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Abstract

The massless conformally coupled scalar field is characterized by the so-called ‘‘new improved stress-energy tensor’’,
which is capable of classically violating the null energy condition. When coupled to Einstein gravity we find a
three-parameter class of exact solutions. These exact solutions include the Schwarzschild geometry, assorted naked
singularities, and a large class of traversable wormholes. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The equations of general relativity relate the ge-
ometry of a spacetime manifold to its matter content.
Given a geometry one can find the distribution of
mass-energy and momenta that support it. Unless
there are restrictions on the features that the matter
content can possess, general relativity allows the
existence of spacetime geometries in which appar-
ently distant regions of space are close to each other
through wormhole connections. The existence or not
of traversable wormhole geometries has many impli-
cations that could change our way of looking at the

Ž w xstructure of spacetime see 1 for a survey and
.bibliography on the subject .

w xThe analysis of Morris and Thorne 2 regarding
traversable wormhole geometries showed that, in

order for the flaring out of geodesics characteristic of
a Lorentzian wormhole throat to happen, it is neces-
sary that the matter that supports the wormhole
throat be peculiar: it has to violate the Null Energy

Ž . w xCondition NEC 3 . That is to say, even a null
geodesic observer would see negative energy densi-
ties on passing the throat. This analysis was origi-
nally done with static spherically symmetric configu-
rations, but the NEC violation is a generic property

w xof an arbitrary wormhole throat 4 .
Ž .It is often mistakenly thought that classical mat-

ter always satisfies NEC. By contrast, in the quan-
tum regime there are well-known situations in which

w xNEC violations can easily be obtained 1 . For this
reason, most investigations regarding wormhole
physics are developed within the realm of semiclas-
sical gravity, where the expectation value of the
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quantum energy-momentum tensor is used as the
w xsource for the gravitational field 5 .

However, one can easily see that the energy-
momentum tensor of a scalar field conformally cou-
pled to gravity can violate NEC even at the classical

w xlevel, and even in flat Minkowski spacetime 6 . By
introducing the notion of conformal coupling, one
obtains in a natural way a scalar field equation that
fulfills the physical requirement of conformal invari-
ance for massless fields in general curved spacetimes
w x7,8 . Also, we would like to highlight that the most
natural energy-momentum tensor for a scalar field at

Žlow energies energies well below the Planck scale,
or any other scale below which a scalar field theory

.might become non-renormalizable is the one associ-
ated with conformal coupling, because its matrix
elements are finite in every order of renormalized

w xperturbation theory 9 . In flat spacetime, this en-
ergy-momentum tensor defines the same four-
momentum and Lorentz generators as those associ-
ated with a minimally coupled scalar field and, in
fact, it can be constructed as an improvement of the

w xlatter 9 . Thus, we wish to focus attention on the
so-called ‘‘new improved energy-momentum tensor’’
of particle physics. At higher energies, still well
below the Planck scale, there may also be other
forms of classical violations of the NEC, such as

w xhigher derivative theories 10,11 , Brans–Dicke the-
w x 1ory 12,13 , or even more exotic possibilities .

In this paper, we will concentrate on the massless
conformally coupled scalar field. We will explicitly
show that it can provide us with the flaring out
condition characteristic of traversable wormholes.
We have analytically solved the Einstein equations
for static and spherically symmetric geometries. We
find a three-parameter class of exact solutions. These
solutions include the Schwarzschild geometry, cer-
tain naked singularities, and a collection of
traversable wormholes. However, in all these worm-

1 w xFor instance, we mention the work by Ellis 14 in which he
considered changing the sign in front of the energy-momentum
tensor for a minimally coupled scalar field. Reversing this sign
from the usual one, he found classical wormhole solutions, which
with hindsight is not surprising since reversing the energy-
momentum tensor explicitly violates the energy conditions. This
paper is of particular interest since it pre-dates the Morris–Thorne
analysis by 15 years.

hole geometries the effective Newton’s constant has
a different sign in the two asymptotic regions. At the
end of the paper we will briefly discuss some ways
of escaping from this somewhat disconcerting con-
clusion.

2. Einstein conformal scalar field solutions

In this section, we will describe the exact solu-
tions to the combined system of equations for Ein-
stein gravity and a massless conformally coupled
scalar field, in the simple case of static and spheri-
cally symmetric configurations.

The Einstein equations can be written as k G smn
1T , where G sR y g R is the Einstein ten-mn mn mn mn2

sor, with R the Ricci tensor and R the scalarmn

curvature. T is the energy-momentum tensor of themn

Ž .y1matter field, and ks 8p G , with G denotingN N

Newton’s constant. For a massless conformal scalar
field f , the energy-momentum tensor acquires thec

w xform 6

21 1 2T s= f = f y g =f q G fŽ .mn m c n c mn c mn c2 6

ly2= f = f q2 g = f = f , 1Ž . Ž . Ž .m c n c mn c l c

12Ž .with the field satisfying the equation = y R f sc6

0. This is the generalization to curved spacetime of
the ‘‘new improved energy-momentum tensor’’ more

w xusually invoked in a particle physics context 9 .
The key feature of the energy-momentum tensor

for a conformal field is that it is traceless, T g mn smn

0, and therefore Rs0. For this reason, we can write
the coupled Einstein plus conformal scalar field
equations as

y1 21 2 12R s ky f = f = f y g =fŽ .Ž . žmn c m c n c mn c6 3 6

1y f = = f , 2Ž ./c m n c3

= 2f s0. 3Ž .c

We are interested in static and spherically symmetric
solutions of these equations. In order to find these
solutions, we will start by looking for metrics con-
formally related to the Janis–Newman–Winicour–

Ž . w xWyman JNWW 15–17 static spherically symmet-
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ric solutions of the Einstein minimally coupled mass-
less scalar field equations:

R sky1 = f = f , 4Ž .Ž .mn m m n m

= 2f s0. 5Ž .m

w xThe JNWW solutions can be expressed 19 as

ds2
m

cos x ycos x2h 2h
2 2sy 1y dt q 1y drž / ž /r r

1ycos x2h
2 2 2 2q 1y r du qsin u dF ,Ž .ž /r

6Ž .
k 2h

f s sin x ln 1y . 7Ž .(m ž /2 r

The JNWW solutions possess obvious symmetries
Ž .under x™yx , with f ™yf . Less obvious ism m

that by making a coordinate transformation r™rs˜
ry2h, one uncovers an additional symmetry under
� 4 � 4 Ž .h,x ™ yh,xqp , with f ™qf . In viewm m

of these symmetries one can without loss of general-
w xity take hG0 and xg 0,p . Similar symmetries

will be encountered for conformally coupled
scalars 2.

The requirement that a metric conformal to the
Ž . Ž .JNWW metric, dssV r ds with V r the con-m

wformal factor, have a zero scalar curvature necessary
if it has to be solution of the system of equations
Ž .x2 , easily provides a second-order differential equa-
tion for the conformal factor as a function of f :m

d2V f 1Ž .m
s f . 8Ž .m2 6kdfm

Its solutions can be parameterized in the form

' 'Vsa exp qf r 6k qa exp yf r 6k ,Ž . Ž .q m y m

9Ž .

2 The key to this symmetry is to realise that
y12h 2h

1y s 1q .ž / ž /r r̃

with a and a two real constants. The equationq y
= 2f s0 can now be integrated yieldingc

'6k
f s Ac 4a aq y

=
' 'a exp qf r 6k y a exp yf r 6kŽ . Ž .q m y m

q B ,' 'a exp qf r 6k q a exp yf r 6kŽ . Ž .q m y m

10Ž .

where A and B are two additional integration con-
stants.

In order that the metric and conformal scalar field
just found be solutions of the whole set of equations
Ž .2 , the four integration constants, a , a , A, andq y
B, must be inter-related in a specific way. After a

Ž .little algebra the equation for the tt component in 2
implies the following relations 3

A B a a s0, 11Ž .q y

B2 A2
2 2a a 1y q s0. 12Ž .q y ž /6k 16

Therefore, we have two options:
.Case i Bs0, As"4 a a ;q y

' 'Vsa exp qf r 6k qa exp yf r 6k ,Ž . Ž .q m y m

13Ž .
' 'a exp qf r 6k y a exp yf r 6kŽ . Ž .q m y m'f s" 6k .c ' 'a exp qf r 6k q a exp yf r 6kŽ . Ž .q m y m

14Ž .
'.Case ii As0, Bs" 6k ;

' 'Vsa exp qf r 6k qa exp yf r 6k ,Ž . Ž .q m y m

15Ž .

'f s" 6k . 16Ž .c

Notice that these two branches of solutions intersect
when either a or a are equal to zero.q y

3 In view of the assumed static and spherical symmetries, the
Einstein equations provide only three constraints, and by the
contracted Bianchi identities only two of these are independent.
Thus it is only necessary to consider the trace R and the tt
component R to guarantee a solution of the entire tensor equa-ˆˆt t

tion.
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The set of solutions we have found is a general-
w xization of the solutions found by Froyland 18 , and

w xsome time later by Agnese and La Camera 19 .
Indeed, in the case a sa the conformal factorq y'Ž . Žbecomes Vscosh f r 6k , we drop a unim-m

.portant constant factor , and the field f sc' 'Ž ." 6k tanh f r 6k , in agreement with the ex-m

pression given by Agnese and La Camera. The Froy-
land solution is in fact identical to that of Agnese–La
Camera though this is not obvious because Froyland
chose to work in Schwarzschild coordinates. Because
of this, Froyland could only provide an implicit
Ž . 4rather than explicit solution .

Let us now analyze the different behaviours of
these solutions. For this task, it is convenient to look
at the conformal factor as a function of r,

sin x
sin x y2h 2h '2 3'2 3

V r sa 1y qa 1y .Ž . q yž / ž /r r
17Ž .

In the same way, as a function of r, the
Schwarzschild radial coordinate RR has the form

1ycos x

2h 2
RR r sr 1y V r . 18Ž . Ž . Ž .ž /r

Ž . ŽIf we define an angle D by tan Dr2 s a yq
. Ž . Ž xa r a qa , then the domain Dg yp ,p ex-y q y

hausts all possible metric configurations, as a con-
stant overall factor in the metric can be absorbed in
the definition of coordinates. We have a three-
parameter family of solutions depending on h, the

Ž xangle D, and the angle xg yp ,p . In Fig. 1 we
have drawn the parameter space as a square. Indeed,
parallel edges are identified, so the parameter space

Žis an orbifold a two-torus subjected to symmetry
.identifications . In fact, the solution space is invari-

� 4 � 4ant if we change h,x ,D to h,yx ,yD . Further-
more, the coordinate transformation r™rsry2h˜
can now be used to deduce an invariance under

4 Ž .That is, Froyland calculated RR f , which in Schwarzschildc
Ž .coordinates is not analytically invertible to provide f RR . Thec

coordinate system chosen by Agnese and La Camera is much
Ž .better behaved in this regard and f r can be explicitly calcu-c

Ž .lated as we have seen above. The trade-off is that whereas RR r
can be written down explicitly, there is no way of analytically

Ž .inverting this function to get r RR .

Fig. 1. Sketch of the parameter space of our class of solutions to
Einstein gravity coupled to the ‘‘new improved stress-energy
tensor’’. Using the symmetries discussed in the text we have taken

w x w xhG0. We sketch the range x g yp ,qp and Dg yp ,qp .
Parameter space is an orbifold because of the remaining symmetry

� 4 � 4under h,x ,D to h,y x ,y D . The left and right borders of the
Žfigure correspond to anti-Schwarzschild space the negative mass

.Schwarzschild geometry , while the top and bottom borders corre-
spond to spacetimes that are not asymptotically flat. The central
vertical line corresponds to the Schwarzschild black hole, while
the central horizontal line represents the Froyland–Agnese–La
Camera branch of solutions. The two offset vertical branches are
the special class of traversable wormholes with two asymptoti-
cally flat regions that are the main focus of this paper. These
branches terminate in ‘‘cornucopia’’ labelled C, and contain the
special symmetric traversable wormholes labelled W.

� 4 � 4h,x ,D ™ yh,x q p ,D . Combining the two
� 4symmetries, we deduce an invariance under h,x ,D

� 4™ yh,pyx ,yD . Thus without loss of generality
we only have to deal with the region hG0 with

w xxg 0,p . Also, we need only consider the geome-
tries in which D/p because, for that value, the
geometries do not have an asymptotic flat region
when r approaches infinity 5.

5 We mention in particular that the physical scale length,
effective Newton constant, and physical mass of the spacetime can
be isolated from a weak-field expansion near spatial infinity. We
find

D sin x
G Msh cos x qtan .eff ž /'2 3

We note that this scale length is invariant under all the symmetries
Ž .mentioned above as it must be . The effective Newton constant is

y11 1 D
2G s s 1ytan .eff ž /1 8pk 228p k y f`ž /6

Thus G , M, and G M are separately invariants of the symme-eff eff

tries discussed above. For the objectional value Dsp , the lack of
an asymptotically flat region is reflected in an infinite physical
mass.
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For the rest of parameter space, an analysis when
r approaches 2h of the behaviour of the tt compo-

Žnent of the Ricci tensor R in an orthonormalˆˆt t
.coordinate basis shows that it diverges for every

�point in parameter space except when xs0, x
p p 2p p4 � 4s ,D/ , xs ,Ds , or xsp . Thus, ex-3 2 3 2

cept for these parameter values, we have geometries
with a naked curvature singularity at rs2h.

Among these singular geometries, those with 0-
p p

x- and D/ deserve additional attention. For3 2

them, the Schwarzschild radial coordinate blows up
when approaching rs2h. They are geometries with
wormhole shape, but with something ‘‘strange’’ in
the other ‘‘asymptotic’’ region. We can easily check
that the proper radial distance between every point
r)2h and rs2h is finite. Also the proper volume
beyond every sphere at finite r)2h is itself finite,
even though the proper area of the spherical sections
diverges as one approaches rs2h. Therefore, al-

Žthough one certainly encounters a flare-out a worm-
.hole throat before reaching rs2h, we cannot speak

properly of another asymptotic region 6.
The first non singular case is xs0. In this case

we recover the Schwarzschild black hole geometry.
This geometry, of course, does not have a curvature
singularity at rs2h, just a coordinate singularity. It
is instead singular at rs0.

p p� 4For the special cases xs ,D/ there exist3 2

situations in which the Schwarzschild radial coordi-
nate RR and the gravitational potential g go tot t

non-zero constants when approaching rs2h. This
suggests that we might be able to extend the geome-
try beyond rs2h. We leave for the next section the
analysis of how this extension can be done, showing
that there exist genuine wormhole solutions.

2p p� 4In the case xs ,Ds we can write the3 2

metric as

2h
2 2 2ds sydt q 1y drž /r

2 2 2 2q ry2h du qsin u dF . 19Ž . Ž . Ž .

6 Thus these geometries are certainly Lorentzian wormholes,
and could even be called ‘‘traversable in principle’’, but because
of the nasty behaviour on the other side of the wormhole throat,
they do not deserve to be called ‘‘traversable in practice’’.

Writing rsry2h, so that˜

dr 2˜
2 2 2 2 2 2ds sydt q qr du qsin u dF ,Ž .˜2h

1qž /r̃

20Ž .

a brief calculation shows that this geometry is also
singular at rs0, rs2h, even though R remains˜ ˆˆt t

Žfinite there. The other Ricci components, R andr rˆ ˆ
.R , diverge as r™0.˜ˆ ˆuu

Finally, the case xsp corresponds to a negative
mass Schwarzschild geometry. It has a naked curva-
ture singularity at rs2h, but after the coordinate
change r™rsry2h, the naked curvature singu-˜
larity moves to rs0, and the character of the geom-˜
etry becomes obvious.

3. Traversable wormhole solutions

This section is devoted to the analysis of the case
p p� 4xs ,D/ . For this task, it is convenient to3 2

change to isotropic coordinates

2h
rsr 1q . 21Ž .ž /2 r

With the new radial coordinate running from rshr2
to ` we cover the same portion of the metric mani-

w .fold that rg h,` did before. However, can the
manifold be analytically extended beyond rshr2?
The answer is yes. We can write the metric in
isotropic coordinates as

2h
1y 4hž /2 r2 2ds s a qa ydt q 1qq yh ž /2 r1qž /2 r

= 2 2 2 2 2dr qr du qsin u dF , 22Ž . Ž .

noticing that it is perfectly well behaved at rshr2.
We want to point out that for 0-r-hr2 the
conformal factor V 2 is real and negative, while the
JNWW solution is ill-behaved in the sense that the
metric ds2 has opposite signature to the usual. Nev-m

ertheless, the metric ds2 is perfectly well behaved.
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Thus, strictly speaking, only the region r)hr2 is
conformally related with its corresponding JNWW
solution.

Ž .Among these solutions, in those with Dg yp ,0
Ž .the Schwarzschild radial coordinate RR r reaches a

1r2Ž . < Ž . <minimum value at r s hr2 tan Dr2 , and
comes back to infinity at rs0, showing up as
another asymptotically flat region. As well as this,
the tt component of the metric is everywhere non-

�zero. Therefore, the region in parameter space x
p Ž .4s ,Dg yp ,0 represents genuine traversable3

wormhole solutions, with the throat of the wormhole
1r2Ž . < Ž . <being located at rs hr2 tan Dr2 . For com-

Ž .pleteness, in the solution with Ds0, RR r reaches
a minimum at rs0, but this sphere is at an infinite
proper distance from every other r so we can con-

Žclude that this geometry is a ‘‘cornucopia’’ tube
. Žwithout end . Dsyp represents the reversed cor-

.nucopia with no asymptotic region at rs` . For the
Ž .remaining values of Dg 0,p the geometry pinches

Ž Ž . .off the conformal prefactor in Eq. 22 goes to zero
Ž . Ž .at finite positive radius rs hr2 tan Dr2 .

We have seen that a scalar field coupled confor-
mally to gravity can support wormhole geometries.
On these wormhole configurations the conformal
scalar field takes the following form

h h
a 1y ya 1qq yž / ž /2 r 2 r'f s" 6k . 23Ž .c h h
a 1y qa 1qq yž / ž /2 r 2 r

It is a monotonically increasing or decreasing func-
Ž .tion depending on the overall sign between one

asymptotic region and the other, taking the values

D'<f s" 6k tan , andasymc 1 2

'6k
<f s" . 24Ž .asymc 2 D

tan
2

This monotonic behaviour for the scalar field causes
an asymmetry between the asymptotic regions. In
fact, we can realize of the real importance of this
asymmetry by looking at the effective Newton’s

1 2 y1Ž .constant, G s8p ky f , that can be definedeff c6

on these systems. It not only reaches a different
value on each asymptotic region,

1 1
<G s ,asymeff 1 D8pk 21y tanž /2

D
2tan1 2<G sy , 25Ž .asymeff 2 D8pk 21y tanž /2

it also reaches a different sign. From the point of
view of the asymptotic region with a positive effec-
tive Newton’s constant, the wormhole throat is lo-
cated in the region in which G has already changedeff

its sign. This asymmetry is reflected also in the
values of the asymptotic masses measured on the
two sides of the wormhole throat. The scale lengths
are

h D
<G M s 1q tan ,Ž . asymeff 1 ž /2 2

h 1
<G M s 1q . 26Ž . Ž .asymeff 2 D2 � 0tan

2

The observers in the asymptotic region with a posi-
tive G see a positive asymptotic mass, while thoseeff

Fig. 2. Schematic depiction of how two thin shells of ordinary
matter could be combined with the flare out effect coming from
the ‘‘new improved stress-energy tensor’’ to build a traversable
wormhole that has nice asymptotic properties on both sides of the
wormhole throat. The geometry is piecewise a solution of the field
equations discussed in this paper, with a thin shell of normal
stress-energy being used to start the scalar field moving down-

'wards from f s 6k .c
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in the other asymptotic region see a negative Geff
pand a positive asymptotic mass. The case Dsy 2

corresponds to a s0, soq

4h
2 2ds sydt q 1qž /2 r

= 2 2 2 2 2dr qr du qsin u dF , 27Ž . Ž .
'f s" 6k . 28Ž .c

This describes a limiting symmetric wormhole with
an everywhere zero effective Newton’s constant and
both asymptotic masses equal to zero.

These asymmetric features are disappointing be-
cause we would like to have wormholes connecting
equivalent regions of space. At this point we have to
say that while a conformal scalar field can provide
us with the ‘‘flaring out’’ condition for geodesics, it
has the drawback of reversing the sign of the effec-
tive Newton’s constant in the other asymptotic re-
gion.

4. Discussion

We have found that, among the classical solutions
of general relativity coupled to a massless conformal
scalar field there exist genuine Lorentzian traversable
wormhole geometries. Although perfectly well be-
haved from a geometrical point of view, they are
asymmetric in the sense that the effective Newton’s
constant has a different sign in each asymptotic
region.

Inspecting the expression for the Laplacian of a
scalar field in a static and spherically symmetric
geometry

1
2 r r'= f s E yg g E f , 29Ž .c r r c'yg

we see that in order for the scalar field to be able to
change its monotonic behaviour in a non-singular
geometry, there must be some points at which = 2fc

/0. This suggests that in more general situations
that those analyzed in this paper we could find
traversable wormhole solutions with no asymmetry
between the asymptotic regions. For example, if we
add to our system a quantity of normal matter with a

Žpositive trace for the energy-momentum tensor T)
.0 , and we place this normal matter in two thin

Fig. 3. Schematic depiction of the scalar field f as a function ofc

position as one traverses the throat of this ‘‘cut and paste’’
wormhole.

Ž .spherical shells see Fig. 2 , we can join smoothly an
inner region with the geometry of the symmetric

Ž .wormhole solution 27 to two outer asymptotic ge-
ometries, both with positive effective Newton’s con-
stants 7. The requirement that T)0 in the shells
translates into a localized negative scalar curvature,
R-0, necessary for bringing down the value of the

Ž .scalar field from that in the inner region see Fig. 3 .
Finally, we conclude by emphasising that it is not

so much the occurrence of classical wormholes in
and of themselves that is the main surprise of this
paper. Rather, what is truly surprising here is that
such an inoffensive and physically well-motivated
classical source, the ‘‘new improved stress-energy
tensor’’, leads to classical traversable wormholes.
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