
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
School of Mathematics, Statistics and Computer

Science
Te Kura Tatau

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

S.E.A.L: Simple entity-association
query language

Eddie Stanley

Supervisors: Dr Pavle Mogin, Dr Peter Andreae

Submitted in partial fulfilment of the requirements for
Bachelor of Information Technology.

Abstract
Entity-association queries are an important class of database query. These queries
return instances of an entity-type which satisfy some constraint involving partic-
ipation in relationships with other entities. EAV (Entity-Attribute-Value) storage
is a data modeling technique to cope with sparse, multi-valued or user-defined
data. SQL is poorly suited to expressing entity-association queries and queries
involving EAV attributes because the queries must be nested and involve com-
plex join conditions. This report provides a declarative language and prototype
interpreter for specifying entity-association queries, with seamless support for
EAV attributes.
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Chapter 1

Introduction

This research presents a query language with an interface to SQL that permits end users with
a modest knowledge of SQL to express an important category of complex queries against a
relational database in an easy and natural way.

1.1 The Problem

Relational databases store data in rows (tuples) belonging to tables (relation instances). Un-
der the relational model, all tuples belonging to a given relation instance have a fixed num-
ber of columns (attributes). Relational databases are commonly used to represent a part of
the real world, storing information on entities and their relationships with other entities. In
general, a separate table is used to record data on each entity-type (class of entity), where
each row in the table represents an instance of the entity-type. An entity-type should have
a column or set of columns which can be used to uniquely identify a given entity instance,
referred to as its primary key. Foreign keys are used to represent a reference from one entity
to another. A foreign key is a set of columns in the referencing entity which correspond to the
primary key columns of the referenced table. If however, an entity can have multiple refer-
ences to another entity-type, the standard solution employed is a join table also known as an
associative entity. A row in the join table represents a relationship between two (or more)
entities participating in the relationship. At a minimum, the join table should include foreign
keys which reference each entity involved in the relationship.

The most common method for querying relational databases is through Structured Query
Language (SQL). While SQL works well for many classes of queries, it is poorly suited to an
important class of query described as Entity Association queries throughout this report.

1.1.1 Entity-Association queries

Entity-Association queries are a broad class of database query which involve finding all
instances of an entity-type which satisfy some constraint involving participation in relation-
ships with other entities. These constraints can specify mandatory participation: “The entity
must participate in this relationship”, as well as forbidden participation: “The entity must not
participate in this relationship”. Participation constraints can be combined into complex ex-
pressions using the the Boolean operators AND, OR & NOT. These queries are common but
are difficult to express in SQL. The difficulty arises because users must know the physical
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database schema (structure) in detail: simply knowing the conceptual schema (problem do-
main) is insufficient. The user needs to know the location of attributes as well as which
attributes are stored in Entity Attribute Value (EAV) format (EAV storage is used to cope
with sparse or user-defined attributes). If an attribute is stored in EAV format it must be
extracted from EAV representation through a special subquery. Entity-Association queries
make heavy use of explicit joins, requiring the user to know the primary and foreign keys of
all tables in the schema. The nesting of SQL required for entity-association queries makes
them difficult to construct and harder to debug. A final issue facing the user is ensuring that
subqueries resulting from this nesting are aliased correctly.

1.2 Contributions

There are three main contributions of the project:

1. S.E.A.L: A declarative language for specifying entity-association queries, which also
supports EAV data

2. A set of rules and guidelines for designing databases compatible with S.E.A.L

3. A prototype interpreter for S.E.A.L queries

By adopting the S.E.A.L language, domain experts will be able to issue an important class of
query without requiring technical database knowledge. The S.E.A.L interpreter, when used
with databases adhering to the rules and guidelines given in section 6.2, gives database
administrators and software developers a general solution to the problem of allowing users
to execute these queries. A significant strength of S.E.A.L (and the S.E.A.L interpreter) is
that it is independent of the database used.

1.3 Outline of this report

• Chapter 2 defines key terms and concepts used throughout this report

• Chapter 3 reviews previous work on EAV storage

• Chapter 4 motivates the need for S.E.A.L through a worked example

• Chapter 5 examines the design of the S.E.A.L language and the algorithms used in the
interpreter

• Chapter 6 discusses the problems encountered implementing the S.E.A.L interpreter
and the steps taken to resolve them

• Chapter 7 summarizes results from testing

• Chapter 8 reviews the contribution of this research and identifies future work

Throughout this report, many of the examples refer to a fictional ‘robbers’ database which
stores information on robbers, the skills they possess and their involvement with other
robbers. The schema for this database as well as sample data is included in Chapter 4.
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Chapter 2

Terms and definitions

To avoid ambiguity, this Chapter defines key terms and concepts used throughout this re-
port.

S.E.A.L

S.E.A.L stands for Simplified Entity Association Language, a declarative language for ex-
pressing entity-association queries. The report will also occasionally use ’S.E.A.L’ to refer to
the prototype interpreter for S.E.A.L..

Entity

An Entity (or entity instance) is something that has a distinct, separate existence (though
it need not be a material existence) [9], belonging to exactly one entity-type. For example,
in the robbers schema, banks, robbers, skills and gangs are all examples of entity-types,
while ‘Al Capone’ (a famous robber) is an example of an entity instance (or simply, entity).

Relationship

A relationship is an association between two or more entities which conveys at a minimum
the nature of the involvement of the entities but may also carry other information. For ex-
ample, in the robbers schema, the relationship ‘robber has skills’ between a ‘robber’
entity and a ‘skill’ entity carries information on how proficient the robber is at that skill
(the ‘skilllevel’ attribute). Relationships are classified as either asymmetric or symmet-
ric; in practice, asymmetric relationships are much more prevalent. It is also possible for a
relationship to behave as an entity: a relationship instance may itself be involved in rela-
tionships with other entities.

Attribute

An attribute is an atomic property of an entity. Sometimes the distinction between an at-
tribute and an entity-type is blurred: It is possible to represent properties of entities through
a relationship with another entity-type representing the property. In general, if the property
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is atomic then it is represented as an attribute, whereas if information is stored about the
property then it mapped to a separate entity-type. For example: for a person the entity-type,
’date of birth’ would probably be mapped to an attribute whereas ’place of birth’ would be
mapped to a relationship with another entity-type, Country. This would allow extra infor-
mation to be stored about the property, for example currency, capital city etc.

Role

A role is defined as the behaviour and/or obligations of an entity participating in a relation-
ship. For example in a ‘mentoring’ relationship between two robber entities, the role of
‘teacher’ might be assigned to one robber entity and the role of ‘pupil’ to the other.

Relationship participation notation

For a relationship RS, entities E1 & E2 and roles R1 & R2, the following notation expresses
the fact that entity E1 & E2 participate in relationship RS where E1 acts as R1 and E2 acts as
R2:

E1 R1⇒ RS R2⇐ E2

Asymmetric relationship

In an asymmetric relationship, distinct roles are assigned to each entity participating. For
entities E1 & E2, roles R1 & R2 and an asymmetric relationship RSasym, if E1 participates in
RSasym with E2 where E1 acts as R1 and E2 acts as R2, we cannot infer that E2 participates in
RSasym with E1 where E2 acts as R1 and E1 acts as R2.

Symmetric relationship

In a symmetric relationship, all entities participating are of the same entity-type and have
equivalent roles. Because roles in a symmetric relationship are identical, they may be omit-
ted. For entities E1, E2 and a symmetric relationship RSsym, if E1 participates in RSsym with
E2 then it is also the case that E2 participates in RSsym with E1.

More formally, E1 ⇒ RSsym ⇐ E2 implies E2 ⇒ RSsym ⇐ E1

Consider a friendship relationship between two people entities, Peter & John. If we were
to declare this relationship symmetric, then proclaiming Peter is friends with John implies
that John is also friends with Peter. This would not be the case had we declared the rela-
tionship as asymmetric.

Base entity-type

The base entity-type of an entity-association query is the entity-type that the query (or sub-
query) returns. In S.E.A.L, the base entity-type precedes the ASSOCIATED WITH clause (see
section 6.1).
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Associated entity-type

An entity-type involved with the base entity-type through some relationship. In S.E.A.L,
each ASSOCIATED WITH clause specifies a participation constraint for exactly one associated
entity-type (see section 6.1).

EAV Table

A table of triples (EntityID, AttributeID, Value) used to store sparse, multi-valued or user-
defined attributes for a particular entity-type. EAV is used as an alternative to adding extra
columns to the table representing the entity type. EAV storage is described in Chapter 3.

EAV Attribute lookup table

A table which stores a list of all attributes stored in EAV form for a given entity-type.
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Chapter 3

Background/ Literature review

3.1 EAV Storage

3.1.1 Description

Under a conventional relational database design, each entity instance is represented by a
single row in the table representing that entity-type. This row has a fixed number of columns
and each column stores one attribute or property of an entity instance. Each attribute is
described by the name of the column. As a consequence of this, all entity instances of the
same entity-type store the same set of attributes. Metadata on the number, names and types
of attributes an entity-type stores information on is defined by the table structure.

Entity Attribute Value (EAV) storage is an alternative method for representing the attributes
belonging to an entity. EAV represents each entity instance as a set of (key, value) pairs[7].
The key describes the attribute, while the value assigns data to the fact description. Under
EAV, metadata is represented as data: not only are the values of attributes data (as they
were in the relational model) but the attribute descriptions are also data. The simplest
implementation of EAV involves just a single relational table with three attributes: Entity-
Identifier, Attribute, Value. Figure 3.1 shows this simplest implementation:

Figure 3.1: A simple EAV table

The Entity-Identifier groups the (key, value) pairs into entities and is optionally used to join
to conventionally stored data.

Not all data in a production system will lend itself to EAV storage, therefore it is common
for schemas to involve a mixture of conventionally stored data and data represented in EAV
form [3]. EAV tables are generally not shared between entity-types: that is, each entity-
type making use of EAV storage will be assigned a separate EAV table. For example, in
the robber schema given in Chapter 4, the entity-type robber has an EAV table assigned.
All rows in this table represent facts about robber instances, and all rows with the same
RobberID belong to the same robber instance. For example, Anastazia likes both ‘Heavy
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Metal’ and ‘Latin’ music. Because the information about a single entity can span many
rows, EAV is sometimes referred to as row modelling [7].

3.1.2 Applications

Sparse data

Conventional “one fact per column” table designs are unsuitable for extremely sparse data.
A common example of sparse data is a patient record in a medical database. While there
may be thousands of possible facts that can apply to a single patient record, the number
which typically apply may be only a few dozen [7]. Unlike conventional relational tables
which set aside space for each attribute whether it is NULL or not, EAV only represents facts
which apply to the given entity instance. EAV can be used in combination with conventional
storage: data which applies to every instance can be stored in a conventional table and the
sparse data can be represented in an EAV table. For sparse data, using EAV has two key
advantages:

1. Many database management systems impose a limit on the number of columns a table
may have (a common limit is 255)[6]. Using EAV circumvents this problem because
attributes are represented in rows rather than columns.

2. EAV only stores values for attributes which apply to a given entity instance, thus sav-
ing space over a conventional representation which stores a NULL value when an
attribute does not apply.

User-defined fields

In certain applications, there is a need for users to be able to define (and destroy) attributes
as part of normal usage. Under a conventional schema this would involve acquiring an
exclusive lock on the table and then issuing data definition language (DDL) instructions to
alter the table structure. In a busy high-volume database, it may not be possible to acquire an
exclusive lock or it may be too detrimental to performance. Allowing the user/application
to perform DDL is also a significant security risk. Because the attributes for an entity-type
are described as regular data under EAV, only regular row INSERT/DELETE operations are
required to add and remove attributes respectively. This also removes the need to acquire
an exclusive lock on the table.

Multi-valued attributes

Under the normalization process for relational database described by E.F Codd[2], first nor-
mal form states that a relation may have no repeating groups and that all attributes must be
atomic. However in the real world, multi-valued attributes are common. There are a num-
ber of poor solutions to representing multi-valued attributes which are used in industry.
Two such solutions are :

• The delimited non-atomic attribute solution

• The numbered attribute solution

8



The ‘delimited non-atomic attribute’ solution uses some delimiter such as a comma ’,’
to delimit instances of a multi-valued attribute. For example, suppose the user wishes to
store the haircuts a robber has been seen with. Under the ‘delimited non-atomic attribute’
solution, this would be represented as follows:

RobberID Nickname Haircuts
1 Al Capone Mohawk, Pony Tail
2 Bugsy Malone Crew Cut

This complicates queries: to find robbers who have been seen with a Mohawk and have been
seen with a Crew Cut, a query similar to the following would need to be issued:

SELECT nickname FROM robber WHERE haircuts LIKE ’%Mohawk%’ AND
haircuts LIKE ’%Crew Cut%’ ;

The biggest issue with this representation is that LIKE comparisons with a wildcard on
either side of the pattern are expensive to issue because an index cannot be used.

This design also suffers for updates: to add a haircut to a robber, the user must first ex-
amine whether the delimited string already contains the haircut, in which case it should
not be added. To remove a haircut from a robber, the user needs to find where it occurs in
the string and splice it out. This can be achieved with string manipulation functions such as
substring() and indexOf().

Under the ‘numbered attribute’ solution, an estimate is made on the upper bound of oc-
currences of the attribute. For example the user might decide that no robber will ever be
seen with more than three haircuts. A separate field is created for each possible occurrence.
Under the ‘numbered attribute’ solution, the multi-valued haircut attribute would be repre-
sented as follows:

RobberID Nickname Haircut 1 Haircut 2 Haircut 3
1 Al Capone Mohawk Pony Tail
2 Bugsy Malone Crew Cut

To find robbers who have been seen with a Mohawk and who have been seen with a Crew
Cut, a query similar to the following would need to be issued:

SELECT nickname FROM robber WHERE haircut_1= ’Mohawk ’ AND
haircut_2= ’Crew Cut ’

UNION
SELECT nickname FROM robber WHERE haircut_1= ’Mohawk ’ AND

haircut_3= ’Crew Cut ’
UNION
SELECT nickname FROM robber WHERE haircut_2= ’Mohawk ’ AND

haircut_1= ’Crew Cut ’
UNION
SELECT nickname FROM robber WHERE haircut_2= ’Mohawk ’ AND

haircut_3= ’Crew Cut ’
UNION
SELECT nickname FROM robber WHERE haircut_3= ’Mohawk ’ AND

haircut_2= ’Crew Cut ’
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UNION
SELECT nickname FROM robber WHERE haircut_3= ’Mohawk ’ AND

haircut_1= ’Crew Cut ’

The query was complicated by the fact that there is no guarantee which column an particular
value will appear in. This design also suffers from update problems: If the user comes across
a robber who has been seen with more than three haircuts, they can only record the first
three. If the user wishes to add a haircut for a robber, the user must first check all the
columns to ensure it does not already exist (and find a free ’slot’ for it). If the user wishes to
remove a haircut from a robber, the user must find which column the haircut is currently
stored in and set it to NULL.

While both of these solutions work to some extent, they both have serious problems with
queries and updates. EAV is one possible solution for representing multi-valued attributes:
if the primary key of the EAV table is set on (EntityID + Attribute + Value) rather than just
(EntityID + Attribute) then for a given {EntityID, Attribute}, multi-valued attributes can
be stored. If related information is stored on the multi-valued attribute, or the same attribute
values apply to many entity instances, it is more appropriate to represent the multi-valued
attribute as a relationship with another entity-type.

3.1.3 Variations

Key on E+A or E+A+V

In the EAV structure described above, the primary key for the relation was on {EntityID,
Attribute}. As a consequence of this, only a single value is permitted per attribute per entity
instance. By defining the key on {EntityID, Attribute, Value} multi-valued attributes can be
supported.

Attribute lookup table

In this variation of EAV, a separate table (termed the lookup table) is used to record the
names of attributes stored in EAV form. The EAV table references the lookup table through a
foreign key constraint. Often the attribute lookup table will have a surrogate integer primary
key (AttributeID) and the EAV table will store a reference to this field. This variation has
two subtle advantages:

• The domain of ’attribute’ is restricted: before an attribute can be used, a corresponding
row must exist in the lookup table. This makes administering attributes easier.

• Attribute names are stored only once: if an attribute name needs to be changed, it need
only be changed in one place. This also results in a modest space saving.

However, this approach introduces an additional join per attribute which increases the com-
plexity of queries.

Table per datatype

Instead representing all values as strings in a single EAV table, a separate EAV table is used
for each datatype. For example: attributes of type string are stored in entity eav string,
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attributes of type boolean are stored in entity eav boolean etc[3]. This approach has a
number of advantages:

• Aggregate functions can be performed on numerical data without typecasting

• Value comparisons work more efficiently as typecasts are not required

• In some circumstances data may be stored more efficiently in its native representation
rather than as strings

Column per datatype with indicator

In this approach, a single EAV table is used which has a value column for each datatype and
an ‘indicator column’ which indicates which of the value columns contains a valid value
for a given row [3]. The purpose of the indicator column is to avoid having to compare the
value of every value column with NULL. While the ‘column per datatype with indicator’
approach has the same advantages as the ‘table per datatype’ approach, it also has a couple
of drawbacks:

• If n datatypes are stored in EAV format then for every row in the EAV table there will
be n-1 NULL values

• There is additional complexity involved in examining the indicator to determine which
value column contains valid data.

3.1.4 Entity associations

While not strictly a variation on EAV, entity associations can be used to represent multi-
valued and/or sparse attributes. With this approach, an attribute belonging to an entity-
type E is represented as an entity-type of its own, X. A relationship between E and X is
defined. Instances of entity-type X represent distinct values of attribute X. The advantages
of this approach are:

• An attribute type can be shared between multiple entity-types

• An appropriate datatype can be used

• If a need arises to store additional information on the attribute (in effect, the attribute
becomes an entity) then extra columns can be added to the table representing X.

Some disadvantages of this approach:

• Queries become more complex (all queries become entity-association queries)

• This approach is less suitable for user-defined attributes because it requires alteration
of the database structure (new tables need to be created)

• It can result in confusion for the user: the user needs to know that a particular at-
tribute is actually an entity-type and will need to write queries involving the attribute
as entity-association queries

• It results in a large number of tables which can make managing the database schema
difficult.
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Dynamic tables

John Corwin et al.[4] describe an approach which uses one table per attribute called dynamic
tables. Under this approach, an entity-type is represented as:

1. A table of OIDs which provide a handle for individual entity instances; and

2. A table for each attribute belonging to the entity-type with two columns: an OID ref-
erence and a value, typed appropriately for the attribute.

Dynamic tables is a similar approach to the entity associations approach described above,
apart from the distinction that it does not involve an intermediate relationship table. As
a consequence of this, this approach does not allow attribute types to be shared between
different entity-types. Like the approach using entity associations, this will result in a large
number of tables and without an interpreter would require complex queries. John Corwin
et al.[4] describes an extension to PostgreSQL for supporting dynamic tables in user queries.

3.1.5 Problems relating to EAV

Metadata

A significant problem with EAV for the user is knowing where an attribute is located [7].
The attribute may be stored as a regular column or in an EAV table. If multiple EAV tables
are employed, such as the table per datatype solution, then this becomes even harder. The
user must also be aware of the datatype of the attribute, the set of permitted values and
whether the attribute is required or optional [7, 3]. If some attributes are multi-valued and
others are not, the user needs to know this also. A final problem is finding the set of all
attributes which exist for an entity-type.

Bulk retrieval

A common use-case for a database storing information on real world objects (entities) is to
retrieve all the data on a given entity instance. In a conventionally structured database, this
involves a “SELECT * FROM ...” on the table representing the entity as well as joins to any
related tables. The field list implied by ’*’ is populated by the DBMS: the DBMS records a
list of all attributes contained in each table.

Retrieving complete entity data from a database utilizing EAV attributes is more difficult
and more computationally expensive. The difficulty arises because (with the most basic
form of EAV) there is no list of all attributes belonging to an entity-type. Some solutions to
this problem are:

• A variant of EAV which employs an attribute lookup table. The lookup table records
all attributes which are stored in EAV form [3]

• Use of a global metadata structure (often a table) which records information (location,
datatype etc) about all attributes in the domain [7]

Assuming appropriate indices are in place, the actual extraction of all (EAV) data relating to
an entity instance is not prohibitively expensive:
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SELECT ∗ FROM entity WHERE entityID = x ;
SELECT ∗ FROM entity_EAV WHERE entityID = x ;

The first query returns a single tuple containing the conventionally stored part of the entity
while the second query returns a tuple for every (attribute,value) pair stored in EAV form.
The problem is however that this data is not in a form which is particularly useful to the
user. The vertically represented EAV attributes must be transformed or ’pivoted’ [8] into a
horizontal one-column-per-attribute format, consistent with the conventionally stored data.
This pivoting operation is extremely expensive when performed in SQL (using an outer
join/alias per attribute) and still relatively expensive when performed in-memory using an
external program [8].

Current solutions to improve the performance of complete entity retrieval all involve some
aspect of redundancy to reduce the number of joins. One possibility is to perform extraction
in advance into a materialized view [3]. A solution by 3M corporation uses a non-relational,
ASN.1 representation for storing complete patient records for efficient retrieval [7]

3.1.6 Previous work on abstracting EAV storage

We identified two systems which abstract EAV attribute representation from the database
user.

ACT/DB[7, 5] is a database/tool for managing clinical trial data. It uses a client/server
architecture with Oracle 7 at the backend. Users construct queries with a GUI-based tool
written in Microsoft Access. The tool uses Visual Basic code to handle the abstraction of EAV
attributes in queries and translation into SQL to be executed at the backend. The tool relies
upon the specific schema for which it was designed. The schema includes conventional
tables as well as six general purpose EAV tables for the various datatypes supported: integer,
real, date, short string, long string & binary. ACT/DB supports a number of comparison
operators as well as aggregate functions such as average and standard deviation.

QAV[6] is a GUI-based tool which allows users to perform queries against the Columbia
MED dataset, a large medical metadata repository. QAV uses a special schema in which all
data is represented in EAV form. QAV is also based on a client-server architecture.

3.2 Entity-association queries

While there is an abundance of information on the design of relational schemas storing M:N
relationships between entities, no previous work was found regarding performing entity-
association queries on such databases.
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Chapter 4

Analysis of an example
Entity-Association query

4.1 Example schema

To illustrate entity-association queries and to explain the proposed language and interpreter,
the report uses a running example of a fictional ‘robbers’ database. The structure of the
database is given, followed by sample data. Particular attention should be paid to the fol-
lowing:

• Which attributes form the primary key of each table

• Which attributes belong to a foreign key

• Which table a foreign key references

• For each attribute belonging to a foreign key, the corresponding attribute in the refer-
enced table

• The name of foreign keys

CREATE TABLE robber (
robberid in teger NOT NULL,
nickname varchar NOT NULL,
age smallint ,
prisonyears smallint ,
CONSTRAINT robber_pk PRIMARY KEY( robberid )

) ;

CREATE TABLE skill (
skillid in teger NOT NULL,
skilldescription varchar NOT NULL,
difficulty integer ,
CONSTRAINT skill_pk PRIMARY KEY( skillid )

) ;

CREATE TABLE robber_has_skill (
robberid in teger NOT NULL,
skillid in teger NOT NULL,
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skillpreference integer ,
skilllevel c h a r a c t e r ( 2 ) ,
CONSTRAINT robber_has_skill_pk PRIMARY KEY( robberid , skillid ) ,
CONSTRAINT robber_with_skill FOREIGN KEY( robberid ) REFERENCES

robber ( robberid ) ,
CONSTRAINT skill_possessed_by_robber FOREIGN KEY( skillid )

REFERENCES skill ( skillid )
) ;

CREATE TABLE food (
foodid in teger NOT NULL,
name varchar ,
CONSTRAINT food_pk PRIMARY KEY ( foodid )

) ;

CREATE TABLE robber_likes_food (
robberid in teger NOT NULL,
foodid in teger NOT NULL,
CONSTRAINT robber_likes_food_pk PRIMARY KEY ( robberid , foodid ) ,
CONSTRAINT robber_who_enjoys_food FOREIGN KEY ( robberid )

REFERENCES robber ( robberid ) ,
CONSTRAINT food_enjoyed_by_robber FOREIGN KEY ( foodid )

REFERENCES food ( foodid )
) ;

CREATE TABLE testing_location (
locationid in teger NOT NULL,
name varchar NOT NULL,
CONSTRAINT testing_location_pk PRIMARY KEY( locationid )

) ;

CREATE TABLE robber_has_skill_tested (
robberid in teger NOT NULL,
skillid in teger NOT NULL,
locationid in teger NOT NULL,
CONSTRAINT robber_has_skill_tested_pk PRIMARY KEY( robberid ,

skillid , locationid ) ,
CONSTRAINT tested_robber_skill FOREIGN KEY( robberid , skillid )

REFERENCES robber_has_skill ( robberid , skillid ) ,
CONSTRAINT location_tested_at FOREIGN KEY( locationid )

REFERENCES testing_location ( locationid )
) ;

CREATE TABLE mentoring (
robberid1 integer ,
robberid2 integer ,
CONSTRAINT mentoring_pk PRIMARY KEY( robberid1 , robberid2 ) ,
CONSTRAINT teacher FOREIGN KEY( robberid1 ) REFERENCES

robber ( robberid ) ,
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CONSTRAINT pupil FOREIGN KEY( robberid2 ) REFERENCES
robber ( robberid )

) ;

CREATE TABLE friendship (
robberid1 integer ,
robberid2 integer ,
CONSTRAINT friendship_pk PRIMARY KEY( robberid1 , robberid2 ) ,
CONSTRAINT friendship_to_robber1 FOREIGN KEY( robberid1 )

REFERENCES robber ( robberid ) ,
CONSTRAINT friendship_to_robber2 FOREIGN KEY( robberid2 )

REFERENCES robber ( robberid )
) ;

CREATE TABLE robber_attributes (
attributeid in teger NOT NULL,
attribute varchar ,
CONSTRAINT robber_attributes_pk PRIMARY KEY ( attributeid )

) ;

CREATE TABLE robber_eav (
robberid in teger NOT NULL,
attributeid in teger NOT NULL,
value varchar NOT NULL,
CONSTRAINT robber_eav_pk PRIMARY KEY ( robberid , attributeid ,

value ) ,
CONSTRAINT robber_eav_to_robber FOREIGN KEY( robberid )

REFERENCES robber ( robberid ) ,
CONSTRAINT robber_eav_to_robber_attributes FOREIGN

KEY( attributeid ) REFERENCES robber_attributes ( attribute_id )
) ;

robber
robberid nickname age prisonyears
1 Al Capone 31 2
2 Bugsy Malone 42 15
3 Lucky Luchiano 42 15
4 Anastazia 48 15
5 Mimmy 18 0
6 Dutch Schulz 64 31

skill
skillid skilldescription difficulty
2 Explosives 5
3 Guarding 1
4 Gun-Shooting 3
5 Lock-Picking 2
6 Money Counting 4
7 Planning 5

robber eav
robberid attributeid value
1 1 Mohawk
2 3 Skull & Crossbone
4 2 Heavy Metal
4 2 Latin

robber eav
attributeid attribute
1 haircut
2 music
3 callsign
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robber likes food
robberid foodid
1 1
2 2
3 3
4 4
5 5
5 3

robber has skill
robberid skillid skillpreference skilllevel
1 7 1 A+
1 8 3 A+
1 9 2 C+
2 2 1 A
3 1 2 B+
3 5 1 B+
4 3 1 A
5 1 2 C
5 7 1 A+
6 1 2 C+
6 5 1 A+

food
foodid name
1 pizza
2 Mexican
3 Chinese

symmetric foreign keys
table name fk1 name fk2 name
friendship friendship to robber1 friendship to robber2

mentoring
robberid1 robberid2
1 2
2 3
3 1
3 2
5 1

4.2 A simple Entity-Association query

A simple example of an entity-association query for the robbers database is the following:

“Find the robbers who have skill ‘Gun shooting’ and do not have the skill
‘Money Counting’, or the robbers who have the skill ‘Explosives’”

Figure 4.1: A simple example of an entity-association query

4.3 Difficulty of expressing entity-association queries in SQL

SQL does not have a declarative syntax for expressing this class of query directly. We are
aware of two main strategies for expressing entity-association queries in SQL:

1. Multiple SELECT statements combined with the set operators (UNION, INTERSECT
& EXCEPT)

2. Nested SELECT queries using the IN operator
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4.3.1 Representation using set operators

Using the first approach, the query given in figure 4.1 can be broken down into three SE-
LECT queries and then combined with the SET operators UNION, INTERSECT & EXCEPT:

SELECT nickname FROM robber INNER JOIN ( ( SELECT robberid FROM
robber_has_skill INNER JOIN skill ON skill . skillid =
robber_has_skill . skillid WHERE skilldescription = ’Gun shooting ’

EXCEPT
SELECT robberid FROM robber_has_skill INNER JOIN skill ON

skill . skillid = robber_has_skill . skillid WHERE skilldescription
= ’Money Counting ’ )

UNION
SELECT robberid FROM robber_has_skill INNER JOIN skill ON

skill . skillid = robber_has_skill . skillid WHERE skilldescription
= ’ Explos ives ’ ) as foo ON foo . robberid = robber . robberid ;

4.3.2 Representation using nested selects with IN operator

Using the second approach, the query given in figure 4.1 can be expressed using nested IN
statements:

SELECT nickname FROM robber WHERE
( ( ( robber . robberid ) IN (SELECT robber_has_skill . robberid FROM

robber_has_skill INNER JOIN skill ON
robber_has_skill . skillid=skill . skillid WHERE
skill . skilldescription= ’Gun Shooting ’ ) )

AND
(NOT ( ( robber . robberid ) IN (SELECT robber_has_skill . robberid FROM

robber_has_skill INNER JOIN skill ON
robber_has_skill . skillid=skill . skillid WHERE
skill . skilldescription= ’Money Counting ’ ) ) ) )

OR
( ( robber . robberid ) IN (SELECT robber_has_skill . robberid FROM

robber_has_skill INNER JOIN skill ON
robber_has_skill . skillid=skill . skillid WHERE
skill . skilldescription= ’ Explos ives ’ ) ) ;

Chapter 8 will show that the nested-select implementation (above) offers marginally better
performance in PostgreSQL than the set-operator implementation.

We argue however that queries constructed using either of these strategies poorly reflect the
logical intention of the query and because of this, are difficult to write.

4.3.3 Why both of these representations are flawed

Given the intent of the query, it is not clear why we need to issue multiple select statements.
From the user’s perspective, the relationships in which an entity participates can be viewed as a
properties of the entity itself.
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To test whether an entity satisfies a participation constraint, the average user would see no
reason why it is necessary to check for the presence of the entity’s primary key in another
table. The schema given in figure 4.2 probably better represents the user’s understanding of
the domain:

Figure 4.2: A possible (poor) design for storing the skills of robbers

With this schema, the query could be expressed straightforwardly as:

SELECT nickname FROM robber WHERE ( has_gun_shooting_skill AND NOT
has_money_counting_skill ) OR has_explosives_skill ;

While this database design is flawed (it will not scale to thousands of possible skills), it is
easy to see that this SQL reflects the user’s intention more simply than the complex queries
above.

A perhaps more pragmatic concern is that both of the described strategies (set operator and
nested-in) lead to queries which are unnecessarily difficult to write. Factors contributing to
this difficulty are:

1. Users need to know where an attribute is stored. Does it belong to the relationship, or
to the associated-entity? Is it stored in a regular column or as an EAV attribute?

2. Users need to construct join conditions explicitly. For this trivial example, NATURAL
JOIN probably would suffice but often this is not possible: consider a relationship
which involves two entities of the same type, for example: two robbers. The relation-
ship table cannot have two columns labelled robberid so a natural join will not work.

3. Users need to know the primary keys of tables representing the entities involved in
the relationship as well as the primary and foreign keys of the tables which represent
the relationship. In more complex examples, these keys may be composite, involving
three or more attributes.

4. With nested associations, multiple table aliases must be used. These aliases must be
uniquely named and knowing which alias to refer to is a source of confusion.

4.4 Problems arising from EAV attribute storage

Two problems with EAV storage are the difficulty of using EAV attributes in queries, and
the requirement that users know whether an attribute is represented in EAV form or not.
The difficulty arises because EAV attributes must be transformed from their vertical rep-
resentation to their horizontal logical representation. As an example, suppose the attribute
‘haircut’ belonging to robber has been designated as an EAV attribute. Perhaps it is multi-
valued: “a robber may have been seen with different haircuts”. Another possibility is that it is
sparse: “we only have haircut information on a very small fraction of robbers”. For the query
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“Find robbers with a Mohawk haircut or who like Heavy Metal music”

A reasonable conceptual query would be:

SELECT nickname FROM robber WHERE haircut= ’Mohawk ’ OR music= ’Heavy
Metal ’ ;

Because the attribute was stored in EAV format, the user must write SQL similar to the
following:

SELECT nickname FROM robber WHERE ( robber . robberid ) IN (SELECT
robber_eav . robberid FROM robber_eav INNER JOIN robber_attributes
ON robber_eav . attributeid=robber_attributes . attributeid WHERE
attribute= ’ h a i r c u t ’ AND value= ’Mohawk ’ ) OR ( robber . robberid ) IN
(SELECT robber_eav . robberid FROM robber_eav INNER JOIN
robber_attributes ON
robber_eav . attributeid=robber_attributes . attributeid WHERE
attribute= ’ music ’ AND value= ’Heavy Metal ’ ) ;

The SQL tests the expression robber.haircut = ’Mohawk’ for a given robber by examining
the robber eav table to check for the presence of a row which references the given robber,
has attribute=‘haircut’ and value=‘Mohawk’. The same method is used to test for the
music condition. Aside from the difficulty of constructing this query, a prominent issue is
that the user needs to be aware that these attributes are represented in EAV format in order
to construct this query.

4.5 Why this is a problem

The need for entity-association queries is most common in fields such as Biology, Genetics
& Chemistry, where users issuing the queries generally only have modest experience using
databases. Often, the extent of their knowledge is limited to using query-by-example (QBE)
tools such as Microsoft Access. QBE tools allow the user to drag and drop tables and set
predicate conditions to construct a query. The QBE engine will take care of issues such as
aliasing and generating join conditions. We are not aware of any mainstream QBE tools
which will handle entity-association queries. The literature review (Chapter 3) described a
couple of QBE tools (QAV, ACT/DB) which assist users in writing queries involving EAV
attributes. However, all of these tools are significantly limited in that they are tied to a
particular database schema.
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Chapter 5

Evolution of the project

The initial focus of this project was providing better support for EAV attributes. Specifically:

• Making the use of EAV attributes as seamless as possible

• Improving the performance of queries involving EAV attributes

During the course of the project, an observation was made that EAV attributes can be viewed
as associated entities. As a consequence of this, queries involving EAV attributes can be
viewed as entity-association queries.

For an entity-type E:

• The attribute name, A, can be viewed as the associated entity-type

• The EAV table can be viewed as the relationship between E & the associated entity-
type

• The value of the attribute can be viewed as a property of the relationship between E
and A

It follows that a condition, C, of the form attribute=value on an (EAV) attribute belonging to
E can be expressed as:

E
entity⇒ eav table

property⇐ A : A.attribute = C.attribute ∧ eav table.value = C.value

While the focus of the project shifted to entity-association queries, support for EAV at-
tributes was included in the language and the interpreter. However, a number of features
are missing from the EAV support in S.E.A.L, namely:

• Support for attribute types other than String: Numeric, Date etc

• Support for aggregate functions: MAX, SUM, COUNT, AVERAGE etc

• Support for comparison operators other than = : ’!=’, BETWEEN, LIKE, ’>’, ’<’ etc

23



24



Chapter 6

Design

6.1 Language design

The primary goal of S.E.A.L was to relieve the user from the need to understand how their
query would be executed. To realise this goal, the syntax was designed to be as declara-
tive as possible: the syntax only describes the conditions the result set should meet, rather
than describing the algorithm used to perform the query. With a declarative syntax, the
underlying implementation can change without affecting the user.

6.1.1 Basic syntax:

The following gives the S.E.A.L syntax for an entity-association query. For the full grammar,
see the appendix. In the following definition, productions of the form production expr are a
Boolean expression using parentheses and the keywords ’AND’, ’OR’ & ’NOT’ on production.
For example, a baseEntityRestriction is of the form:

attribute= ’ value ’

Therefore

( haircut= ’Mohawk ’ AND music= ’Heavy Metal ’ ) OR
haircut= ’Crew Cut ’

is a valid baseEntityRestriction expr.
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Syntax:

SELECT
attribute [ , . . . ] | ∗

FROM
baseEntityType
[ [ baseEntityRestriction expr ] ]
[ [ AS baseEntityRole ] associationClause expr ]

An associationClause is of the form:

ASSOCIATED WITH( [ [ associatedEntityType
[ AS associatedEntityRole ]
[ THROUGH relationship ]

] ,
] specification expr

)

A specification is of the form:

<attribute= ’ value ’ [ , . . . ]> [ associationClause expr ]

Figure 6.1: S.E.A.L syntax

• baseEntityType: The base entity-type the query returns

• attribute: The name of an attribute

• baseEntityRole: The role the base entity-type must play in the relationship

• baseEntityRestriction expr: A Boolean expression on attributes belonging to the
base entity-type, restricting the set of the base entity-type. These attributes may be
stored as regular columns or they may be EAV attributes.

• associatedEntityType: An entity-type associated (participating in a relationship)
with the base entity-type

• associatedEntityRole: The role the associated entity-type must play in the relation-
ship

• relationship: The name of a relationship (possibly one of many) between the base
entity-type and the associated-entity type

• specification expr: A Boolean expression composed of one or more specifications. A
specification is a set of predicate conditions on attributes belonging to the associated
entity-type and/or the relationship.

Each associationClause refers to exactly one (associated entity-type, relationship) pair
whether explicitly stated or inferred. If the relationship is omitted, S.E.A.L will attempt to
infer a relationship between the associated entity-type and the base entity-type. If both the
relationship and the associated entity-type are omitted, S.E.A.L will attempt to infer both,
using the algorithms described in section 6.3.
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Example queries

The following examples use the robber schema given in Chapter 4.

Example Query 1: Uniform access to attributes

This example demonstrates uniform access to attributes (whether EAV or regular columns)
in S.E.A.L:

“Find robbers who are 39 years old and have a Mohawk haircut”

S.E.A.L syntax:

SELECT nickname FROM robber [ haircut= ’Mohawk ’ AND age=39]

This query demonstrates restricting the base entity-type on its attributes. The attributes are
used in a uniform manner: the user does not need to know that haircut is represented
in EAV form while age is a regular column. S.E.A.L allows a simple representation of this
query although the implementation in the database involves multiple tables and complex
SQL.

Example Query 2: A simple entity-association query

This example demonstrates how a simple entity-association query is composed in S.E.A.L.

“Find robberswho have skill ‘Lock-picking’ or who have the skill ‘Planning’”

S.E.A.L syntax:

SELECT nickname FROM robber ASSOCIATED WITH( skill THROUGH
robber_has_skill , <skilldescription= ’ Lock−picking ’> OR
<skilldescription= ’ Planning ’ >)

In this example the base entity-type is restricted based on the participation constraint spec-
ified in the ASSOCIATED WITH clause. The associated entity-type, skill, is specified explic-
itly as is the relationship to the base entity-type, robber has skill. It is not necessary
to specify either of the roles because a ‘robber has skill’ relationship involves exactly
one entity of type robber and one entity of type skill. Two specifications are used in
the query which are combined into an expression with the OR operator. Each specifica-
tion uses a single attribute from the associated entity-type, skilldescription. Note that
a specification need not specify a single instance: if there were more than one skill with
skilldescription=’Planning’ then any of these skills would satisfy the specification.

Example Query 3: Inference

This example demonstrates inference in S.E.A.L.

“Find robbers who like pizza”

S.E.A.L syntax:

SELECT nickname FROM robber ASSOCIATED WITH(<name= ’ pizza ’ >)
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In this example, the following were omitted:

• The associated entity-type

• The relationship between the base entity-type and the associated entity-type

• The role of the associated entity-type & the role of the base entity-type

With regard to the robber schema (given in Chapter 4), S.E.A.L is able to infer that the spec-
ification <name=’pizza’> refers to the associated entity-type ‘food’ through the relation-
ship ’robber likes food’. The roles robber who enjoys food & food enjoyed by robber
are also inferred.

Example Query 4: A nested entity-association query

This example shows how an entity-association query where the relationship has a participa-
tion constraint is constructed in S.E.A.L.

”Find robbers with the skill ‘Guarding’ who have had it tested at a testing
location called ‘Harvard’.

S.E.A.L syntax:

SELECT nickname FROM robber ASSOCIATED WITH( skill ,
<skilldescription= ’ Guarding ’> ASSOCIATED WITH( testing_location ,
<name= ’ Harvard ’ >) )

In this example, a participation constraint has been placed on the base entity-type robber:
the robber must possess the skill ‘Guarding’. Additionally, a participation constraint
has been placed on the specification <skilldescription=’Guarding’>: not only must
the robber possess the skill, but they must have it tested at a testing location with
name=‘Harvard’.

Example Query 5: An entity-association query involving roles

This example shows a query where roles cannot be inferred and must be specified.

”Find robbers who have been taught by ‘Bugsy Malone’“

S.E.A.L syntax:

SELECT nickname FROM robber ASSOCIATED WITH( robber AS teacher
THROUGH mentoring , <nickname= ’ Bugsy Malone ’ >)

In this example, the role of the associated entity-type (also a robber) was specified as teacher.
It was necessary to specify a role because the ‘mentoring’ relationship involves two enti-
ties of the same type (a robber acting as a teacher and a robber acting as a pupil). Note
that because the mentoring relationship involves only two entities of type robber, the query
could have also been written with the role of the base entity-type, pupil, specified and the
role of the associated entity-type, teacher, omitted.
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Example Query 6: A query involving a symmetric relationship

This example demonstrates the support for symmetric relationships in S.E.A.L. The relation-
ship ‘friendship’ between two robbers has been declared as symmetric in the database
specification: if robber A is friends with robber B then it follows that robber B is also friends
with robber A.

Find robbers who are friends with ’Bugsy Malone’

Syntax:

SELECT nickname FROM robber ASSOCIATED WITH( robber THROUGH
friendship , <nickname= ’ Bugsy Malone ’>

Because the relationship used is symmetric it is not necessary (and would not make sense)
to specify roles for the entities involved.

While S.E.A.L would still be useful without special support for symmetric relationships, the
included support makes S.E.A.L more user friendly. The symmetric relationship ‘friendship’
is stored in a table similar to that shown in figure 6.2:

Figure 6.2: Representation of friendship relationship

• robberid1 + robberid2 forms the primary key of this table

• robberid1 references ‘robber’ through a foreign-key referential integrity constraint
named ‘friendship to robber1’

• robberid2 also references ‘robber’, through a foreign-key named ‘friendship to robber2’

Because the relationship ‘friendship’ is symmetric, for two robbers, ‘Al Capone’ and
‘Bugsy Malone’, only one row in the table is required to store the facts:

1. Al Capone is friends with Bugsy Malone

2. Bugsy Malone is friends with Al Capone

For asymmetric relationships, the foreign keys must be named after the role the entity plays
in the relationship (see section 6.2). However, because this relationship is symmetric, the
foreign keys have been named arbitrarily.

Without support for symmetric relationships, all relationships would be treated as asym-
metric. For the friendship example:

• Surrogate roles would need to be added to the relationship. For example, ’friend’ and
’friendee’. This is undesirable as such roles do not exist in the real world

• A user wishing to represent a friendship relationship between Bugsy Malone & Al
Capone would need to insert two rows into the friendship table: One with Al Capone
as the ‘friend’, the other with Al Capone as the ‘friendee’
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Assuming users always enter data correctly (inserting mirroring rows to represent symmet-
ric relationships), the only modification to example query 6 required would be the inclusion
of either of the surrogate roles:

SELECT nickname FROM robber ASSOCIATED WITH( robber AS friendee
THROUGH friendship , <nickname= ’ Bugsy Malone ’ >)

It is only safe to arbitrarily choose one of the surrogate roles on the assumption that users
always enter the two mirroring rows. If a user forgets to add one of the rows then the data
will be inconsistent. To deal with this inconsistency the query would need to be rewritten
as:

SELECT nickname FROM robber ASSOCIATED WITH( robber AS friendee
THROUGH friendship , <nickname= ’ Bugsy Malone ’> OR
ASSOCIATED WITH( robber AS friend THROUGH friendship ,
<nickname= ’ Bugsy Malone ’>

The benefits of language and database support for symmetric relationships are:

• Improved usability: It is not necessary to account for both halves of the symmetric
relationship in queries. In addition, there is no need to refer to surrogate roles which
have no real-world meaning.

• Storage is saved: Only one row is required to store two facts

• Integrity: The ‘friendship’ table is automatically kept consistent

6.1.2 Syntax for attribute predicate conditions inside specification

During the design of S.E.A.L, a positional syntax for giving attribute predicate conditions in
a specification was considered. Under this design, the user would first list all attributes used
in the specification expression. Specifications would then assign values to the attributes in
the order the attributes were listed.

For example, the query:

”Find robbers with the skill ’Guarding’ OR with any skill of difficulty ’5’“

Would be written as

SELECT nickname FROM robber ASSOCIATED WITH( skill ,
[ skilldescription , difficulty ] , < ’ Guarding ’ , ?> OR <? , ’ 5 ’ >)

(? represents a ’wildcard’)

In the specification ‘‘<?, ‘5’>’’, the value ‘5’ refers to the ‘difficulty’ attribute be-
cause it is the second attribute in the specification and the second attribute in [skilldescription,
difficulty] is ‘difficulty’. The original rationale for this syntax was that it will often
be shorter: For a given query most of the specifications will involve the same attributes.
However, this syntax was dropped in favour of the current syntax to improve usability. Be-
cause the attribute labels are next to attribute values (rather than implied by their position),
queries in the new syntax are easier to understand, if a little more verbose:

SELECT nickname FROM robber ASSOCIATED WITH( skill ,
<skilldescription= ’ Guarding ’> OR <difficulty= ’ 5 ’ >)
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6.1.3 Specifying or inferring the join table

The facility for inferring the relationship (or ’join table’) in an entity-association query was
not part of S.E.A.L from the onset: earlier versions required users to always explicitly spec-
ify both the associated entity-type and the relationship. The reasoning was that ambiguity
is undesirable in most languages. However, queries are more difficult to write if the rela-
tionship must always be specified, since the user must know the name of the relationship.
Supporting inference of the relationship when it is unambiguous makes the language much
easier to use. The solution to the problem of ambiguity is for the inference mechanism to
refuse to guess in ambiguous cases and simply report the ambiguity (and possible options)
to the user.

6.1.4 Built-in support for EAV attributes

As described in Chapter 5, it was observed that queries involving EAV attributes can be
implemented as entity-association queries. Without explicit support for EAV, S.E.A.L could
still be used to answer queries involving EAV attributes. For example, example query 1
could be written as:

SELECT nickname FROM robber [ age=39]
ASSOCIATED WITH( robber_attributes THROUGH robber_eav ,
<attribute= ’ h a i r c u t ’ , value= ’Mohawk ’ >)

However, while queries using EAV attributes can be considered entity-association queries
from an implementation perspective, the semantics of the queries are different. The tables
robber attributes and robber eav don’t map to any real world entity-types/relationships.
Additionally, the attributes ‘attribute’ and ‘value’ do not exist in the domain. EAV at-
tributes have real-world applications, so special support was added so that they can be used
seamlessly in place of regular attributes.

6.1.5 One association per ASSOCIATED WITH clause

To make the syntax easier to understand as well as simplifying parsing and inference, a de-
sign decision was made that within an ASSOCIATED WITH clause, all specifications must refer
to the same associated entity-type & relationship. The only required part of the ASSOCIATED WITH
clause is the expression on specifications. The associated entity-type and the relationship are
optional.

The following example (shown in figure 6.3) is illegal because it refers to two different asso-
ciated entity-types (‘skill’ & ‘food’) within the one ASSOCIATED WITH clause:

SELECT nickname FROM robber
ASSOCIATED WITH(<skilldescription= ’ Explos ives ’> AND
<name= ’ Pizza ’ >)

Figure 6.3: An ASSOCIATED WITH clause involving two different (associated entity-type, re-
lationship) combinations
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However, the requirement that an ASSOCIATED WITH clause refers to exactly one associated
entity-type and one relationship does not limit the expressiveness of S.E.A.L: the above
query should be written as:

SELECT nickname FROM robber
ASSOCIATED WITH(<skilldescription= ’ Explos ives ’ >) AND
ASSOCIATED WITH(<name= ’ Pizza ’ >)

Figure 6.4: Query 6.3 rewritten using only one (associated entity-type, relationship) combi-
nation per ASSOCIATED WITH clause

6.2 Rules and Guidelines for implementing S.E.A.L-compatible databases

The S.E.A.L interpreter has a set of rules and conventions to which a schema must adhere if it
is to be used with S.E.A.L. These rules and conventions provide a consistent way to describe
metadata as well as simplifying the interpreter code by reducing the number of special cases
needed. With extra work, it would be possible to relax some of these expectations, however
this was not done in this prototype.

1. Single-valued information that applies to all or most instances of an entity type should
be stored as attributes in a table named after the entity-type. Singular rather than
plural names are used for entity-type table names.

2. Sparse, multi-valued and user-defined attributes should be stored vertically using
EAV & attribute lookup tables named after the entity to which the data pertains

3. All attributes (whether stored conventionally or in EAV form) belonging to an entity-
type must have distinct labels. If an attribute is stored in EAV form then an attribute
with the same label may not exist in conventional form and vice-versa.

4. EAV attribute lookup tables should be named entity type attributes and should con-
tain two columns: attributeid::integer and attribute::character varying. A
primary key should be defined on attributeid.

5. EAV tables should be named entity type eav and should contain columns attributeid::integer,
value::character varying, attributeid should reference entity type attributes through
a foreign key constraint. A foreign key referencing the primary key of the entity-type
should be defined. A primary key should be defined on all attributes in the EAV table.

6. M:N relationships between entities must be modeled in ’join tables’. These tables must
contain a foreign key referencing the primary key of each entity-type involved. For
asymmetric relationships, this foreign key must be named after the role of the entity-type in
the relationship. Join tables may also include additional columns storing information
on the nature of the relationship/association. The key for the join table should include
at a minimum the columns belonging to the foreign keys of participating entity-types.

7. By default, M:N relationships are assumed to be asymmetric, i.e. role based. The DBA
needs to explicitly declare symmetric relationships by inserting a row into the system
table symmetric foreign keys, specifying a pair of symmetric foreign keys.
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6.3 Inference algorithms

S.E.A.L gives users considerable flexibility when specifying a participation constraint (ASSOCIATED WITH
clause). While the base entity-type and an expression on specifications is required, the fol-
lowing are optional:

1. The associated entity-type

2. The relationship between the base entity-type and the associated entity-type

3. The role of the base entity-type

4. The role of the associated entity-type

If any of the above are omitted, S.E.A.L will attempt to infer them based on the attributes
used in the specification expression. To be able to perform translation without ambiguity,
S.E.A.L needs to find exactly one valid (relationship, assocatedEntityType, baseEntityRole,
associatedEntityRole) combination for the base entity-type and attributes used.

6.3.1 Inferring the roles (foreign keys) to use when both the associated-entity
and the relationship have been specified

If entity roles are omitted in a query, these must be inferred. Roles specify which foreign key
in a relationship should be used to reference an entity-type participating in the relationship.
The translation stage needs to know which foreign keys and attributes to use to join the
relationship table to the base & associated entity tables.

The role inference algorithm (given in figure 6.5) takes a base entity-type, an associated
entity-type and a relationship between them as input. If the relationship is asymmetric and
involves more than one instance of the base entity-type or more than one instance of the
associated entity-type then the algorithm reports the query as ambiguous. Otherwise it
determines the foreign keys to reference the base entity-type and the associated-entity type.
If the relationship is symmetric, the algorithm arbitrarily chooses suitable foreign keys to
reference the base entity and the associated entity.
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foreignKey baseEntityReference = null ;
foreignKey asscEntityReference = null ;

for foreign key f ∈ relationship table
i f ( f . references ( baseEntity ) )

i f ( baseEntityReference == null )
baseEntityReference = f ;

e lse i f ( f . references ( asscEntity ) && f . symmetricWith ( baseEntityReference ) )
asscEntityReference = f ;
break ;

e lse
/ / Ambiguous , r o l e s must be s p e c i f i e d

end
else i f ( f . references ( asscEntity ) )

i f ( asscEntityReference == null )
asscEntityReference = f ;

e lse
/ / Ambiguous , r o l e s must be s p e c i f i e d

end
end

Figure 6.5: The role inference algorithm

6.3.2 Inferring possible join tables between two entities

If a query is given with the relationship between the base entity-type and the associated-
entity type omitted, S.E.A.L will attempt to infer the relationship (join table) to use. The
following algorithm takes two entity types as input (the base entity-type and the associated
entity-type) and returns a set of relationships involving both of these entity-types. A rela-
tionship is suitable if it has a foreign key f which references the base entity-type and has
another foreign key f ′ which references the associated entity-type. This algorithm does not
take the attributes used in the query into account.

For entity-types E1 and E2:

joinTableSet = {}
for table t ∈ metadata | t. f oreignKeySet.size ≥ 2

i f (∃ f ∈ t. f oreignKeySet | f .re f erences(E1)
∧ ∃ f ′ ∈ t. f oreignKeySet | f ′.re f erences(E2)

∧
f ′ 6= f )

joinTableSet . add ( t ) ;
end

end

Figure 6.6: Algorithm for inferring possible join tables between two entities

6.3.3 Inferring everything from the base entity-type and the attributes used

If a query is given with only the base entity-type and a specification expression, to be able
to translate the query into SQL S.E.A.L must infer:
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For a base entity-type, E:

combos<joinTable , fkToBaseEntity , fkToAssociatedEntity , associatedEntity> = {}

for table t ∈ metadata|t. f oreignKeySet.size ≥ 2
for ( f oreign key f ∈ t. f oreignKeySet | f .re f erences(E) )

for ( f oreign key f ′ ∈ t. f oreignKeySet | f ′ 6= f )
associatedEntityType = f ′ . referencedEntityType ( ) ;
combos . add ( t , f , f ′ , associatedEntityType ) ;

end
end

end

Figure 6.7: Combination enumeration algorithm

• The associated entity-type and relationship that the specifications refer to implicitly

• The roles of both the base entity-type and the associated entity-type.

The combination enumeration algorithm (shown in figure 6.7) takes the base entity-type
as an input and returns a set of combinations of the form (relationship, assocatedEntityType,
baseEntityRole, associatedEntityRole) representing relationships the base entity-type could pos-
sibly participate in. The algorithm works by looking for tables which could act as relation-
ship (join) tables, then filters these for the ones which reference the base entity-type. It then
enumerates all of the possible combinations.

The combinations are checked for attribute satisfaction by the attribute coverage algorithm
(shown in section 6.3.4). If the set of combinations is not reduced to a single combination
then the query contains ambiguity which the user must resolve.

6.3.4 Attribute coverage algorithm

For a given (relationship, associatedEntityType, baseEntityRole, associatedEntityRole)
combination to be valid with respect to a query, the associated entity-type together with the
relationship must contain (in either EAV or regular column form) all attributes referred to
in the query. A combination with this property is said to ’cover’ the query. The attribute
coverage algorithm (shown below) checks a (relationship, associatedEntityType) pair
to determine if it covers the query.

It is possible to qualify an attribute in a query by prefixing it with the location of the at-
tribute (either an entity-type or a relationship) and a period ’.’. For qualified attributes, the
algorithm simply checks that the attribute exists where it was specified. For unqualified
attributes, the algorithm checks that:

1. The attribute exists in either the associated entity-type OR the relationship

2. The attribute exists as either a regular column OR as an EAV attribute

Because checking for the existence of an EAV attribute requires a query against the database,
attributes are grouped into sets corresponding to their expected location. All EAV attributes
used in a query are checked at once rather than individually.

// Attributes expected to be found in the relationship’s EAV table
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rel_eav_atts = {}

// Attributes expected to be found in the associated -entity’s EAV table
ae_eav_atts = {}

// Attributes expected to be found in EAV form, location not specified
eav_unspecified = {}

for each attribute_name , a , used in expression
i f a . isQualified ( ) // Has a location specified

i f a . location = relationship
i f relationship . hasAttribute ( a )

Mark a as non−EAV
e lse

Add a to rel_eav_atts
Mark a as EAV

end
end
i f a . location = associated_entity

i f associatedEntity . hasAttribute ( a )
Mark a as non−EAV

e lse
Add a to ae_eav_atts
Mark a as EAV

end
else

Discard Combination
end

else // unqualified attribute (location omitted)
i f relationship . hasAttribute ( a ) && associatedEntity . hasAttribute ( a )

i f associated_entity . primaryKey . contains ( a )
a . location = associatedEntity
Mark a as non−EAV

e lse
Alert user to ambiguity

end
else i f relationship . hasAttribute ( a )

a . location = relationship
Mark a as non−EAV

e lse associatedEntity . hasAttribute ( a )
a . location = associatedEntity
Mark a as non−EAV

e lse
Add attribute to eav_unspecified
Mark a as EAV

end
end

end

atts_found_in_relationship_EAV = relationship . checkEAV ( rel_eav_atts )
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atts_found_in_associatedEntity_EAV = associatedEntity . checkEAV ( ae_eav_atts )

i f ( rel_eav_atts \ atts_found_in_relationship_EAV ) != {}
Discard Combination

i f ( ae_eav_atts \ atts_found_in_associatedEntity_EAV ) != {}
Discard Combination

eav_found_in_rel = joinTable . checkForEAVAttributes ( eav_unspecified )
eav_found_in_ae = associatedEntity . checkForEAVAttributes ( eav_unspecified )

// Check {eav_found_in_rel , eav_found_in_ae} is a partition on eav_unspecified

i f ! eav_unspecified ⊆ ( eav_found_in_rel
⋃

eav_found_in_ae )
Alter user that some EAV attributes could not be found

i f eav_found_in_rel
⋃

eav_found_in_ae != {}
Alter user that some EAV attributes were ambiguous − appear in both rel & ae

return combination

6.4 Translation algorithms

Once a query has been parsed and all necessary inference is completed, translation into SQL
is performed by a recursive toString() call on the query tree. In this design the various parts
of the query tree are responsible for their own conversion into SQL with relatively little
interdependence.

6.4.1 Checking satisfaction of a participation constraint for an asymmetric rela-
tionship

The following algorithm is used to generate the SQL to determine whether an entity satisfies
a specification. The algorithm takes a base entity-type, an associated entity-type, a relation-
ship between the base entity-type and the associated entity-type, roles for both entity-types
and a set of predicate conditions in the specification. The algorithm generates SQL which
checks for the presence or absence of a row in the relationship table which satisfies the spec-
ification. A row in the relationship table satisfies the specification if it references the base
entity-type, references an instance of the associated entity-type and all predicate conditions
are satisfied.

Given:

• A base entity ’E’, Etable

• An associated entity-type ’A’, represented in table Atable with primary key APK

• An EAV table belonging to entity-type ’A’, Aeav table

• A relationship between ’E’ and ’A’, ’RS’ represented in table RStable
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• An EAV table belonging to relationship RS, represented in table RSeav table

• ’A’ acts as role ’R’ in relationship ’RS’, represented by foreign key RSR FK

• A set of predicate conditions of the form (att1=value, att2=value...), P.

1. During the inference stage all attributes used in P are located in exactly one of (Atable,
Aeav table, RStable, RSeav table)

2. An inner join is performed between RStable and Atable on foreign key RSR FK=APK.
From this join a select is performed using all non-EAV conditions in P. The result set is
further restricted by checking the EAV attribute conditions [6.4.5]. The result is the set
Sa in rs sat p: instances of ’A’ involved in a relationship ’RS’ satisfying all conditions
in P.

If a role RE was specified for E, E satisfies the mandatory participation constraint if there
exists a row in RStable such that the foreign key RE references E and RSR FK references one
of Sa in rs sat p.

If no role was specified for E, E satisfies the mandatory participation constraint if there exists
a row in RStable such that there is a foreign key other than RSR FK which references E and
RSR FK references one of Sa in rs sat p.

If the participation constraint was a forbidden participation constraint rather than manda-
tory, then E would satisfy it if no such row exists.

6.4.2 Checking satisfaction of a participation constraint for a symmetric relation-
ship

The process for determining whether an entity satisfies a symmetric relationship participa-
tion constraint is similar to that for checking an asymmetric relationship constraint. The key
difference is that a symmetric relationship (symmetric relationships are defined in Chapter
2) involves entities of the same type acting in the same role, therefore it is not significant
which foreign key references the base entity-type and which foreign key references the as-
sociated entity-type, only that they are distinct.

Given:

• A base entity-type ’E’ represented in table Etable

• An associated entity-type which is also E

• An EAV table belonging to entity-type ’E’, Eeavtable

• A symmetric relationship between two or more entities of entity-type ’E’, ’RS’ repre-
sented in table RStable

• An EAV table belonging to relationship RS, RSeavtable

• A set of predicate conditions of the form (att1=value, att2=value...), P.

1. During the inference stage all attributes used in P are located in exactly one of (Etable,
Eeav table, RStable, RSeav table)

2. An arbitrary foreign key, f, belonging to RStable which references E is selected

3. An inner join is performed between RStable and Etable on foreign key RSRFK=EPK. From
this join a select is performed using all non-eav conditions in P. The result set is further
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restricted by checking the EAV attribute conditions using the algorithm in section 6.4.5.
The result is the set Seinrssatp : instances of ’E’ involved in a relationship ’RS’ satisfying
all conditions in P.

E satisfies the mandatory participation constraint if there exists a row in RStable such that
there exists a foreign key f which references E and another foreign key f ′ such that f ′ 6= f,
which references one of Se in rs sat p.

If the participation constraint was a forbidden participation constraint rather than manda-
tory, then E would satisfy it if no such row exists.

6.4.3 Ensuring primary/foreign keys for IN are correct

The S.E.A.L database design guidelines (given in 6.2) do not assume that attributes belong-
ing to a foreign key will have the same label as the attributes in the corresponding primary
key. In fact, when a relationship involves two or more entities of the same entity-type, this
is not possible due to the fact that column names must be unique within a table.

For example in the robber schema, the primary key of the robber entity-type is ‘robberid’
and the mentoring relationship has two foreign keys referencing the robber entity-type on
columns named ‘robberid1’ & ‘robberid2’.

A secondary problem is that if a foreign key contains more than one attribute, then the
ordering of these attributes is significant when used in an IN clause. For example, the first
SQL fragment given directly below is semantically correct while the second is not:

SELECT ∗ FROM robber_has_skill WHERE ( robber_has_skill . robberid ,
robber_has_skill . skillid ) IN (SELECT
robber_has_skill_tested . robberid ,
robber_has_skill_tested . skillid FROM robber_has_skill_tested
. . . )

SELECT ∗ FROM robber_has_skill WHERE ( robber_has_skill . skillid ,
robber_has_skill . robberid ) IN (SELECT
robber_has_skill_tested . robberid ,
robber_has_skill_tested . skillid FROM robber_has_skill_tested
. . . )

During the metadata collection phase, for every attribute in each foreign key the correspond-
ing attribute belonging to the primary key of the referenced table is recorded. This allows
the S.E.A.L to refer to the attributes in the correct order and using the correct labels.

6.4.4 Nested associations

The approach to dealing with nested associations is consistent with the recursive translation
of the tree: if an association has a nested association, instead of selecting tuples from the
table representing the relationship, tuples are selected from the subquery generated by the
nested association. These subqueries require an alias:

. . . FROM (SELECT . . . ) as <alias_name>

Because alias names are of little significance in automatically generated SQL, S.E.A.L simply
appends a global post-incremented integer onto the name of the table for alias names.
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6.4.5 Translation of EAV attributes

As mentioned in Chapter 3, the use of EAV attributes can (at least from an implementation
standpoint) be considered an entity-association query. While the actual implementation
differs slightly, this pseudocode illustrates the concept:

Given: v

• An entity-type or relationship, ’E’ represented in table Etable

• An EAV table belonging to ’E’, represented in table EEAV table

• An EAV attribute lookup table belonging to E, represented in table EEAV attributes table

• A set of EAV attribute predicate conditions of which apply to E of the form (attribute=’value’),
C

Note: In the following pseudocode, text between % and % in strings is evaluated.

for condition c ∈ C
E . add ( ”ASSOCIATED WITH( EEAV attributes table THROUGH EEAV table , <a t t r i b u t e =’%c . a t t r i b u t e % ’ , value=’%c . value % ’)” )

end
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Chapter 7

Implementation

7.1 System architecture

The following diagram gives an overview of how the S.E.A.L interpreter interacts with the
user and the PostgreSQL database:

On startup, the S.E.A.L interpreter connects to the PostgreSQL database and collects meta-
data (described in section 7.2.1). User queries are then parsed and translated. If any ambi-
guity or errors are found in the query, S.E.A.L gives suggestions on how to resolve these.
Otherwise, S.E.A.L outputs SQL which can be run against the database.

7.2 S.E.A.L interpreter prototype

Originally the intention was to implement the S.E.A.L interpreter directly in PostgreSQL.
While this would result in a more efficient system overall, this was not feasible under the
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time constraints of an undergraduate honours project. The prototype (written in Object-
Oriented Java code with JDBC database connectivity) demonstrates the principles of the
translation and provides a solid foundation for future implementation at the DBMS level.

After metadata has been retrieved, the translation of a query is comprised of three main
stages:

1. Parsing

2. Inference

3. Rewriting

7.2.1 Retrieval of metadata

One of the reasons for choosing PostgreSQL to implement the prototype S.E.A.L interpreter
is the ease of accessing metadata. PostgreSQL provides an ‘information schema’: a col-
lection of views and tables describing the structure of databases contained in the cluster.
These tables and views can be queried through regular SQL. S.E.A.L connects to PostgreSQL
through JDBC and issues custom queries against the PostgreSQL information schema to col-
lect metadata on the following:

1. Table names

2. Attribute names

3. Table primary keys

4. Table foreign keys (constraint name, referencing attributes, referenced table, refer-
enced attributes)

5. For each foreign key, a set of foreign keys with which it is symmetric

Figure 7.1: Metadata representation in the S.E.A.L Interpreter
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All metadata is stored in an OO datastructure (shown in figure 7.1) which is globally ac-
cessible throughout the interpreter. EAV attributes are not collected during the metadata
acquisition phase. As mentioned in Chapter 3, one of the key applications for EAV is repre-
senting extremely sparse datasets. An entity-type may have many thoussands of attributes:
it is simply not feasible nor worthwhile to retrieve all of these on startup. Any EAV attributes
used in a query are checked at translation time (described in section 6.3.4)

7.2.2 Parsing

The parser for the interpreter was created with the ANTLR [1] parser generator. ANTLR
allows the programmer to write a context free grammar (CFG) along with Java code to de-
scribe actions to perform on rule/token matches. In the case of the S.E.A.L interpreter, the
rules defined are relatively simple: the parser simply generates an OO representation of the
query tree substituting base and associated entity-types, relationships and roles with tables,
join-tables and foreign key names (respectively) contained in the global metadata structure.
Instead of creating Association objects, the parser generates TemporaryAssociation objects due
to the nature of the inference algorithms, described in section 7.2.3.

For example, query:

SELECT nickname FROM robber ASSOCIATED WITH( skills THROUGH
robber_has_skill , <skillid=5> OR <skillid=3>)

Is represented by the following tree (after inference):

Figure 7.2: OO Representation of the query tree after inference

7.2.3 Inference

As described in section 6.3, inference in S.E.A.L works from left to right. The general case
of inference in S.E.A.L can be approximated as “Given this base entity-type (left hand side)
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and the set of attributes used in the query, what are the possible associated entity-types, re-
lationships and roles which would cover the attributes used?”. Because the inference works
from left to right, the entire query tree must be parsed before inference can take place: the
base entity-type must be known before the relationships it is involved in can be deduced.

An example query involving nested associations:

SELECT nickname FROM robber
ASSOCIATED WITH(<skilldescription= ’ Explos ives ’>
ASSOCIATED WITH(<name= ’ Harvard ’ >) ) ;

In this example, the interpreter is expected to infer that the ‘robber’ entity-type is associ-
ated with a ‘skill’ entity-type through the ‘robber has skill’ relationship and also that
the ‘robber has skill’ entity-type is associated with the ‘testing location’ entity-type.

If the interpreter attempted to perform the inference during parsing (bottom up), it would
parse the predicate expression ‘‘name=‘Harvard’’’ first, followed by the enclosing ASSOCIATED WITH
clause. At this point, the interpreter would try to find an associated entity A and relation-
ship R such that attributesinquery ⊆ attributes f romA ∪ attributes f romB. However, as de-
scribed in section 6.3, to find the possible relationships (and therefore possible associated
entity-types), the interpreter would need to know the base entity-type. Because the base
entity-type has not yet been parsed, the interpreter is unable to look for relationships and
associated entity-types.

To solve this problem, the interpreter performs an initial parse which stores for each table
reference and each expression a set of TemporaryAssociations. After this initial parse, the
interpreter executes a recursive call on the query tree which performs all necessary inference
from left to right, converting the TemporaryAssociations to Associations in the process. Fig-
ure 7.3 shows the steps involved in translating a user query.
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Figure 7.3: Steps involved in translating a user query

45



46



Chapter 8

Testing

Test system configuration

The following system was used for all tests:

• Processor: Intel Pentium 4 @ 3.2GHz

• Memory: 1.5Gb DDR2 @ 533 MHz

• Disk: Seagate 80Gb ST380819AS (SATA)

• Operating system: Net-BSD 4.99.9

• PostgreSQL: Version 8.2.4

8.1 Performance of Nested-IN strategy compared with Set theo-
retic operator strategy

An experiment was conducted to compare the performance of the ‘nested IN’ and ‘set theo-
retic operator’ strategies described in Chapter 4.

8.1.1 Experiment setup

For the experiment, a new schema ‘eav performance’ with the following tables was de-
fined:

Figure 8.1: Schema used for testing subquery performance

A Java program was then used to populate the tables with random string data:

• 3,000 unique entities were created

• 2,500 unique attributes were created
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• 1,000,000 rows were inserted into the table entity eav comprised of random combinations
of an entityid, an attributeid and one of 2500 randomly generated string
values.

8.1.2 Experiment 1: EAV performance

A number of queries involving randomly chosen (attribute, value) pairs (indicative of queries
involving EAV attributes) were executed. An example of one such query with the corre-
sponding implementations is given below:

Find entities with dmhxphx=’gpmbc’ AND gynizct=’pjvau’

Query written using the nested-IN strategy:

SELECT name from ENTITY where entityID in (SELECT entityID from
entity_eav inner join entity_attributes on
entity_eav . attributeid = entity_attributes . attributeid where
attribute= ’dmhxphx ’ AND value= ’gpmbc ’ ) AND entityID in (SELECT
entityID from entity_eav inner join entity_attributes on
entity_eav . attributeid = entity_attributes . attributeid WHERE
attribute= ’ gynizc t ’ AND value= ’ pjvau ’ ) ;

Query written using the set theory operator strategy:

SELECT name FROM entity INNER JOIN (SELECT entityID from entity_eav
inner join entity_attributes on entity_eav . attributeid =

entity_attributes . attributeid where attribute= ’dmhxphx ’ AND
value= ’gpmbc ’ INTERSECT SELECT entityID from entity_eav inner
join entity_attributes on entity_eav . attributeid =
entity_attributes . attributeid WHERE attribute= ’ gynizc t ’ AND
value= ’ pjvau ’ ) as foo ON entity . entityid = foo . entityid ;

On the test system, the difference in performance was negligible with both implementations
taking approximately 3ms to execute.

8.1.3 Experiment 2: Entity-association query performance

The SQL from Experiment 1 was modified so that it did not include the condition on the
value attribute (belonging to the entity eav table). The justification for this was that many
entity-association queries will only involve attributes from the associated entity-type.

On the test system, the nested-IN implementation took approximately 12.3ms, marginally
outperforming the set theory implementation which took 15.8ms.

8.2 Interpreter overhead as a function of query execution time

Multiple experiments were performed on the robber schema to compare the time the S.E.A.L
interpreter took to translate S.E.A.L queries with the time the queries took to execute. The
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robber schema has very little data: the smallest table has 5 rows while the largest table has
40 rows.

• A basic association query with no inference took approximately 1ms to translate and
0.4ms to execute. The same query with inference on the associated attribute took 4ms
to translate.

• An association query involving nesting (with no inference) took 4ms to translate and
0.3ms to execute.

• A query involving nested associations and EAV attributes belonging to the associated
entity-type took only 2ms to translate and 0.4ms to execute.

The S.E.A.L interpreter was then used against the ’eav performance’ schema described in
the previous section to perform the queries retrieving entities based solely on EAV attribute
conditions.

As an indicative result, the query

Find entities with dmhxphx=’gpmbc’ AND gynizct=’pjvau’

Took 1ms to translate and 12.3ms to execute.

49



50



Chapter 9

Conclusions

9.1 Contributions

This report describes entity-association queries: an important class of query which restrict
entities based on their participation in relationships with other entities.

• EAV storage is described and the use of EAV is justified. The flexibility and practi-
cality of various EAV storage implementations are compared. It is shown that from
an implementation perspective, queries involving EAV attributes may be considered
a special case of an entity-association query.

• The report describes S.E.A.L, a declarative language for expressing entity-association
queries. With S.E.A.L, end-users can issue this important class of query without a
high level of database proficiency and without detailed knowledge of the database
implementation: only knowledge of the conceptual schema is required. A significant
feature of S.E.A.L is that it abstracts EAV storage: in queries, there is no difference
between attributes stored in EAV form and attributes represented in regular columns.
To make writing queries easier still, S.E.A.L allows parts of the query to be omitted
and will perform inference where the query given is unambiguous.

• The syntax of S.E.A.L is given, along with example queries which motivate language
features of S.E.A.L such as symmetric relationships, roles and EAV attribute support.

• A set of recommendations and rules for designing databases compatible with S.E.A.L
are provided. These describe how to model entities and their relationships with other
entities, as well as how to cope with sparse, multi-valued or user-defined attributes.

• A prototype interpreter for S.E.A.L is described along with problems encountered dur-
ing implementation. The algorithms used by the interpreter for inference an transla-
tion are described.

9.2 Comparison with previous work

During the literature search, no previous attempts to classify entity-association queries or
implement a general solution for allowing novice users to express these queries were found.
Previous works on EAV attribute abstraction have all been GUI-driven and tied to a par-
ticular schema. A significant advantage of S.E.A.L is that it can be used with any schema
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which conforms to the rules and guidelines given in this report. However, while S.E.A.L
provides generic support for EAV attributes, it is not as flexible as some of the other imple-
mentations. In particular, all attributes are represented as strings and the only comparison
operator supported is the equality operator, ’=’.

9.3 Future work

While this work provides a general solution to supporting entity-association queries includ-
ing basic support for EAV attributes, there are a number of areas which can be expanded on.
In particular, the EAV storage solution could be extended to support datatypes other than
string and support for comparison operators other than equality could be implemented.

Further development of EAV functionality in S.E.A.L will necessitate EAV specific DDL. By
introducing DDL with EAV support, it will be possible to specify whether an attribute is
single or multi-valued and the type of the attribute (string, integer, date etc). DDL should
also be extended to allow the database administrator to declare a relationship as symmetric:
the current solution of inserting a row into a system table is somewhat inelegant.

Extending DML to cope with EAV is also a top priority for future work. Currently, updat-
ing and inserting data involving EAV attributes is complex and requires knowledge of the
database implementation.

The problem of efficiently retrieving and displaying complete entity data remains open. It
is not clear what should be included in ’complete entity data’. Should this be limited simply
to the attributes of the entity, or should it include relationships the entity is involved in?
Because entity relationships form a graph, there is no obvious way to display this data to
the user in a concise manner.
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Appendix

Full ANTLR grammar for S.E.A.L

grammar AssociatedWith ;
selectStatement

: selectKeyword fieldList fromClause ? ;

selectKeyword
: ’SELECT ’ ;

fromKeyword
: ’FROM’ ;

associatedWithKeyword
: ’ASSOCIATED WITH ’ ;

equalsKeyword
: ’= ’ ;

fromClause
: fromKeyword tableReference ;

fieldList
: ( fieldName ) ( FieldDelimiter fieldName ) ∗ | ’ ∗ ’ ;

fieldName
: ( String ) + ;

tableReference
: tableRestriction ( ’AS ’ entityRole ) ? ( associatedWithKeyword LP

( tableName ( ’AS ’ entityRole ) ? ( ’THROUGH’ tableName ) ?
FieldDelimiter ) ? expression RP ) ? ;

tableRestriction
: table
| table ’ [ ’ tableAttributeExpression ’ ] ’ ;

table
: tableName ;
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tableName
: ( String ) + ;

tableAttributeExpression
: tableAttributeOrExpression ;

tableAttributeOrExpression
: tableAttributeAndExpression

( ’OR ’ tableAttributeAndExpression ) ∗ ;

tableAttributeAndExpression
: tableAttributeNotExpression ( ’AND’

tableAttributeNotExpression ) ∗ ;

tableAttributeNotExpression
: ’NOT’ tableAttributeAtom
| tableAttributeAtom ;

tableAttributeAtom
: condition
| LP tableAttributeExpression RP ;

expression
: orexpression ;

orexpression
: andexpression ( ’OR ’ andexpression ) ∗ ;

andexpression
: notexpression ( ’AND’ notexpression ) ∗ ;

notexpression
: ’NOT’ atom
| atom ;

atom
: simplePredicate ( associatedWithKeyword LP ( tableName ( ’AS ’

entityRole ) ? ( ’THROUGH’ tableName ) ? FieldDelimiter ) ?
expression RP ) ?

| LP expression RP ( associatedWithKeyword LP ( tableName ( ’AS ’
entityRole ) ? ( ’THROUGH’ tableName ) ? FieldDelimiter ) ?
expression RP ) ? ;

condition
: ( tableName ’ . ’ ) ? fieldName equalsKeyword data ;

simplePredicate
: LT condition ( ’ , ’ condition ) ∗ GT ;

String
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: ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ ’ ) ;

Number
: ( ’ 0 ’ . . ’ 9 ’ ) ;

entityRole
: String+ ;

stringData
: ( String | DP | ’+ ’ | ’ ! ’ | ’ ? ’ | Number | ’− ’ ) + ;

numericalData
: Number+
| Number∗ DP Number+ ;

data
: SQ stringData ? SQ
| numericalData ;

FieldDelimiter
: ’ , ’ ;

LP : ’ ( ’ ;
RP : ’ ) ’ ;
LSB : ’ [ ’ ;
RSB : ’ ] ’ ;
LT : ’< ’ ;
GT : ’> ’ ;
SQ : ’ \ ’ ’ ;
DP : ’ . ’ ;

WS : ( ’ ’ | ’ \ t ’ | ’ \u000C ’ ) { $channel=HIDDEN ; } ;
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