
The Translator Pattern —

External Functionality with Homomorphic Mappings

Thomas Kühne

kuehne@informatik.th-darmstadt.de

Department of Computer Science

Darmstadt University of Technology

Magdalenenstr. 11c, D-64289 Darmstadt

Abstract

We describe how to express homomorphic trans-
lations with an object-oriented design. This in-
cludes a uniform approach to the addition of
external functionality to data structures. We
present the tradeoffs of distributing intrinsic and
extrinsic properties to data structures and exter-
nal functions respectively. A mini-architecture
(design pattern) for the emulation of multi-
dispatching functions is presented in order to al-
low the definition of local translation functions.
Actually, we present a variant of the Visitor pat-
tern, but add the idea of maintaining a homo-
morphism between source and target and intro-
duce a target structure between source structure
and target semantics. Combined, these concepts
pave the way to incremental evaluation.

1 Introduction

Many operations on data structures can be
viewed as homomorphisms, that is, as structure

Appeared in Conference Proceedings
of TOOLS USA, Santa Barbara,
California, editors Christine Mingins
and Bertrand Meyer, pages 48–62, 1997

preserving mappings from one domain into an-
other. For instance, compilers typically map the
abstract syntax of the source language into a
specific machine code language1. Other kinds
of abstract interpretations (e.g., pretty-printing
and type-checking) should be expressed as ho-
momorphisms between source and target do-
main as well. The reason for this recommen-
dation can be explained by means of an equa-
tion that holds, if a homomorphic relationship
between two structures exists:

φ(op(a, b)) = op′(φ(a), φ(b)) (1)

An interpretation φ on an operation op (from
a source domain) with subcomponents a and b

is defined as a new operation op′ (from a target
domain) whose subcomponents are determined
by again applying φ to a and b [Wechler 92].
Applied to compilation this looks like:

compile(assign(lhs, rhs)) =
store(compile(lhs), compile(rhs))

First of all, the above equation depicts a general
way of shifting the interpretation from operators
down to operands. The strictly “top-down” re-
cursive nature of this translation process should
be recognizable for users of an object-oriented

1Historically, homomorphisms are closely connected
to syntax-directed translations [Aho 86] and correspond
to compositional definitions [Nielson 93].



design. Furthermore, the right hand side of
equation 1 has a structure that allows us to
account for incremental modifications to the
source structure. Consider a change made to the
left-hand-side (lhs) of assign. There is no need
to rebuild the whole result term. One simply has
to apply compile to the changed lhs and plug
the result into the first operand of store.

A homomorphic translation is allowed to per-
form a non-injective mapping, i.e., different ele-
ments of the source domain may be mapped onto
the same element in the target domain. For in-
stance, an initialization statement for a variable
could be translated to a store instruction as
well. In the target domain (machine language)
there is no way to tell which type in the source
domain caused the generation of a store (see
section 2.7 Separation for further homomorphic
simplifications).

Subsequently, we describe a general approach
for homomorphic translations in the form of
a design pattern [Gamma 94]. The Translator
pattern joins four aspects:

1. Homomorphic translations

2. Separation of translation and semantics

3. Potential incremental translations

4. External polymorphism.

The last point is of technical nature but will
immediately be explained within the core pat-
tern description as it substantially influences the
pattern’s structure. We already elaborated on
point one, i.e., assigning a meaning to a recur-
sive structure in terms of a similarly structured
recursive meaning. Point two refers to the fact
that this recursive meaning is represented by
an explicit intermediate data structure. Thus,
the final semantics of the translation is given
by a function on the intermediate data struc-
ture. This aspect, as well as point three, will
be discussed in the pattern’s consequences (sec-
tion 2.7).

2 Design Pattern: Translator

2.1 Intent

Add semantics to structures with heterogeneous
elements without changing the elements. Sep-
arate interpretations from each other and use
local interpretations that allow for incremental
reevaluation.

2.2 Motivation

Consider a programming environment that rep-
resents programs as abstract syntax trees. It
will need to perform various interpretations on
the abstract syntax tree like type-checking, code
generation, and pretty-printing. Figure 1 de-
picts two sample transformations.

"THEN"

"END"

"IF"

TEST

BEQ <LABEL>

<LABEL> NOP

MOVE B(vars), Rn

MOVE Rn, Rm

MOVE V(vars), Rn MOVE W(vars), Rn

Assembler Code

"V" "W"

":=""B"

Pretty Print
IF_THEN

"B"

ASSIGN

"V" "W"

induces creation

re
fe

re
nc

es

abstract Syntax Tree

Figure 1: Homomorphic translations of trees

The result of a mapping (dashed arrows in fig-
ure 1) depends on the interpretation (e.g., com-
pilation) and concrete node type (e.g., assign)
involved. One may put all various interpreta-
tions (type-check, pretty-print, etc.) into the



node interface in order to rely on dynamic bind-
ing. However, this is often not a good idea:

• It leads to a system that is hard to under-
stand, maintain, and change.

• Adding a new interpretation means chang-
ing and recompiling all node types.

• An interpretation can not be added without
changing the node interface.

• The interface of nodes will grow until it be-
comes bloated.

The first two arguments are also addressed by
the Visitor pattern [Gamma 94]). Visitor also
addresses the problem of adding functionality
to each node-type (represented by a class) in a
conceptual hierarchy (e.g., abstract syntax, con-
struction data, etc.) but does not aim at in-
crementality and demands node-types to know
about external interpretations (see section 2.10).

The last two arguments of the above list es-
pecially apply to data structures other than ab-
stract syntax trees. Consider a data structure
that represent the logical structure of a build-
ing. It is probably only well after designing the
interface to that structure that one wishes to
perform some interpretation like computing the
total rent income. In this context, it is use-
ful to differentiate between intrinsic properties
(nodes have descendents) and extrinsic proper-
ties (pretty-print). There is no end to extrinsic
properties and it does not make sense to lump
all of them into one interface.

Now, if we provide interpretations as exter-
nal features we are facing a problem with an
implementation language that provides single-
dispatch only2. As already mentioned, the code
to be executed for each node when we traverse
an abstract syntax tree depends on two variabil-
ities:

2Languages with multi-dispatch, e.g., Clos, Cecil, or
Dylan are not in widespread use.

exec-code(node-type, interpretation)

Note that we already rejected
node-type.interpretation with the
argumentation above. The reverse,
interpretation.node-type, does not make
sense, since, unlike the interpretation type, the
node type always changes during tree traversal;
that is, dispatch isn’t required for the receiver
but for the argument.

What we need is double-dispatch on both
node-type and interpretation. Fortunately,
there are ways to emulate double-dispatch and
its generalization multi-dispatch, with a single-
dispatch language. We opt for a solution
which can be characterized as external polymor-
phism (see section 2.10 for Visitor type double-
dispatch). Unlike Cleeland et al., however, we
do not use a combination of C++ templates,
Adapter, and Decorator [Cleeland 96]. We sim-
ply use generic functions [Kühne 96].

When a generic function object is applied to
a node, it determines the node’s type, creates
the corresponding specialized function object,
and returns the result of applying the special-
ized function object to the node.

interpret IDENTIFIER

interpret ASSIGN

interpret IF_THEN

abstract Syntax TreeInterpretation

"W""V"

ASSIGN

"B"

IF_THEN
generic FUNCTION

cr
ea

te
s

induces creation

re
fe

re
nc

es

Figure 2: Generic interpretation

Figure 2 depicts how concrete element types
(IF THEN) induce the creation of their corre-
sponding specialized functions. A specialized
function knows the exact type of its argument



and, therefore, can appropriately exploit the ar-
gument’s full interface.

Note that it is not only natural to deal with
generic functions to achieve double-dispatch,
but also very natural to employ functions for
translations. The approach of formally defining
the semantics of a programming language called
denotational semantics is entirely based on se-
mantic functions, i.e., functions that transform
phrases into denotations [Schmidt 86].

!

!

!

CLIENT

FUNCTION

LANGUAGE

TY_ASSTY_IF TY_VAR PP_IF PP_ASS PP_VAR

GEN_FUNC PF_IF PF_ASS PF_VAR

PP_FUNCTIONS

FUNCTIONS

TOY_LANG PP_LANG

print(indent : INT)

in
he

rit
s

has

cr
ea

te
s generic class

uses

Figure 3: Sample structure

Figure 3 shows the structure diagram that
corresponds to the domains used in figure 1.
Only relationships relevant to Translator have
been included. For instance, language nodes
like TY IF will typically have an aggregation re-
lation with TOY LANG. Exclamation marks de-
note places of possible extension (see section 2.7
Extensibility).

Class LANGUAGE in figure 3 is not required
in general (see figure 4). Also, it is not required
that TY IF, TY ASS, etc. have a common ancestor

(like TOY LANG). Hence, one can define seman-
tics on heterogeneous collections where element
types may come from different libraries.

2.3 Applicability

Use the Translator pattern for

• Adding semantics. When you want to
add an interpretation (even without having
planned for it) to a number of classes that
have different interfaces, Translator allows
accessing the heterogeneous interfaces indi-
vidually. The classes need not belong to the
same hierarchy or library.

• External functionality. Adding interpreta-
tions outside of elements avoids bloating the
elements’ interfaces with extrinsic concepts.
Also, if interpretations require additional
servers (e.g., environment lookup for type-
checking) the interpretations, as opposed to
the elements, will depend on the servers,
i.e., require recompilation in case one server
changes.

• Incrementality. When small changes to big
structures should not cause reevaluation of
the whole structure, exploit the homomor-
phic properties of Translator and use the in-
termediate structure (see figure 6) for stor-
ing computed results.

Do not use the Translator pattern in case of

• Unstable elements. When new elements are
frequently added to the source structure it
is probably better to define the interpreta-
tions in the elements. Otherwise, one has
to constantly change all associated function
packages (see figure 4 and also section 2.7).

• Space constraints. Unless you can make use
of the benefits of a target structure (see sec-
tion 2.7 Separation.), avoid the space over-
head by directly translating to results.



2.4 Structure

CLIENT

CONCRETE_FUNCTION_PACKAGE

FUNCTION

A
pp

lic
at

io
n 

re
la

te
d

2

Pa
tte

rn
 r

el
at

ed

1

2

2

1

1

SOURCE_ELEMENT

SOURCE_ELEMENT

TARGET_ELEMENT TARGET_ELEMENT

GEN_FUNC SPECIAL_FUNCTION SPECIAL_FUNCTIONFUNCTION_PACKAGE

TARGET_LANG

evaluate

Figure 4: Structure diagram

2.5 Participants

• Function (FUNCTION)

– declares an interface for function ap-
plication. Its two type parameters
specify argument and result type re-
spectively3.

– is used as the interface specification for
both generic and specialized functions.

• Generic function (GEN FUNC)

– corresponds to a denotational function
definition.

– uses function package FUNCTIONS and
run time type information to choose
and then delegate to a specialized
function.

3As is the case with all generic functions of figure 4.

• Specialized function (e.g., PF IF)

– corresponds to one pattern matching
branch of a denotational function def-
inition.

– defines a local transformation for a
source element (e.g., TY IF) to a corre-
sponding target element (e.g., PP IF).

– recursively transforms subcomponents
of its argument as well.

• Function package (e.g., FUNCTIONS)

– conceptually bundles related special-
ized functions.

– declares a generic type for specialized
functions to be refined by concrete
function packages.

• Concrete Function package (e.g.,
PP FUNCTIONS)

– defines a mapping from source ele-
ments to their corresponding special-
ized functions.

– creates prototypes of — and then ag-
gregates — specialized functions.

• Client

– creates or uses a source structure (e.g.,
TOY LANG).

– initializes or uses a function package
(e.g., PP FUNCTIONS).

– creates or uses a generic function
(GEN FUNC).

– applies a generic function to a source
structure.

2.6 Collaborations

Figure 5 shows important object interactions.
It refers to “@” for an infix function application
syntax (see sample code in section 2.9).



client ty_if pp_functions pf_var pf_ass pf_if pf_if* prettyPrint pp_if

make

init

make(pp_functions)

@(ty_if)

make

make

make

item("TY_IF")

clone

@(ty_if)

@(ty_ass)

@(ty_var)

make(pp_var, pp_ass)

Figure 5: Interaction diagram

• A client initializes a function package in or-
der to create a generic function from it.
The client applies the generic function to
the source structure in order to obtain the
translation result.

• The generic function consults the func-
tion package for a specialized function that
matches the type of the argument. Then it
applies a cloned exemplar of the specialized
function to the argument.

• A specialized function recursively calls its
associated generic function to the subcom-
ponents of its argument. Then it creates
the target element while providing it with
the results of the subcomponent evaluation.

Note that the time line gaps in figure 5 denote
potential recursive mappings of subcomponents.

2.7 Consequences

Tradeoffs of Translator are:

• External functionality. Translator makes it
easy to add interpretations to data struc-
tures with heterogeneous elements. In con-
trast to Visitor [Gamma 94] there is no
need to impose an Accept method on the
elements. Spreading interpretations over
all elements (i.e., object-oriented design)
would demand changing all elements when
introducing a new interpretation. Gath-
ering all related behavior into one generic
function (i.e., functional design) — thus
separating unrelated behavior (e.g., com-
pilation from pretty-printing) — results in
a clean partition and allows to hide inter-
pretation specific details (like interpreta-
tion specific data structures and accumu-
lated state) in generic functions.



"THEN"

"END"

"IF"

v := w;

Pretty-Print Structureabstract Syntax Tree Pretty-Print

IF_THEN

"B"

ASSIGN

"V" "W"

"B"

"V" "W"

":="

END

IF b THENEvaluation

change propagation

Translation
re

fe
re

nc
es

Figure 6: Distinct interpretation phases

• Instability. When using Translator, adding
new elements (e.g., changing the abstract
syntax of a language) becomes difficult.
Unlike Visitor, Translator does not demand
that one extends all interpretations with a
meaning for a new element (e.g., compila-
tion is not affected by adding a new type-
declaration node). However, updating of
concrete function packages and creation of
specific functions is required. Note that the
latter point must be done anyway, but if
interpretations are element methods, then
their completeness can be enforced by the
compiler. Using Translator, runtime errors
caused by an undefined mapping to a spe-
cialized function may occur.

• Extensibility. It is easy to add new trans-
lations and/or target structures. A new in-
terpretation simply requires

1. defining a new target structure (top
exclamation mark in figure 3),

2. defining specialized functions (right-
most exclamation mark), and

3. providing a function package that
maps the source elements to their spe-
cialized functions (leftmost exclama-
tion mark).

The last action is a tribute to the emulation
of generic functions.

• Flexibility. Elements to be translated need
not be from one class hierarchy (a counter
example is Iterator [Gamma 94]). In any
case, the full individual interface can be ac-
cessed by the associated specialized func-
tions.

• Broken encapsulation. Since specialized
functions can access the public interface of
elements only, the interface may be forced
to be wider than necessary for other clients.
A remedy is to use selective export or an-
other kind of “friend” mechanism.

• Separation. The semantics of an interpreta-
tion is defined in terms of a target structure
semantics (see figure 6). Thus, a clear sep-
aration between translation (mapping to a
target) and target semantics (meaning of
target) is achieved. Figure 7 depicts how
an interpretation is split into a translation
to a new Target structure and an evalu-
ation function that produces the final re-
sult. During the translation several simpli-
fications are possible (see table 1).

A pretty-print, therefore, is not a sequence
of side effects but, at first, a hierarchical
structure of print-elements, combinators,



Notation Meaning Example

φ(op1) = op′,

φ(op2) = op′.
Map distinct source elements
onto one destination element.

Translate both assign and
initialize to store.

φ(op(a, b)) = op′(φ(a)). Drop source operands. Do not consider type declara-
tions for compilation.

φ(op(a, b)) = φ(a). Prune source operators. Compile procedure bodies only
and forget about headers.

φ(op(a, b, c)) = φ(b),
if pred(a).

Perform static analysis to select
operands.

Compile if-then-else to its
then branch, if the boolean con-
dition is always true.

Table 1: Simplifications possible while translating

Source
translate

- Target

Result
?

evaluation

interpretation -

Figure 7: Splitting the interpretation

and possibly layout functions. In a sec-
ond step the, e.g., string representation of
a pretty-print is produced from this struc-
ture. Note that now it is perfectly al-
right to implement the semantics of the tar-
get structure as member methods of the
target structure. Since that structure is
meant for only one purpose, as opposed to
the abstract syntax tree which has many
interpretations, there is no drawback in-
volved. Figure 8 shows the separation be-
tween interpretations and their associated
target structures (Tc and Tp). The opera-
tion names inside the target structure boxes
denote their definition as member methods.
There will be no new interpretations on tar-
get structures that would require to open
and change the whole set of their classes.

Tc

compile

compile
- Rc

S
tra

ns p
-

Tp

pretty

pretty
-

trans
c

-

Rp

Figure 8: Non-interfering semantics

The interpretation can be defined locally for
each element, exploiting inheritance and re-
definition, without the disadvantages men-
tioned in section 2.2.

Besides the nice partition between
translation- and semantic related code,
the target structure also may serve as
a logical structure for the final repre-
sentation. For instance, a mouse click
onto a keyword could cause highlighting
the whole corresponding statement and
its subcomponents. While this could
be achieved by back-pointers into the
original abstract syntax tree as well, it
is cleaner and more appropriate (as no
reinterpretation is necessary) to refer to
the pretty-print structure. This argument
becomes more obvious in case of interpre-



tations whose logical structure bear less
resemblance to the abstract syntax tree
(e.g., type-checking information).

Also, assuming multiple users are working
simultaneously on one abstract syntax tree,
multiple intermediate structures allow them
to, e.g., use different compilation options to
achieve various code results. If semantic re-
sults are stored directly in the source struc-
ture, this would be a cause for interference.

Furthermore, an intermediate structure is
also helpful when aiming for incremental
updates.

• Incrementality. Naturally, target struc-
tures are subject to fast incremental re-
computation since they are produced by
homomorphic mappings from their source
structure (see section 1). Assuming N

to be the number of source structure ele-
ments, the asymptotic amount of recalcula-
tion needed to update the result of an ab-
stract interpretation is reduced from O(N)
down to O(log N). However, it is neces-
sary to store previously computed results
somewhere. Our approach of non-intrusive
addition of interpretations forbids storing
these at the source elements. The target
structure, however, (see figure 6; the flash
signs denote places of change) can serve
as a store for incremental results. The
target structure can play the role of an
Observer [Gamma 94] that becomes noti-
fied by changes in the source structure and
starts the necessary recomputations. The
target structure, in turn, is observed by the
final result.

• Space overhead. If incremental evaluation is
not an issue and space efficiency is a prior-
ity, then the intermediate structure should
be avoided in favor of a direct translation
to the final semantics. In a distributed set-
ting, however, we may purposely want to

trade space for speed. The intermediate
structures can be made local to their users,
while the single source structure is accessed
only when needed. Ergo, frequent evalua-
tions of target structures do not add to net
traffic.

2.8 Implementation

Here is one issue to consider when implementing
Translator (also see section 2.10 Collaboration &
Implementation):

• Mapping elements to functions. Transla-
tor uses runtime type information (RTTI)
to determine the concrete type of a generic
function argument. This mechanism is very
language dependent and may also vary with
different compilers for one language. Usu-
ally, it is possible to obtain a string of the
class name or test for successful downcast-
ing to a specific type. If no such mechanism
is available, one is left with explicitly pro-
gramming a type inquiry interface. This
is, however, incompatible to the otherwise
non-intrusive nature of Translator.

In any case, a generic function may also
dispatch on values of objects as opposed
to their type. Consequently, you may rep-
resent musical notes and quarter notes by
the same class. The corresponding objects
will differ in a value, e.g., of attribute dura-

tion. Nevertheless, it is still possible to use
a generic function to dispatch on this note
representation.

2.9 Sample Code

In the following we present Eiffel code since it
is very readable and Eiffel features garbage col-
lection. However, you may use Translator with
any language featuring runtime type informa-
tion such as Smalltalk, C++, and Java.



Assume a toy source language with an if-
statement (see figure 3):

class TOY_IFTHEN

inherit TOY_LANG

creation make

feature

exp, stat: TOY_LANG;

...

end

The corresponding pretty-print element could
be:

class PP_IFTHEN

inherit PP_LANG

creation make

feature

pexp, pstat: PP_LANG;

make (e, s : PP_LANG) is

do

pexp:=e;

pstat:=s;

end

display is

do

io.putstring ("IF ");

pexp.display

io.putstring (" THEN ");

pstat.display;

io.putstring (" END")

io.new_line;

end;

Now we need the specialized function that
maps an if-statement to its pretty-print element.

class PRETTY_FUNCTION_IFTHEN

inherit FUNCTION[TOY_IFTHEN, PP_IFTHEN]

creation make

feature

genFunc: GEN_FUNC[TOY_LANG, PP_LANG];

make(s: GEN_FUNC[TOY_LANG, PP_LANG]) is

do

genFunc:=s

end;

infix "@"(ift: TOY_IFTHEN) :

PP_IFTHEN is

do

!PP_IFTHEN!Result.make

(genFunc @ ift.exp,

genFunc @ ift.stat)

end;

end

The creation argument of type GEN FUNC

specifies the generic function to be used for eval-
uation of subcomponents (exp and stat). Its
generic4 parameters denote the function type to
be going from TOY LANG to PP LANG.

The method for function application (@) sim-
ply creates the pretty-print element while sup-
plying the results of recursively evaluating the
subcomponents (exp and stat).

The client code for performing a full interpre-
tation is:

source: TOY_LANG;

pp_structure: PP_LANG;

pretty_functions: PP_FUNCTIONS;

prettyPrint: GEN_FUNC[TOY_LANG,

PP_LANG];

...

!!pretty_functions.init;

!!prettyPrint.make (pretty_functions);

pp_structure:=prettyPrint @ source;

pp_structure.display;

...

Prior to its usage, a function package
must be initialized by calling init. Then,
a generic function (prettyPrint) is created
by suppling a pretty-print function package
(pretty functions)5. Next, the generic func-
tion is applied to the source structure, yielding

4This time generic means (static) parametric poly-
morphism, whereas we imply (dynamic) inclusion poly-
morphism in case of generic functions.

5It is easy to shield the client from the existence of
function packages, by providing a tailored generic func-
tion that creates a standard generic function with a fixed
function package (e.g., pretty functions).



a target structure (pp structure). The seman-
tics are finally produced by invoking (display)
on the target structure.

A concrete function package appears as fol-
lows:

class PP_FUNCTIONS

inherit FUNCTIONS[TOY_LANG, PP_LANG]

creation init

feature

init is

local

pf_var: PF_VAR;

pf_assign: PF_ASSIGN;

pf_ifthen: PF_IFTHEN;

prettyPrint: GEN_FUNC[TOY_LANG,

PP_LANG]

do

make(3);

!!prettyPrint.make(Current);

!!pf_var;

!!pf_assign.make(prettyPrint);

!!pf_ifthen.make(prettyPrint);

put(pf_var, "TOY_VAR");

put(pf_assign, "TOY_ASSIGN");

put(pf_ifthen, "TOY_IFTHEN")

end;

end

Each concrete package inherits from an ab-
stract function package class which, in turn, in-
herits from HASH TABLE:

deferred

class FUNCTIONS[SOURCE, TARGET]

inherit HASH_TABLE[

FUNCTION[SOURCE, TARGET],

STRING]

feature

init is deferred end;

end

So, make(3) initializes the function package
to a hash table with three entries. Next, a
generic function is created in order to serve as
the creation argument for the three specialized
function prototypes. The function to print vari-
ables (pf var) does not need to recursively eval-
uate subcomponents, ergo it does not require a

generic function for its creation. Note that the
Current argument in the creation of the generic
function causes the very function package that
is currently being initialized to become the ar-
gument for the generic function that is supplied
to the specialized functions. Finally, the special-
ized function prototypes are put into the hash
table using their corresponding source element
class names as keys.

Therefore, the application method of the
generic function definition —

class GEN_FUNC[SOURCE, TARGET]

inherit FUNCTION[SOURCE, TARGET];

INTERNAL;

creation make

feature

functions: FUNCTIONS [SOURCE, TARGET];

make (fs: like functions) is

do

functions:=fs

end;

infix "@" (source: SOURCE): TARGET is

do

Result:=

clone(functions.item

(class_name(source))

) @ source

end;

end

— can simply access the class name of the
source element (method class name is inherited
from the system class INTERNAL), use it to re-
trieve the correct specialized function prototype
(call item on the function package)6, and then
apply a cloned exemplar to its own argument.
Instead of a hash table we also could have used
a dictionary or even a type case switching state-
ment in order to achieve dispatching on the type
of arguments.

6At this point a runtime error may occur due to a
missing specialized function. Some exception handling
or other kinds of gracefully dealing with such a situation
would be appropriate.



2.10 Related Patterns

2.10.1 Categorization

• Interpreter: Interpreter suggests inventing
and representing small languages for reoc-
curring problems [Gamma 94]. Translator
already presumes the existence of an ab-
stract syntax representation. Translator
is well-suited to defining the interpretation
part of Interpreter which defines interpreta-
tions in member methods of elements (see
section 2.2) or by using Visitor.

• Visitor: Visitor [Gamma 94] has similar
motivations as Translator. Yet, besides the
fact that Visitor does not cover homomor-
phic and incremental translations, it also
uses a different means of achieving double-
dispatch. Visitor relies on the straightfor-
ward technique of encoding an arguments
type into method names [Ingalls 86]. How-
ever, several disadvantages are aligned with
this approach:

– A mutual dependency cycle is in-
troduced between elements and visi-
tors [Martin 97]. This impacts recom-
pilation and regression tests.

– The elements are forced to know about
interpretations because of the need to
provide an Accept method.

– One has to provide code for inter-
preting all elements of a hierarchy,
although only a subset will actually
be considered by certain interpreta-
tions [Martin 97].

• Facet: Like Translator this pattern aims at
supporting the addition of new and unfore-
seen interfaces to existing classes without
impacting clients that do not require the
new interfaces [Gamma 97]. Thus, both
patterns preserve the initial key abstrac-
tion, i.e., allow element interfaces with in-
trinsic properties only. Also, both patterns

allow for dynamic extensions of classes.
Facet differs in that it mainly aims at role
modeling and does not take translations or
incrementality into account.

• External polymorphism: An alternative
way (cleverly exploiting C++ templates)
to achieve polymorphism with classes wich
have no common ancestor [Cleeland 96].

• Acyclic Visitor: The dependency cycle
in the original Visitor design [Gamma 94]
caused many suggestions for improvements
such as Acyclic Visitor [Martin 97] and Dy-
namic Visitor [Nordberg 96]. Both alterna-
tives also address the issue of partial visita-
tions, i.e., when a particular interpretation
does not need to be defined on all elements.
Translator may deal with such a situation
as well, since there is no obligation to pro-
vide a complete set of specialized functions.

• Serializer: Because Serializer [Riehle 97] is
a specialization of Visitor, it is also related
to Translator. One can think of Serializer
as translating objects to a flattened form
(e.g., for persistence). In fact, Translator
might be more appropriate in some cases
since it does not require objects to know
about their ability to be serializable.

2.10.2 Collaboration

• Composite: Composite structures can be
interpreted with Translator [Gamma 94].

• Observer: A chain of Observers
[Gamma 94] can be employed to ac-
count for the data dependency between
source structure, target structure, and
target semantics.

• Flyweight: Abstract syntax tree leaves can
be represented as Flyweights [Gamma 94].



2.10.3 Implementation

• Function Object: The specialized functions
that map source elements to target ele-
ments are Function Objects [Kühne 96].

• Generic Function Object: The generic func-
tions capable of realizing double- and multi-
dispatching interpretations on heteroge-
neous data structures are generic Function
Objects [Kühne 96].

• Prototype: Function packages contain spe-
cialized function prototypes [Gamma 94].
Further instances are created by cloning
and the associated generic function is a pre-
set attribute value.

• Singleton: Instead of using an attribute
genFunc (see section 2.9) in specialized
functions, these may alternatively access a
Singleton class [Gamma 94] in order to re-
trieve their corresponding generic function.
Eiffel allows for a particularly easy solution
by using the “once” mechanism.

3 Conclusion

We presented a general approach to add in-
terpretations to data structures. Especially
with regard to the definition of languages, for
instance motivated by applications of the In-
terpreter pattern, our use of first-class func-
tions nicely corresponds to the well-known for-
mal method called denotational semantics. Our
functions define local semantic definitions but
also — almost invisibly — take care of travers-
ing the source structure.

However, the Translator pattern may be ap-
plied in other areas as well. The IRIS Inventor
toolkit [Strauss 93] interprets three-dimensional
scenes with a double-dispatch scheme relying on
run-time type information too. Translator can
define interpretations for CAD objects such as

displaying, finite element analysis, and cost cal-
culations. More generally, Translator may be
used to assign semantics to STEP product data
models [Owen 93]. Transferring only the seman-
tics shields a client from the model as a whole.
Incremental updates of the semantics makes re-
mote interpretations (e.g., via the Internet) fea-
sible.

We used the generic Function Object pattern
in order to provide a mapping from heteroge-
neous elements to their corresponding transla-
tion functions. We, thus, avoided to demand
that the source structure know about interpre-
tations. This is valuable for adding seman-
tics to already existing classes that can not or
should not be changed. Also, this particular
approach of external polymorphism successfully
avoids the need to create a dependency cycle be-
tween source structure and new interpretation
(as is the case with Visitor [Martin 97]).

Furthermore, we demonstrated the utility of
homomorphic translations with regard to incre-
mental evaluation. The specific nature of ho-
momorphic mappings naturally allows for incre-
mental updates. We introduced an intermedi-
ate structure from which the final semantics are
produced. This nicely separates translation and
semantics functions, provides a (non-intrusive)
place for incremental results, and sometimes is
useful for providing a logical structure for com-
puted results.

Although the use of runtime type information
is usually not recommended, we have shown it to
be of great advantage in this case. Our emula-
tion of multi-dispatch does not involve the disad-
vantages of the other approaches which we men-
tioned. Even beyond the capabilities of multi-
methods in a statically compiled language, our
generic functions may register new specialized
functions at runtime. The possibility of runtime
errors due to non-existent specialized functions
is a nuisance, however.

It is recommended that one account for such
situations with error handling and check the



completeness of function packages manually.

As opposed to object-oriented decomposition,
we used first-class functions in order to pro-
vide new interpretations. This might appear
wrong to object-oriented purists. Note, how-
ever, that similar designs (the so-called Com-
mand pattern) are suggested and used by oth-
ers as well [Meyer 88, Gamma 94]. In our
case, issues like functional extension (avoiding
to change all elements for new interpretations),
handling heterogeneous interfaces, iteration of
source structures, and non-intrusive addition of
interpretations, could all nicely be dealt with,
using the single concept of a generic (multi-
dispatching) function.

4 Acknowledgments

The author would like to thank Prof. W. Hen-
hapl for the initial spark, Alberto Pardo for sup-
port and corrections, Donette Reis for check-
ing the English, and the anonymous referees for
their suggestions to improve the paper.

References

[Aho 86] Alfred V. Aho, Ravi Sethi, and
Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and
Tools. Addison Wesley, Reading,
Massachusetts, March 1986.

[Cleeland 96] Chris Cleeland, Douglas C.
Schmidt, and Timothy H. Harri-
son. External polymorphism —
An object structural pattern for
transparently extending C++
concrete data types. In Prelim-
inary Proceedings of PLoP ’96,
1996.

[Gamma 94] Erich Gamma, Richard Helm,
Ralph E. Johnson, and John

Vlissides. Design Patterns: El-
ements of Object-Oriented Soft-
ware Architecture. Addison-
Wesley, 1994.

[Gamma 97] Erich Gamma. The facet pat-
tern. In Robert C. Martin, Dirk
Riehle, and Frank Buschmann,
editors, Pattern Languages of
Program Design 3, Reading,
Massachusetts, 1997. Addison-
Wesley.

[Ingalls 86] Daniel H. H. Ingalls. A sim-
ple technique for handling mul-
tiple polymorphism. In Proceed-
ings OOPSLA ’86, pages 347–
349, November 1986.

[Kühne 96] Thomas Kühne. Recipes to
reuse. In The 1st Annual Euro-
pean Conference on Pattern Lan-
guages of Programming, Euro-
PLoP ’96, Kloster Irsee, Ger-
many, July 1996.

[Martin 97] Robert C. Martin. Acyclic visi-
tor. In Robert C. Martin, Dirk
Riehle, and Frank Buschmann,
editors, Pattern Languages of
Program Design 3, Reading,
Massachusetts, 1997. Addison-
Wesley.

[Meyer 88] Bertrand Meyer. Object-Oriented
Software Construction. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[Nielson 93] Hanne Riis Nielson and Flem-
ming Nielson. Semantics with
Applications: A Formal Intro-
duction. Wiley, 1993.

[Nordberg 96] Martin E. Nordberg. Variations
on the visitor pattern. In Prelim-
inary Proceedings of PLoP ’96,
1996.



[Owen 93] Jon Owen. STEP: An Intro-
duction. Information Geometers,
1993.

[Riehle 97] Dirk Riehle, Wolf Siberski, Dirk
Bäumer, Daniel Megert, and
Heinz Züllighoven. Serializer.
In Robert C. Martin, Dirk
Riehle, and Frank Buschmann,
editors, Pattern Languages of
Program Design 3, Reading,
Massachusetts, 1997. Addison-
Wesley.

[Schmidt 86] D. A. Schmidt. Denotational Se-
mantics. A Methodology for Lan-
guage Development. Allyn and
Bacon, Inc, Boston Mass., 1986.

[Strauss 93] Paul S. Strauss. Iris in-
ventor, a 3D graphics toolkit.
In Object-Oriented Programming
Systems, Languages, and Ap-
plications Conference Proceed-
ings, pages 192–200. ACM Press,
September 1993.

[Wechler 92] Wolfgang Wechler. Univer-
sal Algebra for Computer Sci-
entists. EATCS 25. Springer-
Verlag, Berlin, Heidelberg, New
York, 1992.


