
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

Computer Science

PO Box 600 Tel: +64 4 463 5341
Wellington Fax: +64 4 463 5045
New Zealand Internet: office@mcs.vuw.ac.nz

Building an On-line New Zealand Sign Language
Dictionary

Patrick Bray

Supervisor: Peter Andreae

Abstract

New Zealand Sign Language (NZSL) is the official language of the Deaf
Community of New Zealand. NZSL is a gestural language consisting of
messages conveyed through simultaneous movements of the hands, face and
body. In the early nineties the Deaf Studies Research Unit (DSRU) at Victoria
University of Wellington, undertook a project to collect information regarding all
NZSL signs that were in use at that time. This information was collated and
stored in a 4th Dimension Database, which has since become antiquated. This
data consisted of artistic representations of the signs, a HamNoSys encoding and
general information about the sign. As this data was too valuable a resource to be
lost it was necessary to extract the data for storage in a more contemporary
database system. The main objective of this project was to extract this data from
the 4th Dimension Database and use it as a basis to build a web based NZSL
dictionary. This dictionary was created using PostgreSQL for data storage and
PHP (Hypertext Pre-processor) to dynamically produce the web pages. Future
areas of development for this system include improving the user interface, the
inclusion of streaming video footage of the signs and a virtual signing avatar.

ii

Acknowledgements

First and foremost I would like to thank my supervisor Peter Andreae for all his
help and guidance throughout this project.

I would also like to extend my gratitude to David McKee who was my sign
language teacher at the beginning of this project and to the rest of the Victoria
Universities’ Deaf Studies Research Group for allowing me to get involved in
such an interesting project.

Last of all I would also like to thank Roger Cliffe and Mark Pritchard for all the
assistance that they gave me in setting up the various components of my project
to work with the MCS system.

iii

Table of Contents

1 History, Background and Motivation.. 1

1.1 Introduction to NZSL.. 1

1.2 History of the Project .. 1

1.3 NZSL Bill... 2

1.4 Deaf Culture ... 2

1.5 Technology in Deaf Culture... 3

1.6 HamNoSys.. 3

2 Project Outline ... 5

2.1 Project Objectives... 5

2.2 Motivation .. 5

2.2.1 Why the 4
th
 Dimension Database was no longer appropriate................................. 5

2.2.2 Lack of NZSL Resources ... 5

2.3 Design Goals... 6

2.4 Target Audience... 6

2.5 Related Work.. 7

3 Technology Design Decisions .. 8

3.1 Database Management System.. 8

3.2 Comparison of PostgreSQL and MySQL ... 8

3.2.1 Cost .. 9

3.2.2 Reliability... 9

3.2.3 Speed and Concurrency.. 9

3.2.4 Advanced Features ... 9

3.3 User Interface Technology.. 10

3.3.1 Motives for choosing PHP ... 10

3.4 Persistent vs. Non-Persistent Database Connections ... 10

3.5 PEAR Database Abstraction Layer ... 11

4 The Original Database ... 12

4.1 Original Database Structure... 12

iv

4.2 Original Database Data... 14

4.3 Pictures.. 15

4.4 HamNoSys.. 15

5 Project Phases... 15

5.1 Learning NZSL... 16

5.2 Extracting the old Data ... 17

5.2.1 Database Security... 18

5.2.2 Extraction Scripts ... 18

5.2.4 SIS and CVS Information .. 22

5.2.5 Pictures... 22

5.2.6 Other Extraction Methods .. 23

5.2.6.1 ODBC.. 23

5.2.6.2 Pluggers Software’s Postgres Plugin.. 24

5.2.6.3 4th Dimension Server and Sybase SQL... 24

5.2.7 Results .. 24

5.3 Data Manipulation .. 24

5.3.1 Different Operating Systems.. 24

5.3.2 Referential Integrity Constraints .. 25

5.3.3 Data Entry Errors ... 25

5.3.4 Case Sensitivity.. 25

5.3.5 Maori & Foreign Language Words .. 25

5.3.6 HamNoSys ... 26

5.3.7 PDF Data Extraction .. 26

5.4 New Database Design... 26

5.5 User Interface Design.. 28

5.6 Testing... 29

5.6.1 User Interface Testing .. 29

5.6.2 User Acceptance Testing.. 30

5.6.3 Performance & Load Testing ... 30

5.6.3.1 Test Cases ... 31

v

5.6.3.2 Method.. 31

5.6.3.3 Results... 31

6 Security.. 33

6.1 Authentication ... 33

6.2 Authentication Mechanisms .. 33

6.3 SQL Injection Attacks.. 36

6.4 Maintenance ... 38

7 Conclusions and Future Work .. 39

7.1 Conclusions .. 39

7.2 Future Work ... 40

7.2.1 User Acceptance Testing.. 40

7.2.2 Audit Trail.. 40

7.2.3 Image Optimization.. 40

7.2.4 Special Characters.. 40

7.2.5 Video Clips... 40

7.2.6 User Interface ... 41

7.3 Future Extensions .. 41

7.3.1 Forum... 41

7.3.2 Virtual Human Signing .. 42

7.3.3 Movement Specification .. 44

7.3.4 Mobile and PDA Access .. 44

Bibliography ... 45

Appendix A SQL Database Schema Definition... 48

Appendix B 4D Database Structure.. 53

vi

List of tables

Number Page

Table 4-1 Comparison of the HamNoSys encodings of right and left hand shapes for

the sign computer.. 15

Table 5-1 Results of performance tests... 32

Table 6-1 Hypothetical Database Table Dictionary_Users.. 36

Table 6-2 Use of SQLrand in preventing SQL injection attacks ... 38

vii

List of figures

Number Page

Figure 1: Tele Type Writer ... 3

Figure 2: Basic HamNoSys character mappings (from Hanke and Schmaling, 2005) 4

Figure 3: 4th Dimension Database Schema... 13

Figure 4: Artistic representation of the NZSL sign computer .. 15

Figure 5: HamNoSys encoding for the NZSL sign for “computer”..................................... 15

Figure 6: Comparison of English and NZSL Grammar... 16

Figure 7: Comparison of the NZSL signs for both heavy and light..................................... 17

Figure 8: Example of simple NZSL conversation. .. 17

Figure 9: 4th Dimension procedure running in debug mode ... 18

Figure 10: Procedure used for the extraction of Data from the 4th Dimension Database . 19

Figure 11: Error message displayed when saving or printing from the 4th Dimension

Database.. 19

Figure 12: Generic and customisable extraction procedure... 20

Figure 13: Export dialog displayed as a result of running the procedure in figure 12 20

Figure 14 : Section of the 4D Database schema illustrating the use of sub-tables 21

Figure 15 : Example of the PDF that was created in order to extract data from the 4D

Database.. 21

Figure 16 : Picture Extraction Script ... 23

Figure 17: Skeleton EER Diagram of the new Postgres Database .. 27

Figure 18: NZSL Dictionary Home Page .. 28

Figure 19: NZSL Dictionary Displaying all NZSL signs with an English Head Word

beginning with an ‘A’ ... 29

Figure 20: Sign Details of the NZSL Sign for the Maori word whakairo (carving) 29

Figure 21: Component Diagram illustrating security vulnerabilities................................. 34

Figure 22: Example CAPTCHA image.. 35

Figure 23: Original Database Query.. 37

Figure 24: Database Query after SQL Injection Attack... 37

viii

Figure 25: Database Query after SQL Injection Attack with input validation 37

Figure 26: Forum for discussion of aspects of NZSL and general Deaf Culture................ 42

Figure 27: Virtual Signer avatar “Visia 2” signing a television news item......................... 43

Figure 28: HamNoSys representation of the German Sign Language sign “Going-To” .. 43

Figure 29: SiGML representation of the German Sign Language sign “Going-To” 44

1 History, Background and Motivation

1.1 Introduction to NZSL

New Zealand Sign Language is the language of the Deaf Community of New Zealand. It
is a full language, with the same ability to communicate information as other languages,
and its own vocabulary system and grammatical structure. It is a visual-gestural
language, using simultaneous movement of the hands, face, and body to convey
messages. It is important to note that NZSL is not simply a signed version of English nor
is it just a collection of gestures but a full language.

It has only been in the past two decades that NZSL has come to be recognised as a real,
natural, human language. In fact in the past, attitudes towards sign language were
negative to the extent that many thought it was an inferior form of communication and
that all intelligent Deaf children should instead master the oral system of lip reading.
Furthermore in the early 1900’s signing was actually forbidden at Sumner (now Van
Asch Deaf Education Center), New Zealand’s first school for the Deaf.

While New Zealand sign language is distinct from other sign languages it is a direct
descendent of British Sign Language and is closely related to Australian Sign Language.
Not only is New Zealand sign language distinct from other sign languages but there
also exists different dialects that have developed through the student communities at
New Zealand’s four major schools for the Deaf.

As an indication of the scale of NZSL usage in New Zealand, figures from the 2001
census show that it is currently used by approximately 28,000 people. According to the
Deaf Association an estimated 7,000 of these people are deaf (Deaf Association, 2005).

1.2 History of the Project

In 1991 work began at Victoria University into the gathering of information towards a
Dictionary of New Zealand Sign Language. This process involved interviewing signers
from all of the three major regions (Auckland, Wellington and Christchurch) and
identifying the signs that they used and recognised. This information was then compiled
and stored in a 4th Dimension Database. In 1998 Victoria’s Deaf Studies Research Unit
in conjunction with the Deaf association of New Zealand used this data to produce a
Dictionary of NZSL.

This dictionary is similar in many ways to a normal bilingual dictionary as it translates
between English words and NZSL signs; however there are some important differences.

2

The ordering of signs is based on properties of the sign rather than an alphabetical
ordering and the NZSL entries involve drawings of the signs. As each sign must include
a drawing the Dictionary is relatively large and the English to NZSL section is actually
just an index with references to page numbers where the sign can be found. These
factors mean that it is a rather difficult and expensive tool to use.

1.3 NZSL Bill

At present there is a Bill before Parliament to promote and maintain the use of New
Zealand Sign Language by declaring New Zealand Sign Language as an official
language of New Zealand. This Bill also aims to provide for the use of NZSL in legal
proceedings and to introduce principles to guide government departments in the way in
which they should make use of NZSL in the promotion of their services to the public
(NZSL Bill, 2005).

With the introduction of the New Zealand Sign Language Bill into parliament earlier
this year, NZSL is set to become the third official language of New Zealand, joining both
English and Maori. At the first reading, on June 22nd 2004, the Bill was supported by all
political parties. It was then referred to the Justice and Electoral Committee which
reported back to the House on the 18th of July 2005. The Committee received 195
submissions in total on the NZSL Bill, of which all expressed overwhelming support.
Due to the General Election in September 2005 the Bill is set to have a commencement
date of the 1st March 2006.

As a result of this Bill, it is likely there will be more resources made available for projects
in this area. Such projects could benefit dramatically from the data that was collected by
the DSRU and is currently stored in the 4th Dimension database. However in its former
state the data was of little use as it could not be easily accessed, updated or extracted.

1.4 Deaf Culture

Many of the users of this system are likely to come from the Deaf community. Therefore
it is important that Deaf Culture is taken into consideration when building such a
system. Deaf Culture in New Zealand consists of many unique protocols, traditions and
celebrations.

For example people involved in the deaf community are traditionally given a sign-name
as finger spelling long names can become cumbersome. These sign-names often reflect
physical characteristics or personality traits of the signer. “In New Zealand it is

3

customary, when introducing oneself, to give one’s name and sign-name with an
explanation of the sign-name’s origin” (Penman, 1999).

Members of the Deaf community have their own style of humour with Deaf jokes which
are usually more visual then English jokes.

“Deaf humour is very visual. Deaf jokes play on things that look similar, in
comparison to English jokes, which play on sounds or play on words”
(Victoria Manning, Mahony, 2003).

Deaf Culture has a strong foundation in Deaf Clubs and societies were deaf people have
traditionally met for social and sporting activities such as deaf rugby and to maintain
their strong social and cultural links.

1.5 Technology in Deaf Culture

Technology plays an integral part in the day to day lives of the deaf. Flashing lights in
the house can announce a visitor at the door, an incoming telephone call or even a fire
(Deaf Association 2005). Communication with family and friends is often done using
faxes, computers and TTYs’ (telephone typewriter devices) such as that illustrated in
figure 1 below.

Figure 1: Tele Type Writer

This frequent use of technology lends itself to a culture of technological embrace and as
such a system like this online sign language dictionary will most likely be met with
enthusiasm.

1.6 HamNoSys

Developed at the University of Hamburg, HamNoSys (The Hamburg Sign Language
Notation System) is a method of encoding the properties of a sign, including hand

4

shape, hand orientation, location, and movement (Hanke and Schmaling, 2005).
HamNoSys is a detailed notation system similar in many ways to a phonetic
transcription of an oral language and at present is one of the only mechanisms for the
written representation of signs.

HamNoSys is comprised of approximately one hundred and fifty symbols indicating
different properties of the sign. Examples of some of the basic hand-shape to character
mappings are illustrated in figure 2 below.

Figure 2: Basic HamNoSys character mappings (from Hanke and Schmaling, 2005)

5

2 Project Outline

2.1 Project Objectives

There were three main objectives of this project:

• To extract the relevant information from the now obsolete 4th Dimension database
• To design and build a new full strength SQL-based database to store the

extracted data
• To design and build a set of interfaces into the data for the searching and

updating of signs

2.2 Motivation

The main motivation behind this project was that the original 4D database was no
longer being able to be easily used, as a result of this the data was in jeopardy of being
lost. This data is too precious a resource to be lost and thus needed to be transferred to a
more up to date database system.

2.2.1 Why the 4th Dimension Database was no longer appropriate

The 4th Dimension Database was no longer a feasible tool as it limited access to the one
user logged into the machine on which it was stored. Furthermore the user interface
forms for this database were designed for a portrait monitor and would not display
correctly on a traditional landscape monitor.

This, coupled with the slow speed, poor user interface and irrelevant data made it a
difficult and frustrating tool to use. As the original database designer could not be
contacted and there was lack of the required expertise with the 4th Dimension DBMS, it
was very difficult to support or extend the system.

2.2.2 Lack of NZSL Resources

At present there is a genuine lack of NZSL resources available. This contributes to the
already strong social barriers that often prevent Deaf people from taking a more active
role in society. In order to remove these barriers the Deaf community has

6

“highlighted four priority areas that need immediate and long-term
improvements. These areas are education, health, employment and public
broadcasting.” (Dyson, 2004)

Dyson goes on to allude to the need for NZSL resources such as this dictionary in her
speech to the House during the first reading of the NZSL Bill:

“To make information more accessible we need to translate written
information into plain English, and use modern technologies, such as
video conferencing and signed video clips on the internet and on
television.” (Dyson, 2004)

Through the creation of this online dictionary it is hoped to make information regarding
NZSL more accessible to anyone learning or teaching NZSL.

2.3 Design Goals

This project was undertaken with three main design goals:

• Extensibility: This system should allow for future features, improvements and
functionality to be easily incorporated.

• Maintainability: This system should require minimal maintenance.

• User Friendly: The system should be easy to use and require no previous
knowledge of NZSL.

2.4 Target Audience

This system’s target audience consists primarily of the members of the Victoria
University DSRU. However it is also intended as a tool to be used by students of NZSL
at Victoria and in the future, to be made available to the general public.

As the original NZSL dictionary was published by Bridget Willams Books they currently
hold all publishing rights to this data in any form. Consequently the publication of any
Sign Language Dictionary using this data would be a breech of these publishing rights.
Therefore until these publishing rights can be acquired the only users of this Dictionary
will be members of the DSRU and associated researchers.

7

2.5 Related Work

Presently the DSRU at Victoria University is conducting a project to capture video
footage of all the NZSL signs. This footage will then be digitized and may, in the future,
be incorporated into this database system and thus needs to be taken into consideration.

8

3 Technology Design Decisions

The correct choice of development tools plays an essential role in the success of any
Information Technology project. Hence there were a number of important decisions that
were made before the implementation of the system.

3.1 Database Management System

The first major design decision that needed to be made in this project was what DBMS
to build the new database system in. In order to make this decision there were a number
of criteria that needed to be evaluated. These criteria included the following

• Reliability: To ensure that the data would not be lost or be easily corrupted due to
unforeseen circumstances.

• Speed: The chosen Database Management system should be able to run advanced
queries quickly. This was important as the database is going to be used in an
interactive web based environment where timing is of critical importance.

• Concurrency: The database should allow multiple users to be simultaneously
accessing the same data and handle concurrent updates without placing the
database into an inconsistent state.

• Scalability: The database management system needs to be able to cope with a
large increase in the amount of both data and traffic in order to increase the
extensibility of the system.

• Cost: The Database Management System should either be a low cost proprietary
system or even better an open source solution.

• Advanced Features: The DBMS should support advanced database management
features such as security to support in the extensibility of the system.

• Maintainability: As the system is to be used and maintained by members of the
Deaf Studies Research Group who are not computer professionals the DBMS
should require as little maintenance as possible.

3.2 Comparison of PostgreSQL and MySQL

Through the use of these criteria it was possible to narrow down two suitable Database
Management Systems: PostgreSQL and MySQL

9

3.2.1 Cost

Both systems are open source solutions so are equal in terms of cost. However
PostgreSQL is distributed under the Berkley Licensing agreement whereby developers
are allowed to make use of Postgres in their application as long as a copy of the Berkley
licensing agreement is also distributed. In contrast MySQL is distributed under the GPL
license agreement, where in order to make use of the Database system within an
application, the applications source code must also be distributed.

3.2.2 Reliability

Both MySQL and Postgres have large user base and open source development
communities which makes them both attractive choices, with MySQL claiming to be
“the world's most popular open source database” (MySQL 2005). This means that there
is a large amount of technical and support documentation available for both DBMS’. The
main factor influencing the decision to implement the database in Postgres however was
its use in the past in the school of Mathematical and Computing Sciences (MCS) at
Victoria University. This was important as the system is going to be hosted on the MCS
network and supported by the school programming staff at least in the short term.

3.2.3 Speed and Concurrency

Independent Benchmarking has shown that MySQL out performs Postgres in terms of
speed due to its minimalist nature (Perdue, 2000). These same benchmarks have also
shown however that PostgreSQL is able to handle three times as many concurrent
connections, as MySQL before generating any errors (Perdue, 2000). Furthermore when
Postgres becomes overloaded, rather than failing it tends to degrade the performance of
the system, whereas MySQL fails erroneously.

3.2.4 Advanced Features

MySQL aims to be a simpler database system providing “20% of the SQL Capabilities
that are needed for 80% of database applications” (Jepson, 2001). However this
somewhat limits the extensibility of the system. Postgres offers more of the advanced
database management features than MySQL such as triggers, stored procedures, views
and transactions.

Although more recent versions of MySQL have begun incorporating support for these
features, they still lack support for the enforcement of referential integrity constraints,
which is important in ensuring data consistency.

10

3.3 User Interface Technology

Another important design decision in this project was what technology to use to
implement the user interface. In order to make the system as accessible as possible it
was decided to implement a web based application. This means that users need only
have a web browser installed to be able to make use of the system.

There were two main technologies considered for building the user interface these were
sun Microsystems’ JSP (Java Server Pages) and PHP. As the MCS web server where the
dictionary is to be hosted is not a Microsoft IIS (Internet Information Services) Server,
Microsoft’s ASP (Active Server Pages) was not considered.

3.3.1 Motives for choosing PHP

PHP was chosen for a number of reasons. Like Java, PHP is a cross-platform solution
that can be run on most variants of Windows, UNIX and Mac OSX. PHP has a large
developer community supported by a plug-in based architecture. Third party scripts can
easily be downloaded and their functionality incorporated into a web application saving
valuable development time.

However, JSP outperforms PHP when PHP is running as a web server module
(Titchkosky, Arlitt and Williamson, 2003). Running PHP through CGI causes even
further performance degradations above those identified. This is because CGI
performance is adversely affected by process creation (Apte, Hansen and Reeser, 2001),
as for each new request that is received at the web server, a separate process must be
created to serve the request.

Despite this problem, PHP was chosen for implementation of the Dictionary interface as
it was already configured to run through CGI on the MCS Apache Web Server and
comes installed by default on most web servers. This decision was also supported by an
external developer at a meeting with the DSRU who may have further involvement in
the project.

3.4 Persistent vs. Non-Persistent Database Connections

The reason that I chose to use non-persistent connections between the web server and
the Postgres Database was as a result of the Dictionary system is being hosted on the
MCS web server. This web server runs PHP as a CGI Wrapper and thus an instance of
the PHP interpreter is created and destroyed for every page request. This means that
any resources acquired by the interpreter such as database connections are closed at the

11

termination of the script. Therefore there would be no performance gain by using
persistent connections. As the PHP interpreter has to check for open connections there
could actually be a slight degradation in performance by using persistent connections.

3.5 PEAR Database Abstraction Layer

To increase the extensibility of this system in the future I decided to implement all
Database access through the PEAR (PHP Extension and Application Repository)
Database Abstraction layer. This abstraction layer provides features to allow PHP
programs written for one Database Management System to function with all other
supported DBMS’s. This ensures that changes to the user interface will not be required if
the data is moved to a different DBMS.

Unfortunately however this PEAR database library is not currently installed on the MCS
web server. Due to this it was necessary to write my own PHP class that handled all
access to the database, so any changes needed in regards to accessing the database
would only need to be made in one file.

12

4 The Original Database

In order to understand why it was so important to extract the data from the old 4th
Dimension database it is useful to examine the structure of the old database and the data
that was stored within it.

4.1 Original Database Structure

By examining the original database schema as shown in figure 3 (See Appendix B for a
larger version), it is evident that there are a number of areas where the design leaves
room for improvement. For example the original 4th Dimension database did not
conform to 1st normal form as it contained multi-valued attributes. One examples of
these multi-valued attributes is illustrated by annotations i where a sign’s usage could
contain multiple values such as “offensive” and “vulgar”.

13

Figure 3: 4th Dimension Database Schema

A further example of these multi valued attributes is illustrated by annotation iv (shown
in more detail in figure 14 on page 20). This area illustrates an extensive use of 4th
Dimension sub-tables. 4D sub-tables are tables that are stored within a parent table and
can only be accessed directly through the parent table. The relationship between the
parent table and sub-table in 4th Dimension is a many to many relationship.

This is a very difficult and inefficient construct as access to any of the sub tables has to
be made directly through the parent table. In the example, the 4th Dimension database
has a multi-level parent sub-table relationship, with Meanings as a sub-table of
Headword and both Entries and Synonyms as sub-tables of Meanings. This means that
to find any synonyms of a given Meaning, the Headword table must first be traversed to
find that meaning and then a nested query executed to find any associated synonyms.

ii

i

iii

iv

v

14

This is a very difficult structure to program data retrieval and update queries for and
has been simplified considerably by moving to a fully relational model.

As illustrated by annotation iii, on figure 3, the 4th Dimension database also had a
number of unused temporary tables that were consuming valuable resources.
Furthermore as the printed NZSL Dictionary was printed directly from this database it
also contained a lot of irrelevant data such as that used for the formatting of the hard
copy NZSL Dictionary as illustrated by annotation v.

As a consequence of this database not conforming to a relational model and a lack of
data and referential integrity constraints, the data stored within the database had
developed into an inconsistent state. This un-relational nature meant that it was difficult
and inefficient to query the data structures and has been simplified a great deal by
moving to a relational model.

4.2 Original Database Data

The data that was stored in the original 4th Dimension database can be divided up into
five logical groups.

• Signer Information: Data related to the people who took part in the initial
information gathering process.

• Session Information: Data directly related to the information gathering sessions,
such as which signers took part, what VHS (Video Home System) video tape was
used to record the session and the signs that were investigated.

• Sign Information: Details that were collated about each sign as a result of the
information gathering process. There was a great deal of information stored
about each sign, including when and in which context it should be used correctly
and how it is signed.

• Conceptual Meaning Information: Information regarding how the NZSL sign
meanings relate to the conceptual meanings associated with English words. This
included information regarding the one English headword whose meaning was
most similar to that of the NZSL sign, a definition of the meaning given by
example English sentences and any other English words whose meanings were
synonyms to the meaning of the NZSL sign. This involved a number of tables in a
complicated web of linguistic relationships.

• Dictionary Information: Data that was used specifically to produce the paper-
based, published NZSL dictionary. This included details of layout and the
ordering of the signs within the dictionary.

15

4.3 Pictures

The original 4th Dimension database also contained a number of artistic representations
of the NZSL signs. An example of one of these is shown in figure 4. These images were
stored in an Adobe Illustrator format.

4.4 HamNoSys

The original 4th Dimension Database included a HamNoSys encoding for a number of
the NZSL signs.

As an example the HamNoSys
representation of the NZSL sign computer is
displayed in figure 5. By comparing the
HamNoSys string illustrated in figure 5 with
the pictorial representation of the sign in
figure 4 we can observe how the hand shape
is represented by the iconic images shown in
table 4-1. This shows the signers dominant
hand (right hand in this picture) has all
fingers extended and is bent which is
illustrated by the horizontal bar in the
HamNoSys character. The signer’s recessive
left hand is cupped with the thumb
extending downwards. Dominant and
recessive hands in NZSL are determined by
the signers handedness

Figure 4: Artistic representation of the NZSL sign
computer

Figure 5: HamNoSys encoding for the NZSL sign for “computer”.

Dominant Hand Shape Recessive Hand Shape

Table 4-1 Comparison of the HamNoSys encodings of right and left hand shapes for the
sign computerProject Phases

16

4.5 Learning NZSL

The first major component of my project involved participating in the DEAF 101 course
offered by the School of Linguistics and Applied Languages at Victoria University. This
is a beginners’ course in NZSL which emphasises

“the acquisition of basic receptive and expressive skills in sign language
for every day communication and includes information about aspects of
grammatical structure and Deaf community and culture”. (VUW Deaf
Studies, 2005)

This course was invaluable in aiding me to better understand a number of aspects of
NZSL. These included the fact that the grammatical structure of NZSL differed from
that of English and that signs may have different lexicon from one region to another.
The difference between the grammatical structures of NZSL and English is best
illustrated by figure 6 (from McKee and McKee, 2002).

Figure 6: Comparison of English and NZSL Grammar.

 Another important aspect of NZSL that I was able to better understand through my
studies in DEAF 101, was that NZSL signs involve more than just hand movements and
that they are dependent on other body language such as the eyes, mouth and eyebrows.
One prime example of this is illustrated below where the signs for both heavy and light
are displayed.

17

 Heavy Light

Figure 7: Comparison of the NZSL signs for both heavy and light.

Notice how similar the signs are with only a slight variation in the eyebrows and the
speed of the bounce, yet these two signs have completely opposing meanings.

While completing this course was no easy task, having joined three weeks into the
semester, I found it a thoroughly enjoyable and rewarding experience and am now able
to carry out a somewhat primitive conversation in NZSL similar to that shown below.

Signer A Signer B

Hello
Hello

My Name is (finger spell name), What is your name?

My name is (finger spell name), Where do you live?

I live in a flat in Thorndon, Where do you live?

I live in Upper Hutt.

Yes I have one Brother and one sister . Do you have any pets?

Yes I have one cat named (fingerspell name) and one dog

Which way to the bathroom?

Down the hall to the left

Thank you. Nice to meet you

Nice to meet you too

Do you have any Brothers or Sisters?

Figure 8: Example of simple NZSL conversation.

4.6 Extracting the old Data

The most important phase of this project involved the extraction of the relevant data
from the original 4D Database. This was complicated by a number of factors and took
much longer then anticipated.

18

4.6.1 Database Security

The original Database designer had enforced tight security constraints on the database
as to what the users were authorised to access. This made it difficult to enter the
database design mode and therefore limited the tools available for the extraction. The
only available option for Data extraction in user mode was to print reports to PDF files.
As the original database designer was no longer contactable and we had no
administrator password this posed a significant problem.

In order to solve this problem we found a solution where it was possible to force a
procedure loaded on one of the form events to run in debug mode. This was achieved
by pressing and holding the control, alt and apple keys in order and then double
clicking the form. This is illustrated in figure 9 below. Once this procedure was running
in debug mode it was possible to edit the procedure. This allowed us to enter the
database design mode without requiring an administrator password.

Figure 9: 4th Dimension procedure running in debug mode

4.6.2 Extraction Scripts

Having access to 4th Dimension’s design mode enabled the writing of specific extraction
procedures that could be loaded onto the existing form events. Unfortunately 4th
Dimension does not support SQL (Structured Query Language) as a data manipulation
Language and instead provides its own scripting language.

19

The 4D scripting language is a very extensive Pascal-like language with a rich library of
functions and control structures. However due to the obsolete nature of the 4th
Dimension database system there was an inherent lack of API (Application
Programming Interface) resources available. Although we were able to source a copy of
the original HTML (Hyper Text Mark up Language) based 4th Dimension Language
Reference that was supplied with the Database. This enabled me to write the below
procedure for the specific output of some of the data into delimited text files:

If(Form Event = 4)

OutputForm([Table],”StandardOut”); //Set Output Form
FldDelimit = 35; //ASCII Code for Field Delimiter
RecDelimit = 36; //ASCII Code for Record Delimiter
ExportText([Table],”./Filename.txt”); //Export Data

End if

Figure 10: Procedure used for the extraction of Data from the 4th Dimension Database

As illustrated by the procedure above it is necessary in 4th Dimension to set the Output
Form for the table of which the data is to be extracted. This is because 4th Dimension will
only output the fields that are displayed on the currently loaded form for that table. This
in it self became a problem as a number of the data tables did not have an associated
form which contained all of the data fields.

Furthermore it was not possible to simply create a new form with all the data fields, as
when attempting to save this new form the 4th Dimension database runtime would crash
displaying the vague OSX error illustrated in figure 11 below:

Figure 11: Error message displayed when saving or printing from the 4th Dimension Database

Fortunately I discovered another more generalised method that could be called, for the
extraction of the data from the table files as illustrated in the procedure below:

20

If (Form Event = 4)
 Extract Data (“Table”;*;); //Display Export Dialog

End if

Figure 12: Generic and customisable extraction procedure

Executing the above code would display a Data Export dialog box like that shown in
figure 13. Using this dialog it was possible to select which fields to export, the delimiters
to use and the format of the output file. This was the method that was used to export the
majority of the Data from the 4th Dimension Database.

Figure 13: Export dialog displayed as a result of running the procedure in figure 12

4.6.3 Sub Tables

Unfortunately 4th Dimension does not adhere to a purely relational model. One of the
unusual “features” that it offers is sub-tables, tables that are associated with and only
accessible through their parent tables. This meant that it was not possible to use the
aforementioned output dialog method to extract data from tables that had associated
sub-tables, without loosing the information stored within these sub-tables and the links
to the parent tables.

This was a significant problem as the original 4th Dimension Database contained a
number of these sub-tables as illustrated in figure 14 below:

21

Figure 14 : Section of the 4D Database schema illustrating the use of sub-tables

Figure 14 above shows that Meanings is a sub-table of Headword which in turn has two
sub-tables; Entries and Synonyms. These four tables contain all the data pertaining to
how the NZSL signs relate to English words. Therefore it was vital that this data be
extracted.

To solve this problem it was necessary to use one of the existing printing procedures,
which iterated through the parent table and its associated sub-tables and created a
report containing all this information. We were then able to print this report to a PDF
(Portable Document Format) printer and thus create a PDF copy of the report. A sample
of the PDF document that was created is shown below:

Figure 15 : Example of the PDF that was created in order to extract data from the 4D Database

It was then possible to extract the relevant data from this PDF file and manipulate it into
a format that was able to be stored inside the Postgres Database. This will be explained
in greater detail in section 5.3 Data Manipulation.

22

4.6.4 SIS and CVS Information

Unfortunately however there was no stored procedure available to print out all the
records of the CVS or SIS tables which also contained sub-table relationships. This
meant while it was possible to extract the majority of the data from these tables using
the export dialog method, it was not possible to extract the relationships between these
tables.

As these tables contained information regarding how the dictionary information was
collected and collated, rather then information directly related to the dictionary, it was
deemed a low priority and will need to be extracted in the future. This extraction could
be done by writing an extraction procedure modelled on that used for the extraction of
the NZSL – English correspondence information and then printing this to a PDF similar
to that discussed in 5.2.3. The tables for this data to be imported into have in fact been
designed and created but will need to be populated once this data has been extracted.

4.6.5 Pictures

The original 4th Dimension database also stored a number of artistic drawings for a
subset of all the signs. These drawings were stored in an Adobe Illustrator format.
Investigation has shown that this Adobe Illustrator format is in essence a postscript
image file with some missing postscript packages. This meant that it was possible to
write a shell script to add these packages back into the original image to create a
postscript file. Using shell scripts this file could then be converted into a browser
friendly format such as jpeg (Joint Photographic Expert Group), gif (Graphic
Interchange Format) or png (Portable Network Graphics).

However, the only format in which it was possible to extract these drawings from the 4th
Dimension database using the aforementioned Export Dialog method, was a proprietary
4th Dimension file format. Furthermore once a file containing these pictures had been
extracted it would then be necessary to remove the 4th Dimension file format
information and convert these images as mentioned above. As there was no clear
definition as to where each picture began and finished it was not possible to automate
this process and thus this method of extraction was abandoned.

The next extraction approach taken was to write the procedure in figure 15 to extract
each picture to a picture file. While this procedure was somewhat successful as I was
able to export a picture to a file and then view it, it was not possible to programmatically
specify a filename. This meant that in order to extract the pictures using this method I
would have had to specify a filename for each. This was not possible as there were 4820

23

signs in total stored in the database. In addition there was no way to find out which sign
the current picture related to when specifying this filename.

var OutputHandle
var OutputFileName
If (Form event=4)
 ALL RECORDS([Citation])
 While (Not(End selection([Citation])))
 OutputFileName = [Citation]Citation_ID
 OutputHandle:=Create document(OutputFiSleName;"PICT")
 SAVE PICTURE TO FILE(OutputHandle;[Citation]Picture;)
 CLOSE DOCUMENT(OutputHandle)
 NEXT RECORD([Citation])
 End while

End If

Figure 16: Picture Extraction Script

Before the original database designer left he outputted the contents of the 4th Dimension
database for Peter Andreae. This output also contained copies of the pictures. After
investigation I found that these pictures were actually a complete set of exact copies of
those stored in the database.

This investigation involved outputting a list of filenames and using regular expression
transformations to remove the extra formatting from the sign identifiers that were
stored in the filename. It was then necessary to write a small java program to parse this
list and compare it against the complete list of all sign identifiers, which had associated
pictures. Using this java program I found that a number of these files that Peter had
were incorrectly named and there were a small number of missing pictures which
needed to be manually extracted from the 4th Dimension Database.

4.6.6 Other Extraction Methods

There were a number of other methods identified for the extraction of the data from the
4th Dimension Database. However most of these required a lot of additional funds to
purchase third party software or required a more up to date version of 4th Dimension.

4.6.6.1 ODBC

One of these methods was to create an ODBC (Object Database Connectivity) connection
to the 4th Dimension database and write a program to execute queries to extract the data.
This however required 4th Dimension Server Edition, which retails at $1600.

24

4.6.6.2 Pluggers Software’s Postgres Plugin

Another of these methods involved purchasing a third party 4th Dimension plug-in
which would make it possible to simply clone the 4th Dimension Database into a
Postgres Database. This plug-in however costs $300 and requires 4th Dimension MAC
OSX Version 10.3 and up. The 4th Dimension version that was utilised in this project was
7.0.2.

4.6.6.3 4th Dimension Server and Sybase SQL

Another method that was discovered to extract data from a 4th Dimension Database
would use 4th Dimension Server Edition and Sybase SQL. Using this method it would be
possible to write a 4th Dimension Procedure to create a connection to a Sybase Database
and then write SQL Queries to extract the data from the 4th Dimension database into
associated tables in the Sybase Database. As the Server version of 4th Dimension retails
for $1600 and Sybase for $800, this extraction method was not further considered.

4.6.7 Results

Through these various methods, the majority of the relevant data was extracted into a
collection of delimited text files. These text files were then manipulated into a suitable
format and inputted into the new Postgres database as outlined in section 5.3. The
images were converted to PNG files and their filenames changed to reflect the unique
identifier of the sign that they represent. Following this the image files were moved to a
single directory so that they could be dynamically loaded by the user interface.

4.7 Data Manipulation

Once the data had been extracted from the 4th Dimension Database, it needed to be
manipulated into a format that could be stored in a Postgres Database.

4.7.1 Different Operating Systems

As the 4th Dimension Database was stored on a MacOSX operating system, there were
differences in the data representation. In order to fix this, files created on the MacOSX
architecture had to be run through a script to translate end-of-line characters from
Carriage Returns (CR) that are used on Mac to Line Feed’s (LF) that are used in Unix.
This needed to be done before any other scripts could be run on these text files to do
things such as sort the records and remove duplicates.

25

4.7.2 Referential Integrity Constraints

Version 7.0.2 of 4th Dimension did not support referential integrity constraints. This
meant that when attempting to enter the data extracted from the 4th Dimension
Database into the new Postgres database there were a number of referential integrity
violations.

Examples of such referential integrity violations included information regarding one of
the signers (Claire Holtham) who was married to Matthew Holtham during the original
data collection phase. Claire’s details were stored against her maiden name in one table
and stored with her married name in another. In this instance it was possible to infer
that these two records related to the same person, through comments detailed in one of
the records.

4.7.3 Data Entry Errors

As the original database did not enforce referential integrity constraints, there were also
a large number of spelling and data entry mistakes in the data that was extracted from
the 4th Dimension Database. This required a lot of time to manually compare records
between tables to see where the errors existed and to attempt to infer the correct format
for the data.

4.7.4 Case Sensitivity

As Postgres is case sensitive and 4th Dimension is not there were also problems
associated with referential integrity constraints that were placed upon text fields. In
order to solve this problem it was necessary to use regular expressions to manipulate
the text files so that the use of capital letters would be consistent. It was important
however to ensure that none of the meaning of the data was lost through this
manipulation, for example the removing capital letters from nouns.

4.7.5 Maori & Foreign Language Words

Problems also arose from the use of special characters for Māori and foreign language
words. This would not have been such a problem if the use of these characters was
consistent, however the 4D database contained instances where the same word would
be stored with an accent in one table and without in another. The short term solution to
this was to simply remove all these special characters. The correct solution which will
need to be carried out over summer and will require a lot more time is to manually
match these characters up with those which are printed in the NZSL Dictionary.

26

4.7.6 HamNoSys

The HamNoSys encodings stored in the dictionary also posed a significant problem to
extract. This HamNoSys encoding is implemented in a font package that is available in
both true type format (ttf) and as an apple font.

The problem that arose was that the data in the original 4th Dimension database was
encoded using Version 2 of the HamNoSys font. The current version, version 4 is the
only version that is available for download from the University of Hamburg’s website.
Since version 2 there have been some minor changes to the mapping of characters above
ascii 127. From correspondence with Thomas Hanke from the University of Hamburg it
was found that these mappings should only affect encodings that were made using a
windows version of the font. The reason that the HamNoSys was not displaying
correctly was that this font was not installed when the data was extracted. This meant
that it was necessary to re-install this font on the MACOSX machine and then re-extract
all of the HamNoSys encodings.

4.7.7 PDF Data Extraction

In order to extract the English to NZSL correspondence information from the database it
was necessary to print this information to a PDF file. A sample of the format of this PDF
is displayed in figure 14. Converting this data into a format that could be read into
Postgres using SQL commands involved using regular expression transformations and
Macro programs written in emacs.

Once this data had been converted into a machine readable format, I was able to write
Java programs to parse this data. These java programs were used to create the specific
SQL COPY commands for each of the four tables whose data was stored in the PDF file.
Once the SQL commands had been constructed, the data was entered into the Postgres
Database and any Database Constraint violations were manually resolved.

4.8 New Database Design

When designing a new Postgres database to store data extracted from the 4th Dimension
database, it was necessary to retain much of the original structure. This was to ensure
that none of the original meaning of the data was lost. It was possible however to
improve upon the original database structure by adding a number of constraints to the
data to ensure its validity and consistency.

27

Example of these constraints included referential integrity constraints between tables,
such as Signer and SIS (Signer Information Session) where, in the old system it was
possible to have a Signer Information Session without a participating signer. As 4th
Dimension did not support referential integrity constraints there were a number of data
inconsistency problems encountered when these constraints were added which needed
to be manually resolved.

One area where the original schema was significantly modified however was the tables
which stored information regarding the NZSL – English correspondence. As mentioned
earlier these tables were implemented as a single table Headword with associated sub
tables. These sub tables were redesigned from the non-relational structure in figure 14 to
a fully relational model illustrated in figure 17.

Sign

Signer

Meaning

Word

Tape

HasContains

Sign
Meanings

SynonymHeadword

Usage Keyword

Has Has

Figure 17: Skeleton EER Diagram of the new Postgres Database

After designing and constructing this new Relational Postgres Database the extracted
Data had to be inserted. This was a very arduous task due to a number of data

28

inconsistencies which had to be manually resolved. A more complete outline of the
database structure with the SQL schema definition can be found in Appendix A

4.9 User Interface Design

The two main design goals in building the user interface for the Dictionary was to make
it as simple and functional as possible whilst maintaining extensibility. This simplicity is
illustrated in figure 18 where the NZSL Dictionary Homepage is displayed with links to
the different search types available and the ability to login, in order to update the signs.
Each of these links relates directly to one of the specific use cases that were identified in
the system requirements phase.

 Figure 18: NZSL Dictionary Home Page

Due to the limited timeframe available for this phase of the project, the main goal in
building the user interface was a working prototype for a future implementation. This
meant that only a limited amount of the overall functionality was implemented. The
current user interface has the ability to search and update signs based on a wide range
of criteria but not particularly easily.

One of these searches is illustrated in figure 19 where the user is browsing for a sign
based on the alphabetic ordering of the English Headword (English word whose
meaning is most like that of the NZSL sign).

The sheer volume of data that is stored in the dictionary about each sign made it
difficult to design simple user interface forms. To solve this problem I broke up the
information stored about each sign into specific groups. Examples of such groupings
included general sign information vs. information regarding the location of where the

29

sign originated from and was used. Figure 20 illustrates some of the information that is
stored relating to the NZSL sign for the Maori word whakairo (carving).

Figure 19: NZSL Dictionary Displaying all
NZSL signs with an English Head Word
beginning with an ‘A’

Figure 20: Sign Details of the NZSL Sign for
the Maori word whakairo (carving)

In order to ensure that users with disabilities such as those who have vision
impairments are able to easily make use of the Dictionary, the Interface was designed
with extensive use of CSS (Cascading Style Sheets). The intention of this was to allow
users to specify their individual preference as to which style is displayed.

Suffering from colour blindness myself this is something which I can easily relate to. My
colour blindness also means that the present colour scheme of the prototype user
interface will most likely be changed or altered to the preferences of the DSRU, the use
of CSS will make this a very straightforward change.

4.10 Testing

4.10.1 User Interface Testing

Once I had designed and built the user interface, it was important to test that it was
displayed correctly under a number of different conditions. These conditions included
the web browsers that the client was using and versions of these browsers, the
Operating System that was running, the screen resolution and having both cookies and
JavaScript disabled.

Testing these factors involved performing five of the major use cases that were
identified.

30

• Searching for a particular sign based on the English equivalent
• Browsing signs by alphabetical order
• Searching for a sign based on properties of the sign
• Updating a sign
• Looking up the meaning of a sign and its synonyms
• Authenticating the user

These test cases were performed using the most popular web browsers as illustrated
below under the three main Operating System variants Windows (Windows Server
2003), UNIX (NetBSD) and Apple’s MAC OSX.

• Mozilla Firefox Version 1.0.6
• Mozilla Version 1.7.11

• Microsoft Internet Explorer Version 6.0
• Microsoft Internet Explorer for MAC Version 5.2

• NetScape Navigator 7.1

• Konqueror Version 3.4.2

These tests were also carried out under the following screen resolutions 1280x1024 and
800x600. This was taken into consideration in order to enable the system to be used by
people who may suffer from vision impairments and need to have their screen
resolution set lower and also to accommodate for users who had older equipment.

These tests resulted in the NZSL Dictionary being displayed correctly and usable in all
tests with only negligible differences in terms of the look and feel of the site.

4.10.2 User Acceptance Testing

It was hoped to conduct usability and user acceptance tests of the dictionary with
members of the DSRU on completion of the prototype interface. However due to the
time constraints and the difficulty of scheduling such meetings, this has not been
possible to date but is expected to be completed over next couple of weeks when the
system is delivered.

4.10.3 Performance & Load Testing

An important consideration in any web-based system is the ability to handle unusually
high or peak levels of load whilst retaining system performance. While it was not
possible to stress test the MCS web server as it also hosts a number of other web sites it

31

was possible to run some tests in order to get insight into the time taken to perform
some of the database queries executed regularly in the system.

4.10.3.1 Test Cases

These tests included

• Creating connections to the database
• Performing a simple select of all the data fields in a single randomly selected sign
• Performing a simple update to one of these signs
• Performing the optimal joining query required to display the meaning of a word

its NZSL sign(s) and any synonyms
• Performing a non-optimal joining query to display the meaning of a word its

NZSL sign(s) and any synonyms
• Searching for a sign based on the English equivalent

4.10.3.2 Method

All the above tests except those run on the 4th Dimension database were run 100,000
times on five separate occasions to take into account the variability of network and
server load. The 4th Dimension database tests used as a comparison were tested using a
smaller sample as these tests had to be performed manually. Results of these tests are
summarised in table 5-1.

4.10.3.3 Results

In order to test the performance gain that could be achieved if PHP was implemented as
a module on the web server rather than running through CGI, I decided to test the
average time taken to create a connection to the backend database. This average after
100,000 iterations taken on five separate occasions was 21ms. In comparison the
difference between the time taken to perform an optimized vs. non-optimized query
was 38ms. This shows that while there would be a significant performance gain by
introducing persistent database connections, a larger performance gain can be achieved
by ensuring that all database queries that are executed are optimal and that only the
required fields and records are returned.

32

Test Average Standard Deviation Minimum Maximum
Optimal Query 14 ms 7 ms 14 ms 302 ms

Non-Optimal Query 52 ms 13 ms 49 ms 358 ms

Simple Update 26 ms 9 ms 18 ms 106 ms

Creating Connections 21 ms 5 ms 19 ms 276 ms

Search 140 ms 24 ms 126 ms 530 ms

4D Search 99 s 4.4 s 92 s 107 s

Table 4-2 Results of performance tests

In order to test the speed of updating signs in the Database, I tested how long it took to
update all the fields of a single record. As updates to the NZSL Database are likely to be
a lot less frequent than database reads this was not as important a test. It would also
have been good to test multiple concurrent connections to the database attempting to
update the same record. This would test the concurrency control and record contention
but this was not so important due to the static nature of the data in the database and the
small number of users who will have write access to the database.

As a base case for comparison I tested the time it took to search for a sign in the old 4th
Dimension Database. The average time taken to search for a sign when the input was
not matched exactly was 99s. In comparison the average time taken to search for the
same sign in the new Postgres Database was only 140ms. This is a remarkable
improvement especially considering that the original 4th Dimension Database search
would often not return any results and once started the search could not be manually
stopped by the user.

33

5 Security

As the DSRU does not currently hold the publishing rights to the data used in this
dictionary it was important to restrict access to the system. Furthermore as this data is
such a valuable resource it is important that its integrity is not compromised by
malicious users.

5.1 Authentication

In order to ensure the validity of the data stored within the database, it was important to
establish constraints on which users were authorised to update the database and what
information they were authorised to access.

There are at least four potential user groups;

• Administrators: That should have full access to the database and the PHP source
code used to build the interfaces. This group included myself, Peter Andreae and
the MCS programmers

• Members of the DSRU: who should be able to update information in the database
using the PHP based graphical user interface

• Students and Staff from Victoria University: due to the copyright on the pictures
held within the database these users need to be separated from the General
public

• Normal Users: Members of the general public

5.2 Authentication Mechanisms

I investigated two authentication mechanisms for handling the authentication of users
within the dictionary system.

The first mechanism involved storing data about the users within the Postgres database
itself. In order to implement this system the database needed to store a tuple (username,
encrypted password, and group) about each user. Using this information, the user
interface would display a login form where users would enter their username and
password. The password would then be encrypted using the same one way encryption
algorithm (such as an md5 hash) as used to encrypt it for the database. The resulting
value is then compared with the encrypted password stored in the database. If it
matches then this user would be authenticated and granted the access permissions
assigned to that group.

34

While this means that the password is not stored in plain text there are still a number of
security flaws. One such flaw in this system is that the password would be transmitted
across the network from the client to the server in plain text and would therefore be
vulnerable to packet sniffing. To solve this problem the web server on which the PHP
interfaces were running would need to implement SSL (Secure Socket Layer) to create a
secure connection between both server and client.

Furthermore as the Web server and Database server are likely to be hosted on separate
machines there is the problem of replay attacks. This is illustrated in figure 21 below
where an attacker could intercept packets from the web server containing the encrypted
version of the password and later use this to gain access to the database. To prevent this
from occurring there would need to be a temporary nonce value added to the
authentication between web server and database server. This however is not such an
important problem, as the communication between the Web Server and Database server
would be carried out within the trusted demilitarized zone. Therefore the threat of
malicious intruders should be significantly decreased through the use of a firewall.

SSL

SSL

Encrypted Password

User
Firewall

Demilitarized Zone

Apache Web Server

PostgreSQL Database Server

Threat of
Replay Attack

Threat of

Packet

Sniffing Attack

Threat Of
Robot Attack

Figure 21: Component Diagram illustrating security vulnerabilities

Another problem with this solution is that it is possible for malicious users to write
Robots (automated programs that search the web) that could lodge a brute force attack
on the system by attempting multiple username password combinations until they are
granted access. To stop this kind of attack on the system an intruder lockout could be
used, whereby if a user exceeds a predefined number of incorrect login attempts their
account is locked out and they can no longer access the system. This could be
implemented by adding an additional field to the user table of the Postgres database for

35

user locks and either setting a default time for the user lock such as two hours, or
requiring that the database administrator manually unlock the account.

A further method of preventing these robot attacks would be to generate a CAPTCHA
image such as that in figure 22 below, where a code is printed slightly distorted against
a background image. The idea of this capture image is to differentiate between a human
and a machine user. While this code will be easily readable by any human user it will be
rather difficult for a computer program without advanced text recognition algorithms.
This however has its disadvantages in that it could become an inconvenience for users
having to enter this code especially if they use the system regularly.

Figure 22: Example CAPTCHA image

The benefit of having this type of authentication is the ability to extend and customise
the system to include different encryption algorithms and the ability to easily change the
security policies associated with different user groups. All of this aids in the
extensibility of the system which was one of the major design goals.

Another important consideration with this proposed authentication mechanism was the
administration of user’s accounts. This was an important consideration as one of the
main design goals was that the system was easy to maintain.

The second authentication mechanism that was considered in this project was using the
current School of Mathematics and Computer Sciences (MCS) Kerberos based security
system to handle authentication into the database. This means that if a user attempts to
perform a restricted operation then they will need to login via the MCS system. This is
done using a simple PHP redirect to the MCS login page. When a user logs into the MCS
system a PHP server variable is set with the username and group(s) that the user
belongs to. These variables can then be used to implement authorisation at the PHP
layer of the system.

Using this system however, means that any authorisation in the system will need to be
either based on the already established user groups Students, Staff and NZSL or on a

36

per user basis. An alternative to this is to use a hybrid approach were the MCS system
handles the user authentication and the user name is then checked against the database
to determine the access group that this user falls into. This allows for the creation of new
user groups in the Database system without requiring that these groups be set up in the
MCS system.

Advantages of this mechanism are that all the administration of user’s accounts and
passwords is handled by either the MCS or SCS systems and thus the database
interfaces need not support such functionality as updating passwords.

A Disadvantage of this system on the other hand is that for any user to have more than
general access permissions that user must have either a Victoria University SCS account
or an MCS account. This is not a large problem at present with the current system aimed
at an internal audience consisting mainly of users from the DSRU and Victoria
University sign language students. However into the future with the database being
delivered to the wider community (subject to the DSRU obtaining the dictionary
publishing rights) it may be advantageous for outside users such as the Deaf
Association of New Zealand to have authorisation to update the database.

5.3 SQL Injection Attacks

A further security consideration to ensure the data integrity in any web based system is
the detection and prevention of SQL Injection attacks. An SQL injection attack is the
technique of “exploiting web applications that use client-supplied data in SQL queries
without stripping potentially harmful characters first” (SPI Labs, 2002).

An example of the negative implications of such an attack can be illustrated by the
following example. Assume the Dictionary was using the first authentication
mechanism discussed in section 6.2 using a web based form and contained the following
database table.

Field Name Field Type Description
User_ID Integer Primary key
Username Varchar(10) Username

Access_Group Varchar(10) Access permissions granted to this user
Password Varchar(100) One way encrypted hash of the password

Table 5-1 Hypothetical Database Table Dictionary_Users

37

Assuming the system created an SQL Database Query such as that illustrated in figure
23 using values entered by the user without any input validation it would be possible to
enter “)’ OR 1=1; --” into the password field in order to produce the query illustrated in
figure 24.

SELECT Access_Group FROM Dictionary_Users WHERE Username =
‘$UserName’ AND Password = ‘MD5($Password)’;

Figure 23: Original Database Query

This would allow the user to gain unauthorised access to the database and thus the
ability to modify the dictionary data, the database structure or even delete the whole
database using UPDATE, ALTER or DROP SQL commands.

SELECT Access_Group FROM Dictionary_Users WHERE Username =
‘$UserName’ AND Password = ‘MD5()’ OR 1=1; --)’;

Figure 24: Database Query after SQL Injection Attack

There are number of methods to detect and therefore prevent the effect of these attacks.
Such methods include simply escaping any special characters found in input from the
user. This would turn the Query displayed in figure 24 above into that shown in figure
25 below.

SELECT Access_Group FROM Dictionary_Users WHERE Username =
‘$UserName’ AND Password = ‘MD5(\)\’ OR 1=1\; \-\-)’;

Figure 25: Database Query after SQL Injection Attack with input validation

When the above query is executed on the Database it will fail as there will not be a user
who’s password is the MD5 hash of “\)\’ OR 1=1\; \-\-”. This was the method that I
chose to use in the implementation of the dictionary system. This was due to the fact
that there are already PHP functions to perform these actions addslashes() and
html_entities() which escape the appropriate characters for the database and html
respectively.

Other methods that were considered included the use of regular expressions to detect
any of these special characters at the PHP server layer of the system before these queries
are submitted to the database. This method was decided against as it would require
extra time to validate the input. Also several of the input fields in the system involve
text that may contain these characters, which means that this method may produce a lot

38

of false positives. It was still possible however to perform some level of value checking
at the web layer before sending queries to the Database.

A further method which was explored includes that introduced by Boyd and Keromytis
2004. This article presents a “practical protection mechanism against SQL injection
attacks” which applies the “concept of instruction-set randomization to SQL, creating
instances of the language that are unpredictable to the attacker” (Boyd and Keromytis,
2004).

This is achieved by appending an integer as a suffix to all of the SQL keywords as
illustrated in table 6-2 and forwarding all Database Queries to an intermediate proxy
between the CGI client and the DBMS.

Original Query Modified Query
SELECT * FROM CITATION
WHERE Citation_ID = ‘computer’;

SELECT123 * FROM123 CITATION
WHERE123 Citation_ID = ‘computer’;

Table 5-2 Use of SQLrand in preventing SQL injection attacks

This proxy implements a modified SQL parser which expects all keywords to have this
integer appended. This means that if the attackers’ SQL injection contains any of the
SQL keywords then this query will be rejected by the intermediate proxy as these
keywords will not contain the random integer value.

However the main problem with implementing this approach in the dictionary is that at
present this is not a common practice, and therefore could cause complications for
future development of the system.

5.4 Maintenance

A major requirement identified early in the design of this system was to reduce the
amount of maintenance that was required. To achieve this goal I have written a shell
script that can be run as a Unix Cron job in the MCS system to vacuum and back up the
database to the file system. This will help to reduce the amount of maintenance that is
needed to be performed. Vacuuming of the database will carry out any necessary
garbage collection from the Postgres Database in order to increase the performance of
the overall system. This script will also create periodical back ups of the database to
reduce the burden of restoring it from tape in the event that the data is corrupted.

39

6 Conclusions and Future Work

6.1 Conclusions

At the completion of this project, all of the major project objectives have been achieved.
All relevant data has been extracted from the 4th Dimension Database and incorporated
into a new full strength SQL based Postgres Database. The structure of this database is
similar in many ways to the original 4th Dimension database with some major
improvements in terms of database normalisation and added data and referential
integrity constraints.

A prototype Dictionary User Interface has been designed, built and deployed on the
MCS Apache web server allowing for the searching and updating of signs based on
properties of the sign and English word equivalent.

The widespread adoption of the internet into society has seen the migration of
numerous legacy systems onto the World Wide Web. This project highlights many of
the benefits and some of the inherent difficulties involved with converting one such
legacy system.

Some of these benefits include a more accessible system, with the ability to support
multiple concurrent users. The speed at which users are able to search for and view
information regarding NZSL signs has also been greatly increased. This is illustrated by
the performance tests in section 5.6.4 where the average time required to search for a
sign is now only 140ms compared with 99s in the 4th Dimension Database.

A lot of the difficulties encountered in this project were a result of a lack of available
knowledge and information resources on the 4th Dimension Database. The effect of
many of these problems could have been largely mitigated if documentation on the
original system had been produced or comments had been included within the database
modules.

A lot of time and effort in this project was also spent manually cleaning and comparing
the data extracted from the old 4th Dimension database in order to manipulate it into a
consistent state such that it could be inserted into the new database. Much of this work
could have been avoided had the original database contained adequate data integrity
constraints. However, as is common for legacy systems, this was not the case.

40

6.2 Future Work

6.2.1 User Acceptance Testing

The next important phase in this project will be the user acceptance testing with
members of the DSRU. This phase will no doubt uncover further requirements that will
need to be addressed before the end system is delivered.

6.2.2 Audit Trail

In order to protect the integrity of the data, it is vital that there be some mechanism set
up to record all updates to the database so that these can be rolled back if necessary to
prevent data from being lost or corrupted. At present any updates to the data in the
database simply overwrite the previous data.

This is not such a critical problem at present with the database being hosted on the MCS
system where regular tape backups are run overnight, but this is not an optimal solution
for the long term.

6.2.3 Image Optimization

While converting the postscript images to PNG format has significantly reduced the file
size of the sign images from approximately 100 kilobytes to approximately 20 kilobytes,
these images could still be further optimized without reducing the quality of the images.
This would give a performance improvement to the Dictionary especially on pages
which contain a large number of these images.

6.2.4 Special Characters

For the Dictionary to be culturally sensitive and retain its credibility, it is essential that
the special characters that had to be removed from the Maori and Foreign language
words be restored. This will require these characters be manually checked against those
in the printed dictionary.

6.2.5 Video Clips

A further requirement that will need to be addressed is the extension of the dictionary
interface and Database to accommodate the new video footage and information that is
presently being collected by the DSRU.

41

6.2.6 User Interface

To make this system more accessible and user friendly it would be beneficial to redesign
or improve upon the prototype user interface with input from the DSRU. With input
from the DSRU it may be possible to reduce the amount of information that has to be
displayed regarding each sign. This could be achieved by only displaying the most
significant information about each sign with the ability to drill down. This was not
possible in the development of the prototype system as I was not in a position to
determine the significance of this information.

6.3 Future Extensions

There are many ways in which this system could be further extended and improved
upon.

6.3.1 Forum

It may be beneficial to have some sort of bulletin board or forum linked to the NZSL
Dictionary. This forum could be used as a communication mechanism for researchers
working on the NZSL Dictionary.

There are a number of Open Source PHP based forum packages that could be used for
such a purpose. One such package is phpBB2. I have installed and created some simple
forums using this package in order to demonstrate to the DSRU. This message board is
illustrated in figure 26. Such a system however would require some maintenance and
therefore could be considered as a future project for the DSRU.

42

Figure 26: Forum for discussion of aspects of NZSL and general Deaf Culture

6.3.2 Virtual Human Signing

The use of a virtual human figurine to sign the NZSL signs included in the dictionary or
as a virtual guide could also be a good extension of this project. This could be based on
the work undertaken in the School of Computing Science at the University Of East
Anglia in the ViSiCAST –Virtual Signing Capture Animation Storage and
Transportation project— (Bangham et al, 2000) and the e-Sign project undertaken at the
University of Hamburg (Hanke, Popescu and Schmaling, 2003). These projects have set
out to transform the HamNoSys encoding of British Sign Language, “Deutsche
Gebärdensprache” German Sign Language and “Nederlandse Gebarentaal” Dutch Sign
Language signs into SiGML (Sign Gesture Mark-up Language). SiGML is an XML based
specification which describes aspects of signs such as the hand shape(s), movement and
location in signing space as well as information regarding the signers facial expressions.
Using this SiGML, animation cues can be sent to a virtual avatar to create animation
frames. Figure 18 shows the avatar “Visia” from the ViSiCAST project signing a
television news item.

43

Figure 27: Virtual Signer avatar “Visia 2” signing a television news item

The ViSiCAST project has created a prototype java program for the transformation of
HamNoSys into SiGML. This program is based on Terence Par’s Antlar translator
generation system. The output of running this program on the HamNoSys encoding for
the DGS sign “Going-To” (figure 28) is shown in figure 29.

Figure 28: HamNoSys representation of the German Sign Language sign “Going-To”

44

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE sigml SYSTEM "sigmlv0.dtd">

<sigml>

<avatar url="Simon.ava" id="A" alt="Simon"/>

<sign gloss="GOING-TO">

<hamnosys_sign lr_symm="parallel">

<handposture

handshapeclass="ham_finger2"

thumbpos = "ham_thumb_outmod"

extfidir="direction_uo"

palmor="direction_l">

</handposture>

<par_movement>

<straightmovement

direction="direction_o"

curve="direction_u"

/>

<handposture extfidir="direction_do"/>

</par_movement>

</hamnosys_sign>

</sign>

</sigml>

Figure 29: SiGML representation of the German Sign Language sign “Going-To”

The use of such a virtual signer might provide Deaf users with easier access to the
dictionary information as it would be presented in their natural language.

6.3.3 Movement Specification

A future extension of this project would be the ability to search for signs based on a
specification of the movement involved. This could be based on the manipulation of a
three dimensional human figurine similar to the virtual signing avatars discussed in
section 7.2.3. This would allow novice signers the ability to look up signs they had
encountered but not understood in order to ascertain their meaning. A 3D based virtual
signer such as this, with the ability to specify signing movement was also investigated
by Scott (2003).

6.3.4 Mobile and PDA Access

A further extension of this could be to redesign the prototype user interface for smaller
display mobile devices such as mobile phones and PDA’s. This would further improve
the accessibility of information regarding NZSL.

45

Bibliography

4th DIMENSION. URL: http://www.4D.com/. Accessed October 2005

ACI. 4th Dimension Language – Reference Manual. 1999

APTE, V., HANSEN, T., REESER, P. Performance Comparison of Dynamic Web
Platforms. 2001

BANGHAM, JA., COX, SJ., ELLIOT, R., GLAUERT, JRW., MARSHALL, I. Virtual
Signing: Capture, Animation, Storage and Transmission – an Overview of the ViSiCAST
Project. 2000

BANGHAM, JA., COX, SJ., LINCOLN, M., MARSHALL, I. Signing for The Deaf Using
Virtual Humans. 2000

BOYD, S., AND KEROMYTIS, A. SQLrand: Preventing SQL injection attacks, 2004.

CLARK, D. PHP Security Mistakes. 2004 URL:
http://www.devshed.com/c/a/PHP/PHP-Security-Mistakes/ Accessed October 2005

DEAF ASSOCIATION OF NEW ZEALAND. URL: http://www.deaf.co.nz/. Accessed
October 2005.

DEAF TODAY. Various Archived Newspaper Articles. URL:
http://www.deaftoday.com/. Accessed October 2005

DYSON, R. New Zealand Sign Language Bill First Reading. 22 June 2004

HANKE, T. POPESCU, H., SCHMALING, C. eSIGN – HPSG-assisted Sign Language
Composition. Gesture Workshop 2003

HANKE, T., SCHMALING, C. Hamburg Sign Language Notation System. University of
Hamburg. URL: http://www.sign-lang.uni-hamburg.de/Projects/HamNoSys.html.
Accessed October 2005

JEPSON, B., PostgreSQL vs. MySQL: Building Better Databases. 2001. URL:
http://www.webtechniques.com/archives/2001/09/jepson/. Accessed October 2005

46

JOYE. P., JANSEN, M., CASTAGNETTO, J., KNOWLES, A., COX, T., PARISE, J.,
BAKKEN, S. The PEAR Group. PHP Extension and Application Repository. URL:
http://pear.php.net/. Accessed October 2005

KENNEDY, G., Ed. A Dictionary of New Zealand Sign Language. Auckland University
Press/Bridget Williams Books, 1997.

LOCKER MCKEE, R., MCKEE, D., New Zealand Sign Language Grammar : A guide for
learners. Wellington [N.Z.] : School of Linguistics and Applied Language Studies,
Victoria University of Wellington, 2002.

MAHONY, J. Sign Language Gets Own Easy to Use Dictionary. New Zealand Herald.
15-2-2003.

MOOKHEY, K., BURGHATE, N. Detection of SQL Injection and Cross Site Scripting
Attacks. 2004

MYSQL AB. URL: http://www.mysql.com/. Accessed October 2005

New Zealand Sign Language Bill, 2005 (House of Representatives)

PENMAN, P. Deaf way, deaf view: a study of deaf culture from a deaf perspective.
Master’s thesis, Victoria University, 1999.

PERUDE , T. PHPBuilder.com - MySQL and PostgreSQL Compared, 2000. URL:
http://phpbuilder.com/columns/tim20000705.php3?page=1. Accessed June 2005.

PLUGGERS SOFTWARE. PostgreSQL PLUGIN. URL:
http://www.pluggers.nl/postgresql_plugin.html. Accessed October 2005

SAETHER BAKKEN, S., AULBACH, A., SCHMID, E., WINSTEAD, J., TORBEN
WILSON, L., LERDORF, R., ZMIEVSKI, A., AHTO, J. PHP Manual. The PHP
Documentation Group, 2002

SCOTT, S. A Search Facility for a New Zealand Sign Language Dictionary. 2003

SPI LABS. SQL Injection : Are Your Web Applications Vulnerable? White Paper. 2002

47

STRANGE, H. Office of the Clerk of the House of Representatives. URL:
http://www.clerk.parliament.govt.nz/Programme/Committees/Submissions/jenzsl.ht
m/ Accessed October 2005

THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL 8.0.3
Documentation.

TITCHKOSKY, L., ARLITT, M., AND WILLIAMSON, C. A performance comparison of
dynamic web technologies. SIGMETRICS Perform. Eval. Rev. 31, 3 (2003), 2-11.

VICTORIA UNIVERSITY. Deaf Studies 101. URL:
http://www.vuw.ac.nz/lals/courses/DEAF-101.aspx Accessed October 2005

48

Appendix A SQL Database Schema Definition

--Stores information about NZSL signs

CREATE TABLE Citation(

Gloss varchar(40),

VariantNumber int,

Example varchar(55),

Receipe Text,

Hint Text,

Comments Text,

Signer varChar(40) CONSTRAINT CitationRefPeople REFERENCES

People(FullName),

Tape_ID varChar(20) CONSTRAINT CitationRefTapes REFERENCES Tapes,

 Sequence int,

 WN_Valid varchar(3),

 WN_CVS varchar(40),

 CH_Valid varchar(3),

 CH_CVS varchar(40),

 AK_Valid varchar(3),

 AK_CVS varchar(40),

 Waikato_Valid varchar(3),

 HawkesBay_Valid varchar(3),

 Taranaki_Valid varchar(3),

 Manawatu_Valid varchar(3),

 Otago_Valid varchar(3),

 Southland_Valid varchar(3),

 HamNoSys varchar(80),

 Directional Boolean,

 Orienting Boolean,

 Variable_Tab Boolean,

 One_Or_Two_Hand Boolean,

 Say varchar(40),

 Repeats int,

 Locatable Boolean,

 Complex varchar(20),

 Head varchar(20),

 Eyebrows varchar(20),

 Eyes varchar(20),

 Mouth varchar(30),

 Tonuge varchar(20),

 Cheeks varchar(20),

 Shoulders varchar(20),

 Body varchar(30),

 Elbows varchar(20),

 Feet varchar(20),

 Last_Updated Date,

 Citation_ID varchar(45) CONSTRAINT CitationPK PRIMARY KEY,

 Batch_Number int,

 QA Boolean,

49

 Fingerspelling Boolean,

 Origin varchar(3),

Created Date,

QA_Text varchar(6),

QA_Artwork varchar(6),

QA_Notation varchar(6),

QA_Synthesis varchar(6),

QA_Performance varchar(6),

QA_Deaf_Review varchar(6),

QA_Final_Review varchar(6),

Lip_Pattern varchar(20),

Number_Incorp Boolean,

Special_Valid varchar(3),

Special_CVS varchar(40),

HNS_HS varchar(15),

HNS_TAB varchar(20),

Tab_ADJ int,

HS_class int,

HNS_HNS_sort varchar(80),

Concise Boolean

);

--All words includes both synonyms and Headwords

CREATE TABLE Word(

Word varchar(50) PRIMARY KEY

)

--Description of how a sign is used

CREATE TABLE Usage(

Usage varchar(20) CONSTRAINT UsagePK PRIMARY KEY,

);

--Information regarding the VHS tapes used to record signer information sessions

CREATE TABLE Tapes(

 Tape_ID varchar(20) CONSTRAINT TapesPK PRIMARY KEY,

 Last_Backed_Up Date,

 Title varchar(20),

 Length int,

 Where_Held varchar(20),

 Prefix varchar(10),

 Number int

);

--Information regarding a synonym of an NZSL sign meaning

50

CREATE TABLE Synonyms(

MeaningID int, --Link to the meaning this synonym belongs to

Synonym varchar(40), --The synonym itself

Rank int, --The rank of this synonym in the meaning

CONSTRAINT SynonymsPK PRIMARY KEY(MeaningID,Synonym),

CONSTRAINT RankUnique UNIQUE(MeaningID,Rank)

);

--Information regarding a signer involved in the information gathering process

CREATE TABLE People (

FullName varchar(40) CONSTRAINT PeoplePK PRIMARY KEY,

Surname varchar(20),

FirstNames varchar(20),

Address text,

Phone1 varchar(20),

Phone2 varchar(20),

Phone3 varchar(20),

AgeGroup varchar(20),

Region varchar(20),

Notes text

);

--Information regarding words that were identified as important for investigation by
linguists

CREATE TABLE Merged_Word_List(

Ahlgren boolean,

CofE boolean,

Costello boolean,

Flynn boolean,

Frisby boolean,

Johnston boolean,

Levitt boolean,

Nation boolean,

Sternberg boolean,

Word varchar(45),

Authors varchar(27)

);

--The relation between a words meaning and its citation/sign

CREATE TABLE Meaning_Citations(

CitationID varchar(45) CONSTRAINT MeaningCitationsRef REFERENCES Citation,

 --The citation that represents this meaning

HeadWord varchar(50), --The headword of the Meaning that this citation

relates to

MeaningRank int, --The rank of the Meaning that this Citation relates to

51

CONSTRAINT Meaning_CitationsPK PRIMARY

KEY(CitationID,HeadWord,MeaningRank)

);

--The meaning of a sign or English word

CREATE TABLE Meaning(

Headword varchar(50) REFERENCES Word(Word),

MeaningRank int,

Use text,

Comments Text,

CONSTRAINT MeaningPK PRIMARY KEY(Headword,MeaningRank)

);

CREATE TABLE Keyword(

Keyword varchar(45) CONSTRAINT KeyWordPK PRIMARY KEY,

);

--Relationship between a word and it's meaning

CREATE TABLE Has_Meaning(

Synonym varchar(50) REFERENCES Word,

SynonymRank int,

HeadWord varchar(50),

MeaningRank int,

CONSTRAINT Has_MeaningPK PRIMARY KEY(Synonym,Headword,MeaningRank),

CONSTRAINT Has_Meaning_Unique UNIQUE(SynonymRank,HeadWord,MeaningRank),

CONSTRAINT Has_MeaningReferencesMeaning FOREIGN KEY (HeadWord,MeaningRank)

REFERENCES Meaning (HeadWord,MeaningRank)

);

CREATE TABLE Citation_Keyword_List(

Citation_ID varchar(45) CONSTRAINT CKLRefCitation REFERENCES Citation ON

DELETE CASCADE,

Keyword varchar(45) CONSTRAINT CKLRefKeyword REFERENCES Keyword ON DELETE

CASCADE,

CONSTRAINT Citation_Keyword_ListPK PRIMARY KEY(Citation_ID, Keyword)

);

CREATE TABLE Citation_Usage_List(

Citation_ID varchar(45) CONSTRAINT CULRefCitation REFERENCES Citation ON

DELETE CASCADE,

Usage varchar(20) CONSTRAINT CULRefUsage REFERENCES Usage ON DELETE

CASCADE,

CONSTRAINT Citation_Usage_ListPK PRIMARY KEY(Citation_ID, Usage)

);

CREATE TABLE SISSigners(

Name varchar(40) CONSTRAINT SISSignersRefPeople REFERENCES

People[FullName], --Problem with this line

SIS_ID varchar(45) CONSTRAINT SISSignersRefSIS REFERENCES SIS,

52

CONSTRAINT SISSignersPK PRIMARY KEY (Name, SIS_ID)

);

CREATE TABLE SISTapeIDs_Used(

Tape_ID varchar(20) CONSTRAINT SISTapeIDs_UsedRefTapes REFERENCES Tapes ON

DELETE CASCADE,

Index int,

SIS_ID varchar(45) CONSTRAINT SISTapeIDs_UsedRefSIS REFERENCES SIS ON

DELETE CASCADE,

CONSTRAINT SISTapeIDs_UsedPK PRIMARY KEY (Tape_ID, SIS_ID)

);

CREATE TABLE SIS_Gloss_List(

 Gloss varchar(40),

 SIS_ID varchar(45), CONSTRAINT SISRef REFERENCES SIS,

 Tape_ID varchar(20) CONSTRAINT TapeIDRef REFERENCES Tapes,

 Counter Time

);

CREATE TABLE SIS(

SISDate Date, --Renamed as Date may cause problems

SISTime Time, --Renamed as Time may cause problems

Region varchar(20),

TopicsCovered Text,

Location varchar(20),

Convenor varchar(20),

Notes Text,

SIS_ID varchar(45) CONSTRAINT SISPK PRIMARY KEY

);

CREATE TABLE Word_Counts(

Word varchar(40),

Count int,

Constraint Word_CountPK PRIMARY KEY(Word,Count)

);

CREATE TABLE CVSTapeIDs_Used(

Tape_ID varchar(20) CONSTRAINT CVSTapeIDs_UsedRefTapes REFERENCES Tapes ON

DELETE CASCADE,

Index int,

CVS_ID varchar(40) CONSTRAINT CVSTapeIDs_UsedRefCVS REFERENCES CVS ON

DELETE CASCADE,

CONSTRAINT CVSTapeIDs_UsedPK PRIMARY KEY (Tape_ID, CVS_ID)

);

CREATE TABLE CVSSigners(

Name varchar(40) CONSTRAINT CVSSignersRefPeople REFERENCES People

[FullName],

CVS_ID varchar(40) CONSTRAINT CVSSignersRefCVS REFERENCES CVS,

CONSTRAINT CVSSignersPK PRIMARY KEY (Name, CVS_ID)

);

53

Appendix B 4D Database Structure

