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Motivation
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Theoretical: Clash between GR and QFT

intrinsic limits, conceptual clash, ...

Quantum corrections, string theory...

higher order theories, Lorentz or EP violations...
Observational: Inability to explain cosmological/
astrophysical riddles without dark matter/energy 

4% baryons, 20% dark matter, 76% dark energy!

acceleration, deceleration, then acceleration

cosmological constant and coincidence problems



Proposed way out
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Alternative theory of gravity which:

comes as a low energy limit of a more 
fundamental theory

includes ultraviolet/infrared corrections with 
respect to General Relativity

can account for some or all the unexplained 
observations



f(R) gravity as a toy theory
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we could blame it on others...

But we don’t know the fundamental theory!

cook up toy theories and maybe even give 
them feedback - sounds much better! 

Typical Example: f(R) gravity

S =
1

16π G

∫
d4x
√
−gR → S =

1
16π G

∫
d4x
√
−gf(R)

Review:  T. P. S. and Valerio Faraoni, arXiv:0805.1726 [gr-qc],  commissioned by Rev. Mod. Phys.



Three versions of f(R) gravity
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1. Metric: variation only wrt the metric

2. Palatini: variation wrt metric and connection

the connection is an independent variable but 
does not enter the matter action!

3. Metric-affine: variation wrt metric and 
connection

the connection is an independent variable and 
enters the matter action

Metric and Palatini variations both lead to GR for 
Einstein-Hilbert action (textbook)



Classification
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f(R) gravity

Metric-Affine f(R) gravity

Palatini f(R) gravity

General Relativity

Γλ
µν = {λ

µν}Γλ
µν != {λ

µν}

Metric f(R) gravitySM = SM (gµν , ψ)

f(R) = R

f(R) = R



Palatini f(R) gravity
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f ′(R)Rµν −
1
2
f(R)gµν = 8π GTµν

∇̄λ

(√
−gf ′(R)gµν

)
= 0

f ′(R)R− 2f(R) = 8π GT

Γλ
µν =

gλσ

f ′(R)

[
∂µ (f ′(R)gνσ) + ∂ν (f ′(R)gµσ)− ∂σ (f ′(R)gµν)

]

Field equations:

Trace of 1st field eq.:

Solving for the connection:
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Function of T
 



Equivalence with Brans-Dicke Theory
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Starting with

introducing an auxiliary scalar field yields

where variation gives

S =
1

16π G

∫
d4x
√
−gf(R)

S =
1

16π G

∫
d4x
√
−g (f(χ) + f ′(χ)(R− χ))

f ′′(χ)(R− χ) = 0

I.e. Dynamically equivalent actions



Equivalence with Brans-Dicke Theory
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Introducing the variables

the action takes the form

S =
1

16π G

∫
d4x
√
−g(φR− V (φ))

R = R +
3

2(f ′(R))2
(∇µf ′(R)) (∇µf ′(R)) +

3
f ′(R)

!f ′(R)

Using the field equations

φ = f ′(χ), V (φ) = χ(φ)φ− f(χ(φ))



Equivalence with Brans-Dicke Theory
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Introducing the variables

the action takes the form

S =
1

16π G

∫
d4x
√
−g(φR− V (φ))

R = R +
3

2(f ′(R))2
(∇µf ′(R)) (∇µf ′(R)) +

3
f ′(R)

!f ′(R)

Using the field equations

Careful!

φ = f ′(χ), V (φ) = χ(φ)φ− f(χ(φ))



Equivalence with Brans-Dicke Theory
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S =
1

16π G

∫
d4x
√
−g

(
φR +

3
2φ

∂µφ∂µφ− V (φ)
)

Outcome:

(2ω0 + 3) + 2V − φV ′ = 8π GT

Field equation for the scalar:

Palatini f(R) gravity is equivalent to    =-3/2         
Brans-Dicke Theory!

ω0

The scalar field is not dynamical!



PPN limit and metric
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* G. J. Olmo, Phys. Rev. D 72, 083505 (2005); T. P. S., Gen. Rel. Grav. 38, 1407 (2006)

Remarkable result*: Whether the theory 
has the correct Newtonian limit depends 

on the density!

h00(t, x) = 2Geff
M!
r

+
V0

6φ0
r2 + Ω(ρ)

PPN metric:

Algebraic dependence on the matter!
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Remarkable result*: Whether the theory 
has the correct Newtonian limit depends 

on the density!

h00(t, x) = 2Geff
M!
r

+
V0

6φ0
r2 + Ω(ρ)

PPN metric:
Algebraic function

Algebraic dependence on the matter!



Conflict with Particle Physics
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* E. E. Flanagan, Phys. Rev. Lett. 92, 071101 (2004); A. Iglesias et al., Phys. Rev. D 76 104001 (2007)

Non-perturbative corrections and strong coupling in the 
matter sector at low energies! *

consider some matter field, e.g. the Higgs
the connection is an auxiliary field
Perturbative treatment breaks down

 non-minimal couplings between matter and 
metric though the connection!
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Singularities on stellar surfaces
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* E. Barausse, T. P. S. and J. C. Miller, Class. Quant. Grav. 25, 062001 (2008) (Fast Track); 
Class. Quant. Grav. 25, 105008 (2008)

Surface singularities  in spherically symmetric 
polytropes for 3/2<    <2 !  EoS:               *Γ p = kρΓ

0

Unique exterior solution
Matching with any interior leads to singularity

Polytropes are restricted but...

no physically meaningful solution for isentropic 
gas or degenerate non-relativistic gas,   =5/3
the problem is not restricted to polytropes 

Γ



Non-cumulativity: the root of all evil

Thomas P. Sotiriou - UMD Center for Fundamental Physics University of  Canterbury - Feb 13th 2009

Gµν =
8π G

f ′ Tµν −
1
2
gµν

(
R− f

f ′

)
+

1
f ′ (∇µ∇ν − gµν!) f ′

−3
2

1
f ′2

[
(∇µf ′) (∇νf ′)− 1

2
gµν (∇f ′)2

]

Field equations after eliminating the connection:

Functions of
 T 

second order in the metric - higher order in the 
matter fields!
matter enters the gravitational action through 
the back door leading to aforementioned issues



Conclusions and Outlook
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Astrophysics, Cosmology, Theoretical Physics all 
provide constraints for gravity theories

Toy theories of gravity can teach us a lot about 
the gravitational interaction

...but also...

Several difficulties and subtleties in modified gravity:

Many constraints to satisfy
Many directions to take

A long way to go...


