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Abstract:

How much of modern cosmology is really cosmography?

How much of it is kinematics, rather than dynamics?

How much of it is simply FRW symmetries?

How much of it is independent of the Einstein equations?

Symmetry principles give us an awful lot...

Hubble law to high order in redshift...

Precision cosmology?  
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1. Introduction

In this article I discuss a “phenomenological” approach to cosmography. Specifically

I take a hard look at the question of just how much of modern cosmology can be

extracted from symmetry principles and direct observation — without ever invoking

the Einstein equations (Friedmann equation), and so without ever having to deal with

contentious issues regarding “dark energy”, “dark matter”, “quintessence”, and/or

“phantom matter” [1].

Indeed, a surprising amount of modern cosmology is pure kinematics, what

Weinberg [2] refers to as cosmography, and is completely independent of the underlying

dynamics governing the evolution of the universe. For instance, it is well-known that

basic symmetry principles (and in particular the cosmological principle) are sufficient

to deduce the form of the cosmological metric — up to possible topological ambiguities

it must be a Friedmann–Robertson–Walker [FRW] cosmology

ds2 = −c2 dt2 + a(t)2

[
dr2

1− k r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (1)

Whereas pure cosmography by itself will not predict anything about the scale factor

a(t), in the cosmographic scenario we can to some extent infer the history of the scale

factor a(t) from the observational data while steadfastly avoiding use of the Einstein

equations. In view of the many controversies currently surrounding the composition

of the cosmological fluid, and the large number of speculative models presently being

considered, such an observationally driven reconstruction is of interest in its own right.

2. Hubble law

Now in observational cosmology we do not have direct access to the complete history

of the scale factor a(t) over the entire age of the universe — we do however have access

[however imprecise] to the current value of the scale factor and its derivatives, as encoded

in the Hubble parameter, deceleration parameter, etc. This more limited information

can still be used to extract useful information about the [relatively recent] history of

our universe.

To set the notation as in reference [1], it is standard terminology in mechanics

that the first four time derivatives of position are referred to as velocity, acceleration,

jerk, and snap. Jerk [the third time derivative] is also sometimes referred to as jolt.

Less common alternative terminologies are pulse, impulse, bounce, surge, shock, and

super-acceleration. Snap [the fourth time derivative] is also sometimes called jounce.

The fifth and sixth time derivatives are sometimes somewhat facetiously referred to as

crackle and pop.

So in a cosmological setting this makes it appropriate to define Hubble, deceleration,

jerk, and snap parameters as:

H(t) = +
1

a

da

dt
; (2)

Cosmography:

Cosmography uses symmetries to derive 
the FRW form of the metric:

Cosmography then very pointedly does not invoke the 
Einstein equations (Friedmann equation).

You can still do an awful lot.

Simply view the history of the scale factor         as a 
free quantity to be observationally determined.
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Cosmography:

After you have observationally determined the 
complete history of the scale factor,          then 
you begin to think about dynamics, not before.

Defer all questions of dark matter, dark energy, 
quintessence, phantom matter, till after you have 

a good handle on        .
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Practical issue:    You will have to be satisfied with 
a finite number of derivatives of the scale factor.

Traditionally, the Hubble parameter and the 
deceleration parameter.



Hubble, deceleration, jerk, snap...
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q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version
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       crackle, pop...
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This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

Taylor expand the scale factor using present epoch values:



Hubble law:
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physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

Physical distance travelled:

Lookback time:

Cosmography: Cosmology without the Einstein equations 3

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

Exact (useless) Hubble law:

Cosmography: Cosmology without the Einstein equations 3

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

The useful Hubble law is obtained by Taylor series...



Hubble law:

Cosmography: Cosmology without the Einstein equations 3

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4
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+ O

[(
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c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

Cosmography: Cosmology without the Einstein equations 3

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3
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+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

Redshift:



Hubble law:

Reversion of series:

Cosmography: Cosmology without the Einstein equations 3

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (3)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (4)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (5)

The deceleration, jerk, and snap parameters defined in this way are dimensionless, and

we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (6)

Now the physical distance travelled by a photon that is emitted at time t∗ and

absorbed at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗), (7)

where the time difference ∆t = t0 − t∗ is called the “lookback time”. In terms of this

physical distance travelled the Hubble law is exact but completely impractical:

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −∆t)
=

a(t0)

a(t0 −D/c)
, (8)

A more useful result is obtained by performing a Taylor series expansion. Working to

fourth order in D, or more precisely to fourth order in the dimensionless parameter

DH0/c, yields

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (9)

So that

z(D) =
H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

. (10)

Reversion of this power series, to convert z(D)→ D(z), leads to:

D(z) =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (11)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this versionUsual Hubble law in terms of luminosity distance:

Cosmography: Cosmology without the Einstein equations 4

of the Hubble law will depend linearly on the n-th time derivative of the scale factor,

and nonlinearly on lower-order time derivatives. (Also note that one of the virtues of

this particular version of the Hubble law is that it is completely independent of k, the

sign of space curvature, and is completely independent of a0, the present-day value of

the scale factor.) Carrying out fifth-order or even sixth-order expansions in terms of

analogously defined crackle and pop parameters is straightforward with the aid of a

symbolic algebra system such as Maple, but the formulae grow so clumsy as to be not

particularly useful.

Unfortunately physical distance D (or equivalently the lookback time ∆t) is

typically not the variable in terms of which the Hubble law is observationally presented.

That role is more typically played by the “luminosity distance”, dL. For instance,

Weinberg defines [2]

(energy flux) =
L

4π d2
L

. (12)

Let the photon be emitted at r-coordinate r = 0 at time t∗, and absorbed at r-coordinate

r = r0 at time t0. Then it is a purely geometrical textbook result that

dL = a(t0)
2 r0

a(t∗)
=

a0

a(t0 −D/c)
(a0 r0). (13)

Thus to calculate dL(D) we need r0(D). A brief and quite standard computation yields

r0(D) =



sin

(∫ t0

t0−D/c

c dt

a(t)

)
k = +1;

∫ t0

t0−D/c

c dt

a(t)
k = 0;

sinh

(∫ t0

t0−D/c

c dt

a(t)

)
k = −1;

(14)

where we now must deal with the three possible signs for space curvature, k = −1/0/+1,

separately. We now Taylor series expand this result for “short” distances D. First note

that

r0(D) =

[∫ t0

t0−D/c

c dt

a(t)

]
− k

3!

[∫ t0

t0−D/c

c dt

a(t)

]3

+ O

([∫ t0

t0−D/c

c dt

a(t)

]5
)

, (15)

and observe that the sign of the space curvature k explicitly shows up in the third-order

term. Now expand the integrals above to third order. (We can easily check, a posteriori,

that this is sufficient for the final result for dL(z) quoted below.) Then∫ t0

t0−D/c

c dt

a(t)
=

D

a0

{
1 +

1

2

H0D

c
+

[
2 + q0

6

](
H0D

c

)2

+

[
6(1 + q0) + j0

24

](
H0D

c

)3

+O

[(
H0D

c

)4
] }

. (16)

Cosmography: Cosmology without the Einstein equations 4

of the Hubble law will depend linearly on the n-th time derivative of the scale factor,

and nonlinearly on lower-order time derivatives. (Also note that one of the virtues of

this particular version of the Hubble law is that it is completely independent of k, the

sign of space curvature, and is completely independent of a0, the present-day value of

the scale factor.) Carrying out fifth-order or even sixth-order expansions in terms of

analogously defined crackle and pop parameters is straightforward with the aid of a

symbolic algebra system such as Maple, but the formulae grow so clumsy as to be not

particularly useful.

Unfortunately physical distance D (or equivalently the lookback time ∆t) is

typically not the variable in terms of which the Hubble law is observationally presented.

That role is more typically played by the “luminosity distance”, dL. For instance,

Weinberg defines [2]

(energy flux) =
L

4π d2
L

. (12)

Let the photon be emitted at r-coordinate r = 0 at time t∗, and absorbed at r-coordinate

r = r0 at time t0. Then it is a purely geometrical textbook result that

dL = a(t0)
2 r0

a(t∗)
=

a0

a(t0 −D/c)
(a0 r0). (13)

Thus to calculate dL(D) we need r0(D). A brief and quite standard computation yields

r0(D) =
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(∫ t0
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c dt

a(t)

)
k = +1;

∫ t0

t0−D/c

c dt

a(t)
k = 0;

sinh

(∫ t0

t0−D/c

c dt

a(t)

)
k = −1;

(14)

where we now must deal with the three possible signs for space curvature, k = −1/0/+1,

separately. We now Taylor series expand this result for “short” distances D. First note

that

r0(D) =

[∫ t0

t0−D/c

c dt

a(t)

]
− k

3!

[∫ t0

t0−D/c

c dt

a(t)

]3

+ O

([∫ t0

t0−D/c

c dt

a(t)

]5
)

, (15)

and observe that the sign of the space curvature k explicitly shows up in the third-order

term. Now expand the integrals above to third order. (We can easily check, a posteriori,

that this is sufficient for the final result for dL(z) quoted below.) Then∫ t0

t0−D/c

c dt

a(t)
=

D

a0

{
1 +

1

2

H0D

c
+

[
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](
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+
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Pure geometry:



Hubble law (technical mess):

Cosmography: Cosmology without the Einstein equations 4

of the Hubble law will depend linearly on the n-th time derivative of the scale factor,

and nonlinearly on lower-order time derivatives. (Also note that one of the virtues of

this particular version of the Hubble law is that it is completely independent of k, the

sign of space curvature, and is completely independent of a0, the present-day value of

the scale factor.) Carrying out fifth-order or even sixth-order expansions in terms of

analogously defined crackle and pop parameters is straightforward with the aid of a

symbolic algebra system such as Maple, but the formulae grow so clumsy as to be not

particularly useful.

Unfortunately physical distance D (or equivalently the lookback time ∆t) is

typically not the variable in terms of which the Hubble law is observationally presented.

That role is more typically played by the “luminosity distance”, dL. For instance,

Weinberg defines [2]

(energy flux) =
L

4π d2
L

. (12)

Let the photon be emitted at r-coordinate r = 0 at time t∗, and absorbed at r-coordinate

r = r0 at time t0. Then it is a purely geometrical textbook result that

dL = a(t0)
2 r0

a(t∗)
=

a0

a(t0 −D/c)
(a0 r0). (13)
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where we now must deal with the three possible signs for space curvature, k = −1/0/+1,

separately. We now Taylor series expand this result for “short” distances D. First note

that
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and observe that the sign of the space curvature k explicitly shows up in the third-order

term. Now expand the integrals above to third order. (We can easily check, a posteriori,
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Unfortunately physical distance D (or equivalently the lookback time ∆t) is

typically not the variable in terms of which the Hubble law is observationally presented.

That role is more typically played by the “luminosity distance”, dL. For instance,

Weinberg defines [2]

(energy flux) =
L

4π d2
L

. (12)

Let the photon be emitted at r-coordinate r = 0 at time t∗, and absorbed at r-coordinate

r = r0 at time t0. Then it is a purely geometrical textbook result that

dL = a(t0)
2 r0

a(t∗)
=

a0

a(t0 −D/c)
(a0 r0). (13)

Thus to calculate dL(D) we need r0(D). A brief and quite standard computation yields

r0(D) =



sin

(∫ t0

t0−D/c

c dt

a(t)

)
k = +1;

∫ t0

t0−D/c

c dt

a(t)
k = 0;

sinh

(∫ t0

t0−D/c

c dt

a(t)

)
k = −1;

(14)

where we now must deal with the three possible signs for space curvature, k = −1/0/+1,

separately. We now Taylor series expand this result for “short” distances D. First note

that

r0(D) =

[∫ t0

t0−D/c

c dt

a(t)

]
− k

3!

[∫ t0

t0−D/c

c dt

a(t)

]3

+ O

([∫ t0

t0−D/c

c dt

a(t)

]5
)

, (15)

and observe that the sign of the space curvature k explicitly shows up in the third-order

term. Now expand the integrals above to third order. (We can easily check, a posteriori,

that this is sufficient for the final result for dL(z) quoted below.) Then∫ t0

t0−D/c

c dt

a(t)
=

D

a0

{
1 +

1

2

H0D

c
+

[
2 + q0

6

](
H0D

c

)2

+

[
6(1 + q0) + j0

24

](
H0D

c

)3

+O

[(
H0D

c

)4
] }

. (16)

Cosmography: Cosmology without the Einstein equations 4

of the Hubble law will depend linearly on the n-th time derivative of the scale factor,

and nonlinearly on lower-order time derivatives. (Also note that one of the virtues of

this particular version of the Hubble law is that it is completely independent of k, the

sign of space curvature, and is completely independent of a0, the present-day value of

the scale factor.) Carrying out fifth-order or even sixth-order expansions in terms of

analogously defined crackle and pop parameters is straightforward with the aid of a

symbolic algebra system such as Maple, but the formulae grow so clumsy as to be not

particularly useful.

Unfortunately physical distance D (or equivalently the lookback time ∆t) is

typically not the variable in terms of which the Hubble law is observationally presented.

That role is more typically played by the “luminosity distance”, dL. For instance,

Weinberg defines [2]

(energy flux) =
L

4π d2
L

. (12)

Let the photon be emitted at r-coordinate r = 0 at time t∗, and absorbed at r-coordinate

r = r0 at time t0. Then it is a purely geometrical textbook result that

dL = a(t0)
2 r0

a(t∗)
=

a0

a(t0 −D/c)
(a0 r0). (13)

Thus to calculate dL(D) we need r0(D). A brief and quite standard computation yields

r0(D) =



sin

(∫ t0

t0−D/c

c dt

a(t)

)
k = +1;

∫ t0

t0−D/c

c dt

a(t)
k = 0;

sinh

(∫ t0

t0−D/c

c dt

a(t)

)
k = −1;

(14)

where we now must deal with the three possible signs for space curvature, k = −1/0/+1,

separately. We now Taylor series expand this result for “short” distances D. First note

that

r0(D) =

[∫ t0

t0−D/c

c dt

a(t)

]
− k

3!

[∫ t0

t0−D/c

c dt

a(t)

]3

+ O

([∫ t0

t0−D/c

c dt

a(t)

]5
)

, (15)

and observe that the sign of the space curvature k explicitly shows up in the third-order

term. Now expand the integrals above to third order. (We can easily check, a posteriori,

that this is sufficient for the final result for dL(z) quoted below.) Then∫ t0

t0−D/c

c dt

a(t)
=

D

a0

{
1 +

1

2

H0D

c
+

[
2 + q0

6

](
H0D

c

)2

+

[
6(1 + q0) + j0

24

](
H0D

c

)3

+O

[(
H0D

c

)4
] }

. (16)

Insert, collect terms...



Hubble law (technical mess):
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So we see that the conversion from D, the physical distance travelled, to r coordinate

traversed is given by

r0(D) =
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Combining these formulae we find that the luminosity distance as a function of D, the

physical distance travelled, is:

dL(D) = D
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. (18)

Now using the series expansion for for D(z) we finally derive, on purely geometrical

grounds, the luminosity-distance version of the Hubble law:

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z − 1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
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2
0
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24
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2− 2q0 − 15q2
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z3

+O(z4)

}
. (19)

The first two terms above are Weinberg’s version of the Hubble law. His equation

(14.6.8). The third term is equivalent to that obtained by Chiba and Nakamura [3],

and by Visser [1], and depends on the jerk parameter j0, the sign of space curvature k,

and the present day value of the scale factor a0. It is only at this third-order term in

the Hubble law that we even begin to probe the geometry of space, and even then the

fact that we are sensitive to the geometry of space depends on our choice of distance

scale — recall that the physical distance Hubble law D(z) as embodied in equation (12)

is completely insensitive to the geometry of space (not spacetime). The fourth-order

term of either the luminosity distance or the physical distance version of the Hubble

law is (as expected) linearly dependent on the snap. From the derivation above it is

now clear that the O(zn) term in this luminosity distance version of the Hubble law will

also depend linearly on the n-th time derivative of the scale factor. It is also clear, if

somewhat awkward, how to extend the calculation to arbitrarily high order in redshift.

If one instead chooses to work with angular diameter distance dA(z) or proper-

motion distance dM(z) the relevant conversions are straightforward [2]

dA(z) =
dL(z)

(1 + z)2
; dM(z) =

dL(z)

1 + z
. (20)

It is important to realise that any of these versions of the Hubble law, and indeed

the entire discussion of this article, is completely independent of the Einstein equations
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It is important to realise that any of these versions of the Hubble law, and indeed

the entire discussion of this article, is completely independent of the Einstein equations

Hubble law (luminosity distance):

The first two terms are standard.
The third term is that of Chiba & Nakamura.
The fourth term is new.
With Maple, can calculate to arbitrary order.

Third order (jerk) begins to probe geometry of space.
More free parameters than coefficients to fit...



Hubble law (assuming cosmological inflation):
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— it assumes only that the geometry of the universe is well approximated by a FRW

cosmology, but does not invoke any particular matter model. Note further that in

comparison to the physical distance travelled D(z) Hubble law, this luminosity distance

dL(z) Hubble law first differs in the coefficient of the O(z2) term — you will still get the

same Hubble parameter, but if you are not sure which definition of “distance” you are

using you may mis-estimate the higher-order coefficients (deceleration, jerk, and snap).

3. Cosmological inflation

From a theoretical perspective, H0 a0/c ! 1 is a generic prediction of inflationary

cosmology — thus assuming cosmological inflation effectively permits is to write

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z − 1

6

[
1− q0 − 3q2

0 + j0

]
z2

+
1

24

[
2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0j0 + s0

]
z3 + O(z4)

}
. (21)

It is, however, important to realise that this is not the same as saying that cosmological

inflation predicts k = 0. Instead what generic cosmological inflation predicts is the

much weaker statement that for all practical purposes the present day universe is

indistinguishable from a k = 0 spatially flat universe. This means that if our universe

happens to be a topologically trivial k = 0 FRW cosmology, then in a formal logical

sense we will never be able to prove it. All we will ever be able to do is to place

increasingly stringent lower bounds on the dimensionless parameter H0 a0/c, but this

will never rigorously permit us to conclude that k = 0. The fundamental reason for

this often overlooked but trivial observation is that a topologically trivial k = 0 FRW

universe can be mimicked to arbitrary accuracy by a k = ±1 FRW universe provided

the scale factor is big enough. (If the universe has nontrivial spatial topology there is a

possibility of using the compactification scale, which might be [but does not have to be]

much smaller than the scale factor, to indirectly distinguish between k = −1/0/ + 1.)

In contrast if the true state of affairs is k = ±1, then with good enough data on H0 a0

we will in principle be able to determine upper bounds which (at some appropriate level

of statistical uncertainty) demonstrate that k #= 0. Also note that even in inflationary

cosmologies it is not true that H(t)a(t)/c ! 1 at all times, and in particular this

inequality may be violated (and very often is violated) in the pre-inflationary epoch.

4. Discussion

The presentation of this article now makes it clear what can and cannot be expected,

even in principle, from improved observations of the luminosity distance Hubble law

dL(z) (or for that matter its angular-distance or proper-motion distance variants).

As more data is collected, at progressively higher redshifts, we can better bound the

derivatives dn[dL(z)]/dzn|z=0. This allows one in principle to extract the Hubble and

deceleration parameters, but even at O(z3) there is a problem in that the number of
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In contrast if the true state of affairs is k = ±1, then with good enough data on H0 a0

we will in principle be able to determine upper bounds which (at some appropriate level

of statistical uncertainty) demonstrate that k #= 0. Also note that even in inflationary

cosmologies it is not true that H(t)a(t)/c ! 1 at all times, and in particular this

inequality may be violated (and very often is violated) in the pre-inflationary epoch.

4. Discussion

The presentation of this article now makes it clear what can and cannot be expected,

even in principle, from improved observations of the luminosity distance Hubble law

dL(z) (or for that matter its angular-distance or proper-motion distance variants).

As more data is collected, at progressively higher redshifts, we can better bound the

derivatives dn[dL(z)]/dzn|z=0. This allows one in principle to extract the Hubble and

deceleration parameters, but even at O(z3) there is a problem in that the number of

Not

If and only if  you have independent means 
(observational or theoretical) for bounding            can 
you even hope to constrain jerk and snap from the 
observational Hubble law.

Number of free parameters now equals number of 
coefficients ...
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Completely independent of the Einstein equations.



Conclusions:

Cosmography can teach us an awful lot.

Even without the Einstein equations,
symmetry and FRW cosmology

gives you the Hubble law.

The Einstein equations come in when you then 
try to relate the Hubble law back to the

cosmological matter model.  
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(ρ− ρ0)2 + O[(ρ− ρ0)3],

is the simplest model one can consider that does not make any a priori restrictions
on the nature of the cosmological fluid. Most popular cosmological models attempt
to be “predictive”, in the sense that once some a priori equation of state is chosen
the Friedmann equations are used to determine the evolution of the FRW scale factor
a(t). In contrast, a “retrodictive” approach might usefully take observational data
concerning the scale factor, and use the Friedmann equations to infer an observed
cosmological equation of state. In particular, the value and derivatives of the scale
factor determined at the current epoch place constraints on the value and derivatives
of the cosmological equation of state at the current epoch. Determining the first three
Taylor coefficients of the equation of state at the current epoch requires a measurement
of the deceleration, jerk, and snap — the second, third, and fourth derivatives of the
scale factor with respect to time. Higher-order Taylor coefficients in the equation of
state are related to higher-order time derivatives of the scale factor. Since the jerk and
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constraints on the cosmological equation of state are so relatively weak; and are likely
to remain weak for the foreseeable future.

Dated: 24 March 2004; LATEX-ed 30 June 2004

PACS numbers: gr-qc/0309109

Cosmological fluid:
Jerk, snap, and the cosmological equation of state 3

we can use the Einstein equations in reverse to calculate the energy density ρ(t) and

pressure p(t) via

8πGN ρ(t) = 3c2

[
ȧ2

a2
+

kc2

a2

]
; (9)

8πGN p(t) = −c2

[
ȧ2

a2
+

kc2

a2
+ 2

ä

a

]
. (10)

Under mild conditions on the existence and nonzero value of appropriate derivatives we

can appeal to the inverse function theorem to assert the existence of a t(ρ) or t(p) and

hence, in principle, deduce an observational equation of state

ρ(p) = ρ(t = t(p)); p(ρ) = p(t = t(ρ)). (11)

In view of the many controversies currently surrounding the cosmological equation of

state, and the large number of speculative models presently being considered, such an

observationally driven reconstruction is of interest in its own right.

Now in observational cosmology we do not have direct access to a(t) over the

entire history of the universe — we do however have access [however imprecise] to

the current value of the scale factor and its derivatives, as encoded in the Hubble

parameter, deceleration parameter, etc. This more limited information can still be used

to extract useful information about the cosmological equation of state, in particular it

yields information about the present value of the w-parameter and the slope parameter

κ0 defined as

w0 =
p

ρ

∣∣∣∣
0

; κ0 =
dp

dρ

∣∣∣∣
0

. (12)

The value of the w-parameter in particular has recently become the center of

considerable interest, driven by speculation that w0 < −1 is compatible with present

observations. Such a value of w0 would correspond to present-day classical and

cosmologically significant violations of the null energy condition. The associated

“phantom matter” (almost identical to the notion of “exotic matter” in the sense of

Morris and Thorne [4]) leads to a cosmological energy density that is future increasing

rather than future decreasing. (See, for example, [5, 6]). If w(t) subsequently remains

strictly less than−1, this will lead to a “big rip” [7] — the catastrophic infinite expansion

of the universe in finite elapsed time.

Unfortunately it is very difficult to measure w0 and κ0 with any accuracy — I

will make this point explicit by relating the measurement of w0 to the deceleration

parameter, and the measurement of κ0 to the “jerk” of the cosmological scale factor —

the third derivative with respect to time.

For related comments see references [8, 9, 10, 11, 12, 13]. The “cubic” term

of Chiba and Nakamura [8] is identical to the jerk, as is the “statefinder” variable

called r by Sahni et al. [9, 10, 11]. The other “statefinder” variable (called s, not

to be confused with the snap) is a particular linear combination of the jerk and

deceleration parameters. Padmanabhan and Choudhury [12] have also emphasised the
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need for constructing models for the cosmological fluid that are unprejudiced by a priori

theoretical assumptions. A good recent survey of the status of the cosmological fluid

is [13].

2. Hubble, deceleration, jerk, and snap parameters

It is standard terminology in mechanics that the first four time derivatives of position

are referred to as velocity, acceleration, jerk and snap. ‡ In a cosmological setting this

makes it appropriate to define Hubble, deceleration, jerk, and snap parameters as

H(t) = +
1

a

da

dt
; (13)

q(t) = −1

a

d2a

dt2

[
1

a

da

dt

]−2

; (14)

j(t) = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

; (15)

s(t) = +
1

a

d4a

dt4

[
1

a

da

dt

]−4

. (16)

The deceleration, jerk, and snap parameters are dimensionless, and we can write

a(t) = a0

{
1 + H0 (t− t0)− 1

2
q0 H2

0 (t− t0)
2 +

1

3!
j0 H3

0 (t− t0)
3

+
1

4!
s0 H4

0 (t− t0)
4 + O([t− t0]

5)

}
. (17)

In particular, at arbitrary time t

w(t) =
p

ρ
= −H2(1− 2q) + kc2/a2

3(H2 + kc2/a2)
= −(1− 2q) + kc2/(H2a2)

3[1 + kc2/(H2a2)]
. (18)

While observation is currently not good enough to distinguish between the three cases

k = −1/0/ + 1 with any degree of certainty, there is nevertheless widespread agreement

that at the present epoch H0a0/c" 1 (equivalent to |Ω0 − 1|# 1).

Warning: From a theoretical perspective, H0a0/c " 1 is a generic prediction of

inflationary cosmology — this is not the same as saying that cosmological inflation

predicts k = 0. What generic cosmological inflation predicts is the weaker statement

that for all practical purposes the present day universe is indistinguishable from a k = 0

spatially flat universe. If our universe happens to be a topologically trivial k = 0 FRW

cosmology, then we will never be able to prove it. Simply as a matter of formal logic, all

we will ever be able to do is to place increasingly stringent lower bounds on H0 a0, but

this will never rigorously permit us to conclude that k = 0. The fundamental reason for

‡ Jerk [the third time derivative] is also sometimes referred to as jolt. Less common alternative
terminologies are pulse, impulse, bounce, surge, shock, and super-acceleration. Snap [the fourth time
derivative] is also sometimes called jounce. The fifth and sixth time derivatives are sometimes somewhat
facetiously referred to as crackle and pop.

w-parameter:
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ȧ2

a2
+

kc2

a2

]
; (9)

8πGN p(t) = −c2

[
ȧ2
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κ0 defined as
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The value of the w-parameter in particular has recently become the center of

considerable interest, driven by speculation that w0 < −1 is compatible with present

observations. Such a value of w0 would correspond to present-day classical and

cosmologically significant violations of the null energy condition. The associated

“phantom matter” (almost identical to the notion of “exotic matter” in the sense of

Morris and Thorne [4]) leads to a cosmological energy density that is future increasing

rather than future decreasing. (See, for example, [5, 6]). If w(t) subsequently remains

strictly less than−1, this will lead to a “big rip” [7] — the catastrophic infinite expansion

of the universe in finite elapsed time.

Unfortunately it is very difficult to measure w0 and κ0 with any accuracy — I

will make this point explicit by relating the measurement of w0 to the deceleration

parameter, and the measurement of κ0 to the “jerk” of the cosmological scale factor —

the third derivative with respect to time.

For related comments see references [8, 9, 10, 11, 12, 13]. The “cubic” term

of Chiba and Nakamura [8] is identical to the jerk, as is the “statefinder” variable

called r by Sahni et al. [9, 10, 11]. The other “statefinder” variable (called s, not

to be confused with the snap) is a particular linear combination of the jerk and

deceleration parameters. Padmanabhan and Choudhury [12] have also emphasised the
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where numerator and denominator can be obtained by differentiating the Friedmann

equations for ρ(t) and p(t). It is easy to see that at all times, simply from the definition

of deceleration and jerk parameters, we have

8πGN
dρ

dt
= −6c2H

[
(1 + q)H2 +

kc2

a2

]
, (23)

8πGN
dp

dt
= 2c2H

[
(1− j)H2 +

kc2

a2

]
, (24)

leading to

κ0 = −1

3

[
1− j0 + kc2/(H2

0a
2
0)

1 + q0 + kc2/(H2
0a

2
0)

]
, (25)

which approximates (using H0a0/c" 1) to

κ0 = −1

3

[
1− j0

1 + q0

]
. (26)

The key observation here is that to obtain the linearized equation of state you need

significantly more information than the deceleration parameter q0; you also need to

measure the jerk parameter j0. If the only observations you have are measurements of the

deceleration parameter then you can of course determine w0 = p0/ρ0, but this is not an

equation of state for the cosmological fluid. Determining w0 merely provides information

about the present-day value of p/ρ but makes no prediction as to what this ratio will do in

the future — not even in the near future. (This point is also forcefully made in [12].) For

this reason there have been several attempts to observationally determine w(z), the value

of w as a function of redshift. See for example [12] and [9, 10, 11]. Since z is a function

of lookback time D/c, this is ultimately equivalent to determining w(t) = p(t)/ρ(t),

and implicitly equivalent to reconstructing a phenomenological equation of state p(ρ).

I prefer to phrase the discussion directly in terms of the EOS as that will make it clear

what parameters have to be physically measured. In terms of the history of the scale

factor a(t), it is only when one goes to third order by including the jerk parameter j0

that one obtains even a linearized equation of state.

Going one step higher in the expansion, by using the chain rule and the implicit

function theorem it is easy to see that

d2p

dρ2
=

p̈− κ ρ̈

(ρ̇)2
(27)

More generally dnp/dρn contains a term linear in dnp/dtn. Using the Friedmann

equations then implies that dnp/dρn contains a term linear in dn+2a/dtn+2. Specifically

for the first nonlinear term it is relatively straightforward take explicit time derivatives

and so to verify that

d2p

dρ2

∣∣∣∣
0

= − (1 + kc2/[H2
0a

2
0])

6ρ0(1 + q0 + kc2/[H2
0a

2
0])

3

{
s0(1 + q0) + j0(1 + j0 + 4q0 + q2

0) + q0(1 + 2q0)

+(s0 + j0 + q0 + q0j0)
kc2

H2
0a

2
0

}
. (28)
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(Cosmological inflation)

Determining        requires a measurement of jerk.
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factor a(t), it is only when one goes to third order by including the jerk parameter j0

that one obtains even a linearized equation of state.

Going one step higher in the expansion, by using the chain rule and the implicit

function theorem it is easy to see that

d2p

dρ2
=

p̈− κ ρ̈

(ρ̇)2
(27)

More generally dnp/dρn contains a term linear in dnp/dtn. Using the Friedmann

equations then implies that dnp/dρn contains a term linear in dn+2a/dtn+2. Specifically

for the first nonlinear term it is relatively straightforward take explicit time derivatives

and so to verify that

d2p

dρ2

∣∣∣∣
0

= − (1 + kc2/[H2
0a

2
0])

6ρ0(1 + q0 + kc2/[H2
0a

2
0])

3

{
s0(1 + q0) + j0(1 + j0 + 4q0 + q2

0) + q0(1 + 2q0)

+(s0 + j0 + q0 + q0j0)
kc2

H2
0a

2
0

}
. (28)
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kc2
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8πGN
dp

dt
= 2c2H

[
(1− j)H2 +

kc2

a2

]
, (24)

leading to

κ0 = −1

3

[
1− j0 + kc2/(H2

0a
2
0)

1 + q0 + kc2/(H2
0a

2
0)

]
, (25)
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3

[
1− j0

1 + q0

]
. (26)
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In the approximation H0a0/c! 1 this reduces to

d2p

dρ2

∣∣∣∣
0

= −s0(1 + q0) + j0(1 + j0 + 4q0 + q2
0) + q0(1 + 2q0)

6ρ0(1 + q0)3
. (29)

As expected, this second derivative depends linearly on the snap. Higher order

coefficients can certainly be computed but are increasingly complicated and less

transparent in their physical interpretation. (Calculations are impractical without the

use of some symbolic manipulation package such as Maple.) To now make the connection

between the the Taylor coefficients of the cosmological EOS and the various parameters

appearing in the Hubble law we will need to likewise perform a similar Taylor expansion

of the Hubble law.

4. Hubble law to fourth order in redshift

Note that this entire section is independent of the use of the Friedmann equations and

depends only on the use of a FRW geometry.

The physical distance travelled by a photon that is emitted at time t∗ and absorbed

at the current epoch t0 is

D = c

∫
dt = c (t0 − t∗). (30)

In terms of this physical distance the Hubble law is exact

1 + z =
a(t0)

a(t∗)
=

a(t0)

a(t0 −D/c)
, (31)

but impractical. A more useful result is obtained by performing a fourth-order Taylor

series expansion,

a(t0)

a(t0 −D/c)
= 1 +

H0D

c
+

2 + q0

2

H2
0D

2

c2
+

6(1 + q0) + j0

6

H3
0D

3

c3

+
24− s0 + 8j0 + 36q0 + 6q2

0

24

H4
0D

4

c4
+ O

[(
H0D

c

)5
]

, (32)

followed by reversion of the resulting series z(D)→ D(z) to obtain:

D =
c z

H0

{
1−

[
1 +

q0

2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 (33)

−
[
1 +

3

2
q0(1 + q0) +

5

8
q3
0 −

1

2
j0 − 5

12
q0j0 − s0

24

]
z3 + O(z4)

}
.

This simple calculation is enough to demonstrate that the jerk shows up at third order in

the Hubble law, and the snap at fourth order. Generally, the O(zn) term in this version

of the Hubble law will depend on the n-th time derivative of the scale factor. (Also

note that one of the virtues of this version of the Hubble law is that it is completely

independent of k, the sign of space curvature.)

Note, need both jerk and snap.

This is what makes cosmology so difficult; 
low-order coefficients in the EOS need

high-order coefficients in Hubble.






