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Abstract

The thesis addresses the problem of creating an autonomous agent that is
able to learn about and use meaningful hand motor actions in a simulated world
with realistic physics, in a similar way to human infants learning to control their
hand. A recent thesis by Mugan presented one approach to this problem using
qualitative representations, but suffered from several important limitations. This
thesis presents an alternative design that breaks the learning problem down into
several distinct learning tasks. It presents a new method for learning rules about
actions based on the Apriori algorithm. It also presents a planner inspired by in-
fants that can use these rules to solve a range of tasks. Experiments showed that
the agent was able to learn meaningful rules and was then able to successfully
use them to achieve a range of simple planning tasks.
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Chapter 1

Introduction

An important problem in artificial intelligence (AI) is building systems that are able to learn
autonomously without the help of a teacher. When trying to design such a system, one
source of inspiration is human infants. In their first 6 - 12 months of life, they learn their
first knowledge of the world largely by themselves with little direct help from their parents
or other teacher. In a short period, they go from waving their arms around in a seemingly
meaningless fashion to being able to successfully reach for, grasp, and bring in an object to
put in their mouth. Psychologists have carried out various observational experiments with
infants in order to come up with hypotheses to explain this learning resulting in some very
useful findings for AI researchers. For example, they have found that infants approach the
problem of reaching for an object as a problem solving task with large variance between
different infants [28], and that infants seem to understand events qualitatively before they
do quantitatively [3]. It is of course difficult, if not impossible, to draw certain conclusions
about how infants are actually learning for at least two reasons. Firstly, infants are unable to
communicate with the researchers to explain why they are doing what they are. Secondly,
knowledge of how even the adult human brain learns is very limited. Because of this, the
results of observations are at best open for interpretation and psychologists don’t yet have a
good explanatory theory of how infants learn to control their hands.

In addition to psychologists, artificial intelligence researchers have also explored how
infants learn by building computer systems that attempt to learn very simple tasks like
what an infant would. [14] and [11] give an overview of some of these systems. Despite the
lack of solid conclusions about how infants learn, the psychology research is still valuable
as inspiration for these systems. Approaches can be based on possible interpretations of
observations, and observations of what infants can and cannot do can be taken into account
when determining what one of these computer systems should and should not be able to do.
The resulting computational models from the AI researchers’ work provide further insight
into what is and is not computationally possible, which may be able to help psychologists
to further understand their observations.

One of the more recent attempts by AI researchers to make a system that can learn mean-
ingful actions autonomously from random behaviour is the work of Mugan and Kuipers
[22]. Their objective was to build a simulated agent that could autonomously learn to
achieve simple goals given only a set of continuous motor and world variables as input.
Their system, QLAP, is able to autonomously learn to reach for an object, among other sim-
ple tasks, learning from random behaviour. A key feature of QLAP is that it uses a qualita-
tive representation, converting the set of continuous motor and sensor variables describing
the world into qualitative variables using “landmark” values to separate the continuous
values into meaningful qualitatively distinct ranges. It learns actions in the form of contin-
gencies specifying when one change to a variable, is likely to be followed by another change
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to a variable.
However, QLAP has many serious limitations and would be very difficult to further

build on. While using a qualitative representation for learning about higher level concepts
such as actions and events has many advantages, a purely quantitative approach far better
models the complex relationships between variables in a realistic motor control simulation.
QLAP is only able to reason about one variable at a time, and landmarks can only be learnt
on single variables. Therefore relationships between variables cannot be identified. One
consequence is that the agent could not be extended to work with round objects as opposed
to square objects, as round objects have a complex relationship between the surface and the
dimensions of the object that the landmark learning on single variables cannot represent.
Another consequence is that QLAP would not work with a realistic model of an arm because
a real human infant’s arm has many muscles that must be coordinated with one another
in order to carry out arm movement actions; QLAP could not handle these coordinations.
A further limitation is that mapping motor control directly onto higher level actions with
contingencies does not allow understanding and reasoning about movement and events
during an action. Infants learn to master simple motor actions such as moving to an object,
grasping it, and bringing it back to their mouth. These motor actions and others are also
used to explore and learn about the environment and objects within it. These motor actions
are not directly modelled in Mugan’s system, limiting the ability for the system to focus on
exploring the environment without constantly relearning the motor control to do so.

The goal of the thesis is to explore how an agent can learn to achieve goals in a similar
realistic world to QLAP but avoid some of the serious limitations of QLAP.

The thesis outlines an approach to the learning problem, breaking it down into several
interacting components, unlike QLAP which attempted to do too much as a single learning
component. The main focus of the thesis is on learning rules to describe the various effects
of meaningful motor actions and then using the rules to plan for simple goals. A brief
exploration on how motor control could be learnt from initially random behaviour was also
carried out and is presented in the thesis. A visual system that converts continuous world
states into simple qualitative representations was hard-coded. A motor control policy for the
rule learner and planner to use was also hard-coded. The development of a visual system
learner and motor control policy learner that will provide suitable input for the rule learner
and planner is left to future work, as this work is for a master’s thesis and therefore it was
not realistic to implement an entire agent in the time frame.

The Action Rule learner learns with a qualitative representation of the world, whereas
the vision system and motor control learner are assumed to learn quantitatively. This is un-
like Mugan’s system which attempted to learn everything qualitatively. The learner learns
Action Rules with multiple effects using a frequent itemset generation algorithm. This sim-
plifies planning, because a means-end analysis planner is then often able to achieve a goal
set with multiple facts using a single Action Rule. The first version of the Action Rule learner
had significant limitations. By introducing explicit places and constraints on places into the
Action Rules overcame these limitations and enabled the planner to achieve a wider range
of goals.

Chapter 2 explains Mugan’s system and its limitations, and then gives an overview of the
key ideas in psychology that were used, and concludes with key algorithms that were used
in the implementation for this thesis. Chapter 3 gives an overview of the agent implemented
for the thesis and outlines the overall system architecture. Chapter 4 presents an initial ex-
ploration on learning motor actions from random behaviour. Chapter 5 presents the Action
Rule learner, the key work of the thesis. Chapter 6 presents the Action Rule planner, which
uses the learnt Action Rules to achieve simple goals. Chapter 7 describes improvements to
the Action Rule learner, in particular the addition of places and constraints. Chapter 8 eval-
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uates the Action Rule learner and Action Rule planner. Finally, Chapter 9 concludes with
the main findings and future work.
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Chapter 2

Background

2.1 QLAP - Qualitative Learner and Planner

This thesis was inspired by Mugan’s QLAP system [15, 22, 21, 20, 18, 19, 17, 16]. QLAP was
able to learn action rules for a simulated arm argent in a world, and then carry out actions
such as grasping or hitting an object. QLAP is different to most systems attempting to learn
like an infant in that it uses a qualitative representation of the world, and explored in order
to identify contingencies in events which were the basis of rules. However, QLAP made
some strong and unrealistic assumptions about the world which lead to strong limitations.

The QLAP agent assumes a set of continuous motor and world (referred to as “magni-
tude” variables by Mugan) as input. From these variables, QLAP’s objective is to learn to
achieve simple tasks such as grasping and hitting objects. This was achieved by applying
forces to motor variables and learning how these in turn cause changes in world variables.
The QLAP agent describes its experience using a qualitative representation, and identifies
“events” as changes in the qualitative values of the values. QLAP then learns rules for caus-
ing each possible event (each variable into each of its qualitative regions) so that it could
chain events together in order to control world variables. This was achieved by learning
rules that described a contingent pair of events such that if the first event occurred, the
consequent event would soon occur.. These rules were represented as Dynamic Bayesian
Networks (DBN) and then converted into plans which were represented as Markov De-
cision Process policies which the QLAP agent could then execute. The remainder of this
section goes into further details of the algorithm and then finishes with a discussion of the
limitations.

2.1.1 Representing the world qualitatively

QLAP’s input is a set of continuous motor and magnitude (world) variables. Each variable
has a corresponding direction of change variable which can have a value of zero, positive, or
negative. Motor and magnitude variables are broken up into qualitative regions by defin-
ing land marks, values on the continuous variables that QLAP believes to be significant.
All landmarks are qualitative zones, as are the regions around landmarks. For example, a
variable with one landmark has three qualitative regions (the landmark and the two regions
either side of it) and a variable with three landmarks has seven qualitative regions (the three
landmarks and four regions surrounding them)
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2.1.2 Learning DBN’s for rules

QLAP learns Dynamic Bayesian Networks (DBN’s) for predicting events on direction of
change variables (“change DBN’s”) and magnitude variables (“magnitude DBN’s”). Change
DBN’s are learnt by identifying contingencies between events and checking for additional
context variables, and magnitude DBN’s are describe using the corresponding direction of
change variable to a magnitude variable in order to cause an events on the magnitude vari-
able. These DBN’s are the first step in building QLAP’s representation of action rules.

An event X→ x is defined as being when a qualitative variable reaches a certain value.
As an example, if a variable denoting the hand position went to touching the right wall, the
event that occurred would be represented as “hand position”→ “right wall”. A contingency
occurs when an event has a significantly higher probability of occurring “soon” after another
than it does otherwise. The initial event is known as the antecedent event, and the following
event is known as the consequent event. To be “soon”, the consequent event must occur
within k time steps of the antecedent event, where k is a constant used for all contingencies.

In order to identify suitable contingencies for change DBN’s, QLAP stores and uses a
pairwise search on statistics for possible pairs of events. As change DBN’s are only con-
cerned with how to control direction of change variables, the consequent event must be on
a direction of change variable. Once a contingency has been identified through the pairwise
search, a DBN is formed for the contingency. The antecedent event becomes the parent node
of the DBN, and the consequent event becomes a single child node off the parent node.

QLAP also builds a second type of DBN for the magnitude variables: for every possible
event on every qualitative magnitude variable, QLAP creates two DBN’s that have the qual-
itative magnitude variable becoming the event value as the consequent event, and with the
corresponding direction of change variable as the antecedent event. One of the DBN’s has
the direction of change variable set to negative, and the other set to positive.. These DBN’s
are built automatically and are not learnt and are used in the planning process in the same
way in as the change DBN’s.

2.1.3 Improving the reliability of the DBN’s

QLAP has two mechanisms for improving the reliability of a DBN: the addition of context
variables that act as preconditions, and the addition of landmarks to variables characterise
the quantitative space. When deciding whether or not adding a context variable to a DBN
or a landmark to a variable offers a sufficient improvement in the DBN, QLAP uses several
heuristics. For the modification to be accepted, it must improve the reliability of the DBN
by either increasing the best reliability or decreasing the overall entropy of the DBN. The
amount of improvement must be above a certain threshold.

Best reliability is given by the probability of success of the DBN if it starts in the most
reliable context (see below for an explanation of context). QLAP attempts to improve the
best reliability until it is above a given threshold before attempting to reduce the overall
entropy (Mugan used a threshold of 0.75 in his experiments). When the DBN is used for
planning, the planner will attempt to make the context of the best reliability of a DBN true
before using the DBN. Decreasing the overall entropy of the DBN increases how predictable
the DBN is.

Additionally, a context is learnt to better allow for predicting when the consequent event
will follow the antecedent event. To do this, QLAP tries adding each variable in the world
to the DBN’s context, and chooses the one that best improves the DBN and is above the
threshold for sufficient improvement (if any). If there are no suitable context variables to be
added, then the DBN stays how it was.
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Context variables are represented in the DBN using a Conditional Probability Table
(CPT). A CPT holds the probabilities of the consequent event for each combination of vari-
able values. As a result, the amount of space a CPT takes up is exponential in the number
of context variables of the DBN. For this reason, the number of context variables a DBN can
handle is very restricted. Mugan set a limit of two context variables for his experiments.

QLAP’s other DBN improvement mechanism is learning new landmarks on the quanti-
tative variables to make the way they are discretized into qualitative variables more mean-
ingful to the context of the world the QLAP agent is in.

2.1.4 Building plans from DBN’s for accomplishing actions

In QLAP, an action is defined as making an event occur. QLAP defines a set of actions;
one for every possible event (each qualitative value of every variable). An action does not
contain a specification of how to accomplish the action; for this, QLAP has plans. Plans are
generated from reliable DBN’s; a DBN forms a plan for the action that is the consequent
event. For magnitude variable actions, there will always be two plans, one for accomplish-
ing the action when on the left side of the desired value, and one for when on the right side
of the desired value. For change variable actions, there can be zero, one, or many plans,
depending on what contingencies QLAP was able to learn for achieving that action (and
whether or not they were reliable). Motor variables do not require plans to accomplish them
as the QLAP agent is able to directly control them.

Plans are implemented as options, containing a Markov Decision Process (MDP) to rep-
resent the possible states within the plan (consisting of the antecedent event variable, con-
sequent event variable, and context variables of the DBN the MDP is based on). A policy
is learnt for the MDP, which tells the QLAP agent what to do in each state to have the best
chance of accomplishing the goal with the minimum number of transitions required to get
from the current state to the antecedent event, as in theory the consequent event should
follow, thus successfully completing the action.

Once plans have been formed, QLAP can be given an action to accomplish. To accom-
plish the action, QLAP looks for a suitable plan for that action. If no such plan exists, the
action fails. If a plan is found, QLAP uses that plan to accomplish the action. Often, a plan
will contain other actions that need to be accomplished to accomplish the current plan. For
these new actions, QLAP searches for a suitable plan. This continues in a recursive nature,
building up a hierarchy of plans, until the ends of all paths through the hierarchy contain
a motor action. QLAP can then directly carry out each of the motor actions (changing mo-
tor variable values), and if all plans work as expected, the action should be successfully
completed.

2.1.5 Limitations of QLAP

QLAP makes some strong assumptions about the world which are not realistic, and there-
fore lead to some strong limitations.

QLAP assumes the world is represented as a set of low level motor and world variables
and that it should learn qualitative abstractions on single variables rather than combining
the variables. As a consequence, events also can only involve a single variable, and QLAP
learns rules with a single effect. Even though the preconditions can contain more than one
variable, the planner has to plan to satisfy each of the preconditions separately and cannot
look for ways to achieve multiple events or preconditions using a single motor action.

The precondition learning mechanism used is restrictive because it has to consider all
known variables and their qualitative values in order to determine whether or not they
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should be included. This makes it intractable. Mugan’s experiments had to limit the agent
to learning two context variables per rule.

A surprising limitation of treating variables independently and not learning relation-
ships between them is that QLAP cannot learn with spherical objects. Determining whether
or not a point is touching a sphere requires using a formula that considers the relative posi-
tions in each dimension. QLAP is of course unable to learn about such relationships as they
require combining variables.

Another implication of QLAP doing all learning qualitatively and treating variables in-
dependently is that its motor actions consist only of applying a positive or negative force
to a single motor variable until a world variables reaches a qualitative value. QLAP can-
not characterise the movement during the action with this action representation. Therefore,
QLAP cannot understand and distinguish between different actions such as moving and
hitting.

In order for QLAP to reach for an object, it has to consider its relative position to the
object and plan in each dimension separately. This is not realistic to a real infant who co-
ordinates many muscles with carefully controlled amounts of force on each one in order to
achieve motor actions that are meaningful and direct for interacting with the world. QLAP
would have to move each muscle one at a time, which is impossible.

In order to address this limitation, it is necessary to separate learning motor control
for actions and learning effects and preconditions for action. While using a qualitative ab-
straction is invaluable for learning effects and preconditions for actions, it is unsuitable for
learning motor control. Therefore, the agent should initially learn how to perform actions
using a quantitative process that learns to coordinate muscles in order to achieve meaning-
ful higher level actions such as moving and hitting and then it should learn the effects and
preconditions for the actions using qualitative abstractions.

The system presented in the thesis addresses these limitations in three ways:

1. It assumes an underlying visual system was learnt that provides a qualitative abstrac-
tion on top of the low level world variables, which can express relationships between
variables where necessary.

2. It assumes a motor control policy is learnt that combines lower level motor variables in
order to provide the agent with meaningful motor actions such as moving and hitting.
This separates knowledge of how to perform actions from knowledge of what effects
they have on the world.

3. It learns rules that have coordinated effects, uses a precondition learner that does not
suffer from intractability, and a planner that utilises multi-effect rules to plan for mul-
tiple goals or unsatisfied preconditions.

2.2 Developmental Psychology

2.2.1 Visual perception of the world

The psychology literature suggests newborn infants already have a visual system that is able
to identify and distinguish between simple shapes such as squares, circles, triangles, and
crosses [26, 10], and within the first few months distinguish objects and recognise spatial
relationships between them such as above and below, [24, 8]. A little later, they are able to
recognise more complicated relationships such occlusion [2], containment [12] and support.
[5]

It is therefore reasonable for this thesis to assume the existence of a visual system that is
able to construct a simple qualitative description of the world. The thesis does not consider
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the problem of learning visual perception, so a hard coded, non-learning visual system was
used. Assumptions that seem to be supported by the literature were made, for example the
agent is able to recognise round objects and walls as separate entities it can interact with, and
it can recognise simple relationships between them and its hand such as behind, touching,
and moving. However, it is clear from the psychology literature that a richer world with a
visual system able to recognise relationships such as occlusion, containment, and support
would be realistic. Because the focus of the thesis was learning rules for action, this level of
complexity was not necessary.

2.2.2 Learning about and understanding the physical world

A key area of the psychology literature for this thesis is how infants view, understand, and
represent knowledge of the physical world and objects within it.

Baillaregeon has done many studies [4, 3] on infant understanding of the world. Because
infants are believed to have difficulty with planning and executing actions, her studies in-
volve observing infants watching events with their eyes rather than carrying them out for
themselves. Because infants are known to look at events that are surprising for longer than
events that are expected, this allows a mechanism for probing at the understanding infants
have. How infants could apply this knowledge to their own deliberation actions and plan-
ning is addressed in the next section.

When learning rules to explain the world, Baillaregeon believes, infants initially recog-
nise interesting concepts and variables in an all or nothing fashion. For example, if a cloth
has a protrusion underneath it, an infant is not surprised when the cloth is lifted to reveal
an object, but is surprised if no object is revealed, or a cloth without a protrusion is lifted to
reveal an object. They do not seem to understand that the size of the protrusion in the cloth
is related to the size of the object under the cloth. Similar observations have also been made
for object support: infants seem to understand that for an object to not fall, at least part of
its base needs to be in contact with the supporting object; it is only later that they seem to
understand that the amount of the base in contact with the supporting object is significant.

After learning about an initial concept, Baillaregeon believes infants refine it by reason-
ing about related variables qualitatively and then quantitatively. For example, if infants can
see the size of the object before a cover from it is lifted (by placing an identical object next to
it), they are surprised if the size is larger than implied by the size of the protrusion. Whereas,
if they have no object to compare to, only older infants are unsurprised. Baillaregeon claims
this finding suggests having an object to compare to allow a qualitative comparison, whereas
not having a comparison object requires a quantitative comparison, which comes at a later
age. It isn’t clear that this finding does provide evidence for infant ability at quantitative rea-
soning, the finding may be explainable with improved visual memory allowing the infant to
picture the protrusion and then revealed object in their memory and carry out a qualitative
comparison between the two.

It is not clear how Baillagreon believes infants determine which variables and concepts in
the world are worth attending to, or how they represent such ideas. As this problem is likely
to be at least partially a visual system problem, the thesis did not address it and instead
assumed the infant begins by viewing the world as time states with a pool of interesting
qualitative facts describing information such as whether or not sound or touch is sensed, if
the hand is touching or near an object, or whether objects are touching or aligned with one
another.

The approach taken in the thesis for learning rules to describe the world is related to
Baillaregeon’s model. The agent initially learns sets of qualitative changes (i.e. facts that
become true or false from the pool of facts) that commonly occur together as effect sets.
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This is related to the identifying of all or nothing concepts and variables. The agent then
refines its knowledge of the set of effects by learning other qualitative facts as preconditions
to predict when the set of effects will occur. This is related to the refining described by
Baillaregeon, as the facts used to represent the world are qualitative relationships between
the hand and object and between objects.. Learning quantitative preconditions was beyond
the scope of the thesis and was not attempted, although could be a good next step.

Gibson’s research found that infants learn about events in the physical world and affor-
dances of objects through exploration with their motor capabilities [9]. As infants improve
their motor control and learn additional motor skills such as crawling and walking, they are
able to further explore and therefore improve their understanding of the world. The Ac-
tion Rule learning algorithm presented in the thesis takes a related approach in that motor
control for a set of straight forward motor actions is assumed to be known, and this motor
control is used to interact and explore the world in a non-deliberate fashion.

Needham [23] found that by equipping prereaching infants with “sticky mittens” (which
allowed the infants to grab items without having to grasp them), they were able to explore
objects in a similar way to how older infants who were already able to reach did. This
finding supports the idea that infant understanding of the world improves as new motor
skills are obtained, but that similar reasoning is used to interpret the results of exploration.

In addition, Gibson also noted infants are more interested in change in the world than
static scenes. Again, this is closely related to the algorithm presented in the thesis: learning
of new Action Rules is initiated by the agent identifying sets of qualitative changes occur-
ring in the world. The thesis also proposes that changing sensory data could be used as a
motivation to learn meaningful motor actions.

Elsner and Aschersleben [6] found that infants are only able to learn about the effects of
actions by observation of a teacher once they are around 12 months old. The thesis focusses
on infants under 12 months for inspiration, and therefore assumes the agent is autonomous
and learns without the aid of a teacher. Further work looking at how to extend such an agent
to learning like an infant over 12 months would need to learn from observation, as this is
likely an important learning mechanism for infants in that age group.

2.2.3 Deliberate actions and planning

One limitation of Baillagreon’s work is that it only considers infant understanding of ob-
served events, and not of events resulting from their own actions. Infants have been found
to struggle with planning tasks although the exact reason for this is unclear and multiple
theories exist. Willatts [29, 30] put forward the theory that infants aren’t able to effectively
plan until they are able to effectively learn about the effects their own motor actions have
on the world. His experiments showed that infants of around 7 months are able to plan
deliberately to solve problems such as removing a cloth from on top of an object in order to
then be able to retrieve the object. The infant’s ability to succeed at the task seemed to be
dependent on their ability to remove the particular kind of cloth covering the object. This
suggests being able to learn the effects of actions and plan requires a certain level of mastery
of motor control.

The agent in the thesis follows Willatt’s theory in that it learns about the effects of actions
it carries out itself rather than effects of actions it observes. This was necessary for planning,
as the agent needs to learn what effects its own motor actions can lead to, so that it can
then chain motor actions together in a plan that it can execute. Consistent with Willatt,
important that the motor control policy used to enable exploring the world and planning
had an adequate level of consistency and reliability. The agent’s ability to plan with less
predictable actions such as hitting was noticeably less than its ability to plan with more
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predictable actions such as moving to and grasping.
No psychology literature on the finer details of the planning mechanisms used by infants

was found, other than the claim they use Means-End Analysis and can use this for two step
plans [29]. According to Fabricius, infants don’t use forward search planning, because this
seems to be a much later development, first appearing at around 5 years of age. Forward
search planning seems to be a much later development, first appearing at around 5 years
of age. [7]. Because infants have limited working memory that at best can remember 3 - 4
items at one year of age [25], working memory usage needs to be limited.

The agent in the thesis uses a Means-End Analysis planner that at each step of the plan-
ner considers the alternatives and chooses the seemingly best one to commit to. There is
no backtracking or searching more than one step back as infant working memory does not
allow for this, although the agent is allowed multiple attempts at goal sets or sub goals sets
that were not successfully achieved. The planning stack also has a depth limit. This results
in a planner that takes an explorative approach to planning, where failures are considered
acceptable and normal. This fits in with the exploratory nature of the approach infants seem
to take with other learning mechanisms. If anything, the agent’s planner is more sophisti-
cated than what is realistic for a human infant.

2.3 Algorithms

2.3.1 The Apriori algorithm

The Action Rule learning component of the thesis uses the Apriori algorithm [27]. The
Apriori algorithm is a standard algorithm used in frequent itemset mining.Given a mini-
mum support threshold, s, and a set of transactions, each of which contains a set of items,
the algorithm identifies all sets of items with sufficient support; existing in at least s trans-
actions. This is achieved by exploiting the Apriori Principle, which states that for an itemset
to have sufficient support, all its subsets must also have sufficient support. The Apriori al-
gorithm exploits the Apriori Principle by building up a lattice with all possible itemsets and
links between itemsets and their immediate (one size smaller) subsets. The algorithm then
checks each singleton itemset for sufficient support. If the itemset does not have sufficient
support, it and all its supersets (of all sizes) are pruned from the lattice. This process is then
repeated at each layer of the lattice.

The thesis used the Apriori algorithm for identifying sets of effects that occurred together
frequently. Because learning examples arrived to the learner online, the Apriori algorithm
also had to work online. This was implemented in the thesis by building up an explicit lattice
that generated new effect sets when at least two of their immediate subsets had sufficient
support.

Effect sets were never pruned from the lattice, even if they never gained support. This
was because of a tradeoff between computational speed and space. Experimenting with this
tradeoff is for future work.

2.3.2 The STRIPS planner

The Action Rule learning component of the thesis learns STRIPS rules [1], referred to as
Action Rules in the thesis. A STRIPS based planner was then used to solve simple planning
problems with the learnt Action Rules.

A STRIPS rule consists of three parts: an action, preconditions, and effects (commonly
referred to as postconditions). Variables are used to generalise rules. When the action is
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carried out in the world, if the preconditions were all true then the effects are expected to
occur.

The STRIPS planner uses Means-End Analysis to plan backwards from the goal to the
initial state. Given a goal described as a set of conditions, a rule whose effects are the condi-
tions is selected. The preconditions of the selected rule are then checked against the current
state of the world. If they are satisfied, the action is carried out. Otherwise, they are treated
as a new goal and the process is repeated recursively. Normally STRIPS will look ahead to
find the shortest possible plan.

The thesis needed to ensure the planner used had some realism to real infants. Therefore,
only the immediate goal was considered when choosing an Action Rule. This of course
meant the planner was not optimal and failed at plans a sophisticated planner would have
succeeded at, but the objective of the thesis is to learn like a human infant.
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Chapter 3

Overview of System

As abstraction was identified as an important consideration in the system design, the learn-
ing problem was split into five major components, each consisting of one or more sub-
components.

Learning World Simulation: The simulation models a simple learning world. The simu-
lation has an input interface which takes values for its force variables, and an output
interface which outputs quantitative states of the world at frequent intervals. A table-
top simulation was used in the thesis, although the other components are designed to
work with any simulation that has a similar interface.

Vision and Sensation: The vision and sensation provides a layer of abstraction of the raw
quantitative state output of the simulation, by generating a simple qualitative descrip-
tion of each state. This conversion was hardcoded rather than learnt, as learning vision
and sensation was outside the scope of the thesis.

Motor Control: The motor control provides a layer of abstraction over the raw force vari-
ables on the simulation input, in order to allow the agent to use and learn higher level
motor actions that can be applied in different contexts.

Action Rule Learner: The Action Rule learner learns Action Rules describing the various
sets of effects each motor action in the motor action policy can result in and precondi-
tions attempting to predict when a given set of effects will occur.

Action Rule Planner: The planner uses the Action Rules learnt by the Action Rule learner
to achieve simple tasks. The motor control is used to carry out the Action Rules in the
simulation with the help of the vision and sensation. The planner is also able to refine
the Action Rules so acts as a simple learner.

Figure 3.1 shows how all the system components fit together. As the presented system
is for a Master’s thesis the scope of what could be implemented was limited. The motor
control policy learner and the vision and sensation system were outside the scope, so hard-
coded components for these were implemented to work with the tabletop simulation. All
remaining components were implemented to be general and independent of the other com-
ponents. The main focus of the thesis was on the Action Rule learner and the Action Rule
planner. An exploration of how examples could be generated for a motor control policy
learner was also carried out.

There are several advantages to using a system design like this. Firstly, it allows mean-
ingful abstractions to be built over the raw simulation input and output rather than attempt-
ing to bridge directly from the simulation to the rule learning like Mugan did. Secondly, it
allows the agent to separate knowledge of how to physically perform an action from knowl-
edge of what the action can be used to achieve, allowing realistic motor control as realistic
motor actions can be modelled. And thirdly, it allows each component to learn at its own
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Figure 3.1: The components of the system presented in the thesis

pace, much like a real infant who learns about vision and then motor control before using
actions and planning.

The remainder of this chapter outlines the implementation of the simulation, vision and
sensation, and the hardcoded motor control policy. The exploration on generating motor
control learning examples is discussed in chapter 4, the Action Rule learner in Chapter 5,
the Action Rule planner in Chapter 6, and an improved version of the Action Rule learner
and planner in Chapter 7.

3.1 The Simulation

A two dimensional simulation modelling an infant, referred to as the agent, was used in the
thesis. The agent is sitting at a table with balls on the tabletop and its hand stretched out to
interact with the balls. Only the area of the tabletop and the infant’s hand is modelled; the
agent’s body and the area outside the tabletop is ignored. The tabletop is rectangular with
walls on the four sides preventing the hand leaving the tabletop. One wall has a slot below
it large enough for balls to ”fall” from the tabletop. Figure 3.2 illustrates the simulation.
While the arm has been drawn for clarity, it plays no part in the simulation and balls can
“roll” through it.

The hand moves around the table top when forces are applied to it. When the hand hits
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Figure 3.2: The simulated learning world used for the thesis

a ball, the ball moves using realistic physics built into the simulation. Balls can be hit into
other balls, and can bounce off walls. Balls that roll onto the slot fall from the table and
are no longer in the simulation. When there are no more balls in the world new balls are
randomly placed on the table top.

The hand also has fingers which open and close along a one dimensional path. When the
fingers close near a ball, the ball becomes grasped and moves around with the hand. The
ball is no longer grasped when the fingers reopen.

The simulation makes sounds the agent can hear when the hand hits a ball or wall, or
balls bang against one another or a wall.

The simulation was implemented in python using realistic physics. Some artefacts were
present in the simulation, although debugging these was considered as unimportant as they
weren’t frequent enough to be problematic, and the real world is also noisy.

3.2 Vision and Sensation

The vision and sensation provides an abstraction over the raw simulation output by con-
verting the current state of the tabletop into a qualitative representation describing various
relationships between objects (balls, walls, and the slot wall) and the hand. In addition to
the vision system, the agent has touch sensors which tell it when it senses something against
its hand (i.e. a ball or wall), or when an object is gripped, and a sound sensor that activates
when the simulation makes a sound. The state of each sensor is added to the qualitative
representation. All this information is represented as a set of qualitative facts

A qualitative fact consists of a predicate and optional parameters. For example, the
Green and Red balls touching is represented as Touching(Green, Red). When the hand is
included in a fact, it is written as a part of the predicate. For example the hand touching
the Green ball is represented as Hand Touching(Green). Learning the types of objects (for
example ball or wall) was outside the scope of the thesis, so object types were built in. Walls
are named after their position; left wall, near wall, far wall, and right wall. The right wall
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is referred to as the slot wall and is of a different type to the other three walls. Balls are
named after their colours. Figure 3.3 shows an example of a qualitative representation for
a state of the world. Other predicates were also experiemented with, such as alignment of
objects relative to the hand.

The exact set of predicates used in the qualitative representation generated by the vision
system and sensors is unimportant to the Action Rule learning algorithm, which is designed
to learn in any world in which states can be described as a set of qualitative facts with
predicates and typed parameters.

Figure 3.3: A state of the world with a corresponding qualitative representation

3.3 Motor Control Policy

The motor control policy provides an abstraction over the raw simulation input by using
policies to set the simulation’s force variables in order to model higher level actions such
as moving and hitting. While a possible approach to the learning example policy learning
example generator is discussed in Chapter 4, a hardcoded motor control policy was imple-
mented to enable the Action Rule learner and Action Rule planner which are dependent on
a complete motor control policy. The following actions were included in the policy.

Move To(target): move towards target and slow down once near so as to touch target.
Hit(target): move fast towards target so as to hit it.
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Grasp: close the fingers, stopping when either an object becomes grasped or the fingers are
fully closed.

Ungrasp open the fingers, stopping once the fingers are fully open.
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Chapter 4

Generating Learning Examples for
Motor Control

While learning a motor control policy is outside the scope of the thesis, an initial exploration
on identifying learning examples for learning a motor control policy was carried out. We
assume that the agent needs to learn its motor control policy autonomously, so the agent
must be able to generate its own examples of motor actions to drive the learner, and must
do this without knowing what the actions are. Forces were set on the agent’s motor vari-
ables by a random movement generator that had a tendency to apply a force in a single
direction for periods of time rather than constantly changing its forces. By using a simple
heuristic procedure to analyse its own random movements generated, the agent was able to
identify meaningful actions examples that happened by chance. The heuristics were based
on very general measures of simplicity and interestingness. This process involved firstly us-
ing regression on the hand and finger positions in order to identify segments that could be
explained with a simple path, and then filtering those that were interesting to the agent, i.e.
caused qualitative sensor input or qualitative visual events and interactions with objects. In
addition, having qualitative events at the ends of the segments will help the policy learner
to identify when it is learning an action successfully.

4.1 Identifying Segments with Regression

Given a time sequence of states, the agent breaks the sequence into segments in which the
hand positions could be modelled with linear or circular (an arc) regression. This was done
because smooth and direct paths are simpler and can be described easily, and thus are more
likely to be of interest to a human infant to learn about.

Segmentation was implemented by iterating through the sequence of states attempting
to add states onto the segment currently being built up. When adding a state resulted in the
regression error going above a threshold, the segment was completed and a new segment
was started. This algorithm was greedy and did not attempt to go back and optimise the
segmentation. Figure 3.1 (1) shows the hand movement for around 8000 sequential states of
the world. (2) shows the result of applying the segmentation algorithm to this sequence of
states. The colours show the different segments that were identified.

The agent also identified segments among finger movement. Because finger movement
in the simulation is modelled on a one dimensional path of opening and closing, only di-
rection of movement was used to segment finger movement. This identified finger closing
actions where the finger stopped moving halfway because of an object or closed all the way
making a fist, and finger opening actions where either the hand fully opened from a fist or
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Figure 4.1: Analysing a sequence of states to identify segments consisting of hand positions
on the same qualitative path

opened from halfway and releasing an object.
No attempt was made to search for segments that had coordinated hand and finger

movement in them. Such coordination is necessary for actions such as throwing or a co-
ordinated grasp which times closing the fingers such that they are closed at the same time
the full hand movement reaches the object. Because human infants have trouble with such
actions, using a more advanced mechanism such as observation and attempting to combine
motor control for known actions may be better suited to learning them, but is outside the
scope of the thesis.

4.2 Filtering the Segements

Because infants are interested in events and changes in the world, segments that did not
contain interesting qualitative events were thrown away on the basis that an infant would
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not recognise them as being significant and therefore would not learn from them. Several
different qualitative events were used as heuristics for whether or not to keep a segment,
for example sensor events such as touch, sound, and grasp, and contact with objects during
and at the end of the action.

4.3 Conclusion

To evaluate this mechanism properly, a motor control policy learner would have to be de-
signed to see whether or not useful actions could be learnt with the examples. Since this
was not feasible the method was evaluated by determining whether it generated enough
segments that matched hard coded definitions of four basic actions – Move To, Hit, Grasp,
and Ungrasp. The definitions used were:

Move To: segments whose velocity went to or near zero towards the end, and ended with
sensor events such as sound or touch and contact with an object (ball or wall)

Hit: segments where a collision with an object was detected while the velocity was high
Grasp: segments where the finger direction is positive (closing) and the grasp sensor goes

true
Ungrasp: segments where the finger direction is negative (opening) and the grasp sensor

goes false

By using these action definitions, the agent identified many meaningful examples of each
action. This shows that using segmentation and then qualitative information to identify
learning examples is a plausible approach to the problem.

4.4 Summary and Future Work

This initial exploration investigated using simple heuristics to identify meaningful actions
among random behaviour generated from randomly generated sustained forces on the agent’s
motor variables. The exploration indicated that this approach could generate learning ex-
amples that would enable the agent to learn a motor control policy for the actions. Once
motor control for the action has been learnt, the motor control policy can then be used to
perform the action in a wider variety of situations as done in the Action Rule learner in
Chapter 5.

As motor control learning was outside the thesis scope, the motor learning examples
were not used by a motor control policy learner. Instead, hard coded motor control policies
for four simple actions were used for generating data for the Action Rule learner in Chapter
5: Move To, Hit, Grasp, and Ungrasp.

In future work, the exploration outlined in this chapter could be used as a starting point
to learn a motor control policy. Unique motor actions to learn about could initially be iden-
tified by clustering the segments generated in Section 4.2 based on their velocity profiles
and interactions with objects. Then motor control for each cluster could be learnt using
probabilistic methods on the quantitative motor variables in each segment of the cluster.
Konidaris’s work outlines a possible way of doing this, [13]. Future work may find other
ways of approaching the problem.This would allow the agent to identify a wider range of
actions than just the ones the hard coded motor control policy has been designed for. Action
Rules describing the effects of the actions generated from each action in the motor control
policy could then be learnt using the Action Rule learner introduced in Chapter 5.

Human infants learn online from each learning example as it arrives. By making the
motor control learning algorithm online, the agent could refine the policy as it gathers more
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examples for them from both random exploration and attempting to use the incomplete
policy. The qualitative information in the motor learning examples, for example the path
shape, sensor inputs, and object interactions provide a source of information the agent could
use to evaluate the policy and direct further refining of it. This kind of approach seems to be
inline with Thelens longitudinal investigation of how infants learn to reach for objects [28].
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Chapter 5

The Action Rule Learner

The main goal of the thesis is learning Action Rules from exploratory behaviour and using
the Action Rules in planning problems in order to achieve simple goals. An Action Rule
consists of three parts: an intention, which consists of a motor action type and an optional
target variable, an effect set, which consists of a set of effects that can occur together as a result
of the intention being carried out, and a set of preconditions that attempt to predict under
what conditions the effect set is likely to occur as a result of the agent deliberately carrying
out the intention. The effect set and preconditions are represented as sets of qualitative facts
that contain typed variables, such as ball (“b”), normal wall(“w”), or slot wall (“s”).

Effects in an effect set can be either positive or negative. Positive effects are effects that are
expected to become true as a result of the motor action. Negative effects are effects that are
expected to become false. Positive effects are written as a qualitative fact with a “+” at the
start, and negative effects with a “-”.

Figure 5.1 illustrates an Action Rule the agent learns for the Move To motor action with
a target of ?b34. The effects are +Hand Touching(?b34), +Within Grasp Distance(?b34), and
-Hand Touching(?w12), which specifies that moving to ?b34 results in being in within grasp
distance of and touching ?b34, and no longer touching ?w12. These effects required that the
ball ?b34 was on the table (precondition: On Table(?b34)) and that the hand was initially
touching wall ?w12 (precondition: Hand Touching(?w12).

Figure 5.1: A possible Action Rule the agent can learn

The agent learns many Action Rules for each motor action. The Action Rules are made
unique by their intention and effect set, because the agent is attempting to learn the different
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possible effect sets for each possible intention. The precondition learning algorithm used is
minimal, and thus the agent does not attempt to learn multiple Action Rules with the same
intention and effect set but different preconditions. Figure 5.2 shows four Action Rules the
agent learns for the Grasp motor action. While each of these four Action Rules has the same
intention, they have different effect sets to make them unique.

Figure 5.2: Four of the many possible Action Rules the agent can learn for the Grasp motor
action

The first Action Rule (AR 1) in the figure has preconditions that describes the hand touch-
ing a ball, “?b2”, and an effect set specifying that the Grasp action results in the ball being
grasped. The second Action Rule (AR 2) applies in situations where the hand was within
grasp distance of a ball but not quite touching it. Grasping pulls the ball in, so in addition
to grasping the ball, the Grasp action also results in touching it. The third Action Rule (AR
3) applies to situations where the Grasp action just results in the fingers being closed and
no longer open. For this, the fingers must have been fully open to begin with. The fourth
Action Rule (AR 4) applies in situations where the only effect of the Grasp action is the fin-
gers being closed. Unlike the previous Action Rules, this Action Rule does not require the
fingers to be fully open initially.

In order to learn Action Rules, the agent needs a source of learning examples. Learning
examples describe situations where the agent deliberately carried out a motor action, and
qualitative changes to the world occurred as a result of that motor action being carried out.
Learning examples consist of an intention, which is similar to that of Action Rules except
it contains a concrete object rather than variable where a target is needed, an initial state,
which is a qualitative description of the world immediately before the action was carried
out, and effects, which are the qualitative difference in the world from immediately before
the action was carried out to immediately after. Unlike Action Rules, all objects in a learning
example are concrete rather than generalised, i.e. they are not represented with variables.
Section 5.1 discusses how learning examples are generated.

The actual Action Rule learning process begins with learning effect sets. Because an
effect set consists of effects that commonly occur together, this problem was approached
as a frequent itemset generation problem. The Apriori Algorithm introduced in Chapter 2
is a well known algorithm for generating common itemsets in a transactional database, so
was used to learn effect sets. The basic Apriori Algorithm had to be extended to work with
variables in items and to work “online” rather than “offline”. Section 5.2 discusses the effect
set learner.
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Given an effect set, the learning examples that support the effect set are then used to
learn preconditions for the effect set. The precondition learner generalises the objects in the
qualitative facts of the initial state of each learning example using a bindings dictionary that
was generated when the learning example was matched against the effect set. The gener-
alised qualitative facts are treated as candidate preconditions and are tallied to determine
how many learning examples each appeared in. Those that have a tally higher than a thresh-
old become actual preconditions that make up the preconditions component of the Action
Rule. Section 5.3 discusses the precondition learner.

The implemented Action Rule learning algorithm is illustrated and evaluated in the the-
sis using the four motor actions defined in the previous chapter: Move To, Hit, Grasp, and
Ungrasp. However, the Action Rule learning algorithm is designed such that it could learn
Action Rules for any motor action with a motor control policy, for example pushing or flick-
ing movable objects with the fingers.

5.1 Generating Learning Examples

Figure 5.3: An example of a move to motor action with the intention move to(Right Wall)

The Action Rule learner requires learning examples of each motor action. To generate a
learning example, the agent chooses a motor action to carry out. If the motor action requires
a target object, one is randomly selected. When the motor action is carried out, the agent’s
visual and perceptive system convert the quantitative states immediately before and after
the motor action was carried out into qualitative representations. The state immediately be-
fore becomes the initial state of the learning example, and effects for the learning example
are determined by comparing the initial and final qualitative states. Effects consist of qual-
itative facts that were present in one of these two states but not the other. Qualitative facts
that were true only in the final state are positive effects and those that were true only in the
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initial state are negative effects. While it is possible that a fact could have disappeared some-
where in the middle of the action, and reappeared at the end, the agent does not consider
such situations.

While the agent would have been able to gather examples of the motor actions using
the processes outlined in the previous chapter, these examples are not suitable for the Ac-
tion Rule learner because actions that were identified as happening by coincidence have a
different distribution of effects to actions that are carried out deliberately.

Figure 5.4: The agent determines the effects of the action carried out in Figure 5.3

Figure 5.3 shows an example of the qualitative state before and after a Move To action
with the intention Move To(Right Wall) is carried out. The action pushed the Blue object off
the table and the hand is now touching the Right Wall.

Figure 5.4 shows how the agent determines the effects for the action shown in Figure
5.3 . Facts that exist in both states do not become effects so are ignored (greyed out in
the figure). Facts that existed in the initial state but not the final state are negative ef-
fects (coloured in red and written with a “-” in the figure). Facts that existed in the final
state but not the initial state are positive effects (coloured in green and written with a “+”
in the figure). This shows there are five effects: -On Table(Blue), -Hand Touching(Blue), -
Within Grasp Distance(Blue), -Hand Behind(Blue, Left Wall), and +Hand Touching(Right Wall)

Figure 5.5 shows the result of putting together the initial state and intention in Figure 5.3
with the effects identified in Figure 5.4. This makes a complete learning example, suitable
for the effect set learner to learn from.
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Figure 5.5: The learning example created by pulling together the information in Figure 5.3
and Figure 5.4.

5.2 The Effect Set Learner

When the agent carries out a motor action, the resulting effects of the action are largely
dependant on the current state of the world. For example, if the agent tries to grasp when
its hand is near a ball, the action is very likely to result in the ball being grasped; if the hand
is not near an object, it will close with no object grasped.

The objective of the effect set learning process is to identify many different possible ef-
fects and combinations of effects that can result from each of the known motor actions. Each
effect or combination of effects identified is represented as an effect set. Learning effect sets
rather than single effects is somewhat unusual when compared to traditional rule learn-
ing, which tends to focus on learning about single effects. The effect set learning approach
was taken because it simplifies the planner (allowing it to achieve a group of effects with
a single Action Rule), allows coordinated effects to be learnt, and allows for a very simple
precondition learner.

The effect set learner uses the Apriori Algorithm introduced in Chapter 2. The effects
component of a learning example’s effects is treated as a transaction and used to build a
lattice of effect sets (referred to as itemsets in the Apriori Algorithm terminology). Singleton
effect sets are identified from the individual effects in the learning examples, and candidate
size n+1 effect sets are generated by combining size n effect sets, starting with the singleton
effect sets. The Apriori Algorithm was chosen because it is an easy to understand algorithm
that would allow the agent to begin by learning very simple rules and then extend them to
more complex rules.

However, the basic Apriori Algorithm had to be modified for the thesis in two key ways.
Firstly, because learning examples are generated and learnt from one at a time, a linked
lattice was built up and used to connect smaller effect sets to the larger effect sets they gen-
erated. This allowed each learning example as it was generated to be propagated through

27



the lattice, and relevant effect sets updated and potentially combined to make new effect
sets. Secondly, while learning examples contain concrete objects, effect sets should contain
typed variables. This was accomplished by generalising the objects in the learning example
into typed variables and then using a matching algorithm that identifies whether or not the
intention and a subset of the generalised learning example effects can be mapped onto an
effect set.

5.2.1 Definition of an effect set

An effect set is a set of generalised qualitative facts describing one possible outcome when a
particular intention (motor action and optional target) is carried out. An effect set is always
connected to an intention. It is possible for two distinct (by the definition in Section 5.2.2)
effect sets to have the same effects, but different intentions.

Effect sets contain any number of effects. There are two kinds of effects that can be
present in an effect set, both of which are represented with qualitative facts.

Effects describing what became true. This describes a fact that was false at the start of the
action, but was true at the end. These effects are written with a ”+” in front of their
predicate. For example, +hand touching(?b1) and +grasp sensor().

Effects describing what became false. This describes a fact that was true at the start of the
action, but false at the end. These effects are written with a ”-” in front of their predi-
cate. For example, -touch sensor() and -hand grasping(?b1).

Each effect set has its own copy of the intention it is an effect set for. The scope of a
variable is within the effect set and copy of the intention that it appears in (and eventually
Action Rule, once preconditons have been learnt for the effect set). For clarity, fresh variable
names are always used in the implementation and in the examples in the thesis. If two
variables within an effect set have different identifiers, they must refer to different objects.

5.2.2 Effect set equivalence

In order to determine whether or not two effect sets are equivalent, the following equiv-
alence function was used.

Two effect sets, E1 and E2, (including their corresponding intentions), are equivalent if
and only if all the following constraints are met.

1. E1 and E2 have equivalent intentions. i.e. the intentions refer to the same motor action,
and the same type of target variable.

2. A bijective effect map exists that maps each effect in E1 to an effect in E2 that has an
identical identifier, including the “+” or “-”. The intention for E1 is also mapped onto
the intention for E2, and these are treated the same as the effects are for the remainder
of the definition.

3. A bijective variable map exists that maps each variable, v1, in E1 (and its intention) to
a variable, v2, in E2 (and its intention) such that:

• No variable is mapped to a variable of a different type
• If v1 is mapped to v2, and v1 occurs at position i in an effect, e1, then v2 must

occur in position i of e1’s corresponding effect from the map in (2)

Figure 5.6 shows four examples of the algorithm checking whether E1 is equal to E2. In
1), the effect map and variable map are valid. Therefore, the effect sets are equivalent. In 2),
the effect map is not valid because no effect with predicate Sound Sensor exists in E2, and

28



no predicate with Touching exists in E1. Therefore, the effect sets are not equivalent. In 3),
the effect map is valid, but the variable map is not a bijection because both ?b45 and ?b59
are mapped to ?b28. Therefore, the effect sets are not equivalent. In 4), the variable map is a
bijection, but ?b98 and ?w94 which are linked have different types. Therefore, the effect set
is not equivalent.

Figure 5.6: 1), 2), 3), and 4) illustrate 4 different cases for the effect set equivalence function.
E1 and E2 are equivalent in 1). E1 and E2 are NOT equivalent in 2), 3), and 4) for the reasons
specified

5.2.3 The effect set–learning example support function

The Apriori algorithm requires the agent to be able to determine if a given learning
example supports a given effect set, that is, whether a subset of the Learning example’s effects
are a concrete instance of the effect set. Effect sets contain typed variables whereas learning
examples contain concrete objects. For this definition, variables and concrete objects in the
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learning example are all referred to as parameters, and the types of all parameters must be
known. The following support function was used.

A learning example, LE, supports an effect set, ES, if and only if all the following con-
straints are met.

1. LE supports ES’s intention. i.e. the intentions refer to the same type of motor action
and have the same type of target parameter.

2. An injective effect map exists that maps each effect in ES to an effect in LE that has an
identical identifier, including the “+” or “-”. The intention for ES is also mapped onto
the intention for LE, and these are treated the same as the effects are for the remainder
of the definition

3. A bijective map between the parameters in ES (and its intention) and the parameters in
the matching effects of LE that maps each parameter p1 in ES to a parameter p2 such
that:

• No parameter is mapped to a parameter of a different type
• If p1 is mapped to p2, and p1 occurs at position i in an effect, e1, then p2 must

occur in position i of e1’s corresponding effect from the map in (2)

5.2.4 The lattice structure

The agent learns a lattice of effect sets for each known motor action. The lattice is organised
into levels: the first level containing the effect sets with a single effect, the second level
containing the effect sets with two effects, the third level containing the effect sets with
three effects, etc. The maximum effect set size is determined by a constant. Each effect set
has links to its immediate subsets and immediate supersets. In this thesis, the use of the
terms subsets and supersets always refer to the immediate subsets and supersets of an effect
set.

A subset-superset relationship exists between a pair of effect sets, es1 and es2 where es1
contains n effects and es2 contains n+1 effects, if and only if removing one effect from es2
makes es1 and es2 equivalent effect sets by the definition given in Section 5.2.2. This lattice
is similar in structure to the implicit lattice built by the Apriori Algorithm.

Figure 5.7 shows an example of a simplified lattice the agent could learn given 6 possible
singleton effect sets (in practice, each motor action has many more singleton effect sets and
thus many more larger effect sets). Effect sets with a high support count are highlighted;
these were used to generate larger effect sets. Each effect set links to its subsets, and to
its known supersets if it was above a support count threshold. For example, the effect set
Move To(?b12) {+Hand Touching(?b12), +Touch Sensor()} has links to two singleton effect
sets: Move To(?b3) {+Hand Touching(?b3)}, and Move To(?b4){+Touch Sensor()}, which
are its subsets, and a link to one size-3 effect set, Move To(?b18) {+Hand Touching(?b18),
-Hand Touching(?w19), +Touch Sensor()}, which is its only known superset. The dotted
lines show subset-superset links that the agent will not have learnt yet, because the subset
is not above the support threshold.

The lattice was implemented using linked nodes, where each node contained an effect
set, and links to the effect set’s subsets and supersets. In addition to being stored in the lat-
tice, effect sets were also indexed. An index key was generated for each effect set by hashing
an alphabetically sorted list of the predicate names in the effect set. Collisions were handled
by storing effect sets with the same index key together in a set at the index. The indexes
allowed the effect set learner to efficently determine whether or not an equivalent effect set
for the given effect set exists in the lattice, and the planner to quickly identify suitable Action
Rules for plans. A better index key able to take into account variables but ensure that two
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Figure 5.7: A simplified lattice of effect sets that the agent could learn.

equivalent effect sets always hash to the same value could have been designed, although
was considered unnecessary and outside the scope of this thesis because collisions were not
an efficiency problem.
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5.2.5 Building up a lattice of effect sets

The effect set learning algorithm is outlined in Algroithm 5.1. The algorithm adds each
learning example to the lattice, one at a time. It first adds the example to any singleton
effect set that it supports, adding new singleton effect sets to the lattice if necessary. It then
propagates the example up the lattice from those singletons, adding the example to any
Effects Set that it supports. When the example pushes the support of an effect set above
the combining threshold, it will attempt to create a new superset effect set to the lattice by
combining the effect set with each other supported effect set of the same size with which
it has a common subset. The details of the important steps are described in the following
subsections.

define add learning example to lattice(example)
generalised ← generalise example 5.2.6
for each effect in generalised.effects

singleton ← make effect set containing effect
if singleton is equivalent to an effect set in lattice 5.2.2

singleton ← get equivalent to singleton from lattice
else

add singleton to lattice
apply example to effect set(generalised, singleton)

define apply example to effect set(generalised, effect set)
if generalised already marked as seen for effect set

return
mark generalised as seen for effect set
if generalised supports effect set 5.2.3

increment support for effect set by 1
if support = COMBINING THRESHOLD

combine with neighbours(effect set)
for each super in known supersets of effect set

apply example to effect set(generalised, super)

define combine with neighbours(effect set)
for each neighbour es in related effect sets(effect set)

for each shared subset of effect set and neighbour es
for each binding map consistent with subset, neighbour and effect set

new es ← construct effect set(subset, effect set, neighbour, binding map)
if new es is not equivalent to any effect set in lattice 5.2.2

link new es to effect set and neighbour in lattice
else

link equivalent effect set to effect set and neighbour

define related effect sets(effect set)
find all subsets of effect set in lattice
collect all supersets of each subset in lattice.

Algorithm 5.1: Building an effect set lattice with learning examples
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5.2.6 Learning singleton effect sets

Singleton effect sets are learnt by generalising the learning example and then generating
an effect set for each effect. Any effect sets that are not present in the lattice are added. In
order to generalise the learning example, each unique object referred to is assigned a typed
variable with a unique identifier, and each instance of the object in the learning example
is replaced with the assigned variable. This allowed the agent to generate size-1 effect sets
so that increasingly larger effect sets could then be generated using the size n+1 effect set
learning procedure discussed in Section 5.2.7.

5.2.7 Learning size n+1 effect sets

The agent generates possible size n+1 effect sets by combining pairs of size n effect sets.
In order to combine the effect sets, the agent identifies injective mappings between a subset
of the variables in the first effect set and the variables in the second effect set that when
applied to a copy of the effects in each effect set, will leave n+1 effects when resulting dupli-
cates are removed. The mapping must also make the intentions of the effect sets equivalent.

In order for a suitable injective mapping to exist, the pair of size n effect sets must have
at least one immediate subset (containing n-1 effects) in common. Removing any one effect
from an effect set makes the effect set equivalent to one of its subsets. Intuitively, for two
size n effect sets to “overlap” onto each other, n-1 effects from each must overlap, and 1 ef-
fect from each must not, giving a total of n+1 effects. Removing the non-overlapping effect
from each of the two effect sets would mean they are equivalent. And because removing 1
effect from an effect set makes the effect set equivalent to one of its subsets, there must exist
an immediate subset in common that is also equivalent. The agent exploits this property
in order to greatly reduce the number of unsuccessful pairings processed. Multiple valid
mappings are possible where there are multiple subsets in common, or where the two ef-
fects unrelated to the subset have variables that were not present elsewhere in the mapping.
Multiple subsets in common can also lead to there being no valid mappings.

By having each effect set initiate the combining process just once with all other suitable
effect sets above the support threshold, it is guaranteed that each valid pair of effect sets is
combined exactly once. Because a size n effect set has up to n unique immediate subsets,
and only two of its subsets are used to generate it, the same effect set will be generated
again when another subset goes above the threshold. While duplicate effect sets are not
added to the lattice, the agent exploits the additional generations to ensure that each effect
set is linked to all its subsets.

Figure 5.8 illustrates an example where the agent is combining es1 with a possible es2.
In (1) of the Figure, the agent identifies a common subset of es1 and es2. In (2), the agent
identifies the common subset effects in each of es1 and es2. These effects are bolded and
coloured blue in the figure. The agent then builds up a variable map in order to merge
the common subset effects in es1 with the common subset effects in es2. In (3), the agent
identifies two possible valid extensions of the map that lead to n+1 effects upon applying
the mapping. Finally, the result of applying the mapping to make a new effect set is shown
below each mapping. The two effect sets generated are similar, except the first effect set
covers cases where the object that fell from the table is the same object as the one the agent’s
hand is no longer touching, whereas the second effect set covers cases where the object that
fell from the table is different from the one that the agent’s hand is no longer touching.
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Figure 5.8: An example of the effect set combining algorithm

5.2.8 Propagating supporting learning examples

The Apriori Principle states that an item set can only be supported by a transaction if
all its subsets are supported by the transaction. This also applies to the effect set lattice, as
it is based on the Apriori Algorithm. This allows the agent to greatly cut down the num-
ber of effect sets a learning example is checked against, as a learning example should only
be checked against an effect set if the effect set’s subsets were supported by the learning
example.

For simplicity of implementation, the agent checked a learning example against an effect
set after it knew at least one subset was supported. In order to prevent redundant checking
(because a superset could potentially be checked via all its subsets), the agent kept track of
which effect sets had already been matched against a particular learning example. This ap-
proach was sufficently efficient for the purposes of this thesis. If efficiency became an issue,
the algorithm could be improved by fully enforcing the Apriori Principle. When a sub-
set sends a learning example to its supersets, the supersets could track which subsets have
“sent” them the learning example. Only once all subsets have sent the learning example
would the effect set check whether or not it is supported by the learning example.

5.3 Learning preconditions for Action Rules

Preconditions are learnt for each effect set in order to turn them into complete Action
Rules. The preconditions strive to determine what must be true of the world in order for
deliberately carrying out the motor action specified in the intention of the effect set to cause
the effect set to occur. Each time the agent gets a supporting learning example for an effect
set, it uses the facts in the initial state of the learning example for precondition learning.
Once preconditions have been learnt for an effect set and intention, the intention, effect set,
and preconditions make a complete Action Rule.
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Figure 5.9: Adding three possible learning examples to an effect set with the effects
+hand grasping(?b1) and +grasp sensor()

The precondition learning algorithm used is simplistic and assumes that if something is
often true when a motor action results in an effect set, then it is a precondition. The agent
is unable to learn whether or not the precondition actually has to be true or whether it just
happens to be true often, and it is also unable to learn what must not be true. This simple
approach was determined to be sufficient for the purpose of learning to carry out simple
tasks like infants might carry out.

5.3.1 Identifying candidate preconditions

When a new effect set is identified, an empty precondition table is attached to it. The pre-
condition table tracks candidate preconditions and how much support each candidate pre-
condition has. When the agent needs to know the preconditions of an Action Rule, such as
during the planning process, candidate preconditions that have at least a given percentage
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of support are treated as actual preconditions. Learning examples that supported an effect
set are used to learn candidate preconditions for the effect set.

Like effect sets, all objects in the preconditions must be represented as variables. Vari-
ables in the preconditions must be consistent with variables in the effects. In addition, pre-
conditions must not contain variables that are not present in the intention and/or effects. In
order to meet these constraints, the algorithm uses the bindings dictionary that was gener-
ated when the learning example was matched onto the effect set.

This constraint on preconditions was imposed because mapping additional precondition
variables onto learning examples isn’t straightforward. It also provides a simple “attention”
heuristic to prevent the agent from adding lots of irrelevant preconditions that would make
planning much more difficult. Ideally a more sophisticated heuristic could be used but this
heuristic was simple and effective for almost all the goals in the evaluation.

Algorithm 5.2 shows how the agent learns candidate preconditions using Learning Exmaples.
It assumes the effect set initially has an empty precondition table.

define learn preconditions with example(effect set, example)
mapping ← generate variable bijection mapping example onto effect set
reverse mapping so that example objects map to effect set variables
for each fact in initial state of example

mapped copy ← apply mapping to fact
if objects in mapped copy were all converted to variables

check effect set’s precondition table for precondition equivalent to mapped copy
if such a precondition exists

add 1 to support count for equivalent precondition
else

add precondition to table with a support count of 1

Algorithm 5.2: Updating preconditions for an effect set with a learning example.

Figure 5.9 shows an example of the agent identifying candidate preconditons for an effect
set. The first column of the figure shows raw learning examples, the second column shows
the result of applying the bindings dictionary generated from the effect set matching to
the learning example, and the third column shows the updated precondition table from
applying the learning example to the precondition learning process. Initial state facts in the
second column are greyed out if they contain non-variable objects, as they are discarded by
the precondition learning process.

Adding the first learning example in Figure 5.9. The agent begins by applying the bind-
ings dictionary that was generated by the learning example to effect set matching pro-
cess to the initial state facts of the example. For this learning example, all instances of
the Green ball in the initial state facts are replaced with ?b1; a variable from the effect
set. The agent goes through each initial state facts that have no remaining non-variable
objects and checks if the fact already exists in the precondition table. If it exists, the
count for the fact is incremented by 1. Otherwise, the fact is added as a new candidate
precondition with a count of 1. In this case four facts in the initial state meet the crite-
ria of containing no objects that have not been converted to variables: On Table(?b1),
Within Grasp Distance(?b1), Hand Touching(?b1), and Touch Sensor(). Because this
is the first learning example added, the table is empty and all four facts are added as
new candidate preconditions.

Adding the second learning example in Figure 5.9. The bindings dictionary is applied to
the initial state facts, and the agent then goes through each of the facts. The first two

36



facts, On Table(?b1) and Within Grasp Distance(?b1), already exist in the precondition
table, so their counts are incremented by 1. The third fact, Sound Sensor(), does not
exist in the table so is added as a candidate precondition with a count of 1.

Adding the third learning example in Figure 5.9. The same process is carried out again.
While the effects of the learning example contain the object Left Wall, this is not con-
verted to a variable as it was not a part of the effect set that preconditions are being
learnt for. The only two initial state facts that meet the criteria for candidate precon-
ditions are On Table(?b1) and Within Grasp Distance(?b1), so their counts are incre-
mented by 1. While Touching(?b1, Left Wall) contains a variable, ?b1, it also contains a
non-variable object, Left Wall. Therefore, it is not added as a candidate precondition.

5.3.2 Selecting actual preconditions from candidates

Once an effect set has a sufficient number of supporting examples, it can be used by the
planner. The agent identifies which candidate preconditions should be treated as actual
preconditions in the resulting Action Rule using a percentage support threshold, normally
set at 80%. Any candidate precondition that was supported by at least 80% of learning
examples that supported the effect set becomes an actual precondition.

Figure 5.10 shows a possible precondition table for an effect set after 50 supporting learn-
ing examples have been applied to the precondition learning process. The support threshold
has been set to 80% (as it was for most experiments in the evaluation). Two preconditions
in this example had sufficient support and are highlighted in yellow; On Table(?b1) and
Within Grasp Distance(?b1). Therefore, the agent has learnt that for a Grasp action to result
in an object being grasped and the grasp sensor being activated, the Grasp actions should
be carried out when the object is on the table and the hand is within grasping distance of it.

Figure 5.10: Determining which candidate preconditions to treat as actual preconditions,
with a precondition support threshold of 80%
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Chapter 6

Using Action Rules to Solve Simple
Planning Problems

In order to achieve goals in the world, the agent requires a planner to choose suitable Action
Rules for goals and to chain together Action Rules for cases where a single Action Rule
cannot achieve the goal. This chapter discusses the implementation of the planner that was
used.

As discussed in Chapter 2, psychology literature on the details of infant planning is
limited. It is believed infants taken a Means-End Analysis approach, beginning at around
6-months old, although the exact details are unclear [29].

Therefore, a Means-End Analysis planner based on STRIPS is used in the thesis. The
planner is greedy, and commits to the best known option for the current point in the plan.
Therefore, there is no exhaustive searching or standard back tracking. The planner does
however allow for trying again after a failure occurs by picking a new option to commit
to. This results in a planner that prioritizes trying Action Rules to see whether they achieve
the desired goals over reasoning about all multi-step possibilities in an attempt to find the
optimal. More sophisticated planners exist for such tasks, but are unlikely to be realistic for
infant planning. Just like infants, there will be tasks that the planner cannot solve.

6.1 Overview of Planning Algorithm

The planning algorithm uses a Means-End Analysis approach with an explicit stack to keep
track of the current planning and reasoning. The algorithm is closely related to the STRIPS
planner. Each step in the planning (a single cycle of the outer loop) involves checking the
type of the stack item on the top of the stack and then either adding or removing stack items
on the stack.

Stack items on the stack can either be Goal Sets or Bound Action Rules. There are three
different types of Goal Set: Full Goal Set, Unsatisfied Goal Set, and Expected Goal Set.

Full Goal Set: A Goal Set that was either the original goals or all the preconditions of a
Bound Action Rule immediately below it on the stack.

Unsatisfied Goal Set: A Goal Set representing the currently unsatisfied goals in the Full
Goal Set immediately below it on the stack.

Expected Goal Set: A Goal Set representing the goals from the Unsatisfied Goal Set below
it on the stack that the Bound Action Rule above it is expected to achieve. An Expected
Goal Set will never be at the top of the stack at the end of a plan step.

39



Bound Action Rule: An Action Rule that should be executed as part of the plan in order to
achieve Goal Set(s) below it on the stack. A Bound Action Rule is represented by an
Action Rule and a dictionary of bindings to bind the variables in the Action Rule to the
values in the goals of the Goal Set immediately below it on the stack. A Bound Action
Rule will either have nothing above it on the stack or a Full Goal Set encompassing its
preconditions as goals.

Algorithm 6.1 shows the full planning algorithm that was used. The outer loop iterates
until the planning stack is empty. Each iteration of the loop requires checking the type of the
top stack item in order to determine the next planning step. The key planning steps, driven
by stack item types, are as follows.

If the top of the planning stack is a Full Goal Set: The agent checks if the Full Goal Set on
the top of the stack is fully satisfied in the current state of the world. This is a matching pro-
cess carried out by the built-in visual system (the visual system was introduced in Chapter
3), the details of which are discussed in Section 6.3. If the Full Goal Set is fully satisfied, it
is popped from the stack. Otherwise, the visual system returns the unsatisfied goals which
are put on the stack as an Unsatisfied Goal Set.

If the top of the planning stack is an Unsatisfied Goal Set: The agent applies greedy
heuristics to select a good (not necessarily optimal) Action Rule for the goals in the Unsat-
isfied Goal Set currently on the top of the stack and to bind the variables in the Action Rule
to the matching values in the goals. The Action Rule selection process is further discussed
in Section 6.4. Three stack items are added to the stack in the following order: an Expected
Goal Set containing the subset of the Unsatisfied Goal Set in which the chosen Action Rule
is expected to satisfy, a Bound Action Rule containing the Action Rule and bindings, and
a Full Goal Set containing the preconditions of the Bound Action Rule. The bindings are
applied from the Bound Action Rule to the Full Goal Set.

If the top of the planning stack is a Bound Action Rule: The agent pops the Bound Ac-
tion Rule on the top of the stack and passes it to the motor control policy (introduced in
Chapter 3), which in collaboration with the visual system executes the action attached to the
Bound Action Rule in the Simulation. The Expected Goal Set below is then used to evaluate
the Bound Action Rule that was executed; this process is discussed in Section 6.6. The Ex-
pected Goal Set and Unsatisfied Goal Set below are popped from the stack as well. Although
they might not have been satisfied, the agent needs to ensure no other goals were undone
and therefore needs to recheck the Full Goal Set against the current world state.

Note that it is an impossible state for the top of the stack to contain an Unsatisfied Goal
Set at the end of an outer loop cycle.

There are a few additional features of the planner in order to break infinite looping and
planning, to deal with stuck plans due to no suitable Action Rules for the current Unsatisfied
Goal Set, and to exploit serendipity.
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max depth ← 5
max actions ← 20
define plan for goals(goals)

current depth ← 0
current actions ← 0
plan stack ← empty stack
push goals on plan stack as a FULL GOAL SET
while plan stack is not empty

if a FULL GOAL SET is on the top of plan stack
current gs ← peek at top of plan stack
unsatisfied ← subset of current gs that is unsatisfied in the current world state
if unsatisfied is an empty set

pop the top off plan stack to remove current gs
else :

push unsatisfied on plan stack as an UNSATISFIED GOAL SET
else if an UNSATISFIED GOAL SET is on the top of plan stack

current gs ← peek at top of plan stack
if a suitable action rule for satisfying some of current gs exists

chosen ar ← action rule selected with heuristics
bound ar ← chosen ar bound to current gs
subset ← subset of current gs expected with chosen ar
push subset on plan stack as an EXPECTED GOAL SET
push bound ar onto plan stack
increment current depth by 1
if current depth < max depth

preconditions ← preconditions from ar in bound ar
push preconditions onto plan stack as a FULL GOAL SET

else :
while top of plan stack is not a BOUND ACTION RULE

pop the stop of plan stack
else if a BOUND ACTION RULE is on the top of plan stack

bound action ← pop top of plan stack
carry out the motor control policy for bound action in the simulation
increment current actions by 1
decrment current depth by 1
expected ← pop top of plan stack
evaluate bound action with expected
while the top of plan stack is not a FULL GOAL SET

pop top of plan stack
for each item from bottom to top of plan stack

if item is a GOAL SET and satisfied in current world state
remove item and all above items from plan stack
break out of loop

if current actions >= max actions
while top of plan stack is not a BOUND ACTION RULE

pop top of plan stack

Algorithm 6.1: The planning algorithm used by the agent
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Preventing infinite looping and planning: A maximum stack depth (number of action
rules on the stack) and maximum plan length (number of Action Rules that have been exe-
cuted as part of the plan) are used to prevent looping. When the maximum stack depth is
reached, the agent pretends the preconditions of the top Bound Action Rule were satisfied
even if they weren’t and executes the Bound Action Rule. When the maximum plan length
is reached, the agent ignores all Goal Sets (they are popped from the stack) and executes
the remaining Bound Action Rules on the stack (limited by the maximum stack depth). The
implications of these heuristics are further discussed in Section 6.5. In addition, once the
same Action Rule has been used three times for the same underlying Full Goal Set, it will
not be repeated.

Handling stuck plans: When there is no suitable Action Rule for the current Unsatisfied
Goal Set, the agent pops the Unsatisfied Goal Set and underlying Full Goal Set from the
stack. If there was a Bound Action Rule underneath, the next loop iteration will attempt to
execute that Bound Action Rule. This allows planning to continue, and possibly succeed,
even when preconditions could not be satisfied. The implications are further discussed in
Section 6.5.

Exploiting serendipity: When a Bound Action Rule is executed, the agent checks if any
Expected Goal Set lower down the stack was satisfied serendipitously as a side effect. If any
Expected Goal Set meeting this criteria is found, all stack items above the Expected Goal
Set are removed, and the Expected Goal Set itself and the Unsatisfied Goal Set below it are
removed.

6.2 An Example of Planning to Grasp an Ball

Figure 6.1 shows how a possible plan for the goal of having an ball grasped is generated
and carried out.

A Full Goal Set with +Hand Grasping(?b1) is put on the stack (1). Because none of the
goals in (1) are satisfied in the current state of the world, shown on the right as state (0), the
agent then put an Unsatisfied Goal Set with the same goals on the stack (2). The agent then
picked an Action Rule that satisfies (2). Three items were put on the stack: an Expected Goal
Set for the chosen Action Rule (3); a Bound Action Rule wrapping the chosen Action Rule
along with bindings to bind it to the Unsatisfied Goal Set (4), (in this case, ?b2 in the Action
Rule was bound to ?b1 in the Unsatisfied Goal Set); and the preconditions for the Bound
Action Rule put on as a Full Goal Set (5). The Full Goal Set (5) is then checked against the
current state of the world (still (0), as no changes have been made to the world yet). In this
case, one of the two goals was unsatisfied, so an Unsatisfied Goal Set containing just the
unsatisfied goal is made (6). As a side effect of the matching process, ?b1 was bound to Red.
The details of this are discussed in Section 6.3. An action rule is picked for the goals in (6);
again an Expected Goal Set (7), the Bound Action Rule (8), and a Full Goal Set (9) are added
to the stack.

The agent then checks if (9) is satisfied in the current state (0), which it is, so (9) is popped
from the stack. The Bound Action Rule in (8) is then popped and executed to bring the world
state into that shown in (10). The agent checks (7) to determine whether or not the Action
Rule was effective, and then pops (7) and (6) from the stack. Because (5) is also satisfied in
the current state (10), it is popped from the stack. (4) is then popped and executed bringing
the world into the state shown in (11), and checked with (3). (3) and (2) are popped. Because
the initial Full Goal Set (1) is satisfied in the current state (11), it is also popped from the
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Figure 6.1: Planning to grasp a ball

stack. As the stack is now empty, the planning is complete; the plan consisted of the Move To
action followed by the Grasp.

If the agent had found that (5) was unsatisfied after carrying out (8), it would have put
the unsatisfied goals back on the stack as a new Unsatisfied Goal Set and resumed planning.
Because ?b1 is unbound in (5), it is possible for it to have been bound to Green instead on the
second attempt. This means that even if the agent accidentally knocked Red off the table, it
could still complete the plan.

6.3 Matching Goal Sets Against the Current World State

The agent matches Full Goal Sets onto the current world state in order to determine
which goals of the Full Goal Set should be put into an Unsatisfied Goal Set. The same match-
ing process is also used for determining whether or not a Bound Action Rule achieved the
goals it was expected to. When a Goal Set contains no variables, the matching process sim-
ply requires checking whether or not the set of Qualitative Facts in the Goal Set exist in the
qualitative representation of the current world state. When the Goal Set contains variables,
the agent attempts to find objects to bind to the variables in order to satisfy as many of
the goals as possible. Any bindings that were identified in this process are applied to the
unsatisfied goals. Any non bound variables in the unsatisfied goals are kept as variables.

For example, in Figure 6.1, the qualitative fact hand grasping(?b1) in (1) could not be
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satisfied. Therefore, ?b1 remained in the Unsatisfied Goal Set (2). Whereas in (5), binding
Red to ?b1 satisfied On Table(?b1). This binding of ?b1 to Red was then reflected in the
Unsatisfied Goal Set (6) - Within Grasp Distance(Red). In (5), ?b1 could alternatively been
bound to Green, as this also would have satisfied one goal. Where there are multiple ways of
maximising the number of satisfied goals, a random one is chosen. If the Unsatisfied Goal
Set in (6) had not been satisfied, then when the agent re-planned from (5), it would have
been possible for ?b1 to be bound to a different value in the new Unsatisfied Goal Set.

6.4 Selecting and Binding an Action Rule to an Unsatisfied Goal
Set

This simple version of the planner used several heuristics to choose an Action Rule for
an Unsatisfied Goal Set. These were roughly weighted in the order they are discussed, with
the first ones holding the most weight and the later ones holding the least.

Maximise the number of goals expected to be achieved: While it is not essential for the
current Unsatisfied Goal Set to be fully addressed with the chosen Bound Action Rule
as the agent can re-plan for the underlying Full Goal Set again later if any goals were
not satisfied, it is desirable to minimise the total number of steps carried out in the
plan by picking Action Rules that satisfy as many goals as possible.

Minimise the number of unsatisfied preconditions: Action Rules with few unsatisfied pre-
conditions in the current state of the world were preferred. This was intended to help
the agent pick simple Action Rules and to minimise the depth of the stack. It was
helpful in some cases, although it caused the agent to gravitate towards Action Rules
with unreliable preconditions once a lot of Action Rules had been learnt.

Choose Action Rules with many effects over Action Rules with fewer effects: Action Rules
with many effects were preferred. Action Rules with many effects are less likely to
be a subset of multiple larger Action Rules with very different preconditions. When
multiple different sets of preconditions can result in an effect set, many or all of the
preconditions don’t get enough support, making the overall Action Rule unreliable.
This often happens with small redundant Action Rules. This heuristic was replaced in
Chapter 7 with a more sophisticated detection of redundant Action Rules.

Minimise the number of variables: The number of variables in a plan is minimised by
avoiding Action Rules that introduce extra variables that cannot be bound to con-
stants in the Unsatisfied Goal Set. Such variables add unnecessary extra complexity to
a plan.

Experiments showed some of these heuristics were not very effective. The revised ver-
sion discussed in Chapter 7 refines them considerably.

6.5 Handling Looping and Other Failures

6.5.1 Limiting stack depth and maximum plan size

A sophisticated planner must have mechanisms for dealing with planning loops. For exam-
ple if an Action Rule specifies A must be true in order for B to occur, it is possible the agent
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has learnt another Action Rule specifying B must be true for A to occur. Such rules can cause
infinite planning loops as the agent continually tries to find Action Rules to satisfy precon-
ditions. Because the planning ability of human infants is very limited, it was not desirable to
use sophisticated planning loop detection. However, a very simple mechanism for dealing
with loops arises from infants’ finite attention span and their limited working memory. The
planner has a maximum plan depth and simply prevents any plan from growing beyond the
limit. A side effect of this is that planning loops will automatically be broken. In addition,
the total number of Action Rules executed in a plan is constrained.

Every time the stack is at the maximum depth, the agent immediately carries out the
Action Rule on top, even if the preconditions are unsatisfied. In many cases, this solves
the problem described at the start of this subsection. Often the looping preconditions were
learnt just because they were often true in the learning examples used by the Action Rule
learner, and the Action Rule learner cannot distinguish between what is merely often true
and what actually needs to be true. Executing one of the Action Rules in the loop often sat-
isfies the Goal Set below it, and thus breaking the loop. If the preconditions were necessary
then the Action Rule will not accomplish the Expected Goal Set, but in this case the planner
will simply try again to satisfy the lower Full Goal Set. There is a reasonable chance that
the executed action will have changed the world in some way so that the planner can now
achieve the goal a different way.

Once the agent has carried out the maximum number of Action Rules allowed, it ignores
all preconditions and goes down the stack carrying out each of the Action Rules currently
on it as a last attempt to satisfy the original Full Goal Set. The combination of limiting
the maximum depth and the maximum total number of Action Rules ensures the agent
eventually gives up, if it gets into a planning loop.

6.5.2 Preventing repetition

In order to ensure the same fruitless Action Rules are not repeatedly attempted in a plan,
the agent keeps track of all Full Goal Sets seen in a plan and the Action Rules attempted for
them. Once an Action Rule has been used too many times for an underlying Full Goal Set
and repeatedly failed, it is blacklisted from that Full Goal Set for the remainder of the plan.
A constant is used to say how many times the Action Rule can fail before going on the black
list. For the experiments in the thesis, it was set to three. Given that the learnt Action Rules
may not have perfect preconditions, it was considered important to allow more than one
attempt at using the same Action Rule.

6.5.3 Handling unachievable goals

Sometimes, the agent will be unable to find a suitable Action Rule for an Unsatisfied Goal
Set. This is handled by removing the Unsatisfied Goal Set and underlying Full Goal Set from
the stack. This will result in the stack either being empty or having a Bound Action Rule on
top. If the stack is empty, the agent gives up. Otherwise, the Bound Action Rule will now be
executed. In some cases, if the impossible preconditions were unnecessary this will result in
a successful plan.

One situation this mechanism helps with is when the agent has a goal involving an object
such as to be grasping any object. If the object it was trying to grasp gets knocked off the
table accidentally, the On Table qualitative fact cannot be satisfied. Because it is impossible
to satisfy, the agent will continually remove Goal Sets from the stack until it is down to a
point at which it can bind a different object to the variable. If the original goal was to be
grasping the specific object that fell from the table, the plan will fail.
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6.6 Using the Expected Goal Set to Evaluate the Bound Action Rule

Some Action Rules repeatedly fail to produce the expected effects when executed delib-
erately in a plan, even when all preconditions were satisfied. This can occur whenthe Action
Rule has deterministic rather than probabilistic effects. Often there will be multiple Action
Rules with the same preconditions but different effects. Ideally the agent wants to use the
Action Rules that are the most likely to be successful.

For example, hitting an object that is on the table might result in the object falling from
the table, or it might result in the object moving from its original position but remaining on
the table. An Action Rule exists for each possible effect set, and both have the same pre-
condition specifying the object is on the table, and an intention specifying to hit the object.
Because the two effect sets are contradictory, only one of the effect sets can occur when the
intention is carried out with the preconditions satisfied. However, the agent cannot cur-
rently learn about the relationship between Action Rules with the same preconditions but
different effect sets, and thus cannot identify such situations in the Action Rule learner.

As a first step towards learning about such Action Rules, the planner was used to iden-
tify Action Rules that don’t achieve their expected effects when executed in a plan. Each
Action Rule has a count for the number of successes and a count for the number of failures,
which are used to calculate the probability of success. After a Bound Action Rule is exe-
cuted by the motor control policy, the agent passes the Expected Goal Set below it to the
visual system. The visual system matches the goals in the Expected Goal Set against the
current state using the process outlined in Section 6.3. The Bound Action Rule is said to
have succeeded if all goals were satisfied, and failed otherwise. Successes and failures are
added to the relevant counts on the Action Rule that is contained within the Bound Action
Rule. In cases where the preconditions were known to not be satisfied (see Section 6.5 for
situations this may occur), the result from checking the Expected Goal Set is not added to
the counts. The probability of success is one of the heuristics outlined in Section 6.4

The algorithm could be further extended to use unexpected results to refine Action
Rules. Cases where the expected effects did not occur, despite the preconditions being
satisfied, might need additional negative preconditions. In addition, cases where not all
preconditions were satisfied yet all expected effects occurred suggests some of the Action
Rule’s preconditions are unnecessary and could be dropped. This learning is outside the
scope of the thesis so was not implemented, although is discussed in Chapter 9.

6.7 Evaluation and Limitations of this Planner

The agent was able to use the planner and learnt Action Rules to plan for many one step
plans such as touching objects, making sounds, causing sensor input, etc. It could also do
some two step plans such as moving to and grasping an object.

The agent cannot plan for goals where the nearest point on an object is an unsuitable
target. For example, to make an object touch the near wall, the agent needs to hit the object
from behind relative to the near wall. But depending on the current hand position, hit might
target the object from the wrong side. This same limitation prevents the agent from planning
effectively for goals that make objects no longer on the table, or putting objects together. The
critical issue is that the Action Rules can only specify target positions by specifying objects,
but they need to be able to specify positions at a finer level of detail.

In addition, some of the heuristics used for choosing Action Rules for Goal Sets were
ineffective, or had undesirable implications. Preferring Action Rules that had few unsatis-
fied preconditions biased the agent towards incomplete and unreliable rules, particularly
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as the total number of learnt Action Rules got larger. The number of effects in the Action
Rule heuristic also proved to not be as effective as expected at identifying rules that are not
redundant. Efficiency was also an issue, as sometimes the agent was taking a long time to
pick a rule that ended up being ineffective. A desirable feature for a planner inspired by
infant development is for it to minimise “thinking” time and maximise “trying” time.

Chapter 7 discusses how the limitations outlined were addressed in an improved ver-
sion of the Action Rule learner and planner. The major changes were in the Action Rule
representation, and although there were some changes to the planner, the basic algorithm of
the planner did not have to change.
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Chapter 7

Improving the Action Rule
Representation

For goals such as making an object touch a particular wall, the agent could use the Hit action
to hit the object to make it move to the wall. However, it is only possible for the hit action
to result in the object touching the desired wall if the point on the object that was hit is
behind the object relative to the wall. This requirement is impossible to express with the
representation outlined in Chapter 5, because that representation only allowed for moving
to the nearest point on the target object.

This chapter discusses how an additional variable type, places, was added to the world
representation in order to address this limitation. A place is a quantitative x, y point in the
world that is made qualitatively significant by its relationship to the hand and/or objects
or pairs of objects. Places allow for a richer description of the intention, preconditions, and
effects of an action rule because they can be used to describe an intention target that is more
than just the point nearest to the hand that touches a specified object. For the example
above, places allow the agent to learn that in order to get the effect touching(?b1, ?w1), it
should hit place ?p1, where ?p1 satisfies the preconditions Place Touching(?p1, ?b1) and
Place Behind(?p1, ?b1, ?w1) (that is, ?p1 is behind ?b1, relative to ?w1).

Implementing places required enhancing the Visual System to recognise qualitative facts
involving places, to include qualitative facts for interesting places (current hand position
and target hand position) in the representation of a state (see Section 7.1), and to be able
to identify a place that satisfies a set of given qualitative facts containing the place (see Sec-
tion 7.3). Initially these additional qualitative facts were treated the same way as standard
qualitative facts by the Action Rule Learner, but this did not work because effects contain-
ing qualitative facts containing places do not make sense. Also, preconditions containing
places are essential for the intention to be meaningful, but always had precondition support
below the threshold due to the same effects being able to be caused by slightly different
sets of qualitative facts, and sometimes even by chance. Because these qualitative facts are
essential for the intention to be meaningful, they were removed from the preconditions and
put in a new part of the rule called the constraints. The constraints are treated as part of the
intention, and thus multiple action rules can have the same effects but different constraints.
This was implemented by modifying the storage of Action Rules, so that each effect set in
the lattice can have multiple Action Rules attached to it. The details of the algorithm are
discussed in Section 7.2.

In addition, some of the heuristics used for selecting the best Action Rule to acheive a
Goal Set were modified and updated for the places version of the planner. These changes
are discussed in Section 7.4
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Figure 7.1: Some of the qualitative relationships in the current world state involving places
p1, p2, and p3. The larger solid circle is the hand and the smaller solid circles are the Red,
Green, and Blue balls

7.1 Adding Places to the Representation

7.1.1 Qualitative facts with places

The visual system was extended to identify contact and alignment relationships between
quantiative points of interest and the hand and objects in the world. These relationships
were represented as qualitative facts with the predicates Place Touching, Place Behind, and
Hand At.

Place Touching(place, any) : The first parameter is a place, and the second is a place or
object the hand would be touching if it was at the place specified by the first parameter.

Place Behind(place, any, any) : The first parameter is a place, and the second and third
parameters are places or objects that ensure all three parameters are aligned in the
order of first parameter, second parameter, and then third parameter.

Hand At(place) : The parameter specifies a place the center of the hand is currently on.

Given a set of quantitative points of interest, the vision system calculates all place qual-
itative facts and includes them in the state representation. Figure 7.1 shows an example
of the visual system finding qualitative facts with places. For clarify in the diagram, some
relationships and their corresponding qualitative fact were omitted.
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7.1.2 Generating learning examples with places

The agent uses the same learning example generation algorithm as presented in Chapter
5. In order to include places, interesting quantitative points are defined as being the initial
position and target position (for actions with a target) for the initial state of the learning
example, and the initial, target (for actions with a target), and final (if different to initial
and target) positions for the final state in the learning example. Qualitative facts containing
the quantitative points of interest are generated as outlined in Section 7.1.1. The intention
variables of the learning example are the initial position, and target position if it exists.

7.1.3 Finding suitable quantitative points for place variables

Figure 7.2: (1) Satisfying region for Place Touching(?p1, Orange), (2) Satisfying region for
Place Behind(?p1, Orange, Red), (3) Satisfying region for Place Behind(Orange, Right Wall),
(4) Overlapping satisfying regions for (1), (2), and (3) in order to find best points

In order to match a set of qualitative facts containing place variables onto the current
state of the world, the agent needs to be able to find quantitative points for the variables
that satisfy all or as many of the qualitative facts as possible. This is a visual task people are
good at doing. For example with ease they can identity a point on an object such that if they
hit that point the object will be hit into another object.

Finding suitable quantitative points for a place variable was implemented as part of the
hardcoded visual system using Integer Programming. The space of possible quantitative
points was made discrete by using a coarse grid over the world (one world unit between
each grid line). For each qualitative fact containing the quantitative variable, all grid points
that would make the qualitative fact true in the current world state were put into a set. It
was assumed all other variables in the qualitative fact had values bound to them: the pre-
processing bound randomly selected objects to variables if necessary, and where a qualita-
tive fact contained multiple place variables, the agent ignored it until a suitable quantitative
point had been found for at least one of the place variables, using the other qualitative facts
containing it. The algorithm then counted the points found for each of the qualitative facts
in order to identify points that satisfied the most qualitative facts. A quantitative point that
satisfied the maximum number of qualitative facts was then randomly chosen. This Integer
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Programming approach is not computationally optimal, although was sufficient for the ta-
ble world used in the thesis. Linear Programming techniques that describe each qualitative
fact as a set of constraints could be used for efficiency in complex worlds, but human visual
systems may use a different approach altogether.

Figure 7.2 shows an example of the agent finding satisfying regions for variable ?p1 un-
der three constraints; (1) Place Touching(?p1, Orange), (2) Place Behind(?p1, Orange, Red),
and (3) Place Behind(Orange, Right Wall). The satisfying points within the regions were
counted, and the amount of overlap for each point is shown in (4). The purple region is
where the three constraints overlapped, and therefore the agent will choose a random point
in that region.

7.2 Adding Constraints to Action Rules

In order to incorporate place variables and constraints into Action Rules, the intention
variables are defined to be an initial place and a target place. The initial place is the place
the hand is immediately before the Action Rule is executed, and the target place is the place
the agent intends to go to with the action. Some actions such as Grasp and Ungrasp only
have one intention variable (the initial place). Due to the simplicity of the motor control
for the fingers, a target variable for these is unnecessary. The constraints of the Action Rule
then specify relationships between the intention place variables and the object variables that
appear in the effects and preconditions.

The Action Rule learner treats constraints as part of the intention in that Action Rules
with the same effect set but different constraints are not equivalent. A reason for this is that
a key role of the constraints is to give meaning to the intention. For example, Hit(?p1, ?p2)
merely specifies a hit to somewhere from somewhere else. It only becomes a meaningful
action when ?p1 and ?p2 are narrowed down by the constraints to be places with particular
properties. Like with preconditions, an “attention” heuristic is used to prevent the agent
learning irrelevant constraints related to variables not present in the effects (see Section 5.3.1
for an explanation of this heuristic). Additionally, constraint qualitative facts are not put in
the pool of qualitative facts that can be learnt as effects or preconditions.

The planner treats constraints somewhat like preconditions in that they are included in
Full Goal Sets and the agent should attempt to satisfy them. However they are not put into
Unsatisfied Goal Sets, even if they are unsatisfied when planning because it makes no sense
to try to plan to achieve a constraint on a place. For example, a place is either touching the
wall or not, and cannot be made to touch the wall if it is not. Instead, given constraints the
agent attempts to bind quantitative places to the place variables to make them true. When
choosing places it attempts to maximise the number of satisfied constraints. One exception
is the Hand At qualitative facts which are treated as normal qualitative facts and thus can
be learnt as preconditions and effects rather than constraints. This allows an unsatisfied
Hand At qualitative fact to be put in the Unsatisfied Goal Set in cases where the quantitative
place bound to the initial place variable was not the current hand position. The reason for
this exception is that it is feasible to act to make the hand at a place.

Figure 7.3 shows an example of an Action Rule with place variables and constraints.
The intention contains two parameters, (1) and (2). This means that the hand starts at ?p21
(1) and hits ?p38 (2). The effect set specifies the Action Rule will end with ball ?b42 touching
wall ?w92. The four constraints (3), (4), (5), and (6) specify how ?p21 and ?p38 should be
related to these effect variables. (3) Specifies the initial hand position ?p21 must be behind
?b42 relative to ?w92. (4) Specifies that the target hand position ?p38 must also be behind
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Figure 7.3: An Action Rule with place variables and constraints

?b42 relative to ?w92. (5) Specifies ?p38 must be touching ?b42. And finally (6) specifies that
?p21 must be behind ?p38 relative to ?w92.

7.2.1 Modifying the way Action Rules are stored

Because two Action Rules are distinct if their effect sets are equivalent but their constraints
vary, the agent could learn many Action Rules with the same effect set. In order to avoid
redundant storage and allow the agent to easily identity the best intention and set of con-
straints for an effect set, the storage of Action Rules was modified. Instead of creating a
separate effect set in the lattice for every pair of intention and constraints, each effect set in
the lattice now holds a list of all Action Rules that contain it. In order to implement this, the
apply example to effect set function from Algorith 5.1 was modified.

Algorithm 7.1 shows the updated algorithm. Normal preconditions were learnt using
Algorithm 5.2. Supporting examples for precondition learning were those where the effect
set, intention, and constraints of the learning example all supported the Action Rule.

This code assumes the propagation process was initiated by identifying singleton effect
sets that are supported by the learning example using the algorithm outlined in Chapter 5.
If the learning example supports the effect set (unlike in Chapter 5, the intention is not yet
taken into account), the agent checks through all Action Rules attached to the effect set to
find the one that has equivalent constraints to the learning example. To do this, the learning
example is bound to each Action Rule in order to check bindings. If such an Action Rule
exists, the learning example is applied to it. Otherwise, a new Action Rule is created and
added to the effect set’s Action Rule list, and the learning example is applied to it.
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define updated apply example to effect set(example, effect set)
if example supports effect set (intention and constraints are ignored)

increment support for effect set by 1
matching ar ← find action rule attached to effect set supported by example
if no matching ar was found

matching ar ← new action rule with example’s constraints (generalised)
add matching ar to the action rule list attached to effect set

if support for effect set = COMBINING THRESHOLD and all other action rules are
below thrshold

combine with neighbours(effect set) (see chapter 5)
if support for matching ar > COMBINING THRESHOLD

for each super es in effect set’s supersets
updated apply example to effect set(example, super es)

Algorithm 7.1: An updated version of apply example to effect set function that was intro-
duced in Chapter 5 allowing the agent to learn multiple intentions and constraints for the
same effect set. See Algorithm 5.1 for the full details.

The conditions in which the propagation procedures are carried out are also different.
An effect set initiates the size n+1 effect set generation the first time one of the effect set’s
Action Rules goes above the combining threshold. Combining is done with same size effect
sets that satisfy the heuristics for a potential successful combine that also have at least one
of their attached Action Rules above the combining threshold. Propagation of a learning
example to supersets of an effect set is only carried out when the Action Rule to which
the learning example was matched was above the threshold. These conditions ensure new
Action Rules are only generated when they have sufficient subset support.

For constraints in a learning example to match an Action Rule, the Action Rule and
learning example must contain the same number of constraints, and the constraints must be
able to be fully mapped between the Action Rule and learning example. This is different to
matching a learning example onto an effect set, as it is okay for the learning example to have
additional effects that were not mapped.

7.3 Matching Goal States with Places to the Current World State

Adding constraints required the planner to be modified as well as the Action Rule learner,
though the changes were fairly small. The key difference is in determining which goals in a
Full Goal Set are not yet satisfied and need to go into an Unsatisfied Goal Set.

The agent matches a Full Goal Set against the current state of the world by binding
objects to variables in the goals. This process was extended to handle place variables. Given
a set of goals in a Full Goal Set, the agent divides the goals into several lists:

1. Goals that contain no unbound place variables (place variables that have already been
bound to quantitative points are included in this list).

2. Goals containing places but do not directly involve the hand.
3. Goals that involve the hand and places (in the current implementation this list only

contains goals with the hand at predicate)

The goals in 2) are further divided into sublists: one for each unique place variable.
Goals containing multiple places are put into one sublist. The agent ensures this is done in
such a way that the matching algorithm will never get into a situation where it is trying to
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achieve a goal with multiple unbound place variables. Using these lists, the agent matches
the goals against the current state of the world in the following order.

Firstly, the goals in 1) are matched against the current world state. This process tends to
bind objects to most, if not all, of the object variables in the Goal set. If any object variables in
the Goal Set are still unbound and are present in list 2), randomly chosen objects are bound
to them. The agent then iterates through each sublist for 2), finding a quantitative point for
the featured place variable using the method discussed in Section 7.1.3. The order in which
the sublists are processed ensures any other place variables in the goals in the list were
already bound in a previously processed list. Finally, the goals in 3) are matched against
the current world state. Because Hand At with the initial place is the only fact that can go
in this list, if the place variable is still unbound, the current hand position is bound to it in
order to satisfy it. Any unsatisfied goals from 1) and 3) are put into the Unsatisfied Goal Set.
Unsatisfied goals from 2) (which originated from the constraints component of the Action
Rule) are ignored even if they were unsatisfied. The planning that would be necessary to
satisfy them is beyond the scope of a simple planner striving to behave like an infant. When
the goal from 3) is included in the Unsatisfied Goal Set, it allows the agent to plan to move
to that place using an Action Rule with a Hand At effect.

7.4 Improving the Action Rule for Goal Set Selection Heuristics

Some of the problems identified in the initial implementation of the planner involved
the heuristics for selecting a good action rule to achieve a goal set. In particular, the more
Action Rule learning the agent had done, the longer it was taking to select Action Rules
for plans, and the less reliable the chosen Action Rule was. Therefore, the heuristics were
changed by dropping the heuristics based on the size of the preconditions and the number
of unsatisfied preconditions, modifying the subsumed support heuristic, and adding three
new ones. The improved set of heuristics consists of the following five heuristics:

1. The number of current goals expected to be achieved with the Action Rule,
2. The support count
3. The non-subsumed support count
4. The number of new variables introduced
5. Reliability history from previous planning with the action rule
6. A connectivity score for the variables in the action rule, that attempted to predict

whether or not the rule could easily be replicated. These heuristics were combined
in order to compare pairs of action rules.

This section begins by describing how each heuristic was defined and, and concludes
with the algorithm used to search the lattice for an Action Rule for a given goal set.

7.4.1 The number of current goals expected to be achieved with the Action Rule

Heuristic 1 is intended to bias the agent towards simple plans to exploit the advantages of
effect sets. This heuristic was helpful in most cases although sometimes in cases where it
was impossible to find an effect set for all the goals the agent would choose a bad subset of
them.
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7.4.2 The support count of the Action Rule

Heuristic 2 is intended to bias the agent towards Action Rules that have had many support-
ing learning examples because they were thought to be more reliable. It turned out to not
be as effective as expected because some Action Rules with very low support were reliable
and useful for planning. This was because some of the more interesting effects occur rarely
by chance, so few learning examples were generated for them. If the learning examples
were good ones, the preconditions of the Action Rule tended to be reliable meaning the low
support count was not problematic.

7.4.3 The subsumed support count of the Action Rule

Heuristic 3 is intended to bias the Action Rule selection towards an Action Rule with a large
effect set over an Action Rule with a subset of that effect set on the basis that the large effect
sets are more complete descriptions of the action and the subset rules are redundant, as they
are explained by a larger action rule. Each time a learning example is added to the support
count of an effect set and Action Rule, the learning example is then subtracted from the
support of all subset effect sets and Action Rules. The non-subsumed support count of an
action rule is the support count after these subtractions have been carried out.

It is unclear whether this heuristic was helpful. Experiments suggested the world and
algorithm are not yet complex enough for it to be helpful. It would probably be essential if
the planner was extended to prevent undoing previously achieved goals as the information
needed would be held in negative effects of large effect sets.

7.4.4 The number of new variables introduced

Heuristic 4 is intended to prevent plans becoming unnecessarily complicated. While the
agent tried to pick larger Action Rules where possible, it also tried to not choose ones that
added extra variables beyond the ones that were in the goal. This was because it would then
have to find objects to bind to the variables and could quickly get into a situation where it is
trying to satisfy preconditions on objects that should have been ignored in the plan (and in
the process of satisfying the preconditions, adding even more variables).

The version of the agent used in the evaluation did not allow any new variables to be
introduced. Allowing a limited number of additional variables in an overall plan would
be beneficial in future versions of the agent. For example, where the goal is to make the
touch sensor true, the most reliable plan is to choose an object to move to. The agent cannot
currently do this.

7.4.5 Reliability history of an Action Rule

Heuristic 5 biases the Action Rule selection towards Action Rules that have been shown to
be reliable. To do this, the agent used previous planning history. Each action rule had two
fields for this part of the algorithm: successes and failures. Each time the action rule was
used in a plan, the appropriate field was incremented by one depending on whether or not
the action achieved all the effects it was expected to.

A score in the range (0, 1] was generated by dividing the number of successes by the
sum of successes and failures. The positive count and negative count were both initialised
to 10 in order to prevent divide by 0 errors and to give unused rules an initial score of 0.5.
A slightly larger increment was added for positive examples than negative examples so that
the value would go up even if the Action Rule was successful only half of the time.
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7.4.6 Variable connectivity score of an Action Rule

Heuristic 6 helped the agent to predict reliability of rules before it had tried them. This gave
it a starting point before it was able to use heuristic 5. Even without experience using an
Action Rule, the agent can identify some unreliable Action Rules by analysing how the vari-
ables in the different components of the Action Rule are connected. Action Rules where the
effect set and intention variables are connected through the constraints and preconditions
are more likely to be reliable.

Figure 7.4: Calculating the binding scores for two action rules

For example, suppose the agent needs to plan for the goal set {+Hand At((10, 20)),
+Hand Touching(Red)}. Two possible action rules for this plan are those shown in Fig-
ure 7.4. The first action rule specifies that for the move action to result in the hand touching
an object, the place chosen to move to must be touching the object. In addition, the action
rule specifies the hand will be at the target. The second action rule specifies that moving
to a place with no constraints (that could be any valid position on the table) will result in
touching the object, and being at a place that was not the place being moved to. Intuitively,
the first action rule is more likely to make the goal set true.

The first rule in Figure 7.4 connects the ball in the effects to the intention by saying the
target must be touching the ball, and the place in the effects to the intention by saying the
hand must move to it. On the other hand, the second rule defines no relationship between
the intention and effect variables.

The connectivity heuristic measures how well connected the variables in the effects are to
the variables in the preconditions/ constraints, and intention. The stronger the connectivity,
the more likely the action rule is easily replicable, and thus a good action rule to use in
planning.

Algorithm 7.2 was used to calculate the connectivity of action rules and to generate a
score in the range [0, 1]. A digraph is initialised and a node is added for each variable in-
stance in the Action Rule. Edges are added between nodes that are considered to be related.
Depth first search is then used from each node that originated from a variable in the effects
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to see whether or not there is a path to a node that originated from the intention, and a
weighted sum is calculated with the results. This heuristic proved to be very effective in
determining which action rules were likely to be reliable, and which were not.

Initialise an empty digraph
Add a node for each variable instance in the action rule. Each node should contain the variable
identifier, var, it is for, the fact the variable instance is in, fact, and the level the
fact is on (3 for effects, 2 for preconditions and constraints, and 1 for intention)
Insert a directed edge from each pair of nodes a and b, if either (a) or (b) satisfied
(a) a.level is greater than b.level and a.var is the same as b.var, OR
(b) a.level is 2 and b.level is 2, and a.fact is the same as b.fact
Assign a score to each level 3 node, specifying the lowest level it is connected to (implemented
with a depth-first search)
If the node is connected to a level 1 node, assign a score of 1
Else if the node is connected to a level 2 node, assign a score of 0.5
Else assign a score of 0
Insert the scores into a list sorted from lowest (worst) to highest (best)
Iterate through the list, assigning decreasing weights to each score (e.g. halving the weight
each time)
Calculate and return the weighted sum

Algorithm 7.2: Calculating the connectivity score for an Action Rule

When the algorithm is applied to the two Action Rules in figure 7.4, the first Action
Rule has effect variable node scores of 1 and 1, and the second action rule has effect variable
node scores of 0 and 0.5. To combine the node scores, the agent used the formula w =
(2(n−k))/((2n)− 1), where n is the total number of weights needed for the Action Rule (i.e.
the number of variable instances in the effects) and k is the position of the score in the
sorted list that the weight is for. Using this formula with n = 2, weights of 1/3 and 2/3 are
generated. The final score for the first Action Rule was 1 and the final score for the second
Action Rule was 0.167. This allows the agent to predict that the first Action Rule is more
reliably replicable than the second Action Rule.

7.4.7 Algorithm for choosing an Action Rule

Finally, the agent needs to put these heuristics together in order to choose a good Action Rule
for the Unsatisfied Goal Set. It starts by finding an effect set in the lattice that is a subset of
the goal set that firstly maximises the number of effects (goals expected to be achieved) and
secondly a heuristic score for the other heuristics.

It then greedily searches up the sub lattice of the supersets of the chosen effect set by
hill climbing. At each step of the search, it checks whether any of the current effect set’s
supersets have a higher heuristic score. If it does the superset with the highest heuristic
score becomes the current effect set. Once this condition is false, the current effect set is
selected for achieving the goal set. Originally, the agent would also choose a superset if
it subsumed the current effect set. However, this heuristic was dropped in the evaluation
because it seemed to be unhelpful.

The heuristic score for an Action Rule is calculated by using a weighted sum of the var-
ious heuristics. The heuristic score for an effect set is the maximum of the weighted scores
for each Action Rule attached to it. Several calculations were tried and an optimum was not
found as this thesis was focussed on outlining an overall approach to the problem rather
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than optimising the parameters. Using connectivity score * reliability score + non subsumed
support count/1000 seemed to give reasonable results and was used in the evaluation.

7.5 Summary

These changes extended the Action Rule representation to use place variables. This allowed
the agent to learn Action Rules with a richer intention. The heuristics were also updated
to improve the efficiency and effectiveness of the Action Rule selection. With the place
variables, the agent is now able to learn more interesting Action Rules that describe relative
directions. This allows the agent to plan to make an object touch the wall without its hand
getting in between the wall and the object for example. A consequence of adding constraints
meant that more learning examples were needed to learn some Action Rules. The improved
heuristics made this feasible as they eliminated the problem in the previous version of the
agent becoming less effective as it learnt more.
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+hand touching(?b1) and +grasp sensor()
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Chapter 8

Evaluation

To evaluate the agent presented in this thesis it is not possible to use performance bench-
marks, as this is the only system we know of that attempts to learn and plan with meaningful
rules learnt from random exploration of a simulated world that uses realistic physics (other
than QLAP). The planner is not intended to be high performing, as its behaviour is inspired
by human infants who have a lot of difficulty with planning tasks. This evaluation is instead
interested in whether the agent can learn meaningful Action Rules and sometimes plan suc-
cessfully for a goal, as future versions of the agent will be able to use successes in order
to increase planning reliability. Therefore, this evaluation focusses on examples of Action
Rules the agent was able to learn and goals it was able to plan for using the learnt Action
Rules.

This achieves the thesis objective of showing that meaningful Action Rules can be learnt
from random exploration and then used to solve planning problems. All Action Rules pre-
sented in this section were learnt from the agent randomly carrying out motor actions in its
motor control policy and then using them in the Action Rule learner. No Action Rules and
as little as possible common sense knowledge was built into the agent beyond being able
to describe a static state of the world with qualitative facts (the visual system) and a motor
control policy.

8.1 Action Rules Learnt

This section presents a selection of Action Rules collected from a run of the Action Rule
learner that learnt from 4000 learning examples. With significantly below 4000 learning
examples, many of the good Action Rules do not yet have sufficient support and the system
uses poor quality Action Rules in preference.

The Action Rule planner was also run for around 120 plans where the agent picked
random plans out of the following list to accomplish. This is not an exhaustive list of all
the plans the agent can attempt, but was rather a sample of goals to help it identify some
interesting Action Rules.

• {+Hand Touching(?b1), +Hand Touching(?b2)}
• {+Touching(?b1, ?w1)}
• {+Touching(?b1, near wall)}
• {+Hand Touching(?b1), +Hand Touching(?b2), +Hand Grasping(?b1)}
• {+Touching(?b1, ?w1), +Touch Sensor()}
• {+Hand Grasping(?b1)}
• {+Touching(?b1, left wall)}
• {+Touching(?b1, far wall)}
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• {+Touching(?b1, ?b2)}
• {+Fingers Flat()}
• {+Touch Sensor()}

Many of the Action Rules presented in this section were ones that the agent identified
as being of a high quality. The agent identifies good Action Rules by considering those
with at least two supporting examples and sorting the Action Rules by the Quality rating it
has generated for each of them. The default quality rating for a rule with an ideal binding
score (see Chapter 7) and at least 2 support is around 1, and this can either go up or down
as the Action Rule planner attempts to use the Action Rule to achieve goals. A very bad
Action Rule has a score of less than 1, and a very good Action Rule has a score up to around
2. Generally Action Rules with a score of greater than 1.2 are reliable, although an exact
threshold is not used.

To construct the list below, all Action Rules with a quality score of greater than 1.1 were
identified giving a list of under 100 Action Rules from which the examples were selected.
Each Action Rule example shows the standard components of an Action Rule outlined in
Chapter 5 and 7. The number of supporting examples is also shown, along with the quality
rating.

8.1.1 Selected Action Rules for the Move To action

The main action used by the agent is Move To. The agent learnt that it could achieve a wide
variety of goals using Move To.

AR1
Intention : MoveTo(?p125, ?p126)
Constraints : Hand At(?p125)
Preconditions : None
Effects : +Hand At(?p126), -Hand At(?p125)
Support: 887
Quality: 1.65

AR1 is one of the simplest Action Rules for Move To that the agent can learn. If the hand
is at one place and moves to another, it will no longer be at the old place and it will be at the
new place. No preconditions are needed. This rule (and the one with only the +Hand At
fact) is useful for planning when the agent has identified a quantitative point that satisfies
constraints and just needs to make the hand be at that point.

AR2
Intention: MoveTo(?p1249, ?p1250)
Constraints: Place Touching(?p1250, ?b1251), Hand At(?p1249),

Place Near(?p1250, ?b1251)
Preconditions: On Table(?b1251), Fingers Flat()
Effects: +Hand At(?p1250), +Hand Touching(?b1251), +Touch Sensor()
Support: 163
Quality: 1.6

AR2 is the highest quality Action Rule the agent identified for making its hand touch a
ball. The Action Rule contains some additional effects which commonly occur along with
the hand touching the ball. In practice, the fingers don’t need to be flat in order for the
rule to succeed, despite the agent having learnt a precondition saying they do. This is a
consequence of only learning preconditions from positive examples.
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AR3

Intention: MoveTo(?p420, ?p421)
Constraints: Hand At(?p420), Place Touching(?p421, ?w423),

Place Touching(?p420, ?b422), Place Near(?p420, ?b422),
Place Behind(?p420, ?b422, ?w423)

Preconditions: Hand Touching(?b422), Hand Grasping(?b422), On Table(?b422),
hand behind(?b422, ?w423), Touch Sensor()

Effects: +Touching(?b422, ?w423)
Support: 6
Quality: 1.75

AR3 is the most reliable Action Rule the agent identified for making a ball touch the wall.
The constraints and preconditions describe having a ball grasped with the hand behind the
ball relative to the wall the ball should touch, and then moving to the wall with the grasped
ball. While it has low support, it has meaningful preconditions. This suggests support is of
limited importance as a selection heuristic because the agent does not need many examples
to meaningfully generalise and learn preconditions.

AR4

Intention: MoveTo(?p88, ?p89)
Constraints: Place Touching(?p89, ?w90), Hand At(?p88)
Preconditions: On Table(?w90), Fingers Flat()
Effects: +Hand Touching(?w90)
Support: 407
Quality: 1.46

AR4 is one of the Action Rules the agent learnt for making its hand touch a wall. Again,
the agent learnt that the fingers should be flat when in fact this is not necessary. The precon-
dition On Table(?w90) is surprising because this candidate precondition should have been
ignored because it is always true (it is likely due to a bug in a special case). Nonetheless, it
does not negatively impact the agent’s ability to use the Action Rule, as it is always satisfied.

8.1.2 Selected Action Rules for the Grasp action

The Grasp action was a simple action but had different effects in different situations.

AR5

Intention: Grasp(?p253)
Constraints: Hand At(?p253), Place Touching(?p253, ?b254),

Place Near(?p253, ?b254)
Preconditions: Hand Touching(?b254), Touch Sensor(), On Table(?b254), Fin-
gers Flat()
Effects: +Hand Grasping(?b254)
Support: 97
Quality: 1.84

AR5 and its supersets are the Action Rules the agent identified for being able to make
objects grasped. It was not built into the agent that grasping near a ball will make a ball be
grasped, so it had to learnt this.

AR6
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Intention: Grasp(?p672)
Constraints: Hand At(?p672)
Preconditions: Fingers Flat()
Effects: +fingers closed(), -Fingers Flat(), -Hand At(?p672)
Support: 435
Quality: 1.61

AR6 is one of the Action Rules the agent learnt about using a Grasp action when not near
a graspable ball. The -Hand At precondition was probably learnt because of the hand mov-
ing at a very low velocity from a previous Hit or Move action. This Action Rule illustrates a
limitation of not having negative preconditions: if the agent attempts to use it when near a
ball, it will fail and the agent won’t know why. Ideally the agent needs to be able to learn a
precondition that the hand should not be touching any ball. For the purposes of this thesis,
the Action Rule was good enough.

8.1.3 Selected Action Rules for the Ungrasp action

Ungrasp was the simplest action. The Action Rules for it were reliable because from the
agent’s perspective it is very deterministic.

AR7

Intention: Ungrasp(?p183)
Constraints: Hand At(?p183)
Preconditions: None
Effects: +Fingers Flat()
Support: 203
Quality: 2

AR7 is one of the Action Rules the agent learnt to say that ungrasping anywhere will
make the fingers flat. No preconditions were learnt because this Action Rule works in any
state of the world. It is the most reliable Action Rule the agent identifies because the motor
control for Ungrasp is so simple that it never fails.

AR8

Intention: Ungrasp(?p311)
Constraints: Hand At(?p311), Place Touching(?p311, ?b312),

Place Near(?p311, ?b312)
Preconditions: On Table(?b312), Hand Grasping(?b312),

Hand Touching(?b312), Touch Sensor()
Effects: -Hand Grasping(?b312)
Support: 83
Quality: 1.4

AR8 is one of the Action Rules the agent learnt to say that ungrasping when grasping a
ball means the ball will no longer be grasped.

8.1.4 Selected Action Rules for the Hit action

The Hit action was the most challenging action the agent was expected to learn about be-
cause Hit actions can result in wildly varying effects. Some good rules were learnt such as
hitting balls can make them touch walls, although they weren’t as reliable as those learnt for
the other actions. The effects of a Hit action are somewhat probabilistic and would require
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a finer quantitative state representation to allow the agent to reason about whether or not
hitting a ball is likely to make it touch a wall based on factors such as current distance from
the wall. This was not overly concerning because young children have trouble achieving a
desired goal (e.g. make one ball hit another) by hitting a ball. Their hit actions tend to be
very clumsy and uncoordinated.

In order to identify what the Hit action could do, experiments were run with both the
bounce factor on and off (i.e. whether or not balls should bounce off the wall when they hit
it)

AR9
Intention: Hit(?p164, ?p165)
Constraints: Hand At(?p164), Place Touching(?p165, ?w166)
Preconditions: On Table(?w166), Fingers Flat()
Effects: +Hand Touching(?w166), +Touch Sensor()
Support: 195
Quality: 1.27

In addition to learning that the Move To action could be used to touch walls, the agent
learnt that it could also use the Hit action.

AR10
Intention: Hit(?p85, ?p86)
Constraints: Place Touching(?p86, ?b88), Hand At(?p85), Place Near(?p86, ?b88)
Preconditions: +On Table(?b88), Fingers Flat()
Effects: -On Table(?b88)
Support: 4
Quality: 1

AR10 is one of the Action Rules the agent learnt for knocking a ball off the table. Its
constraints are incomplete because the agent cannot learn the requirement to be on the side
of the ball opposite the slot wall. The problem is that the “attention” heuristic used for
choosing relevant preconditions and constraints prevented the agent recognising the con-
straint that ?p86 has to be behind ?b88 relative to the slot wall. This was because no effect
directly happened on the slot wall as a result of the action, and therefore no variable for it
was defined in the effects. Therefore, the constraint was ignored.

One way to fix it would be to include the slot wall in a predicate name by defining a
behind drop constraint that describes when a place is behind a ball relative to a drop from
the table. Another way is to try and improve the attention heuristic. The attention heuristic
proved to be effective in the vast majority of Action Rules the agent learnt, so modifying it
in a way that doesn’t cause problems for other Action Rules might not be straightforward.
Also, if given enough learning examples it would be possible for the agent to eventually
learn a variant of the Action Rule that involved hitting the slot wall with a ball on the path.
Such an Action Rule would have an effect saying the hand is touching the slot wall, which
would allow the slot wall to be present in preconditions and constraints.

AR11
Intention: Hit(?p3006, ?p3007)
Constraints: +Hand At(?p3006)
Preconditions: fingers moving()
Effects: -fingers moving(), -Hand At(?p3006)
Support: 117
Quality: 1.15
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While the agent learnt and identified many good Action Rules, it learnt a very large
number of junk Action Rules. AR11 is one example of a meaningless Action Rule that was
learnt. The fingers going from moving to not moving is not a consequence of the hit motor
action but instead of the agent randomly moving its fingers when the action was started. If
AR11 was used to stop the fingers moving in plans, its quality score would rapidly fall as it
would be consistently unreliable.

8.1.5 Summary

The agent is able to learn Action Rules that capture the important effects that can result from
its motor actions, and identify which are good using the quality heuristics. The binding
score heuristic provided a good starting point for choosing Action Rules of a high quality
and then the quality went up or down depending on whether or not the Action Rule did
what it was expected to do. This allowed the agent to identify good Action Rules among
thousands of candidates.

There are some obvious limitations, particularly in the preconditions. Because precon-
ditions are only learnt from positive examples, the agent learnt unnecessary preconditions
where a fact normally happened to be true. Also, negative preconditions saying what should
not be true would have been desirable in some of the Action Rules presented in this section.
An improved precondition learner is an obvious direction for future work.

Despite the limitations, Action Rules learnt and recognised as being of a high quality
by the agent show that learning with random exploration is promising. The next section
further evaluates the agent’s Action Rules by using them in simple planning task.

8.2 Planning for Goals

The second part of the evaluation looks at the agent’s ability to plan with its learnt Action
Rules.

Each plan presented has a goal and a sequence of actions the agent carried out in an
attempt to achieve the goal. The action sequence is shown in a figure with arrows on the
initial state to show how the hand position changed. Move and Hit actions are drawn with
an arrow to show approximately where the hand ended up, Grasp with a dotted circle with
an arrow going towards the centre, and Ungrasp with a dotted circle and arrow going away
from the center. In cases where the agent’s movement was complex and not successfully
working towards the goal, the path was not shown.

8.2.1 One step plans

The agent is able to plan for goals that require a single Action Rule to achieve.

Plan 1 – Goal: Fingers Flat()

The agent achieved the goal from the initial state shown using the following Ungrasp action.

1. Ungrasp((0, 23)) with constraints: {Hand At((0, 23))}
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Figure 8.1: The agent planning for the goal Fingers Flat

The agent consistently plans successfully for this goal with a one step plan.

Plan 2 – Goal: Hand Touching(’Plum3’)

The agent achieved the goal from the initial state shown using the following Move To action.

1. Move To( (0, 23), (-77, 46)) with constraints: {Place Touching((-77, 46), ’plum3’), Hand At(
(0, 23)), Place Near((-77, 46), ’plum3’)}

Figure 8.2: The agent planning for the goal Hand Touching(’plum3’)

After a few practice attempts, the agent nearly always plans for this goal correctly. Ini-
tially it tries to use Hit actions which push the ball away. This leads to the quality scores of
Action Rules with the effect Hand Touching(?b1) quickly degrade, and the agent learns that
Move To is much more reliable for achieving the goal.

Plan 3 – Goal: Hand Touching(?b1)

Plan 3 is a variation of Plan 2 which instead of telling the agent it must touch a specific ball,
allows the agent to choose a ball to touch. Again, the agent achieved the goal from the initial
state shown using a single Move To action.

1. Move To((0, 23), (-54, 47)) with constraints: {Hand At((0, 23)), Place Near((-54, 47),
gray3), Place Touching((-54, 47), gray3)}

67



Figure 8.3: The agent planning for the goal Hand Touching(?b1)

The agent chose gray3 to bind to ?b1.

8.2.2 Moving to a specific place

Plan 4 – Goal: Hand At((74, 65))

The agent is able to plan to move to a specific place without any other goals.

1. Move To((0, 23), (74, 65)) with constraints: {Hand At((0, 23))}
2. Move To((0, 23), (74, 65)) with constraints: {Hand At((77, 61))}

Figure 8.4: The agent planning for the goal Hand At((74, 65))

Because the motor control policy is imperfect in some cases, the hand went slightly past
the target place. When the agent checked whether or not the first Move To achieved the
goal, it recognised it had not, so planned and used another Move To to bring the hand to
the target place. This demonstrates that the agent’s planner elegantly recovers from small
artefacts in the motor control policy. This behaviour is not unlike humans, who when trying
to move their hand to a precise point far away are likely to be near but not on the target the
first attempt, but then can do a shorter move onto the exact target.

8.2.3 Grasping a ball

Plan 5 – Goal: Hand Grasping(?b1)

The agent achieved the goal from the state shown using a Move To action to get to the ball
and then a Grasp action to grasp it.
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1. Move To((0, 23), (48, 83)) with constraints: {Place Touching((48, 83), ’yellowgreen’),
Place Near((48, 83), ’yellowgreen’), Hand At((0, 23))}

2. Grasp((48, 83)) with constraints: {Place Touching((48, 83), ’yellowgreen’), Place Near((48,
83), ’yellowgreen’), Hand At((48, 83))}

Figure 8.5: The agent planning for the goal Hand Grasping(?b1)

Because the agent was not told which ball to grasp, it chose the ’yellowgreen’ one. The
agent’s first attempts at grasping a ball normally involve hitting the ball in an attempt to
move to it, but the agent quickly learns from experience of trying to achieve the goal that
using a Move To action is more reliable. Beyond the initial learning, the agent nearly always
plans for this two-step plan efficiently and successfully.

Plan 6 – Goal: Hand Grasping(?b1) (2)

Plan 6 is a variation of Plan 5 which starts from an initial state where the fingers are closed.
The agent achieved the goal using an Ungrasp action to open its fingers and then a Move To
and Grasp actions to grasp the ball.

1. Ungrasp((0, 23)) with constraints: {Hand At((0, 23))}
2. Move To((0, 23), (19, 87)) with constraints: {Place Touching((19, 87), ’darkkhaki’),

Place Near((19, 87), ’darkkhaki’), Hand At((0, 23))}
3. Grasp((19, 87)) with constraints: {Place Touching((19, 87), ’darkkhaki’), Place Near((19,

87), ’darkkhaki’), Hand At((19, 87))}

Figure 8.6: The agent planning for the goal Hand Grasping(?b1) when its fingers are initially
closed
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While initially appearing that the agent deliberately open its fingers for the Grasp ac-
tion, the order in which the actions were carried out suggests otherwise. The Ungrasp was
actually planned to satisfy the Move To Action Rule’s preconditions (due to Fingers Flat
being an unnecessary precondition in many Action Rules). Despite this, had the Move To
action not had the unnecessary Fingers Flat precondition, the Grasp action also had the
precondition so the plan still would have suceeded, except it would have been more delib-
erate. Further learning about which preconditions are unnecessary would probably allow
the agent to deliberately plan the Ungrasp action to allow the Grasp action to suceed.

8.2.4 Making balls touch walls

Plan 7 – Goal: Touching(?b1, ?w1)

Plan 7 is one of the more difficult goals the agent can achieve, with multiple ways of going
about it. The agent approached it with a three step plan consisting of a Move To to get to
the ball it wanted to make touch the wall, a Grasp to grasp the ball, and then a Move To to
get the ball to the wall.

1. Move To((0, 23), (-72, 21)) with constraints: {Place Touching((-72, 21), OrangeRed4),
Hand At((0, 23)), Place Near((-72, 21), OrangeRed4)}

2. Grasp((-72, 21)) with constraints: {Place Near((-72, 21), OrangeRed4), Place Touching((-
72, 21), OrangeRed4), Hand At((-72, 21))}

3. Move To((-72, 21), (-92, 58)) with constraints: {Place Touching((-72, 21), OrangeRed4),
Hand At((-72, 21)), Place Touching((-92, 58), left wall), Place Behind((-72, 21), Oran-
geRed4, left wall), Place Near((-72, 21), OrangeRed4)}

Figure 8.7: The agent planning for the goal Touching(?b1, ?w1)

Plan 7 shows the agent correctly using places and constraints in order to make a ball
touch a wall. The Place Behind constraint in step (3) ensured the ball was moved to and
grasped from the side away from the left wall so that moving towards the left wall would
make the ball, and not the hand, touch the left wall. The agent sometime uses Hit actions to
make balls touch walls, although that is generally less reliable. The agent would not have
been able to plan reliably for the goal without constraints.

Plan 8 – Goal: Touching(LightGoldenrod2, Left Wall)

Plan 8 is a more difficult variation of Plan 7. While in Plan 7 the agent happened to have its
hand on the most convienent side of the ball to begin with, in Plan 8 it does not. The agent
eventually managed to get to a place on the correct side of the ball using three Move To
actions, and then a Grasp and a Move To like in Plan 7.
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1. Ungrasp((0, 23)) with constraints: {Hand At((0, 23))}
2. Move To((0, 23), (38, 29)) with constraints: {Place Near((38, 29), LightGoldenrod2),

Place Behind((38, 29), LightGoldenrod2, left wall), Place Touching((38, 29), LightGold-
enrod2), Hand At((0, 23))}

3. Move To((38, 29), (86, 28)) with constraints: {Place Behind((86, 28), LightGoldenrod2,
left wall), Hand At((38, 29))}

4. Move To((86, 29), (61, 40)) with constraints: {Place Near((61, 40), LightGoldenrod2),
Place Behind((61, 40), LightGoldenrod2, left wall), Place Touching((61, 40), LightGold-
enrod2), Hand At((86, 29))}

5. Grasp((61, 40)) with constraints: {Place Near((61, 40), LightGoldenrod2), Place Touching((61,
40), LightGoldenrod2), Hand At((61, 40))}

6. Move To((38, 29), (-92, 45)) with constraints: {Place Touching((38, 29), LightGolden-
rod2), Hand At((38, 29)), Place Touching((-92, 45), left wall), Place Behind((38, 29),
LightGoldenrod2, left wall), Place Near((38, 29), LightGoldenrod2)}

Figure 8.8: The agent planning for the goal Touching(LightGoldenrod2, Left Wall)

Plan 8 was somewhat lucky for the agent, as sometimes when trying to get behind a ball
relative ot the desired wall it accidentally knocks the ball off the table or into the opposite
wall (making it impossible to get behind the ball). Nonetheless, Plan 8 further demonstrates
that agent’s planner is good at recovering from unexpected effects.

Plan 9 – Goal: Touching(maroon4, Near Wall)

Plan 9 was even more difficult than Plan 8 because the target ball was so close to the far
wall to begin with. This made it difficult for the agent to get its hand behind the ball, and
it ended up carrying out 10 Move To actions which initially pushed the ball against the far
wall, and then demonstrated meaningless pushing of the ball back and forth along the wall
and a couple of times going back to the near wall. The agent is programmed to give up after
10 actions, so did and failed the goal.

1. Move To((0, 23), (-67, 89)) with constraints: {Place Near((-67, 89), maroon4), Place Behind((-
67, 89), maroon4, near wall), Place Touching((-67, 89), maroon4), Hand At((0, 23))}

2. Move To((-67, 89), (-55, 82)) with constraints: {Place Behind((-55, 82), maroon4, near wall),
Hand At((-67, 89))}

3. Move To((-55, 82), (-38, 90)) with constraints: {Place Behind((-38, 90), maroon4, near wall),
Hand At((-55, 82))}

4. Move To((-38, 83), (39, 18)) with constraints: {Hand At((-38, 83)), Place Touching((39,
18), near wall)}
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5. Move To((39, 18), (-44, 89)) with constraints: {Place Behind((-44, 89), maroon4, near wall),
Place Touching((39, 18), near wall), Hand At((39, 18))}

6. Move To((-44, 89), (-23, 86)) with constraints: {Place Behind((-23, 86), maroon4, near wall),
Hand At((-44, 89))}

7. Move To((-23, 86), (2, 89)) with constraints: {Place Near((2, 89), maroon4), Place Behind((2,
89), maroon4, near wall), Place Touching((2, 89), maroon4), Hand At((-23, 86))}

8. Move To((2, 89), (-7, 84)) with constraints: {Place Near((-7, 84), maroon4), Place Behind((-
7, 84), maroon4, near wall), Place Touching((-7, 84), maroon4), Hand At((2, 89))}

9. Move To(?p25715, (-18, 82)) with constraints: {Place Near((-18, 82), maroon4), Place Behind((-
18, 82), maroon4, near wall), Place Touching((-18, 82), maroon4), Hand At(?p25715)}

10. Move To((-67, 89), (20, 18)) with constraints: {Place Touching((-67, 89), maroon4),
Hand At((-67, 89)), Place Touching((20, 18), near wall), Place Behind((-67, 89), ma-
roon4, near wall), Place Near((-67, 89), maroon4)}

Figure 8.9: The agent planning for the goal Touching(maroon4, Near Wall)

The agent giving up after 10 actions ensured it did not plan indefinitely. Once the ball
was pushed against the far wall, the goal was nearly impossible to achieve. The agent is not
able to plan to pull the ball away from the far wall and to then go behind it. In order to make
such plans, the agent would need to include place variables for ball positions, and specify
constraints in those positions. A special Object At constraint much like Hand At would also
be needed so that the agent could learn Action Rules that change the place a ball is at. These
constraints would be a nice extension to the agent’s representation.

An alternative solution is adding constraints that make it possible for the agent to reason
about not attempting to move through balls, and thus avoiding situations where it can no
longer go behind the ball. For example, a clear path constraint that specifies when the path
between two places need to be clear. This would allow the agent to learn that it needs to
move to the place that is touching the ball from a place where there is a clear path. The
agent could “chain” Move To actions to go around balls where necessary.

8.2.5 Removing balls from the table

Plan 10 – Goal: On Table(dodgerblue)

The agent suceeded in Plan 10, hitting the ball so that it rolled off the table.

1. Hit((0, 23), (86, 24)) with constraints: {Place Touching((86, 24), dodgerblue), Hand At((0,
23)), Place Near((86, 24), drblue)}
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Figure 8.10: The agent planning for the goal -On Table(dodgerblue)

The agent had learnt that hitting balls can cause them to roll from the table. The hit target
selected was suitable.

Plan 11 – Goal: -On Table(green4)

The agent failed Plan 11, carrying out 11 obviously unhelpful actions which did not achieve
the goal.

1. Hit((0, 23), (0, 44)) with constraints: {Place Touching((0, 44), green4), Hand At((0, 23)),
Place Near((0, 44), green4)}

2. Move To((-1, 92), (0, 83)) with constraints: {Place Touching((0, 83), green4), Hand At((-
1, 92)), Place Near((0, 83), green4)}

3. Grasp((0, 83)) with constraints: {Place Near((0, 83), green4), Place Touching((0, 83),
green4), Hand At((0, 83))}

4. Ungrasp((0, 83)) with constraints: {Place Near((0, 83), green4), Place Touching((0, 83),
green4), Hand At((0, 83))}

5. Move To((0, 83), (23, 82)) with constraints: {Place Touching((23, 82), green4), Hand At((0,
83)), Place Near((23, 82), green4)}

6. Hit((23, 82), (50, 50)) with constraints: {Hand At((23, 82))}
7. Hit((78, 22), (50, 50)) with constraints: {Hand At((78, 22))}
8. Move To((23, 82), (50, 50)) with constraints: {Hand At((23, 82))}
9. Hit((52, 52), (36, 87)) with constraints: {Place Touching((36, 87), green4), Hand At((52,

52)), Place Near((36, 87), green4)}
10. Move To(?p3613, (50, 50)) with constraints: {Place Touching((50, 50), green4), Hand At(?p3613),

Place Near((50, 50), green4)}

Figure 8.11: The agent planning for the goal -On Table(green4)
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The reason the agent was unsuccessful in Plan 11 is because it could not learn that it
needed to go behind the ball relative to the slot wall. This limitation and possible solutions
was discussed in AR10.

8.2.6 Goals involving three or more objects

Plan 12 – Goal: {+Touching(plum4, far wall), +Touching(IndianRed2, far wall)}

The agent was able to make two balls touch the far wall. It hit one towards the wall and
then the other. It attempted to grasp multiple times when its fingers were already closed.

1. Move To((0, 23), (57, 26)) with constraints: {Place Near((57, 26), plum4), Place Behind((57,
26), plum4, far wall), Place Touching((57, 26), plum4), Hand At((0, 23))}

2. Hit((57, 21), (50, 50)) with constraints: {Hand At((57, 21))}
3. Hit((43, 91), (50, 50)) with constraints: {Hand At((43, 91))}
4. Grasp((57, 21)) with constraints: {Place Near((57, 21), plum4), Hand At((57, 21))}
5. Grasp((50, 18)) with constraints: {Place Near((50, 18), plum4), Hand At((50, 18))}
6. Grasp((50, 18)) with constraints: {Place Near((50, 18), plum4), Hand At((50, 18))}
7. Grasp((50, 18)) with constraints: {Place Near((50, 18), plum4), Hand At((50, 18))}
8. Grasp((50, 18)) with constraints: {Place Near((50, 18), plum4), Hand At((50, 18))}
9. Grasp(?p205244) with constraints: {Place Near(?p205244, plum4), Hand At(?p205244)}

10. Hit((57, 26), (-21, 85)) with constraints: {Place Behind((57, 26), plum4, far wall), Hand At((57,
26)), Place Near((57, 26), plum4), Place Near((-21, 85), IndianRed2), Place Touching((57,
26), plum4), Place Touching((-21, 85), IndianRed2)}

Figure 8.12: The agent planning for the goal{+Touching(plum4, far wall), +Touch-
ing(IndianRed2, far wall)}

The final Hit Action Rule in Plan 12 was one the agent learnt for making two balls touch
the wall, and it only had 1 support and 0 quality. The figure below shows the Action Rule.

Intention: Hit(?p11868, ?p11869)
Constraints: Place Behind(?p11868, ?b11872, ?w11871), Hand At(?p11868),

Place Near(?p11868, ?b11872), Place Near(?p11869, ?b11870),
Place Touching(?p11868, ?b11872), Place Touching(?p11869, ?b11870)

Preconditions: None (wasn’t enough support)
Effects: +Touching(?b11870, ?w11871), +Touching(?b11872, ?w11871)
Support: 1
Quality: 0
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The constraints were impossible to satisfy, and it was lucky that the agent satisfied the
ones concerned with IndianRed3 because plum4 was already touching the wall from an
earlier action carried out. The agent did not know this when trying to satisfy the constraints
because it was the first Action Rule put on the stack.The heuristics put too much weight
on the number of goals satisfied and not enough on the other heuristics. An improvement
would be to make the heuristics consider smaller Action Rules with a far higher quality even
though they might not achieve all the goals.

The agent also did six meaningless grasp actions during the action. This was because it
was trying to satisfy goals and looped. The maximum number of actions allowed in a plan
ensured this loop was broken.

Overall, success for this plan depended on serendipity.

Plan 13 - {+Touching(plum4, far wall), +Touching(IndianRed2, far wall)} Unlike Plan
12, the agent did not manage to complete Plan 13 successfully. The hit actions were some-
what meaningless.

1. Hit(?p129929, (50, 50)) with constraints: {Hand At(?p129929), Place Near((50, 50),
PaleGreen4), Place Touching((50, 50), PaleGreen4)}

2. Hit(?p80465, (50, 50)) with constraints: {Place Touching((50, 50), PaleGreen4), Hand At(?p80465),
Place Behind(?p80465, PaleGreen4, far wall), Place Near((50, 50), PaleGreen4)}

3. Hit(?p80465, (50, 50)) with constraints: {Place Touching((50, 50), PaleGreen4), Hand At(?p80465),
Place Behind(?p80465, PaleGreen4, far wall), Place Near((50, 50), PaleGreen4), Place Behind((50,
50), PaleGreen4, far wall)}

4. Hit(?p80465, (50, 50)) with constraints: {Place Touching((50, 50), PaleGreen4), Hand At(?p80465),
Place Behind(?p80465, PaleGreen4, far wall), Place Near((50, 50), PaleGreen4)}

5. Hit(?p80465, (50, 50)) with constraints: {Place Touching((50, 50), PaleGreen4), Hand At(?p80465),
Place Behind(?p80465, PaleGreen4, far wall), Place Near((50, 50), PaleGreen4), Place Behind((50,
50), PaleGreen4, far wall)}

6. Hit(?p80465, (50, 50)) with constraints: {Place Touching((50, 50), PaleGreen4), Hand At(?p80465),
Place Behind(?p80465, PaleGreen4, far wall), Place Near((50, 50), PaleGreen4)}

7. Move To((40, 51), (77, 22)) with constraints: {Place Touching((40, 51), PaleGreen4),
Place Behind((77, 22), PaleGreen4, far wall), Place Near((40, 51), PaleGreen4), Place Touching((40,
51), far wall), Hand At((40, 51))}

8. Hit((77, 22), (38, 36)) with constraints: {Place Touching((38, 36), PaleGreen4), Hand At((77,
22)), Place Behind((77, 22), PaleGreen4, far wall), Place Near((38, 36), PaleGreen4),
Place Behind((38, 36), PaleGreen4, far wall)}

9. Move To((0, 23), (12, 26)) with constraints: {Place Behind((12, 26), PaleGreen4, far wall),
Hand At((0, 23)), Place Near((12, 26), hotpink), Place Touching((12, 26), hotpink)}

10. Hit((12, 26), (22, 34)) with constraints: {Place Near((12, 26), hotpink), Place Touching((12,
26), hotpink), Place Behind((22, 34), PaleGreen4, far wall), Place Near((22, 34), Pale-
Green4), Place Touching((22, 34), PaleGreen4), Hand At((12, 26)), Place Behind((12,
26), PaleGreen4, far wall)}

For difficult goals the agent tends to resort to the highly probabilistic hit actions in an
attempt to achieve all the goals at the same time. While finding Action Rules that achieve
all the goals is useful when the goals are currently related, it makes planning difficult when
the goals are not closely related. The agent is not able to recognise when it should plan for
each goal separately.
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8.2.7 Coordinated effects

Plan 14 - {Touch Sensor(),Hand Touching(?b1)} The agent is able to identify Action Rules
with an effect set that achieves multiple coordinated effects.

1. Move To((0, 23), (10, 72)) with constraints: {Hand At((0, 23)), Place Touching((10, 72),
gray70), Place Near((10, 72), gray70)}

Figure 8.13: The agent planning for the goal{Touch Sensor(),Hand Touching(?b1)}

Where a goal has multiple parts, the agent is able to select an Action Rule to achieve all of
them. This greatly simplifies the planning, particularly where there are multiple unsatisfied
preconditions.

8.3 Summary

This evaluation showed that the agent is able to plan for a range of tasks, using Action Rules
that were autonomously learnt from exploratory behaviour. The agent was able to plan
with both one-step and multi-step plans. Constraints increased the agent’s ability to achieve
goals such as making an object touch the wall. This increased ability was obvious when
contrasted to the agent’s difficulty knocking objects off the table because it was hindered
from learning effective constraints on the Action Rules for that particular task. The agent
had some difficulty with the hit action because it is more probabilistic than the other actions.
Overall, results were promising and areas for Future Work were highlighted.
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Chapter 9

Conclusion

The thesis objective was to explore how a system could learn like a human infant in a world
with realistic physics without all the limitations that were present in earlier work such as
QLAP. An agent in a continuous simulated world with a simple visual system and motor
control policy was implemented in Python. An Action Rule learner and Action Rule planner
were then designed and implemented to enable the agent to learn meaningful rules and
plan with them without requiring any teacher input. Human infants were a significant
inspiration for the design of the agent. The agent was successful in that it was able to achieve
a variety of goals by planning with its learnt Action Rules. For example, the agent was able
to reach for and grasp objects, ungrasp objects and make objects touch walls.

The learning problem was broken into sub problems so that suitable algorithms could be
selected for each part of the problem. The Action Rule learner learnt from qualitative data
in order to make sense of the world.The vision system and motor control policy on the other
hand would require algorithms that work with quantitative data (although learners were not
constructed for the thesis). This was contrast to QLAP which attempted to learn everything
qualitatively, leading to an unrealistically simple form of motor control that would not scale
or work with a realistic model of an infant hand and nearly nothing in terms of a vision
system which again hurt scalability.

By separating the motor control policy from the Action Rule learner and characterising
actions in terms of their external behaviour (path and overall velocity profile) rather than
values set to individual motor variables, the agent would be able to work with a realistic
model of an infant hand. It is the motor control policys job to learn the precise details of
applying forces to the motor variables in order to achieve the desired external effect. The
Action Rule learner needs no knowledge of how the motor control policy actually carries
out the actions as it is only concerned with what actions can be carried out and what effects
they have on the world.

The Action Rule learner learnt many Action Rules, some of which were meaningful and
some of which were not. Simple heuristics allowed the agent to quickly identify which
Action Rules were good, and which were not. In particular, analysing how well connected
the variables in the effects were to the variables in the intention via the preconditions and
constraint gave the agent a good starting point. This was then further refined by using
planning success history for the Action Rules.

Despite being an unusual approach, learning effect sets as the basis of Action Rules
rather than single effects (as QLAP did) greatly simplified the planner. In many cases the
agent was able to find a single Action Rule that would satisfy all the preconditions rather
than having to look at many Action Rules and attempt to put them together.

The Action Rule planner allowed the agent to use the Action Rules learnt from ex-
ploratory behaviour to achieve deliberate goals. The planner spent little time searching
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for Action Rules to use and most of its time trying them. Each time an action in the plan was
carried out the agent checked the new state of the world and planned additional actions
where the original action had not achieved the desired effects. In many cases, this allowed
the agent to eventually achieve the goal with the plan, even if a few undesirable effects oc-
curred along the way. This is like human infants, who experiment and retry when they fail
rather than spending time thinking to try and prevent failing.

The Action Rule planner also gives opportunity for refining Action Rules and further
learning. While the planner does not always succeed in planning, its success rate is suffi-
cient because the plans that do succeed provide learning examples suitable for further learn-
ing. Furthermore, the planner can use its failures to learn more about the reliability of the
Action Rules which will improve its future performance.The agent could be extended with
additional learning and planning mechanisms to allow it to use the successful examples of
plans in order to improve their reliability. Even examples of plans where the planning was
serendipitously successful could be learnt from. This is not unlike human infants who ini-
tially have difficulty achieving their objectives but with age and experience increase their
ability.

The agent learnt a special kind of precondition called constraints, particularly to han-
dle the introduction of places. Unlike normal preconditions, constraints are considered to
be part of the intention because they specify how the variables in the intention should be
related to the variables in the effects. While preconditions must be planned for, constraints
are handled by the agent’s vision system which chooses a quantitative point to bind to each
place variable in order to maximise the number of constraints satisfied. Unsatisfied con-
straints do not get planned for. Constraints allow the agent to specify a richer intention with
place variables than it could have otherwise.

A limitation of the Action Rule learner was its precondition learning component. Be-
cause the agent only learnt from positive examples, it was unable to identify what should
not be true or determine whether or not something that was often true in its learning exam-
ples actually needed to be. This issue should easily be addressable in future work by using
the planner to experiment and identify unnecessary preconditions or to identify possible
negative preconditions for Action Rules which repeatedly fail but otherwise did well in the
quality heuristics. The connectivity heuristic in particular is probably a very strong indicator
of whether or not an Action Rule is worth trying to refine and worth further investigation.

The agent also had a limited ability to reason about probabilistic effects, which greatly
limited its ability to plan with Action Rules learnt for the hit action. It was possible for mul-
tiple Action Rules to have different effects but the same intention, constraints, and precondi-
tions. Linking Action Rules with an identical intention, constraints and preconditions, much
like effect sets were linked, would allow the agent to try and add additional constraints and
preconditions to them that separated them out.

In some cases, preconditions containing quantitative information would be needed to
separate similar Action Rules. For example, whether or not hitting an object will lead to the
object hitting a wall is dependent on how much force was applied to the object and how far
it was from the wall. Infants, and even some adults, struggle with reliably knowing how
hard to hit an object in order for it to hit a wall. For this reason, it isnt really a limitation
within the scope of this agent. If the agent was to be extended to start learning at the level of
a slightly older child, the problem of using quantitative information to refine preconditions
would need to be addressed.

The planner could be extended to allow it to keep a previous goal true while carrying
out an additional goal. In order to achieve this, the agent would need to reason about what
will be undone by an action and how to prevent it. The effect set approach combined with
identifying subsumed effect sets is beneficial for this because large and complete effect sets
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will contain the necessary information about side effects of the action.
In summary, the agent achieved the thesis objective because it was able to autonomously

learn meaningful rules and achieve goals in a world with realistic physics. Key limitations of
QLAP were avoided. The agent presented in the thesis provides a strong system to further
build on and work towards the goal of building a computer program that is able to learn
many of the things human infants do.
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