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Abstract. Several years ago Schwinger proposed a physical mechanism for sonoluminescence in
terms of photon production due to changes in the properties of the quantum-electrodynamic (QED)
vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms
of the Casimir effect and has recently been the subject of considerable controversy. This paper
probes Schwinger’s suggestion in detail: using the sudden approximation we calculate Bogolubov
coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence
of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy
emitted. We verify that in the sudden approximation there is an efficient production of photons,
and further that the main contribution to this dynamic Casimir effect comes from a volume term, as
per Schwinger’s original calculation. However, we also demonstrate that the timescales required
to implement Schwinger’s original suggestion are not physically relevant to sonoluminescence.
Although Schwinger was correct in his assertion that changes in the zero-point energy lead to
photon production, nevertheless his original model is not appropriate for sonoluminescence. In
other work we have developed a variant of Schwinger’s model that is compatible with the physically
required timescales.

1. Introduction

In this paper we shall concentrate on Schwinger’s original proposal regarding
sonoluminescence [1–7], that of photon production associated with changes in the quantum-
electrodynamic (QED) vacuum state. His idea was to explain the sonoluminescence
phenomenon, which consists in light emission by a sound-driven gas bubble in fluid [8],
in the framework of the so-called dynamical Casimir effect. Our first aim is to verify,
in a dynamic framework, that a sudden change in bubble size will cause efficient photon
production, thereby indicating the possibility of ana priori interesting role for the dynamic
Casimir effect in this condensed matter context. While we demonstrate that the key features
of Schwinger’s calculations are correct, this study also demonstrates that for other reasons (to
do with the observed timescale of the phenomenon) the original approach of Schwinger is not
physically relevant to sonoluminescence. In related work [9–12] we have developed a different
implementation of Schwinger’s ideas regarding sonoluminescence that is compatible with the
physically observed timescales.
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The idea of a ‘Casimir route’ to sonoluminescence was developed by Schwinger in a series
of papers [1–7]. One key issue in Schwinger’s model is simply that of calculating static Casimir
energies for dielectric spheres—and there is already considerable disagreement on this issue.
A second and in some ways more critical question is the extent to which a change in static
Casimir energies might be converted to real photons during the collapse of the bubble—it is this
issue that we shall address in this paper. We estimate the spectrum of the emitted photons by
calculating an appropriate Bogolubov coefficient relating the two states of the QED vacuum.

Another model associating sonoluminescence with QED vacuum changes is the variant
of Schwinger’s proposal due to Eberlein [13–15]. In contrast to Schwinger’s quasi-
static approach, Eberlein’s model is truly dynamical but uses a radically different physical
approximation—the adiabatic approximation. The two models should not be confused.
See [10] for a deeper discussion of Eberlein’s approach to sonoluminescence.

Considerable confusion has been caused by Schwinger’s choice of the phrase ‘dynamical
Casimir effect’ to describe his model. In fact, the original model is not dynamical and is better
described as quasi-static as the heart of the model lies in comparing two static Casimir energy
calculations: that for an expanded bubble with that for a collapsed bubble. In a series of
papers [1–7] Schwinger showed that the dominant bulk contribution to the Casimir energy of a
bubble (of dielectric constantεinside) in a dielectric background (of dielectric constantεoutside)
is

Ecavity = +2
4π

3
R3
∫ K

0

4πk2 dk

(2π)3
1

2
h̄ck

(
1√
εinside

− 1√
εoutside

)
+ · · ·

= +
1

6π
h̄cR3K4

(
1√
εinside

− 1√
εoutside

)
+ · · · . (1)

There are additional sub-dominant finite volume effects [16–18]. The quantityK is a high-
wavenumber cutoff that characterizes the wavenumber at which the dielectric constants drop
to their vacuum values. This result can also be rephrased in the clearer and more general form
as [16–18]:

Ecavity = +2V
∫

d3Ek
(2π)3

1

2
h̄[ωinside(k)− ωoutside(k)] + · · · (2)

where it is evident that the Casimir energy can be interpreted as a difference in zero-point
energies due to the different dispersion relations inside and outside the bubble.

In contrast, Milton [19], and Milton and Ng [20,21] strongly criticize Schwinger’s result.
Using what is to our minds a physically dubious renormalization argument leads them [21] to
discard both the volume and even the surface term and to claim that the Casimir energy for
any dielectric bubble is of orderE ≈ h̄c/R.

In [16–18] an extensive discussion on these topics is found. Therein it is emphasized that
one has to compare two different geometrical configurations, and different quantum states, of
the same spacetime regions. In a situation like that of Schwinger’s model one has to subtract
from the zero-point energy (ZPE) for a vacuum bubble in water the ZPE for water filling all
space. It is clear that in this case the bulk term is physical andmustbe taken into account.
In the situation pertinent to sonoluminescence, the total volume occupied by the gas is not
constant (the gas is truly compressed), and it is far too naive to simply view the ingoing water
as flowing coherently from infinity (leaving voids filled with air or vacuum somewhere in the
apparatus). Since the density of water is approximately but not exactly constant, the influx
of water will instead generate an outgoing density wave which will be rapidly damped by the
viscosity of the fluid. The few phonons generated in this way are surely negligible. Surface
terms are also present, and eventually other higher-order correction terms, but they prove to
not be dominant for sufficiently large cavities [18].
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2. Bogolubov coefficients

As a first approach to the problem we study in detail the basic mechanism of particle creation,
and test the consistency of the Casimir energy proposals previously described. With this
aim in mind we consider the change in the QED vacuum associated with the collapse of the
bubble, by keeping fixed the refractive index both of the gas and of the water. For the sake of
simplicity we take, as Schwinger did, only the electric part of QED, reducing the problem to
one of scalar electrodynamics. Moreover, at this stage of development,we are not concerned
with the dynamics of the bubble surface. In analogy to the subtraction procedure of the
quasi-static calculations of Schwinger [1–7], and of Molina-Parı́s and co-workers [16–18], we
shall consider two different configurations of space. An ‘in’ configuration with a bubble of
dielectric constantεinside (typically vacuum) in a medium of dielectric constantεoutside, and an
‘out’ one in which one has just the latter medium (dielectric constantεoutside) filling all space.
Strictly speaking we should compare a large bubble having radiusRmax with a small bubble
of radiusRmin. We are approximating the small bubble by zero volume on the grounds that
the small bubble that is relevant to sonoluminescence is at least a million times smaller than
the large bubble at the expansion maximum. KeepingRmin finite significantly complicates
the calculation but does not give much more physical information. The above ‘in’ and ‘out’
configurations will correspond to two different bases for the quantization of the field. The two
bases will be related by Bogolubov coefficients in the usual way. Once we determine these
coefficients we easily get the number of created particles per mode and from this the spectrum.
This tacitly makes the ‘sudden approximation’: changes in the refractive index are assumed to
be non-adiabatic, see [9–11] for more discussion. We shall also make a consistency check by a
direct confrontation between the change in Casimir energy and the direct sum,E =∑k ωknk
of the energies of the created photons. The former energy (the total energy of the particles that
can be produced by the collapse) must necessarily equal the Casimir energy of the bubble in
the ‘in’ state since in the current simplified model there is no external source of energy (like
the driving sound in the true dynamical effect). For this reason we expect to be able to give
a definitive answer on the nature (dependence on the bubble radius and on the cut-off) of the
static Casimir energy. Of course it is evident that such a model cannot be considered a fully
satisfactory model for sonoluminescence. In fact this model completely ignores the details of
the dynamics and moreover, by considering just one cycle, implies impossibility of testing for
the possible presence of any parametric resonances. We thus consider the present calculation
as a toy model in which some basic features of the Casimir approach to sonoluminescence
are investigated: it provides a test of the nature and quantity of the particles produced by a
collapsing dielectric bubble in the sudden approximation.

2.1. Formal calculation

Let us consider the equations of the electric fields (Schwinger framework) in spherical
coordinates and with a time-independent dielectric constant (we temporarily setc = 1 for
ease of notation, and shall reintroduce appropriate factors of the speed of light when needed
for clarity)

ε∂0(∂0E)−∇2E = 0. (3)

We look for solutions of the form

E = 8(r, t)Ylm(�)1
r
. (4)
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Then one finds

ε(∂2
08)− (∂2

r 8) +
1

r2
l(l + 1)8 = 0. (5)

For both the ‘in’ and ‘out’ solution the field equation inr is given by

ε∂2
08− ∂2

r 8 +
1

r2
l(l + 1)8 = 0. (6)

In both asymptotic regimes (past and future) one has a static situation (either a bubble in the
dielectric, or just the dielectric) so one can in this limit factorize the time and radius dependence
of the modes:8(r, t) = eiωtf (r). One gets

f
′′

+

(
εω2 − 1

r2
l(l + 1)

)
f = 0. (7)

This is a well known differential equation. To handle it more easily in a standard way we can
cast it as an eigenvalues problem:

f
′′ −

(
1

r2
l(l + 1)

)
f = −λ2f (8)

whereλ2 = εω2. With the change of variablesf = r1/2G we get

G
′′

+
1

r
G
′
+

(
λ2 − ν

2

r2

)
G = 0. (9)

This is the standard Bessel equation. It admits as solutions the first type Bessel and Neumann
functions,Jν(λr) andNν(λr), with ν = l + 1/2. Remember that for those solutions which
have to be well defined at the origin,r = 0, regularity implies the absence of the Neumann
functions. For the ‘in’ basis we have to take into account that the dielectric constant changes
at the bubble radius (R). In fact we have

ε =


εinside= n2

gas= dielectric constant of air-gas mixture
if r 6 R

εoutside= n2
liquid = dielectric constant of ambient liquid

(typically water) if r > R.

(10)

Typically one simplifies calculations by using the fact that the dielectric constant of air is
approximately equal to 1 at standard temperature and pressure (STP), and then dealing only
with the dielectric constant of water (nliquid = √εoutside ≈ 1.3). We find it convenient to
explicitly keep track ofngas andnliquid in the formalism we develop. Defining the in and out
frequencies,ωin andωout respectively, one has

Gin
ν (ngas, nliquid, ωin, r) =

{
AνJν(ngasωinr) if r 6 R
BνJν(nliquidωinr) +CνNν(nliquidωinr) if r > R.

(11)

TheAν , Bν , andCν coefficients are determined by matching conditions inR

AνJν(ngasωinR) = BνJν(nliquidωinR) +CνNν(nliquidωinR)

AνJν
′(ngasωinR) = BνJν ′(nliquidωinR) +CνNν

′(nliquidωinR).
(12)

The ‘out’ basis is easily obtained solving the same equation but for a space filled with a
homogeneous dielectric,

Gout
ν (nliquid, ωout, r) = Jν(nliquidωoutr). (13)
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To check that the ‘out’ basis is properly normalized we use the scalar product, defined as usual
by

(φ1, φ2) = −i
∫
6

φ1
↔
∂ 0 φ

∗
2 d3x. (14)

There are subtleties in the definition of scalar product which are dealt with more fully in [9–11].
The naive scalar product adopted here is missing a dependence on the refractive indices of
the gas and the surrounding water. Given the fact that in the present framework both of these
are approximately equal to one, the product adopted here is good enough for a qualitative
discussion. Consider now the scalar product of a eigenfunction with itself, one expects to
obtain a normalization condition which can be written as

((8i
out)
∗, (8j

out)
∗) = δij . (15)

Inserting the explicit form of the8 functions we get

((8i
out)
∗, (8j

out)
∗) = (λ + λ′)

∫ ∞
0
r drJν(λr)Jν(λ

′r)ei(λ−λ′) (16)

= (λ + λ′)
δ(λ− λ′)

λ
ei(λ−λ′) (17)

where we have used the Hankel Integral Formula [22]∫ ∞
0
r drJν(λr)Jν(λ

′r) = δ(λ− λ′)/λ. (18)

The Bogolubov coefficients aredefinedas

αij = −(Eout
i

∗
, E in

j

∗
) (19)

βij = +(Eout
i , E in

j

∗
). (20)

We are mainly interested in the coefficientβ, since|β|2 is linked to the total number of particles
created. By a direct substitution it is easy to find the expression:

β = −i
∫ ∞

0

(
8out(r, t)Ylm(�)

1

r

) ↔
∂ 0

(
8in(r, t)Yl′m′(�)

1

r

)∗
r2 dr d� (21)

= (ωin − ωout)e
i(ωout+ωin)t δll′δmm′

∫ ∞
0
Gout
l (nliquid, ωout, r)

×Gin
l′ (ngas, nliquid, ωin, r)r dr. (22)

To compute the integral one needs some ingenuity. Let us write the equations of motion for
two different values of the eigenvalues,λ andµ:

G
′′
λ +

1

r
G
′
λ +

(
λ2 − 1

r2

(
l +

1

2

)2
)
Gλ = 0 (23)

G
′′
µ +

1

r
G
′
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(
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r2

(
l +

1

2

)2
)
Gµ = 0. (24)

If we multiply the first byGµ and the second byGλ we get

G
′′
λGµ +

1

r
G
′
λGµ +

(
λ2 − 1

r2

(
l +

1

2

)2
)
GλGµ = 0 (25)

G
′′
µGλ +

1

r
G
′
µGλ +

(
µ2 − 1

r2

(
l +

1

2

)2
)
GµGλ = 0. (26)
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Subtracting the second from the first we then obtain

(G
′′
λGµ −G′′µGλ) +

1

r
(G

′
λGµ −G′µGλ) + (λ2 − µ2)GλGµ = 0. (27)

The second term on the left-hand side is a pseudo-Wronskian determinant

Wλµ(r) = G′λ(r)Gµ(r)−G′µ(r)Gλ(r) (28)

and the first term is its total derivative dWλµ/dr. It’s a pseudo-Wronskian, not a true Wronskian,
since the two functionsGλ andGµ correspond to different eigenvalues and so solve different
differential equations. The derivatives are all with respect to the variabler. Using this definition
we can cast the integral overr of the product of two given solutions into a simple form.
Generically:

(µ2 − λ2)

∫ b

a

r drGλGµ =
∫ b

a

r dr dWλµ +
∫ b

a

drWλµ. (29)

That is ∫ b

a

r drGλGµ = 1

(µ2 − λ2)
Wλµr

∣∣∣∣b
a

−
∫ b

a

drWλµ +
∫ b

a

drWλµ. (30)

So the final result is∫ b

a

r drGλGµ = 1

(µ2 − λ2)
(Wλµr)

∣∣∣∣b
a

. (31)

This expression can be applied in our specific case equation (22), we obtain:∫ ∞
0
r drGout

ν (nliquid, ω, r)G
in
ν (ngas, nliquid, ω, r)

=
∫ R

0
r drGout

ν (nliquidωoutr)G
in
ν (ngasωinr)

+
∫ ∞
R

r drGout
ν (nliquidωoutr)G

in
ν (nliquidωinr) (32)

= {rW [Gout
ν (nliquidωoutr),G

in
ν (ngasωinr)]}R0

(nliquidωout)2 − (ngasωin)2

+
{rW [Gout

ν (nliquidωoutr),G
in
ν (nliquidωinr)]}∞0

(nliquidωout)2 − (nliquidωin)2
(33)

= R
[
W [Gout

ν (nliquidωoutr),G
in
ν (ngasωinr)]R−

(nliquidωout)2 − (ngasωin)2

−W [Gout
ν (nliquidωoutr),G

in
ν (nliquidωinr)]R+

(nliquidωout)2 − (nliquidωin)2

]
(34)

where we have used the fact that the above forms are well behaved (and equal to 0) forr = 0.
We have discarded additional delta-function contributions arising fromr = ∞ because they
are proportional toδ(ωin − ωout) and do not contribute to the Bogolubov coefficientβ due to
the prefactor(ωin − ωout). (Here and henceforth we shall automatically give the samel value
to the ‘in’ and ‘out’ solutions by using the fact that equation (22) contains a Kronecker delta
in l andl′.)

Finally the two pseudo-Wronskians so found can be shown to be equal (by the junction
condition (12)). In fact one can easily check that

AνW [Jν(nliquidωoutr), Jν(ngasωinr)]R = BνW [Jν(nliquidωoutr), Jν(ngasωinr)]R
+CνW [Jν(nliquidωoutr), Nν(ngasωinr)]R. (35)
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This equality allows one to rewrite integral in equation (22) in a more compact form∫ ∞
0
r drGout

ν (nliquid, ω, r)G
in
ν (ngas, nliquid, ω, r)

= Aν
[

1

(nliquidωout)2 − (ngasωin)2
− 1

(nliquidωout)2 − (nliquidωin)2

]
×W [Jν(nliquidωoutr), Jν(ngasωinr)]R (36)

= −
(
n2

liquid − n2
gas

n2
liquid

)
AνRω

2
in

[ω2
out− ω2

in]

W [Jν(nliquidωoutr), Jν(ngasωinr)]R
[(nliquidωout)2 − (ngasωin)2]

. (37)

Inserting this expression into equation (22) we get

β =
(
n2

liquid − n2
gas

n2
liquid

)
δll′δmm′

(ωout− ωin)

ω2
out− ω2

in

RAν

×ω
2
inW [Jν(nliquidωoutr), Jν(ngasωinr)]R

[(nliquidωout)2 − (ngasωin)2]
ei(ωout+ωin)t . (38)

We are mainly interested in the square of this coefficient summed overl andm. It is in fact this
quantity that is linked to the spectrum of the ‘out’ particles present in the ‘in’ vacuum, and it is
this quantity that is related to the total energy emitted. Including all appropriate dimensional
factors (c, h̄) we have

dN(ωout)

dωout
=
(∫
|β(ωin, ωout)|2 dωin

)
(39)

and

E = h̄
∫

dN(ωout)

dωout
ωout dωout. (40)

Hence we shall deal with the computation of

|β(ωin, ωout)|2 =
∑
lm

∑
l′m′

[βlm,l′m′(ωin, ωout)]
2 (41)

=
(
n2

liquid − n2
gas

n2
liquid

)2(
ω2

inR

ωout + ωin

)2 ∞∑
l=1

(2l + 1)|Aν |2

×
[
W [Jν(nliquidωoutr/c), Jν(ngasωinr/c)]R

(nliquidωout)2 − (ngasωin)2

]2

. (42)

This expression is too complex to allow an analytical resolution of the problem. Nevertheless
we shall show that the terms appearing in it can be suitably approximated in such a way as to
obtain a computable form that shall give us some information about the main predictions of
this model. We shall first look at the large-volume limit, which will allow us to compare this
result with Schwinger’s calculation, and then develop some numerical approximations suitable
for estimating the predicted spectra for finite volume.

2.2. Behaviour in the largeR limit

One of the main objectives of this calculation is to shed some light on the extent to which
the change in static Casimir energy can be transformed into photons. In particular, we
expect that the total energy of the photons calculated from this Bogolubov approach would
give approximately the same results as the static Casimir energy calculations such those of
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Schwinger [1–7] and Molina-Parı́s and co-workers [16–18], since we have excluded any
external forces.

From equation (42) it is easy to check that the general form of the squared Bogolubov
coefficient is given by

|β(x, y)|2 = R2

c2
β2

0(x, y) (43)

whereβ2
0(x, y) is a dimensionless quantity and we introduce dimensionless variablesx =

nliquidωoutR/c andy = ngasωinR/c. (The dimensions ofβ should always be those of time.)
The spectrum is then given by

dN(ωout)

dωout
= R

cngas

(∫ RK

0
|β0(x, y)|2 dy

)
(44)

and the energy radiated is

E = h̄c

n2
liquidngasR

∫ ∞
0

dx
∫ RK

0
dyx|β0(x, y)|2. (45)

If R is very large (but finite in order to avoid infrared divergences) then the ‘in’ and the ‘out’
modes can both be described by ordinary Bessel functions

Gin(ngas, ω, r) = Jν(ngasωinr/c) (46)

Gout(nliquid, ω, r) = Jν(nliquidωoutr/c). (47)

We can now compute the Bogolubov coefficient relating these states

βij = (Eout
i , E in

j

∗
) (48)

= (ωin − ωout)

c2
ei(ωout+ωin)t δll′δmm′

∫
Jν(ngasωinr/c)Jν(nliquidωoutr/c)r dr (49)

= (ωin − ωout)e
i(ωout+ωin)t δll′δmm′

δ(ngasωin − nliquidωout)

ngasωin
(50)

=
(

1

ngas
− 1

nliquid

)
eiωin(ngas/nliquid+1)t δll′δmm′δ(ngasωin − nliquidωout). (51)

This result implies that

|β(ωin, ωout)|2 =
∑
lm

∑
l′m′
|βlml′m′(ωin, ωout)|2 (52)

=
(
nliquid − ngas

nliquidngas

)2∑
l

(2l + 1){δ(ngasωin − nliquidωout)}2 (53)

=
(
nliquid − ngas

nliquidngas

)2∑
l

(2l + 1)δ(0)δ(ngasωin − nliquidωout) (54)

=
(
nliquid − ngas

nliquidngas

)2∑
l

(2l + 1)
R

2πc
δ(ngasωin − nliquidωout) (55)

where we have invoked the standard scattering theory result

{δ3(k)}2 = V

(2π)3
δ3(k) (56)
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specialized to the fact that we have a one-dimensional delta function (in frequency, not
momentum). The sum over angular momenta (which is formally infinite) can now be estimated
as follows:

lmax(ωout)∑
l=1

(2l + 1) = l2max(ωout)− 1≈ l2max(ωout). (57)

The angular momentum cutoff is estimated by taking

lmax(ω) ≈ (nliquidh̄ωout/c)× R
h̄

= nliquidωoutR/c = x. (58)

So in the above we are justified in approximating∑
l

(2l + 1) ≈ x2. (59)

By changing to the dimensionless variables(x, y) this finally gives

|β(x, y)|2 =
(
nliquid − ngas

nliquidngas

)2
R2

2πc2
x2δ(x − y). (60)

We can now compute the spectrum and the total energy of the emitted photons:

dN(ωout)

dωout
≈ R

2πcngas

(
nliquid − ngas

nliquidngas

)2 ∫ RK

0
x2δ(x − y) dy

= R

2πcngas

(
nliquid − ngas

nliquidngas

)2

x22(RK − x)

= n2
liquid

ngas

(
nliquid − ngas

nliquidngas

)2
R3ω2

out

2πc3
2(K − nliquidωout/c). (61)

For future comparison purposes it is convenient to write the spectrum in dimensionless form
as

dN

dx
≈ 1

2πnliquidngas

(
nliquid − ngas

nliquidngas

)2

x22(RK − x). (62)

From this equation it is easy to get the total number of the created photons:

N ≈ 1

2πnliquidngas

(
nliquid − ngas

nliquidngas

)2 ∫ ∞
0
x22(RK − x) dx

= 1

6πnliquidngas

(
nliquid − ngas

nliquidngas

)2

(RK)3 (63)

and the total emitted energy

E ≈ h̄c

2πn2
liquidngasR

(
nliquid − ngas

nliquidngas

)2 ∫ ∞
0

dx
∫ RK

0
x × x2 × δ(x − y) dy

= h̄c

2πn2
liquidngasR

(
nliquid − ngas

nliquidngas

)2 ∫ RK

0
dxx3

= h̄c

2πn2
liquidngasR

(
nliquid − ngas

nliquidngas

)2
(RK)4

4

= 1

8πn2
liquidngas

(
nliquid − ngas

nliquidngas

)2

h̄cK(RK)3. (64)
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Hence, feeding our results (60) into equations (44) and (45) for dN(ω)/dω andE, we find a
result which is in substantial agreement with the Schwinger (and Carlsonet al) results. We view
this as definitive proof that indeed Schwinger was essentially correct: the main contribution to
the Casimir energy which can be extracted from the collapse of a (large) dielectric bubble is a
bulk effect. The total energy radiated in photons balances the change in the Casimir energy up
to factors of order one which the present analysis is too crude to detect. (For infinite volume
the whole calculation can be re-phrased in terms of plane waves to accurately fix the last few
prefactors.)

In Schwinger’s original model he tookngas≈ 1, nliquid ≈ 1.3,R ≈ Rmax ≈ 40µm and
K ≈ 2π/(360 nm) [4]. ThenKR ≈ 698. Substitution of these numbers into equation (1)
leads to an energy budget suitable for about 3 million emitted photons.

By direct substitution in equation (63) it is easy to check that Schwinger’s results can
qualitatively be recovered also in our formalism: in our case we get about 0.7 million
photons for the same numbers of Schwinger and about 1.5 million photons using the updated
experimental figuresRmax≈ 45µm andK ≈ 2π/(300 nm). The average energy per emitted
photon is approximately†

〈E〉 = 3
4h̄cK/nliquid = 3

4h̄ωmax∼ 3 eV. (65)

It is important to stress that equation (1) and equation (64) are not identical (even if in the
largeR limit the leading term of Casimir energy of the ‘in’ state and the total photon energy
coincide). One can easy see that the volume term we just found (equation (64)) is of second
order in (n − 1) and not of first order like equation (1). This is ultimately due to the fact
that the interaction term responsible for converting the initial energy in photons is a pairwise
squeezing operator [12]. Equation (64) demonstrates that any argument that attempts to deny
the relevance of volume terms to sonoluminescence due to their dependence on(n − 1) has
to be carefully reassessed. In fact what you measure when the refractive index in a given
volume of space changes isnot directly the static Casimir energy of the ‘in’ state, but rather
the fraction of this static Casimir energy that is converted into photons. We have just seen that
once conversion efficiencies are taken into account, the volume dependence is conserved, but
not the power in the difference of the refractive index.

Indeed the dependence of|β|2 on (n − 1)2 and the symmetry of the former under the
interchange of ‘in’ and ‘out’ states also proves that it is the amount of change in the refractive
index and not its ‘direction’ (from ‘in’ to ‘out’) that governs particle production. This also
implies that any argument using static Casimir energy balance over a full cycle has to be
used very carefully. Actually the total change of the Casimir energy of the bubble over a cycle
would be zero (if the final refractive index of the gas is again 1). Nevertheless, in the dynamical
calculation one gets photon production in both collapse as well expansion phases. (Although
some destructive interferences between the photons produced in collapse and in expansion are
conceivable, these will not be really effective in depleting photon production because of the
substantial dynamical difference between the two phases and because of the, easy to check,
fact that most of the photons created in the collapse will be far away from the emission zone
by the time the expansion photons would be created.) This apparent paradox is easily solved
by taking into account that the main source of energy is the sound field and that the amount of
this energy actually converted in photons during each cycle is a very tiny amount of the total
power.

We now turn to the study of the predictions of the model in the case of finite radius.
Unfortunately this cannot be done in an analytic way due to the wild behaviour of the pseudo-
Wronskian of the Bessel function. Nevertheless, some ingenuity and a detailed study of the

† The maximum photon energy is ¯hωmax≈ 4 eV.
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different parts of the Bogolubov coefficient leads to reasonable approximations that allow a
clear description of the spectrum of particle predicted by the model.

2.3. The A factor

TheAλ, Bµ, andCµ factors can be obtained by a two-step calculation. First, one must solve
the system (12) by expressingB andC as functions ofA. Then one can fixA by requiring
B2 +C2 = 1, a condition which comes from the asymptotic behaviour of the Bessel functions.
Following this procedure, and again suppressing factors ofc for notational convenience, we
get

Aν = W [Jν(nliquidωinr), Nν(nliquidωinr)]√
W [Jν(ngasωinr), Nν(nliquidωinr)]2 +W [Jν(ngasωinr), Jν(nliquidωinr)]2

∣∣∣∣∣
R

(66)

Bν = Aν
W [Jν(ngasωinr), Nν(nliquidωinr)]

W [Jν(nliquidωinr), Nν(nliquidωinr)]

∣∣∣∣
R

(67)

Cν = Aν
W [Jν(nliquidωinr), Jν(ngasωinr)]

W [Jν(nliquidωinr), Nν(nliquidωinr)]

∣∣∣∣
R

. (68)

We are mostly interested in the coefficientAν . This can be simplified by using a well known
formula (Abramowitz–Stegun, p 360, formula 9.1.16) for the (true) Wronskian of Bessel
functions of the first and second kind.

Wtrue[Jν(z),Nν(z)] = 2

πz
. (69)

In our case, taking into account that for our pseudo-Wronskian the derivatives are with respect
to r (not with respect toz), one gets for the numerator ofAν :

W [Jν(nliquidωinr), Nν(nliquidωinr)]R = nliquidωin
2

π(nliquidωinR)
= 2

πR
. (70)

Hence theAν can be written as

|Aν |2 = 4/(π2R2)

W [Jν(ngasωinr), Nν(nliquidωinr)]2 +W [Jν(ngasωinr), Jν(nliquidωinr)]2|R . (71)

Forω→∞ at l fixed the asymptotic behaviour is

|Aν |2 ∼ 2ngasnliquid

n2
gas+ n2

liquid + (n2
liquid − n2

gas) cos(2ngasωin − (ν + 1/2)π)
. (72)

Numerical plots of|Aν |2 show that it is an oscillating function which rapidly reaches this
asymptotic form.

We shall use this approximation to replace theAν factor with its mean value for large
arguments:

|Aν |2 ≈ 1

2π

∫ 2π

0
dz

2ngasnliquid

n2
gas+ n2

liquid + (n2
liquid − n2

gas) cos(z)
= 1. (73)

That this approximation is adequate may be checkeda posterioriby seeing that the Bogolubov
coefficients are not noticeably affected.
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Figure 1. Plot of |Al |2 for ν = 3
2 andν = 5

2 . (Here we definez = ωR/c and putngas = 1,
nliquid = 1.3.) The function rapidly stabilizes to the asymptotic behaviour. The dotted curve shows
the behaviour of the asymptotic form forν = 3

2 .

2.4. The pseudo-Wronskian

Use the simplified notation in whichx = nliquidωoutR/c, y = ngasωinR/c. In these
dimensionless quantities, after including the approximation equation (73), and making explicit
the dependence onR andc, equation (42) takes the form:

|β(x, y)|2 = R2

c2

(n2
liquid − n2

gas)
2

n2
liquidn

2
gas

(
y2

ngasx + nliquidy

)2

F(x, y). (74)

HereF(x, y) is shorthand for the function

F(x, y) =
∞∑
l=1

(2l + 1)

∣∣∣∣ Jν(x) Jν(y)

xJ ′ν(x) yJ ′ν(y)

∣∣∣∣2
(x2 − y2)2

(75)

where in this equation the primes now signify derivatives with respect to the full arguments (x

or y).
In order to proceed in our analysis we now need to perform the summation over angular

momentum. Although the infinite sum is analytically intractable, there are two reasonable
arguments (one physical and one mathematical) both leading to the conclusion that suitable
truncations of this sum will be enough for our purposes.

The first argument is a physical one and it is based on the maximum amount of angular
momentum that an outgoing photon may have. Basically, if one supposes the photons to
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be produced inside or at most on the surface of the bubble, the upper limit for the angular
momentum will be the product of the bubble radius times the maximal ‘out’ momentum. Then
one gets:

lmax(K) = R(h̄K)

h̄
= RK. (76)

For sonoluminescenceK is of order 2π/(200 nm). Deciding the appropriate value ofR is
more tricky. Since the sonoluminescence flash occurs at or near the moment of minimum
radius one might wish to useRmin ≈ 500 nm in which caselmax(K) ≈ 15. Certainly, for this
choice ofR keeping the first ten or so terms will be sufficient. More conservatively, one might
wish to chooseR to be of orderRambient≈ 4.5µm in which caselmax(K) ≈ 135. Keeping this
number of terms in the series is already very unwieldy. Finally, in Schwinger’s original version
of the model it is the change in Casimir energy during the collapse all the way from maximum
radius that is relevant, so perhaps one should useRmax≈ 45µm. In this caselmax(K) ≈ 1350,
and explicit summation of the series is prohibitively difficult. To handle these problems we
develop a semi-analytic approximation to the sum which is sufficient for making numerical
estimates of the spectrum.

This argument can be bolstered by considering the large-order expansion (ν →∞ at fixed
x) of the Bessel functions. In this limit one gets [23]:

Jν(x) ∼ 1√
2πν

(ex
2ν

)ν
. (77)

This can be used to obtain the asymptotic form of the pseudo-Wronskian appearing in
equation (75):

W̃ν(x, y) ≡
∣∣∣∣ Jν(x) Jν(y)

xJ ′ν(x) yJ ′ν(y)

∣∣∣∣ (78)

= −
∣∣∣∣ Jν(x) Jν(y)

xJν+1(x) yJν+1(y)

∣∣∣∣ (79)

∼ (x2 − y2)

2π(ν)1/2(ν + 1)3/2

(
xy

ν(ν + 1)

)ν ( e
2

)2ν+1
(80)

where we have used the standard recursion relation for the Bessel functionsJ ′ν(z) =
νJν(z) − zJν+1(z). This indicates that the sum overν is convergent: the terms for which
(xy/ν2) 6 1 are suppressed. Since, depending on one’s views as to the appropriate value of
R, x andy are at most of order 15, 135, or 1350 we deduce that the maximal contribution to
the sum comes from a limited number of terms.

Analytically, it is easy to see that the functionF(x, y) is finite along the diagonal and goes
smoothly to zero forx, y → 0. To proceed to an actual computation of the predicted spectrum
we need to develop an semi-analytic approximate form for this function by considering
separately the behaviour along the diagonalx − y = 0 and in the transversal direction
x + y = constant.

2.5. Working along the diagonal

To study in more detail the behaviour of such a function in this zone one can perform a Taylor
expansion ofF(x, y) aroundx = y:

lim
x→y

W̃ν(x, y)

(x − y) ≡ lim
x→y

∣∣∣∣ Jν(x) Jν(y)

xJ ′ν(x) yJ ′ν(y)

∣∣∣∣
(x − y) (81)
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Figure 2. Plot of the exactD(x) against its approximated form in the range 1< x < 30.

= lim
x→y

∣∣∣∣ Jν(x) Jν(x) + (x − y)J ′ν(x)
xJ ′ν(x) xJ ′ν(x) + (x − y)[J ′ν(x) + xJ ′′ν (x)]

∣∣∣∣
(x − y) (82)

=
∣∣∣∣ Jν(x) J ′ν(x)
xJ ′ν(x) J ′ν(x) + xJ ′′ν (x)

∣∣∣∣ (83)

= Jν(x)[J ′ν(x) + xJ ′′ν (x)] − xJ ′ν(x)2. (84)

The derivatives can be eliminated by using the well known recursion relations:

lim
x→y

W̃ν(x, y)

(x − y) = Jν(x)
[
(ν2 − x2)

x

]
− x

[ν
x
Jν(x)− Jν+1(x)

]2
(85)

= 2νJν(x)Jν+1(x)− x[J 2
ν (x) + J 2

ν+1(x)]. (86)

For sake of simplicity we shall use an equivalent form of equation (86) where lower-order
Bessel functions appear:

lim
x→y

W̃ν(x, y)

(x − y) = 2νJν(x)Jν−1(x)− x[J 2
ν (x) + J 2

ν−1(x)]. (87)

This result shows that, as expected, each term ofF(x, x) is finite along the diagonal and equal
to zero atx = y = 0. Moreover

D(x) ≡ F(x, x) =
∞∑
l=1

(2l + 1)
{(2l + 1)Jl+1/2(x)Jl−1/2(x)− x[J 2

l+1/2(x) + J 2
l−1/2(x)]}2

4x2
.

(88)



Sonoluminescence as a QED vacuum effect 2265

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-2 -1 1 2
x

Figure 3. Transverse fit: an orthogonal slice ofF(x, y) intersecting the diagonal at(x, y) = (3, 3).
HereF(3 + z, 3− z) is plotted in comparison with [sin2(πz/2)]/(πz/2)2.

This sum can easily be checked to be convergent for fixedx. (Use equation (77).) With a little
more work it can be shown that

lim
x→∞D(x) =

1

2π2
.

The truncated function obtained after summation over the first few terms (say the first ten or so
terms) is a long and messy combination of trigonometric functions that can however be easily
plotted and approximated in the range of interest. Due to numerical artifacts, the function is
not controllable near the origin, fortunately we have analytic information in that region—the
function is very near to zero in the range(0, 1) for both ‘out’ and ‘in’ frequencies, and can be
approximated by zero without any undue influence on the numerical results. A semi-analytical
study led us to the approximate form ofD(x)

D(x) ≈ 2(x − 1)
1

2π2

2(x − 1)2

3 + 2(x − 1)2
. (89)

A confrontation between the two curves in the range of interest is given in figure 2.

2.6. The factorization approximation

To numerically perform the integrals needed to do obtain the spectrum it is useful to note the
approximate factorization property

F(x, y) ≈ F
(x + y

2
,
x + y

2

)
G

(
x − y

2

)
. (90)
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Figure 4. Transverse fit: an orthogonal slice ofF(x, y) intersecting the diagonal at(x, y) = (5, 5).
HereF(5 + z, 5− z) is plotted in comparison with [sin2(πz/2)]/(πz/2)2.

That is: to a good approximationF(x, y) is given by its value along the nearest part of the
diagonal, multiplied by a universal function of the distance away from the diagonal. A little
experimental curve fitting is actually enough to show that to a good approximation

F(x, y) ≈ D
(x + y

2

) sin2(π [x − y]/4)

(π [x − y]/4)2
. (91)

From figures 3–7 it is easy to check that the functionF(x, y) is quite well fitted by our
approximation. We feel it is important to stress that this is approximation is based on numerical
experimentation, and is not an analytically driven approximation. (In the infinite-volume case
we know thatF(x, y)→ (constant)× δ(x − y), cf equation (60). The effect of finite volume
is effectively to ‘smear out’ the delta function. The combination sin2(x)/(πx2) is one of the
standard approximations to the delta function.) Our approximation is quite good everywhere
except for values ofx andy near the origin (less than 1) where the contribution of the function
to the integral is very small.

2.7. The spectrum: numerical evaluation

We have now transformed the functionF(x, y) into an easy to handle product of two functions

F(x, y) ≈ 2(x + y − 2)
1

2π2

(x + y − 2)2

6 + (x + y − 2)2
sin2(π [x − y]/4)

(π [x − y]/4)2
. (92)

We exhibit tridimensional graphs for both the exact (apart from the approximation of truncating
the sum at a finitel) and approximate forms of the functionF(x, y). We have chosen the case
of R = 0.5µm (corresponding toymax= 2.5 as previously explained).



Sonoluminescence as a QED vacuum effect 2267

0

0.01

0.02

0.03

0.04

0.05

-8 -6 -4 -2 2 4 6 8
x

Figure 5. Transverse fit: an orthogonal slice ofF(x, y) intersecting the diagonal at(x, y) =
(10, 10). HereF(10 +z, 10− z) is plotted in comparison with [sin2(πz/2)]/(πz/2)2.

A numerical study of the error due to the replacement ofF(x, y) with its approximated
form equation (92), leads to an upper limit of 20% error in the total energy emitted.

The dimensionless spectrum, based on equations (42) and (74), is

dN

dx
= (n2

liquid − n2
gas)

2

n3
liquidn

3
gas

∫ RK

0

(
y2

ngasx + nliquidy

)2

D
(x + y

2

) sin2(π [x − y]/4)

(π [x − y]/4)2
dy. (93)

As a consistency check, the infinite-volume limit is equivalent to making the formal
replacements

sin2(π [x − y]/4)

(π [x − y]/4)2
→ 4δ(x − y) (94)

and

D
(x + y

2

)
→ 1

2π2
. (95)

Doing so, equation (93) reduces to equation (62) up to an overall factor [4/π ] of order one.
The correct dependence on refractive index and correct power-law behaviour for the spectrum
are recovered, and the overall order-one factor is merely a reflection of the crudity of the cutoff
in angular momentum used in deriving (62).

With this consistency check out of the way, it is now possible to perform the integral with
respect toy to estimate the spectrum for finite volume. For definiteness we setnliquid = 1.3
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Figure 6. Plot of the exactF(x, y) in the range 0< x < 5, 0< y < 2.5.

andngas= 1.0, putK = 2π/(200 nm), and pickR = 0.5µm (corresponding toymax= 15).
We integrate fromy = 0 toy = 15 and plot the resulting spectrum fromx = 0 tox = 18.

One can also ask what sort of result one would get if, alternatively, we pick a much larger
value ofR, sayR = 5µm, corresponding to the bubble at equilibrium radius. In this case the
approach towards the Schwinger (infinite volume result) result is much closer. We now have
ymax= 135. We integrate fromy = 0 toy = 135 and plot the resulting spectrum fromx = 0
to x = 140. For comparison we plot it together with equation (62) which is Schwinger’s naive
model (the re-scaled infinite volume limit).

The case corresponding to the bubble at maximum radius,R = 50µm, requires a range
of integration too large for standard numerical plotting. In any case the graph will only be a
replica of the previous one on a larger scale.

3. Discussion

The lessons we have learned from this test calculation are:

(1) The model proves (in an indirect way) that the Casimir energy produced via the bubble
collapse includes (in the large-R limit) a term proportional to the volume (actually to the
volume over which the refractive index changes). In the case of a truly dynamical model
one expects that the energy of the photons so created will be provided by other sources of
energy (e.g., the sound wave), nevertheless the presence of a volume contribution appears
unavoidable.

(2) The present model is still unable to fully fit other experimental features of
sonoluminescence. For example, it provides maximal photon release at maximum
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Figure 7. Plot of the approximatedF(x, y) in the range 0< x < 5, 0< y < 2.5.

expansion. Barberet al [8] point out that in Schwinger’s original model the main
production of photons may be expected when the the rate of change of the volume is
maximum, which is experimentally found to occur near the maximum radius. In contrast
the emission of light in sonoluminescence is experimentally found to occur near the point
of minimum radius, where the rate of change of area is maximum.All else being equal, this
would seem to indicate a surface dependence and might be interpreted as a true weakness
of the dynamical Casimir explanation of sonoluminescence.

In fact we have shown elsewhere [9–12] that the situation is considerably more complex
than might naively be thought. It is important to stress that what Schwinger proposed was
clearlyonly a first estimate of the vacuum energy, which was in principle viable as the basis
for a model, andnot a fully dynamical model. Schwinger was fully aware of this in his papers.

A fully dynamical calculation is required in order to deal with these issues, and the
experimental data give remarkable suggestions about the plausible directions for theoretical
developments within the framework of the dynamic Casimir effect. In particular, one of
the key features of photon production by a space-dependent and time-dependent refractive
index is that for a change occurring on a timescaleτ , the amount of photon production is
exponentially suppressed by an amount exp(−ωτ). In [10] we have provided a specific model
that exhibits this behaviour, and argued that the result is in fact generic. The importance for
sonoluminescence is that the experimental spectrum isnot exponentially suppressed at least
out to the far ultraviolet. Therefore any mechanism of Casimir-induced photon production
based on an adiabatic approximation is destined to failure: since the exponential suppression
is not visible out toω ≈ 1015 Hz, it follows thatif sonoluminescence is to be attributed to
photon production from a time-dependent dielectric bubble (i.e., the dynamical Casimir effect),
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Figure 8. Spectrum obtained by the approximated Bogolubov coefficient forR = 0.5 µm
corresponding toymax = 15. We integrate fromy = 0 to y = 15 and plot the resulting spectrum
from x = 0 tox = 18.
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Figure 9. Spectrum obtained by the approximated Bogolubov coefficient forR = 5 µm
corresponding toymax = 135. We integrate fromy = 0 to y = 135 and plot the resulting
spectrum fromx = 0 tox = 140.
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thenthe timescale for change in the refractive index must be of order of afemtosecond. Thus
any Casimir-based model has to take into account thatit is no longer the collapse fromRmax to
Rmin that is important. One has to divorce the change in refractive index from direct coupling
to the bubble wall motion, and instead ask for a rapid change in the refractive index of the
entrained gases as they are compressed down to their van der Waals hard core [10, 11]. We
stress that this conclusion, though it moves away from the original Schwinger proposal, is still
firmly within the realm of the dynamic Casimir effect approach to sonoluminescence. The
fact is that this work shows clearly that a viable Casimir ‘route’ to sonoluminescence cannot
avoid a ‘fierce marriage’ between QFT and features related to condensed matter physics.

4. Conclusions

The present calculation unambiguously verifies that a sudden change in radius of a dielectric
bubble causes a change in the Casimir energy that is, as predicted by Schwinger [1–7] and
Molina-Paŕıs and co-workers [16–18], converted into real photons with a phase space spectrum.
As far as sonoluminescence is concerned, we have also explained why such a changemustbe
sudden in order to fit the experimental data. This leads us to propose a somewhat different
model of sonoluminescence based on the dynamical Casimir effect, a model focused on the
actual dynamics of the refractive index (as a function of space and time), and not just of
the bubble boundary. (In Schwinger’s original approach the refractive index changes only
due to motion of the bubble wall.) In summary, provided the sudden approximation is valid,
changes in the refractive index will lead to efficient conversion of zero-point fluctuations into
real photons. Trying to fit the details of the observed spectrum in sonoluminescence then
becomes an issue of building a robust model of the refractive index of both the ambient water
and the entrained gases as functions of frequency, density, and composition. Only after this
prerequisite is satisfied will we be in a position to develop a more complex dynamical model
endowed with adequate predictive power.

In light of these observations we think that one can also derive a general conclusion about
the long standing debate on the actual value of the static Casimir energy and its relevance to
sonoluminescence: sonoluminescence is not directly related to thestaticCasimir effect. The
static Casimir energy is at best capable of giving a crude estimate for the energy budget in
sonoluminescence.
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(Carlson C E, Molina-Parı́s C, Ṕerez-Mercader J and Visser M 1996Preprinthep-th/9609195)
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