
Synthesis of Incidental Detail as Composable
Components in a Functional Language

Richard Roberts, Timothy Jones, John Lewis
School of Engineering and Computer Science

Victoria University of Wellington
New Zealand

{riro, tim, jplewis}@ecs.vuw.ac.nz

Abstract—Designs of real-world objects must include small-
scale details in order to appear plausible. Often the overall
character of this ‘incidental’ detail matters, but the exact shape
and placement of each feature is unimportant. The creation of
these details often consumes artist time when pattern generation
techniques could automate the process instead, but many current
pattern generation just shift the effort from manual modeling to
custom per-object programming. Machine learning approaches
to pattern synthesis are promising, but successful efforts have
been mainly restricted to stochastic patterns. In this paper we
investigate how detail patterns may be encoded using techniques
from functional programming, and contribute a DSL for describ-
ing and composing these details. By allowing pure descriptions to
be seamlessly composed together we produce a high-level process
for creating structured and semi-structured patterns.

I. INTRODUCTION

Pattern analysis and synthesis are topics that have long
been prevalent in computer graphics. The general problem is
that pattern production is a complex aesthetic domain, and
pattern design may (or may not) feature numerous descriptive
traits such as structured, stroked, clustered, organic, repetitive,
or entropic. Models for pattern categorization and creation
demand both generality and simplicity [1, p. 1630].

Patterns are important in modeling, texturing, and anima-
tion. They are commonly used in the construction of city
layouts, architecture, natural environments, and fur and skin.
Unfortunately, pattern production can be both time-consuming
and repetitive for artists. The parameters required to describe
a given pattern can quickly become too numerous to control,
or too specific to allow for a broad range of outputs.

Approaches towards simplistic and generalized pattern
analysis and synthesis have been a focus of recent research.
Current techniques offer methods to parameterise repetitive
elements in stroke or pixel based patterns, which can be used
to generate outputs featuring similar elements, as described
in section II. Some methods have been quite successful at de-
scribing and replicating patterns, but often for only a restricted
subset of the aesthetic domain. The more general solutions
become too complex to be intuitively communicated through
the interface.

We contribute a novel approach that provides a generalized
and intuitive workflow for pattern production. We focus on
automation of repetitive processes, where stylistic and compo-
sitional control will not be inhibited. An artist uses meaningful
descriptions to iteratively expand a simple set of coordinates

into complex structured or semi-structured data, representative
of a convincing pattern that can appear organic, structured,
repetitive, stochastic or any mixture of the above. This ap-
proach is equivalent to a hierarchical shape grammar, though
expressed in terms of higher-order functions as described in
Section III. It can rapidly author highly complex patterns,
enabling a multitude of detailing and texturing applications.

Our primary application is the construction of fine scale
details; however, since our approach can also produce stochas-
tic textures, the range of applications is not limited to these
examples. The construction of these details using our system
is efficient and intuitive.

II. RELATED WORK

Research on the computer synthesis of patterns has spanned
more than five decades [2] and occurs in different fields in-
cluding biology [3], physics [4], mathematics [5] and computer
graphics [6]. Our brief survey will group this literature into
approaches appropriate for random versus structured patterns.
Informally speaking, random patterns are those in which
there is no exact symmetry or repetition of pattern elements,
and conversely, structured patterns are those which do have
symmetries.

Random pattern synthesis approaches have been used to
simulate textures, terrains, camouflage, and other phenomena.
Random process ‘noise’ models [7] appear as a primitive in
computer graphics shading languages and are used to ap-
proximately simulate dirt, dust, clouds, and other unstructured
textures. Random fractals [8] are are a well-known special
case of noise, having a self similar power spectrum of the
form 1/ωp. These techniques are not generally appropriate for
structured textures. The popular and powerful nonparametric
sampling texture synthesis approaches [9], [10] have resulted
in many improvements and extensions [11]. These approaches
synthesize new pixels by sampling from a nonparametric dis-
tribution obtained by finding regions in a reference texture that
are similar to the neighborhood being synthesized. They can
simulate both unstructured and ‘semistructured’ textures and
can generate very high quality textures, however the synthesis
also fails to produce plausible textures in some cases. Random
textures have also been modeled as a machine learning problem
[1], [12], [13].

Prototypical examples of structured patterns are the pattern
of rivets or similar details on a train, robot, or spaceship.
Simple patterns such as a line or grid of objects are easily

simulated using loops and translations. Group theory provides
an appropriate framework for studying the possible types of
simple patterns [14]. More complex structured patterns have
been generated using special-purpose algorithmic approaches.
For example, L-systems [15] successfully model plants and
plant growth. Shape grammars have been developed to model
cities and city growth, among other things [16], [17].

The general notion of ‘algorithm’ of course subsumes
all random and structural pattern generation approaches. The
problem with exploring the general space of algorithms,
however, is that it is simply too large. For example, an
eight byte program is too tiny to be useful. The number of
distinct 8-byte programs is 264. Imagining a current machine
with a roughly four gigahertz clock rate (approximately 232

operations per second), running each program for N steps
would require 232 ·N seconds, which is roughly 136 years for
each step. Genetic algorithms typically address this complexity
by introducing custom instructions or languages designed to
increase the percentage of useful programs [18]. The size of the
programs that can be explored is nonetheless severely limited.

In this work we attempt an alternate and quite general
algorithmic approach, using the concept of higher order func-
tions to invent pattern synthesis algorithms. We will show that
higher order functions are a useful way to explore the ‘space’
of structured and semi-structured patterns.

III. METHOD

Our implementation describes detail as a nesting of pro-
gressively finer incidental detail, represented as a forest of
iterations. Each iteration indicates properties such as the geom-
etry to create and where to place it. This structure is converted
to operations in the Maya modelling tool to produce a final
model. We provide a mechanism for composing detail trees in
either direction, so that each one can easily be reused as finer
detail in even larger trees or refined by applying further fine
detail on specific branches.

The construction of the detail trees takes the form of
a domain specific language in Haskell. We take advantage
of Haskell’s curried function encoding [19] to automatically
produce tree builders, and then specialise these builders into
the DSL using free monads [20]. While the declaration of the
detail generation is currently bound to this DSL in Haskell,
the encoding does not require techniques unique to either
language, and allows for generating the detail information from
a different (potentially graphical) user interface. We aim to
eventually allow the detail to be generated automatically, and
then displayed and modified by an artist.

A. Representing Detail Generation

We represent a complete detail generation process as a
forest of general trees whose elements describe a step of
the iteration to apply to its parent shape in the tree. Each
iteration produces new geometry, selected from a set of simple
three-dimensional primitives, a technique for positioning the
geometry on its parent, the amount to scale down the detail
relative to its parent, and the new direction of each shape’s
up-vector.

The technique for selecting points to generate detail on a
parent shape depends on the primitive shape that will be the

Cylinder

6 Cubes in Loop

Cubes on X-Faces

Cylinders on Z-Faces

4 Spheres in Loop

Spheres on Y-Faces

16 Cylinders in Loop

4 Spheres in Loop

Fig. 1: A simplified detail tree and the resulting model

parent of the detail, and include selecting opposite faces of
a cube on a relative axis, selecting a number of points in a
loop around the curved surface of a cylinder or sphere, and so
on. A simplified example of a detail tree with geometry and
positioning as elements in a forest, completed by adding an
initial shape as the root node, is provided in Figure 1.

Encoding the construction of these forests in Haskell has
a curious outcome. Haskell functions that require multiple
parameters are curried [19]. The technique of currying is
derived from the observation that a function with multiple
parameters can be equivalently represented by defining it to
only take a single argument and instead return a new function
that takes the second argument. The outcome is that rather than
writing f(x, y), we write f(x)(y).

If we represent an entire iteration of detail with a type
Detail , then a constructor Forest .singleton for a forest con-
taining a single tree has two parameters: the detail of the
top node, and a forest of children. In its curried form, the
constructor will have the following type:

Detail → (Forest Detail → Forest Detail)

The outcome of applying the constructor to just a Detail
value is a function from a forest to a larger forest. We can use
this function as a value, where it acts as a functional ‘builder’
and can be composed with other forest builders using standard
function composition to produce builders of larger forests. The
final detail generation tree can be produced by applying the
builder to an empty forest, and placing an initial shape as the
root node of the resulting forest.

firstBranch = do
detail Sphere (CubeFaces yAxis) 0.6
detail Cylinder (SphereLoop 8 0) 0.3

secondBranch = do
detail Cube (CubeFaces xAxis) 0.4
detail Cylinder (CubeFaces zAxis) 0.7

applyDetail = do
detail Cube (CylinderLoop 6 0) (0.2, 0.4, 0.2)
branch [firstBranch, secondBranch]
detail Sphere (CylinderLoop 4 0) 0.4

y-Spheres

16 Cylinders

Pure ()

x-Cubes

z-Cylinders

Pure ()

6 Cubes

x-Cubes

z-Cylinders

4 Spheres

Pure ()

y-Spheres

16 Cylinders

4 Spheres

Pure ()

Fig. 2: DSL encoding of Fig. 1 and resulting trees

We recursively apply a transformation to this tree to gener-
ate Maya commands in Python and build the model described
by the representation. The higher-order detail generation is
both concise and strongly typed because of its Haskell im-
plementation.

The use of higher order functions was inspired by Mc-
Dermott et al. [21], who demonstrate the advantages of the
approach within the aesthetic domains of architectural mod-
eling and music synthesis, and by Lewis et al. [22], which
uses higher order functions to synthesise distinctive icons for
desktop interfaces. Two of the advantages identified are non-
entropic mutations and compressible phenotypes, entailing that
data can be manipulated without losing coherence and that
the grammars are efficient to maintain. This contributes a
generalized and dynamic approach to synthesis, enabling a
broad range of outputs.

B. Free Monads and a DSL for Tree Generation

While the interface for building detail forests given above
is useful, the higher-order function suffers from the limitation
that once the detail generation of the children is applied, the
result is a complete forest that can only have further detail
applied to it by manually traversing the tree structure. A
preferable interface for generating detail would allow us to
continue adding smaller detail until the whole tree is ready to
be processed.

To that end, we have taken advantage of a common Haskell
technique for generating DSLs, wrapping a modified form of
the detail tree encoding into a free monad [20]. While a formal
description of free monads in Haskell is outside the scope of
this paper, they are in a practical sense a general technique
for creating a recursive, monadic structure. Monads are an

important interface for sequencing computations in Haskell,
and allow use of the do notation, which sequences code
imperatively with indentation-specific syntax.

The result of wrapping the detail tree encoding in a free
monad produces a type DetailGen , which can be thought of
as representing a forest of Detail which may contain ‘pure’
leaves acting as placeholders, indicating that the detail may be
continued at those points. The monadic interface can be used
to ‘bind’ a subtree to the existing tree, replacing each of the
pure nodes with a copy of the subtree. The result is that each
line of code in the DSL specifies the values to appear at a
particular depth in the tree, attached to the detail specified by
the line above.

We have defined our DSL as a set of utility functions on
top of this structure. Further detail can be applied at the pure
nodes in the tree with the detail function, which leaves a new
pure node at the bottom of the new detail node.

detail :: Shape → Selection → Scale → DetailGen ()

Each pure node can be replaced by a forest of detail
generations with branch , or a group of pure nodes with
pureBranch:

branch :: [DetailGen a]→ DetailGen a

pureBranch :: [a]→ DetailGen a

Finally, a path may choose to prevent further detail gen-
eration below it with done , which is equivalent to an empty
branch: branch [].

The detail generation can now be written in the DSL.
This is demonstrated in Figure 2. The use of branch1 and
branch2 demonstrates the composability of DetailGen: single
and multiple iterations are indistinguishable from one another,
and a tree of detail generation can be defined and reused
any number of times in a larger tree. Applying more detail

segment = do
detail Cylinder (CubeFaces xAxis) 0.5
pureBranch [0, 0.5, 1]

2 Cylinders

Pure 1Pure 0.5Pure 0

cubeSegment = do
height ← segment
detail Cube (CylinderLoop 4 height) 0.2

2 Cylinders

4 Cubes@Top

Pure ()

4 Cubes@Mid

Pure ()

4 Cubes@Bot

Pure ()

Fig. 3: An example of using values in pure nodes

simply moves the pure nodes in the tree. This allows for the
development of libraries of detail generation trees which can
be reused in any context.

The real power of this DSL is that the use of free monads
causes values to inhabit the pure nodes. Previously, when
a subtree was bound to an existing tree the same subtree
appeared in place of each pure node. The monadic interface
allows the shape and contents of the resulting subtree to depend
on the value in the pure node instead. This is demonstrated
in Figure 3, where values in pure nodes are used to apply
the same detail at different heights on a cylinder. The DSL
achieves this by creating three pure nodes after the cylinder in
the generation tree, with each pure node containing a different
height proportion to apply detail at.

While monads are often associated with side-effects, the
DSL consists of entirely pure code. Large passes of detail
generation can be run in parallel without interference. As the
DSL is already implemented in a monad, it would be fairly
trivial to also add more detailed mechanics to the language,
such as the ability to generate details randomly.

The only important functionality that is missing from this
package is that there is no guarantee that the method for
selecting points to add detail on a shape is actually valid for
that shape. The DSL exacerbates this problem, as multiple
pure nodes in a single tree may apply detail to completely
different shapes. Solving this problem while preserving type
safety involves non-standard Haskell extensions, and is beyond
the scope of this paper.

IV. RESULTS

To demonstrate the outcome of using the DSL for pattern
synthesis, we have generated two model sets with detail gen-
eration. The first example in Figure 4 features an intentionally
designed structure, while the example in Figure 5 using similar
Detail types repetitively. The presented images were produced
by generating executable Python scripts from the finalised
DetailGen. These scripts automatically build a Maya scene
file, which was then rendered using 3Delight.

Fig. 4: A model created with a custom DetailTree

Objects intended to appear intentionally designed may
require meaningful details at all scales. Creating an object akin
to the one in Figure 4 is simple when using the Detail types.
The central cylinder is the root detail, which emits different
patterns of details looping horizontally around itself. This
includes the walkway-like plateau, the plated middle area, and
the fencing at the base. Each of these objects generate further
details using their own Detail values. This model required
about 10 minutes of experimentation in the DSL to author.

Figure 5 is an example of repetitively nesting a small
set of detail generation trees. Using a hierarchical approach
to cluster the DetailGen values enables fast production of
complicated geometry. An artist is then able to focus on
aesthetic refinement as opposed to manual creation, enabling
serendipitous creativity. The minor changes to the repetitive
structure are expressed simply in the DSL, without requiring
repetitive code from the author.

Our system ensures robust repetition when iteration and
mutation is required; any attribute of the pattern can be
mutated at any point in the tree. For instance, the piston-
like connections between the base and cylinder objects are
scaled differently per row. Since nesting DetailGen trees is
powerful, an artist may wish to build a library of expansions,
effectively building their own grammars for pattern expansion.
The construction of an effective interactive interface, outlined
in Section V, aims to encourage this.

V. CONCLUSION

We have presented a technique for pattern categorization
and synthesis using higher-order functions in Haskell, and
demonstrated how this interface can be generalised into a
tree building DSL with free monads. This allows for a broad
range of pattern possibilities while ensuring composability of
individual detail generation computations.

Due to the sheer size of the pattern aesthetic domain,
general solutions quickly become complex to interact with.
The advantages of the higher order functions reduce the impact
of this issue in our approach, but do not solve it. Artist time
is still required to produce and adjust the code written in the
DSL, but the language lends itself to extensibility in producing
initial programs randomly. A more approachable interface for
interacting with the generated model is also a future goal,
allowing non-technical artists to interact with the package and
directly manipulate nodes in the detail generation tree.

A. Future Direction

The DSL in its current state is not helpful to non-technical
artists and still requires each piece of detail to be manually
described at some point in the development process. As
discussed in Section III-B, extending the language with further
features, such as generating random detail, would be relatively
trivial, but extending the generation process for more general
use through a visual interface for manipulating the language
would be most desirable.

The output pattern data can be readily applied to modeling
and texturing, but also has other useful applications. In future
research the authors aim to further the vocabulary of our
system, which may enable the three-dimensional output to be
used as input to simulation software and animation techniques.

Fig. 5: Variance in the pure values of a DetailGen tree can produce controlled differences in the generated patterns

There is plenty of potential to take advantage of other
Haskell features, laziness in particular. Because Haskell data
structures are not eagerly evaluated, the detail generation tree
can branch infinitely. Given a level of detail to generate, we
can trim the possibly infinite tree down to that depth before
producing the model. As adjustments are made, this detail level
could be increased or decreased as desired.

While generating random detail inside of the DSL would be
fairly trivial to implement, a more effective method would be to
integrate training data into the computation. Artist adjustments
could be translated into learned preferences, and the random
generation could then be biased towards this preference.

REFERENCES

[1] S. C. Zhu, Y. N. Wu, and D. Mumford, “Minimax entropy principle
and its application to texture modeling,” Neural Computation, vol. 9,
pp. 1627–1660, 1997.

[2] A. Turing, “The chemical basis of morphogenesis,” Philosophical
Transactions of the Royal Society B, vol. 237, pp. 37–72, 1952.

[3] P. Maini and H. Othmer, Mathematical Models for Biological Pattern
Formation, ser. Ima Volumes in Mathematics and Its Applications.
Springer-Verlag GmbH, 2001.

[4] M. C. Cross and P. C. Hohenberg, “Pattern formation outside of
equilibrium,” Reviews of Modern Physics, vol. 65, no. 3, p. 851, 1993.

[5] R. Peng and M.-x. Wang, “On pattern formation in the gray-scott
model,” Science in China Series A: Mathematics, vol. 50, pp. 377–386,
2007.

[6] A. Witkin and M. Kass, “Reaction-diffusion textures,” in Proc. SIG-
GRAPH, 1991, pp. 299–308.

[7] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert,
J. Lewis, K. Perlin, and M. Zwicker, “A survey of procedural noise
functions.” Comput. Graph. Forum, vol. 29, no. 8, pp. 2579–2600, 2010.

[8] B. Mandelbrot, The Fractal Geometry of Nature. San Francisco:
Freeman, 1983.

[9] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the International Conference on Computer
Vision-Volume 2 - Volume 2, ser. ICCV ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 1033–.

[10] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’00.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 479–488.

[11] P. Barla, S. Breslav, J. Thollot, F. X. Sillion, and L. Markosian,
“Stroke pattern analysis and synthesis,” in Proc. of Eurographics 2006
: Computer Graphics Forum, ser. 663-671, E. Gröller and L. Szirmay-

Kalos, Eds., vol. 25. Vienna, Autriche: ACM, 2006.
[12] J. P. Lewis, “Creation by refinement: A creativity paradigm for gradient

descent learning networks,” in International Conference on Neural
Networks, vol. 2. New York: IEEE, 1988, pp. 229–33.

[13] W. Baxter and K. Anjyo, “Latent doodle space,” Computer Graphics
Forum, vol. 25, pp. 477–485, 2006.

[14] H. Weyl, Symmetry, ser. Princeton science library. Princeton University
Press, 1952.

[15] P. Prusinkiewicz and J. Hanan, Lindenmayer Systems, Fractals, and
Plants. New York: Springer Verlag, 1989.

[16] Y. Li, F. Bao, E. Zhang, Y. Kobayashi, and P. Wonka, “Geometry synthe-
sis on surfaces using field-guided shape grammars,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 2, pp. 231–243,
2011.

[17] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,”
in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH ’01. New
York, NY, USA: ACM, 2001, pp. 301–308. [Online]. Available:
http://doi.acm.org/10.1145/383259.383292

[18] K. Sims, “Artificial evolution for computer graphics,” in SIGGRAPH,
1991, pp. 319–328.

[19] S. P. Jones, R. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,
J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and
P. Wadler, “Report on the programming language Haskell 98,” SIGPLAN
Notices, 1998.

[20] J. Adámek, S. Milius, N. Bowler, and P. B. Levy, “Coproducts
of monads on set,” in Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, ser. LICS ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 45–54.
[Online]. Available: http://dx.doi.org/10.1109/LICS.2012.16

[21] J. McDermott, J. Byrne, J. Swafford, M. O’Neill, and A. Brabazon,
“Higher-order functions in aesthetic ec encodings,” in Evolutionary
Computation (CEC), 2010 IEEE Congress on, 2010, pp. 1–8.

[22] J. Lewis, R. Rosenholtz, N. Fong, and U. Neumann, “Visualids:
automatic distinctive icons for desktop interfaces,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 416–423, 2004.

