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Abstract

Branes are ubiquitous elements of any low-energy limit of string theory. We point out that negative
tension branes violate all the standard energy conditions of the higher-dimensional spacetime they
are embedded in; this opens the door to very peculiar solutions of the higher-dimensional Einstein
equations. Building upon the (3+ 1)-dimensional implementation of fundamental string theory, we
illustrate the possibilities by considering a toy model consisting of a (2+ 1)-dimensional brane
propagating through our observable (3+ 1)-dimensional universe. Developing a notion of “brane
surgery”, based on the Israel–Lanczos–Sen “thin shell” formalism of general relativity, we analyze
the dynamics and find traversable wormholes, closed baby universes, voids (holes in the spacetime
manifold), and an evasion (not a violation) of both the singularity theorems and the positive mass
theorem. These features appear generic to any brane model that permits negative tension branes:
This includes the Randall–Sundrum models and their variants. 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Branes, ubiquitous elements of any low-energy limit of string theory, have recently
attracted much attention as essential ingredients of the semi-phenomenological Randall–
Sundrum models [1,2]. These models have been used to both ameliorate the “hierarchy
problem” [1] and to explore the possibility of “exotic” Kaluza–Klein theories with their
infinitely large extra dimensions [2]. Essential ingredients in these RS models are the
existence of bothpositiveandnegativetension branes.
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Now a brane tension is normally thought of as being completely equivalent to an internal
cosmological constant, and from the point of view of physics constrained to the brane this
is certainly correct. However, from the higher-dimensional point of view (that is, as seen
from the embedding space) this is not correct: For a (p + 1)-brane embedded in (n+ 1)
dimensions a brane tension leads to the stress energy

T µν =−ΛD gµνinducedδ
n−p(ηa)=−ΛD

(
gµν −

n−p∑
a=1

nµa n
ν
a

)
δn−p(ηa), (1.1)

where the sum runs over then−p normals to the brane, and theηa are suitable Gaussian
normal coordinates. Contracting with a higher-dimensional null vector,kµ, we see

T µνkµkν =−ΛD gµνinducedkµkνδ
n−p(ηa)=ΛD

[
n−p∑
a=1

(
nµa kµ

)2]
δn−p(ηa). (1.2)

If the brane tension is negative,ΛD < 0, and the null vector is even slightly orthogonal to
the brane, then on the brane

T µνkµkν < 0. (1.3)

That is, the embedding-space null energy condition (NEC) is violated. In fact, integrating
across the brane, even the averaged null energy condition (ANEC) is violated. (Ipso facto,
all the energy conditions are violated.) This is a classical violation of the energy conditions,
which we shall soon see is even more profound than the classical violations due to non-
minimally coupled scalar fields [3].

In a recent series of papers [4–6] we have made a critical assessment of the current
status of the energy conditions, finding a variety of both classical and quantum violations
of the energy conditions. We now see that uncontrolled violations of the energy conditions
are also a fundamental and intrinsic part of any brane-based low-energy approximation to
fundamental string theory. Among the possible consequences of these energy condition
violations we mention the occurrence of traversable wormholes (violations of topological
censorship), possible violations of the singularity theorems (more properly, evasions of the
singularity theorems), and even the possibility of negative asymptotic mass.

A particular example of this sort of phenomenon occurs in the (finite size) Randall–
Sundrum models, where one has two parallel branes (our universe plus a hidden brane)
of equal but opposite brane tension. One or the other of these branes (depending on
whether one is considering the RS1 or RS2 model) violates the (4+1)-dimensional energy
conditions and exhibits the “flare out” behaviour reminiscent of a traversable wormhole [7].
That these branes do not quite represent traversable wormholes in the usual sense [8,9]
follows from the fact that the “throat” is an entire flat (3+ 1) Minkowski space, instead
of the more usualR1 × Sd−1. Furthermore, in the infinite-size version of the Randall–
Sundrum (RS2) model, where the hidden sector has been pushed out to hyperspatial
infinity, our universe is itself represented by a positive-tension (3+ 1)-brane, which does
not violate any (4+ 1)-dimensional energy conditions. The energy-condition violating
brane has in this particular model been pushed out to hyperspatial infinity and discarded. Be
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that as it may, the occurrence of negative tension branes in modern semi-phenomenological
models is generic, and a feel for some of the peculiar geometries they can engender is
essential to developing any deep understanding of the physics.

In this particular paper we shall for illustrative purposes choose a particularly simple
model: We work with a (3+ 1)-dimensional bulk, which contains a (2+ 1)-dimensional
brane (of either positive or negative brane tension). We choose this particular model
because it is sufficiently close to reality to make the points we wish to make as
forcefully as possible, and because it arises naturally in certain types of fundamental
string theory. While it is most often the case that fundamental string theories (or their
various offspring: membrane models, M-theory, etc.) are formulated in either (9+ 1) or
(10+1) dimensions,2 this is not absolutely necessary: There is an entire industry based on
formulating string theories directly in (3+1) dimensions, with the price that has to be paid
being the inclusion of extra (1+ 1)-dimensional quantum fields propagating on the world-
sheet [10–14].3 Now even in such a (3+1)-dimensional incarnation of string theory, open
strings will terminate on D-branes (Dirichlet branes), and an effective theory involving the
(3+1)-dimensionalbulk plus (2+1)-, (1+1)-, and (0+1)-dimensionalD-branes (“domain
walls”, “cosmic strings”, and “soliton-like particles”) can be contemplated as a low-
energy approximation.4 While D-branes are perhaps the most straightforward examples of
membrane-like solitons in string theory, they do come with additional technical baggage:
the most elementary implementation of D-branes occurs in bosonic string theories [15],
but often D-branes are associated with specific implementations of supersymmetric string
theories [16] and carry various types of Ramond–Ramond or Neveu–Schwarz charge.
There are in addition other types of brane-like configurations that sometimes arise in
fundamental string theory such as non-dynamical “orientifold planes” [16], which generate
gravitational fields corresponding to negative tensions, but which do not themselves exhibit

2 In many specific cases the actual implementation is directly in terms of a Euclidean-signature 10- or
11-dimensional spacetime; with the underlying Lorentzian-signature reality hidden under several layers of
scaffolding.

3 Consider for example the bosonic string, which is most often viewed as a (1+ 1)-dimensional world sheet
propagating in (25+ 1) dimensions: There is a trivial re-interpretation in which the bosonic string propagates
in (3+ 1) dimensions and there are 22 free scalar fields propagating on the world-sheet. These 22 scalar fields
are there just to soak up the conformal anomaly and make the theory manageable. If these scalar fields are
now constrained by appropriate identifications the re-interpretation is less trivial — it is an example of the fact
that compactifications ofsomeof the dimensions of the higher-dimensional embedding spacetime that the world
sheet propagates through can be traded off for a lower-dimensional uncompactified embedding spacetime plus
interacting fields on the world-sheet. When this procedure is applied to superstrings the technical details are
considerably more complex, but the basic result still holds.

4 More traditional string theorists who absolutely insist on working directly in the higher-dimensional
embedding space can view the current calculations as a particular toy model in which only selected sub-sectors of
the grand total degrees of freedom are excited. Additionally, it should be borne in mind that many of the generic
features of the analysis presented in this paper will extendmutatis mutandisto embedding spaces and branes of
higher dimensionality. You do not want the bulk to have fewer than (3+ 1) dimensions since then bulk gravity
is either completely or almost trivial. You do not want the bulk to have more than (10+ 1) dimensions since the
model is then difficult to interpret in terms of fundamental string theory. For technical reasons (to be able to use
the thin-shell formalism) you want the brane to be of co-dimension 1, so if the bulk is (n+ 1)-dimensional the
brane should be ([n− 1] + 1)-dimensional. Within these dimensional limitations, the qualitative features of this
paper are generic.
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internal dynamics. We will not delve further into this bestiary, but will instead content
ourselves with the observation that the low-energy limit of fundamental string theory
(of whatever persuasion) generically leads to an effective theory containing brane-like
excitations.

This overall picture is actually very similar to the notion of extended topological defects
arising from symmetry breaking in point-particle field theories: There are many semi-
phenomenological GUT-based point particle field theories that naturally contain domain
walls, cosmic strings, and/or solitons. The key difference here is that point particle field
theories inevitably lead to positive brane tensions, with negative brane tensions being en-
ergetically disfavoured (they correspond to an unnatural form of symmetry breaking that
forces one to thetop of the potential). The key difference in brane-based models is that
there is no longer any particular barrier to negative brane tension — in fact negative brane
tensions are ubiquitous, now being so commonly used as to almost not require explicit
mention. An exhaustive list of papers using negative tension branes would by now be im-
practical. Among many instances of their use (apart from [1] and [2]) we mention: [17–26].

Within the model we have chosen, we demonstrate that negative tension branes lead to
traversable wormholes — in some cases to stable traversable wormholes. (Positive tension
branes quite naturally lead to closed baby universes; these arenotFLRW universes, and are
not suitable for cosmology, but are perhaps of interest in their own right.) We also explore
the possibility of viewing the brane as an actual physical boundary of spacetime, with the
region on the “other side” of the brane being null and void.

The basic tools used are the idea of “Schwarzschild surgery” as developed in [27] (see
also the more detailed presentation in [9]), which we first extend to “brane surgery”,
specialize to “Reissner–Nordström–de Sitter” surgery, and then use to present an analysis
of both static and dynamic spherically-symmetric (2+ 1)-dimensional branes in a (3+ 1)-
dimensional Reissner–Nordström–de Sitter background geometry.5 We find both stable
and unstable traversable wormhole solutions, stable and unstable baby universes, and stable
and unstable voids.

2. Brane surgery

We start by considering a rather general static spherically symmetric geometry (not the
most general, but quite sufficient for our purposes)

ds2=−F(r)dt2+ dr2

F(r)
+ r2 dΩ2

2 . (2.4)

To build the class of geometries we are interested in, we start by taking two copies of this
geometry, truncating them at some time-dependent radiusa(t), and sewing the resulting
geometries together along the boundarya(t). The result is a manifold without boundary

5 As we shall soon see, brane surgery is essentially a specific implementation of the Israel–Lanczos–Sen
junction conditions of general relativity; as such it has been used implicitly in many brane-related papers (see, for
example, [1,2,28–30]); the key difference in the present paper is in the details and in the questions we address.
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that has a “kink” in the geometry ata(t). If we sew together the two external regions
r ∈ (a(t),∞), then the result is a wormhole spacetime with two asymptotic regions. On
the other hand, if we sew together the two internal regionsr ∈ (0, a(t)), then the result is a
closed baby universe.

At the “kink” a(t) the spacetime geometry is continuous, but the radial derivative (and
hence the affine connexion) has a step-function discontinuity. The Riemann tensor in this
situation has a delta-function contribution ata(t), and this geometry can be analyzed using
the Israel–Lanczos–Sen “thin shell” formalism of general relativity [32–35]. The relevant
specific implementation of the thin-shell formalism can be developed by extending the
formalism of [27] and [9]. Because of its relative simplicity we shall start with the static
casea = constant.

2.1. Brane statics

The unit normal vector to the spherea = constant is (depending on whether one is
considering inward or outward normals)

nµ =±
(
0,
√
F(a),0,0

)
, nµ =±

(
0,

1√
F(a)

,0,0

)
. (2.5)

The extrinsic curvature (second fundamental form) can be written in terms of the normal
derivative

Kµν = 1

2

∂gµν

∂η
= 1

2
nσ
∂gµν

∂xσ
=±1

2

√
F(a)

∂gµν

∂r
. (2.6)

If we go to an orthonormal basis, the relevant components are6

Kt̂t̂ =∓
1

2

√
F(r)

∂gtt

∂r
gtt =∓1

2

√
F(r)

∂F (r)

∂r

1

F(r)

=∓1

2
F(r)−1/2∂F (r)

∂r

∣∣∣∣
r=a

, (2.7)

K
θ̂θ̂
=±1

2

√
F(r)

∂gθθ

∂r
gθθ =±1

2

√
F(r)

∂r2

∂r

1

r2
=±
√
F(r)

r

∣∣∣∣
r=a

. (2.8)

The discontinuity in the extrinsic curvature is related to the jump in the normal derivative
of the metric as one crosses the brane

κµν =K+µν −K−µν. (2.9)

In general, one could take the geometry on the two sides of the brane to be different
[F+(r) 6= F−(r)], but in the interests of clarity the present models will all be taken to
have aZ2 symmetry under interchange of the two bulk regions.7 Under these conditions

6 The use of an orthonormal basis makes it particularly easy to phase the calculation in terms of the physical
density and physical pressure.

7 Remember that we have already decided to take the range of ther coordinate to beeither two copies of
(a(t),∞), corresponding to a wormhole;or two copies of(0, a(t)), corresponding to a baby universe. ThenZ2
symmetry corresponds toF+(r)= F−(r), with a kink in the geometry atr = a(t). Our normal vectors do not
flip sign as we cross the brane.



420 C. Barceló, M. Visser / Nuclear Physics B 584 (2000) 415–435

κt̂ t̂ =∓F(r)−1/2 F(r)

∂r

∣∣∣∣
r=a

, (2.10)

κ
θ̂ θ̂
=±2

√
F(r)

r

∣∣∣∣
r=a

. (2.11)

The upper sign refers to a wormhole geometry where the two exterior regions have been
sewn together (discarding the two interior regions), while the lower sign is relevant if one
has kept the two interior bulk regions.

The thin-shell formalism of general relativity [32–35] relates the discontinuity in
extrinsic curvature to the energy density and tension localized on the junction:8

σ =− 1

4π
κ
θ̂θ̂
=∓ 1

2πr

√
F(r)

∣∣∣∣
r=a

, (2.12)

θ =− 1

8π
[κ
θ̂θ̂
− κt̂ t̂ ] = ∓

1

4πr

∂

∂r

(
r
√
F(r)

)∣∣∣∣
r=a

. (2.13)

If the material located in the junction is a “clean” brane (a brane in its ground state, without
extra trapped matter in the form of stringy excitations), then its equation of state isσ = θ
and the condition for a static brane configuration (either a wormhole or baby universe
geometry) is simply

σ = θ ⇒ 2
√
F(r)

∣∣∣
r=a =

∂

∂r

(
r
√
F(r)

)∣∣∣∣
r=a

⇒ ∂

∂r

(
F(r)

r2

)∣∣∣∣
r=a
= 0. (2.14)

Thus we have a very simple result: static wormholes (baby universes) correspond to
extrema of the functionF(r)/r2, though at this stage we have not yet made any assertions
about stability or dynamics. The only difference between wormholes and baby universes
is that for wormholes the brane tension must be negative, whereas for baby universes it is
positive.

It is instructive to note that the locations of these static brane solutions correspond to
circular photon orbitsin the original spacetime (and this is true for arbitraryF(r)). That
is: at these static brane solutions any “particle” that is emitted form the brane, which
then follows null geodesics (of the bulk spacetime), and which initially has no radial
momentum, will just skim along the brane; never moving off into the bulk. (Note that
this is a purely kinematic effect that occurs over and above any “trapping” due to stringy
interactions between the brane and excited string states.)

This may easily be verified by considering the photon orbits for arbitraryF(r). The
time-translation and rotational Killing vectors lead to conserved quantities

8 The numerical coefficients appearing herein are dimension-dependent (because of the implicit trace over the
Ricci tensor and extrinsic curvature hidden in the Einstein equations).
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∂

∂t
, k

)
=−ε ⇒ gtt

dt

dλ
=−ε ⇒ F

dt

dλ
= ε. (2.15)

(
∂

∂φ
, k

)
=−` ⇒ gφφ

dφ

dλ
= ` ⇒ r2 dφ

dλ
= `. (2.16)

Inserting this back into the condition that the photon momentum be a null vector,(k, k)= 0,
we see(

dr

dλ

)2

+ F(r)`
2

r2 = ε2. (2.17)

Now λ is an arbitrary affine parameter, so we can reparameterizeλ→ `λ and define
b= ε/` to see that photon orbits are described by the equation(

dr

dλ

)2

+ F(r)
r2 = b2. (2.18)

The circular photon orbits (and at this stage we make no claims about stable versus unstable
circular photon orbits) are, as claimed, at extrema of the functionF(r)/r2 (which coincide
with the location of the static brane configurations).

2.2. Brane dynamics

If now the brane is allowed to move radiallya→ a(t), we start the analysis by first
parameterizing the motion in terms of proper time along a curve of fixedθ andφ. That is:
the brane sweeps out a world-volume

Xµ(τ, θ,φ)= (t (τ ), a(τ ), θ,φ). (2.19)

The 4-velocity of the(θ,φ) element of the brane can then be defined as

V µ =
(

dt

dτ
,

da

dτ
,0,0

)
. (2.20)

Using the normalization condition and the assumed form of the metric, and definingȧ =
da/dτ ,

V µ =
(√

F(a)+ ȧ2

F(a)
, ȧ,0,0

)
, Vµ =

(
−
√
F(a)+ ȧ2,

ȧ

F (a)
,0,0

)
. (2.21)

The unit normal vector to the spherea(τ) is

nµ =±
(

ȧ

F (a)
,
√
F(a)+ ȧ2,0,0

)
, nµ =±

(
−ȧ,

√
F(a)+ ȧ2

F(a)
,0,0

)
. (2.22)

The extrinsic curvature can still be written in terms of the normal derivative

Kµν = 1

2
nσ
∂gµν

∂xσ
. (2.23)

If we go to an orthonormal basis, theθ̂ θ̂ component is easily evaluated [9,27]
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K
θ̂θ̂
=±1

2

√
F(a)+ ȧ2 ∂gθθ

∂r
gθθ =±

√
F(a)+ ȧ2

a
. (2.24)

Theττ component is a little messier, but generalizing the calculation of [27] or [9] (which
amounts to calculating the four-acceleration of the brane) quickly leads to9

Kτ̂τ̂ =∓1

2

1√
F(a)+ ȧ2

(
dF(r)

da
+ 2ä

)
=∓ d

da

√
F(a)+ ȧ2. (2.25)

Applying the thin-shell formalism now gives:

σ =∓ 1

2πa

√
F(a)+ ȧ2, (2.26)

θ =∓ 1

4πa

d

da

(
a
√
F(r)+ ȧ2

)
. (2.27)

These equations can easily be seen to be compatible with the conservation of the stress
energy localized on the brane

d

dτ

(
σa2)= θ d

dτ

(
a2). (2.28)

So as usual,two of these three equations are independent, and the third is redundant.
From the above we see that traversable wormhole solutions, corresponding to the

minus sign above, require negative brane tension (and so positive internal pressure and
negative internal energy density). This is in complete agreement with [31] where it was
demonstrated that even for dynamical wormholes there must be violations of the null
energy condition at (or near) the throat.

If the material located in the junction is again assumed to be a “clean” brane (σ = θ )
then all the dynamics can be reduced to asingleequation10

ȧ2+ F(a)= (2πσ)2a2. (2.29)

This single dynamical equation applies equally well to both wormholes and baby universes,
the∓ that shows up in the brane Einstein equations quietly goes away upon squaring —
thus for questions of dynamics and stability these surgically constructed baby universes
and wormholes can be dealt with simultaneously — theonlydifference lies in question of
whether the brane tension is positive or negative.

Note that we could re-write this dynamical equation as(
d ln(a)

dτ

)2

+ F(a)
a2
= (2πσ)2. (2.30)

From this it is clear that static solutions must be located at extrema of the functionF(a)/a2,
in agreement with the static analysis.

9 We do not repeat the details here since this calculation is now standard textbook fare [9], pp. 182–183. If one
wishes to avoid the need for this particular calculation one can instead work backwards from the conservation of
stress-energy, together with the already-calculated expression forK

θ̂θ̂
, to deducean expression forKτ̂ τ̂ . But if

you choose this route you lose the opportunity to make a consistency check.
10 And if the brane is not “clean” in this sense one only needs to keep track of one additional piece of information

— the on-brane conservation equation (2.28).
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In the next section we shall make use of this general formalism by specializingF(r) to
the Reissner–Nordström–de Sitter form. We shall then exhibit some explicit solutions to
these brane equations of motion, and perform the relevant stability analysis.

3. Reissner–Nordström–de Sitter surgery

For the Reissner–Nordström–de Sitter geometry

F(r)= 1− 2M

r
+ Q

2

r2 −
Λ

3
r2. (3.31)

It is then most instructive to write the dynamical equation in the form(
d ln(a)

dτ

)2

+ V (a)=E, (3.32)

with a “potential”

V (a)= F(a)
a2 =

1

a2 −
2M

a3 +
Q2

a4 −
Λ

3
, (3.33)

and an “energy”

E =+(2πσ)2. (3.34)

The extrema of this potential are easily located, their positions are independent ofΛ and
occur at

r± = 3M

2
±
√(

3M

2

)2

− 2Q2. (3.35)

(As promised, these are indeed the locations of the circular photon orbits of the Reissner–
Nordström–de Sitter geometry; note that the cosmological constant doesnot affect the
location of these circular photon orbits.) Thevalueof this potential at these extrema is
somewhat tedious to calculate, we find

V±(M,Q,Λ)≡ V
(
r±(M,Q)

)
=− 1

4Q2

(
1− 9

2

M2

Q2 +
27

8

M4

Q4

)
± M

4Q6

[(
3M

2

)2

− 2Q2
]3/2

− Λ
3
.

(3.36)

Though it may not be obvious, theQ→ 0 limit formally exists and is given by

V−(M,Q→ 0,Λ)→−∞, V+(M,Q→ 0,Λ)→ 1

27M2 −
Λ

3
. (3.37)

The behaviour of the potentialV (a) is qualitatively:
• V (a)→+∞ asa→ 0 (Q 6= 0);
• V (a)→−Λ/3 asa→+∞;
• There is at most one local minimum (V− located atr−) and one local maximum (V+

located atr+).
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Two figures, where we have plottedV (a) for two special cases, are provided in the
discussion below. When looking for a stable brane solution we want to satisfy the
following:

1. We want the local minimum to exist, and the brane to be located in its basin of
attraction.

2. The energy must be at least equal toV− (to even get a solution), and should not
exceedV+ (to avoid having the solution escape from the local well located around
r−).

3. We also do not want (at least for now) the brane to fall inside (or even touch) any
horizon the original Reissner–Nordström–de Sitter geometry might have — for two
reasons:
(a) Because if it does fall inside (or even touch) an event horizon the wormhole

geometry is operationally indistinguishable from a Reissner–Nordström–de Sit-
ter black hole and therefore not particularly interesting (but see the discussion
regarding singularity avoidance later in this paper) whereas the baby universe
geometry is forQ= 0 doomed to a brief and unhappy life, and forQ 6= 0 is just
plain weird.

(b) For technical reasons (r is now timelike andt spacelike) a few key minus signs
flip at intermediate steps of the calculation, more on this later.

These physical constraints now imply:
1. To get a local minimum we needM >

√
8/9Q.

2. To then trap the solution, to make it one of bounded excursion, we need

V−(M,Q,Λ)6+(2πσ)26 V+(M,Q,Λ). (3.38)

3. Horizon avoidance requiresF(a) > 0 over the entire range of motion; this implies

V (a)= F(a)
a2

> 0 ⇒ V−(M,Q,Λ) > 0. (3.39)

In view of this the horizon avoidance condition might more properly be called horizon
elimination — horizons can be avoided if and only if the inner and outer horizons are
actually eliminated. (We could however still have a cosmological horizon at very
large distances, this cosmological horizon is never reached if the bounded excursion
constraint is satisfied.) We can also explicitly separate out the cosmological constant
to write the horizon elimination condition as

Λ< 3V−(M,Q,Λ→ 0), (3.40)

which makes it clear that a powerful enough negative (bulk) cosmological constant
is guaranteed to eliminate all the event horizons from the geometry.

That these constraints can simultaneously be satisfied (at least in certain parameter
regimes) can now be verified by inspection. The best way to proceed is to sub-divide the
discussion into several special cases.
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3.1. M > |Q| = 0

There is one maxima (ata = 3M) and no minimum. There are no stable solutions,
though the “arbitrarily advanced civilization” posited by Morris and Thorne [8] might
like to try to artificially maintain the unstable static solution ata = 3M. (This solution
is unstable to both collapse and explosion.)

AddingQ 6= 0 provides a hard core to the potential so that collapse is avoided (modulo
the horizon crossing issue which must be dealt with separately).

3.2. M > |Q| 6= 0

There are now both a local maximum (atr+ < 3M) and a global minimum (atr− > 0).
The potential is plotted in Fig. 1. Stable solutions exist (both static stable solutions and
stable solutions of bounded excursion), but sinceV− < 0 (Λ= 0) at the global minimum
horizon avoidance requires

Λ< 3V−(M,Q,Λ→ 0) < 0. (3.41)

That is, stable traversable wormhole or baby universe solutions exist only if the bulk is
anti-de Sitter space (adS(3+1)) with a strong enough negative cosmological constant.

Fig. 1. Sketch of the potentialV (a) forM > |Q| andΛ= 0. Adding a cosmological constant merely
moves the entire curve up or down: the lower horizontal line representsΛ/3, and forΛ sufficiently
large and negative the inner and outer horizons (which are given by the intersection of this horizontal
line with theΛ= 0 potential) are guaranteed to be eliminated. The upper horizontal line represents
Λ/3+ (2πσ)2, and its intersection with theΛ= 0 potential gives the turning points of the motion.
If inner and outer horizons exist they lie between the inner and outer turning points.
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Indeed, if you consider the original geometry prior to brane surgery and extend it down
to r = 0 then for this choice of parameters (because of the large negative cosmological
constant) you encounter a naked singularity. For the stable wormhole geometries based on
this brane prescription this isnot a problem since the naked singularity was in the part of
the spacetime that you threw away in setting up the brane construction. (The baby universe
models on the other hand, while stable, explicitly do contain naked singularities.)11

A particularly simple sub-class of these solutions occurs when the bulk cosmological
constant is tuned to a special value in terms of the brane tension. This is the analog of
the Randall–Sundrum fine tuning [1,2] and corresponds to a zero “effective” cosmological
constant, in the sense that the brane equation of motion can be rearranged and reinterpreted
as being governed byE = 0 and

Λeffective=Λ+ 3(2πσ)2. (3.42)

If this Λeffective is now tuned to zero

Λ=−3(2πσ)2< 3V−(M,Q,Λ→ 0) < 0. (3.43)

3.3. M = |Q|

There are still both a local maximum (atr+ = 2M) and a global minimum (atr− =
M). Stable solutions exist. Since nowV−(Λ→ 0) = 0 at the global minimum horizon
avoidance requires anti de Sitter space with an arbitrarily weak cosmological constant.
(And again this is an example of horizon elimination.)

3.4. M ∈ (√8/9|Q|, |Q|)
There are still both a local maximum (atr+ < 2M) and a global minimum (atr− >M).

The potential is plotted in Fig. 2. Stable solutions exist. Since nowV−(Λ→ 0) > 0 at the
global minimum, horizon avoidance can be achieved with zero cosmological constant in
the bulk. For instance, picking

Λ= 0, (2πσ)2= V−(M,Q,Λ→ 0), (3.44)

yields the stable static solution atr−. This is perhaps the most “physical” of these
traversable wormholes in that it resides in an asymptotically flat spacetime.

11 This is part of a general pattern: The stable (or even merely static) brane configurations that do not
possess naked singularities in the bulk region are the wormhole configurations with negative brane tension.
This observation also applies to the other sub-cases discussed below. This is compatible with the discussion
of Chamblin, Perry, and Reall [36] who discovered qualitatively similar behaviour for (8+1)-dimensional branes
in a (9+ 1)-dimensional bulk. Specifically, they found that static (8+ 1)-dimensional brane configurations with
positive brane tension led to naked singularities in the bulk, and that eliminating the naked singularities forced
the adoption of negative brane tension (and implicitly a wormhole configuration). This observation also serves
to buttress our previous comments to the effect that the qualitative features of the calculations presented in this
paper are generic, and are not just limited to (2+ 1) branes in (3+ 1) dimensions.
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Fig. 2. Sketch of the potentialV (a) for M in the critical range(
√

8/9 |Q|, |Q|), andΛ= 0. Adding
a cosmological constant merely moves the entire curve up or down. In this case, even forΛ= 0, we
see a stable minimum atr− with no event horizons. For small positiveΛ a cosmological horizon
will form at very large radius, but this is of no immediate concern because of the barrier atr+. If Λ
becomes too large however,Λ>V−(M,Q,Λ→ 0), inner and outer horizons will reappear between
the inner and outer turning points.

3.5. M =√8/9|Q|

The maximum and minimum merge into a single point of inflection (atr± = 3M/2).
There are no stable solutions. All the solutions exhibit runaway to large radius.

3.6. M ∈ (√8/9|Q|,0)
There is not even a point of inflection: the potential is monotonic decreasing. There are

no stable solutions.

3.7. M = 0,Q 6= 0

There is not even a point of inflection: the potential is monotonic decreasing. There are
no stable solutions.



428 C. Barceló, M. Visser / Nuclear Physics B 584 (2000) 415–435

3.8. M < 0

Letting the central massM go negative is not helpful —M < 0 helps stabilize against
collapse, but actually destroys the possibility of stable solutions because the location of
“extrema”r± is pushed to unphysical nominally negative values of the radius.

3.9. Baby bangs?

The fact that so many of these baby universe models are unstable to explosion is
intriguing, and potentially of phenomenological interest. While these particular baby-
universe models are not suitable cosmologies for our own universe, we believe that more
realistic scenarios can be developed.

3.10. Singularity avoidance?

We have so far sought to implement horizon avoidance in our models: we have sought
conditions that would prevent the brane from falling through or even touching any horizon
that might be present in the underlying pre-surgery spacetime. Suppose we now relax that
constraint. The best way to analyze the situation is to note that inside the horizon (more
precisely between the outer horizon and the inner horizon) the pre-surgery metric can be
written in the form

ds2=+|F(r)|dt2− dr2

|F(r)| + r
2 dΩ2

2 . (3.45)

The calculation of the four-velocity, normal, extrinsic curvatures, and their discontinuities
can be repeated, with the result that in this region [F(r) < 0]

V µ =
(
−
√
ȧ2− |F(a)|
|F(a)| , ȧ,0,0

)
,

nµ =±
(
− ȧ

|F(a)| ,
√
ȧ2− |F(a)|,0,0

)
, (3.46)

and

σ =∓ 1

2πa

√
ȧ2− |F(a)|. (3.47)

After rearrangement this leads to thesamedynamical equation as before(
d ln(a)

dτ

)2

+ F(a)
a2 = (2πσ)2. (3.48)

So that all of our previous arguments can be extended inside the event horizon.
A few key observations:
• The two turning points occur atF(a)/a2= (2πσ)2> 0. ThusF(a) > 0 at the turning

points. So if there are horizons present (that is, ifF(a) = 0 has solutionsr±horizon 6=
r±), and one is in the potential well nearr−, then one turning point will be outside the
outer horizon, and the second turning point will be inside the inner horizon.
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• Even though the brane oscillation will take finite proper timeτ this corresponds to
infinite t-parameter time — when the brane re-emerges from the outer horizon it will
emerge from a past outer horizon of a “future incarnation” of the universe; the brane
will not re-emerge into our own universe. (For simplicity you may wish to setΛ= 0
and consider the Penrose diagram of the maximally extended Reissner–Nordström
geometry as presented, for instance, on page 158 of Hawking and Ellis [37]. A partial
Penrose diagram for Reissner–Nordström–de Sitter may be found in [38,39]. See also
Fig. 3.)
• Operationally, from “our” asymptotically flat region, once the brane passes the hori-

zon the geometry will be indistinguishable from an ordinary Reissner–Nordström–
de Sitter black hole.
• The original pre-surgery spacetime has two asymptotic regions, two outer horizons,

and two inner horizons, which are then repeated an infinite number of times in the
maximal analytic extension. If the brane starts out in the rightmost asymptotic region
and falls through the right (future) outer horizon, then you can quickly convince
yourself that it must pass through theleft inner horizon (twice, once on the way in,

Fig. 3. Sketch of the Penrose diagram for the maximally extended Reissner–Nordström geometry
whenM > |Q| (Λ = 0). A timelike (2+ 1)-brane [spacelike normal] will oscillate between the
turning pointsr+ andr−, but each oscillation will take infinite coordinate time even if it takes finite
proper time. For wormhole solutions keep the right half of the diagram, make two copies, and sew
them together along the brane. For baby universe geometries keep the left half of the diagram, make
two copies and sew them up along the brane.
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and once again on the rebound) before moving back out through the right (past) outer
horizon back into the (next incarnation of) the right asymptotic region. (See Fig. 3.)
• The wormhole geometry based on this brane surgery is an explicit example of

partial evasion of the usual singularity theorems [37]. (We say evasion, not violation,
because the presence of the negative tension brane vitiates the usual hypotheses
used in proving the singularity theorems.) The wormhole geometry certainly has
trapped surfaces once the brane falls inside the horizon, but by construction there
is no left curvature singularity. (Theright curvature singularity is still there, and
the right inner horizon is still a Cauchy horizon.)12 Note that this is a idealized
statement appropriate to “clean” wormhole universes containing only a few test
particles of matter: in any more realistic model where the universe contains a finite
amount of radiation, inner event horizons are typically unstable to a violent blue
shift instability, and are typically converted by back-reaction effects to some sort of
curvature singularity [38,39]. This process however, lies far beyond the scope of the
usual singularity theorems.

If you wish to eliminateboth left and right singularities a more drastic fix is called for:
You will need to use a (3+ 0)-dimensional brane, something you might call an instanton-
brane because it represents a spacelike hypersurface through the spacetime — at early
times there’s nothing there, the brane “switches on” for an instant, and then it’s gone again.
The simplest example of such a instanton-brane is to place one atr−, the static minimum
of the potentialV (a). 13 If there are event horizons then this minima will be inside the
event horizon (between inner and outer horizons) and a hypersurface placed atr− will
be spacelike. Placing the instanton-brane at this location will eliminatebothsingularities
andboth inner horizons — you are left with two asymptotic regions and two (outer) event
horizons, infinitely repeated.

More generally one could think of an instanton-brane described by a locationa(`),
where` is now proper length along the brane (and the notion ofdynamicsis somewhat
obscure). The spacelike tangent and timelike normal are now (outside the horizon)

V µ =
(√

(da/d`)2− F(a)
F (a)

,
da

d`
,0,0

)
,

nµ =±
(

1

F(a)

da

d`
,

√
(da/d`)2− F(a),0,0

)
, (3.49)

and a brief computation yields

σ =∓ 1

2πa

√
(da/d`)2− F(a). (3.50)

12 If you think of the Reissner–Nordström–de Sitter geometry as arising from gravitational collapse of an
electrically charged star, then it is the left curvature singularity (which is eliminated by the present construction)
that would arise from the central density of the star growing to infinity. The right curvature singularity (which is
unaffected by the present construction) has a totally different genesis as it arises in a matter-free region due to
gravitational focussing of the electromagnetic field.
13 Although this is a static minimum of the usualV (a) it is in the present context notstable. This arises because

for a spacelike shell the overallsignof the potential flips.
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This can be rearranged to give(
d ln(a)

d`

)2

− F(a)
a2 = (2πσ)2. (3.51)

So the net result is that for an instanton-brane thesignof the potential has flipped, but that
of the brane contribution to the energy has not. (And exactly the same result continues to
hold inside the horizon, a few intermediate signs flip, but that’s all.)

In summary: certain varieties of brane wormhole provide explicit evasions (either partial
or complete) of the usual singularity theorems.

4. Voids: the brane as a spacetime boundary

A somewhat unusual feature of brane physics is that the brane could also be viewed
as an actual physical boundary to spacetime, with the “other side” of the brane being
null and void. In general relativity as it is normally formulated the notion of an actual
physical boundary to spacetime (that is, an accessible boundary reachable at finite distance)
is anathema. The reason that spacetime boundaries are so thoroughly deprecated in general
relativity is that they become highly artificial special places in the manifold where some
sort of boundary condition has to be placed on the physics by an act of black magic.
Without such a postulated boundary condition all predictability is lost, and the theory is
not physically acceptable. Since there is no physically justifiable reason for picking any
one particular type of boundary condition (Dirichlet, Neumann, Robin, or something more
complicated), the attitude in standard general relativity has been to exclude boundaries, by
appealing to the cosmic censor whenever possible and by hand if necessary.

The key difference when a brane is used as a boundary is that now there is a specific
and well-defined boundary condition for the physics: D-branes (D forDirichlet) are
defined as the loci on which the fundamental open strings end (and satisfy Dirichlet-type
boundary conditions). D-branes are therefore capable (at least inprinciple) of providing
both a physical boundaryanda plausible boundary condition for spacetime. For Neveu–
Schwarz branes the boundary conditions imposed on the fundamental string states are more
complicated, but they still (at least in principle) provide physical boundary conditions on
the spacetime.

When it comes to specific calculations, this may however not be the best mental picture
to have in mind — after all, how would you try to calculate the Riemann tensor for
the edge of spacetime? And what would happen to the Einstein equations at the edge?
There is a specific trick that clarifies the situation: Take the manifold with brane boundary
and make a second copy, then sew the two manifolds together along their respective
brane boundaries, creating a single manifold without boundary that contains a brane, and
exhibits aZ2 symmetry on reflection around the brane. Because this new manifold is a
perfectly reasonable no-boundary manifold containing a brane, the gravitational field can
be analyzed using the usual thin-shell formalism of general relativity [32–35]: The metric
is continuous, the connection exhibits a step-function discontinuity, and the Riemann
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curvature a delta-function at the brane. The dynamics of the brane can then be investigated
in this Z2-doubled manifold, and once the dynamical equations and their solutions have
been investigated the second surplus copy of spacetime can quietly be forgotten.

In particular, all the calculations we have performed for the spherically symmetric
wormholes of this paper apply equally well to spherically symmetric holes in spacetime
(not black holes, actual voids in the manifold), with the edge of the hole being a brane —
we deduce the existence of a large class of stable void solutions, and an equally large class
of unstable voids that either collapse to form black holes, or explode to engulf the entire
universe.

Equally well, the baby universes of the preceding section can, under this new physical
interpretation of the relevant mathematics, be used to investigate finite volume universes
with boundary. The bulk of the physical universe now lies in the ranger ∈ (0, a), and the
edge of the universe is located ata. Again, we deduce the existence of a large class of
stable baby universes with boundary, and an equally large class of unstable baby universes
that either collapse to singularity, or explode to provide arbitrarily large universes. Note
that these particular exploding universes arenot FLRW universes, and are not suitable
cosmologies for our own universe. Nevertheless, this notion of using a brane as an actual
physical boundary of spacetime is an issue of general applicability, and we hope to return
to this topic in future publications.

5. Discussion

The main point of this paper is that in the brane picture there is nothing wrong with
the notion of anegativebrane tension, and that once branes of this type are allowed to
contribute to the stress-energy, the class of solutions is greatly enhanced, now including
many quite peculiar beasts not normally considered to be part of standard general relativity.
As specific examples, the energy condition violations caused by negative tension branes
allow one to construct classical traversable wormholes, at least some of which (as we
have seen) are actually dynamically stable. Now for spherically symmetric wormholes
of the type considered in this paper, attempting to cross from one universe to the other
requires the traveller to cross the brane, a process which is likely to prove disruptive of
the traveller’s internal structure, well being, and overall health. This problem, or rather
the no-brane analog of this problem, was already considered by Morris and Thorne in
their pioneering work on traversable wormholes [8]. A possible resolution comes from the
fact that spherical symmetry is a considerable idealization: One of the present authors has
demonstrated that if one uses negative tension cosmic strings instead of negative tension
domain walls, then it is possible to construct traversable wormhole spacetimes that do not
possess spherical symmetry, and contain perfectly reasonable paths from one asymptotic
region to the other that do not involve personal encounters with any form of “exotic
matter” [40]. (See also the extensive discussion in [9].) In a brane context this means we
should consider the possibility of a negative tension (1+ 1)-dimensional brane in (3+ 1)-
dimensional spacetime.
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Now the peculiarities attendant on widespread violations of the energy conditions are not
limited to violations of topological censorship; as we have seen there is also the possibility
of violating (evading) the singularity theorem. If this is not enough, then it should be
borne in mind that without some form of energy condition we do not have a positive mass
theorem. (Looking out into our own universe, we do have a positive massobservation, but
it would be nice to be able to deduce this from general principles.) A discussion of some
of the peculiarities attendant on negative asymptotic mass can be found in the early work
of Bondi [41], and a possible observational signal (particular types of caustics in the light
curves due to gravitational lensing) has been pointed out by Cramer et al. [42]. Finally,
energy condition violations are also thesine qua nonfor the Alcubierre “warp drive” [43].

In summary, all of these somewhat peculiar geometries, which were investigated within
the general relativity community more with a view to understanding the limitations of
general relativity (and more specifically, of semiclassical general relativity) than in the
expectation that they actually exist in reality, are now seen to automatically be part and
parcel of the brane models currently being considered as semi-phenomenological models
of empirical reality.
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