VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

T8
School of Engineering and Computer Science
Te Kura Matai Pukaha, Purorohiko

5\/21]1??1;&?? Tel: +64 4 463 5341
New Zealand Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Sketch Interaction in Real Time
Strategy Games

Elwyn Benson

Supervisor: Dr. Peter Andreae

Submitted in partial fulfilment of the requirements for
Bachelor of Information Technology.

Abstract

As real time strategy games are becoming increasingly complex and large scale,
new interaction techniques need to be investigated to overcome the limitations
found in conventional interaction methods. This project has explored freehand
sketching as an interaction technique, and this report discusses some of the
advantages and disadvantages of sketching for spatial tasks, which are common
in real time strategy games. The report describes two novel sketch interaction
techniques for giving precise orders to units— a technique for selecting groups
of units, and a technique for specifying movement paths. A user experiment
has been conducted that evaluated the novel interaction techniques, which is
described. The results have shown that sketching does not provide a clear
quantitative advantage in terms of efficiency for selecting units but seem to be
comparable to the conventional technique. Further study is required to confirm
this due to issues with the experimental design. The results for movement paths
are positive, however not by a significant amount. Despite this, the qualitative
feedback from participants of both experiments has been almost completely
positive, which combined with sketching being comparable to the conventional
techniques suggests there may be further work to be done to take this idea
further.

Acknowledgements

Dr. Peter Andreae

For being a crucial part of both ends of my degree- from teaching me Java in 2007 to
supervising this project in 2010. Your kindness, support and extensive knowledge make
me feel privileged to have you as a supervisor.

Despite what Salient voters might say, you are my Academic Idol!

Dr. Stuart Marshall

For introducing me to the world of H.C.I. and piquing my interest in all things usability
related, ultimately culminating in this project.

All of my lecturers and teachers over the last few years

For helping me get to where I am today and imparting your wisdom in the process.

Fonda

For proof reading everything and putting up with the espresso machine buzzing at all hours!

ii

Contents

1 Introduction

2 Background

2.1 Real Time Strategy Games
211 Selecting Entities o L o L o
212 MovingUnits
22 Sketching
3 Design and Implementation
31 NovelFeatures
3.1.1 Sketch Selections
312 SketchMovements
3.2 Designing the Experiment Framework
3.2.1 Alternative Approaches
322 CustomMadeRTSEngine.
323 MapEditor
4 Experiments
41 Experimental Design
41.1 Participants
412 Experiment Environment
413 Procedures.
42 Experiment 1: Selecting Units
421 Controlled Factors
422 PilotExperiment
43 Experiment2: MovementPaths
431 Controlled Factors
5 Results and Discussion
5.1 Experiment 1: Selecting Units
5.1.1 Experiment Limitations
52 Experiment 2: Movement Paths 0o 0L
6 Conclusions

A Appendix

iii

iv

Chapter 1

Introduction

The real time strategy game genre requires the user to give lots of commands in a situation
where time is a constraint. Users must constantly micromanage their units, buildings and
resources. Many of their tasks involve selecting units, specifying commands and issuing
instructions within a spatial, geographic context. The standard user interface in real time
strategy games is less than satisfactory for many of these interactions.

This project has explored the use of freehand sketch based input for selecting units and
issuing movement commands. These novel interaction techniques have been implemented
in a custom built real time strategy game engine.

This engine was used in the core component of the project — a set of user experiments
that measured and compared participants’ performance using the sketch interaction tech-
niques and the conventional mechanisms. There were a total of 28 users participating in
three experiments.

The results for selecting units do not show any clear benefit for sketching, in fact,
sketching was consistently marginally slower. Issues with the experimental design mean
the results may not show what they are expected to.

Sketching movement paths however has shown a consistent, if slight, performance
benefit in both time (specifically the time taken to execute the actions) and accuracy (the
quality of the paths/waypoint set created).

Qualitative feedback from participants has been very positive, with the majority com-
menting that they preferred sketching and would like to see it used in actual real time
strategy games.

I believe that with the novel features at least holding their own in terms of quantitative
results, combined with the positive feedback from users, sketching merits further investiga-
tion.

Contributions

e Explored the use of freehand sketching for issuing commands within real time strategy
games.

e Designed and implemented two novel sketch-based techniques
e Evaluated the effectiveness of these techniques with user experiments

A paper based on the work in this project has been accepted into the 7th Australasian
Conference on Interactive Entertainment!' and will be presented in November.

Thttp://ieconference.org/ie2010/

http://ieconference.org/ie2010/

Chapter 2

Background

2.1 Real Time Strategy Games

Real time strategy games are a popular game genre where players generally harvest
resources, build and defend bases, and usually create armies to conquer enemies. These
games require the player to micromanage their resources, units and buildings effectively in
order to complete their goals and objectives. Professional real time strategy gamers aim for
100-300+ actions per minute, so an efficient means of issuing commands is crucial to the
success of games in this genre.

There are numerous types of actions in real time strategy games, such as producing
units, placing buildings and harvesting resources. Many of these actions are spatial or
geographic in nature, such as selecting a group of units or specifying destinations or
paths a unit should move along. Many of the interaction techniques found in real time
strategy games are inherited from conventional software and do not appear to be ideal
for these spatial/geographic commands. This project has focused on two components of
these spatial/geographic commands— selecting a set of units and specifying movement
commands for units.

2.1.1 Selecting Entities

Selecting units is a vital part of the genre, and the task may be executed hundreds of times
within a single game. Conventional real time strategy game interfaces allow unit selection
in three ways:

1. Selection box
A rectangular box is drawn corner-to-corner, and all entities within the boundaries of
the box are selected. This is the conventional method of selecting groups of entities,
and is common in fields other than real time strategy games (such as file managers in
operating systems).

2. Individual selection
The most basic type of selection— clicking on an entity causes it to be selected.

3. Selection by unit type
Double clicking on an entity will select that entity and all other entities of the same
type currently visible.

Modifier keys allow the chaining of multiple selections together, and modifications to
the current selection to be made. There are two common modifier keys found in many real
time strategy games:

1. Adding selections
Usually activated by holding the Shift key while selecting, this modifier simply
aggregates multiple selections together

2. Toggling selections
Usually activated by holding the Control key while selecting, this modifier toggles the
selection— that is, if an entity is already selected it will be deselected, and visa-versa.

Where the units to be selected are interleaved with other units that must not be selected,
a large number of selection boxes must be used. This adds a non-trivial amount of time and
complexity, as well as increasing the chances of making errors.

Another scenario where selection boxes can be problematic is when the target entity to
be selected is near other entities that must be avoided. The placement of the initial corner
of the selection box is critical for the success of the action— it is very easy to misjudge the
placement and either miss the target entity or pick up the unwanted entities. This problem
is compounded when the entities are spread over a larger area, as visualising the correct
placement point can be a difficult task. Figure 2.1 shows an example of this problem.

Selection boxes offer no way to recover from mistakes like this. If the box is placed
incorrectly, the only option is to start again.

[]
x .

Figure 2.1: An example of a difficult case for a selection box. The green dots are desired,
while the red dots are to be avoided. If drawing the box from the top left, the blue X is the
only position the box can be successfully started from. Any errors and the green dots will
be missed or the red dots selected.

2.1.2 Moving Units

Moving units is achieved by placing a sequence of one or more waypoints, that is,
destinations the unit will move towards. A waypoint is conventionally placed by right
clicking the destination, with multiple waypoints chained together using a modifier key
(again, this is usually the Shift key).

Complex movement orders (for example, circling a forest while maintaining a certain
distance to avoid detection by the enemy) are achieved by placing many waypoints to
specify the path the unit should follow.

Where the path is not straight and must be specified precisely, users must place a large
number of waypoints carefully to ensure the unit does not stray.

2.2 Sketching

Sketching with a mouse, tablet, or touch-screen as an input mechanism for creating dia-
grams or editing graphics has been around since Ivan Sutherland’s seminal Sketchpad[13]
system, and is used widely today. However sketching as an interaction technique is a novel
concept, and little research has been undertaken on this topic.

In this report, sketching as an interaction technique (or simply sketch interaction) refers
to freehand drawing with an input device, which is understood and interpreted as a
command (or a parameter to a command). This type of interaction provides a natural way
to issue spatial/geographic commands due to the inherently spatial nature of sketching.

The United States military has used sketching for a long time for developing battle
strategies. The development of these strategies share many tasks found in real time strategy
games. Recent efforts to digitise their battle strategy system have shown sketching to be
an effective method of conveying spatial/geographic tasks[7]. nuWar[5] is a turn based
strategy game that was developed from this work, and uses sketching to specify battle plans
similar to those used in the United States military. The sketch interaction has shown promise
in this context, and it is reasonable to expect real time strategy games may share the benefits
of this interaction technique.

Aside from nuWar, sketching has not been used in many games, with the exception of
games revolving around drawing, such as Pictionary. Some games use drawing to attempt to
add realism/depth to the game (for example drawing a spell to simulate the player actually
casting the spell). This type of drawing is distinct from the interactive sketching discussed
in this report however, as it serves a different function (adding realism/depth to the game
as opposed to providing an efficient interaction technique).

Sketching does have limitations however. The amount of hand movement required to
create the sketches can be large, which implies sketching may take a nontrivial length of
time. The precise movements required may impose high cognitive demands on the user,
which may create a large planning stage for each sketch being created. Finally, using a
mouse as an input device has been shown to be slower than more familiar devices such as a
pen or pencil[1].

Chapter 3

Design and Implementation

3.1 Novel Features

Sketching selections of entities was the first novel sketch interaction feature that the project
addressed. As mentioned in the previous chapter, selecting entities in real time strategy
games is one of, if not the most frequent action performed. Sketching provides a natural
means of indicating which entities are required — simply freehand drawing around the
units required.

Specifying movement paths for units is another common task that sketching lends itself
to. Drawing paths on the map is a familiar, natural way of specifying exact destinations for
units. This was the second novel sketch interaction feature that the project addressed.

This section discusses specific details of both these novel interaction techniques next,
including functionality and design decisions, and implementation factors.

3.1.1 Sketch Selections

Selecting units by sketching is relatively simple — by holding down the left mouse button
and dragging the mouse, a sketch is started. This is the same action that would activate
a selection box in a conventional real time strategy game. The mechanism of activating the
sketch was made the same as activating a box selection as this is likely the most obvious way
of selecting a group of units for most player of real time strategy games due to their existing
experience. This is also the standard way of activating a selection box in fields outside of
real time strategy games, such as operating system file browsers like Windows Explorer or
Konqueror.

Upon releasing the mouse, the sketch is closed automatically. That is, a line is drawn
from the starting point to the point that the mouse was released. Everything inside the
boundary is selected (or toggled if the toggle modifier key is being used).

The automatic closing of the sketch means users do not have to manually draw back to
the starting point. This is an attempt to mitigate the fact that sketching selections requires
more mouse movement than a box selection since it draws a boundary around the entire
area to select, whereas a selection box draws a straight line from corner-to-corner. As well
as reducing the mouse movement required, the automatic closing line may be used where a
straight edge in the selection boundary is desirable. Figure 3.1 shows the two different uses
of the automatic closing line. Once familiar with the automatic closing feature, complex
selections are possible with relatively small amounts of mouse movement. Fully utilising
the automatic closing feature requires additional cognitive load, however practice appears
to reduce this requirement.

Figure 3.1: Two uses of the automatic closing line (in yellow). (A) shows the line simply
being used to reduce the amount of mouse movement required while selecting. (B) shows
the line being used where a straight edge is desirable for the selection.

The sketch is displayed on screen as it is drawn in neon lime green, which was chosen
due to its high contrast against much of the terrain found in real time strategy games, as
well as its use for selection boxes in other games. A hint line is displayed in yellow which
shows where the automatic closing of the sketch would occur. This greatly increases users’
ability to utilise the automatic closing functionality previously described.

It is worth noting at this stage that sketching selections does not aim to replace with the
double click selection of all units by type, described in section 2.1.1. Figure 3.1 shows sketch
selection being used to select a group of one type of unit. In an actual real time strategy
game the same selection could be made by double clicking one of the target units, and all
of the other units of this type would be selected. This only works when all of the units to
be selected are of the same type, and there are no undesired units of the same type visible.
Sketching is not restricted by this special case.

Implementation of Sketch Selection

Each sketch is stored as a series of points, which are generated as the mouse moves while
sketching. This is useful for the experiment as it provides an exact record of every sketch
made. Each point is timestamped, which allows the sketch to be replayed exactly as it was
drawn by the user. If a sketch is drawn very rapidly, points are inserted further apart,
while very slowly drawn sketches insert many points very close together. This is based
on the assumption that users do not need such fine control when they are rapidly moving
their mouse. When they are sketching slowly, it is assumed they are being careful with the
accuracy of their sketch, so additional points are inserted to ensure the quality of the sketch.

The sketch can be rendered simply by drawing lines between each point, which gives
the illusion of a curved line due to the proximity of the points.

A decision to make is whether units must be entirely within the bounds of the sketch
to be selected, or if they will be selected just from one part of them, such as their center or
origin (where they are standing on the ground). Given that the units may overlap, requiring

the entire unit to be inside the bounds of a sketch is very restrictive. Therefore a better choice
would be choosing a single point of the unit to be the determining factor. The center of the
unit is a good choice as it allows for a margin of error in the sketch. Users may overlap
part of a unit when selecting another unit in close proximity but are unlikely to accidentally
select across the center of the unit.

Collision detection, or determining what is “inside” the sketch, is handled by the .NET
System.Drawing.Drawing2D.GraphicsPath library, which allows complex sketches to be
resolved and provides advanced functionality. For example, by circling a unit twice the
unit will not be selected, (as the sketch has looped over itself, causing the loop to be counted
as ‘outside’ the sketch). This is useful for allowing users to correct mistakes they have made
in a sketch without having to start over, and provides an alternative to using the toggle
modifier key, which may be preferable for some users.

3.1.2 Sketch Movements

Sketch movements are executed in much the same way as the sketch selections. Once one or
more units have been selected, the user holds down the right mouse button and drags the
mouse to define the path they wish the unit to follow.

For simple paths where a few waypoints are sufficient, sketching may require more time
because the user must carefully place the entire path.

Therefor it is better to allow sketched paths to be combined with individual waypoints
by using a modifier key. A combination of sketches and individual waypoints would be
used if this technique were implemented in an actual real time strategy game. The two
methods for specifying movements complement each other nicely, and the mechanisms of
invoking each action do not interfere with each other. Sketching is a natural supplement to
the existing techniques — where individual waypoints are good for specifying long straight
lines, sketches are good for specifying small, complex curves.

As the sketch is drawn, waypoints are automatically added to the selected unit(s) queue
of outstanding actions. This means the moment the user starts drawing the sketch, the first
waypoint will be added and the unit(s) will begin moving. Earlier implementations waited
until the entire sketch was finished, however it was clear this was not the correct, expected
behaviour so it was changed to its present state.

Implementation of Sketch Movements

Sketch movements share much underlying code with sketch selections. The same set of
timestamped points is present, and the variance of added points with regards to the speed
of the sketch is present.

The sketch is drawn in the same way (straight lines between each point), however as
waypoints have been added to each unit(s) queue of outstanding commands these are also
visible as a series of dots underneath the sketch. Once the mouse has been released and
the user is no longer sketching, the series of waypoint dots will remain after the sketch
disappears. Figure 3.2 shows this in effect.

3.2 Designing the Experiment Framework

The two novel sketch interaction techniques were implemented in order to explore their
effectiveness within the real time strategy game context. These novel features were
implemented in a simple real time strategy game engine which was also developed as part
of this project. This is discussed in section 3.2.2.

Figure 3.2: Sketch movement in use. (A) shows a sketch currently being drawn. Note the
left edge of the sketch where the waypoints have already been consumed by the unit as it
has reached them. (B) shows the waypoints generated by the sketch after the sketch has
been completed.

3.2.1 Alternative Approaches

Before deciding to develop a simple real time strategy engine of my own for this project,
several other ideas were investigated for implementing the sketching techniques. They fell
into three categories: use an existing game (open-source, or with source code available),
use a middleware layer to interpret and pass sketch commands to an underlying game, or
develop a minimal experiment framework. All options had advantages and disadvantages.

At the beginning of this project the scope included exploring the use of mouse gestures
for specifying commands in addition to sketching. Support for this was an important
criterion in choosing an appropriate implementation vehicle.

Using an Existing Game

Modifying the source of an existing game to include sketch interaction was an obvious
choice. This would allow the sketch techniques to be implemented with minimal devel-
opment time, and would allow the techniques to be tested in an actual existing game.

FreeCiv! was the first game to be investigated for this purpose: it is a 2D strategy game
that is open-source. The source code is developed and maintained by volunteers. There
were several disadvantages to using FreeCiv however which ultimately wrote it off as a
viable option.

First, FreeCiv is a turn-based game, so while many of the actions being explored by this
project were present (selecting entities, moving units) the game does not have the same
time-critical atmosphere that real time strategy games do. Also there is less emphasis on
micromanaging entities and resources, and less multitasking.

Second, its source code was very large and messy. It took a long time to figure out
how the game was structured and where core functionality was implemented. It was very
clear the game had been built by many individuals, without a strong cohesive plan to
guide their development. This represented a significant obstacle to adding the sketch based
interaction — the significant advantage of using an existing game was mitigated by the
expected additional time required to use the existing codebase. As the game is written in an
unfamiliar programming language development would have been difficult. There were no
suitable libraries to utilise for aiding the implementation of mouse gestures.

1FreeCiv: http://www.freeciv.net/

10

http://www.freeciv.net/

This was one of the main reasons for deciding to develop an engine specifically for this
project. Even other existing real time strategy games with much more maintained code,
such as the Spring Project?, contained a lot of features and code that was irrelevant for this
project. The additional time required to understand the complexity of a fully completed,
commercially used real time strategy engine (as well as working in unfamiliar programming
languages) made the advantages of using an existing game less significant.

Using a Middleware Layer

A middleware layer was the next solution for implementing the sketch techniques. The
middleware layer would sit on top of a real time strategy game, and intercept mouse events
before they were received by the game. These events would be interpreted as either normal
mouse clicks, or a sketch interaction. They would then be passed on to the game in a way
that the game can understand and use.

The primary advantage of this option was that once implemented, the layer could be
used on a number of different games, so user testing could be conducted on the sketch
techniques in several commercial games which participants might be familiar with. This
would help ensure that the validity of results was not influenced by one particular game
being used.

The layer would have easily allowed the scope of the project to increase if sketching were
successful, so it might be investigated in additional contexts to real time strategy games.

Implementing the layer however, represented a difficult task. There were several
technical constraints that needed to be worked around for it to be possible. Games running
in fullscreen constantly grab focus each time they redraw, so making the layer stay always
on top of the game to receive mouse events appeared to be a non-trivial task. Writing
interpretations for each underlying game was also a difficult task, as there is no uniform
interaction between the games.

Another issue is the lack of control over the experimental environment. The tasks
that participants of a user study would have to complete would differ across the various
underlying games. Even if custom maps were made for each game to be as similar as
possible, differences in the engine, graphics, types of units and other elements would limit
the degree of control available when designing experiments.

Using a Minimal Experiment Framework

A third approach would involve developing a basic, minimal experiment framework that
would support only very simple features. The framework would not have any functionality
as an actual real time strategy game but would instead provide artificial mock-ups to
attempt to simulate a real time strategy game.

The primary advantage is the small amount of development required compared to a full
real time strategy game engine. As the framework would not need any core functionality of
a actual engine (such as game world timing, collisions etc) only the bare minimum crucial
features would be implemented, for example units and selections.

The first disadvantage with this idea is the lack of depth/realism in the experiment. This
might have had negative affects on the behaviour of participants during experimentation.

Secondly, when deciding on an implementation vehicle, the project requirements
included implementing mouse gestures for issuing a range of commands. This would have
required a more rounded set of features, making this option less ideal compared to the other
solutions.

2The Spring Project: http://springrts.com/

11

http://springrts.com/

3.2.2 Custom Made RTS Engine

The last solution was to use a custom built real time strategy game engine. This has
significant advantages over the alternatives previously discussed, and was ultimately the
chosen solution.

Advantages

A custom solution allows the sketch interaction to be included as an inherent feature of the
system instead of an afterthought. The codebase is well known, written in a language of my
choice, and uses libraries and development tools of choice.

The significant advantage of the custom solution is the benefits for the user experiments.
Timing and other measurements are built into the core of the engine, ensuring the recorded
metrics are as valid as possible. For example the starting and stopping of timers happens
at the correct places in the code, and is not affected by other running code (such as a timer
being started and recording large blocks of code execution before the participant even starts
to react).

As the system is built with user experiments in mind, there are some key differences to
a traditional real time strategy game. In a normal game, a map is loaded once at the start
of a game and is used continuously throughout the rest of the session. However, with the
type of user experiments planned for this project, scenarios would be loaded, run for a short
period of time (a few seconds while a task is completed) and then a new scenario would be
loaded, in a quick fire manner.

Limitations

The primary limitation of developing a custom real time strategy game engine is the
significant amount of time and work required. This was an ambitious goal that was easily
the largest project I had developed. It was important to use good planning to stay on track
and get the required functionality completed.

This limitation was mitigated by the choice of development environment, frameworks
and libraries used (discussed next) which helped reduce the workload and speed up
implementation time. Another significant reduction in this limitation was that at the
beginning of the year I had already started building a real time strategy game engine,
which had some of the basic functionality already in place. At the beginning of the project
the engine was loading basic maps, as well as rendering the world, and had rudimentary
support for units.

The second limitation was the type of functionality that was possible to implement in
such a short amount of time. This was not a deal-breaker however as a fully developed
real time strategy game was not the goal, just the crucial components of the engine required
to test the sketch interaction. For example, it was important to have units, selections, and
movements, but a fully balanced set of different unit types and a functional economy that
would be found in most real time strategy games was not required.

One crucial decision was to keep the engine 2D, as this vastly simplified the task. Using
2D graphics was not seen to be a significant issue as most 3D engines present the world
from an overhead view (sometimes known as "2.5D") and the sketching techniques would
function very similar in a 3D real time strategy environment. In real time strategy games 3D
graphics are primarily aesthetic in role, as opposed to a first person shooter, for example,
where 3D graphics affect the game-play in a huge way.

In retrospect, given the restriction of the scope of this project to focus solely on sketching,
many of the features available in the custom real time strategy engine were redundant.

12

It may have been possible to achieve the same results by using the minimal experiment
framework previously described, with less development time.

Development Environment and Tools

The XNA Game Studio framework® was chosen to use for development. The XNA
framework is a game development framework aimed at hobbyist and independent game
developers. It takes care of much of the low level development (such as game timing,
rendering and content management) which was ideal for this project. There is a lot of
support available online, as well as many similar projects (in the real time strategy genre) to
draw from. This, combined with some prior experience I had with the framework, made it
a clear choice for speeding up the development time.

Choosing to use the XNA framework implied several other choices. XNA uses C# as
a programming language, and is a part of the .NET family. The project was therefore
developed in Visual Studio 2008 and utilised many .NET libraries available.

These tools made it much easier to implement the basic functionality of the engine,
which meant there was more time available to focus on the novel sketch interaction.

3.2.3 Map Editor

A map editor was created to assist in the creation of all of the scenarios. With about 200
unique scenarios this was a critical tool for constructing the experiments. Figure 3.3 shows
a screenshot of the editor in use.

The editor supported adding individual tiles of various sorts and complex pre-arranged
sets of tiles (for adding parts of curves). There was significant support for placing units
in particular arrangements also, as a large number of the scenarios were related to unit
configurations. The editor works by running an instance of the game, so using the novel
sketch techniques was possible. It was here that many of the informal observations and
insights into sketching were discovered. The large amount of use the editor got provided me
with extensive familiarisation of the sketch techniques, which I have noticed have improved
in usefulness the more sketching is practised.

5XNA Game Studio framework: http://msdn.microsoft.com/en-us/library/bb200104 (v=
XNAGameStudio.31) .aspx

13

http://msdn.microsoft.com/en-us/library/bb200104(v=XNAGameStudio.31).aspx
http://msdn.microsoft.com/en-us/library/bb200104(v=XNAGameStudio.31).aspx

F Iy
ol move-warmup.map - Map Editor ‘ [-z-'El g
File Options About

Map Units and Buildings Selected Entity 1 -

Fighter
ush | Select % 308.0°7: 5300

[Fil Mode Selected Entity 2
Fighter
X:316.0Y: 4570
Selected Entity 3
Wizard
X:103.0Y: 1624.0
Selected Entity 4
Man
203 1280

long-medium-15horiz
long-medium-30+-horiz

m

Short Fat 15 -
Short Tall 15
Medium Flat 15
Medium Medium 15
Medium Tall 15
Long Flat 15

Long Medium 15
Long Tall 15

Short Flat 30

Short Medium 30
Short Tall 30
Medium Flat 30

Htarget wizards: [

[reversed
SHOW TREES
SHOW UNITS
SHOW BUILDINGS

Add T Remove Layer

Figure 3.3: The map editor used to create all the experiment scenarios.

14

Chapter 4

Experiments

In order to evaluate the effectiveness of the novel sketch techniques described in Section
3.1 a user study was undertaken. Approval was granted by the Victoria Human Ethics
Committee for the user experimentation aspect of this project.

Following a pilot study, there were two experiments, one for unit selection, and one
for specifying paths. Both experiments involved measuring and comparing the subjects’
performance at a task using both conventional techniques and sketch based techniques. The
common components of both experiments are described first, followed by the specifics of
the individual experiments.

4.1 Experimental Design

The evaluation used a within-subjects experimental design, with participants of each
experiment split into two sub-groups. Each experiment had two sets of tasks: one set using
the novel feature being evaluated, the other set using the conventional interaction technique.
Each sub-group of participants completed both sets of tasks, however the order in which the
tasks were completed were reversed for one sub-group.

4.1.1 Participants

Participants were recruited through advertising in the Salient magazine, ECS forumes,
and word of mouth. All of the participants were students at Victoria University, with
approximately half being from the Engineering and Computer Science faculty.

None of the participants identified as having colour blindness or any other issues that
might impact their ability to participate in the test.

Incentives

Due to the widespread interest in computer games, recruiting participants was not particu-
larly difficult. Therefore, incentives were offered primarily to influence behaviour during
the experiment. Participants’ results were ranked by their speed and accuracy and the
top ten were given a movie voucher. This ranking caused participants to be emotionally
invested in their results, and helped simulate the competitive nature of real time strategy
games.

15

4.1.2 Experiment Environment

Participants used a standard QWERTY keyboard and optical laser mouse, on a 20 monitor
running at 1680x1050 resolution. The computer ran the custom testing system described in
section 3.2.2.

4.1.3 Procedures

This section summarises the procedures of each experiment. The full script that was
followed during the testing is available in Appendix A.1.

Participants began by answering a short questionnaire designed to evaluate their prior
experience with real time strategy games and sketching. The questionnaire is in Appendix
A2.

Following this, participants were introduced to the novel feature and shown how it
works. The remaining features were then explained, such as the use of modifier keys.
Participants were then given time to familiarise themselves with the system (using both
the novel and conventional features), and following this asked to complete a simple task to
ensure they had grasped the basics.

Once they had completed the warmup/familiarisation task, and had confirmed they
were ready to begin, the first task was loaded. The system loads tasks automatically once the
previous task has been completed in a quick-fire manner. In between each task, the mouse
cursor was reset to the center of the screen. This allowed the movement of the mouse to be
measured accurately for each task. Dialogue boxes were shown at certain points during the
tasks to give instructions or to offer the participants an opportunity for a rest. Instructions
were shown before task 1, rest breaks were shown at 25% and 75% through the experiment,
and instructions (and a rest break) were shown at 50% when the interaction technique being
used was switched.

Measurement of the various factors, such as timing and accuracy, is built in to the system.
As participants complete actions the system logs various data. Exactly what data was
recorded is covered in the next sections.

4.2 Experiment 1: Selecting Units

The first experiment aimed to evaluate the effectiveness of sketching to select units, and to
ascertain under which conditions sketching is better (if any). Participants were presented
with a set of scenarios and asked to select the grey wizards, and avoid the decoy units.
Figure 4.1 shows some example scenarios.

In order for the task to be considered complete (and thus load the next task) participants
had to select all the wizards and not have any decoys selected. There was no penalty
for selecting decoys along the way however, as it is considered a valid strategy to select
everything and then deselect just the decoys.

There were 14 participants in this experiment, two female and 12 male. They were split
into two sub-groups, which determined the order in which sketch/box selections would be
used. The first group used sketch selections initially and box selections last, while the second
did the opposite. Individual selections were available to participants at all times. The reason
for this was to simulate the conditions sketch/box selections would be used in, in an actual
real time strategy game. In retrospect, allowing individual selections was unfortunate, as
discussed in Chapter 5.

The system recorded the following data:

16

Figure 4.1: Some example scenarios from Experiment 1. Each scenario have a complexity,
spread, and margin: (A) 1, 50px, Opx. (B) 1, 250px, 20px. (C) and (D) 5, 150px, 20px. While
(C) and (D) have the same factors, (D) has ‘filler’ units added.

e Task time: total time taken to complete the task (timed from the start of the task up
until the moment all wizards are selected)

e Action time: total time spent making selections (sum of the times from the mouse-
down start of each selection event, up until the mouse up event that ends the selection)

¢ Total mouse movement: the distance the mouse moves during the entire task
e Action mouse movement: the distance the mouse moves during each selection

A full log of each action and the state of every entity in the scenario at all times was also
recorded for further analysis if required.

4.2.1 Controlled Factors

There were several factors which I believed would have an impact on the efficiency of the
selections— complexity, spread and margin.

The complexity of a scenario refers is the minimum number of selection boxes required to
select all the target units. Figure 4.2 shows two scenarios, with complexity 1 and complexity
5. The critical determinant of this factor is the placement of decoy units that prevent single
box selections.

The spread refers to the distance between each wizard/group of wizards. As sketching
selections requires more mouse movement than selection boxes (as the mouse traverses the
boundary of the units being selected as opposed to the corner-to-corner movement of a box)
the spread will affect the performance of sketching.

17

Margin refers to the minimum distance found between a decoy unit and one of the
target wizards. This factor will affect the accuracy/care required when making selections.
Particularly, with box selections, it can be difficult to place the initial corner if it is not close
to the point of the small margin.

Table 4.2.1 shows all of the factors and the values used for each.

Lower Bounds Upper Bounds
Complexity 1 2 3 4 5
Spread 50px 100px 150px 200px 250px
Margin Opx 5px 10px 15px 20px

Table 4.1: The factors varied across the scenarios and the values used.

There were 142 scenarios in total. 117 scenarios varied the factors previously discussed.
There were only 117 (rather than 125) as some combinations of factors were impossible, for
example a scenario with >1 complexity, 1 spread, and >10px margin. This is because the
margin between units would be greater than the spread. The remaining 25 were duplicates
of some of the 117, but instead of using the minimum number of units required to form
the scenario, “filler” units were added. These units did not affect the factors at all, but were
included to see if participants would do better or worse when units were not arranged in
strict grids. Figure 4.1 C and 4.1 D shows an example of this.

4.2.2 Pilot Experiment

A pilot of this experiment was initially run to discover any issues with the experimental
design. The pilot was run on seven participants and did find issues, most notably:

e Scenarios needed groups of units to discourage use of individual selections.
Initially scenarios had single units rather than groups, and (understandably) partici-
pants rarely used the box/sketch selections and instead opted to individually select
the wizards. All of the scenarios had to be modified to be more suited for using
box/sketch selections.

e Participants needed rests.
The full set of 284 scenarios took about 20 minutes to complete. Initially the only rest
participants could take was at the half way point when the selection method switched
over. Participants commented that it was too strenuous physically to complete that
many tasks in a row. Rests were added at the 25% and 75% points.

4.3 Experiment 2: Movement Paths

The second experiment aimed to evaluate the effectiveness of using sketching to specify
movement paths for units, and to ascertain under which conditions sketching is better (if
any). Participants were presented with a set of scenarios and asked to guide a unit along a
path to a tower on an island at the end of the path. The path spanned an expanse of lava
which meant accuracy was required to keep the unit on the path. Once the unit was within
50 pixels of the tower (just stepping onto the island) the task was considered complete.
Figure 4.2 shows an example of a scenario from this experiment.

Units did not have pathfinding, so if a waypoint was placed off the path in the lava, the
unit would walk to the waypoint in a straight line. The unit could not die, however, but
participants were told their accuracy was being measured as well as time so they needed to

18

Figure 4.2: An example scenario from Experiment 2.

keep the unit off the lava. Participants gained feedback when the unit was in the lava, as the
sprite was shaded red. This provided participants with an opportunity to see and correct
mistakes.

There were 8 participants for this experiment (1 female, 7 male), and again they were
divided into two sub-groups. The first group used sketching for movement paths in the first
half, and individual waypoints in the second half, while the second sub-group again used
the reverse order. This time, while using sketching to specify movement paths, individual
waypoints were disabled.

There was no pilot study for this experiment, however results from the initial pilot and
experience gained while running the selections experiment influenced the design of the
movement experiment.

4.3.1 Controlled Factors

The important factors in this experiment are all related to the shape and size of the path
being traversed, specifically the type of curve the path has. The factors that affected the
difficulty of the task included the thickness and ’curviness’ of the path.

The thickness of the path dictates the accuracy and care required when placing move-
ment orders. On very thick paths, fewer waypoints are required and may be placed rapidly.
On thinner paths more care (and therefore time) is required to ensure the waypoints are on
the path. Also, thinner paths require more waypoints to ensure the unit stays within the
bounds of the path.

The ’curviness’ of the path is determined by the horizontal and vertical spread of the
curve. For example, a curve may be 192 pixels wide from end to end, and 384 pixels high.
Figure 4.3 shows some example curves. The curviness affects the number of waypoints
required to successfully navigate the unit along the path while staying within the bounds
of the path. A highly curved path will require many points to keep the unit on the path,
while a flatter curve will require less. Highly curved paths are susceptible to error as it can
be difficult to visualise when a path between two waypoints strays off the path, ‘clipping’
corners.

Table 4.3.1 shows the three factors that were varied across the scenarios and the values
used. There were 24 scenarios in total.

19

Figure 4.3: Some of the different curves used in Experiment 2. The scenarios have varying
thickness, horizontal span and vertical span: (A) 15px, 576px, 96px. (B) 45px, 192px, 288px.
(C) 30px, 384px, 192px. (D) 30px, 192px, 96px.

Lower Bounds Upper Bounds
Thickness of Path 15px 30px 45px
Horizontal Spread 192px 384px 576px
Vertical Spread 96px 192px 288px

Table 4.2: The factors varied across the scenarios and the values used.

Chapter 5

Results and Discussion

The experiment framework collected a very large set of data about the participants” actions.
this section presents the results of the most significant parts of this data. This data yielded
mixed results, and did not follow all the expected patterns.

All of the results presented in this section, unless otherwise specified, are determined in
the following manner. For each participant, the difference between the costs of conventional
and novel interaction technique for each task is calculated (conventional cost - novel cost).
The costs included time taken and mouse movement distances for either the whole task
or the action component of the task. The difference in the quality of the paths (for the
movement experiment) were also calculated, using the times the unit spent in the lava. The
statistics presented like average and standard deviation are based on these differences.

5.1 Experiment 1: Selecting Units

The key result in this experiment is the total time taken to complete a task, however the
action time and mouse movements provide interesting data also. Table 5.1 shows the overall
results for this experiment, where a negative number means the novel interaction technique
had a higher value (performed worse).

Total Time Action Time Total Mouse Move Action Mouse Move
Average -0.46 -0.57 -391.22 -564.06
Standard Deviation 2.30 1.23 975.41 739.58
Median -0.31 -0.31 -296.33 -366.55
25% Quartile -1.14 -0.89 -722.72 -743.42
75% Quartile 0.30 0.03 43.35 -170.81

Table 5.1: The overall results, based on each participants (conventional result - sketch result)
for each task. Time values are in seconds while mouse movement is in pixels. Negative
numbers indicate sketching performed worse than box selections.

The total time taken to complete the task was overall 0.46 seconds slower on average.
While this is only a very small value, sketch selection was consistently slower across all
types of scenarios. The same analysis was performed on subsets of the data for different
categories of scenarios. The results were essentially the same in all cases, and therefore are
not reported here. This was an unexpected result, as I believed sketching would have been
faster for particular sets of factors.

One possible explanation for this is the types of sketches being performed. Rather than
completing a few large complex sketches, participants treated sketching as they would

21

boxes, that is, circling small individual groups of units, tokenising the group into small
sections that could have been selected by a box selection. This may be due to the lack of
experience with sketching and the inability to break the habit of chaining multiple small
selections together. By treating the sketch as if it were a box selection, the primary advantage
of sketching (the ability to select units in complex arrangements with a single selection) is
unused. Any future work should explore this idea, perhaps having a control group that is
penalised for making many selections/encouraged to make few selections.

Some users attempted to execute complex selections but got confused about which parts
of the sketch were "inside” and which parts were ‘outside’. This is an easy mistake to make,
especially when using the advanced features of sketch selections, such as double looping
units to not select them. A possible solution for this to be implemented in future versions
of the sketch technique is to lightly shade the inside of the sketch so it is very clear about
which units are and are not going to be selected. Figure 5.1 shows a mockup of this solution
in use.

Figure 5.1: Mockup of an improved version of the sketch selection. The “inside” of the sketch
is shaded to clearly show which regions are currently selecting. Note the decoy unit in
the middle which has been circled twice— this removes that section of the region from the
‘inside’.

The action time is the time spent issuing selections (measured from the start of the first
selection command through until the end of the last selection command). On average the
action time was slower overall for sketching, by 0.57 seconds. This is expected due to the
additional mouse movement required when executing the sketches.

The total and action mouse movements refer to the distance moved by the mouse in

22

pixels during the entire task, and while specifying actions respectively. They were both
greater for sketching for the same reason as the action time, as was expected.

It is clear from this data that there is no significant time advantage to using the novel
sketch selection technique for "novice" users who are experienced at box selections and have
had little practice at sketching. From this, we would not expect an immediate take up of
sketching by most users if it were provided in real time strategy games.

None the less, and surprisingly given the timing results, qualitative feedback from
the participants was positive, with the majority indicating they preferred to use sketch
selections over boxes. Several participants commented that sketching was "more fun", while
others made mention of the ability to recover from errors when sketching.

With this positive qualitative feedback in mind I believe further quantitative study is
required. Even though the timing results were consistently worse the differences were very
low (fractions of a second). Furthermore, there are some considerations that suggest that the
results do not represent an entirely valid evaluation.

5.1.1 Experiment Limitations

Before starting the measured tasks, participants were given an opportunity to practice using
the system and familiarise themselves with the sketching (and box selections if they wished).
This was an important aspect of the experiment as sketching has a nontrivial learning curve.
Ideally participants would have spent a large amount of time using the novel feature to
ensure they were familiar with it. However most participants only spent about 5 minutes
in total on the warmup map with some participants spending as little as 3 minutes (the
warmup map also includes some time spent being shown how the novel features function,
so the actual amount of time spent practising is less than this).

Also during the warmup participants did not have clear objectives to complete, so many
were not practising sketching in the time-critical context the measured scenarios were in.
This caused many of them to be caught off guard once the actual scenarios began.

This lack of quality practice will have skewed the results in favour of box selections, as
all the participants were familiar with this conventional selection method. Over half the
participants commented in the post-experiment survey that it took a while to get used to
sketching, or that they would liked to have spent more time becoming familiar with the
novel feature. Providing this practice might have resulted in better performance for the
sketching technique.

One decision when designing the experiment was to allow the use of individual selections
in addition to the box/sketch selections. The justification for this was that the two types of
selections, individual and box or sketch, would normally be used together in an actual game,
and allowing participants access to both it would provide additional realism and depth to
the testing experience. In retrospect that was a mistake— it introduced an uncontrolled
factor into the experiment and by allowing this additional selection type the results become
unclear. Some participants used a lot of individual selections, and barely used box/sketch,
while others only used individual selection occasionally, usually to fix a mistake they had
made with box or sketch selections. Experiment 2 was designed after running this first
experiment, and provides a concise comparison between the two interaction techniques.
The existence of this uncontrolled factors casts doubt on the validity of the results—
while it provides some feedback on how the interaction techniques might be used in a actual
real time strategy game, it does not provide the direct comparison between box and sketch
selections I was seeking. It is unclear how the results are affected by the factors in the
scenario and the type of selection used, and how they are affected instead by the participants

23

use of individual or box/sketch selections.

Future studies should require the participants to practice for much longer, completing
tasks similar to the ones that will be found in the measured scenarios. Also, the use of
individual selections should be disabled to provide quantitative comparisons of the novel
and conventional selection techniques.

5.2 Experiment 2: Movement Paths

The key results for the movement experiment are given in table 5.2.

Total Time Action Time Planning Time Time Off Path
Average 0.06 1.10 -0.12 0.11
Standard Deviation 1.24 2.17 0.59 0.63
Median -0.05 1.08 -0.05 0.00
25% Quartile -0.45 -0.21 -0.23 0.00
75% Quartile 0.35 213 0.17 0.19

Table 5.2: The overall results, based on each participants (individual waypoint result —
sketch result) for each task. Values are in seconds. Negative numbers indicate sketching
performed worse than individual waypoints.

For the movements total time is less relevant than for selections, as this is measuring the
time taken for the unit to reach the goal. Understandably, this did not vary much, as the
speed of the unit is fixed, which limits the possible variances in time. Overall, the unit got
there 0.06 seconds faster on average on a sketched path, which is an insignificant increase,
especially considering the standard deviation was 1.24 seconds.

However the action time is a key result. Action time is the time spent issuing movement
commands, which is usually finished well before the unit reaches the goal. Overall, the
action time was 1.10 seconds faster with sketching on average, with a standard deviation of
2.17 seconds. All but one of the eight participants showed an average improvement when
using sketch, as shown in figure 5.2. Participants in group 2 (who used individual waypoints
for the first set of tasks and sketching for the second set) had over twice the improvement,
with an average difference of 1.52 seconds instead of 0.68 seconds. This suggests additional
time should have been spent during the warmup round familiarising the participants with
the system, and the types of tasks participants should expect. By the time these participants
were up to the scenarios using sketching, they may have formed strategies for optimal
selections of units for the types of arrangements found in the experiment.

Since the action time varied for paths of different horizontal and vertical spread, I also
calculated the relative improvement for sketching: (individual waypoint movement time
— sketch interaction time)/ individual waypoint movement time. The average relative
improvement was 10

The time for each task consists of three parts- a planning time, (before any movement
commands are issued), the action time(actually specifying the paths), and the remainder
time (time taken for the unit to follow the path after the path has been specified). I
wondered whether there would be a difference in the amount of planning time required
for the sketching vs individual waypoints. in fact there was only 0.12 seconds difference on
average which doesn’t seem significant.

The time spent off the path is the other crucial result from this experiment. This factor is
a measure of how accurate the paths/set of waypoints draw by the participant were. Overall
there was a minor increase in accuracy when using sketching, 0.11 seconds with a standard

24

25

“llll-r

Participant 1 Participant 2 Participant3 Participant4 Participant 5 Participant & Participant 7 Participant 8

=
L
I

=
|

[}
un
|

(=]

Average Difference inAction Time (Seconds)

Figure 5.2: The average improvement in action time (seconds) when using sketching rather
than individual waypoints.

deviation of 0.63 seconds. While the improvements are not significant, the fact that there was
a small improvement on each subset of scenarios, which suggests sketching may be more
accurate for specifying movement paths. Also, the qualitative feedback from participants
was overall positive, with half the participants commenting on the post-experiment survey
that sketching felt easier. Several mentioned sketching felt natural for specifying paths.

With the minor improvements shown in the results and the positive qualitative feedback
from participants, using freehand sketching as an interaction technique for specifying
movement paths certainly shows promise.

As the number of participants for this experiment is low, these results are indicative only,
however they certainly suggest there is further research to be done. A larger experiment
needs to be run to supply quantitative results.

25

26

Chapter 6

Conclusions

For the many spatial and geographic commands found in real time strategy games, using
freehand sketching as an interaction technique provides a natural means of interaction.

This project has investigated the use of sketching for two actions: selecting groups
of units, and specifying movement paths. A basic real time strategy game engine was
developed to provide a vehicle for implementing the two novel interaction techniques. This
was developed with the goal of providing an automated experiment system to run user
experiments to evaluate the novel techniques.

Two user experiments were run following a pilot study on a total of 28 participants. The
results did not indicate a definite advantage, specifically for the unit selections where issues
with the experimental design have likely affected the results that were collected. However
the second experiment for evaluating sketching movement paths provided some indication
it may have benefits. Further studies are required on larger populations to confirm this.

The qualitative feedback received from participants using the system was nearly all
positive, and this, combined with the comparable results of sketching to the conventional
interaction technique suggest there may be an advantage in the sketch interaction after all,
if not in efficiency, at least in the usability of the technique.

I believe with increased use and practice the sketching will be both more usable and
more efficient than the conventional interaction techniques, particularly if sketching was
used in multiple facets of the game rather than only two actions.

Further, as all the major gaming consoles have recently released their own forms
of gestural, motion sensing devices for advanced interaction in games, and gestural,
multimodal interfaces are becoming more prevalent in computers, especially with the rise
of touch-screen devices, modern computer and video games are pushing the bounds of
conventional interaction.

This project has represented only an exploratory investigation of the viability and
effectiveness of sketching as an interaction technique.

27

28

Bibliography

[1] APTE, A., AND KIMURA, T. D. A comparison study of the pen and the mouse in
editing graphic diagrams. In Proceedings of 1993 IEEE Symposium on Visual Languages
(1993), pp. 352 - 357.

[2] ASSOCIATION, E. S. Esa report on the sales, demographics and usage data of the
industry. Accessed May 2010 from http://www.theesa.com/facts/pdfs/ESA_EF_
2009 . pdf, 2009.

[3] CALLAHAN, J., HOPKINS, D., WEISER, M., AND SHNEIDERMAN, B. An empirical
comparison of pie vs. linear menus. In CHI ‘88 (1988), pp. 95 — 100.

[4] DULBERG, M. S., ST. AMANT, R., AND ZETTLEMOYER, L. S. An imprecise mouse
gesture for the fast activation of controls. In INTERACT "99 (1999), pp. 375 — 382.

[5] DUNHAM, G., AND FORBUS, K. nuwar: A prototype sketch-based strategy game. In
First Artificial Intelligence and Interactive Digital Entertainment Conference (2005).

[6] F1TTS, P. M. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology 47, 6 (1954), 381 — 391.

[7] ForBUS, K., USHER, J., AND CHAPMAN, V. Sketching for military course of action
diagrams. In IUI 03 (2003).

[8] HOPKINS, D. The design and implementation of pie menus. Dr. Dobb’s Journal 16, 12
(December 1991).

[9] KURTENBACH, G., AND BUXTON, W. User learning and performance with marking
menus. In CHI '94 (1994), pp. 258 — 264.

[10] OVIATT, S., ET AL. Designing the user interface for multimodal speech and pen-based
gesture applications: State-of-the-art systems and future research directions. Human-
Computer Interaction 15, 4 (December 2000), 263 — 322.

[11] RUBINE, D. Specifying gestures by example. In 18th annual conference on computer
graphics and interactive techniques (1991), ACM, pp. 329 — 337.

[12] SAFFER, D. Designing Gestural Interfaces, 1st ed. O’Reilly, 2008.

[13] SUTHERLAND, I. Sketchpad: A man-machine graphical communications systems. In
Spring Joint Computer Conference (1963), Spartan Books, pp. 329 — 346.

29

http://www.theesa.com/facts/pdfs/ESA_EF_2009.pdf
http://www.theesa.com/facts/pdfs/ESA_EF_2009.pdf

30

Appendix A

Appendix

Al

Procedures Script Followed During Testing

A.1.1 Experiment 1: Selecting Units

Read and sign HEC forms

Fill out pre-experiment survey

While they are doing that, launch system, enter name, assign a group
When they are ready, launch warmup map.

Explain purpose of project
Exploring the use of freehand sketching to select units

Show them how it works

Select some stuff, explaining how it is done (click and drag)

Explain about auto closing line

Modifier keys (Control for toggle, Shift for add)

Unit collision (units considered "in" the sketch /box based on their center point)
Switch to box selection and briefly demonstrate that

Allow participant to have a go at sketch selections (No time limit, wait until they are
ready)

Switch to box selection and allow them to practice that

When they are ready to continue, scroll map across to reveal set of units
Ask them to select all of the grey wizards in one single sketch movement without
selecting any of the other units

Explain the format of the test

Tasks will be similar to the selection they just made (although they do not have to do
just one single sketch movement)

Once they have selected all the wizards, (and no decoys), next task will auto load
Mouse cursor resets to center of screen in between each task

It is an efficiency test, so speed matters

How to win voucher (fast speed)

Dialogue boxes will inform when rest breaks are available, and when switching over
to alternate selection technique

31

Prompt if ready, and start the test

After they have completed, fill out post-experiment survey

A.1.2 Experiment 2: Movement Paths

A2

Read and sign HEC forms

Fill out pre-experiment survey

While they are doing that, launch system, enter name, assign a group
When they are ready, launch warmup map.

Explain purpose of project
Exploring the use of freehand sketching to move units

Show them how it works

Move unit around, explaining how it is done (right click and drag)

Explain about individual selections (available during warmup but once task starts it
will be either individual or sketch, not both)

Modifier key (Shift to chain multiple commands)

Accuracy- staying on the path (unit turns red when off the path)

Allow participant to have a go at moving units (No time limit, wait until they are
ready)

When they are ready to continue, prompt them to explore lower map to reveal set of
paths and lava
Ask them to practice traversing the paths

Explain the format of the test

Tasks will be similar to the paths they are practising on

Once unit is within 50px (approx 1cm) of tower, next task will auto load

Mouse cursor resets to center of screen in between each task

It is an efficiency test, so speed matters, however accuracy is also very important-
staying on the path

How to win voucher (fast speeds, high accuracy)

Dialogue boxes will inform when rest breaks are available, and when switching over
to alternate movement technique

Prompt if ready, and start the test

After they have completed, fill out post-experiment survey

Questionnaires Used in User Studies

These are the questionnaires participants completed before and after completing the user
study.

32

A.21 Experiment 1: Selecting Units

Before

After

Do you have any physical ailments that may affect your abilities during this experi-
ment? If so, please list them here. For example, colour blindness, arthritis, etc.

How much experience have you had playing RTS games? RTS: Real time strategy. For
example, Starcraft, Warcraft 111, Age of Empires, Supreme Commander. (1-5 scale)

Please list which RTS games you have played, and how much experience you have had
with each. Please don’t include games you have only played a few times For example:
"Supreme Commander— completed campaign and play online about once per week”

How much experience have you had sketching with a mouse? For example, graphics
editing or creation (1-5 scale)

Please list which applications you have used that require sketching, and how much
experience you have had with each. Please don’t include applications you have only
used a few times. For example: "Photoshop— used daily in job, very experienced”

Which selection technique did you prefer? (Choice of Sketching and Box selections)

How did you find using sketching to select units? General comments, suggestions,
problems, etc

A.2.2 Experiment 2: Movement Paths

Before

After

Do you have any physical ailments that may affect your abilities during this experi-
ment? If so, please list them here. For example, colour blindness, arthritis, etc.

How much experience have you had playing RTS games? RTS: Real time strategy. For
example, Starcraft, Warcraft 111, Age of Empires, Supreme Commander. (1-5 scale)

Please list which RTS games you have played, and how much experience you have had
with each. Please don’t include games you have only played a few times For example:
"Supreme Commander— completed campaign and play online about once per week”

How much experience have you had sketching with a mouse? For example, graphics
editing or creation (1-5 scale)

Please list which applications you have used that require sketching, and how much
experience you have had with each. Please don’t include applications you have only
used a few times. For example: “Photoshop— used daily in job, very experienced”

What did you like about sketching movement paths?
What did you not like about the sketching?

Any other comments/feedback

33

A.3 Additional Results

This section (the remainder of this appendix and report) contains additional results from
the data collected during the experiments. The results are in the same form as described in
Chapter 5, that is, the difference between each participants” performance for the the novel
technique and conventional technique for each task.

A.3.1 Experiment 1: Selecting Units

Table A.1: Statistics from all scenarios with 5 complexity

Average

Standard Deviation
Median

25% quartile

75% quartile

Task Time
-0.82

3.01

-0.68

-2.00

0.61

Selection Time
-1.08

1.76

-0.73

-1.85

0.00

Total Mouse Move
-542.65

1243.67

-459.03

-1043.00

107.79

Table A.2: Stats from all scenarios with 4 complexity

Average

Standard Deviation
Median

25% quartile

75% quartile

Task Time
-0.66

3.09

-0.43

-1.64

0.64

Selection Time
-0.81

1.56

-0.55

-1.45

0.02

Total Mouse Move
-523.82

1337.32

-345.52

-953.09

102.58

Table A.3: Stats from all scenarios with 3 complexity

Average

Standard Deviation
Median

25% quartile

75% quartile

Task Time
-0.45

2.14

-0.45

-1.21

0.27

Selection Time
-0.58

0.99

-0.40

-1.09

0.00

34

Total Mouse Move
-433.46

807.71

-397.86

-807.30

-51.69

Selection Mouse Move
-889.19

988.34

-633.34

-1216.36

-291.50

Selection Mouse Move
-784.97

952.88

-507.05

-1060.98

-248.40

Selection Mouse Move
-552.69
590.13
-384.68
-839.62
-196.32

Table A.4: Stats from all scenarios with 2 complexity

Task Time Selection Time Total Mouse Move

Average -0.70 -0.77 -534.87

Standard Deviation 2.69 1.49 1252.34
Median -0.35 -0.38 -362.18

25% quartile -1.58 -1.38 -981.76

75% quartile 0.52 0.02 57.24

Table A.5: Stats from all scenarios with 1 complexity

Task Time Selection Time Total Mouse Move

Average -0.55 -0.70 -430.97

Standard Deviation 2.37 1.28 977.19
Median -0.49 -0.47 -351.22

25% quartile -1.36 -1.21 -876.03

75% quartile 0.43 0.00 94.44

Table A.6: Stats from all scenarios with 20px margins

Task Time Selection Time Total Mouse Move

Average -0.48 -0.55 -426.88

Standard Deviation 1.45 0.92 855.22
Median -0.38 -0.36 -374.08

25% quartile -1.08 -0.85 -713.56

75% quartile 0.10 -0.04 -27.29

Table A.7: Stats from all scenarios with 15px margins

Task Time Selection Time Total Mouse Move

Average -0.73 -0.66 -475.64

Standard Deviation 1.97 1.25 1011.37
Median -0.39 -0.36 -362.03

25% quartile -1.19 -0.96 -778.28

75% quartile 0.09 0.00 10.81

Table A.8: Stats from all scenarios with 10px margins

Task Time Selection Time Total Mouse Move

Average -0.66 -0.66 -406.84

Standard Deviation 2.83 1.51 1135.21
Median -0.29 -0.28 -273.76

25% quartile -1.25 -0.86 -729.02

75% quartile 0.33 0.02 58.19

Table A.9: Stats from all scenarios with 5px margins

Task Time Selection Time Total Mouse Move

Average -0.35 -0.50 -366.55

Standard Deviation 2.29 1.26 924.23
Median -0.20 -0.23 -243.62

25% quartile -1.05 -0.86 -652.06

75% quartile 0.50 0.12 73.48

35

Selection Mouse Move
-736.01

942 .44

-445.62

-991.73

-217.23

Selection Mouse Move
-626.34

772.02

-388.43

-892.85

-176.20

Selection Mouse Move
-588.77

734.07

-400.98

-735.02

-191.79

Selection Mouse Move
-586.28

790.53

-379.34

-769.84

-172.48

Selection Mouse Move
-574.53
802.35
-374.90
-729.19
-159.37

Selection Mouse Move
-539.53

708.82

-332.32

-683.08

-170.85

Table A.10: Stats from all scenarios with Opx margins
Task Time Selection Time Total Mouse Move

Average -0.12 -0.50 -299.01

Standard Deviation 2.54 1.12 913.87
Median -0.24 -0.32 -275.37

25% quartile -1.15 -0.98 -716.98

75% quartile 0.48 0.04 104.20

Table A.11: Stats from all scenarios with 250px spread
Task Time Selection Time Total Mouse Move

Average -0.64 -0.56 -517.87

Standard Deviation 2.10 1.14 1115.84
Median -0.38 -0.32 -404.12

25% quartile -1.30 -0.95 -974.12

75% quartile 0.27 0.07 22.07

Table A.12: Stats from all scenarios with 200px spread
Task Time Selection Time Total Mouse Move

Average -0.59 -0.58 -440.26

Standard Deviation 2.30 1.39 1235.25
Median -0.31 -0.25 -326.47

25% quartile -1.13 -0.84 -749.87

75% quartile 0.41 0.06 113.61

Table A.13: Stats from all scenarios with 150px spread
Task Time Selection Time Total Mouse Move

Average -0.39 -0.65 -380.14

Standard Deviation 2.52 1.29 924.90
Median -0.37 -0.39 -305.39

25% quartile -1.16 -0.98 -748.28

75% quartile 0.23 0.00 -2.64

Table A.14: Stats from all scenarios with 100px spread
Task Time Selection Time Total Mouse Move

Average -0.39 -0.53 -322.82

Standard Deviation 1.89 1.10 770.45
Median -0.24 -0.29 -233.94

25% quartile -1.03 -0.86 -616.78

75% quartile 0.35 0.02 63.64

Table A.15: Stats from all scenarios with 50px spread
Task Time Selection Time Total Mouse Move

Average -0.29 -0.42 -265.37

Standard Deviation 2.47 1.13 665.68
Median -0.17 -0.19 -237.17

25% quartile -0.93 -0.68 -502.64

75% quartile 0.31 0.05 56.32

36

Selection Mouse Move
-538.22

663.12

-358.76

-759.44

-159.99

Selection Mouse Move
-666.07

882.66

-396.10

-857.62

-163.27

Selection Mouse Move
-621.54
947.80
-372.57
-729.74
-152.31

Selection Mouse Move
-602.26

677.93

-415.99

-836.17

-209.09

Selection Mouse Move
-484.04
594.62
-338.62
-644.41
-161.55

Selection Mouse Move
-337.13
385.69
-260.18
-450.59
-111.72

A.3.2 Experiment 2: Movement Paths

Table A.16: Stats from all scenarios with 15px width
Total Time Action Time Planning Time Time Off Path

Average 0.32 0.84 -0.18 0.18

Standard Deviation 1.47 1.66 0.64 0.74
Median 0.07 0.72 -0.10 0.05

25% quartile -0.39 -0.22 -0.26 -0.12

75% quartile 0.76 1.78 0.18 0.42

Table A.17: Stats from all scenarios with 30px width
Total Time Action Time Planning Time Time Off Path

Average -0.14 1.19 -0.18 -0.01

Standard Deviation 0.87 2.00 0.50 0.55
Median -0.12 1.39 -0.05 0.00

25% quartile -0.52 -0.14 -0.34 0.00

75% quartile 0.16 2.06 0.15 0.00

Table A.18: Stats from all scenarios with 45px width
Total Time Action Time Planning Time Time Off Path

Average -0.05 1.34 0.04 0.19

Standard Deviation 1.30 2.94 0.62 0.52
Median -0.02 1.17 0.00 0.00

25% quartile -0.32 -0.22 -0.15 0.00

75% quartile 0.43 3.50 0.18 0.03

37

Table A.19: Statistics from all scenarios with 576px horizontal spread
Total Time Action Time Planning Time Time Off Path

Average 0.33 1.70 -0.05 0.26

Standard Deviation 1.26 2.01 0.64 0.77
Median 0.08 1.56 0.00 0.00

25% quartile -0.30 0.28 -0.23 0.00

75% quartile 0.69 2.85 0.24 0.55

Table A.20: Statistics from all scenarios with 384px horizontal spread
Total Time Action Time Planning Time Time Off Path

Average -0.11 0.87 -0.14 0.04

Standard Deviation 1.23 2.14 0.53 0.55
Median -0.13 0.96 -0.05 0.00

25% quartile -0.50 -0.61 -0.17 0.00

75% quartile 0.32 2.01 0.11 0.10

Table A.21: Statistics from all scenarios with 192px horizontal spread
Total Time Action Time Planning Time Time Off Path

Average -0.05 0.75 -0.17 0.03

Standard Deviation 1.21 2.28 0.60 0.52
Median -0.11 0.77 -0.12 0.00

25% quartile -0.46 -0.61 -0.27 -0.01

75% quartile 0.26 1.96 0.15 0.12

Table A.22: Statistics from all scenarios with 288px vertical spread
Total Time Action Time Planning Time Time Off Path

Average 0.19 1.37 -0.15 0.11

Standard Deviation 0.98 1.99 0.48 0.50
Median 0.00 1.16 -0.08 0.00

25% quartile -0.30 0.05 -0.23 0.00

75% quartile 0.33 2.61 0.15 0.12

Table A.23: Statistics from all scenarios with 192px vertical spread
Total Time Action Time Planning Time Time Off Path

Average -0.02 0.97 0.01 0.13

Standard Deviation 1.57 2.61 0.60 0.60
Median -0.11 0.92 0.00 0.00

25% quartile -0.49 -0.45 -0.16 -0.01

75% quartile 0.52 2.06 0.19 0.20

Table A.24: Statistics from all scenarios with 96px vertical spread
Total Time Action Time Planning Time Time Off Path

Average -0.03 0.88 -0.30 0.08

Standard Deviation 1.01 1.61 0.69 0.83
Median -0.15 1.08 -0.15 0.00

25% quartile -0.50 -0.26 -0.72 0.00

75% quartile 0.29 1.68 0.18 0.22

38

	Introduction
	Background
	Design and Implementation
	Experiments
	Results and Discussion
	Conclusions
	Appendix

