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Outlook

Trans-Planckian beats signature? 

Signature change events: A challenge for quantum gravity? 

Motivation from Emergent spacetimes

Signature of spacetime - where does it come from?

Quantum field theory on Riemannian manifolds

What, if anything at all, did we learn from this!?



Motivation from Emergent spacetimes
A really really long...



Emergent spacetimes involve…
 A microscopic system of fundamental objects 
    (e.g. strings, atoms or molecules);
 a dominant mean field regime, where the microscopic   
    degrees of freedom give way to collective variables;
 a geometrical object (e.g. a symmetric tensor
    dominating the evolution of linearized classical and
    quantum excitations around the mean field; 
 An emergent Lorentz symmetry for the long-distance 
    behavior of the geometrical object;

The concept of emergence



Example BEC [microscopic degrees of freedom]

 A microscopic system of fundamental objects: 
    ultra-cold !lute gas of weakly interacting Bosons

Microscopic theory well understood:

Emergent spacetimes from Bose-gas

Ĥ =
∫

dx
(
−Ψ̂† !2

2m
∇2Ψ̂ + Ψ̂†VextΨ̂ +

U

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)

Ψ̂→ Ψ̂∗ = Ψ̂ exp(iα)SO(2)− symmetry



Example BEC [macroscopic variables]

 A dominant mean field regime: 
    Bose-Ein"ein condensate

Spontaneous symmetry breaking:

Emergent spacetimes from Bose-gas

〈Ψ̂(t,x)〉 = ψ(t,x) =
√

n0(t,x) exp(iφ0(t,x)) #= 0



Example BEC [geometrical object]

Small perturbations - linear in density and phase - in the 
macroscopic mean-field emerging from an ultra-cold 
weakly interacting gas of bosons are inner observers 
experiencing an effective spacetime geometry,

where  

Emergent spacetimes from Bose-gas

gab =
(

c0

U/!

) 2
d−1





−
(
c2
0 − v2

)
−vx −vy −vz

−vx 1 0 0
−vy 0 1 0
−vz 0 0 1



 ;



Semi-classical quantum geometry

Small perturbations around some background solution

In a generic Lagrangian             , depdending only a single
Scalar field and its first derivatives yields an effective
Spacetime geometry

For the classical/ quantum fluctuations. The equation of
Motion for small perturbations around the background
Are then given by

C. Barcelo, S. Liberati, and M. Visser. Analog gravity from field theory normal modes?  
Class. Quant. Grav., 18:3595–3610, 2001.

Effective curved-spacetime quantum field theory 
description of the linearization process:

Kinematics versus dynamics!



Inner and out observer/ absolute time

Inner observer: 
Small excitations in the system
experience an effective spacetime 
geometry represented by the 
macroscopic mean-field variables!

Outer observer: 
Live in the preferred frame - the 
laboratory frame, such that the 
condensate parameters are functions of 
lab-time (absolute time).



Interactions and spacetime signature

c2
0 → c(t)2

U → U(t) gab =
(

c(t)
U(t)/!

) 2
d−1





−c(t)2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





!v → !0

c2
0 =

n0(t,x)U(t)
m

U > 0 repulsive ;
U < 0 attractive .



Interactions and spacetime signature

c2
0 → c(t)2

U → U(t) gab =
(

c(t)
U(t)/!

) 2
d−1





−c(t)2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





!v → !0

c2
0 =

n0(t,x)U(t)
m

U > 0 repulsive ;
U < 0 attractive .

gab ∼





+c(t)2 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1



gab ∼





−c(t)2 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1





Lorentzian signature Riemannian signature

U > 0 repulsive ;
U < 0 attractive .



Daily signature change events...

The bosenova experiment:



Daily signature change events...

The bosenova experiment:

Lorentzian signature
Riemannian signature



Daily signature change events...

Can we understand the bosenova experiment via the emergent
spacetime programme?

Need to understand particle 
production process via 

sudden variations in atomic-
interactions...



Atom-interactions, universe and quasiparticles 

Outer observer: For an decreasing sound velocity signals.
Inner observer: The size of the universe has increased.

Variations in the speed of sound
modify the size of emergent universe!

Simplest example: Sudden changes in the emergent scale 
factor.

Time-dependent atom-interactions correspond to FRW-type 
universe 

quasiparticle production is expected!!!

ds2 =
(

n0

c0

) 2
d−1 [

−c2
0 bk(t)α dt2 + bk(t)α−1 dx2

]

c2
0 =

n0(t,x)U(t)
m



Atom-interactions, universe and quasiparticles 

Outer observer: For an decreasing sound velocity signals.
Inner observer: The size of the universe has increased.

Variations in the speed of sound
modify the size of emergent universe!

Simplest example: Sudden changes in the emergent scale 
factor.

Time-dependent atom-interactions correspond to FRW-type 
universe 

quasiparticle production is expected!!!

ds2 =
(

n0

c0

) 2
d−1 [

−c2
0 bk(t)α dt2 + bk(t)α−1 dx2

]

c2
0 =

n0(t,x)U(t)
m

gab =
(

c0

U/!

) 2
d−1





−
(
c2
0 − v2

)
−vx −vy −vz

−vx 1 0 0
−vy 0 1 0
−vz 0 0 1



 ;



Trans-Planckian beats signature

+ upper / lower bound

+ quasiparticle production

+ connection conditions
[
φ̂
]

Σ
= 0;

[
Π̂φ̂

]

Σ
= 0.

+ no meaning of 
quasiparticles in the 
intermediate regime!!!



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]

Number of quasiparticles 
infinite!?



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]

U|∇→−ik → Uk = U +
!2

4mn0
k2



Trans-Planckian beats signature
Hydrodynamic approximation: Variations in the kinetic energy 
of the condensate are considered to be negligible, compared 
to the internal potential energy of the Bosons.

!2

2m

∇2
√

n0 + n̂√
n0 + n̂

# U

U = U − !2

4mn0

{
(∇n0)2 − (∇2n0)n0

n2
0

− ∇n0

n2
0

∇+∇2

}
Keeping quantum pressure term leads to “effective interaction” seen by inner observer:

condensate in box
[uniform number density]

harmonic trap
[position dependent sound speed]

Ĥ =
∫

dx

(
−Ψ̂† !2

2m
∇2Ψ̂ + Ψ̂†VextΨ̂ +

U

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)



condensate in box
[uniform number density]

Trans-Planckian beats signature
U = U − !2

4mn0

{
(∇n0)2 − (∇2n0)n0

n2
0

− ∇n0

n2
0

∇+∇2

}
U = U − !2

4mn0
∇2 .

healing length:

ωk ≈
!

2m
k2ωk ≈ c(t) k

k

ω2
k = c(t) k2 +

(
!

2m

)2

k4

➟Lorentz
symmetry

ξ2(t) =
(

εqp

c(t)

)2

=
(

!/2m

c(t)

)2

c2(U) =
n0 U

m
→ c2

k(U) = c2(U) +
(

!
2m

)2

k2



Trans-Planckian beats signature
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Trans-Planckian beats signature



Signature of spacetime - where does it come from?

What about the *real* world?



Signature of spacetime - what is it really?



Signature of spacetime - what is it really?

 Signature of spacetime is a certain pattern of 
Eigenvalues of the metric tensor at each point of the 
manifold [Loretzian (-,+++) or Riemannian (+,+++)] 
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 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)
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manifold [Loretzian (-,+++) or Riemannian (+,+++)] 
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 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)

 Signature of spacetime is a certain pattern of 
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manifold [Loretzian (-,+++) or Riemannian (+,+++)] 

 Kinematics of signature change (Lapse is a non-
dynamical variable), matching conditions



Signature of spacetime - what is it really?

 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)

 Signature of spacetime is a certain pattern of 
Eigenvalues of the metric tensor at each point of the 
manifold [Loretzian (-,+++) or Riemannian (+,+++)] 

 There is no driving mechanism within GR that drives 
changes in the signature of the geometry...

 Kinematics of signature change (Lapse is a non-
dynamical variable), matching conditions



Signature of spacetime - what is it really?

 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)
ds2 = gab dxadxb = (nana) N2 dt2 + hij (dyi + N i dt) (dyj + N j dt)



What about the non-dynamical side?

Quantum field theory on Riemannian manifolds



Quantum field theory on Riemannian manifolds

FRW spacetimes,         , shift vectors are zero,           :  N j = 0k = 0

ds2 = −B(t) dt2 + A(t) d!x2

We are interested in the case where            alone changes sign:

−+ + · · ·→ + + + · · ·→ −+ + . . .

B = N2

Note that we can always use the coordinate freedom of general relativity 

make the signature change ``discontinuous''. 

Spacetime kinematics:



Quantum field theory on Riemannian manifolds

L = −1
2
√
−g

(
gab∂aφ̂(t, r) ∂bφ̂(t, r) + m2 φ̂(t, r)2

)

QFT – canonical quantization scheme:

Π̂φ :=
∂L

∂
(
∂tφ̂

) = −
√
−g gtb∂bφ̂ ≡ −f tb∂bφ̂

Lagrange density:

Conjugate momentum:

1√
−g

∂a

(√
−g gab ∂bφ̂

)
= m2φ̂Equation of motion:

Continuity of field operators:
[
φ̂(t, r)

]
= 0 and

[
Π̂φ(t, r)

]
= 0



Quantum field theory on Riemannian manifolds
QFT – Bogliubov coefficients:

φ̂(t, r) =
∫

d(d)k

(2π)d/2

1√
2

{
u∗k(t) âk + uk(t) â†−k

}

α =
π∗

outuin − πinu∗out

Wout

∣∣∣∣
Σ

and β =
πinuout − πoutuin

Wout

∣∣∣∣
Σ

Bogoliubov coefficients algebraically relate the mode 
functions beyond regions with different signatures:

The mean number of out-particles in the in-vacuum is given by

〈0in|â†k,outâk,out|0in〉 = |βk|2 δd(0)



Quantum field theory on Riemannian manifolds
Effective equation of motion:

The only computational difficulty lies in finding the mode functions. It is
convenient for our proposes to introduce auxiliary mode functions

uk(t) := A(t)−d/4 vk(t)

and its complex conjugate. (Notice, that here we are assuming A(t) > 0, and
B(t) = B.) The wave equation for the auxiliary field in Fourier space reads

v̈k(t) + Ω2
eff vk(t) = 0,

where the effective frequency Ωeff is given by

Ω2
eff :=

(
d

4
− d2

42

)
Ȧ2

A2
− d

4
Ä

A
+ B

(
k2

A
+ m2

)
.



Quantum field theory on Riemannian manifolds



Quantum field theory on Riemannian manifolds
Euclidean flat signature change events:

Ω2
flat = −

(
k2

A
+ m2

)
Dispersion relation in intermediate regime:

The quantum field modes in region t < t1 and t > t2 are given by

uk =
exp(−iωkt)
Ad/4√ωk

and u∗k =
exp(+iωkt)
Ad/4√ωk

,

πk = −iAd/4√ωk exp(−iωkt) and π∗
k = +iAd/4√ωk exp(+iωkt), (1)

such that W = π∗
kuk − πku∗k = 2i, and ω2

k = k2

A + m2.

uk =
cosh(|Ωflat|t) + i sinh(|Ωflat|t)

Ad/4
√

|Ωflat|
and c.c.;

πk = −i Ad/4
√

|Ωflat| (cosh(|Ωflat|t)− i sinh(|Ωflat|t)) and c.c. .

Nk = sinh
[(

k2

A
+ m2

)
(t2 − t1)

]2



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
rectangular barrier:

The transmission coefficient for quantum tunneling through a rectangular
barrier is given by

T =
4E(V − E)

4E(V − E) + V 2 sinh2[
√

2m(V − E) L]
,

where V is the height of the barrier, L is its width, and E is the incident energy.
If we now take the special case E = 1

2V we have

T =
1

1 + sinh2[
√

2m(V − E) L]
=

1
cosh2[

√
2m(V − E) L]

,

from which, using the standard equivalences

|α|2 ↔ 1/T and |β|2 ↔ (1− T )/T = R/T,

we see

|α|2 ↔ cosh2[
√

2m(V − E) L] = cosh2[κ L]↔ cosh2 { |ω̄effective| ∆τ} ,

that is
|α|↔ cosh { |ω̄effective| ∆τ} ,

completely in agreement with our exact calculation.



Quantum field theory on Riemannian manifolds



Quantum field theory on Riemannian manifolds



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
super-Hubble horizon modes in cosmology:

Mechanism responsible for enormous particle production works 
analogous to cosmological particle production during inflation:

v̈k(t) + Ω2
eff vk(t) = 0,

Ω2
flat = −

(
k2

A
+ m2

)



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
super-Hubble horizon modes in cosmology:

Mechanism responsible for enormous particle production works 
analogous to cosmological particle production during inflation:

v̈k(t) + Ω2
eff vk(t) = 0,

Ω2
flat = −

(
k2

A
+ m2

)

¨̂χk(t) +
(

k2

e2Ht
+ m2 − d2H2

4

)
χ̂k(t) = 0

m < d
H

2

k < kHubbleHorizon



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
super-Hubble horizon modes in cosmology:

Mechanism responsible for enormous particle production works 
analogous to cosmological particle production during inflation:

v̈k(t) + Ω2
eff vk(t) = 0,

Ω2
flat = −

(
k2

A
+ m2

)

¨̂χk(t) +
(

k2

e2Ht
+ m2 − d2H2

4

)
χ̂k(t) = 0

m < d
H

2

k < kHubbleHorizon

frozen modes all modes are *frozen*
Significant particle production on ALL scales!???



There is always hope...

Trans-Planckian beats signature? 



Trans-Planckian beats signature?
Let’s do quantum gravity phenomenology, in the sense of an 
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∆d+1φ− F (−∆d)φ = m2φ

where
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Trans-Planckian beats signature?
Let’s do quantum gravity phenomenology, in the sense of an 
ultra-high energy breakdown of Lorentz symmetry

∆d+1φ− F (−∆d)φ = m2φ

where
∆d is a purely spatial D’Alembertian

∆d φ =
1
√

gd
∂i

(√
gd gij ∂jφ

)
∆d+1 is the spacetime D’Alembertian

∆d+1 φ =
1√−gd+1

∂a

(√
−gd+1 gab ∂bφ

)



Trans-Planckian beats signature?
Let’s do quantum gravity phenomenology, in the sense of an 
ultra-high energy breakdown of Lorentz symmetry

∆d+1φ− F (−∆d)φ = m2φ

where
∆d is a purely spatial D’Alembertian

∆d φ =
1
√

gd
∂i

(√
gd gij ∂jφ

)
∆d+1 is the spacetime D’Alembertian

∆d+1 φ =
1√−gd+1

∂a

(√
−gd+1 gab ∂bφ

)

ω̄2
effective = εAd

[
m2 + F (k2/A) + k2/A

]

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}



Trans-Planckian beats signature

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}
Particle production in *real* world with naive LIV terms:



Trans-Planckian beats signature

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}
Particle production in *real* world with naive LIV terms:

β ≈ i sin
{∫

E

√
B m2 + ε2

qp k4 + B k2/A Ad/2 dt̄

}

Particle production in analogue *world* - a BEC - with 
quantum pressure correction to the mean-field:



What, if anything at all, did we learn from this!?

So what...



What, if anything at all, did we learn from this?

* classically signature change events are closely related to 
quantum tunneling “half-way up” the barrier

* quantum mechanically signature change events are closely 
super-Hubble horizon modes during inflation

* Signature change events in the *real* universe show serious 
problems: driving the production of an infinite number of 
particle, with infinite energy, which are not removed by 
dimension, rest mass, or even resonable sub-class of LIV



What, if anything at all, did we learn from this?

* classically signature change events are closely related to 
quantum tunneling “half-way up” the barrier

* quantum mechanically signature change events are closely 
super-Hubble horizon modes during inflation

* Signature change events in the *real* universe show serious 
problems: driving the production of an infinite number of 
particle, with infinite energy, which are not removed by 
dimension, rest mass, or even resonable sub-class of LIV

If there is a way to drive sig. change events within the 
realm QG, there should be a mechanism to regularize the 

infinities..! (Analogue to the situation in the BEC)



The end...

I’d like to thank David and Matt!

books on the Emergent Spacetime / Analogue Models for Gravity: 
Artificial black holes (Novello, Visser, Volovik)
The universe in a helium droplet (Volovik)
Quantum Analogues: From phase transitions to black holes and cosmology (Unruh, Schuetzhold)


