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Abstract

While over the last century or more considerable effort has been put into the problem of finding
approximate solutions for wave equations in general, and quantum mechanical problems in particu-
lar, it appears that as yet relatively little work seems to have been put into the complementary prob-
lem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on
parametric amplification and the related quantum phenomenon of particle production (as encoded
in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and
streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999)
427-438, arXiv:quant-ph/9901030], we investigate this question by developing a formal but exact
solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of
2 x 2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By
bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

There are numerous physical situations in which it is both extremely interesting and
important to study the second-order ODE [1]

¢(1) + @*(0(1) = 0, (1)
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or its equivalent in the space domain [1]

¢"(x) + K (x)$(x) = 0. (2)
Viewed in terms of the time domain, Eq. (1) can be viewed as an example of
parametrically excited oscillation; it arises for instance when a wave propagates
through a medium whose refractive index is externally controlled to be a function
of time (though remaining spatially invariant).! In contrast, the spatial version of
this equation as presented in Eq. (2) arises classically in situations where the refrac-
tive index 1is spatially dependent (so-called “index gradient” situations), or in a
quantum physics context when considering the Schrodinger equation for a time-inde-
pendent potential:

hz "
~ay ¢ )+ V(X)) = E(x), (3)
as long as one makes the translation
R(x) o M (4)

However they arise, Eqgs. (1) and (2) are central to the study of both quantum physics and
wave phenomena generally.

Because of this central importance, over the last century or more a vast body of work
has gone into the question of finding approximate solutions to Egs. (1) and (2), most typ-
ically based on JWKB techniques and their variants (phase integral techniques, etc.) [5]. In
contrast very little work seems to have gone into the physically important question of find-
ing explicit bounds on the relevant Bogoliubov coefficients and/or reflection and transmis-
sion coefficients [1].

In the current article we shall modify and streamline the analysis of [1]; presenting an
alternative proof that is considerably more direct and focussed than that in [1].

To keep the discussion simple and straightforward we shall assume that w(f) — w,
(equivalently k(x) — ko) outside some region of compact support [f;,¢/] (equivalently
[x;,x/]). That is, concentrating on the time-domain formulation of Eq. (1), the quan-
tity @?(f) — @} is a function of compact support.” Because of this compact support
property we know that everywhere outside the region [t;,¢,] the exact solution of
the wave Eq. (1) is given by linear combinations of exp(+iwyt), and that the central
question to be investigated is the manner in which exact solutions on the initial
domain (—oo,f;) ‘“‘connect” with exact solutions on the final domain (¢/,400).
Describing and characterizing this ‘“‘connection” is exactly what the Bogoliubov
coefficients are designed to do.

! For instance, situations of this type have been used to model sonoluminescence [2], and more recently both
quasiparticle production in analog spacetimes [3] and analog signature change events [4]. In all these situations it
is extremely useful to have rigorous and largely model-independent bounds on the amount of particle production
that might reasonably be expected.

2 This “compact support” condition is not strictly necessary, and at the cost of a little more analysis one can
straightforwardly extend the comments below to a situation where there is a finite limit w(f) — wo as t — +o00
[1]. At the cost of somewhat more tedious additional work, there are also useful things that can be said of the
situation where w(t) — ®io, With 0_ # W00, as ¢ — o0 [1].
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2. Time-ordered exponentials

We are interested in solving, exactly but possibly formally, the second-order PDE

o) + (1) ¢(1) = 0. ()
One way of proceeding is as follows: Define a momentum
n =, (6)
and then rewrite the second-order ODE as a system of first-order ODEs
¢=m (7)
=~ (t); (8)

or in matrix notation (where we have carefully arranged all matrix elements and vector
components to carry the same engineering dimensions)

C(lit[n/qswo} N [w?/wo a())o} Lf/d;’o]' ®)

This matrix ODE always has a formal solution in terms of the so-called “‘time-ordered
exponential”

o), =715 ([ Lt 019 il (10)

The meaning of the time-ordered exponential is somewhat tricky, but ultimately is just a
2 x 2 matrix specialization of the operator-valued version of the “time-ordered exponen-
tial” familiar from developing quantum field theoretic perturbation theory in the so-called
“interaction picture” [6]. Specifically, let us partition the interval (¢, ¢) as follows:

hh<h<bh<ty...<th,s<tly),<t,1<t,=t, (11)
and define the “mesh” as
M = max{t,- - t;,]}. (12)

ie(1,n)

Then define the time-ordered exponential as

rig = 7{ew </ e )9

n—1
o . 0 (O
- Mﬂ(ll}(r;}l*»oo) Ii I xp ({—aﬁ(t,,i)/wo 0 }O"i B t"i1)>'

=0

(13)

Note that in this matrix product “late times” are always ordered to the left, and “early
times” to the right. By working with this time-ordered matrix we will be able to extract
all the interesting physics. (If we work in the space domain then the equivalent matrix
T is “path-ordered”, and is closely related to the so-called “transfer matrix”.)

e Since all of the “‘complicated” physics takes place for ¢ € (¢, /), it is also useful to define

= Lo §19))=10 ) 0
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e We are guaranteed that det[7] = 1, that is ad — bc = 1. This follows from the fact that
det[T] = exp{tr(In[T])}, and the explicit formula for T above.

e Another particularly nice feature is that with the current definitions the transfer matrix
T is manifestly real. This is relatively rare when setting up scattering or particle produc-
tion problems, so we shall make the most of it.

3. Bogoliubov coefficients
Let is now calculate the Bogoliubov coefficients. Before #;, and after ¢,, the wavefunc-

tion is just linear combinations of exp(Ziwyt). We can prepare things so that before ¢
the wavefunction is pure exp(-+iwyt),

Y(t < t;) = exp(+iwgt); (15)
in which case after ¢, the wavefunction will be a linear combination
Y(t = ty) = oexp(+iwopt) + fexp(—iwot), (16)

where the Bogoliubov coefficients o and f are to be calculated. That is, we have

[ ¢ ] _ [ exp(+iwot;) } (17)
m/w ], iexp(+imot;) |’
and
6] { aexp(+iwoty) + fexp(—iwoty) (18)
[n/an ], i{ocexp(+imot,) — Bexp(—iwots)} ]
But we also have
AEEA "
_75/600_,[ ﬂ:/(U() ti
implying
aexp(+iwoty) + fexp(—iwoty) ] B [aexp(ﬂwoti) + biexp(+iwot;) (20)
Li{oexp(+imgty) — Bexp(—iwots)} | | cexp(dimot;) + diexp(+iwot;) |
Solving these simultaneous linear equations we find
1 . .
oczi[a—&—d—kl(b—c)]exp(—lwo[tf —t]), (21)
| . .
p=35la—d+i(b+c)lexp(—imlt; + 1), (22)

so that the Bogoliubov coefficients are simple linear combinations of elements of the ma-
trix 7. Then (remember the matrix 7 is real)

of = 3 {a+d) + (b -}, (23)

B = 1@~ + (b + e, (24)
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j-20p.2008.02.002
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and so
a+d2+ b—c)Y —(a—d)? - b—l—c2
2ad — 2bc + 2ad — 2b
- CZ a € —ad—be =1, (26)

thus verifying that, (thanks to the unit determinant condition), the Bogoliubov coefficients are
properly normalized. Particle production is governed by the f coefficient in the combination

1
B =7{a—d) + b+, (27)
1
= {@® +d* = 2ad + b+ + 2bc}, (28)
:%{a2+d2+b2+c2—2}, (29)
1
Note that the transpose T is now time-anti-ordered.
Similarly
1
o = {(atd)’ + (b <)), (31
1
— @+ &+ 2ad + B + &~ 2be), (32)
:%{a2+d2+b2+c2+2}, (33)
1 T

In summary, we can always formally solve the relevant ODE, either Eq. (1) or its equiv-
alent Eq. (2), in terms of the time-ordered exponential, and we can always formally extract
the Bogoliubov coefficients in terms of traces of the form tr{77"}. We shall now use these
formal results to derive rigorous bounds on the Bogoliubov coefficients.

4. Elementary bound

Consider the quantity

X)) =T(OT0)" = ,/f{exp (/ [aﬂg)/wo °;°]dt>}

) T (35)
oo U Lo o J9))]
X [ < ex .
P\ L= @/on 0
This object satisfies the differential equation

dx 0 o 0 —602 (2)/600 :|
— = _ X(t)+X(t , 36
dr {—a)z(t)/wo 0} o+ ()Luo 0 (36)

with the boundary condition
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X(t) =1 (37)
Now note
tr(X) = tr{TT"} = &* + b* + & + d°. (38)
Furthermore
d_X_[ 0 wo} @+ ac+bd @ +b  ac+bd {0 —w2/w0}
ds —o?fwy 0 ||ac+bd E+d° ac+bd F+d*||w 0 ’
B l 2wo(ac + bd) wo(c? + d¥) — (w* /) (@® + bY)
wo(c? + d?) — (0 /wy)(a* + b?) (—2w?*/wy)(ac + bd) ’
(39)
and so we see
tr{ {w?/wo a(;o}X +X LSO —w;/wo} } = 2(ac + bd) [wo - zﬂ . (40)
Therefore
dtg[tX] = 2(ac + bd) {wo - Zﬂ . (41)

Using this key result, and some very simple analysis, we shall now derive our first elemen-
tary bound on the Bogoliubov coefficients.

e For any two real numbers, using (x + y)> > 0 and (x — y)* = 0, we have

¥ +37 = 2yl (42)
In particular, for any four real numbers this implies
P+ ++d > 2\/(a2+b2)(c2+d2). (43)
e But we also have
lac + bd|* + |ad — be|* = > + 2abed + b*d* + d*d* — 2abed + b (44)
= (a* + b)) (* +d°), (45)

thus, for any four real numbers

PP +E+d > 2\/|ac+bd|2+ lad — bel’. (46)

e For the particular case we are interested in we additionally have the unit determinant
condition ad — bc = 1, so the above implies

P+ +E+d = 24/|ac+ bd|] + 1, (47)

whence

20ac+bd] < /(@ + B + 2 + ) — 4 (48)
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Then
dtr[X 2 2
] = 2(ac + bd) [a)o —w—} < 2|ac + bd||wy @ ,
dt o (&)
whence
dtr[X 2 ?
d[t ] < \/(a2+b2+cz+d2)2—4 o=l = tr[x]* — 4 o = -,
whence
1 dtr[X] w?
N S
tr[X]* — 4 0
This implies
d cosh™'tr[X /2] o’
————— < |y — —|,
dt (0N
whence
ty 0)2
tr[X]<2(:osh{/ wo——dt}.
ti w()

We now have

B = {71}~ 2) = 2 ()~ 2),

so that

1 i
B < 3 {cosh {/
t

1 [ 2
= sinhz{— / Wy — @ dt}.
2 t (0N
So finally

. 1 [ ?
1Bl < smh2{2 / o @ dt},
t (@0

and consequently
dt} .

1 [
o < coshz{—/
2/,

602

wy — —
o

(58)

These bounds are quite remarkable in their generality. A version of this result was derived
in [1] but the present derivation is largely independent and has the virtue of being utterly
elementary—in particular, the use of complex numbers has been minimized, and we have
completely eliminated the use of the “auxiliary functions” and ‘“gauge conditions” that

were needed for the derivation in [1].

If one translates this to the space domain, then the equivalent barrier penetration coef-
ficient 1S T'yansmission < 1/ |a|2, and the equivalent reflection coefficient is R <« |ﬁ2 |/ \oc|2.

Making the appropriate translations

j.20p.2008.02.002
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1 [ 2
Tlransmission > SeChz{z / k() - kk—((;x) dX}, (59)
and
Xf 2
R< tanhz{%/ ko _kk(:“) dx}. (60)

(For completeness we mention that reference [1] provides a number of consistency checks
on these bounds by comparing them with known exact results [7].)

5. Lower bound on ||

To obtain a lower bound on the || Bogoliubov coefficient, consider any real valued
parameter €. Then since the matrix 7 is itself real,

tr{(T — eI")" (T — eT™)} > 0, (61)
so that

(1 4+ e)tr(TTT) — 2etr(T?) > 0, (62)
whence

(T7T) > —_tr(1?), (63)

1+¢

This bound is extremized for e = £1, whence

tr(T7T) > |tr(T%)], (64)
and so

87 > 3 {lur(r)] 2. (65)

This is certainly a bound, but it is not as useful as one might hope. It is useful only if
tr[7%] > 2. But

tr[7?] = a® + d* 4+ 2bc = &* + d* + 2(ad — 1) = (a + d)* — 2 = (tr[T])" — 2. (66)

So using the unit determinant condition, tr[T?] > 2 can be seen to require |a + d| > 2, that
is, tr[T] > 2. But when does this happen? For the real matrix

{‘; Z] (67)

with unit determinant the eigenvalues are

. a+d (a+ d)z -4
A= + .
2 2
The condition a + d > 2 is thus equivalent to the condition that the eigenvalues are real.

Unfortunately there seems to be no simple way to then relate this to the properties of the
function w(?).

(68)

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
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6. A more general upper bound

Now let Q(z) be an arbitrary everywhere real and non-zero function of t with the dimen-
sions of frequency. Then we can rewrite the Schrodinger ODE (1) as

d|eve 3(2/Q) Q oV
de|m/ve]  |-o/e —3(Q/9)]|r/Ve

Again all the matrix elements have been carefully chosen to have the same engineering
dimension. We can formally solve this in terms of the time-ordered product:

wal_ [ (v e ][ ¢
"/Va ‘/{p</ 2@/ ~1(@/Q) d’)}{n/@]m' 70
d?)}. (71)

The new T matrix is
Note that the matrix 7 is still real, and that because

. (69)

1(Q/9) Q
~0(1)/Q ~5(2/Q)

ly
T =7 {exp /
ti

LQ/Q Q
2(2{ ) o =0 (72)
—0'(0)/Q —3(Q/Q)
it still follows that 7" has determinant unity:
a b
T:[ }; ad — bc = 1. (73)
c d

This means that much of the earlier computations carry through without change. In par-
ticular as long as at the initial and final times we impose Q(f) — wq ast — t, and t — t;, we
still have

" :%[a+d+i(b — o)) exp(—iwolt; — 1), )
B = % la —d +i(b + ¢)] exp(—imoty + 1)), 7)
B = %tr{TTT — 1}, 7o
o = (T 1} 7

Now consider the quantity

_ TS BN R 170 e 1.
=TT _J{e p</ /0 3@/ dz>} 7%
TSR ()

ik

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
j-20p.2008.02.002

[ (1

This now satisfies the differential equation

—0X(0)/Q -5(2/Q)




10 P. Boonserm, M. Visser | Annals of Physics xxx (2008) xxx—xxx

w_[Lem e c[H@0) —w/0] )
dt | —’/Q —5(Q/9) Q —3(9/9
with the boundary condition
X(t) =1, (80)
and
tr[X] = > + b* + S + d*. (81)
A brief computation yields
[ e ||e+r ac+bd]
dr —?(?)/Q —1(Q/Q) | |ac+bd A+d
@+b ac+bd ]| [1(Q/Q) —wz@/Q (82)
ac+bd +d* Q L/
_ (Q/Q)(a* +b) +2Q(ac + bd) QA +d*) - (a)z/Q?(az—kbz) )
—(?/Q)(@+b") +Q(* +d*) —(20?/Q)(ac+bd) — (Q/Q)(* +d°)
Then taking the trace, there is now one extra term
dtg—[t)(]:(az—i—bz—cz—dz) g +2(ac+bd){9—%2] (84)

Note that if Q(¢) — w, then Q — 0 and we recover the ODE of the “elementary” bound.
In this more general setting we now proceed by using the following facts:

e As previously we note

lac + bd|* + |ad — be|* = > + 2abed + B*d* + a*d* — 2abed + b

= (@ + b)) (P +dY), (85)

which implies

lac + bd| = /(@ + B) (> +d) — 1, (86)
that is

2ac + bd| = \/4(@® + B)( + ) — 4. (87)
e Additionally, we use

@+ 5= — | =@+ B + 2+ 2 — 4+ D)+ ), (88)
implying

| +b* — P — d2) + (2lac + bd|)* = |&® + B> + & + d*] — 4. (89)

In particular, combining these observations, this means that we can find an angle 0 (which
is in general some complicated real function of a, b, ¢, d) such that

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
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2ac +bd) = \/la? + B + ¢+ df — 4 sin0), (90)

b= =\l + B+ 2+ — 4 coso, 1)
whence

dtr[X]

- 2
:\/a2+b2+c2+d2|2—4{sineg +cose{9—%]}. (92)

But for any real 0 we certainly have the inequality

dr

.72
. @ w? Q ?]?
- _ |« - _
sin 0 o +cos0{Q Q] \J o + {Q Q] , (93)
implying
2
X kb
dtg[t]<\/|a2+b2+cz+d2|2—4\l 5 +[Q—%} (94)
Therefore
dtr[X] ol 2
Ir 2 w
< _ - _
ar S tr[X]"— 4 o + [Q Q} (95)
implying
1 dtr[x al’ gk
e lo] +|o-5] (96)
x4 ¢
whence
dcosh ™' (tr[X]/2) Q w?]?
—— S\l |5 Q-——,
dr ol * { Q} ©7)
so that
¢ 512 2
' o) w2
tr[X] = tr[TT"] < 2cosh {/ al T [Q - E] dt}. (98)
ti

Using the general formulae for |«|* and |f?| in terms of tr{77"}, and simplifying, we see

[/ ;
B> < sinhz{; / IIQI NEo R e w2]2dt}, (99)
ti
1 ro1 /.
|O(|2 < COShz{E / @ QZ + [QZ — (,Uz]zdt}. (100)
4

i

and

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
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This result is completely equivalent to the corresponding result in [1]; though again note
that the derivation is largely independent and that it no longer requires one to introduce
any “gauge fixing” condition, nor need we introduce any WKB-like ansatz. The current
proof is much more “direct”, and at worst uses simple inequalities and straightforward
ODE theory. If we work in the space domain instead of the time domain and make the
translations Q(z) — ¢'(x), o(¢) — k(x), we see

of <o {3 [l 4 () - P, (1o

i

and

i <sinnt 5 [0 ) - e (102)

Xi

This is perhaps physically more transparent in terms of the equivalent transmission and
reflection coefficients

1 [ 1
T ransmission > SCChz{— / I (,0// ? + q)/ 2 k2 zdx}7 103
: 3 | Ve ) e (103)

i

and

1 [ 1
R< tanhz{/ — /(") + (@) = K 2dx}. 104
3| V@ Lo -4 (104)
(For completeness we mention that reference [1] provides a number of consistency checks
on these bounds by comparing them with known exact results [7].)

7. The “optimal” choice of 2(¢)?

What is the optimal choice of Q(¢) that one can make? Leading to the most stringent
bound on the Bogoliubov coefficients? The bound we have just derived holds for arbitrary
Q(t), subject to the two boundary conditions Q(t;) = wy = Q(¢,) and the overall constraint
Q(#) # 0. Since sinh and cosh are both convex functions, finding the most stringent con-
straint on || and || is thus a variational calculus problem equivalent to minimizing the
action

ty 1 ;
S = / I \/ @ + (@ — w?)Pdr. (105)
1

The relevant Euler-Lagrange equations are quite messy, and progress (at least insofar as
there is any practicable progress) is better made by using an indirect attack. The Lagrang-
ian is

1

=] Q4+ [Q* — 0?, (106)

L

and so the corresponding canonical momentum can be evaluated as
oL Q
o |Q| Qz + [QZ _ (1)2]2

(107)

T

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
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From the boundary conditions we can deduce
1
t,) =—=mn(ty). 108
(t) = o= (1)) (108)
The Hamiltonian is now
Q-+ [ -} (@ — 0?]?

1Q]\/ @2 + [@* — ?] |Q|\/ @ + [Q* — )

Unfortunately the Hamiltonian is explicitly time-dependent [via w(¢)] and so is not con-
served. The best we can say is that at the endpoints of the motion

H(t;) =0=H(ty). (110)
By solving for Q as a function of 7 and Q we can also write

. 19

Q=— (- ), 111

Ve )
and
20202 _ 2
H:_vl m2Q°(Q w) (112)

€|

Note that Q at the endpoints is cannot in general be explicitly evaluated in terms of the
boundary conditions.

An alternative formulation which slightly simplifies the analysis is to change variables
by writing

Q(t) = woexpl0(7)], (113)
where the boundary conditions are now
0(t;) =0=0(¢t), (114)

and the action is now rewritten as

tro . W2 2
S = / P + w2 {ew - 2629} dr. (115)
1 Wy

Then, in terms of this new variable we have

: ®? 2
L= 92+w§[629——2e29} : (116)
Wy
with (dimensionless) conjugate momentum
oL 0
n=_—= ) (1 17)

00 . R 2
2 2020 _ @2 020
\/0 + g {e el }
and boundary conditions
n(t;) =1 = n(t/). (118)

Please cite this article in press as: P. Boonserm, M. Visser, Ann. Phys. (2008), doi:10.1016/
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The (non-conserved) Hamiltonian is

' 3 [ezo _ %;e—zo} 2
H=n0-L=—- 0 , (119)
\/92 +? [eze _ %6720} ?
(/)0
subject to
H(1;) = 0= H(iy). (120)
Inverting, we see
2
h_ T )
Gmwo{e w%e } (121)
and
2
H=-Vv1 —7'[2(,00 |:620 —Eew]. (122)
0

This has given us a somewhat simpler variational problem, unfortunately the Euler-La-
grange equations are still too messy to provide useful results.

Overall, we see that while solving the variational problem would indeed result in an
optimum bound, there is no explicit general formula for such a solution. In the tradeoff
between optimality and explicitness, we will have to accept the use of sub-optimal but
explicit bounds.

8. Sub-optimal but explicit bounds

From our general bounds
iy -
B < sinhz{% / %\/Qz + (@ - wz]zdt}, (123)
1
and

1 71 .
Jof* < coshz{z / @\/92 + [ - wz]zdt}, (124)
;

i

the following special cases are of particular interest:

Q = wy: In this case we simply obtain the “elementary” bound considered above.

Q = w: This case only makes sense if w? > 0 is always positive. (Otherwise @ and hence
Q becomes imaginary in the “classically forbidden” region; the matrix 7" then
becomes complex, and the entire formalism breaks down). Subject to this con-
straint we find

Cb‘dr}, (125)

1 [y

2 _ g2

< sinh™< = —
] < sin {2 /, >
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1 / o
|o|* < cosh {2 i wdt . (126)

This case was also considered in [1].
Q = ow}~: This case again only makes sense if »* > 0 is always positive. Subject to this
constraint we find

2| 2 2¢ 2-2¢]2
1B < sinh?® /'¢ Lol e g (127)
Wy
and
2| 2 2e 2-2¢]2
o> < cosh? / \/ + 2 zisz ] dr 5. (128)
Wy

This nicely interpolates between the two cases given above, which correspond to e = 0 and
e = 1 respectively.
Triangle inequality: Since /x2 4+ »? < |x| + |y| we see that

1 [7]Q 1 [ 2
18P < sM{z/ Am+§/ Q—%@%, (129)
t ti
and
1 [7]Q 1 [ 2
|| gcoshz{z/ 5dt+§/ Q—%dr}. (130)
ti ti

These bounds, because they are explicit, are often the most useful quantities to calculate.

9. The ““interaction picture”

If we split the function w(7)* into an exactly solvable piece a)e(t)2 and a perturbation
coA(t)2 then we can develop a formal perturbation series for the transfer matrix 7, in close
analogy to the procedures for developing quantum field theoretic perturbation theory in
the interaction picture. Specifically let us write

(1) = (1)’ + A1)’ (131)
and

dT(¢)

—ar = 20T(0) =[0.(t) + Ca(O]T (7). (132)
Now defining

T(I) :Te(t)TA(t)7 (133)
we shall develop a formal solution for T (¢). Consider

O _ 10,60 + Q)T 7). (134

and compare it with
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dT(r) dT.(¢) dTa(z) dT(2)

“dr TTA(t) + Te(t)T = 0:()Te()Ta(1) + TE(t)T' (135)
Therefore

O _ {70 0,070} 7, (136)
whence

a0 = 7 exp ([ (107 0,00} ). (137)
For the full transfer matrix 7" we have

ng:nwxgwm(/knmlgmnm}@, (138)

and we have succeeded into splitting it into an exact piece 7,.(¢) plus a distortion due to
0, (). This can now be used as the starting point for a perturbation expansion. (The anal-
ogy with quantum field theoretic perturbation theory in the interaction picture should now
be completely clear.)

To develop some formal bounds on the Bogoliubov coefficients it is useful to suppress
(currently) unnecessary phases by defining

&:%M+d+ﬂb—dL (139)
ﬁ:%[a—d—ki(b—&-c)]. (140)

The virtue of these definitions is that for 7' = T..T's they satisfy a simple composition rule
which can easily be verified via matrix multiplication. From T = T'.T, we have

a b _ [acan + beca  acba + beda (141)
c d] Colp + decn  Cebp +dodn |’
Then some simple linear algebra leads to
B =P + Peta, (142)
8 = Gebia + PP, (143)
But then
Bl = Bl = |eBa + Bedz| < [5eBal + Bty = loteBal + |Betal, (144)
that is
1Bl < loe] [Bal + 1Bl [oal, (145)
or the equivalent
B < A1+ B 1Bal +1Bel A/ 1+ 1Bal (146)
Similarly
1Bl = Bl = [5eBa + Beta| = | [5eBal — Bedal | = lll%eBal — 1B2all; (147)
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that is
1Bl = llete] [Bal = |Bel lotalls (148)

or the equivalent

Bl > ]\/1 CIBE 1Bl — 1B /14 BaF

The benefit now is that one has bounded the Bogoliubov coefficient in terms of the (as-
sumed known) exact coefficient f§, and the contribution from the perturbation f3,. Suitably
choosing the split between exact and perturbative contributions to w?, one could in prin-
ciple obtain arbitrarily accurate bounds.

. (149)

10. Discussion

In this article we have re-assessed the general bounds on the Bogoliubov coefficients
developed in [1], providing a new and largely independent derivation of the key results that
short-circuits much of the technical discussion in [1]. In particular in the current article we
do not need to “gauge fix”, nor do we need to appeal to any WKB-like ansatz to get the
discussion started. Furthermore we have seen how to extend the bounds in [1] in several
different ways.

Considering the fundamental importance of the questions we are asking, it is remark-
able how little work on this topic can currently be found in the literature. We do not feel
that the current bounds are the best that can be achieved, and strongly suspect that it may
be possible to develop yet further extensions both to the current formalism, and to the
related formalism originally presented in [1].

Possible extensions might include somehow relaxing the reality constraint on Q(¢) with-
out damaging too much of the current formalism, a better understanding of the variational
problem defining the “optimal” bound (thus hopefully leading to an explicit form thereof),
or using several “probe functions” [instead of the single function Q(¢)] to more closely
bound the Bogoliubov coefficients.

Appendix. Time ordering

Time-ordered exponentials are a very convenient trick for formally solving certain

matrix differential equations. Suppose we have a differential equation of the form
dU—(t):H(t)U(t), (150)
dr

where U(¢) and H(¢) are matrices [or more generally linear operators on some vector
space] and the matrix H(¢) is generally not a constant. [So in particular H(¢;) need not
commute with H(#,).] In many settings H(¢) will be an anti-Hermitian matrix in which case
U(t) would be unitary — this is not the situation in the current article where the matrix
H(¢) is real and traceless but non-symmetric.

If H(t) = H, is a constant then we have the simple solution

U(t) = exp[Hot]U(0). (151)
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If H(¢) is not a constant then we define the formal process of “time ordering” in terms of

the exact solution U (¢) which we know exists because of standard existence and uniqueness
theorems. That is

U(t) = f{exp [/OtH(t/)dt/} }U(O), (152)

which is equivalent to

ﬂ'{exp [ /0 tH(t/)dt/} } — U()U(0). (153)

If we take this as our fundamental definition of time ordering then
d t t
dt?f{exp {/ H(t’)dt’]} =HOU@U'(0) = H(t)?f{exp U H(t')dt'] } (154)
0 0
But by basic notions of Taylor series expansion
t+At t
f{exp [ H(t’)dt’} } ={I+H(t)At + O[(At)z]}f{exp {/ H(t/)dt/] }
0 0
t
= exp[H(t)At]ﬁ’{exp [/ H(t/)dt/] } +O[(Ar)’].  (155)
0

Let us now bootstrap this result into a general limit formula for the time-ordered exponen-
tial integral. For simplicity, split the interval (0, ¢) into n equal segments and evaluate H (¢)
at the points

b=l jefon—1], (156)
then '
oo | [ erar |} = expltt-)adexr(n2) a1......explirn)]
x explH (1o)A] + om. (157)
Alternatively
e | [ #000r] } = tim expire, a1
« explH(ty 2)A]. ... .. explH(t)A] explH(1)A].  (158)

This limiting process should remind you of the way the Riemann integral is defined, except
of course that the H(#;) need not commute with each other so that the order in which the
matrix exponentials are multiplied together is critically important. This is why the product
is called “time ordered”. The parameter ¢ can be any real parameter— in differential geom-
etry it tends to be a parameter along a curve, sometimes an affine parameter, sometimes
even arc length, and the product is then sometimes referred to as “path ordered”, but
in general any old parameter would do.
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Note what happens if for some reason the H(z;) do happen to commute with each other.
Then for instance

explH (1) Af] explH (t0)Af] — exp[{H (t,) + H(ty)}Ad] (159)

a result which is not true unless the matrices commute. Continuing in this vein, when the
matrices do commute we have

F{exp [/OIH(t’)dt’} } — }1_)11; exp[{H (t,-1) + H(t,) ... H(t;) + H(tp) }Af].  (160)

But now the argument of the exponential on the RHS really is the usual Riemann integral,
so we have

f{exp [/OtH(t’)dt’} } — exp {/()[H(t’)dt’]. (161)

That is, the time-ordered integral reduces to the ordinary integral whenever the matrices
H(t) commute with each other. (You could also derive this directly from the original dif-
ferential equation for U().)

In some specific quantum mechanical settings you are more likely to consider the
slightly different differential equation

dU(¢)
dt

where H(¢) is now the Hamiltonian operator on an appropriate Hilbert space and U is the
unitary time evolution operator. Then

Ut) = f{exp [—i/OtH(t’)dt’} }U(O), (163)

but note that there is nothing fundamentally new or different here.

= —iH()U (), (162)
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