
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: of�ce@mcs.vuw.ac.nz

A Domain Independent Approach
to Multi-class Object Detection

using Genetic Programming

Urvesh Bhowan

Supervisor: Dr Mengjie Zhang

October 24, 2003

Submitted in partial ful�lment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract
Object detection is the process of automatically �nding objects of interest within an

image. Given the abundance of information now captured and stored in electronic form,
this is fast becoming a useful and challenging machine learning and computer vision
task. This project uses a domain independent genetic programming approach to solve
four multi-class object detection problems ranging in dif�culty levels. Three methods
were investigated, all using different features sets based on local-region pixel statistics.
A new measure, program size, was also introduced to the �tness function with the aim
of favoring the evolution of smaller programs over larger, complicated ones. The new
�tness function with program size proved more effective and ef�cient, and the evolved
programs using this �tness function were much shorter and easier to interpret. While the
classi�cation method greatly reduced training times than the basic detection method, it
could not improve the detection performance. The two-phase method with a secondary
training phase always gave a better detection performance than without.

Acknowledgements

I would like to thank my supervisor Dr Mengjie Zhang for his support and useful feedback
throughout the duration of this project. I would also like to thank the honours students in
Memphis namely, Ben, Bunna, Simon, Jerome, Justin, Annie, Donald, Will and Richard, who
were always working hard but never too busy to lend a helping hand, and Jane, for putting
up with me.

i

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Contributions . 3
1.3 Structure . 3

2 Background and Literature Review 4
2.1 Overview of Machine Learning . 4
2.2 Genetic Paradigms . 5
2.3 Overview of Genetic Programming . 5

2.3.1 Program Representation . 6
2.3.2 Operators . 7
2.3.3 Evolutionary Engine . 9
2.3.4 Current Issues in Genetic Programming 10

2.4 Computer Vision and Image Analysis . 10
2.4.1 Pixel Statistics For Feature Extraction 11
2.4.2 Object Classi�cation and Machine Learning 12
2.4.3 Object detection . 12

2.5 Genetic Programming for Object detection . 13
2.5.1 Areas of Concern Using GP for Object Detection 15
2.5.2 Some Issues This Project Will Address 15

3 Tasks 17
3.1 Training and Test Set Size . 18

4 Methodology 19
4.1 Three approaches to Object Detection . 19

4.1.1 Method 1 - Straight Forward Detection (SFD) 20
4.1.2 Method 2 - Object Classi�cation Applied To Detection (OCAD) 21
4.1.3 Method 3 - Re�ning Object Classi�cation for Detection (ROCD) 23

4.2 Functions and Terminals . 24
4.2.1 Terminal Sets . 24
4.2.2 Function Set . 26

4.3 Object Classi�cation and Detection Strategy . 26
4.4 Fitness Measure . 27

4.4.1 Fitness Functions for Detection . 27
4.4.2 Fitness functions for classi�cation . 31

4.5 Evolutionary Parameters and Termination Criteria 32

ii

5 Results 33
5.1 Task 1 � Generated Easy Images . 33

5.1.1 Programs and Fitness Functions . 34
5.2 Task 2 � 10 Cent and 5 Cent NZ Coin images 36

5.2.1 Results using Straight Forward Detection (SFD) 36
5.2.2 Results for Object Classi�cation Applied to Detection (OCAD) 39
5.2.3 Results for Re�ning Object Classi�cation For Detection (ROCD) 40

5.3 Task 3 � 5 Cent NZ Coin images . 41
5.3.1 Results using Straight Forward Detection (SFD) 41
5.3.2 Results of the Object Classi�cation Applied to Detection method (OCAD) 44
5.3.3 Results for Re�ning Object Classi�cation for Detection (ROCD) 47
5.3.4 Performance Comparison of the Three Methods 49

5.4 Task 4 � 10c and 5c Heads and Tails NZ Coin Images 50
5.4.1 Results using Straight Forward Detection (SFD) 50
5.4.2 Results for Object Classi�cation Applied To Detection (OCAD) 52
5.4.3 Results for Re�ning Object Classi�cation for Detection (ROCD) 53

5.5 Summary . 54
5.5.1 Fitness Functions with Program Size . 54
5.5.2 Detection Results Summary Using the Different Methods 54
5.5.3 Feature Set Performance Summary on the Tasks 55

6 Conclusions 57
6.1 Main Conclusions . 57
6.2 Discussion and Future work . 59

6.2.1 Improving the Classi�cation Method 59
6.2.2 A Bayesian probabilistic approach to using genetic programming as a

classi�er . 60
6.2.3 Improving the OCAD and ROCD Methods 61
6.2.4 GP Parameter Setting . 61
6.2.5 More Effective Function and Terminal Sets 62
6.2.6 Wider Range of Images . 62

A Programs and Packages used in this Report 65
A.1 Strongly-Typed Genetic Programming Package (RMITGP) 65
A.2 Supplementary Programs written for Feature Extraction and the GP-Output . 66

A.2.1 Feature Extraction for the Patterns File 66
A.2.2 GP detected centers output . 66

iii

List of Figures

1.1 A satellite-generated image showing many possible hurricanes 1

2.1 Program representation in GP . 6
2.2 Crossover operator in GP . 8
2.3 Mutation operator in GP . 8
2.4 Evolutionary engine in GP . 9
2.5 Possible regions for feature extraction . 12
2.6 Excerpt from a pattern �le with four features forming each feature vector . . 13

3.1 Computer-generated images (easy) . 17
3.2 NZ 5c and 10c coin images (medium dif�culty) 18
3.3 NZ 5c heads and tails on noisy background (very dif�cult) 18

4.1 Overview of straight-detection approach . 20
4.2 Overview of classi�cation applied detection approach 21
4.3 Overview of re�ning approach . 23
4.4 Terminal set I - 5 rectilinnear quadrants . 25
4.5 Terminal set II - 1 rectilinnear quadrant . 25
4.6 Terminal set III - 8 square-region features . 25
4.7 Terminal Set IV - 6 circular features . 25
4.8 Terminal set V - 8 circular features . 26
4.9 Classi�cation map . 27
4.10 Detected centers with different false alarm area rates 30

5.1 Detection map for the easy images . 34
5.2 Sample detection map using Terminal set V . 38
5.3 False alarm rates for all 5 terminal sets . 42
5.4 Half an object in the moving window generating a false alarms 43
5.5 Detection map showing all objects found, but with some false alarms (circled) 44
5.6 Comparison of of terminal set performance for both method seen so far . . . 46
5.7 Detection map showing a overall 50% FAR (all false alarms for class tails . . . 47
5.8 Detection map for ROCD method for task 3. 48
5.9 False alarm rates for 3 detection methods using terminal set IV 49
5.10 False Alarm rates for all the terminal sets . 51
5.11 Detection map showing all objects detected but with many false alarms (light

red ellipses) . 51
5.12 Detection map for 2-phase training . 53

iv

List of Tables

4.1 Evolutionary parameters for detection tasks . 32

5.1 Detection results for easy images . 33
5.2 Straight-forward detection results for 10c and 5c coins images 36
5.3 Training times for 10c and 5c coin images using straight-forward detection . . 37
5.4 Training performance for classi�cation on 10c and 5c coin cutouts 39
5.5 Classi�cation-applied to detection results for 10c and 5c coins 40
5.6 Straight-forward detection results for 5c heads and 5c tails coin images 42
5.7 Classi�cation-applied to detection results for 5c heads and 5c tails coin cutouts 45
5.8 Straight-forward detection results for 5c heads and 5c tails coin images 45
5.9 Detection results for the ROCD method on 5c coin images 47
5.10 Performance comparison of the three approaches on 5c heads and 5c tails

images . 49
5.11 Results using straight forward detection on task 4 50
5.12 Results for object classi�cation applied to detection on task 4 52
5.13 Results for re�ning object classi�cation for detection on task 4 53
5.14 Summary of �tness function comparison on the �rst task 54
5.15 Summary of detection performance of each method on the four tasks 55
5.16 Summary of feature set performance on the four tasks 55

v

vi

Chapter 1

Introduction

As more and more images are captured and stored in electronic form the need for programs
to automatically �nd objects of interest in a database is increasing. In many cases, it takes
highly trained experts in the �eld to �nd and classify these objects, but there is either too
much data for the limited number of such experts or the cost of these people is too high.
Creating automated systems robust and accurate enough to apply to the very wide range of
�elds and applications object detection covers is a dif�cult task.

Images can contain single or multiple classes of objects-of-interest, where these objects
could be the only objects present in the image or they could be interspersed with other less
interesting objects also present in the image. Furthermore, the range of backgrounds in such
images also varies from being simple and uniform to highly cluttered and complex.

An application for object detection systems currently being developed is automatic tar-
get recognition (ATR) systems [15]. For example, accurate and automated ways of �nding
and locating target objects from images collected by ground or air surveillance units are
required, where targets may range from helicopters, tanks or buildings. Weather monitor-
ing and prediction systems are another area where automated object detection may prove
useful [5]. Consider a warning system which routinely scans multiple satellite-generated
weather maps to �nd and locate all occurrences of unusual cloud patterns having the po-
tential to develop into hurricanes or tornados (�gure 1.1). Apart from classifying whether a
cloud pattern is unusual, dangerous or normal, there is also a strict requirement in reporting
exactly where these occur.

Figure 1.1: A satellite-generated image showing many possible hurricanes

In both applications, the object detection system is responsible for two tasks: accurately
�nding all the objects of interest in the image and categorizing them into different classes of
object of interest.

For robustness, we also require an approach to be domain independent in this project. That
means that the same method of object detection should work unchanged on a range of dif-

1

ferent problems and applications. By enforcing this constraint, no prior domain knowledge
about the objects of interest such as the shape, size and orientation, is required to perform
the detection task.

Genetic programming is a useful machine-learning and search technique which can pro-
vide a general solution to a task-speci�c problem such as object detection [12]. It is the
automatic programming or evolution of computer programs to solve a problem, where such
programs learn about their environment through the context of a task.

Genetic programming (GP) is based on the principals of Darwinian evolution or natu-
ral selection applied to computer programs. A program or individual in a population is
assigned a �tness depending on their ability to solve the problem. The programs with the
best �tness are then selected for recombination resulting in the next generation of programs
being �tter (or at least not worse) than the original. This process terminates when an opti-
mal solution is found or when the best individual can no longer improve over a number of
generations.

Since the late 1990's, GP has been applied to object detection problems. Most work done
in this area either focuses on binary object detection problems, or a multiple stage approach
involving extensive `processing' of the image data. The former involves simplifying the
problem down into only two classes: an object of interest and everything else (background)
[19]. The main disadvantage with this approach is that it does not consider problem involv-
ing multiple classes of interest, as is the case with most real-world data. The latter involves
applying multiple domain dependent image-processing techniques on the raw images such
as edge detection and segmentation before the actual detection/classi�cation step in the
goal of making this most important �nal step simpler [9]. The main disadvantages with
this approach are that the image processing techniques often require prior knowledge about
the problem domain and the �nal results are often too heavily in�uenced by the degree of
success of each of the previous (image processing) stages.

This project uses image features based solely on the raw pixel values to ensure domain
independence. The feature extraction involves using pixel statistics on different groups or
regions of pixels to obtain higher level features about the correlations of the raw pixels in
the image data.

1.1 Goals
This project aims to develop a domain independent approach to object detection using
genetic programming with the goal of achieving ef�cient training, good detection perfor-
mances and comprehensive genetic program detectors. Four object detection tasks of in-
creasing dif�culty will be used for the experiments. Speci�cally, this project aims to address
the following research aspects:

1. From the three object detection approaches developed in this project, namely straight-
forward detection (SFD), object classi�cation applied to detection (OCAD) and re�n-
ing object classi�cation for detection (ROCD), the following research questions are
investigated:

• Can the SFD method achieve a good performance on the four detection tasks?
• Can OCAD method more ef�ciently train good program solutions to achieve

good detection performances?
• Can the ROCD method improve the object detection performance over the OCAD

method?

2

• Which of these three methods will perform the best on the four detection tasks?

2. To achieve the goal of domain independence, �ve terminal sets based on pixel statistics
will be extracted from local regions in the images. Speci�cally, the following questions
will be investigated:

• Are circular region features more effective than square region features on these
object detection tasks?

• In terms of recti-linnear features, is the simplist feature set, a single central quad-
rant, powerful enough for these detection tasks?

• Which terminal set can perform the best on the four tasks?

3. The program size will be introduced to a commonly used �tness function for object
detection to form a new multiple-objective �tness function. Speci�cally, this project
will investigate whether the genetic programs evolved using this new �tness function
are shorter and more comprehensive than those programs evolved without using the
program size in the �tness function.

4. This project will also address whether the object detection performance will deterio-
rate as the degree of dif�culty of the detection tasks increases.

1.2 Contributions
This project shows how to both evolve genetic program detectors using object cutouts,
and re�ne these genetic program detectors using a secondary learning phase based on the
window-sweeping method on the entire images in the training set.

This project shows also how to evolve more comprehensive genetic programs through
the use of a multi-objective �tness function. The program size was added as an additional
contraint to the �tness function to explicitly favour the evolution of smaller programs. Part
of this work has been submitted to the �rst Australasian Workshop on Data Mining for review
and publication: Program Size and Pixel Statistics in Genetic Programming
for Object Detection

1.3 Structure
The rest of this project is split into �ve chapters. These are organized as follows. A brief
literature review is presented for both genetic programming and object detection in chapter
2. The list of the object detection tasks/problems in chapter 3. The methodology used in
approaching these tasks in chapter 4. The various experiment results in chapter 5, and the
conclusions and future work in chapter 6.

3

Chapter 2

Background and Literature Review

This chapter is split into �ve sections. The �rst and second outline a brief overview into
machine learning and genetic paradigms respectively, followed by a more detailed discus-
sion about genetic programming, important computer vision and image analysis tasks, and
�nally a discussion into genetic programming for object detection.

2.1 Overview of Machine Learning
Machine learning is a broad and rapidly developing area of research. Different arti�cial
intelligence experts in this �eld vary in their de�nitions of what exactly constitutes machine
learning but most agree the central idea involved computer programs which learn to solve
problems without explicitly being programmed or told how to do so [2][4][12]. There are
also many different learning paradigms which aim to address this issue, some of which
include [16]:

1. Connectionist paradigms such as arti�cial neural networks,

2. Genetic paradigms such as genetic algorithms and the more recent genetic program-
ming,

3. Case-based or instance based learning paradigms such as nearest neighbor or nearest cen-
troid,

4. Induction-based learning paradigms such as decision trees or condition-action structures.
A learning procedure is also extremely dif�cult to de�ne. Traditionally, learning has

been split into three �elds or strategies: supervised, unsupervised and hybrid [2][11].
Supervised learning is learning with a teacher. In the context of machine learning, it is

where the desired output or answers to a problem are known and the learning system tries to
�nd rules to produce its output or answers as close to the correct ones as possible. Common
to supervised learning problems are the concepts of training and test sets. A training set is a
collection of input patterns from which rules or features are induced. A test set is a similar
collection of input patterns, except that these are not used and remain unseen while learning
the rules. The purpose of the test set is to evaluate the performance of the learnt rules on
unseen instances of the problem. In such learning systems, the procedure for learning then
becomes two-fold: to discover or learn some kind of knowledge or rules from a problem or
training set, and apply these rules to the test set to measure how well the learnt concepts
perform on unseen (future) instances of the problem [16].

Unsupervised learning is learning without a teacher. That means, there is no correct an-
swers for the learner to explicitly learn from. Instead it must explore underlying structures

4

or correlations present in the data to learn relationships rather than rules. Unsupervised
learning most often involves learning knowledge by associating or summarizing new infor-
mation with previously known knowledge [2].

Hybrid learning combines supervised and unsupervised learning, where parts of the
overall learning are done through supervised while others through unsupervised learning.

2.2 Genetic Paradigms
Genetic algorithms (GA) is a machine learning or search technique based on the principles
of modern biological evolution, inspired by ideas from the publication of Darwins revolu-
tionary theories about the evolution and natural selection of species [2][12]. Those theories
assert that only the �tter organisms in an ever-changing environment survive and repro-
duce while the less �t merely die off. The offspring of those �t organisms will then have
similar or the same genetic code as their �t parents thus resulting in the new generation of
organisms being �tter or at least as �t as the current generation.

In the 1960's, Holland adapted this model to apply to arti�cial systems [16]. It involved
generating a population of individuals, where each individual represents a potential solu-
tion to a given problem. Individuals or chromosones, are typically encoded as �xed-length
bit strings (usually binary), where each element in this string is called a gene. An optimal
solution will be made up of the optimal genetic code, having all the `best' genes in its chro-
mosome, and will be relatively �t. An individual's �tness is measured against how well it
solves the given problem or task. Members of the population are then selected for recombi-
nation depending on their �tness and a new generation of potential solutions is generated.
This new generation should be just as �t or �tter than the previous generation.

The two main genetic operators used in GA are crossover and mutation. Crossover re-
places the genes of the different chromosones at randomly selected points to form two new
offspring, and mutation replaces a randomly selected gene in a chromosome with another.
This evolutionary process is continued until an individual has reached the optimal �tness or
a �xed number of generations are reached. The goal like natural selection, is to have some
useful part of an individuals genetic code propagated down generations until the optimal
individual is evolved [12].

One major problem using a GA approach is that the genetic algorithms often require a
complex encoding/decoding process. The encoding process is required to transform a task
into the appropriate chromosone representation for the evolutionary process. The decoding
process is required at the �nal stage of evolution to convert the individual (solution) from
the chromosone representation back into a more useful solution representation. Consider
the chromosone presented below in �gure 2.0. Without the speci�c encoding/decoding
knowledge, its meaning is almost impossible to interpret.

1 1 0 0 1 0 0 1

Figure 2.0 Example of an encoded 8 bit binary chromosome (individual)

2.3 Overview of Genetic Programming
Genetic programming (GP), like GA is a kind of machine learning and search technique. It
extends the idea of genetic algorithms by increasing the complexity of problem representa-
tion from �xed length bit strings to computer programs [12]. These computer programs are
typically represented as tree-like structures which can vary in length as well as what input
alphabet they may contain.

5

A program, like using GA, is assigned a �tness depending on its degree of success in
achieving some task. This is determined using a �tness function. A population of genetic
programs is then mated using the crossover, mutation and reproduction genetic operators
in the goal of eventually �nding the optimal program (solution). Crossover mates 2 indi-
viduals by randomly swapping their sub-trees, mutation randomly replaces an individuals
sub-trees with another and reproduction copies an individual straight into the next genera-
tion without altering their genetic makeup.

The evolutionary process works on the idea of building blocks using program sub-trees
[3]. Good (�t) programs will survive, preserving their useful subtrees or attributes. When
mated with other programs, these useful attributes will be spread and combined with the
genetic makeup of other individuals thus increasing their �tness.

GP can also be thought of as a beam search technique, where a program represent a
possible solution in the solution-space [12]. This search is done in parallel as each individual
can be seen as a separate search. No attempt however is made to learn the relationship
between good individuals and the environment as the goal of evolutionary programming
involves simply �nding one individual that maximizes a given �tness function.

2.3.1 Program Representation

Programs in genetic programming are represented as a variable-size tree of expressions.
The leaf nodes correspond to terminals and the non-leaf nodes functions. Much GP work
was done using LISP or LISP-like representation of programs [12]. The algebraic equation
(x3 + 2x) can be therefore be represented as a LISP S-expression (+ (* x (* x x)) (*
2 x)) where the arithmetic operators form the functions and the variables (x and 2) the
terminals. The corresponding tree structure is presented below in �gure 2.1. The square
nodes correspond to functions and the oval nodes the terminals (leaf nodes).

2

*

*

*

x

x x

x

+

Figure 2.1: Program representation in GP

Functions and Terminals

The alphabet accepted by genetic program expressions are constructed using a function set
and a terminal set [12]. Unlike GA these can represent a very large alphabet, and are usually
user de�ned to �t the context of a given problem.

The functions form the root and internal nodes of the program. They may include arith-
metic operations {∗,−,+, /}, mathematic functions such as {sin, cos, exp, log}, boolean
operations {AND, OR, NOT} or task speci�c user-de�ned operations such as {move left,

6

move right, move back}. A function can contain other functions or terminals, as long
as the function takes the correct number of arguments.

Terminals form the leaves of the programs and therefore take no arguments. They are
usually some data types consisting of atoms representing possible inputs, sensors, variables
in some system or constants.

The selection of function and terminal sets are crucial to the success of solving a program
[16]. Both function and terminal sets must satisfy the requirements of closure and suf�ciency
[12]. That is, a function should only be able to accept as its arguments, any value or data
type that may possibly be returned by any another function, and any value and data type
that is de�ned in the terminal set. A bad (incomplete or inappropriate) selection could result
in the slow convergence of a solution or the evolutionary engine not even being able to �nd
the optimal solution at all.

Fitness Function

The �tness function is very important to genetic programming as it is the only measure of
how an individual has performed on the task [16]. A �tness function is designed to grade
a programs performance on the training set and provide continuous feedback on improve-
ments or areas of dif�culty [3].

2.3.2 Operators

The genetic operators crossover, mutation and reproduction are the essence of the evolutionary
engine. It is where the individuals are genetically altered depending on their �tness. The
number of individuals on which to perform each of the three operators is de�ned by user
controlled parameters namely crossover rate, mutation rate and reproduction rate. This parame-
ter is usually in the form of a percentage of how many individuals to apply each of the three
operators to. Each operator is brie�y described below.

Cross-over

Crossover is arguably the most predominant operator used in GP [12]. It is performed on
two individuals from the population, producing two offspring. It works by selecting two
individuals from the population, and swapping a randomly selected subtree from one in-
dividual with another randomly selected subtree from the other individual. The subtrees
selected for crossover are chosen from two randomly crossover points from both individu-
als. Crossover works on the idea of combining certain attributes between two individuals.

A strong implication of crossover is that programs with a better �tness are crossed over
more than those of weaker �tness. This continues the idea of `survival of the �ttest' as
the next generation becomes in�uenced by the stronger genetic makeup (subtrees) of the
�ttest individuals from the current generation. The ideal case is if programs A and B are
chosen for crossover where A and B have partially correct trees, and the crossover points
occur precisely on these partially correct subtrees, then the result is two offspring with fully
correct trees [14].

This however is rare as isolating the right `partially correct subtree' is dif�cult when
selecting the crossover points. Often the crossover points end up disrupting or breaking-up
a partially correct subtree, replacing it with a less useful one. This problem is thought to
occur more often in the later stages of the evolutionary process when the partially correct
subtrees are larger and more dif�cult to isolate than in earlier stages.

7

sin

+

x xx

x x

+

*

*

x x

+
Program 1

Program 2

x

Crossover
points

Offspring 2

Offspring 1

over
Cross−

+

x x

x x

*

* sin

Figure 2.2: Crossover operator in GP

Mutation

The mutation operator is the only one of the three operators to introduce new genetic code
into a population via an individual during evolution [16]. It is performed on one individual
from the population, producing one `offspring' which is the mutated version of the parent.
Mutation works by randomly selecting a subtree from the individual chosen for mutation,
and replacing it with another randomly generated subtree. This new subtree is generated in
the same way the initial population is generated (via the grow, full or ramped half-and-half
method).

sin

*

x

+
Program 1

x

x x

+

Offspring 1

point
mutation

+

x*

x

x

/

y

mutation

Figure 2.3: Mutation operator in GP

The motivation for mutation is to keep up the diversity of the population [12]. The ideal
case here is if program P1 is almost correct except for one subtree B, and if B gets selected
for mutation and is subsequently replaced with a more useful subtree C, then program P1
becomes optimal [14]. But like crossover, selecting the right mutation point is crucial. The
worst case is if program P2 is almost correct, and a mutation point is selected which replaces
a useful subtree in P2 with one less useful, the resulting mutation will be worse than the
original parent.

8

Reproduction

Reproduction is the simplest of these genetic operators [16]. It involves simply copying a
selected individual from the current population into the next population. By not altering
any of the genetic makeup of the individual chosen for this operator, unlike crossover and
mutation, the resulting program in the next generation can not ever be worse (less �t) than
the original. For this reason, only the top programs from a population are selected for repro-
duction. This is important as it ensures that the evolutionary process produces individuals
that can not possibly be worse (less �t) than the previous generation.

2.3.3 Evolutionary Engine

next generation

Population
Generate initial

Evaluate each
individual

Select individual for
genetic operators

Termination criteria
reached

operators
Apply genetic

of programs

Return best
program

Figure 2.4: Evolutionary engine in GP

The initial population is randomly generated according to some user-de�ned parameters
supplied to in the evolutionary process, usually the population size, the maximum program
depth a program can grow to, the minimum program depth allowed for all programs and a
maximum number of generations. There are several ways of generating these random pro-
grams to make up the initial population: full, grow and ramped half-and-half [12]. The full
method ensures that full, entirely balanced program trees are constructed. This is achieved
by selecting inner or parent nodes only from the set of functions and leaf nodes only from
the set of terminals. The grow method allows different length subtrees in the program to be
constructed by selecting intermediate parent nodes from either the function or terminal sets.
This results in part of a tree terminating whenever a terminal is selected for that node as it
becomes a leaf node. Ramped half-and-half combines both program generation methods.

Once the initial population is constructed, the �tness function is applied to each individ-
ual. After all the programs have been assigned a �tness, each is checked against the stopping
criteria to determine if a program with the optimal �tness has been found. If so, the evo-
lution terminates and reports the �ttest program as the solution. If not, the population is

9

evolved using the three genetic operators, crossover, mutation and reproduction, resulting
in a new generation of evolved individuals. This process continues until the optimal solu-
tion is found or the number of generations reaches a certain user-controlled number.

2.3.4 Current Issues in Genetic Programming
There are a number of issues that are currently being researched in this area and needs to be
carefully considered when using GP. Some such issues are presented below.

• Long training times:
Long training times are due to all the individuals in the population being evaluated
against the entire training set to obtain a �tness, on every generation. The maximum
number of generations allowed can range between 50 for easier problems or 200 or
more for dif�cult problems.

• More powerful representation of genetic programs:
Currently, genetic programs are represented as tree-like structures, but this is cer-
tainly not the only possible representation. There is research into other representations
such as vectors, decision lists and even as procedural programs [7] (where procedural
closely resembles a high-level programming language)

• Improving GP Crossover:
Although crossover is a useful genetic operator in program evolution, there is much
debate about how useful it actually is. This is because the crossover points are selected
randomly, paying no consideration to the importance of separate subtrees to an indi-
vidual program. Researchers are looking for ways to improve crossover by a more
intelligent and effective selection of the crossover points. The issue then arises of how
to separate and evaluate the usefulness of sub-trees within an individual without dis-
rupting it.

• Crossover vs mutation:
There is a considerable debate in this research area on which of the operators between
crossover and mutation, is the better for the evolutionary process, and which should
be utilized more in order to achieve the best results.

• Overtraining:
Overtraining, or over�tting, is a problem inherent to such supervised learning paradigms.
It occurs when the learning system learns the training data very well but not the test
data. This implies that the learnt knowledge was not generalized enough as the un-
derlying cause or model behind the data was not captured. Although this problem has
been partially theoretically solved through the use of a validation set, over-�tting can
still be a problem, especially if the model being learnt is very dif�cult to capture.

2.4 Computer Vision and Image Analysis
Computer imaging is the `acquisition and processing of visual information by a computer'
[1]. This spans a broad �eld, but can be split into two main categories: computer vision and
image processing [16]. The former is the processing of images for use by a computer, and
latter is the processing of images for use by people. This investigation focuses on aspects
concerned with the former � computer vision applications � where images are examined
and acted upon by a computer. Some real-world applications of computer vision include:

10

1. Law enforcement and security: scanning, processing and searching �ngerprints though a
police database; DNA analysis.

2. Weather prediction: scanning satellite generated images for warnings of interesting or
unusual weather patterns such as cyclones or tornados.

3. Medical applications: scanning x-ray images for bone tumour diagnosis, retinal blood
hemorrhages or unusual artery damage.

4. Object recognition: automatic target recognition, vehicle tracking systems or face detec-
tion.

5. Robotics: improving signal processing or enhancing robot-vision.

Computer vision tasks usually require some sort of image analysis be performed on im-
ages to solve problems. The process of extracting useful information from such images is
called feature extraction, where useful information usually corresponds to image features.
Image features can be grouped into three main levels:

• Raw image intensities or pixels (low level): These are domain independent and easy
to extract, but a major limitation is that processing raw pixels is computationally ex-
pensive especially since much image analysis is done on large, complex and highly
cluttered images such as satellite-generated images [15].

• Pixel statistics of groups or regions such as mean, variance and �rst-order moments
(low level): These are also both domain independent and easy to extract, as the same
statistics can be used on a range of different images containing a range of different
types of objects of interest. Pixel statistics also offer an additional advantage over raw
pixels � they can often capture relationships or correlations between neighboring or
grouped pixels, something not immediately apparent from observing each pixel as an
unrelated value [18].

• Relational features (high level): Relational features are highly specialized and domain
dependent, usually requiring a �eld expert with good prior knowledge about the im-
ages domain to de�ne. A limitation is the cost, effort and domain dependence attached
to such a specialized approach to feature extraction.

2.4.1 Pixel Statistics For Feature Extraction
Feature extraction is the process of representing features extracted from an image as numeric-
based feature vectors [14]. These feature vectors are often then used as input to image anal-
ysis tasks [18].

This project uses low level pixel statistics as features calculated on regions of pixels con-
tained within an input window. The selection of what such regions or groupings of pixels is
a dif�cult question. This is an important and active area of research as the choice of regions
will impact on the `quality' of the features extracted from the input window [14]. Quality
here denotes how accurately the pixel statistical features capture or re�ect the underlying
raw pixel values contained within a given region. For example, the input window can be
split into circular or square shaped regions which can in turn be split into smaller regions
to capture the most amount of high level information as possible. Figure 2.5 illustrates two
sets of regions, each split into different sizes.

Feature extraction is also considered a reliable and ef�cient dimensionality reduction tech-
nique [13]. That means, it can be used for extracting a new and smaller set of data (image

11

Figure 2.5: Possible regions for feature extraction

features like pixel statistics) from the original set (raw pixels), while keeping as much of the
information from the original set as possible. This re�ects the advantage of using image
features as opposed to the raw pixels.

2.4.2 Object Classi�cation and Machine Learning
Classi�cation is the method whereby inputs are mapped to given output classes or cate-
gories. Object classi�cation involves applying the same idea to images, where the input is
an image or object-cutout and the output is the class which that image or object-cutout be-
longs to. Object classi�cation is often the most important, �nal step in image analysis [16].

An object-cutout is a sub-portion of the original image contained within a given input-
window. The input window is large enough to �t a single non-overlapping object of interest
from an image. The goal of a classi�er is then to correctly classify those image cut-outs into
their correct classes.

Most classi�ers use a machine-learning approach to �nd rules to correctly categorize
inputs to output classes. This is done using the concepts of a training and test set [16].
The training set contains image-cutouts (inputs) where the classes of each cutout is already
known and is used to �nd rules, and the test set contains unseen cutouts used to evaluate
the correctness of the learned rules.

There are a number of learning methods which can be applied to object classi�cation
[2][16]. Some of these include nearest neighbor, nearest centroid, neural network classi�er,
GP classi�er.

A typical performance measure used in object classi�cation is classi�cation accuracy [14].
Classi�cation accuracy is the number of correctly classi�ed examples or object cutouts as
a percentage of the total number of examples or object cutouts used in the classi�cation
process. The higher the classi�cation accuracy, the better the classi�ers performance.

2.4.3 Object detection
Object detection is a more dif�cult task than object classi�cation as it involves not only object
classi�cation but also localization [16]. Localization involves �nding (or detecting) objects of
interest in an image. For multi-class object detection, there is an additional requirement of

12

then categorizing the detected object into a correct class from many different classes. In or-
der to perform localization, object detection is done via a window-sweeping method which
moves an input window across the image to �nd all objects of interest [16].

The Window-Sweeping Method for Feature Extraction and Object Detection

The window-sweeping method is a dimensionality reduction technique used to extract im-
age features such as pixel statistics from the entire image. In most cases, the extracted in-
formation is written to a pattern �le which represents a list of all the corresponding feature
vectors. The window-sweeping method involves moving a �xed-size input window across
an image, pixel by pixel, extracting image features at every location of the sweeping win-
dow [14]. The size of the input window is usually large enough to contain the largest object
of interest in the image but also small enough as not so miss out on too much detail when
extracting features. Every feature vector extracted at every location of the sweeping win-
dow is written to the patterns �le, along with the location of the input window, usually in
< x, y > coordinate notation form. This method reduces the often large pixel map into a list
of more useful feature vectors contained within the pattern �le.

12.435 65.346 78.856 0.334
10 11

10 12
24.554 90.546 80.909 0.548
...

14.865 76.918 88.293 0.913

10 10

Figure 2.6: Excerpt from a pattern �le with four features forming each feature vector

Object detection is also a more dif�cult problem than object classi�cation in that it is often
more computationally and time intensive. This is due again to the localization requirement.
Where classi�cation uses selected object-cutouts from one or many images (the number of
cutouts usually corresponds to the number of objects in the image), detection regards every
moving input-window in the sweeping procedure as an example or cutout. This results in
the number of examples in the training set being vastly increased, even if only one training
image is used.

A different performance measure is also required for detection as opposed to classi�ca-
tion to meet the additional demand of localization [14]. A typical measure would include
the detection and false alarm rate (see section 4.4.2), or recall and precision rate. In both
examples, one measures how many true objects have been detected (detection and recall
rates) and the other how many non-objects have been reported as true-objects (false alarm
and precision rates). It is important to note that one measure is always traded-off for the
other. That means, in trying to improve the detection rate or recall rates, there is often an
increase in the false alarm or precision rates, or vice versa.

2.5 Genetic Programming for Object detection
Since genetic programming is relatively young learning/adaptive technique, it has only
been applied to a limited number of object detection problems in recent years [16]. Pre-
sented below is a brief list of such object detection problems where a GP approach was

13

successful:

• Automatic target recognition (ATR) systems: Tackett and Char (1997) compared two GP
approaches � the �rst using statistical features (extracted after some image processing)
and the second using raw pixel values � against the detection results using a multilayer
perceptron network and binary tree classi�er, all applied to the same ATR problem
using US Army Night-Vision Terrain images with target objects embedded in natural
scenes [15].

• Ship detection from satellite generated Synthetic Aperture Radar (SAR) images: Howard,
Roberts and Brankin (1999) used SAR imagery of the English Channel to detect ship
objects in the ocean (background). They used pixels statistics such as the average
and variance of group of pixels from a set of input regions chosen at various location
around the images as features [8][10].

• Finding blood haemorrhages and micro-anneurisms in retinal images: Zhang (2000) com-
pared a domain independent multi-class GP detection systems performance on a range
of images including computer generated images (easy), scanned photographs of Aus-
tralian 5c and 10c coins (medium dif�culty) and retinal images containing blood haem-
orrhages and micro-anneurisms (very dif�cult) [16].

• Detecting low-resolution 5c and 10c coin images: Zhang, Andreae and Prichard (2002)
explored a similar domain independent GP approach (as the one mentioned above),
increasing the dif�culty of the detection problems by decreasing the resolution of the
image data [14].

Much of this work has focused the detection approach on binary detection problems
and/or using a multiple stage process [9][10] [16].

The binary detection problem involves reducing the problem down into only two classes
of interest: object and background. All images therefore only contain one class of object of
interest and the background. This makes the task simpler as the genetic program solutions
need not separate different classes of objects from each other, only object from background.
Examples of such approaches are seen in [6][10]. This one-class approach is not suf�cient
given the increasing complexity of images and objects contained within these images in
current object detection problems/tasks.

The multiple-stage process for object detection consists of four main phases: prepro-
cessing, segmentation, feature extraction and classi�cation. This approach focuses a large
amount of attention on `processing' or enhancing the initial data for the detection phase,
which usually requires some domain knowledge speci�c to the data or task. As a conse-
quence, the process becomes increasingly domain dependent, relying heavily on the the
image processing techniques applied in �rst two phases. Another serious limitation to this
approach is that each of the intermediate stages often depends on the results from the pre-
vious step. For example, if the segmentation phase was not particularly useful, the quality
of features extracted will also poor resulting in the poor detection results.

A useful example to illustrate the usage of this approach is seen in Genie, a genetic pro-
gramming based classi�er used to detect complex terrain features such as golf courses and
roads from remote sensing data sources [5][9]. They use extensive low-level image pro-
cessing operators such as edge detectors, texture measures and morphological �lters into
enhance the original data (preprocessing and segmentation stage) before detection. This
however relies heavily on geographical and geo-spatial knowledge built-in to the image
processing algorithms.

14

2.5.1 Areas of Concern Using GP for Object Detection
Although GP has been successful for some detection tasks there are still many areas of con-
cern using this approach. Some of these include:

• Very long training times, which can range from days to hours depending on the dif-
�culty of the problem and the amount of data. This is due to every program in the
population having to `sweep' the entire training image (or images) for the objects of
interest (repeated for every generation of programs).

• The evolved programs are often large, complicated and very dif�cult to interpret. They
often contain many redundant sub-programs. These complicated programs also give
the �nal impression that the evolution engine is a 'black box', as it becomes dif�cult to
see exactly how the evolved programs solve a given problem.

• It is dif�cult �nding the most powerful and useful set of image features. The GP engine
searches through the set of given features �nding the most useful subset to incorporate
into the evolved programs. This contributes to the long training times as �nding useful
features in a large search space is time and computationally expensive.

• It is dif�cult �nding a good �tness function. The �tness function is the only way of
evaluating how useful an evolved program is. It must accurately rate good (�t) pro-
grams over poorer ones in its ability to solve the problem and effectively discriminate
these poorer programs from being evolved over the better (�tter) ones. The �tness
function must also be continuous ensuring any improvements in a programs �tness are
noticed.

• The range of problems GP can successfully be applied to is an ongoing area of research.
For example, can GP be used to solve problems where the objects of interest are of
different sizes, there are many different classes of objects or the images contain highly-
cluttered backgrounds?

2.5.2 Some Issues This Project Will Address
This project developes three different approaches to the detection tasks. The goal is to
�nd ways to reduce the training times while still producing the best possible detection
performance. The �rst approach involves training a population using a straight-forward
sweeping-window approach, where entire image is scanned for objects of interest. The sec-
ond method applies evolved program solutions trained using object classi�cation to object
detection in the sweeping-window style, as object classi�cation involves a much shorter
training process (its �tness cases are a selection of object cutouts, not the entire image).
The goal here is to investigate whether these evolved programs are robust enough for the
sweeping-window approach used in detection. The third approach involves further evolv-
ing an entire classi�cation-trained population using the sweeping-window training approach
(used in �rst method) with the goal of re�ning these classi�cation-trained solutions for object
detection.

This report will also investigate the effects of additional constraints to the �tness func-
tion. A multiple objective �tness function is developed aimed both at favouring the evolu-
tion of smaller programs over larger ones, and creating a more continuous search space for
the GP evolutionary engine.

In addition, this project will address the effects of using different features sets. The goal
here being to explore which features are more powerful for object detection than others.

15

All these research questions will applied to four different detection problems, investigat-
ing what range of problems the GP approach can effectively be used for.

16

Chapter 3

Tasks

To investigate the research questions described in section 1.1 and brie�y in section 2.5.2,
three image databases containing four object detection tasks of increasing dif�culty are used
in the experiments. All images have two or more classes of object of interest present. The
sizes of the images from database 1 are 100x100 pixels whereas the sizes of the images from
database 2 and 3 are approximately 600x600 pixels.

Task 1. Contains computer-generated images as shown in Figure 3.1. This is considered the
easiest problem as these imaages consist of well de�ned objects of different shapes and
intensities against a uniform background. There are two classes of objects interspersed
around the image: light-grey circles (class 1) and dark grey squares (class 2). The size
of the objects of interest are 18x18 pixels large.

Figure 3.1: Computer-generated images (easy)

Task 2. Contains more real-world data and is intended to be more dif�cult, as shown in Figure
3.2 . It contains scanned images of New Zealand 5 cent and 10 cent coins against a plain
and uniform background. There are two classes of different sized objects interspersed
around the image: 10 cents (class 1) and 5 cents (class 2) coins. The size of objects of
class 1 (10 cents) are 80x80 pixels and objects of class 2 (5 cents) are 60x60 pixels.

17

Figure 3.2: NZ 5c and 10c coin images (medium dif�culty)

Task 3. Database 3 is intended to be more dif�cult than the previous, as shown in Figure 3.2. It
also contains real-world scanned pictures of New Zealand 5 cent coins against a noisy
background. There are also two classes of interest: tails (class1) and heads (class1). The
added dif�cultly lies in that the different classes of objects are harder to distinguish
being of the same size and shape, and the background is very noisy (more like real-
world generated images). Both objects of interest are of size 60x60 pixels.

Figure 3.3: NZ 5c heads and tails on noisy background (very dif�cult)

Task 4. The forth task involves an extension of task 2, and is intended to be the most dif�cult of
all (same images is �gure 3.2). Here the objects have been split up into four classes: 5c
tails (class1), 5c heads (class 2), 10c tails (class 3) and 10c heads (class 4). The dif�culty
lies not only in separating 10c from 5c, but also heads from tails in both cases.

3.1 Training and Test Set Size
For each of the detection tasks mentioned above, the images in the databases were split into
a training and test set. Due to the long training times for detection process, the training set
was chosen to be smaller than the test set.

For the SFD and ROCD methods: the training set contained one image for each task, and
the test set contained 3 unseen images for each task.
For the OCAD method: the training set contained three images for each task, and the test
set contained 3 unseen images for each task.

18

Chapter 4

Methodology

This chapter in outlines the methodology, implementation and experiment settings accord-
ing the research goals outlined in section 1.1. This chapter is split into �ve main sections
where each is organized as follows:

Section 4.1 Describes the three different approaches developed for the detection tasks,

Section 4.2 Describes the GP function and terminal sets being investigated in this project,

Section 4.3 Describes the classi�cation strategy used in the different approaches,

Section 4.4 Introduces the two different �tness functions being investigated, and

Section 4.5 Outlines the evolutionary parameters and termination criteria.

4.1 Three approaches to Object Detection
Three methods were considered and developed for this object detection in this project:
straight-forward detection, object classi�cation applied to detection and re�ning object clas-
si�cation for detection. Each is discussed below.

19

4.1.1 Method 1 - Straight Forward Detection (SFD)

Results

Training Image

Testing Image

Sweeping Window
Input Window

Terminals

(Pixel
Statistics)

GP learning/

Training/
Evolutionary Process

Function s

Evolved Genetic
Program (solution)

Object Detection

(Testing)

Terminals

(Pixel
Statistics)

Detection

Figure 4.1: Overview of straight-detection approach

Figure 4.1 shows an overview of the Straight Forward Detection (SFD) process. It consists of
a learning and a testing phase. In the learning/evolutionary phase, an input window large
enough to �t a single object is moved across the training image, in a sweeping-window fash-
ion, to detect all the objects of interest. Image features are extracted from each of these mov-
ing windows and used as input by the GP evolutionary engine. The evolutionary process
consists of generating many different programs (possible solutions), applying these pro-
grams to the image to obtain their �tness (how good they actually are) and then evolving
these programs using the GP operators. This process is repeated over a number of gener-
ations until the optimal solution is found or other termination criteria are met. That is, a
program that successfully locates all the objects of interest in an image, without reporting
any false alarms (non-objects).

The testing phase applies the best evolved genetic program obtained from the learning
process to a test set which consists of a number of unseen images, to measure the detection
performance.

20

4.1.2 Method 2 - Object Classi�cation Applied To Detection (OCAD)

Results

From Training Image

Function

Statistics)
(Pixel

Terminals

s

Training

Evolutionary Process

GP learning/

/

Input windowSweeping procedure

...

Terminals

Statistics)
(Pixel

Evolved Genetic
Program (solution)

Object Detection

(Testing)

Testing Image
Detection

Object Cutouts

Figure 4.2: Overview of classi�cation applied detection approach

Figure 4.2 shows an overview of using the object classi�cation applied to detection (OCAD)
process. In a similar fashion to straight-forward detection, this also consists of a learning and
testing phase. The main difference however, is in the learning phase. Here the GP system
is evolved using object cutouts of each class, rather that the entire image. When programs
are initially generated or evolved using the GP operators, they are applied to all the object
cutouts to evaluate their accuracy (�tness), not the entire image as in the SFD method . With
this change in learning cases (�tness cases) also comes a requirement for a different �tness
evaluation compared to the SFD method. Here programs are evaluated on how many of
the object cutouts they are able to correctly classify or their classi�cation accuracy (section
4.4.2), opposed to detection and false alarm rates .

The testing phase is the same as straight-forward detection. The best evolved genetic
program obtained from the learning phase is applied to the same test set as used in the SFD
method to measure the detection performance.

The motivation behind this method is that it greatly reduces training times as there are
a signi�cantly smaller number of �tness cases. The �tness cases correspond directly to the
number of object cutouts, whereas the number of �tness cases for straight-forward detection
is typically very large (roughly equal to the cross product of the image width and height
minus the input-window size). With this vast reduction in training time also comes the
opportunity for the GP system to include multiple images in the training set, something
that straight-forward detection makes very dif�cult due to the computational cost. This is
advantageous as it implies the evolved program solutions will be more generalized having
seen more images while training (less chance of over-�tting).

A limitation would be in selecting the most useful and appropriate cutouts for GP clas-
si�cation. This is important as it will determine the classi�ers ability to generalize, only
having trained on a limited number of cutouts. In this investigation, object cutouts from

21

three images were used in training. These include all objects of interest for all classes, and a
number of randomly and specially selected background objects.

Method of Selecting and Extracting Cutouts

The selection of object-cutouts to be included in the training set is important as it not only
affects how well the programs learn to separate the different classes, but also how well they
will perform when applied straight to the detection process (on entire unseen images). The
cutouts must therefore be inclusive of all the centers of the objects of interest, as well as
suf�cient background cutouts to cover all cases where the input window is not centered
over a true object. These include cases where there is a combination of background and a
portion of some object in the input window. For example, when there is half an object in the
input window.

The method of four categories of cutouts were selected and extracted from the as training
example for object classi�cation:

1. Extract object cutouts where the input window is centered over all the objects of inter-
est, depending on the class of the object. For example, the image below will have two
object cutouts.

Object

True object

Entire Image

True object

Object Cutout

Cutout

2. Extract background cutouts where the input window is centered over background only.
The image below will have two background cutouts.

Cutout
True object

Entire Image

True objectCutout
Background

Background

3. Extract background cutouts from specially selected centers where the input-window
includes a combination of background and true objects, usually involving some por-
tions of the true objects. The image below will have two `more dif�cult' background
cutouts.

22

Cutout

True object

Entire Image

True object

Background
Cutout

Background

4. Depending on the number of �tness cases require, randomly select n more background
centers from anywhere else in the image that does not correspond to any centers cho-
sen from step 1, 2 and 3.

4.1.3 Method 3 - Re�ning Object Classi�cation for Detection (ROCD)

s

Statistics)
(Pixel

Terminals

s

Training

Evolutionary Process

GP learning/

/
Statistics)
(Pixel

Terminals

s

Training

Evolutionary Process

GP learning/

/

Function

...

Statistics)
(Pixel

Terminals

s

Training

Evolutionary Process

GP learning/

/

Object Detection

(Testing)

Detection
Results

Terminals

(Pixel
Statistics)

Testing Image

Input windowSweeping procedure

Object Cutouts From Training Image

Sweeping procedure Input window

New Training Image Function

(Solution)

Best Program

Evolutionary Parameters

PopulationBest Evolved
&

Figure 4.3: Overview of re�ning approach

23

Figure 4.5 shows an overview of the re�ning object classi�cation for detection process (ROCD).
The difference, compared to the previous two approaches, lies in the two-phase learning pro-
cess. Instead of applying the evolved solutions from the OCAD method directly on the
entire test images to obtain the detection results, the entire evolved population is fed into
a secondary learning phase for further evolution. This secondary learning phase then uses
the SFD method to improve the detection performance by further evolving the population.

The testing phase then applies the best evolved genetic program obtained from the
second-learning process to the test set to measure the object detection performance.

This hybrid method has two advantages:

1. Although the secondary learning phase uses a large number of �tness cases (a limita-
tion of the SFD method), the best solution should converge faster as the initial pop-
ulation is not random (like straight-forward object detection) but an already evolved
population.

2. If the best evolved program from the OCAD method does not perform well when ap-
plied to an entire unseen image (testing), it has the opportunity to improve its �tness
via further training. This is attractive as teh OCAD method could be a useful alterna-
tive to the SFD method in saving on training times.

A limitation however is that if the task is not easily solvable by classi�cation and the
average �tness of the evolved population is low, then the secondary learning phase will
require a large number of generations to evolve these poorer programs for detection.

4.2 Functions and Terminals

4.2.1 Terminal Sets

Terminals form the inputs to the GP system. In this project they correspond to a number of
image features and a user-de�ned threshold value T. These features are calculated from pixel
statistics based on the direct pixel values. Speci�cally, the mean and standard deviation of a
group of pixels in a region. This represents the overall brightness and contrast of the region
in the image. Pixel statistics make good features for rotational and translational invariance.
We do not investigate size invariant object detection in this project.

The method of extracting these features involves breaking the moving input-window
into smaller regions, as local region features have proved more effective than whole region
features [17]. This project involves evaluating the effects of �ve terminal sets each using
different local regions. These were split into square-region features (Term Sets I, II, III) and
circular-region features (Term Sets IV, V). These terminal sets are described in detail below:

1. Terminal Set I - This set computes the mean and standard deviation of the whole slid-
ing window, the outside four quadrants of the input-window and the central quadrant,
as shown below. In total, the rectilinear regions pixel statistics make up 12 features.

24

n/2

 A B C

D E

F G H

JI

K L

O

n

Mean SD Regions
F1 F7 Big square A-C-H-F
F2 F8 Upper left square A-B-O-D
F3 F9 Upper right square B-C-E-O
F4 F10 Lower left square D-O-G-F
F5 F11 Lower right square O-E-G-H
F6 F12 Small central square I-J-K-L

Figure 4.4: Terminal set I - 5 rectilinnear quadrants

2. Terminal Set II - This set computes the mean and standard deviation of the whole
input-window and the central square. The motivation for this terminal set was to test
the effectiveness of the four quadrants. Without it, the search space for the solution
becomes smaller, thus simplifying the problem. These use a total of 4 features.

H

A B

C D

E

G

F Mean SD Regions
F1 F2 Big square A-B-C-D
F3 F4 Small central square E-F-G-H

Figure 4.5: Terminal set II - 1 rectilinnear quadrant

3. Terminal Set III - This set computes the mean and standard deviation on whole square-
regions, each increasing in size (4 regions), centered in the middle of the input window.

Region

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

A B

C

Input Window

Largest Region

Second Largest

Third Largest Region

Region

Smallest

Mean SD Regions
F1 F2 Largest region
F3 F4 Second Largest region
F5 F6 Second Smallest region
F7 F8 Smallest region

Figure 4.6: Terminal set III - 8 square-region features

4. Terminal Set IV - This set computes the mean and standard deviation on a series of
three concentric circular regions centered in the input window. Each increases in size,
where the larger circles overlap the smaller circles.

C10

C3

C2

Mean SD Regions
F1 F4 Big circle C3
F2 F5 Medium size circle C2
F3 F6 Small size circle C1

Figure 4.7: Terminal Set IV - 6 circular features

5. Terminal set V - This set computes the mean and standard deviation on the rings of

25

four concentric circular regions centered in the input window. Each ring does not
overlap with any another ring.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Input window

 Ring 1(largest)

Ring 2 (second largest)

Ring 3 (Middle)

Rind 4 (inner)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Mean SD Regions
F1 F2 Ring 1 region (Largest ring)
F3 F4 Ring 2 region (second largest ring)
F5 F6 Ring 3 region (middle ring)
F7 F8 Ring 4 region (inner ring)

Figure 4.8: Terminal set V - 8 circular features

4.2.2 Function Set

The function set forms the non-terminal nodes of the constructed genetic programs. It con-
sists of the four standard arithmetic operators and a conditional operator.

FunctionSet = {+,−,%, ∗, if}

The +,- and * operators have their usual meanings (addition, subtraction and multiplica-
tion) while % means protected division. That is, usual division except that a divide by zero
gives a result of zero. Each of these operators take two arguments and return one. The if
function takes three arguments. If the �rst is positive, the second argument is returned; oth-
erwise it returns the third argument. This allows a program to contain different expressions
in different regions of the feature space.

4.3 Object Classi�cation and Detection Strategy

The output of the genetic programs in this approach is a �oating point number. In con-
ventional single-class or binary object detection tasks, the division between positive and
negative numbers of a genetic programs output corresponds to the separation of the objects
of interest (single class) and the background [17]. Since this project involves multiple class
object detection, where two or more classes of objects of interest are concerned, this strategy
must be extended to accommodate for many classes versus background.

In this approach, both object classi�cation and detection is done using a program classi-
�cation map, as shown in �gure 4.9 [19]. From the output of a genetic program, all values
that are less than or equal to zero are classi�ed as background while those greater than zero
are an object. The separation of the different classes is determined according to the different
thresholds in classi�cation map.

26

...
If (j−1)*T < p <= j*T, then class j

If T < p <= 2*T, then class2

If 0 < p <= T, then class1

If p <= 0, then background

Pr
og

O
ut

���
���
���
���
���

���
���
���
���
���
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
��

��

class1

class2

background

0

T

2 * T

class j

(j−1) * T

Figure 4.9: Classi�cation map

From the map, p refers to the output of genetic program, j to the number of classes of
interest and T to a user-de�ned constant which plays the part of a threshold. For example,
if a program output p at a particular input window location is 21.2345 and T is set to 10, the
object in the input window will be classi�ed as class 2:

p

T
=

21.2345
10

= 2

Therefore, using T and a programs output p at all locations in the window-sweeping
procedure will determine whether an input-window location is considered an object, and if
it is, what class it belongs to from class 1, class 2, ... , classj .

Using a classi�cation map such as this one therefore frames the object detection and
classi�cation problem as a special case of solving a non-linnear regression problem. The
function being learned is the function that separates all objects of interest from each other
and from the background. The variables correspond to the GP terminals and the arithmetic
operators to the GP functions.

4.4 Fitness Measure
The �tness function is one of the most important components in genetic programming as it
allows the GP system to evaluate how well a program performs on a task. In the context
of this project, the �tness function directly measures how well programs perform on the
detection or classi�cation tasks. Since both detection and classi�cation methods are being
investigated, two �tness measures are thus required: one for detection (approaches 1 and 3)
and the other for classi�cation (approaches 2 and 3). The �tness function for object detection
is designed to evaluate programs according to the detection and false alarms rates together,
both important to the overall performance as detection requires both object classi�cation and
localization. Straight object classi�cation on the other hand, evaluates programs according
to their classi�cation accuracy, where detection and false alarm rates no longer apply.

4.4.1 Fitness Functions for Detection
The �tness for object detection, as mentioned above, is calculated based on the detection
rate and the false alarm rate. The detection rate (DR) is the number of true objects correctly
reported by the detection system as a percentage of the total number of known or actual
objects-of-interest in the image. The false alarm rate (FAR) is the number of non-objects
(background) incorrectly reported as true objects as a percentage of the total number of
known objects-of-interest present in the image [19].

27

For multiple-class object detection training on a single image, the DR and FAR are:

DR =
∑n
i=1Ntrue(i)∑n
i=1Nknown

× 100% (4.1)

FAR =
∑n
i=1Nreported(i)−

∑n
i=1Ntrue(i)∑n

i=1Nknown
× 100% (4.2)

Where:

• m is the number of classes of interest,

• Ntrue is the number of true objects correctly reported for class i,

• Nknown is the number of actual (or known) objects for class i,

• Nreported is the number of objects reported for class i.

The goal is to achieve a high detection detection rate and a low false alarm rate. That
means, locating and reporting 100% of the known objects with 0 false alarms (0% FAR).
There is however a tradeoff between these measures. Often trying to increase the detection
rate often results in an increase in the false alarm rate, and similarly, trying to lower the false
alarm rate can result in a decrease in the detection rate [19] .

Note a few points on the FAR. Since there are usually many more background `objects'
present in an image than true-objects, the false alarm rate can be greater than 100% under
the above de�nition. In such cases where the FAR is greater than 100%, it implies that the
detection system incorrectly reported more non-objects as true objects than there actually
are. False alarm rates also tend to escalate to very large values even in simple detection
problems just because of the sheer number of non-objects to objects ratio in an image. It
is not uncommon to have rates ranging between 200% and 2000% for extremely dif�cult
detection problems such as those involving objects-of-interest surrounded by very cluttered
backgrounds.

For example, consider an image of size 100x100 pixels � which is small considering a
typical 'real world' image can easily be of size 1000x1000 pixels � containing 20 objects of
interest of a single class, all of size 10x10 pixels. The number of known centers Nknown will
correspond to the center co-ordinates of each these objects of interest in the image, totalling
20, whereas the non-objects will be all the other co-ordinates which are not objects, totalling
8080, from:

(100− 10)× (100− 10)− 20 = 8080

This illustrates the high object to non-object ratio of 20:8080 for even a relatively small
image.

It is important to mention that all such non-objects could represent a possible false alarm
in a detection system. This makes the task of object detection dif�cult. Consider also the case
where the true center of an object in an image is marked at co-ordinates (x,y). According to
the false alarm rate, the immediately neighboring pixel at co-ordinate (x+1,y) is a false alarm.
Intuitively this does not seem correct as both these co-ordinates belong to the same object in
question yet a detection system will mark (x+1,y) as a false alarm when clearly it is not.

For this reason, the detection and false alarm rates are calculated using a clustering
approach [17]. This effectively clusters neighboring co-ordinates together as a single object.
The size of the clusters are de�ned according to a TOLERANCE value, where TOLERANCE
is a user-de�ned constant. The clustering approach therefore implies that if a detected center
occurs within TOLERANCE pixels of a cluster, it belongs to that cluster. The detection and
false alarm rates using the clustering approach are as follows:

28

1. Detection rate : Neighboring pixels around the true-center of an object will not be
counted as false alarms as they fall within TOLERANCE pixels of a known center.
A consequence is that the detection system will no longer report the `true center' of an
object, but rather the �rst detected center it �nds corresponding to that object cluster.

2. False alarm rate : If a false alarm is reported (non-object), then all other possible false
alarms reported within TOLERANCE pixels of that original false alarm is instead clus-
tered as only one false alarm. An object is therefore only reported as a `detected object'
if it is not within TOLERANCE pixels of another detected object (cluster).

Using clustering effectively translates the high false-alarm-rate problem into a more vi-
able measure as the false alarm pixels are instead treated as false alarm `objects'.

Recall that one of the goals in this project are to measure the effect of different �tness
functions on program evolution. For this reason two �tness functions are used in the detec-
tion tasks and will be evaluated against each other to investigate their effects.

1. The �rst �tness function is the typically used �tness function for object detection based
on the detection rate (DR) and false alarm rate (FAR) [19]. K1 and K2 are user-de�ned
constants that re�ect the relative importance between the detection rate and false
alarm rate. These are treated as addition parameters to the GP system (section 4.5).
This �tness function will be zero for the idea case.

fitness(DR,FAR) = K1 ∗ (1−DR) +K2 ∗ FAR (4.3)

2. The second �tness function was developed for the purposes of this project. It uses the
DR and FAR in the same way as the �tness function above, with two additional con-
straints: false alarm area (FAA) and the Program Size (Prog size). This is considered
a multiple objective �tness function as it rewards programs that favour all of the con-
straints. Similar to the use of constant weight values seen above (equation 4.3) K1, K2,
K3 and K4 re�ect the order and relative importance of each of the four constraints.

fitness(DR,FAR,FAA,ProgSize) = K1∗(1−DR)+K2∗FAR+K3∗FAA+K4∗ProgSize
(4.4)

The rest of this section describes the rationale behind adding FAA and ProgSize to the
�tness function, outlines the method of applying the �tness function to object detection and
introduces the �tness function used for object classi�cation.

Program Size in the Fitness Function

Program size is included in the �tness function for the end goal of evolving programs that
obey the law of parsimony. Parsimony is a term borrowed from physics and philosophy
which means that the simplest between two or more competing theories is usually the one
that is preferred. In terms of program evolution, the simplest program detectors which
achieve a good detection performance will be favoured for evolution. For example, if two
programs have the same detection performance, the smaller program will be �tter.

Program size is measured by the number of functions and terminals that make up a
single genetic program. For example, program (a) below has ProgSize of 7 and (b) has a
ProgSize of 13.

(a) (*(+ x x)(- y y))

29

(b) (-(*(+ x x)(- y y)) (+ x (* y x)))

The desired effect of building parsimony into program evolution is so that populations
do not end up containing individuals overly complex in structure. This is a common prob-
lem with genetic programming as many `redundant` subtrees are often built into evolved
programs via the crossover or mutation operators. Redundant here means subtrees that ei-
ther do not contribute to the overall �tness of the program or subtrees that can be simpli�ed
down further. For example, subtree (/(* x x) x) can be simpli�ed to just x.

Simpler programs are desired for two important reasons: ef�ciency and understandabil-
ity. Smaller programs take a shorter time to evaluate than longer programs, and if dealing
with large populations with 1000 individuals or more, this can lead to a considerable amount
of time saved in evaluating these programs. The second reason, understandability, is for our
bene�t as scholars of such learning paradigms. It aims to remove the 'black-box' feel asso-
caited with genetic program evolution. This is useful as, in order to observe and understand
the validity of genetic programming as a machine learning technique, we need to be able
to see exactly how it has `learned' the solution to a task and how we may improve on it.
Parsimony is also known as the theory of Ockham's razor [15]

As a consequence of using program size in the �tness function, the best (optimal) �tness
is no longer 0. This is because any programs size will always be an integer greater than 0. In-
stead the evolutionary termination criteria was modi�ed to accommodate for this by allowing
the best program to have an optimal �tness only if the following condition is speci�ed

fitness− (K4 ∗ ProgSize) ≤ 0

.

False Alarm Area in the Fitness Function

The false alarm area (FAA) is an object detection constraint introduced by [17]. It corre-
sponds to the number of unclustered centers generated by a program when calculating the
false alarm rate (FAR). Recall that while the clustering approach used to calculate the FAR
does not count those false alarms that fall within TOLERANCE pixels of a clustered center,
FAA does. For that reason, FAA is calculated using the same de�nition (equation 4.2) given
for false alarm rate FAR (in section 4.4.2), except the reported centers are not clustered.

The motivation for including FAA in the �tness function is that it can measure small
improvements in performance, something which just FAR can not. This is important as
otherwise the evolutionary process will have dif�culty in selecting better programs. Figure
4.10 demonstrates how FAA can be bene�cial in measuring small changes to a program.

(original)

���
�

��
�
��
�
��
�
��
�

��
�
��
�
��
�
		
	

��
�
��
�

������������������������������

������������������������������

������������������������������

������������������������������
��
�
��
�

���
�
���
�

��
�
��
�
��
�
��
�

��
�
��
�
��
�

!!
!
""
"
##
#
$$
$

%%
%
&&
&

''
'
((
(

))*
*
++,
,

--.
.

//0
0
112
2

33
3
44
4

(a) (b)

556
6

Figure 4.10: Detected centers with different false alarm area rates

From �gure 4.10, (a) and (b) are object detection maps produced by two different pro-
grams using the original image. Although both a and b detect both true objects (100%) they
also report two false alarms. If TOLERANCE pixels allowed is 4, then according to equation

30

4.3 they are equally �t with 100% DR and 100% FAR (2 clustered centers as a percentage of
known centers). But this does not re�ect the fact that clearly program b is better than pro-
gram a because it produced less false alarms. Using FAA would re�ect this slight difference
in performance and rank these programs accordingly as,

aFAA = (6/2) ∗ 100 = 300%

bFAA = (2/2) ∗ 100 = 100%

Applying the Fitness Function to Object Detection

The �tness of a genetic program for detection is calculated as follows:

1. Apply the program as a moving window template to the training image to obtain
a program output value for each location (x and y co-ordinates). According to the
classi�cation map (from �gure 4.9), label each location with the object detected.

2. Find the centers of these detected objects by the clustering algorithm (within a TOL-
ERANCE number of pixels).

3. Match these detected centers with the known locations of each of the true objects to
�nd the detection rate. Using these results, calculate the false alarm rate and if rele-
vant, the false alarm area and program size.

4. Calculate the �tness of the genetic program according to equation 4.4.

4.4.2 Fitness functions for classi�cation
The �tness function for object classi�cation is based on classi�cation accuracy, which in de-
�ned as follows:

accuracy =
∑n
i=1Ncorrect(i)∑n
i=1Ntotal

(4.5)

Where,

1. n is the number of classes of object cutouts,

2. Ncorrect is the number of correctly classi�ed object cutouts according to class i,

3. Ntotal is the number of cutout objects for class i.

The �tness function using classi�cation accuracy (CA) in de�ned as:

fitness(CA) = 1− (CA) (4.6)

Like the �tness function for detection, the best program in object classi�cation will also
have a �tness of 0. The method of evaluating a programs �tness is also similar, except
that the given program is applied to all the cutouts, not the entire image to determine the
classi�cation accuracy. Only this �tness function is considered for classi�cation as the goals
for this project focus on trying to methods to improve object detection, not classi�cation.
This �tness function is simple and effective and will suf�ce for the role classi�cation plays
in this research.

31

4.5 Evolutionary Parameters and Termination Criteria
The parameters used in this approach are presented in table 4.1. These were split into three
main parameter types: search, genetic and �tness parameters.

Types Parameter names easy Images Coin Images
Minimum depth for programs 2 2
Maximum depth for programs 6 8

Search Maximum generations 100 200
Parameters Individuals in population 800 2000

input window size 20x20 72x72
Fitness function I & II II

Genetic Mutation Rate 29% 29%
Parameters Crossover Rate 70% 70%

Elitism Rate 1% 1%
T 100 80

K1 5000 5000
Fitness K2 100 100

Parameters K3 10 10
K4 1 1

Tolerance 8 30

Table 4.1: Evolutionary parameters for detection tasks

The evolutionary process was terminated either when the number of generation reached
the pre-de�ned number max-generations or when a programs �tness was ideal (0 in most
cases).

32

Chapter 5

Results

This chapter presents all the results from the experiments and research questions outlined
in the goals section (section 1.1). The results are summarized and analyzed and include: the
detection performances from the three different approaches, the feature set performance on
the different tasks, and the �tness function evaluation on each of the four tasks. This chapter
is split into �ve main sections and each is organized as follows:
5.1 Results from the computer-generated images (task 1)

5.2 Results from the 10c vs 5c coins (task 2)

5.3 Results from the 5c heads vs 5c tails coins (task 3)

5.4 Results from the 5c heads vs 5c tails vs10c heads vs 10c tails (task 4).

5.5 Summary of the �tness function comparison, the detection performances using each
method on the four tasks, and terminal set performance evaluation for each the four
tasks.

5.1 Task 1 � Generated Easy Images
This section presents the detection results using the straight-forward detection method.
Since these results are ideal and achieved in relatively short training times (due to the small
image size), only this detection method was used. Three runs were performed using �tness
function I (equation 4.3) for each of the �ve terminal sets and the solutions applied to the test
set to evaluate the averaged detection results (presented in table 5.1).

Terminal Sets DR FAR
class1 class2 Total class1 class2 Total

TermSet I 100 100 100 0 0 0
TermSet II 100 100 100 0 0 0
TermSet III 100 100 100 0 0 0
TermSet IV 100 100 100 0 0 0
TermSet V 100 100 100 0 0 0

Table 5.1: Detection results for easy images

Table 5.1 shows that the detection system produced ideal results for the easy generated
images. All �ve terminal sets achieved a 100 % detection rate for both classes of objects

33

with no false alarms. On average terminal set II found the ideal solution �rst, in about 15
generations. Terminal set III found the ideal solution in approximately 25 generations while
Terminal set I took the longest training time, usually about 50 generations. This suggests
that a simple simpli�cation of the search space (less features) makes the solution easier to
�nd. In all cases, the training times were approximately 30 to 90 minutes.

Figure 5.1 presents a sample object detection map to illustrate the detection results. It
corresponds to a run using terminal set IV. Figure (a) is the original unseen image, and (b)
and (c) are the detection maps (a black cross represents a detected object center for circles
and squares).

(a) (b) (c)

Figure 5.1: Detection map for the easy images

5.1.1 Programs and Fitness Functions
This section investigates the effect of using the multi-objective �tness function in program
evolution, speci�cally, the effect of using program size in the �tness function.

Recall that the two Fitness functions being compared are:

I. Fitness(DR, FAR) = A * (1-DR) + B * FAR
II. Fitness(DR, FAR, FAA, Program Size) = A* (1-DR) + B * FAR + C * FAA + D * Program Size

Using program size in the �tness function (II) yielded smaller program solutions on
average than program solutions generated without using the program size in the �tness
function (I). This was discovered by comparing the sizes of the evolved programs trained
using both �tness functions on the easy images using terminal set III (square region features).
The easy problem was the best of the tasks to evaluate this comparison of �tness functions
because of the considerably shortened training time in comparison to the coins problems.

From a total of 80 independently evolved program solutions, all achieving perfect results
on the training and test tests, half (40) were trained using �tness function I and the other half
(40) using �tness function II. The average sizes were as follows:

• Fitness function I: generated average program size of 62.

• Fitness function II: generated average program size of 24.

Programs evolve using �tness function II appears practically bene�cial as these smaller
solutions allowed the evolution to converged faster, reducing the overall training time (in
terms of generations taken to evolve). These programs are easier to interpret and contained
less redundant building blocks (subtrees) than the programs evolved using �tness function
I which takes much time and resources to compute.

The smallest evolved program using �tness function II was of size 16. One of these pro-
grams is presented below for a comparison.

34

(d/ (if (d/ (d- F7 T) F7) F8 (d* (d- F7 F3) F2)) (d/ F7 F7))

This is very much easier to interpret than a program generated using �tness function I,
such as the one presented below which is of size 73 (slightly larger than the average size)

(d/ (d+ (d* (d/ (d/ F8 T) (d+ T F1)) (d+ (d+ T F2) (if F7 T F8))) (if
(d- (d* T F4) F5) (d- (d+ F6 T) (d* T F7)) (d/ (d- T F8) (d- F1 T))))
(d+ (if (d/ (d/ F2 T) (d* T F3)) (d+ (if T F4 F7) (d- T F5)) (d* (d/
F1 F6) (d+ F7 T))) (d* (d/ T (d+ T T)) (d/ T (d/ T F4)))))

A manually simpli�ed version of the shorter program from above, after removing three
redundant sub-trees, such as replacing the last term (d/ F7 F7) with 1 and replacing (d/
(d- F7 T) F7) with (d- F7 T), is shown below. It is now of size 10.

(if (d- F7 T)
F8
(d* (d- F7 F3) F2))

Intuitively this solution is easy to interpret. First recall that the terminal values are calcu-
lated from the mean and standard deviation of the raw pixel-value intensities (I) (see Figure
4.3). Since class 1 (circles) is lighter in intensity than class 2 (squares), it follows that mean
(class1) < mean (class2), where mean (class1) is approximately 120 and mean (class2) is
approximately 200. Yet both mean (class1) and mean (class2) are lighter than the back-
ground intensity, which is very close to 0, so it follows thatmean (class1) andmean (class2)
> mean (background).

According to the learned function, if part 1 (if condition) evaluates positive , the sec-
ond term F8 is chosen, else the last term is chosen. Since mean (background) is less than
threshold T (100), this condition will effectively only evaluate true when the moving input-
window is over an object of interest, as F7 corresponds to the smallest square-region mean
and both mean (class1) and mean (class2) is greater than T . In the case where the input
window is over the background, the last term will be returned as the program output. Re-
call that an object is only considered found if the program output is greater than 0 (from
classi�cation map). The program ensures this always happens by constructing the the last
term such that it will always return a value less than or equal to 0 if the input window is
over background from following two cases:

1. If the input window is over background only, both means F3 and F7 will be the same,
therefore evaluating to zero.

2. If a portion of object is visible in the input window with the rest as background, F3
will be greater than F7 as the mean of the larger window (F3) will increase due to the
larger I values contributed from the portions of the lighter object. Thus returning a
negative number.

This shows that this simple if function is enough to capture the difference between
background and objects-of-interest based on their I values. If it is a object of interest, the
standard deviation (SD) F8 distinguishes between either class 1 or 2 where SD (class1)
is less than T and SD (class2) is greater than T. Such analysis on the solution removes the

35

`black-box' feeling commonly associated with the programs generated in the evolutionary
process, as we encountered in such programs as the second presented above (evolved using
�tness function I). It allows the chance to dissect the construction of a program solution to
see exactly what each component is responsible for, giving a more intuitive feel into how the
program detectors works.

Therefore building the idea of parsimony � the simplicity of solution structures � into
the �tness function is bene�cial in �nding solutions fast.

5.2 Task 2 � 10 Cent and 5 Cent NZ Coin images

The results for this task use all three detection methods, straight-forward detection, object clas-
si�cation applied to detection and re�ning object classi�cation for detection (introduced in section
4.1), to evaluate their effectiveness. The subsequent sections present the detection results
(detection and false alarm rates) achieved for each of the three methods using each of the
�ve terminal sets, the best evolved programs and sample detection maps. The tables cor-
responds to how well each terminal set performed on the detection task, where the `total'
columns are the overall detection rates and false alarm rates.

These programs were generated using the evolutionary parameters from the table pre-
sented in section 5.5 and �tness function II (equation 4.4 in section 4.4.1). Fitness function II
was chosen over �tness function I because of the positive effects it was shown to have on
program solution structures [section 6.1.1].

5.2.1 Results using Straight Forward Detection (SFD)

Each training run was executed three times for every terminal set, producing 3 solutions
each to be evaluated against the test set. The test set consisted of 3 unseen images. The av-
eraged detection and false alarm rates presented below are calculated from all three evolved
solutions performance on the test set.

Terminal DR FAR
Sets class1 class2 Total class1 class2 Total
TermSet I 100 100 100 0 0 0
TermSet II 100 100 100 0 20.83 10.42
TermSet III 100 100 100 0 12.5 6.25
TermSet IV 100 100 100 0 0 0
TermSet V 100 100 100 0 0 0

Table 5.2: Straight-forward detection results for 10c and 5c coins images

Only three out of the �ve terminal sets achieved perfects results: terminal sets I, IV and
V. Although terminal set III did report some false alarms on the test set, this number is
relatively low (10.42%). The reason being, that out of the three evolved program solutions,
only two were ideal while the third was not, reporting some false alarms. This resulted the
overall FAR average being `bumped up' just slightly. In the case of terminal set II only one
out of the three evolved solutions was ideal, the other two both reporting some false alarms.

36

Training Times

Another major difference between these performances was the times taken to �nd a solution.
The averaged number of generations required to �nd a solution for each terminal set is
given below for a comparison. This comparison is important as since at least one evolved
program from all the terminal sets were able to achieve perfect results, the next best measure
on the effectiveness of the different terminal sets is how well each terminal set affected the
convergence of a solution.

Terminal Sets Average generation for average time
solution to converge (hours)

TermSet I 34 26.5
TermSet II 128 51.5
TermSet III 96 38.5
TermSet IV 19 17
TermSet V 11 12.5

Table 5.3: Training times for 10c and 5c coin images using straight-forward detection

These results are a good indication of which terminal sets supported the fast conver-
gence of program solutions. Terminal set V (circular-ring region features) found a solution
the fastest � each of the the three programs was evolved in under 12 generations. The next
fastest average training time was from terminal set IV (whole circular region features), tak-
ing around 19 generations to converge. The three square-based feature region terminal sets
(I, II and III) all produced relatively high training times, with terminal set II the worst at an
average of 128 generations for a solution to converge.

Feature Set Investigation

From these results in table 5.3, two important conclusions can be drawn regarding the effect
of using different terminals (features) on program solutions. The �rst is that circular-based
feature region terminal sets (IV and V) proved more effective as they both found solutions
faster and produced better solutions. Both yielded results with no false alarms and solutions
were found in under 20 generations, compared to the other square-based feature region
terminal sets which took between 34 and 128 generations to �nd solutions produced some
false alarms.

The second is that programs using terminal set I (5 rectilinnear quadrants) both evolved
faster and achieved better results than terminal set II (central quadrant). This is important
as terminal set II was constructed as a simpli�ed or reduced feature set of terminal set I to
test whether all 5 quadrants were needed as features, or if they could simply be reduced to
just a central quadrant. The results show that the programs generated using only the single
central quadrant were not able to produce ideal results in the similar number of averaged
generation as the rest were. The reason for this is simple: the single quadrant was not suf-
�cient or a powerful enough feature by itself to distinguish between the 2 classes of interest
as it was too small to capture the most noticeable difference - the different sizes. In other
words, where terminal set I provided the features to accomplish this, terminal set II could
not. Therefore according to this detection problem, using only 1 central quadrant did not
provide suf�cient features to separate the different classes of interest, more were de�nitely
required.

37

This conclusion contrasts the conclusion asserted regarding the effectiveness of terminal
set II on the easy images. On that particular problem, programs evolved using this terminal
set were found faster than those using terminal set I because of the reduction of the search
space. This implies that for easy detection problems a simple terminal set is more effective,
but for more dif�cult problems such as this one, a more extensive set of features are required.

Two example object detection maps are presented below using terminal set V. In �gure
5.2, (a) corresponds the original image, (b) to class 1 (10c) and (c) to class 2 (5c), which show
that an ideal detection performance was achieved.

(a) (b) (c)

Figure 5.2: Sample detection map using Terminal set V

Evolved Programs

The average program sizes for each of the different terminal sets gave similar patterns to the
tables presenting the training times for each terminal set (table 5.3). Of the three programs
evolved using terminal set IV, the averaged size was the smallest, only 36, while terminal set
II the largest, with an averaged size of 179. Programs evolved using terminal set V produced
the next smallest averaged size of 66, followed by terminal set I with 107, and terminal set
III with 113.

These program sizes re�ect the usefulness of the different features used in the terminal
sets, where the smaller the programs, the more powerful the features. Since the circular-
ring region based terminal set (IV) allowed for the smallest programs to be evolved in the
shortest times, they must be the most powerful. Following closely are the next set of circular
features, the whole-circular region features (terminal set V).

The square-based features produced programs about 2 or 3 times larger than the aver-
aged size of terminal set IV and V, suggesting that for this particular problem, the square-
based regions were not as powerful as the circular based region features.

Presented below is a program evolved using terminal set V (a) and one evolved using
terminal set II (b). They both performed the same on the detection process, each producing
a 100% DR and a 0% FAR, but program a was found considerably faster than program b.
It is interesting that even though both achieved the detection performance, program a is 5
times smaller than program b.

38

Program a, size = 35
(d+ (d+ (d/ F6 (d- T (d/ F2 T))) (d- (d- T F7) (d/ T F5))) (d* (d/
(d- T T) (d- F3 (if F5 F1 T))) (d- F7 (d+ F8 (if T F1 T)))))

Program b, size = 183
(d/ (d- (d- (d+ (d* F3 (d* F3 T)) F4) (d- (d* (d* F2 T) (d- T F3))
(d* (d+ T F4) (d+ F1 T)))) (d+ (d+ (d* (d/ F2 T) (d+ T T)) (d/ (d-
T F4) (d/ T F4))) (if (if (d* T F2) (d+ F3 F1) (d* T F4)) (d- (d- T
F1) (d* F2 T)) (d- (d/ F3 T) (d/ T F4))))) (if (d* (d- (d+ (d* F1 T)
(if T F2 T)) (d/ (if F3 T F1) (d- F1 T))) (d- (if (d+ T F2) (d+ F2
T) (d* T F4)) (d* (d/ T F1) (d/ F2 T)))) (if (d- (d+ (d/ T F4) (d-
F1 T)) (d* (if F1 T F2) (d/ T F1))) (d+ (d/ (d- F4 T) (d- F4 F1))
(d/ (d- T F1) (d+ F2 T))) (d+ (d* (d+ F4 F4) (d* F1 T)) (d* (if F2 T
F3) (d/ F4 T)))) (d/ (d/ (d/ (d+ F1 T) (d* T F2)) (d/ (d+ T F1) (d*
F4 T))) (d+ (d+ (if T F1 T) (d- T F2)) (d+ (d+ T F3) (d/ F4 T))))))

5.2.2 Results for Object Classi�cation Applied to Detection (OCAD)
Three programs for each terminal set were trained using the (OCAD) method. The following
two subsections present a summary of the classi�cation performances as well as how these
programs fared when applied to detection.

Classi�cation Training Results

Since classi�cation allows for the opportunity to train on multiple images � to prevent over-
�tting � the training set used for this problem was increased to 3 images (compared to 1 us-
ing straight-forward detection). More speci�cally, each of the three images contained: 16 ob-
ject cutouts corresponding to the centers of 16 objects of interest in an image (8 for each class)
and some background cutouts (24). The reason there are three times as many background
cutouts is that this class must include both pure background, and background combined
with portions of an object of interest. This is to `prepare' the classi�er to evolve programs
that can be applied to object detection too. The number of cutouts is calculated as follows:

[8(class1) + 8(class2) + 24(backg)] ∗ 3(images) = 144cutouts

Table 5.4 presents the training performance of each terminal set on the cutouts.

Terminal Classi�cation Accuracy
Sets class1 class2 background Total

TermSet I 100 100 99.1 99.7
TermSet II 100 100 99.61 99.53
TermSet III 100 100 98.61 99.53
TermSet IV 100 100 99.1 99.7
TermSet V 100 100 99.33 99.77

Table 5.4: Training performance for classi�cation on 10c and 5c coin cutouts

None of these programs achieved an overall classi�cation accuracy of 100%. Although
each class of interest was able to do this, the background class was not. This is due to

39

the selection of background cutouts that included large portions of true objects. The classi-
�er could not correctly classify those cutouts as background since some included portions
covering even more of the cutout than the background. These more dif�cult cutouts were
chosen in the aim of `preparing' the programs for the sweeping procedure used in detection.

The training times for this method were short, usually on the order of 2-10 minutes.

Detection Results

Table 5.5 shows the object detection results achieved by the OCAD method. The best evolved
program from classi�cation was applied to the test set in a sweeping window fashion.

Terminal DR FAR
Sets class1 class2 Total class1 class2 Total
TermSet I 100 100 100 100 0 50
TermSet III 100 100 100 100 100 100
TermSet III 100 100 100 100 100 100
TermSet IV 100 100 100 100 0 50
TermSet V 100 100 100 50 0 25

Table 5.5: Classi�cation-applied to detection results for 10c and 5c coins

Term Set V performed the best, only generating half the number of false alarms, on
average, for class 1 (5 cents). Comparatively the rest of the terminal sets were worse, all
generating either:

• All (100%) false alarms for class 1 heads (Term sets I, IV) � reporting all objects of class
2 as class 1 � and no false alarms for class 2 tails, or

• All false alarms for both classes (Term sets II, III) � reporting every single object of
either class as a false alarm for the other.

It is important to note that the centers of the objects were classi�ed correctly. It was
the portion around the object that triggered a false alarm. This resulted in the unclustered
centers producing a `hollow' in the middle of an object-of-interest of the incorrect class in
the output detection maps, as the centers did not generate any false alarms.

None of these results are ideal. Considering that the results generated using the SFD
detection method on this problem were ideal, the OCAD method does not seem appropriate
for object detection. However, the evolved populations that are a result of this method does
prove useful when substituted for the initial population in the two-phase training method
(see results below).

5.2.3 Results for Re�ning Object Classi�cation For Detection (ROCD)
Since the straight-forward detection method was able to achieve ideal results on this prob-
lem, the aim of this method was only to possibly reduce the overall training times. Two
evolved populations from the classi�cation method were used in evaluating these results.
The 2 populations correspond to the program evolutions using terminal sets I and IV. These
two were chosen because they both had relatively long training times in the original method
that could possibly be reduced. In each case, three separate programs were evolved using
this 2-phase training method and the averaged results were results reported.

40

The effect of substituting an evolved population for the initial population did result in a
slight improvement. Both training times were reduced compared to straight-forward detec-
tion, while both terminal sets maintained their 100% detection rate and 0% false alarm rate.
The average number of hours taken to �nd the solution for the programs evolved using ter-
minal set I was reduced from 26 to 16, while for programs evolved using terminal set IV this
dropped from from 17 to 11 hours.

Evolved Programs

The averaged size of the 2-phase evolved programs were also shorter compared to those pro-
grams evolved using straight-forward detection. The average program size for terminal set
I dropped from 66 to 43. A more important observation was for the programs evolved using
terminal set IV which dropped from 107 to 56. This is a simpli�cation by a factor of approxi-
mately a half. This suggests that this 2-phase evolutionary process has an additional bene�t
apart from just reducing training times, it also favours the evolution of simpler programs
than the straight detection method (both using the same �tness function). Presented below
is an example of this shorted evolved program. It was generated using terminal set I, and is
of size 56

(d- (d- (d/ (d/ T (if F3 F3 F4)) (d- F6 T)) (d/ (if (d* T F3)
F4 (if T F5 T)) (d+ (d/ F12 T) (d+ T F6)))) (d/ (d/ (if (d+
F9 T) (d+ F11 T) T) F4) (d+ (d/ (d* T F11) (d* F10 T)) (d/
(d* F11 T) (if T F12 T)))))

5.3 Task 3 � 5 Cent NZ Coin images

In approaching task 3, evolving programs using the �rst method, SFD, did not achieve per-
fect results. On every training attempt, there was always at least 2 false alarms that pre-
vented the convergence of a solution. In most cases, the training was aborted after reaching
the maximum number of generations allowed without �nding the optimal one. The best
programs �tness did not improve after about 80 generations, even if the maximum number
of generations was increased.

For this reason the two other methods discussed earlier, OCAD and ROCD were also
applied to this task in an attempt to improve the performance. These methods however,
were also unable to �nd the perfect solution during training and testing, but the results do
show an improvement.

5.3.1 Results using Straight Forward Detection (SFD)

Each evolved solution was applied to three unseen images and the averaged detection and
false alarm rates were reported.

41

Terminal DR FAR
Sets tails heads Total tails heads Total

TermSet I 100 100 100 97.5 27.5 62.5
TermSet II 100 100 100 100 30.7 68.5
TermSet III 100 100 100 87.5 12.5 50
TermSet IV 100 100 100 55.35 23.21 39.28
TermSet V 100 100 100 100 25 62.5

Table 5.6: Straight-forward detection results for 5c heads and 5c tails coin images

None of the terminal sets found the ideal solution. All �ve achieved a 100% detection
rate for both classes but with some unwanted false alarms. Terminal set IV, the whole-region
circular features achieved the best performance, producing the lowest (on average) false
alarm rate (FAR), 39.28%, compared to the others which were all 50% or above. This FAR
corresponds to roughly 4-5 false alarms for class tails and 1-2 false alarms for class heads,
from 8 object per class in each image. The worst performance was from terminal set II, the
4 rectilinnear features, producing a 68.5% FAR. These results suggest that just 4 rectilinnear
features may not be suf�cient, as the 12 rectilinnear features performed better, achieving a
lower FAR (62.5 %). Terminal set I and V performed roughly the same both yielding the
same FAR's, but worse than Terminal set III (50 %).

It is interesting to note that in each case, the false alarm rate for class tails was always
higher than the false alarm rate for class heads. This can be clearly seen from the graph
(�gure 5.3), which presents the overall false alarm rates for all the terminal sets, split into
those generated by each class.

Figure 5.3: False alarm rates for all 5 terminal sets

An important conclusion can be drawn from the graph. All the terminal sets have
roughly a similar proportion of false alarms for class 2 (heads) over class 1 (tails) even if
their overall FAR vary, implying detecting objects for class 1 (tails) was more dif�cult than
class 2 (heads).

Analysis and Discussion

From analysis on the centers produced by the detection system, it was observed that all the
false alarms for class 1 (tails) were generated along the borders of some of the objects of
class 2 (heads). That means that none of the centers of class 2 (heads) were reported as false
alarms for class 1 - these were correctly classi�ed as class 2 - it was only where the input

42

window was half over the object, a false alarm was generated. Figure 5.4 shows an example
of this 'half-object-in-moving-window' problem.

(a) Class Background (b) False Alarm (c) Class 2

Figure 5.4: Half an object in the moving window generating a false alarms

From �gures 5.4, (a),(b) and (c) correspond to input windows during the sweeping de-
tection procedure. Figure (a) shows a moving input-window classifying the background
preceding an object-of-interest correctly. Figure (b) shows the same moving input window
containing half of object of class 2 (heads), which was incorrectly reported as a false alarm
for class 1 (tails). Figure (c) correctly reports the same object, as seen in �gure (b), as a
detected object center for class 1 (tails). This illustrates one of the main problems the GP
detection system encountered with this task: reporting a large proportion of false alarms.

A major factor contributing to this problem is the pixel statistics extracted from the mov-
ing windows. For example, considering the case where the mean value of the pixels in the
moving window over some background is less than threshold T, no object is reported (�g-
ure 5.4 (a)). After moving 72 pixels across (width of object), when the moving window is
centered over an object of class 2, the mean will be twice than the threshold mean > T+T
and an object of class 2 will be reported (�gure 5.4 (c)). During this sweeping procedure,
there will be some points where the mean value passes through T < mean < T+T gener-
ating a false alarm (�gure 5.4 (b)), as the mean of class 1 lies between T < mean < T+T.

A good program would learn to separate these values with the appropriate use of the if
function in the solution.

There are two other important factors contributing to the large number of false alarms.
First, the number of TOLERANCE pixels allowed. If this number was larger, less false
alarms would have been generated as the clustered centers would have extended to in-
clude them. The disadvantage in increasing this value is that the programs do not learn to
separate these values. Therefore the lower it is, the more the programs learn to incorporate
the difference into the learning phase. Second, the weighting of the constants in the �tness
function. Recall that K1 (DR) was weighted far greater than K2 (FAR), thus favouring the
selection of programs with a high DR �rst. If these constants were weighted more evenly,
programs with a less FAR would have been favoured effectively lowering the overall FAR
of the best program. The risk in that is that the DR could drop to lower that 100%.

Sample Object Detection Maps

Presented in �gure 5.4 are object detection maps to illustrate the detection results. These
maps were obtained by a good evolved program using terminal set IV. As we can see, all
16 objects-of-interest of both classes were detected (100% DR) but with 6 false alarms (37.5%
FAR). In these �gures, the small black dots represent a detected object center, while the larger
red ellipses around a detected center show the occurrence of a false alarm. Note that these
ellipses were manually added to the detection maps to show the false alarms, they were not
output from the GP as the black dots were. (Note, this detection map was generated from
the program presented below).

43

(a) (b) (c)
Figure 5.5: Detection map showing all objects found, but with some false alarms (circled)

From this we can see that the 6 false alarms were not split evenly between the two classes.
Four were reported for class 1 (heads) (b) and two for class 2 (tails) (c), suggesting heads
were harder to detect than tails. For both classes, the GP detection system successfully
localized each of the objects, reporting the centers only a few pixels within range of the true
centers. From this we can also see that the GP system successfully learned the difference
between object and background as the only false alarms generated are other objects, not
pure background.

Sample Programs

Presented below is an evolved program using terminal set IV. This program produced the
object detection map above. The program size is 62, where the average size of all programs
generated using this approach 64.

(d+ (d- (if (d+ (d- F3 T) (if T F2 T)) (d+ (d- F4 T) (d/ F4
T)) (if (d+ T F1) (d+ T F5) (d/ F5 F3))) (d* (d/ (d* F2 F2)
(if T F3 T)) (d/ (d/ F1 F3) (d/ F1 F2)))) (if (d* T (d- (if T
F3 T) F4)) (d+ T (d- (d/ T F5) T)) F6))

Note that this average program size is almost twice as large as the average size of those
programs evolved using the same terminal set for the easier coins problem (10c vs 5c im-
ages), which was 35. This is mainly because this problem is more dif�cult to solve.

5.3.2 Results of the Object Classi�cation Applied to Detection method (OCAD)
Classi�cation Training Results

In a similar way to `classi�cation applied to detection on 10c and 5c Coin Images', the clas-
si�er trained on a number of cutouts. Since this is a more dif�cult problem to solve as both
classes of interest (heads and tails) are of the same size and the background is highly clut-
tered, the number of cutouts was increased to:

[8(class1) + 8(class2) + 35(background)]× 3(images) = 153cutouts

Table 5.7 presents object classi�cation results on the cutouts. For each terminal set, three
runs were performed in the experiments and the averaged classi�cation accuracy over the
three program evolutions were reported.

44

Terminal Classi�cation Accuracy
Sets tails heads background Total
TermSet I 100 100 98.32 99.44
TermSet II 100 100 97.17 99.05
TermSet III 100 100 97.81 99.27
TermSet IV 100 100 98.4 99.46
TermSet V 100 100 98.53 99.51

Table 5.7: Classi�cation-applied to detection results for 5c heads and 5c tails coin cutouts

Similarly to the training performance for classi�cation on the 10c and 5c coin problem,
none of these programs achieved an overall classi�cation accuracy of 100%. This is again
due to the classi�ers inability to correctly classify some of the more dif�cult background
cutouts which included large portions of an object in the cutout.

Similarly to the training results for the OCAD method on task 2, the training times here
were between 5 and 10 minutes.

Detection Results

The best program evolved from classi�cation was directly applied to the large images in the
test set in a sweeping window process. The object detection results are presented in table
5.8.

Terminal DR FAR
Sets tails heads Total tails heads Total
TermSet I 100 100 100 100 20 64.5
TermSet II 100 100 100 100 50 75
TermSet III 100 100 100 100 45 72.5
TermSet IV 100 100 100 100 0 50
TermSet V 100 100 100 100 20 60

Table 5.8: Straight-forward detection results for 5c heads and 5c tails coin images

Like with the easier coin problem (section 5.2.2), the classi�cation-trained programs ap-
plied to detection did not yield very good detection results. All programs kept up the 100%
detection rate but most resulted in an increase in the false alarm rates (FAR) compared to
straight-forward detection. Also like straight-forward detection, the majority of the FAR's
was reported for class 1 (tails) , implying that the classi�er was more successful in detecting
class 2(heads) than class 1 (tails).

The most signi�cant difference is that all the terminal sets produced a steady 100% FAR
for class1 (tails) , whereas this rate for class 1 varied between 50% and 100% for straight-
forward detection. A major contributing factor to this would be the `half-object-in-moving-
window' problem as discussed earlier (section 5.3.1), as the classi�er trained on far less
�tness cases (cutouts) than the straight detection system.

It is interesting however that from all 3 programs evolved using terminal set IV, none re-
ported any false alarms for class 2 tails (0% FAR). This terminal set is the only one out of all
�ve terminal sets to achieve this, and is also an improvement on the results using straight-
forward detection, which had a class 2 FAR of 23.21%. This is a positive result as these
solutions were generated using far less �tness cases and in a considerably shorter training

45

time than the straight-forward detection method. The total false alarm rate for this method
was larger however (50%) compared to the straight-forward detection method (37.5%) be-
cause of the bad performance for class 1 heads (100% FAR).

Feature Set Analysis

In terms of terminal set performance, again the whole circular-region features (Term set
IV) achieved the best results with the lowest overall FAR rate of 50%. The worst performance
was also again from terminal set II, producing the highest FAR of 75%.

For a more intuitive view of how the terminal sets fared against each other, Figure 5.6
shows the false alarm rates produced by the 5 terminal sets, using both detection methods
seen so far. The detection rates were not included in the graph as these remained the same
(100%) for all terminal sets.

Figure 5.6: Comparison of of terminal set performance for both method seen so far

Since both methods show the performance of the circular-region terminal sets better than
the square-region terminal sets, it can be concluded that for this particular task circular-
based regions are a more powerful set of features.

Figure 5.7 shows sample object detection maps achieved by an evolved program using
terminal set IV. As we can see, all 16 objects-of-interest of both classes were detected (100%
DR) but with 8 false alarms all for class 1 tails (none for heads).

46

(a) (b) (c)

Figure 5.7: Detection map showing a overall 50% FAR (all false alarms for class tails

Sample Programs

The average sizes of programs evolved using different terminal sets were between 34 and
93. Those using terminal set IV were the lowest at 34, not far from those using terminal set V
which was 42. The square-based feature set programs were larger, with both terminal sets I
and III averaging at 62 and terminal set II the highest at 93. Program a presented below was
generated using terminal set IV, which produced the detection maps shown in �gure 5.6.

Program a, size = 39
(d- (d- (if (d- F5 F6) (d/ T F2) (d+ F7 F6)) (d/ (d* F2 F3) (d- T
F5))) (if (d- (if T F4 T) (d+ T F5)) (d* (d* F1 F3) (d/ F2 F3)) (d*
(d/ T F6) (d/ F3 F5))))

5.3.3 Results for Re�ning Object Classi�cation for Detection (ROCD)
This approach was tested using the best terminal set and evolved population from the
OCAD method. That is, TermSet IV using population corresponding to program a (from
program presented in OCAD method). The reason only one terminal set and population
was tested in this section was to investigate the effects of the secondary-training phase on a
population, not to compare how this method evaluates on different terminal sets.

Three programs were evolved separately, using the same population and each evaluated
on the test set. Table 5.9 presents the average detection performance of the ROCD method
using terminal set IV.

Terminal DR FAR
Set tails heads Total tails heads Total
TermSet IV 100 100 100 55 0 27.5

Table 5.9: Detection results for the ROCD method on 5c coin images

This result is better than the results from the �rst two approaches, showing the lowest
total false alarm rate of 27.5% . The 100% detection rate was also maintained, as well as the
0 false alarm rate (FAR) for class2 (heads). The difference is that there are less false alarms for
class 1 (55%) compared to 100% using classi�cation. This asserts that the secondary training

47

phase did have a positive effect in reducing the number of unwanted false alarms from the
best evolved program trained using the classi�cation-approach.

These results were obtained after a maximum number of 100 generations was reached in
the secondary training phase, and similarly to the previous two methods, the ideal solution
of a 0% FAR was not achieved. Extending the maximum number of generations did not
make a difference on any of the three training runs.

The secondary training process was similar to the straight-detection training process
in terms of training time, as every program needed to be applied to the entire image on
every generation. The `most-evolved' program however was achieved faster, in terms of
generations, than in the �rst method (where `most evolved' implies a program which can not
be improved upon any longer via evolution). Recall that for straight forward detection, the
most-evolved program was reached around 60 generations of evolution compared to 30 in
this case. This difference can be attributed to the already partially evolved initial population
used in training compared to the randomly generated initial population used in straight
forward detection.

The 27.5% FAR was calculated from the following performances by the three evolved
programs on the test set: programs 1 and 3 achieved a 26.25% FAR (reporting mainly four
false alarms out of 16 true objects per image) and program 2 a 28.75% FAR (reporting mainly
�ve false alarms). The best object detection map from a test image based on the �rst evolved
program is presented below (the original image is the same as the one initially presented in
straight-forward detection).

(a) (b) (c)

Figure 5.8: Detection map for ROCD method for task 3.

These images show that the secondary training phase helped to reduce the original 50%
FAR as seen from the best detection map using the classi�cation (section 5.3.2), to 25%, but
did not completely eliminate it. Further investigations need to be carried out on whether
false alarms can be eliminated if a better set of GP parameters or classi�cation strategy is
used.

Evolved Programs

Presented below are the one of the three genetic programs evolved using this method. It
corresponds to the program generating the detection maps from �gure 5.8.

48

Program size = 72
(d- (d/ (d- T F3) (d/ F3 T)) (d+ (d/ (if T T F3) (d+ (d+ (if F4 (d+
T F5) T) (if (d/ T T) (d/ T F1) (d* F2 T))) T)) (if (d+ (if F1 (d*
(d- F3 F2) (if F3 T T)) T) (if (d/ (d- T F3) (d/ F3 T)) (d- T T) (d*
T (d+ F2 T)))) F2 (d* (d* (d* T F3) (d/ (d+ T T) F2)) T))))

The average size of programs evolved using this ROCD method was 66. This average is
roughly the same as from the straight-forward detection method (62), both larger than the
classi�cation applied to detection method.

5.3.4 Performance Comparison of the Three Methods
Table 5.10 shows a summary of the best results from each detection method, which were
achieved using terminals set IV.

Detection DR FAR
Method tails heads Total tails heads Total
Straight-forward 100 100 100 55.35 23.21 39.28
Classi�cation 100 100 100 100 0 50
Re�ning classi�cation 100 100 100 55 0 27.5

Table 5.10: Performance comparison of the three approaches on 5c heads and 5c tails images

As discussed earlier, each achieve a 100% detection rate both all classes, which is very
important in any detection system. The only difference in terms of performance results
between these methods is the false alarm rates. The graph below presents a more intuitive
view on how these varied for the 3 methods.

Figure 5.9: False alarm rates for 3 detection methods using terminal set IV

It becomes easy to see that the secondary-training phase served to eliminate the false
alarm rate for class 2 entirely, dropping the total FAR to 27.5%. Straight-forward detec-
tion was unable to do this for class 2 and therefore has a higher total FAR of 39.28%. The
secondary-training phase was able to this because of the initial population that was used as
input from the classi�er (method 2). We can see that even though the classi�er produced
the highest FAR from the 3 methods, it was successfully able to learn the difference between
class 2 and class 1 � something the straight-forward detection system was not able to do �
and this was the advantage. The secondary-training phase simply re�ned these relatively
small programs to achieve the better performance.

49

5.4 Task 4 � 10c and 5c Heads and Tails NZ Coin Images
In task 4, there were 16 objects of interest in the images, four belonging to each of the four
distinct classes (5c tails, 5c heads, 10c tails, 10c heads).

Similarly to the results from task 3, none of the detection methods produced evolved
programs able to achieve an ideal performance on this task. On every training attempt,
there was always at some number of false alarms which prevented the convergence of a
solution. In most cases, the training was aborted after reaching the maximum number of
generations allowed without �nding the optimal one. The best programs �tness did not
improve either after about 80 generations, even if the maximum number of generations was
increased.

5.4.1 Results using Straight Forward Detection (SFD)
Three programs were evolved for every terminal set and each applied to test set. The results
presented in table 5.11 are the averaged detection and false alarm rates of each terminal set
over the test set.

Terminal DR FAR
Sets Total tails05 heads05 tails10 heads10 Total
TermSet I 100 200 175 100 250 181.25
TermSet II 100 200 200 100 300 225
TermSet III 100 150 150 125 275 175
TermSet IV 100 250 125 100 275 187.5
TermSet V 100 275 175 0 100 137.5

Table 5.11: Results using straight forward detection on task 4

Like the previous problem (task 3) none of these results are ideal (or even close to it). All
the programs were able to detect all the objects for each class easily (100% DR) but also a
high overhead of a large false alarm rate (FAR).

A few conclusions can be inferred in the FAR's over the terminal sets and four classes.
The most distinguishing conclusion is that for each terminal set, the FAR was greater than
100%. That means, more objects were reported as false alarms than there were true objects in
the images. These FAR's are the highest produced thus far for any of the detection problems,
suggesting that this task was the most dif�cult for the GP system to solve.

Another conclusion is that in most cases, with the exception of terminal set V, the highest
individual FAR was for class 4 (heads10). The asserts that nearly all the terminal sets found
class 10c heads the most dif�cult to solve. This could either be because class 4(10c heads)
simply `looks' like every other class according to the detectors, or the more likely cause that
the class 4 range of detector outputs was dif�cult to separate according to the classi�cation
map.

If this is the case, then the high FAR can be attributed to the similar `half object' in the
moving window problem mentioned earlier (section 5.3.1.). Since the class 4 range in the
classi�cation map is above all the other values, the program (detector) output must pass
through all values lower than this when the input window moves from background (output
less than 0) to the center of an object of class 4. This allows a higher chance of false alarms to
be generated while the program output values move from 0 up to the range 3*T < output
< 4*T. A `good program' would have learned to separate this with an if function or/and

50

powerful features, which is the most likely cause for terminal set V producing the low over-
all FAR. This suggests that the function or terminal sets are not powerful enough, or the
classi�cation strategy is inappropriate for this �ve class problem.

Feature Set Comparison

The terminal sets had varying success in solving this problem. Figure 5.10 presents a graph
showing the false alarm rates separated by class for each of the terminal sets.

Figure 5.10: False Alarm rates for all the terminal sets

As can be seen from the �gure, terminal set V produced the lowest total FAR, and was the
only class to achieve a 0% FAR for one class � class 3 (10c tails). Once more, the highest FAR
was produced by terminal set II, the smallest set of features. Unlike the previous problem,
the square and rectilinnear region features (terminal sets I and III) achieved a lower FAR
than the whole-circular region features (terminal sets IV).

Sample Detection maps

Figure 5.11 presents sample object detection maps achieved by a good evolved program
using terminal set V. In the images the small black dots represent a detected object center,
while the larger red ellipses around a detected center shows the occurrence of a false alarm.

(a) (b) (c) (d) (e)

Figure 5.11: Detection map showing all objects detected but with many false alarms (light
red ellipses)

From these detection maps we can see that all 16 objects-of-interest for all four classes
were detected (100% DR) but with a total of 20 false alarms (125% FAR). Note that class 3

51

(10c heads (�gure 5.11c) was the only class with no false alarms. Also present in this speci�c
detection map is the detectors ability to separate the 10c coins (�gures 5.11c and d) better
than the 5c coins (�guresa and b). This is attributed to the obvious size difference between
these classes.

Sample Programs

Presented below is an evolved program generated using terminal set V (generated the de-
tection maps from �gure 5.11). The average size of these programs was 86. Note that this
average size is the largest seen so far for any of the four tasks.

Program size = 83:
(d- (d/ (if (d- (d- (d+ F3 F4) (d- T F1)) (d/ (if T F5 F4)
(d- F3 T))) (d* (d- F5 (if F5 F4 T)) (d- (d+ F3 F4) (d- T
F1))) (d* (d- F2 F5) (d+ (d/ F7 F3) (d+ F7 F3)))) (d- (d+ (if
(if F1 F4 F8) (d- T F7) T) T) F5)) (d- T (d/ (if (d- F3 T)
(d/ (d+ F4 T) (if T F8 F6)) (d+ (d- T T) T)) (d- (d/ (d* T T)
F7) F5))))

5.4.2 Results for Object Classi�cation Applied To Detection (OCAD)
This method and the method immediately proceeding (ROCD method) uses the best termi-
nal set and population from the SFD method. That corresponds to terminal set V. Details
on the training results were omitted as they were very similar to the performances from this
method on two previous tasks. The number of cutouts was increased to a total of 264, where
the majority of these include a large number of background cutouts with portions of true-
objects contained within the cutouts in the goal of reducing the false alarms. The cutouts
number of cutouts were chosen according to:

[4(class1) + 4(class2) + 4(class3) + 4(class4) + 76(backgre)] ∗ 3(images) = 264cutouts

All three program solutions trained to a classi�cation accuracy of between 92-95%. The
remaining incorrect classi�cations were due to the increased number of `dif�cult to classify'
background cutouts.

Presented below are the detection results of the best evolved program trained from above
on the test set.

Terminal DR FAR
Sets Total tails05 heads05 tails10 heads10 Total
TermSet V 100 300 300 300 300 300

Table 5.12: Results for object classi�cation applied to detection on task 4

These results are not good. Although all the objects of interest were found (100% DR),
there was a large FAR. This large FAR (300%) asserts that the classi�cation-evolved program
regarded every single object as a false alarms for every class. This means that these pro-
grams were unsuccessful when applied to detection as they failed to suf�ciently learn the
difference between the four distinct classes of objects.

52

5.4.3 Results for Re�ning Object Classi�cation for Detection (ROCD)
For this method, three programs were evolved using the population from the OCAD method.
Table 5.13 presents the averaged detection results of the 2-phase evolved programs on the test
set.

Terminal DR FAR
Sets Total tails05 heads05 tails10 heads10 Total

TermSet V 100 300 300 0 0 150

Table 5.13: Results for re�ning object classi�cation for detection on task 4

These results are interesting. On the one hand, the total FAR is slightly higher than the
FAR achieved using the straight-forward detection (137.5%), suggesting that this method
was not useful in reducing the large number of FAR's generated on this problem. This was
due to both classes 1 and 2 (5c heads and tails) producing a 300% FAR, reporting every
object in the image as a detected center for that particular class.

On the other hand, the FAR is both 0% for classes 3 and 4 ((10c tails and 10c heads). This
result is good as not even SFD method was able to achieve it. This asserts that unlike the
case for class 1 (5c tails) and class 2 (5c heads), the detectors successfully learnt the difference
between classes 3 and classes 4 evaluated against to the other two classes.

The reason for the higher FAR's for class 1 and 2 was that it based on the classi�cation-
trained programs. But the question as to how the other 2 classes (3 and 4) FAR's were
reduced is dif�cult to answer. After some analysis on the programs, it was noticed that
while evolving the programs to sort the detectors output for the 10c coins classes (3 and 4)
� which the GP system found easier � the parts of the program that dealt with the 5c coin
classes (1 and 2) were either disrupted or ignored altogether being simply too dif�cult to
separate. This problem was further complicated by the large sizes of detectors evolved for
this task. The chance of disrupting useful sub-trees increases with larger programs, as these
sub-trees become increasingly reliant on other sub-trees in the program. This is know as
synergy - `the interaction of two or more agents or forces so that their combined effect is
greater than the sum of their individual effects'. This problem suggests that the GP system
needs to be improved (see `Future Work, section 6.2).

It can be initially concluded therefore that the task of separating the program outputs
into 4 different regions in the classi�cation map proved almost too dif�cult for this GP sys-
tem to solve.

Presented in �gure 5.12 is sample object detection maps (produced from the program
below). It shows there are many false alarms occurring only for class 1 and 2, but perfect
results for class 3 and 4.

(a) (b) (c) (d) (e)

Figure 5.12: Detection map for 2-phase training

53

Sample Programs

The sizes of programs generated using this method, as mentioned above, are large. The av-
eraged size was 216. Presented below was the shortest of these three programs (size 202).

(d- (d/ (if (d/ (if (d+ F3 T) (d+ T F5) (d+ F6 F2)) (d- (d-
F2 T) (d- F1 F3))) (d* (d/ (d- F1 T) (d- F1 F5)) (d- (d* F2
T) (d* T F1))) (d/ (if (if T F7 T) (d- T F6) (d* T T)) (d-
(d- T T) (d+ F1 F4)))) (if (d* (d/ (d/ T F4) (d* F5 T)) (d/
(d* F6 T) (d* T F7))) (d+ F1 (if (d+ T F4) (d- F3 T) (d+
F7 T))) (d* (d+ (d* T F4) (d* T F6)) (d* (d* T F2) (d* F8
F3))))) (if (if (d/ (if (d+ F5 F1) (d+ T T) (d+ F6 T)) (d+
(if F7 T F8) (d- F1 T))) (d* (if (d+ T F2) (if F3 T F5) (d/
T F4)) (d* (d* T F5) (d* F6 T))) (d/ (if F5 (d- T F8) (d* T
F1)) (d- (d- F2 T) (d- T F3)))) (d/ (d* (d/ (d- F5 T) (d- T
F5)) (d+ (if T F6 T) (d/ T F7))) (d* (d* (d/ F6 T) (if T F1
T)) (d+ (d+ F2 T) F2))) (d- F1 (d+ (d/ (d* F2 T) (d- T F3))
(d- (d* T F4) (d* F5 T))))))

5.5 Summary
This section contains three parts: �rst is a summary of the �tness function comparison,
followed by a summary showing of the detection results using the three different methods
on each of the tasks, and �nally a summary of the feature set performances on each of the
four tasks.

5.5.1 Fitness Functions with Program Size
Table 5.14 presents a summary of the average program size of program detectors evolved
using both �tness functions compared in this project (equation 4.3 and equation 4.4 in sec-
tion 4.4.1). These �tness functions were only compared on the �rst task because this task had
the lowest overall training times from all the four tasks, allowing for a more comprehensive
comparison.

Fitness function average size of evolved program detectors
Fitness(DR,FAR) 62
Fitness(DR,FAR, FAA, ProgSize) 24

Table 5.14: Summary of �tness function comparison on the �rst task

Table 5.14 shows that the average size of program detectors evolved using the multi-
objective �tness function with program size were almost three times smaller than those pro-
gram detectors evolved using the simple �tness function. Consequently, these shorter pro-
grams were easier to interpret, contained less redundant subtrees and were evolved faster
because less time was needed (in training) to evaluating them.

5.5.2 Detection Results Summary Using the Different Methods
Table 5.15 presents a summary of the best detection performances for each of the three meth-
ods developed in this project (namely SFD, OCAD and ROCD) on the four tasks. The detec-

54

tion results correspond the detection and false alarm rates achieved by the best terminal set
on the task. Note that n/a means not applicable (no results were generated using the method
concerned).

Tasks SFD OCAD ROCD
DR FAR DR FAR DR FAR

Task 1 100 0 n/a n/a n/a n/a
Task 2 100 0 100 25 100 0
Task 3 100 39.28 100 50 100 27.5
Task 4 100 137.5 100 300 100 150

Table 5.15: Summary of detection performance of each method on the four tasks

From table 5.15, the following conclusions can be inferred:

• All three methods were able to successfully �nd all objects of interest for all the tasks
(100% DR).

• Overall, the GP system found the four-class object detection problem (task 4) the most
dif�cult to solve, followed by the noisy-background problem (task 3). The computer-
generated and easy coin images proved the easiest (�rst two tasks) to solve.

• The OCAD method was unsuccessful when applied to detection as it always generated
a larger FAR than the other two methods. This method did however serve its purpose
in supplying the 2-phase method (ROCD) with an evolved population produced in
relatively short training times.

• The ROCD method was able to improve the detection performance from the OCAD
method by achieving a lower number of false alarms.

• In most cases, the two-phase method, ROCD, achieved the best performances and the
shortest overall training times.

5.5.3 Feature Set Performance Summary on the Tasks
Table 5.16 shows a summary of which terminal set out of the �ve being investigated in this
project (namely I, II, III, IV and V) was responsible for achieving the best performance on
each of the four tasks. Included is a brief justi�cation as to how the terminal set contributed
to solving the tasks.

Tasks Best Terminal Set Justi�cation
Task 1 Terminal set II Fastest solution convergence
Task 2 Terminal set IV Fastest solution convergence & smallest program sizes
Task 3 Terminal set IV Best detection performance & smallest program sizes
Task 4 Terminal set V Best detection performance & smallest program sizes

Table 5.16: Summary of feature set performance on the four tasks

Table 5.16 suggests that terminal sets IV (six circular region features) and V (eight circular-
ring region features) were generally more effective and better suited for the object detection

55

tasks than the others, with the exception of terminal set II on task 1. The main reasons con-
centric circular features outperformed the other square-based features are two-fold. First,
terminal sets IV and V produced the lowest number of false alarms in the two dif�cult tasks
(3 and 4) compared to the programs evolved using the other sets. Second, these features
were powerful enough to allow shorter programs to be evolved over longer ones seen in
programs using the other terminal sets.

Terminal set II (four recti-linnear features) on task 1 is the only exception to the trend of
circular features performing better than square-region feature because it is the terminal set
with the least number of features. On the easiest task where all the other terminal sets were
also able to achieve ideal detection results, terminal set II allowed for the fastest convergence
of a solution due to the reduced search space (four features). This performance was not
consistent however as the dif�culty level of the tasks increased. In those cases, it was noted
that the worst results were from terminal set II due to the lack of powerful enough features.

56

Chapter 6

Conclusions

This chapter presents the main conclusions from this project, followed by a future work
discussion.

6.1 Main Conclusions
The goal of this project was to develop and test three domain independent approaches to
multi-class object detection problems of increasing dif�culty using genetic programming.
Five terminal sets were developed using domain independent, low-level pixel statistics as
well as a new �tness function constraint. This �tness constraint factored the programs size
into program evolution according to Ockhams law, where the smaller the solution structure,
the better.

During the development and experiments in this project, the following characteristics
can be concluded as important to successfully solving the multi-class object detection prob-
lem using genetic programming:

1. In terms of the three different approaches developed in this project,

• Using the straight-forward detection method, the GP system was able to solve
the 4 tasks reporting a 100% detection rate for each case. Perfect detection results
(no false alarms) were achieved on the computer-generated images (task 1) and
easy 10c vs 5c coin images (task 2). The while the noisy 5c heads vs 5c tails coin
images (task 3) and the extended four-class problem (task 4) proved more dif�-
cult to solve as there were always some unwanted false alarms reported by the
program detectors. The training times for this method were long, and further re-
search is needed as to whether the false alarms can be eliminated if a better set of
GP parameters or classi�cation strategy are used.

• Although the classi�cation method was able to achieve a 100% detection rate for
each of the four tasks. While the training times were very short in comparison
to the �rst approach, this method always caused a very large number of false
alarms to be reported. This method therefore, was not suf�cient when applied
straight to detection as the evolved programs were not robust enough to deal
with the sweeping-window procedure used in detection. However, it can provide
a good baseline as a starting point for the secondary-learning phase in the ROCD
method. Further research is need on a better selection of objects-cutouts used for
training.

• The secondary training phase was able to reduce the training times for all four
tasks. In addition, for most tasks, this method also achieved a reduction in the

57

number of false alarms reported. The ROCD method always improved or re�ned
the detection performance from the OCAD method.

• For most tasks, the ROCD method achieved the best detection performances. For
the task where this was not achievable (task 4), it did serve to illustrate that the
inef�ciency in the high number of false alarms was not due to the method of
approach, but rather to the �xed-threshold classi�cation strategy which clearly
needs to be developed, or a more powerful function operator to deal with a larger
number of input classes.

2. The circular-based feature sets proved more effective and powerful than the square-
based feature sets, as programs evolved using those features achieved better results on
the tasks (generating the least number of false alarms), were smaller in size and were
found faster during the evolutionary process. Similarly, programs using the feature set
containing all 5 rectilinear quadrants proved more effective than the those using single
quadrant feature set. This asserts that the usefulness of the additional four bordering
quadrants in extracting more powerful features than just the single quadrant itself,
which proved inef�cient on the more dif�cult tasks.

3. The two extra constraints to the �tness function, false alarm area and the program size,
were bene�cial to the evolutionary process. It served to both re�ect smaller changes to
programs and favour the evolution of smaller programs. An important advantage of
using a multiple objective �tness function is also that it makes the search space more
continuous as opposed to being `terraced and �at', because even more information
about the evolved genetic programs such as tiny improvements can be re�ected via
their �tness. The program size constraint was especially useful as it succeeded in evolv-
ing shorter and easier-to-interpret program structures, which not only increased the
comprehensibility of the evolved genetic programs but also reduced the time taken to
evaluate these programs in the training phase.

4. Overall, the performance of this GP approach deteriorated as the dif�cultly level of
the problems/tasks increased. Task 1 and 2 were solved with ideal results while task
3 and 4 both reported an increasing number of false alarms respectively.

Although these detection results are promising, there are some limitations to the use of
GP for object detection. Some such limitations as discovered in this project are the long
training times, the inability to reduce the number of false alarms reported as the dif�culty
levels for the problems increased, and the dependence of many different free parameters (to
be set) required for evolutionary run where the choice can effect the �nal detection results.
The long training times are a serious limitation as it not only hindered evaluating the GP
systems performance on different images and problems, but also experimenting with differ-
ent evolutionary parameters. Such parameters include the crossover and mutation operator
rates, the constant weight values in the �tness functions, the threshold T used in the classi-
�cation map, different function and terminal sets, the optimal population size and minimal
maximum program depth allowed.

In conclusion, the GP approach discussed in this project was successful in automatically
�nding multiple classes of objects of interest contained within a range of images. The ap-
proach has the potential to expand on a wider range of object detection problems and tasks.
Certain issues however must be addressed if this approach to automatic object detection is
to `evolve' along with other state of the art computer vision systems.

58

6.2 Discussion and Future work
This section brie�y introduces several interesting research questions as discovered during
the process of this project. Due to time constraints these issues were not developed, but
would indeed be a good starting point for further research in this �eld. Some of these in-
clude:

1. Improving the classi�cation method using a dynamic classi�cation map or an n−way
binary classi�cation approach.

2. A Bayesian probabilistic approach to using genetic programming as a classi�er.

3. Improving the OCAD and ROCD methods.

4. Exploring the effects of using different evolutionary parameters, such as crossover vs
mutation rates, and different weight-value constants in the �tness function.

5. More effective function and terminal sets.

6. Wider range of images.

6.2.1 Improving the Classi�cation Method
A dynamically-allocated classi�cation map

The classi�cation-map approach for the classi�cation phase of the detection process needs
to be improved. This was apparent from high number of false alarms reported as true ob-
jects in the two dif�cult detection tasks (the two-class coin problem on a noisy background
for task 3 and the four-class coin problemf or task 4). The high number of false alarms for
the two-class coin problem illustrated that having a �xed, linnear classi�cation map with in-
tervals separated by user-de�ned constant T for every class is ineffective. This was because
program outputs close to, but not actually class 2, were mapped as class 1 (not correctly as
`background') simply because the range for class 1 outputs on the classi�cation map imme-
diately preceded those for class 2, thus generating a false alarm.

A better method will be to adjust the intervals in the classi�cation map (T values) so
that they allow program outputs to cluster according to the different classes of objects of
interest in the problem. These clusters could be dynamically adjusted or �xed in size, where
the focus then shifts onto separating the program outputs into different slots and each slot
is mapped to a different class. This removes the constraints of having to separate all the
program outputs of one class according to a user different threshold T.

For example, requiring all class one program outputs below T and all class two program
outputs above T is dif�cult for two reasons. Firstly, what is the optimal T value. Secondly,
how can we know whether the program outouts for class one should proceed the program
outputs for class two. If the order of these are reversed, will the classi�cation be simpler?
This problems complexity increases with the number of classes in a given task.

n-way Binary Classi�cation Approach

Similarly, the GP system produced a large number of false alarms for the four-class detection
problem, suggesting that this problem caused the most dif�culty. This is because the GP
system had to not only separate objects from background, but also separate each of the four
distinct classes from each other: class1 vs class2 vs class3 vs class4 vs background.

59

A different approach would transform this four-class problem into a n-way binary clas-
si�cation and detection problem, where n is the number of classes of interest. That is, treat
each of the four classes as an object vs background problem, where everything else (all other
classes) is background. This simpli�es the problem, as if each each class is only evaluated
against the background, the GP system does not have to learn to separate all four distinct
classes.

This could be implemented in two ways. The �rst would be to use n different classi�ca-
tion maps (�xed or dynamically allocated), one for each class. At every sweeping-window
location, the genetic program is evaluated four times on each of the classi�cation maps.
This method however still places tough constraints on the genetic programs as one program
would still have to solve all n classes. The second method is more time and resource con-
suming, but would place less constraints on the genetic programs. It involves evolving n
different populations simultaneously and using the same evolutionary parameters, func-
tion and terminal set, and �tness function, except each population solves one of the binary
classi�cation problems.

6.2.2 A Bayesian probabilistic approach to using genetic programming as a clas-
si�er

Could we change the method of classi�cation done by the genetic programming system
to a more probabilistic-based one? Currently, the most �t evolved individual is responsible
for all the predictions according to its program output. This method does not take any into
consideration the prediction of the next most �t individual, or the one after that even though
they too might have reasonably good �tnesses.

A probabilistic-based approach would take into account the predication of all the indi-
viduals in an evolved population not just the most �t. Each prediction is weighted by the
�tness of the individual responsible for it. Further more, this could be done for each class,
and a value obtained corresponding to the probability a given cutout or sweeping-window
location is class x, given all the programs output.

This is advantageous as if the most �t individual has learned to separate all classes of
interest except for one, while all the other less �t programs were able to correctly learn
this classes output but are useless at accurately predicting the output of the other classes,
a probabilistic approach will have the best of both worlds. In the context of the high false
alarm rate problem, it could help in eliminating or reducing this for dif�cult problems.

Formally, this can be justi�ed according to the standard Bayesian Rule for Prediction. This
rule, which states that the probability of Dnew is:

P (Dnew|D) =
∑

h

P (Dnew|D, h).P (h|D)

where Dnew is the new data to be classi�ed, D is the current data and h is a hypothesis for
the structure of the underlying data.

This formula can applied to GP and classi�cation as follows:

P (classi|population) =
∑
p=1..PopSize(Program outputp = i).P rogram fitnessp∑

p=1..PopSize Program fitnessp

where

• P (classi|population) is the probability that a moving-window location is classi�ed as
class i given the evolved GP population,

60

• (Program outputp = i) will return 1 if program p predicts that this current window
location is of class i, and 0 if not (the actual prediction - P (Dnew|D, h))

• Program fitnessp is the �tness of program p (belief in the strength of the hypothesis
- (P (h|D))

• Required to normalize the probability.

6.2.3 Improving the OCAD and ROCD Methods
The object classi�cation applied to detection method (OCAD) did not yield programs ro-
bust enough to use in the sweeping window approach, as they always generated some false
alarms. This method however was promising as it did signi�cantly reduce the training
times. There could be ways to improve this method such as explicitly merging this method
with the re�ning 2-phase training method, or employing a more rigorous selection of object
cutouts to use in training. Merging this method with the re�ning 2-phase training method
would involve splitting the evolution process into two stages. The �rst, say for x genera-
tions, would evolve a population using cutouts as �tness cases. The second, say for y gener-
ations (or until the optimal solution is found), would then continue evolving the population
using the sweeping-window approach. A more rigorous selection of object-cutouts involves
a more extensive and 'hand-picked' set of cutouts being chosen as the �tness cases that that
deal especially with the 'half-object-in-moving-window' problem encountered responsible
for the high number of false alarms being reported.

6.2.4 GP Parameter Setting
Many different evolutionary parameters can effect the overall performance of evolved pro-
grams such as population size, the maximum allowed depth of programs, the number of
TOLERANCE pixels allowed for clustering detected centers, etc. Presented below are two
of the most important ones as encountered in this investigation.

Crossover and Mutation Rates

There is considerable debate in the research �eld questioning at what approximate points in
program evolution does mutation become more constructive than crossover [16]. It is gener-
ally accepted that crossover is very useful early in program evolution, but gets increasingly
harmful toward the later stages as they have a higher chance of disrupting potentially use-
ful and larger subtrees. Is there some stage in program evolution where these rates can be
dynamically altered depending on the �tnesses of the programs? For example, in the �rst
10 generations apply a 70% crossover rate and a 28% mutation rate (where the remaining
2% is left for the elitism operator), after x generation have passed change this ratio to 49%
and 49%, and �nally in the last y generations of evolution, apply a 28% crossover rate and a
70% mutation rate.

Weight Values for the Fitness Function

Recall that the �tness function used was

fitness(DR,FAR,FAA,ProgSize) = K1∗(1−DR)+K2∗FAR+K3∗FAA+K4∗ProgSize

where K1, K2, K3, K4 were all user de�ned constants that re�ected the weight of that par-
ticular component for overall the �tness function. In this investigation, K1 was the weighted

61

the highest, followed by K2, K3 and lastly K4 which had the lowest weighting. This was to
re�ect that the detection rate was the most important, followed by the false alarm rates and
lastly the program size. This ensured that programs �rst �nd all objects of interest, then at-
tempt to reduce the false alarms. A disadvantage was that for some of the dif�cult problems,
this caused the false alarm rates to remain high. The relative weighting of these constants
could be set to dynamically update according to program evolution, in a similar way the
crossover and mutation rates can be changed above. For example, changing the value of the
false alarm rates weight after some time to be the highest weight value (over the DR weight
value) could lead to a reduction in the overall false alarm rate reported by a program. The
best time to change these values is the crucial question as if it is done too early in the process
when all the objects of interest are not detected (less that 100% DR), chances are they will
not be detected later.

6.2.5 More Effective Function and Terminal Sets
A factor in the GP systems inability to solve the dif�cult detection problems with ideal re-
sults could lie in the function and terminal sets not being powerful or suf�cient enough.
Future work could focus on evaluating a richer and more extensive set of functions which
could include the max/min pixel value of a region, mathematical and trigonometric func-
tions such as sqrt, exp or sin, or even the sigmoid function which is highly utilized in neural
networks. More extensive terminal sets can also be explored such as feature regions formed
from a combination of circular and square regions.

6.2.6 Wider Range of Images
This project used real-world generated images where the objects of interest were both uni-
form ND symmetric in shape (circular). This made the tasks relatively easy. It would be
interesting to explore the range of images the GP detection system using domain indepen-
dent pixel statistics could solve. For example, consider the weather prediction and hurricane
warning system application mentioned earlier (section 1). In this case the hurricane objects
are not symmetric in shape nor are they of the same size.

62

Bibliography

[1] Computer Vision and Image Processing: A Practical Approach using CVIPtools. Prentice
Hall, PTR, 1999.

[2] Arti�cial Intelligence: A Modern Approach. Prentice Hall, 2002.

[3] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic programming: An introduc-
tion on the automatic evolution of computer programs abd its applications. Morgan
Kaufmann Publishers, Heidelberg: Dpunkt-verlag, ISBN: 1-55860-510-X, 1998.

[4] C.L. Blake and C.J. Merz. Uci repository of machine learning databases, 1998.

[5] Steven Brumby, James Thieler, Simon Perkins, John J. Szymanski, and Neal R. Harvey.
A genetic programming approach to extracting features from remotely sensed imagery.
Technical report, Los Alamos National Laboratory, 1998.

[6] J. Eggermont, A.E. Eiben, and J.I. van Hemert. Comparing genetic programming vari-
ants for data classi�cation, 2001.

[7] John Hagedorn and Judith Devaney. A genetic programming system with a procedural
representation, 2001.

[8] Christopher Harris and Bernard Buxton. Low-level edge detection using genetic pro-
gramming: performance, speci�city and application to real-world signals. Technical
report, 1997.

[9] Neal R. Harvey, Steven P. Brumby, Simon Perkins, James Thieler, John J. Szymanski,
Jeffery J. Bloch, Reid B. Porter, Mark Galassi, and A. Cody Young. Image feature ex-
traction: Genie vs conventional supervised classi�cation techniques. IEEE Transactions
on Geoscience and Remote Sensing, 2001.

[10] Daniel Howard, Simon C. Roberts, and Richard Brankin. Target detection in sar im-
agery by genetic programming. Advances in Engineering Software 30, pg 303-311, 1999.

[11] A. Jain, J. Mao, and K. Mohuiddin. Arti�cial neural networks: A tutorial. IEEE Com-
puter, 29(3):31-44, March 1996.

[12] John R Koza. Genetic Programming: On the Programming of computers by means of natural
selection. MIT Press, 1992.

[13] Mykola Pechenizkiy, Seppo Puuronen, and Alexey Tsymbal. Feature extraction for
classi�cation in knowledge discovery systems. Technical report, Computer Science
Department The University of Dublin Trinity College Ireland, July 2003.

[14] Mark Prichard. Genetic programming for multiclass object detection, 2002.

63

[15] Walter Alden Tackett and K Govinda Char. Genetic programming applied to image
discrimination. Handbook of evolutionary computation, Oxford University Press, 1997.

[16] Mengjie Zhang. A domain Independent Approach to 2D Object Detection Based On the Neu-
ral and Genetic Paradigms. PhD thesis, Dept of Computer Science, RMIT University,
Melbourne, 2000.

[17] Mengjie Zhang, Peter Andreae, and Mark Prichard. Pixel statistics and false alarm area
in genetic programming for object detection. Proceeding of the European Conference on
Genetic Programming for Image Analysis and Signal Processing, Lecture Notes in Computer
Science. To appear, Vol. 2611., 2002.

[18] Mengjie Zhang, Victor Cielielski, and Peter Andreae. A domain independant approach
to multiclass object detection using genetic programming. Journal of Applied Signal Pro-
cessing, 2002.

[19] Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple class object
detection. In Proceedings of the 12th Australian Joint Conference on Arti�cial Intelligence
(AI'99) , published in Norman Foo (Ed.): Lecture Notes in Arti�cial Intelligence, Springer-
Verlag Berlin Heidelberg, pages 180-192. Sydney, Australia, LNAI Volume 1747, December
1999.

64

Appendix A

Programs and Packages used in this
Report

A.1 Strongly-Typed Genetic Programming Package (RMITGP)

The Genetic Programming package used and modi�ed for the purposes of this research
project was written by Dylan Mawhinney from the School of Computer Science and Information
Technology, RMIT University, Australia in 2002. It is a strongly-typed GP package written in
c++ for research. Being strongly-typed means that the package is capable of using user-
written and problem-speci�c functions and terminals of different types in the evolutionary
engine. The following classes were written and added to the package to transform it into
something that could solve the multi-class detection problem:

• A new �tness class: responsible for reading feature vector, class name pairs from a
patterns �le, de�ning an appropriate �tness function and classi�cation strategy, and
applying these to a population of genetic programs. Two separate �tness classes were
written: the �rst for object detection (methods 1 and 3) and the second for object clas-
si�cation (method 2) .

• A new function class: De�ned the 4 arithmetic operators and a conditional if opera-
tor.

• A new terminal class: De�ned the terminals, where 1 terminal is represented by a
�oating point number corresponding to 1 image feature from the patterns �le, and a
constant threshold integer value T.

• A new testing class: Given an evolved program, a patterns �le containing feature
vectors corresponding to a test image, and the appropriate parameters used in training
such as T, this class is responsible for applying this program to the unseen image to
obtain the testing detection results. As output, the clustered centers of all detected
objects were written to a �le.

• Modifying the main class: When speci�ed, this class allowed a population of pro-
grams to be read from a �le and set as the current population to be evolved.

65

A.2 Supplementary Programs written for Feature Extraction and
the GP-Output

A.2.1 Feature Extraction for the Patterns File
A number of programs where written (using c), responsible for extracting pixel statistical
features from an image and converting them into features vectors in a patterns �le. The �rst
5 programs (de�ning each of the 5 different local region features) accepted as input three
arguments: an image in pgm format, a text �le containing the center locations of all objects
of interest and their class names, and the size of the sweeping input-window. The output
was all the feature vectors corresponding to the all locations of the sweeping input-window
(which could then be piped to a �le). Similarly, 5 programs (for the 5 different local regions)
were also written to extract features from the testing images. The only difference was that
none produced and information regarding the classes or center locations of any objects of
interest present in the image.

A.2.2 GP detected centers output
A program was written to display the detected centers output by the GP package in an im-
age form. The program accepted as input a detected-centers �le and produced an image
containing black crosses over the locations that represented a detected center for visualisa-
tion purposes.

66

