangian:

L(∂µφA, φA).

Action:

S[φA] =
∫

dd+1x L(∂µφA, φA).

Linearize the fields:

φA(t, "x) = φA
0 (t, "x)+εφA

1 (t, "x)+
ε2

2
φA
2 (t, "x)+O(ε3).
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Linearize in the (by now) usual fashion...
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Example 3:

Linearize the action:

S[φA] = S[φA
0 ]

+
ε2

2

∫
dd+1x

[{
∂2L

∂(∂µφA) ∂(∂νφB)

}
∂µφA

1 ∂νφB
1

+2

{
∂2L

∂(∂µφA) ∂φB

}
∂µφA

1 φB
1

+

{
∂2L

∂φA ∂φB

}
φA
1 φB

1

]
+O(ε3).

NB: The fields now carry indices (AB). The
linear term still vanishes by Euler–Lagrange.

Still quadratic ⇒ field-theory normal modes.

The equation of motion for the linearized fluc-
tuations is now more complicated.
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Action:

(linear term vanishes by background EOM)



Multiple fields:Example 3:

Equation of motion:

∂µ

({
∂2L

∂(∂µφA) ∂(∂νφB)

}
∂νφB

1

)

+∂µ

(
∂2L

∂(∂µφA) ∂φB
φB
1

)

−∂µφB
1

∂2L
∂(∂µφB) ∂φA

−
(

∂2L
∂φA ∂φB

)
φB
1 = 0.

To simplify it we need several definitions.

First, generalize fµν:

fµν
AB ≡

1

2

(
∂2L

∂(∂µφA) ∂(∂νφB)
+

∂2L
∂(∂νφA) ∂(∂µφB)

)
.

Symmetric in (µν) and (AB).
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Linearized EOM (fluctuations):

(formally self-adjoint)

(2nd-order linear PDE)

(multiple interacting 
field-theory normal 

modes...)

Massage this a little to make it more palatable...



Multiple fields:
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[space-time and 
field space...]

Example 3:

Second, define:

Γµ
AB ≡ +

∂2L
∂(∂µφA) ∂φB

− ∂2L
∂(∂µφB) ∂φA

+
1

2
∂ν

(
∂2L

∂(∂νφA) ∂(∂µφB)
− ∂2L

∂(∂µφA) ∂(∂νφB)

)
.

This “connexion” is anti-symmetric in [AB].

Third:

KAB = − ∂2L
∂φA ∂φB

+
1

2
∂µ

(
∂2L

∂(∂µφA) ∂φB

)

+
1

2
∂µ

(
∂2L

∂(∂µφB) ∂φA

)
.

This “potential” or “mass matrix” is, by con-
struction, symmetric in (AB).

15

Define:

Antisymmetric in field space [AB]...



Multiple fields:

Finally define:

Example 3:
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This “potential” or “mass matrix” is symmetric in (AB).

Example 3:

Linearized equations of motion:

∂µ

(
fµν

AB ∂νφB
1

)
+

1

2

[
Γµ

AB ∂µφB
1 + ∂µ(Γ

µ
AB φB

1 )
]

+KAB φB
1 = 0.

Now transparent that this is a formally self-
adjoint second-order linear system of PDEs.

Analyze causal structure using theory of
characteristics.

Leading symbol of the PDE system.

Courant and Hilbert,
with suitable generalizations.

Causal structure is a surrogate for the pseudo-
Riemannian metric.

16

Assemble:



Multiple fields:

Note the presence (depending on the particular 
field of interest) of combinations of 2nd order, 1st order, 
and 0th order terms.

(This is exactly the behaviour we encountered for sound 
interacting with a vortex flow...)

The general situation may correspond to multiple 
metrics, and the causal structure is best investigated 
using the theory of characteristics...

This leads to uncharted territory well beyond 
the scope of this workshop....



Multiple fields:
Example 3:

Normal cone:

N (q) ≡ {pµ | det (fµν
AB pµ pµ) = 0} .

(locus of normals to the characteristic surfaces)

With N fields this “normal cone” will generi-
cally consist of N nested sheets each with the
topology (not necessarily the geometry) of a
cone.

Often several of these cones will coincide.

Common for some of these cones to be degen-
erate, which is more problematic.

It may be remarked that the present
state of the theory of algebraic sur-
faces does not permit entirely satisfac-
tory applications to the questions of
reality of geometric structures which
confront us here.

17

Normal cone:

Symbol of the PDE...

Locus of the normals to the characteristic surfaces.

It may be remarked that the present state of the theory 
of algebraic surfaces does not permit entirely 
satisfactory applications to the questions of reality of 
geometric structures which confront us here...
                                                --- Courant and Hilbert



Monge cone: (ray cone, characteristic cone, null cone)Example 3:

Define Q(q, p) on the co-tangent bundle

Q(q, p) ≡ det (fµν
AB(q) pµ pµ) .

Monge cone: (aka “ray cone”, aka “charac-
teristic cone”, aka “null cone”)

M(q) =

{
tµ =

∂Q(q, p)

∂pµ

∣∣∣∣∣ pµ ∈ N (q)

}
.

Envelope of the set of characteristic surfaces
through the point q.

The “Monge cone” is dual to the “normal
cone”.

Even if [the normal cone] is a relatively
simple algebraic cone of degree [2N],
the ray cone [Monge cone/null cone]
may have singularities, or isolated rays,
and need not consist of separate smooth
conical shells.

18
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Envelope of the set of characteristic surfaces through “q”. 

The “Monge cone” is dual to the “normal cone”.

Even if the normal cone is relatively simple, 
the Monge cone can be absolutely foul.

Multiple fields:





Physics examples:

There are numerous physical examples where 
we have direct experimental/observational evidence 
for acoustic metrics, up to and including acoustic 
horizons (dumb holes).

NB:     “dumb” = “mute” (silent).

Main examples:
     --- draining bathtub (acoustics and/or surface waves).
     --- supersonic wind tunnels (Laval nozzles).
     --- oscillating bubbles (acoustic apparent horizons).
     --- Parker wind (stellar coronal outflow).
     --- Bondi accretion.



Laval nozzle:



Paired Laval nozzles:



Oscillating bubbles:
Bubble experiments 
often achieve supersonic 
collapse --- Mach 5+

(bubble surface)

(apparent horizon)

Apparent horizon 
lasts for less than a 
sound crossing time...



∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

v = Ṙ(t)
R(t)2

r2
.

ds2 = −c2sdt2+

(
dr − Ṙ(r)

R(t)2

r2
dt

)2

+r2(dθ2+sin2 θ dφ2).

1

Oscillating bubbles:

Spherically symmetric flow constant density fluid.

R(t) is the bubble radius:

The acoustic metric is:

∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

v = Ṙ(t)
R(t)2

r2
.

ds2 = −c2sdt2+

(
dr − Ṙ(r)

R(t)2

r2
dt

)2

+r2(dθ2+sin2 θ dφ2).

1

There is a nasty approximation hiding here, 
but qualitative physics is OK...



Parker wind (coronal outflow):

 The solar wind is subsonic as it emerges from the surface.

As it moves out, the plasma density drops, 
and so does the speed of sound.  

The solar wind goes supersonic in the upper reaches 
of the photosphere.

[acoustic black hole horizon, inverted]

The solar wind then remains supersonic out to the 
heliopause --- in the outer solar system.

[acoustic white hole horizon, inverted]



Bondi--Hoyle accretion:

  

Gas cloud with   

Symmetric free fall (approximate),  onto a
central object of mass M:

Ignore (for simplicity)  corrections due to back-pressure.

Infall velocity exceeds speed of sound when:

Note “acoustic Schwarzschild radius”!

Bondi accretion:

• Gas cloud with p = ρ c2s .

• Symmetric free fall (approximate) onto a
central object of mass M :

v2 =
2G M

r

Small corrections due to back-pressure.

• Infall velocity exceeds speed of sound when

r <
2G M

c2s
=

2G M

c2
c2

c2s
= RS

c2

c2s

• Note “acoustic Schwarzschild radius”!
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Bondi--Hoyle accretion:
Ignoring back-pressure, the geometrical
 acoustics metric for Bondi--Hoyle accretion is: 

∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

v = Ṙ(t)
R(t)2

r2
.

ds2 = −c2sdt2+

(
dr − Ṙ(r)

R(t)2

r2
dt

)2

+r2(dθ2+sin2 θ dφ2).

ds2 = −c2s dt2+

(
dr +

√
2GM

r
dt

)2

+r2
(
dθ2 + sin2 θ dφ2

)
.

1

Replacing  sound speed by light speed, the metric above
 is in fact identical to the Schwarzschild solution of 

general relativity in Painleve--Gullstrand coordinates.

These “acoustic horizons” (aka “sonic points”) are of 
direct observational interest in astrophysics...

(This appears to be an accident,  not fundamental!)



In short, there are no end of physical situations where we 
know that “acoustic metrics” are useful. 

Futhermore there are many situations in which we have 
direct observational evidence of the existence of 

“acoustic horizons”.

More generally, we should talk of “analogue metrics” 
for optical and other analogue systems.

(Micro) Summary:

And now for something completely different:         
More on why the GR community is so interested....





Black holes are not (completely) black:

There is a small quantum mechanical 
leakage from the horizon --- Hawking radiation.

∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

v = Ṙ(t)
R(t)2

r2
.

ds2 = −c2sdt2+

(
dr − Ṙ(r)

R(t)2

r2
dt

)2

+r2(dθ2+sin2 θ dφ2).

ds2 = −c2s dt2+

(
dr +

√
2GM

r
dt

)2

+r2
(
dθ2 + sin2 θ dφ2

)
.

k TH =
! gH

2π cs
.

1

Hawking temperature depends on “surface gravity” and 
“signal speed” (sound/ light/ whatever...)

Need an apparent horizon that is “long lived” compared to 

∆g ψ1 =
1

ρ2
0 c0

∂

∂xi

(
ρ ξi

1

)
.

v = Ṙ(t)
R(t)2

r2
.

ds2 = −c2sdt2+

(
dr − Ṙ(r)

R(t)2

r2
dt

)2

+r2(dθ2+sin2 θ dφ2).

ds2 = −c2s dt2+

(
dr +

√
2GM

r
dt

)2

+r2
(
dθ2 + sin2 θ dφ2

)
.

k TH =
! gH

2π cs
.

τH =
cs

gH

1

the timescale determined by surface gravity.



Black holes are not (completely) black:

Hawking radiation is not specifically a GR effect.

Hawking radiation has to do with QFT in the 
presence of a horizon --- and does not care 
about the dynamics that set up the horizon.

Hawking radiation is pure kinematics: 
How do quantum modes react to 

the presence of a horizon?

Very roughly speaking: 
negative energy quantum fluctuations fall in, 

positive energy quantum fluctuations escape...



Black holes are not (completely) black:

Despite thousands of theory papers, there are no 
experimental/ observational tests for the 

existence of Hawking radiation! 

Astrophysical black holes are too heavy 
(implies low Hawking temperature).

Primordial black holes might be suitable,
if (when?) we can find any....

Instead, can we look for analogue Hawking 
radiation in analogue black holes?



Laval nozzle:



BEC dumb holes:

Acoustic black holes based on BECs are technologically 
interesting for two specific reasons:

--- the speed of sound is low (mm/sec),
     (implying supersonic flow is “easy”).

--- the condensate temperature is extremely low,
     as low as one nano-Kelvin,
     (implying little background).

The interest in BEC dumb holes is not “fundamental”.



White hole horizon

Black hole horizon

Condensate cloud



Outcoupler beam ‘Singularity’

Black hole horizons Outcoupled ‘atom

laser beam’



BEC dumb holes:

Best (most favourable) estimates:

Under favourable conditions might get

Compare to 

and

Some experimental BEC groups are now interested...

Three routes to supersonic BECs:

— Recirculating BEC in a ring geometry.

— Evacuating BEC into a vacuum.

— Pushing BEC through a constriction.

These are the three basic techniques already
used in supersonic wind tunnels.

Most favourable estimates:

TH ≈ 70 nK

Tcondensation ≈ 90 nK

Tcondensate ≈ 5 nK?
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Kerr spacetime:   

“Analogue models” for curved spacetime can be very 
useful for guiding physical intuition in general relativity.

The “acoustic metric” describing sound in a flowing 
fluid is perhaps the simplest of the “analogue models”.

A “draining bathtub” vortex can be set up to exhibit 
both a horizon and an ergo-surface.

How close can we get to modelling the actual 
geometry of the Kerr spacetime using a fluid vortex? 



Mimicking Kerr spacetime:

Can we construct an acoustic geometry 
that mimics Kerr spacetime in detail?

There is a fundamental geometrical obstruction:

For simple fluids the spatial slices of the acoustic 
geometry are always conformally flat.

The spatial slices of Kerr are never conformally flat.

The best you can hope for is to consider the 
equatorial slice of the Kerr spacetime.



Zero radial flow:

2.2 Zero radial flow

Assuming now a cylindrically symmetric time-independent fluid flow without
any sinks or sources we have a line vortex aligned along the z axis with fluid
velocity !v:

!v(r) = vθ̂(r) θ̂. (7)

The continuity equation (3) for this geometry is trivially satisfied and calcu-
lating the fluid acceleration leads to

!a = (!v ·∇)!v = −vθ̂(r)
2

r
r̂. (8)

Substituting in the rearranged Euler equation (16) gives

!f = fr̂ r̂ =

{
−ρ(r)

vθ̂(r)
2

r
+ c2 ∂rρ(r)

}
r̂ . (9)

with the physical interpretation that:

• The external force !fr̂ must be chosen to precisely cancel against the
combined effects of centripetal acceleration and pressure gradient.

• The angular-flow is not completely controlled by this external force,
but is instead an independently specifiable quantity. (There is only
one relationship between fr(r), ρ(r), c(r), and vθ(r), which leaves three
of these quantities as arbitrarily specifiable functions.)

• We are now considering the equation of state to be an output from the
problem, rather than an input to the problem. If for instance ρ(r) and
c2(r) are specified then the pressure can be evaluated from

p(r) =

∫
c2(r)

dρ

dr
dr, (10)

and then by eliminating r between p(r) and ρ(r), the EOS p(ρ) can in
principle be determined.

• In particular, for zero external force (and no radial flow), which ar-
guably is the most natural system to set up in the laboratory, we have

vθ(r)2

c(r)2
= − r ∂r ln ρ(r), (11)

which still has two arbitrarily specifiable functions.
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• The angular-flow is not completely controlled by this external force,
but is instead an independently specifiable quantity. (There is only
one relationship between fr(r), ρ(r), c(r), and vθ(r), which leaves three
of these quantities as arbitrarily specifiable functions.)

• We are now considering the equation of state to be an output from the
problem, rather than an input to the problem. If for instance ρ(r) and
c2(r) are specified then the pressure can be evaluated from

p(r) =

∫
c2(r)

dρ

dr
dr, (10)

and then by eliminating r between p(r) and ρ(r), the EOS p(ρ) can in
principle be determined.

• In particular, for zero external force (and no radial flow), which ar-
guably is the most natural system to set up in the laboratory, we have

vθ(r)2

c(r)2
= − r ∂r ln ρ(r), (11)

which still has two arbitrarily specifiable functions.
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General radial flow:

• In the geometric acoustics regime the acoustic line-element for this
zero-source/ zero-sink line vortex is

ds2 ∝ − (
c2 − v2

θ̂

)
dt2 − 2vθ̂ r dθ dt + dr2 + r2dθ2 + dz2. (12)

• In the physical acoustics regime the acoustic line-element is

ds2 =
(ρ

c

) [
− (

c2 − v2
θ̂

)
dt2 − 2vθ̂ rdθ dt + dr2 + r2dθ2 + dz2

]
.

(13)

• The vortex quite naturally has a ergosurface where the speed of the
fluid flow equals the speed of sound in the fluid.

• This vortex geometry may or may not have a horizon — this depends
on whether or not the speed of sound c(r) exhibits a zero.

• We shall later see that this class of acoustic geometries is the most
natural for building analogue models of the equatorial slice of the Kerr
geometry.

2.3 General analysis with radial flow

For completeness we now consider the situation where the vortex contains
a sink or source at the origin. (A concrete example might be the “draining
bathtub” geometry where fluid is systematically extracted from a drain lo-
cated at the centre.) Assuming now a cylindrically symmetric time-independent
fluid flow with a line vortex aligned along the z axis, the fluid velocity #v is

#v = vr̂(r) r̂ + vθ̂(r) θ̂. (14)

Wherever the radial velocity vr̂(r) is nonzero the entire vortex should be
thought of as collapsing or expanding.

The continuity equation (3) for this cylindrically symmetric problem is

∇ · (ρ #v) = 0, (15)

and the rearranged Euler equation (4) for a pressure p which depends only
on the radial-coordinate r is

#f = ρ(#v ·∇)#v + c2 ∂rρ r̂. (16)

6

Continuity implies:

Figure 1: A simple non-collapsing vortex geometry: The outer red circle
represents the ergosurface where the fluid velocity reaches the speed of sound.
The inner red circle (which need not exist in general) represents a possible
horizon where the speed of sound goes to zero.

At this stage we note that ρ is in general not an independent variable. Be-
cause equation (15) corresponds to a divergence-free field, integration over
any closed circle in the two-dimensional plane yields∮

ρ(r) "v(r) · r̂ ds = 2π ρ(r) vr̂(r) r = 2π k1. (17)

Then provided vr̂ != 0,

ρ(r) =
k1

r vr̂(r)
. (18)

Substituting into the rearranged Euler equation gives

"f =
k1

rvr̂
("v ·∇)"v + c2

s ∂r

(
k1

rvr̂

)
r̂, (19)

where c is a function of ρ, and thus a function of vr̂. This now completely
specifies the force profile in terms of the desired velocity profile, vr̂, vθ̂, the
equation of state, and a single integration constant k1.
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General radial flow:

Calculating external force and 
decomposing into angular and radial pieces:

Figure 2: A collapsing vortex geometry (draining bathtub): The outer circle
represents the ergosurface while the inner circle represents the event horizon.

Calculating the fluid acceleration leads to

(!v ·∇)!v =

{
vr̂(r)∂rvr̂(r)− vθ̂(r)

2

r

}
r̂+

{
vr̂(r)∂rvθ̂(r) +

vr̂(r) vθ̂(r)

r

}
θ̂, (20)

which can be rearranged to yield

(!v ·∇)!v =

{
1

2
∂r[vr̂(r)

2]− vθ̂(r)
2

r

}
r̂ +

{
vr̂(r)

r
∂r[r vθ̂(r)]

}
θ̂. (21)

Finally, decomposing the external force into radial and tangential [torque-
producing directions] we have

fr̂ = !f · r̂ = k1

{
1

rvr̂

[
1

2
∂r[vr̂(r)

2]− vθ̂(r)
2

r

]
+ c2

s ∂r

(
1

rvr̂

)}
, (22)

and

fθ̂ = !f · θ̂ = k1

{
1

r2
∂r[r vθ̂(r)]

}
. (23)
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8With enough effort you can mimic any velocity profile.



The Kerr equator:

In Boyer--Lindquist coordinates:

is a side effect of the well-known conformal invariance of the Laplacian in 2
dimensions. The wave equation in terms of fµν continues to make good sense
— it is only the step from fµν to the effective metric that breaks down.

Note that this issue only presents a difficulty for physical systems that
are intrinsically one-dimensional. A three dimensional system with plane
symmetry is perfectly well behaved as in the case d = 3 above.

4 The Kerr equator

To compare the vortex acoustic geometry to the physical Kerr geometry of a
rotating black hole, consider the equatorial slice θ = π/2 in Boyer–Lindquist
coordinates [19, 20]:

(ds2)(2+1) = −dt2+
2m

r
(dt−a dφ)2+

dr2

1− 2m/r + a2/r2
+(r2+a2) dφ2. (40)

We would like to put this into the form of an “acoustic metric”

gµν =
(ρ

c

) [ −{c2 − gmn vn vn} −vj

−vi gij

]
. (41)

If we look at the 2-d r-φ plane, the metric is

(ds2)(2) =
dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2. (42)

Now it is well-known that any 2-d geometry is locally conformally flat, though
this fact is certainly not manifest in these particular coordinates. Introduce
a new radial coordinate r̃ such that:

dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2 = Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (43)

This implies (
r2 + a2 +

2ma2

r

)
= Ω(r̃)2 r̃2, (44)

and
dr2

1− 2m/r + a2/r2
= Ω(r̃)2 dr̃2, (45)
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This is conformally flat, but not obviously so.

Adopt new coordinates:
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The Kerr equator:

This gives two equations:
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Eliminate}

Differential equation:leading to the differential equation

1

r̃(r)

dr̃(r)

dr
=

1√
1− 2m/r + a2/r2

√
r2 + a2 + 2ma2/r

, (46)

which is formally solvable as

r̃(r) = exp


∫

dr√
1− 2m/r + a2/r2

√
r2 + a2 + 2ma2/r

 . (47)

The normalization is most easily fixed by considering the m = 0 = a case, in
which case r̃ = r, and then using this to write the general case as

r̃(r) = r exp

[
−

∫ ∞

r

{
1√

1− 2m/r̄ + a2/r̄2
√

r̄2 + a2 + 2ma2/r̄
− 1

r̄

}
dr̄

]
,

(48)
where r̄ is simply a dummy variable of integration. If a = 0 this integral can
be performed in terms of elementary functions∫

dr

r
√

1− 2m/r
= ln

(√
r2 − 2mr + r −m

)
[r > 2m], (49)

so that

r̃(r) =
1

2

(√
r2 − 2mr + r −m

)
, (50)

though for m #= 0 and general a no simple analytic form holds. Similarly, for
m = 0 and a #= 0 it is easy to show that

r̃(r) =
√

r2 + a2, (51)

though for a #= 0 and general m no simple analytic form holds.
Nevertheless, since we have an exact [if formal] expression for r̃(r) we can

formally invert it to assert the existence of a function r(r̃). It is most useful
to write r̃ = r F (r), with limr→∞ F (r) = 1, and to write the inverse function
as r = r̃ H(r̃) with the corresponding limit limr̃→∞H(r̃) = 1. Even if we
cannot write explicit closed form expressions for F (r) and H(r̃) there is no
difficulty in calculating them numerically, or in developing series expansions
for these quantities, or even in developing graphical representations.
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rotating black hole, consider the equatorial slice θ = π/2 in Boyer–Lindquist
coordinates [19, 20]:

(ds2)(2+1) = −dt2+
2m

r
(dt−a dφ)2+

dr2

1− 2m/r + a2/r2
+(r2+a2) dφ2. (40)

We would like to put this into the form of an “acoustic metric”

gµν =
(ρ

c

) [ −{c2 − gmn vn vn} −vj

−vi gij

]
. (41)

If we look at the 2-d r-φ plane, the metric is

(ds2)(2) =
dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2. (42)

Now it is well-known that any 2-d geometry is locally conformally flat, though
this fact is certainly not manifest in these particular coordinates. Introduce
a new radial coordinate r̃ such that:

dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2 = Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (43)

This implies (
r2 + a2 +

2ma2

r

)
= Ω(r̃)2 r̃2, (44)

and
dr2

1− 2m/r + a2/r2
= Ω(r̃)2 dr̃2, (45)
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The Kerr equator:

leading to the differential equation

1

r̃(r)

dr̃(r)

dr
=

1√
1− 2m/r + a2/r2

√
r2 + a2 + 2ma2/r

, (46)

which is formally solvable as

r̃(r) = exp


∫

dr√
1− 2m/r + a2/r2

√
r2 + a2 + 2ma2/r

 . (47)

The normalization is most easily fixed by considering the m = 0 = a case, in
which case r̃ = r, and then using this to write the general case as

r̃(r) = r exp

[
−

∫ ∞

r

{
1√

1− 2m/r̄ + a2/r̄2
√

r̄2 + a2 + 2ma2/r̄
− 1

r̄

}
dr̄

]
,

(48)
where r̄ is simply a dummy variable of integration. If a = 0 this integral can
be performed in terms of elementary functions∫

dr

r
√

1− 2m/r
= ln

(√
r2 − 2mr + r −m

)
[r > 2m], (49)

so that

r̃(r) =
1

2

(√
r2 − 2mr + r −m

)
, (50)

though for m #= 0 and general a no simple analytic form holds. Similarly, for
m = 0 and a #= 0 it is easy to show that

r̃(r) =
√

r2 + a2, (51)

though for a #= 0 and general m no simple analytic form holds.
Nevertheless, since we have an exact [if formal] expression for r̃(r) we can

formally invert it to assert the existence of a function r(r̃). It is most useful
to write r̃ = r F (r), with limr→∞ F (r) = 1, and to write the inverse function
as r = r̃ H(r̃) with the corresponding limit limr̃→∞H(r̃) = 1. Even if we
cannot write explicit closed form expressions for F (r) and H(r̃) there is no
difficulty in calculating them numerically, or in developing series expansions
for these quantities, or even in developing graphical representations.
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We now evaluate the conformal factor as

Ω(r̃)2 =
r2 + a2 + 2ma2/r

r̃2
= H(r̃)2

(
1 +

a2

r2
+

2ma2

r3

)
, (52)

with r considered as a function of r̃, which now yields

(ds2)(2+1) = −dt2 +
2m

r
(dt2 − 2a dφ dt) + Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (53)

Equivalently

(ds2)(2+1) = Ω(r̃)2

{
− Ω(r̃)−2

[
1− 2m

r

]
dt2 − Ω(r̃)−2 4am

r
dφ dt

+[dr̃2 + r̃2 dφ2]

}
. (54)

This now lets us pick off the coefficients of the equivalent acoustic metric.
For the overall conformal factor

ρ

c
= Ω(r̃)2 = H2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)
. (55)

For the azimuthal “flow”

vφ = Ω(r̃)−2 2am

r
= −2am

r
H−2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)−1

. (56)

This is, as expected, a vortex geometry. Finally for the “coordinate speed of
light”, corresponding to the speed of sound in the analogue geometry

c2 = Ω(r̃)−2

[
1− 2m

r

]
+ Ω(r̃)−4 16a2m2

r̃2 r2
, (57)

= Ω(r̃)−4

{
Ω(r̃)2

[
1− 2m

r

]
+

16a2m2

r̃2 r2

}
. (58)

The speed of sound can be rearranged a little

c2 = Ω(r̃)−4 H2(r̃)

{[
1 +

a2

r2
+

2ma2

r3

] [
1− 2m

r

]
+

4a2m2

r4

}
. (59)
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The Kerr equator:

We now evaluate the conformal factor as

Ω(r̃)2 =
r2 + a2 + 2ma2/r

r̃2
= H(r̃)2

(
1 +

a2

r2
+

2ma2

r3

)
, (52)

with r considered as a function of r̃, which now yields

(ds2)(2+1) = −dt2 +
2m

r
(dt2 − 2a dφ dt) + Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (53)

Equivalently

(ds2)(2+1) = Ω(r̃)2

{
− Ω(r̃)−2

[
1− 2m

r

]
dt2 − Ω(r̃)−2 4am

r
dφ dt

+[dr̃2 + r̃2 dφ2]

}
. (54)

This now lets us pick off the coefficients of the equivalent acoustic metric.
For the overall conformal factor

ρ

c
= Ω(r̃)2 = H2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)
. (55)

For the azimuthal “flow”

vφ = Ω(r̃)−2 2am

r
= −2am

r
H−2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)−1

. (56)

This is, as expected, a vortex geometry. Finally for the “coordinate speed of
light”, corresponding to the speed of sound in the analogue geometry

c2 = Ω(r̃)−2

[
1− 2m

r

]
+ Ω(r̃)−4 16a2m2

r̃2 r2
, (57)

= Ω(r̃)−4

{
Ω(r̃)2

[
1− 2m

r

]
+

16a2m2

r̃2 r2

}
. (58)

The speed of sound can be rearranged a little

c2 = Ω(r̃)−4 H2(r̃)

{[
1 +

a2

r2
+

2ma2

r3

] [
1− 2m

r

]
+

4a2m2

r4

}
. (59)

15

We now evaluate the conformal factor as

Ω(r̃)2 =
r2 + a2 + 2ma2/r

r̃2
= H(r̃)2

(
1 +

a2

r2
+

2ma2

r3

)
, (52)

with r considered as a function of r̃, which now yields

(ds2)(2+1) = −dt2 +
2m

r
(dt2 − 2a dφ dt) + Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (53)

Equivalently

(ds2)(2+1) = Ω(r̃)2

{
− Ω(r̃)−2

[
1− 2m

r

]
dt2 − Ω(r̃)−2 4am

r
dφ dt

+[dr̃2 + r̃2 dφ2]

}
. (54)

This now lets us pick off the coefficients of the equivalent acoustic metric.
For the overall conformal factor

ρ

c
= Ω(r̃)2 = H2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)
. (55)

For the azimuthal “flow”

vφ = Ω(r̃)−2 2am

r
= −2am

r
H−2(r̃)

(
1 +

a2

r2
+

2ma2

r3

)−1

. (56)

This is, as expected, a vortex geometry. Finally for the “coordinate speed of
light”, corresponding to the speed of sound in the analogue geometry

c2 = Ω(r̃)−2

[
1− 2m

r

]
+ Ω(r̃)−4 16a2m2

r̃2 r2
, (57)

= Ω(r̃)−4

{
Ω(r̃)2

[
1− 2m

r

]
+

16a2m2

r̃2 r2

}
. (58)

The speed of sound can be rearranged a little

c2 = Ω(r̃)−4 H2(r̃)

{[
1 +

a2

r2
+

2ma2

r3

] [
1− 2m

r

]
+

4a2m2

r4

}
. (59)

15

This is now in “acoustic form”:
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This can now be further simplified to obtain

c2 = Ω(r̃)−4 H2(r̃)

{
1− 2m

r
+

a2

r2

}
, (60)

and finally leads to

ρ = H(r̃)

√
1− 2m

r
+

a2

r2
, (61)

with r(r̃) implicitly a function of r̃.
While r̃ is the radial coordinate in which the space part of the acoustic

geometry is conformally flat, so that r̃ is the “physical” radial coordinate that
corresponds to distances measured in the laboratory where the vortex has
been set up, this particular radial coordinate is also mathematically rather
difficult to work with. For some purposes it is more useful to present the
coefficients of the acoustic metric as functions of r, using the relationship
F (r) = 1/H(r̃). Then we have:

ρ

c
= Ω2(r) = F−2(r)

(
1 +

a2

r2
+

2ma2

r3

)
. (62)

vφ = −2am

r
F 2(r)

(
1 +

a2

r2
+

2ma2

r3

)−1

. (63)

c2 = F 2(r)

{
1− 2m

r
+

a2

r2

} (
1 +

a2

r2
+

2ma2

r3

)−2

. (64)

Then we have

ρ(r) = F−1(r)

√
1− 2m

r
+

a2

r2
, (65)

and the explicit if messy result that

F (r) = exp

[
−

∫ ∞

r

{
1√

1− 2m/r̄ + a2/r̄2
√

r̄2 + a2 + 2ma2/r̄
− 1

r̄

}
dr̄

]
.

(66)
One of the advantages of writing things this way, as functions of r, is that it
is now simple to find the locations of the horizon and ergosphere.

The ergo-surface is defined by c2 − v2 = 0, equivalent to the vanishing of
the gtt component of the metric. This occurs at

rE = 2m. (67)
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This has the advantage of being completely explicit,
albeit a trifle messy!



The Kerr equator:

Ergo-surface:
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16Horizon: 

The horizon is defined by the vanishing of c, (note that vr̂ = 0) this requires
solving a simple quadratic with the result

rH = m +
√

m2 − a2 < rE. (68)

These results agree, as of course they must, with standard known results for
the Kerr metric.

From the point of view of the acoustic analogue the region inside the
horizon is unphysical as it corresponds to c2(r) < 0, and an imaginary sound
speed (that is, a region where sound does not propagate). The flow has zero
radial velocity, and zero torque, but is not irrotational. Since by fitting the
equatorial slice of Kerr to a generic acoustic geometry we have fixed ρ(r) and
c2(r) as functions of r [and so also as functions of r̃] it follows that p(r) is
no longer free, but is instead determined by the geometry. From there, we
see that the EOS p(ρ) is determined, as is the external force fr̂(r). The net
result is that we can [in principle] simulate the Kerr equator exactly, but at
the cost of a very specific fine-tuning of both the equation of state p(ρ) and
the external force fr̂(r).

5 Discussion

We have shown that the Kerr equator can [in principle] be exactly simulated
by an acoustic analogue based on a vortex flow with a very specific equation of
state and subjected to a very specific external force. Furthermore we have as
a result of the analysis also seen that such an analogue would have to be very
specifically and deliberately engineered. Thus the results of this investigation
are to some extent mixed, and are more useful for theoretical investigations,
and for the gaining of insight into the nature of the Kerr geometry, than
they are for actual laboratory construction of a vortex simulating the Kerr
equator.

One of the surprises of the analysis was that the Doran [21] coordi-
nates (the natural generalization of the Painléve–Gullstrand coordinates that
worked so well for the Schwarzschild geometry) did not lead to a useful acous-
tic metric even on the equator of the Kerr spacetime. Ultimately, this can
be traced back to the fact that in Doran coordinates the space part of the
Kerr metric is non-diagonal, even on the equator, and that no simple co-
ordinate change can remove the off-diagonal elements. In Boyer–Lindquist
coordinates however the space part of the metric is at least diagonal, and
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The Kerr equator can [in principle] be exactly 
simulated by a very specific vortex.

This needs a very specific external force, 
and a very specific equation of state.

This is not likely to be experimentally feasible.

Somewhat disappointing!



The Kerr equator:

Technical surprise:   

The Doran coordinates were not useful?

(Doran coordinates are the natural extension of 
Painleve--Gullstrand coordinates, which are very 
useful for the “acoustic Schwarzschild” geometry.

The problem lies with the off-diagonal parts of the 
space metric...

For the future:  simple “analogue models” that 
generate fully general geometries...





Conclusions:

I hope by now you are convinced that analogue models 
are multi-directionally useful...

They are useful for both theorists and experimentalists, 
and serve to build strong cross-connections between

otherwise disparate fields.

In this talk I have focussed on the “acoustic geometries”,
but there are additionally “optical geometries”,

“surface wave geometries”, 
the “mechano-optical analogy”...
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Text

And I cherish more than anything else the 
Analogies, my most trustworthy masters. 

They know all the secrets of Nature, and they 
ought least to be neglected in Geometry.

--- Johannes Kepler






