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Abstract
Program Bloat/Redundancy is a critical problem in the area of Genetic Programming

(GP). Redundancy leads to slow downs in the GP process, particularly in complex tasks,
and causes unnecessary exploration of irrelevant parts of the genetic search space.

This project investigates the application of simpli�cation to genetic programs during
the course of the evolutionary process to combat program bloating. This system is then
applied to several regression and multi-class classi�cation tasks of varying dif�culty.

Two simpli�cation methods are tested in this project. The �rst is new algebraic method
which acts directly on tree-based programs and uses an algebraic equivalency component
to identify equivalent expressions. The second is an improved version of PRES, an exist-
ing simpli�cation system which involves a prime number representation. Both methods
were found to normally improve performance on the experimental tasks.

Variation in how often simpli�cation is applied and to what proportion of programs
is investigated. Three selection methods for selecting programs to be simpli�ed are tested
and compared: Random Selection, Fitness Based Selection and Fatness Based Selection.
Fatness Based Selection is found to provide superior performance to the other two meth-
ods.

Analyses of building blocks within GP systems both with and without simpli�cation
are also performed. Two different perspectives of building blocks are used, and analyses
using these perspectives strongly suggest that simpli�cation removes building blocks in
the system.
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Chapter 1

Introduction

Genetic programming (GP) [15, Koza 1992], is a method of automatically creating programs for solv-
ing speci�ed tasks by using the concept of evolution. Firstly, an initial group of randomly generated
programs (usually represented as parse trees such as LISP-S trees) is created. The process of selection
(selecting programs based on �tness) is carried out to provide a basis for the next program genera-
tion. Fitness is determined by running the programs and evaluating them on a set of criteria. The
genetic operators of crossover (swapping of sections of programs), mutation (random alterations to a
program) and reproduction (making exact copies of a program) are applied to the selected programs
to create a new population of programs. The process of creating new generations is repeated until
termination criteria is met. The �best� program in this last generation is returned as the resulting
solution. GP can be seen as a genetic beam search through the space of possible solutions to the task.

Genetic programming is an emerging �eld in evolutionary computing and machine-learning and
has already been applied to many tasks, including image analysis [25, Poli 1996], object detection
[36, Winkeler & Manjunath 1997], classi�cation, regression problems [15, Koza 1992] and even control
programs for walking robots [4, Busch et al.]. Genetic programming has been very successful in solv-
ing or performing these tasks and �now routinely delivers high-return human-competitive machine
intelligence.� [17, Koza 2004].

1.1 Motivation
1.1.1 Program Bloat
One of the problems in GP is that the process of genetic programming will inevitably introduce
some redundancy into the evolved programs ([15, Koza 1992], [32, Soule 1996], [2, Blickle 1994]). This
redundancy is regarded as a fundamental problem of genetic programming as it slows down the
search process by consuming large amounts of memory and causes exploration of large unnecessary
parts of the search space. The search process continues to slow as the programs become larger until
the programs become too large for the system's memory to hold, halting the system before a �good�
solution can be found. Redundancy can also result in an unnecessarily complex program, which is
inef�cient in its execution and dif�cult to interpret and comprehend.

As an example, the algebraic expression 'α2 × 1 − α2 + β3' can be simpli�ed to the expression
'β3'. The subexpression 'α2 × 1− α2' is thus considered a redundancy, as when evaluated, the result
of this subexpression is 0. In other words, it contributes nothing to the �tness of the program, nor to
accomplishing the task. Another example of redundancy, is 'γ + 4.1234 + 9.7530'. In this case, the
constants can be brought together to form 'γ + 13.8764'.

On the other hand, this redundancy may aid the effectiveness of the evolutionary process by pro-
viding a more diverse selection of program fragments for the process to use. For example, consider
the expression 'cos(θ)−cos(θ)'. This too evaluates to 0, but if this is the only instance of 'cos(θ)' in the
system, and simpli�cation removes this expression, it would remove 'cos(θ)' from the available pool
of program fragments. Redundancy may also help preserve good building blocks (a subexpression
which makes a large contribution to solving the task) within the program, by reducing the chances of
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a good building block being destroyed by the crossover operator (as crossover may randomly choose
a crossover-point within that block) [2, Blickle 1994].

1.1.2 Simpli�cation
Simpli�cation can be implemented in various ways, including using simple algebraic techniques,
translation into canonical forms or numeric hashing techniques. A few of these have been applied to
GP ([29, Smart, 2003],[40, Zhang, 2004], [5, Ekart, 1999]) and each approach has various strengths and
weaknesses that could possibly be combined together and improved upon.

Typically simpli�cation is applied at the end of the evolutionary process to remove some of the
complexity of the program, reducing the resource usage and improving comprehensibility, enabling
it to run faster and to be easier to interpret (the editing operation proposed by Koza [15] is an example
of this). But as program redundancy is a problem which also occurs during the evolutionary process,
simpli�cation during the evolutionary process to improve performance in the whole system needs to
be investigated, in particular, whether the removal of this redundancy breaks up the good building
blocks, and reduces the effectiveness of the system.

1.2 Project Goals
This project addresses the problem mentioned above of redundancy in genetic programs and inves-
tigates the effects of simplifying the genetic programs during the evolutionary process. It focuses
on whether the effects from the removal of redundancy and reduction in complexity outweigh the
bene�ts of leaving the redundancy in the program, and also whether a balance can be found by
varying the frequency/proportion of applying simpli�cation. Speci�cally, this project addresses the
following goals/questions:

• How can simpli�cation of the genetic programs can be achieved using simple algebraic tech-
niques?

• How can simpli�cation of the genetic programs can be done using a numeric hashing method?

• Does simpli�cation in genetic programming destroys good buildings blocks in the system?

• Can a system using simpli�cation outperform the standard genetic programming approach in
terms of system effectiveness, ef�ciency and comprehensibility?

• How does the frequency to which the simpli�cation algorithm is applied to the evolutionary
process affect the effectiveness/ef�ciency of the GP system? For example, several generations
of normal GP process followed by a single generation where simpli�cation is applied.

• How does the proportion of the programs in each generation to apply the simpli�cation algo-
rithm affect the effectiveness/ef�ciency of the GP system? For example, applying the simpli�-
cation to only 10% of programs in a generation.

1.3 Contributions
This project puts forward the following contributions:

1. This project describes another method using algebraic techniques to simplify the genetic pro-
grams in GP during evolution.
This method uses a simple set of simpli�cation rules, along with an algebraic equivalence com-
ponent to directly simplify tree-based programs without the need to convert them to another
form. The set of rules are designed to target simple forms of algebraic redundancy (e.g. x -
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x = 0) in order to remain small and fast. They are applied to the program in a bottom-up
recursive manner.
Using this component to simplify genetic program during evolution, it is found that the per-
formance of GP systems can normally be improved, with no loss in effectiveness (and in many
cases an improvement in effectiveness was achieved). Systems using simpli�cation are gener-
ally more ef�cient and yield more comprehendable solutions.

2. This project outlines improvements to PRES (an existing numeric hashing simpli�cation sys-
tem developed by Zhang[40]) by integrating an algebraic equivalence component among other
improvements.
The PRES algorithm encodes tree-based programs into another representation consisting of
products of primes. By using an algebraic equivalence component, identical subtrees can be
properly identi�ed and encoded with the same prime number, allowing the algorithm to sim-
plify more types of expressions.
The addition of a Monte Carlo form of reconstruction (where simpli�ed programs may radically
change from the original, while still being functionally equivalent) harnesses the properties of
unstable simpli�cation to create new building blocks as a byproduct of simpli�cation.
The inclusion of an arbitrary precision math library prevents arithmetic over�ows and allows
the application of the PRES algorithm to larger and more complex programs.
Using the improvements made to this method, it was found that this method improved the
performance of GP for relatively dif�cult tasks.

3. This project develops and tests three different methods of selecting programs for simpli�cation:
Random Selection, Fitness Based Selection, Fatness (Size) Based Selection. Experiments show that
while yielding very similar results to each other, fatness based selection can obtain marginally
better performance than the other two methods.
Using this selection method for further experiments, guidelines are deduced for determining
at what frequency simpli�cation should be performed and to what proportion of programs, in
order to achieve the best system effectiveness and the best system ef�ciency.

4. This project presents initial building block analysis of GP systems using simpli�cation, using
two different perspectives of building blocks. Using results from both of these de�nitions, it is
found, by tracking the number and size of building blocks contained in GP systems running on
a simple task, that simpli�cation does indeed remove building blocks from GP systems.

1.4 Structure of this Document
This chapter has introduced the main ideas and motivations behind this project. The rest of the
project report is organised as follows.

• Chapter 2 presents background material and related work in more detail to familiarise the
reader with the concepts of GP, simpli�cation, multi-class classi�cation and related work.

• Chapter 3 describes the datasets and experimental setup (GP and simpli�cation parameters)
used in this project to gather results.

• Chapter 4 describes a simpli�cation system based on applying a set of algebraic rules and the
effects of using it on programs in a GP system during evolution.

• Chapter 5 outlines improvements to PRES, an existing simpli�cation system that uses hash-
ing involving prime numbers to simplify programs to arbitrary depth. Most signi�cant is the
integration of an Algebraic Equivalence Hashing method.
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• Chapter 6 investigates the effects of varying the frequency and proportion of simpli�cation
and whether a balance of effectiveness/ef�ciency can be found through this variation. Three
different proportion selection schemes are developed and tested.

• Chapter 7 looks at the building blocks in a GP system to determine how simpli�cation affects
these building blocks. Two forms of building block analysis is used to track building block
propagation from generation to generation in a GP system evolving a solution for a simple
task.
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Chapter 2

Background

2.1 Overview of Genetic Programming
Genetic programming (GP) [15, Koza, 1992] is an exciting new area of evolutionary computing and
machine learning, in which programs are automatically generated using concepts from biological
evolution to solve various tasks. Initially, a population of programs is randomly generated. These
programs are then executed to perform the speci�ed task the system is designed to solve and eval-
uated based on a �tness criteria (e.g. best accuracy for classi�cation, traveling the furthest distance
for a walking robot) by use of a �tness function. A new population of programs is derived from the
previous population by applying genetic operators to the programs and placing the results in the new
population.

This process of generating new populations and evaluating them is repeated until a desired stop-
ping condition is met (e.g. a solution is �good enough� and meets a �tness requirement, the system
has run for a predetermined number of generations). The �best� program in the �nal generation is
regarded as the system's solution for the task. In essence, GP uses a genetic beam search through the
space of candidate solutions (programs) to a task.

A �ow chart of the GP process is shown in �gure 2.1.

2.1.1 Program Representation
Programs in GP systems can be represented in many different forms. The standard approach is to
represent programs in a tree-based form (e.g. LISP-S), although several other approaches have been
explored, including graph representations ([13, Keijzer 1996]), linear representations ([1, Banzhaf et al.],
machine code representations ([22, Nordin 1997]) and grammar based representations [35, Whigham
1995]).

In the standard tree-based approach (which is used in this project), the leaf nodes represent the
program inputs or terminals, and the internal nodes represent the functions, which form the working
part of the program. The functions take their child nodes as inputs and output to their parent node,
building up and outputting a single numerical result from the root of the tree. The sets of functions
and terminals for a GP system are usually highly task dependent and often have to be carefully
crafted to suit the task if one wants to achieve good results.

Figure 2.2 shows an example of a typical GP program and represents the LISP expression (+ (*
0.12 (- 0.66 x))y) or in more �conventional� mathematical notation (0.12 * (0.66 - x))
+ y. If given the input values x = 2 and y = 7, the result of the program evaluates to 6.8392.

2.1.2 Initial Program Generation
There are several approaches to generating the initial program generation ([15, Koza 1992]).

• Full Method - Functions are selected as the nodes of the program tree until a speci�ed depth is
reached. Then a layer of terminals nodes are added to form the rest of the program. This makes
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Figure 2.1: Flowchart of the GP system process, from The GP Tutorial [7]

Figure 2.2: Example of a standard GP program

all programs in the initial generation the same depth.

• Grow Method - Either functions or terminals are selected to be the nodes of the program tree. If
a terminal is selected, then that branch of the program is not �grown� any further. This varies
the depth and size of the programs generated for the initial generation.

• Ramped Half-and-Half Method - This is a mixture of the other two methods. Half of the programs
in the generation are created using the grow method, and the other half are created using the
full method.

For this project, the full method of creating the initial generation of programs was used.
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2.1.3 Genetic Operators
As mentioned above, the genetic operators are used to alter the programs in the current population
in order to create a new population. In a standard GP system, the following three genetic operators
are usually present: Reproduction, Mutation and Crossover.

Reproduction/Elitism

Reproduction (or elitism), is the operation of copying a number of the �ttest programs from one
generation to the next. This process preserves these programs and ensures that the �ttest program
in the next generation is at least as �t as the �ttest program in the current generation. An example of
elitism is shown in �gure 2.3.

Figure 2.3: Simple example of elitism

Mutation

Mutation is akin to biological mutation, wherein a random DNA sequence in an organism is altered,
possibly affecting the organism in a positive, negative or neutral manner. In standard GP, mutation
of a program takes a random subtree of that program and replaces it with an entirely new randomly
generated subtree. This process ensures the introduction of new functions and terminals into the
population to help retain diversity of the �genetic materials� and prevents stagnation and homogeneity,
which results in all the programs in a population becoming identical. An example of mutation is
shown in �gure 2.4.

Crossover

Crossover is akin to biological sexual reproduction, wherein offspring inherit a combination of genes
from its two parents. Standard 2-point crossover achieves this by �rst selecting two programs in the
current population. A single �crossover point� is randomly chosen within each of these programs
and the subtrees below these points are swapped, producing two offspring programs with differing
combinations of the parents structure. An example is shown in �gure 2.5.

2.1.4 Terminal and Function Sets
These sets create the pool of terminals (leaf nodes) and functions (internal nodes) from which the
initial programs will be created from. Mutation also generates its random subtrees from this pool. It
is important for these sets to be suf�cient and closed ([15, Koza 1992]).
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Figure 2.4: Simple example of mutation

Figure 2.5: Simple example of crossover

In standard GP, Suf�ciency is a requirement that the speci�ed set of functions and terminals given
is actually capable of generating a solution to the given problem. Obviously, if the given functions
and terminals are not suf�cient, a solution cannot be found. Closure requires that all of the functions
and terminals return the same type, so that every function can accept the output of any other function
or terminal. This ensures that any generated or recombined tree combination is a valid program.
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2.1.5 Fitness Function
In GP, the �tness function is a measure of how �good� a genetic program is at performing a task. Since
a GP system favours programs which are ��tter� (e.g. through elitism), a �tness function can largely
affect the way the evolutionary process behaves. A carefully crafted �tness function help preserves
programs that aid the evolution process in obtaining the best solution.

2.1.6 Other GP Parameters
Other GP parameters exist which also affect the way a GP system behaves. These include:

• Population Size: This is the number of programs that exist in a population. If this is two small,
the amount of �genetic� diversity is lessened. If this is too large, each generation will take a
long time to process.

• Crossover, Reproduction and Mutation Rates: These dictate the proportion of a population that
is subjected to these genetic operators. Balancing these rates is task dependent, as some tasks
may be easy to get to a �decent� solution, but require a higher mutation rate to obtain a higher
�tness.

• Minimum/Maximum Tree Depth: Standard GP trees grow very quickly, and so are usually limited
in depth to keep resource usage down. If the maximum tree depth allowed is too low (i.e.
solutions only exist with larger program trees), then the system will perform poorly.

• Maximum Generations: This is used as a Termination Criterion (explained in the next subsection).
If this number is too low (especially when combined with a small population size), then the
system will be prematurely stopped before a �good� solution can be evolved.

These parameters have to be considered when designing the experimentation, and a list of the
parameters used in this project is shown in section 3.4.

2.1.7 Termination Criteria
The termination criteria determine when the system should stop executing, and a �nal �solution�
should be outputted. These are split up into several categories including:

• User Control - The GP keeps running until the user manually terminates the system.

• Fitness Control - If the �tness measure passes a user de�ned value (e.g. 100% accuracy for the
training set), then the GP system is stopped.

• Early Stopping - Can be achieved through a number of methods (e.g. validation sets). This
criterion is designed to stop the system before over�tting occurs (see next subsection for an
overview of over�tting).

• Generation Control - The system stops after a user de�ned number of generations has been exe-
cuted. A common value for the number of generations is 50.

Usually a combination of these termination criteria are used in a single GP system.

Over-�tting

Over-�tting is a situation where the learning system (whether it be GP, Neural Networks, Bayesian
or any other system) begins to generate solutions that are too speci�c to the training data provided.
This means that at a point in the learning process, while the training �tness is still becoming better,
the �tness of the programs on the testing data has started to worsen. Figure 2.6 shows an example
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Figure 2.6: Graph example of 'over-�tting'

of an error measure (i.e. less error is better) being used as a �tness function, and an example of the
system over�tting training data.

While over-�tting is not an issue when all possible instances are given in the training dataset,
usually only a portion of possible instances are available for the system to train on. To help prevent
over-�tting, the dataset is usually split into two sets, a training set and a validation set. The learning
system is trained using the training set and tested on the validation set. If the �tness of the system
is continually improving for the training set, but worsening for the validation set, over-�tting is
assumed to have begun and the system is prematurely halted.

2.2 Multi-class object Classi�cation
Classi�cation is an area of Data Mining/Knowledge Discovery [6, Fayyad et al.] and Pattern Recogni-
tion ([24, Paulus, Hornegger 1998], [28, Schuermann 1996]) which concerns identifying and organising
different types of data into a set of coherent classes. Object classi�cation is a subset of this, in which
the data is related to speci�c objects (e.g. computer images or descriptions). This task arises in many
different applications, including object detection in images [36, Winkeler 1997], including automatic
tracking systems [30], face recognition ([33, Teller 1995]) and handwriting recognition ([19, LeCun,
1995]).

In most object classi�cation cases, object classi�ers have limited themselves to distinguishing
between two types of classes (e.g. A boat, or not a boat, a square or a circle). Multi-class object
classi�ers deal with tasks which involve three or more distinct classes of objects (e.g. square, circle
and triangle classes, multiple faces).

Not surprisingly, multi-class object detection ([37, Zhang, 1999]) and classi�cation is generally a
more dif�cult task for a GP system (or indeed, any system) to solve. It is especially hard in a standard
GP system as there is only a single output from any of the programs. This output must be translated
into a class identi�er in order to perform the classi�cation.

The most basic method is a static-range selection method ([38, Zhang, 2003], [39, Smart, Zhang]).
Each class is designated a window of �xed size in the output value to represent that class. This
method is not the best performing when compared to other, dynamic methods (e.g. centered dynamic
range selection, slotted dynamic range selection [29]), but this approach is usually suf�cient for some
tasks. As an example of how the static boundary partitions the output. Figure 2.7 shows a partition
of a four class problem (with a �xed window size of 0.5 for each class).
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class =





class1 output < −0.5
class2 −0.5 ≤ output < 0
class3 0 ≤ output < 0.5
class4 0.5 ≥ output

Figure 2.7: Diagram of static-range selection multi-class classi�cation

As the goal of this project is not to develop or investigate multi-class translation methods, the
experiments in this project simply uses the static-range method outlined above. This method is also
one of the easiest to translate (as it is not dynamic) and so will make understanding how programs
work (comprehensibility) much easier.

2.3 Program Redundancy and Simpli�cation
2.3.1 Redundancy
As mentioned in the introduction, program redundancy is a section of a program that does not con-
tribute at all to solving the task. Figure 2.8 shows an example of program redundancy, where the (-
x x) subtree does not contribute (as 0 + a = a).

Figure 2.8: Example of redundancy in GP programs

Redundancy is not limited to mathematical expressions. Consider a control program for a robot,
where the function set includes { turn left, turn right, move forward }. It is easy to see that a sub-
program turn left, turn left, turn left is equivalent to a single turn right, and that
complex combinations of these may be equivalent to much shorter programs.

In the example in �gure 2.9, the task is to construct a program that moves diagonally north-west
two squares (a very basic program). Both path A and path B represent two different �solutions� to
the task. Although they both are valid, it is obvious that the path A is more optimal, and that path B
contains some redundancy (moving down only to move up later on).

This shows that for many tasks (even with specialised, non-standard function/terminal sets),
redundancy can exist, and so simpli�cation to remove that redundancy affects tasks across the GP
spectrum.
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Figure 2.9: Example of redundancy in non-arithmetic task

2.3.2 Simpli�cation

Simpli�cation systems to automatically simplify algebraic expressions have existed for many years,
simply because computer systems are a very useful tool for performing menial mathematical proce-
dures. While not necessary for a computer system, simpli�cation is a very useful process to make
programs more understandable for human interpretation.

Algebraic simpli�cation: a guide for the perplexed [21, Moses 1971], describes the different types of
algebraic simpli�cation systems. Moses outline four basic types of systems, and named them in a
political sense:

• Radical: Works with well de�ned expression types (e.g. polynomials) and relies of keeping a
canonical internal representation of all expressions. Any simpli�cation rules rely on this canon-
ical structure in order to work.

• Liberal: Works with more general forms of expressions and uses simple rules that cater for most
situations. This is most akin to how people simplify expressions using pen and paper.

• Conservative: This type of system works on the principle that �there is no set of rules that can
handle all situations�. It contains very few rules of its own and allows the user to de�ne their
own set of simpli�cation rules.

• Catholic: This type of system uses more than one type of approach to simpli�cation, so that if
one approach does not work, it tries another.

These four categories encompass the majority of simpli�cation systems available today.

2.4 Schema Theory

Schema theory is an attempt to �nd a general theory as to why genetic programming works. Such
a theory exists in Genetic Algorithms (GA) in the form of the Building Block Hypothesis: That the GA
process combines short, relatively �t schemata ('building blocks') together to form more and more
complete solutions to a task. This is generally used to explain how GA systems work. In GP however,
there exists no equivalent hypothesis and many works have been made in attempting to form one
([26], [15], [23]).

Most of these attempts have been purely theoretical, although Poli and Langdon [26] provided
both theoretical and experimental results to investigate the propagation and destruction of schema in
a GP system. They speci�cally investigated the crossover operator to determine its effects on the
schema in the system.
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2.5 Related Work
2.5.1 Program Bloat
Several approaches have been developed and investigated to combat the program bloating problem.

One of these is parsimony pressure, which uses a multi-objective �tness function (in this case, a �t-
ness function that would measure the program �tness and the program size) to penalise larger sized
programs during the evolutionary process. It is hence possible for a ��t�, large program to be given
a lower �tness than smaller programs that may not be as good at solving the task. This method
has been shown to worsen the effectiveness of the evolved solutions [31, Soule] and has been largely
discarded as a viable solution to program bloat.

Another approach is the addition of reusable code, subtrees which are stored once and can be
linked to by multiple programs. An example of this is the automatically de�ned function (ADF) [16,
Koza 1994]. An ADF, like other programs, is also evolved during the GP run and may be linked to by
programs in the population. This approach bene�ts from tasks which are highly regular and involve
many repetitive actions/routines, as subtrees which perform these actions/routines need only be
stored once, resulting in a reduction in memory usage.

It should be noted that program simpli�cation methods are different from the above two methods,
although they all aspire to solve the same problem.

2.5.2 Program Simpli�cation
In previous work, [5, Ekart 1999], [29, Smart 2003] and [40, Zhang 2004] applied varying simpli�cation
methods to different GP tasks.

Ekart used an algebraic rule system in the form of a set of prolog statements. This required
programs to be converted into string format, a form which prolog can parse and use. This system
was tested on symbolic regression tasks only, with little variation in frequency and proportion of
simpli�cation.

Smart also used an algebraic rule system based on string matching, where a program again needed
to be translated into string format. A set of simpli�cation rules (using pattern matching) was enacted
on this string, the result transformed back into a program and inserted back into the GP system.
Using this system on two multi-class classi�cation tasks, it was found that overall, small improve-
ments in effectiveness were achieved, as well as shorter training times. In this project, an algebraic
simpli�cation method that works directly on the tree structure itself is developed and applied to the
programs in a GP system. The standard and modi�ed GP systems will be applied to several symbolic
regression and multi-class classi�cation tasks.

As simpli�cation may destroy good building blocks in a GP system, frequency and proportion
will be varied, allowing some programs to avoid simpli�cation and possibly �sparing� good build-
ing blocks.

Zhang used a system (dubbed PRES) which hashed a program by utilising prime numbers. Pro-
grams were encoded into a �prime product quartuple� representation. This is achieved by mapping
nodes and subtrees of programs to prime numbers. The prime product quartuple stored these nodes
and subtrees as a product of the primes they are mapped to.

By representing programs in this form, cancelling of redundancies becomes a simple task of fac-
toring out the greatest common divisor (gcd) from the prime product quartuple.

After simpli�cation has been performed, the nodes and subtrees were then reconstituted from the
leftover primes to form a simpli�ed form of the original program. A more detailed explanation of
the PRES algorithm is explained in chapter 5.

This form of system is essentially a �radical� system as it converts the program into an internal
representation structure in order to perform simpli�cation. Using this simpli�cation method, again,
very small improvements were concluded to be possible. The algorithm in its current form is limited
in the size of programs it can be performed on. In this project, changes are made to improve the
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effectiveness of PRES, allowing the algorithm to support more varied types of expressions and be
applied to larger and more complex tasks.

2.5.3 Building Block Analysis
Much work has been undertaken in previous years to explain why GP works. In genetic algorithms,
there is a widely accepted (although not by all) hypothesis that �short, low-order, highly �t� schema
are recombined to form even more highly �t, higher-order schema. This �ability to produce �tter and
�tter partial solutions by combining blocks is believed to be the primary source of the GA's search
power� [9, Forrest, Mitchell 1996]. [12, Holland 1975] provided further support for this hypothesis, by
using schema analysis to gain experimental results.

The schema concept provides a different perspective on GA and GP systems. Rather than using
the view of evolutionary processing of programs, one can think of the system as �schema processing�.
A schema's �tness is determined by averaging the instances (programs) that a schema matches.

Many attempts have been made to bring a similar theory to the �Building Block Hypothesis� to
the realm of GP. Koza [15, Koza 1992] �rst addressed this issue in 1992, de�ning a schema as a set of
subtrees formed from a special schema de�ning set (e.g. if H1 is de�ned as {(- 2 y), (+ 2 3)},
then H1 is a schema representing all programs that contain (- 2 y) or (+ 2 3)). Koza concluded
that GP crossover preserves good schema and that smaller, good schema are combined into larger
schema.

Other schema work ([23, O'Reilly 1995], [26, Poli, Langdon 1997]) has attempted to bring schema
de�nitions closer to those in GA. O'Reilly introduced a �don't care symbol� (#) to Koza's de�nition,
which could take the value of any valid subtree.

Conclusions from these works �nd that probability of disruption is dependent on the size of the
program, and that GP may actually be a two-phase system.

All of these works however have concentrated on explaining the effects of crossover GP, and no
work has been done to investigate simpli�cation's effect on a GP system. In this project, similar meth-
ods to these works are used to investigate simpli�cation. Whether simpli�cation disrupts building
blocks, or whether simpli�cation can even construct new building blocks.
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Chapter 3

Datasets and Experimentation Setup

In order to investigate the goals set out by this project, several tasks were chosen. These tasks were
selected to test both GP systems with simpli�cation and the standard GP system over different types
of problems, with different dif�culties. The following tasks were chosen for to achieve this.

3.1 Task 1: Symbolic Regression
Symbolic regression [15, Koza, 1992] is the task of �regressing� a mathematical expression/formula
which best �ts a given set of data points. This method of regression works differently to other meth-
ods of regression, such as using neural networks. Depending on the quality of the set of data points
given (i.e. the amount of noise) or the complexity of the formula, this expression may be very easy
or very dif�cult to obtain.

For this project, two symbolic regression tasks were chosen of which one is a relatively �easy�
expression to regress and the other is relatively �hard�.

3.1.1 Easy Regression Problem
EasyProblem : f(x) = x2 + x+ 4.5
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Figure 3.1: A plot of the Easy Problem equation

This �rst problem is a relatively straight-forward problem to solve, as it only consists of a couple
of functions (+ and ∗) and only a single, small constant. The constant being small is important, as
it can therefore be produced easily by combining the small constants initially generated by the GP
system. The dataset for this problem consists of 200 data points taken at 0.1 intervals between to
values of -10 and 10. Sample data points from this dataset are shown in table 3.1.
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x ... -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 ...
f(x) 3.76 3.79 3.84 3.91 4 4.11 4.24 4.39 4.56

Table 3.1: Sample 'Easy Regression' data points

3.1.2 Hard Regression Problem

HardProblem : g(x) =
{
x3 − 5.8x+ 3 x < 0

x−12
x2 + 1 x ≥ 0
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Figure 3.2: A plot of the Hard Problem equation

This second regression problem is a much more dif�cult task for the GP system, as the function
which is used to generate the data points is much more complex. It uses all of the standard arithmetic
operators, the if < 0 function, and several constants. Similarly to the �easy� problem above, the
dataset for this problem consists of 200 data points taken at 0.1 intervals between to values of -10 and
10. Sample data points from this dataset are shown in table 3.2.

x ... -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 ...
g(x) 5.256 4.713 4.152 3.579 3 -1189 -294 -129 -71.5

Table 3.2: Sample 'Hard Regression' data points

3.1.3 Features
The expressions used in both symbolic regression tasks consist of a single variable (x). Therefore
there is only one feature input for the GP system, which corresponds to that x.

3.1.4 Terminal and Function Sets
The terminal set consists of randomly generated numerically valued terminals as well as feature termi-
nals. The numeric features are simply n �oating point numbers generated in the range of [-1, 1] using
a uniform distribution random number generator (r0, r1, ..., rn). In the standard GP system, these
numeric terminals will remain unchanged in the course of the evolutionary process, while in the
modi�ed system, simpli�cation will bring some of these terminals together to form new constants.
There is only a single feature terminal (f0) which represents the single variable in the expression.

Terminal Set = {r0, r1, ..., rn, f0}
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The function set used for this tasks consists of the four basic arithmetic operators, as well as a
conditional if operator. The division used is the commonly used �protected division� where a divide
by zero results in zero, removing the unde�ned case. The conditional if operator takes three parame-
ters, a condition which will be evaluated, a true branch if the condition evaluates to < zero and a false
branch if the condition evaluates to ≥ zero.

Function Set = {+,−, ∗, /,if<0}

3.1.5 Fitness Function

The �tness of each program is determined by evaluating the program over 200 consecutive points,
between the range [-10, 10] using 0.1 increments. The SSE (sum squared error) is calculated from
the differences between the program output and the target expression output to give the program
�tness. A lower �tness is therefore desirable in this case with 0 (no difference between the program
output and the �true� output) being the optimal �tness.

SSE =
∑

(outputactual − outputdesired)2 (3.1)

3.1.6 Termination Criteria

Two basic termination criteria were used, stopping the system when the �tness of the best program
in a generation was 0 (i.e. the optimal �tness) or when the 50 generation limit was surpassed.

3.2 Task 2: Coin Classi�cation

Figure 3.3: A sample of coin images in the dataset

This task is an example of a multi-class object classi�cation task, in which objects depicted in images
are classi�ed by a program and the accuracy measured. The dataset used in this case is a set of images
which contain 5 and 10 cent New Zealand coins with various orientations on a relatively uniform
(white) background. The objects in this dataset consist of 480 70x70pixel cutouts of these coins from
the image, and are split into four distinct classes:
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Class Example

10c Tail

10c Head

5c Tail

5c Head

Table 3.3: The four coin classes

3.2.1 Features

The features for this task consist of 8 pixel statistic features extracted from the object images in the
dataset. The 8 features used are the mean and standard deviation of four concentric square regions
of increasing size in each object image, which have been normalised to the range between -1 and 1.

Figure 3.4: The regions from which the coin features are extracted

3.2.2 Terminal and Function Sets

The terminal set consists of randomly generated numerically valued terminals as well as feature termi-
nals. The numeric features are simply n �oating point numbers generated in the range of [-1, 1] using
a uniform distribution random number generator (r0, r1, ..., rn). In this classi�cation task, the feature
terminals (f0, ..., f7) represent the 8 domain independent, pixel statistic features that were extracted
from the images.

Terminal Set = {r0, r1, ..., rn, f0, ..., f7}

Again, the function set used for this tasks consists of the four basic arithmetic operators, as well
as a conditional if operator. The division used is the commonly used �protected division� where a
divide by zero results in zero, removing the unde�ned case. The conditional if operator takes three
parameters, a condition which will be evaluated, a true branch if the condition evaluates to < zero and
a false branch if the condition evaluates to ≥ zero.

Function Set = {+,−, ∗, /,if<0}
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3.2.3 Fitness Function

The �tness of each program is determined by the classi�cation accuracy of the program on the given
training set of images (although �nal evaluation for results of evolved solutions are performed on a
test set). Obviously, a higher �tness is desirable in this task with the maximum being 100% accuracy
where all of the object patterns are correctly classi�ed.

�tness = no. objects correctly classi�ed
total no. objects (3.2)

3.2.4 Classi�cation Strategy

This task consists of 4 classes, and so using the static-range selection method (with a slot size of 0.25,
which was determined to give better results than larger slot sizes), the class boundaries are de�ned
as follows:

class =





5chead output < −0.25
5ctail −0.25 ≤ output < 0

10chead 0 ≤ output < 0.25
10ctail 0.25 ≥ output

3.2.5 Termination Criteria

For this task, three termination criteria were used to stop the GP system, whichever criterion occurs
�rst. They were:

• The �tness of the program is optimal (i.e. 1.00), which denotes that the training accuracy is
100%.

• The accuracy of the validation set �starts to fall�, which is used as an indication of over�tting.

• The 50 generation limit is surpassed.

3.3 Task 3: Face Recognition

This task is another example of a multi-class object classi�cation task. The dataset uses a subset of
the Yale Face Database B [11], a database of images of different peoples faces, with different lighting
conditions.

This task is intended to be a more dif�cult task than the coin classi�cation task.
The full database �contains 5760 single light source images of 10 subjects each seen under 576

viewing conditions (9 poses x 64 illumination conditions)�. For this project, only a subset of this
database was used for experimentation, consisting of 5 subjects and only a single pose (directly front
on) for each subject. This constructed a dataset of 5x64 = 320 images, all similar to the image shown
in �gure 3.5.

For each of these images, the face was located (using coordinate information, also provided with
the database) and cutout of the image. This resulted in 320 cutout images, similar to those in �gure
3.1. Notice the vast range of lighting variation present in the dataset, even in the selection of cutouts
presented in the �gure.
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Figure 3.5: An example raw image from the dataset

Figure 3.1: Example 300x300 cutout images in the dataset

3.3.1 Features
As in the coin classi�cation task, several simple pixel statistic features (mean and standard deviation)
were extracted from various regions of the face image. For this dataset, the regions are (also depicted
in �gure 3.6):

1. The image was split into quarters, and each quartile used as a region. These regions together
represent the image as a whole.

2. A 300x300 square which encompasses the entire face.

3. A 50x20 rectangular region for each eye.

4. A 80x40 rectangular region for the mouth.

5. A 60x60 square region for the nose.

This results in 18 different pixel statistic features (2 × (4 + 1 + 2 + 1 + 1)). These 18 features,
extracted from the 320 images, make up the �rst face dataset �Face Dataset #1�. All features are nor-
malised to be between the range of -1 and 1.

20



Figure 3.6: The regions from which the face features are extracted

The Yale Face Database B also contains coordinate positions of the eyes and mouth of the subject
in the image. These positions are used to accurately obtain the rectangular regions around the eyes
and mouth. The position of the nose is calculated as the centre of the triangle formed by the eyes and
mouth, and the square region is taken around that point.

The inclusion of these coordinate positions brings another set of possible features to light. Those
of the distance ratios between the eyes and mouth. All of the features used thus far are simple pixel
statistic features and are easily affected by the lighting variance in the dataset of images. By including
distance ratios, the features should be more robust and resistant to lighting variance.

To investigate this conjecture, another set of features is extracted from the images consisting of
the 18 features in the �rst dataset, and including 2 additional features:

Figure 3.7: The distances from which the ratio features are extracted

• The ratio of: distance of left eye to right eye, and distance of left eye to mouth.

• The ratio of: distance of left eye to right eye, and distance of right eye to mouth.

This makes a new total of 20 features. These features, extracted from the 320 images, make up
the second face dataset used in this project �Face Dataset #2�. Again all features are normalised to be
between the range of -1 and 1.

21



Feature Face Dataset #1 Face Dataset #2
Mean/SD of First Quartile × ×

Mean/SD of Second Quartile × ×
Mean/SD of Third Quartile × ×

Mean/SD of Fourth Quartile × ×
Mean/SD of Face × ×

Mean/SD of Left Eye × ×
Mean/SD of Right Eye × ×

Mean/SD of Mouth Eye × ×
Mean/SD of Nose Eye × ×

Ratio of L/Eye-R/Eye to L/Eye-Mouth ×
Ratio of L/Eye-R/Eye to R/Eye-Mouth ×

Table 3.4: Summary of features for both face datasets

3.3.2 Terminal and Function Sets
The terminal set consists of randomly generated numerically valued terminals as well as feature termi-
nals. The numeric features are simply n �oating point numbers generated in the range of [-1, 1] using
a uniform distribution random number generator (r0, r1, ..., rn). In this classi�cation task, the feature
terminals (f0, ..., f19) represent the 20 pixel statistic features that were extracted from the face images.

Terminal Set = {r0, r1, ..., rn, f0, ..., f19}

Function Set = {+,−, ∗, /,if<0}

3.3.3 Fitness Function
The �tness of each program is determined by the classi�cation accuracy of the program on the given
training set of images. Obviously, a higher �tness is desirable in this task with the maximum being
100% accuracy where all of the object patterns are correctly classi�ed.

�tness = no. objects correctly classi�ed
total no. objects (3.3)

3.3.4 Classi�cation Strategy
This task consists of 5 different classes, and so using the static-range selection method (again, with a
slot size of 0.25), the class boundaries are de�ned as follows:

class =





subject1 output < −0.75
subject2 −0.75 ≤ output < −0.50
subject3 −0.25 ≤ output < 0
subject4 0 ≤ output < 0.25
subject5 0.25 ≥ output

3.3.5 Termination Criteria
Unlike in the previous task, only two termination criteria were used to stop the GP system for this
task, they were:
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• The �tness of the program is optimal (i.e. 1.00), which denotes that the training accuracy is
100%.

• The 50 generation limit is surpassed.

The early stopping criterion using a validation set was not used as experiments for these two
datasets used a 10-fold validation method (explained in a later section in more detail).

3.4 GP System Parameters
Table 3.5 details the system parameters used for each task experiment:

Task Gens Pop. Size Mutation Elitism Crossover Min. Depth Max. Depth
Easy 50 500 30% 10% 60% 3 6
Hard 50 500 30% 10% 60% 3 8
Coins 50 500 30% 10% 60% 3 6
Face 50 500 30% 10% 60% 3 8

Table 3.5: Genetic Programming System Parameters

Because of the relative dif�culty of both the Hard regression and Face recognition datasets, the max-
imum tree depth parameter is increased to 8. This allows for more complex programs to evolve in
the system and so more accurate solutions can be evolved as well.

All of the results gathered are averages and standard deviations of 30 system runs. This is to
provide more accurate results without having to run the systems for extremely long times. In the
case of the faces datasets, because of the relatively low number of patterns available for each class (64
per 5 classes), a 10-fold cross validation [14, Kohavi 1995] technique was used instead of the normal 30
runs. This is a validation technique that involves splitting the dataset into 10 subsets, and running
the systems 10 times. Each time a different subset is used as the testing set, while the remaining 9
are used for training. This rotating of which subset is the test set provides a better accuracy in results
when dealing with a low number of patterns in the dataset.

In order to draw conclusions about the results, they were analysed in terms of Effectiveness, Ef�-
ciency and in some cases Comprehensibility.

Effectiveness is the quality of solutions that the GP systems yield (how well they perform the spec-
i�ed task). In terms of GP, the �tness of the program outputted by the system as the �best program�.
Ef�ciency is measured in terms of program size (which directly affects memory usage), generational time
(the number of generations it takes to �nd a suitable solution) and execution time (the wall-clock time
it takes for the system to �nish execution and output its solution). Comprehensibility is a subjective
measure, and is an opinion on how �readable� and �understandable� the solutions from a GP system
are. This is a dif�cult aspect of GP systems to investigate.
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3.5 Other Notes
• All experiments were performed on systems with the following speci�cations.

System Details
Computer: Dell Optiplex GX280
CPU: Pentium IV 2.8GHz
Memory: 1024Mbytes
Disk: 80.00Gbytes

• The VGP package written by Will Smart (developed at the School of Mathematics, Statistics &
Computer Science, Victoria University of Wellington) was used to implement and test each experi-
ment task.

• For all of the classi�cation datasets, it was found to be very important that the set of instances
in the dataset had been randomised in order before splitting up the data into their respective
training/validation/testing sets. Overlooking this resulted in extremely poor test set accura-
cies, as classes of objects present in the test set were not present at all in the training set after the
dataset was split. This led to programs largely over�tting only a subset of the classes.
In �gure 3.8, the original un-randomised dataset has been split into a training set (3/5 propor-
tion) and testing set (2/5 proportion). It is easy to see that since the training set does not include
any of the classes in the test set (and vice versa), that resulting test accuracies will be very poor.

Figure 3.8: Poor dataset preparation
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Chapter 4

Algebraic Simpli�cation

In standard GP, the programs are represented as a LISP-S (or similar language) expression, which is
stored in a tree representation. The standard operators and terminals used are the four arithmetic
operators (+,−,×,÷), an if operator and numeric and variable terminals. In other words, the stan-
dard GP program looks a lot like an algebraic expression. It is a straightforward idea that algebraic
simpli�cation rules can be applied to these programs in order to obtain a smaller program of equal
�tness (i.e. provides the same output given the same set of inputs). This section looks into the use of
such a system.

4.1 Simpli�cation Functions
The algebraic simpli�cation system in this project draws inspiration from STRIPS operators ([8, Fikes,
Nilsson 1971]). STRIPS is a formal language for de�ning planning problems, and the operators repre-
sent the set of possible operators which include preconditions (what must be satis�ed in order to do
the action) and postconditions (what must be satis�ed after the action is executed). One can imagine
simpli�cation as a planning problem of getting from an unsimpli�ed expression (initial state) to a
simpli�ed expression (goal state). The only difference is that in simpli�cation, one does not know
when an optimal goal state has been reached (a form of �blind� search).

Hence the simpli�cation rules are described in the system by a precondition and an effect. The
precondition represents the state of the local nodes that must be present in order to be able to simplify,
and the effect represents the changes made to the tree to obtain the simpli�ed form. For example:

Simple Constants Operator
Precondition: All child nodes are constant terminals
Effect: Apply operator and replace subtree with single constant terminal

17

+

8 9

Figure 4.1: Example simpli�cation rule de�nition

Multiple rules of this form make up the simpli�cation system, along with a basic �greedy-search�
engine that applies these rules. A complete list of the rules used in the simpli�cation system is
available at the end of this document (appendix A). This list does not cover all possible algebraic
simpli�cation rules, but it does cover the major sources of redundancy and is suf�ciently effective
for use in this project.
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The �greedy� engine is a simple recursive algorithm. It recursively travels through the tree from
the bottom-up checking the precondition for each simpli�cation rule. If a rule matches, it is applied
(without regarding the outcome). If none of the rules can be applied at a node the algorithm moves
to the parent node.

procedure AlgSimplify (Node root)
for each Child Node C
AlgSimplify(C)

for each Rule R
if precondition of R is true
apply R to C

Figure 4.2: Pseudo-code of the simpli�cation algorithm

This means that each node is only visited once, and all simpli�cation rules only look at a static,
limited area, which means deeper levels of simpli�cation (simpli�cation of terms which are not
neighbouring) are not supported in this algorithm.
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4.2 Algebraic Equivalence and A Hashing Approach
A major component of any simpli�cation system is that of expression equivalency or algebraic equiv-
alency. Knowing that two non-identical expressions are in fact representative of the same expression
is very useful and increases the number of simpli�able expressions for the system. There are several
approaches to determining equivalence, including: reduction of expressions to their canonical forms
for straight comparison, and straight-forward evaluation and comparison at multiple arbitrary points
(e.g. evaluating both expressions for a range of points between -10 and 10 and comparing values).

In this project, hashing is used to address algebraic equivalence. The hashing function is used
to extend the algebraic system outlined in the previous section (to be capable of simplifying more
expressions). [20, Martin] outlines a method for achieving algebraic equivalence using hashing meth-
ods, and the algebraic equivalence method used here is a modi�ed/extended version of that work
(in order to cope with all common GP system functions and terminals).

A hashing function can be viewed as a mapping from a source set to a target set. In this case it
is a mapping of LISP-S expressions to a set of sequential integers. In order to be an effective hash
function, it should be able to guarantee the following condition:

If two expressions are equivalent, they hash to the same value.
That is, for a hashing function f : Expression→ HashV alue, x = y → f(x) = f(y)

Notice that this does not guarantee that if two expressions hash to the same value, that they are
equivalent. This is of course unavoidable using this approach, as the hash function maps an in�nite
set of expressions S to a �nite set of integer values Zp. Each hash value then, represents one (or many)
equivalence classes of LISP-S expressions:

Hash ValueExpressions

Figure 4.3: Diagram of an expression hash function

The inclusion of a heuristic to determine algebraic equivalence adds in the risk of two non-
equivalent subexpressions being determined as equal and one or both being discarded (depending
on the simpli�cation rule). In this project, the hashing function uses properties of a �nite �eld (as de-
�ned in group/ring theory) in order to accomplish the above condition. It uses a very large number
of distinct hash values (i.e. �eld order) to ensure that the number of collisions is kept minimal, and
is probabilistically minute. This ensures that programs which are simpli�ed (probabilistically) yield
the same outputs as the unsimpli�ed program, given the same inputs. In this report, p is used to
denote the order of the �eld used by the hash function (i.e. the total number of possible hash values).
In order to qualify as a �eld, p must be a prime number.

4.3 Hashing of Basic GP Functions and Terminals
Each of the following sections details each type of terminal/function in a basic GP system and how
they are handled.
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4.3.1 Constants
In a GP system, constants can be any numeric type: integers, rationals, �oating point, etc. Therefore,
the hash function needs to be designed to handle all these types, of which the most dif�cult is �oating
point. [20, Martin] does not describe a solution to this in his paper. In this project, we handle this
by approximating the �oating point with a rational number, thus converting it to a division of two
integers.

Calculating accurate and minimal rationals can be very time consuming, so a quick approxima-
tion is used. The numerator is formed by multiplying the �oating point by a prede�ned precision
constant (e.g. 1000000) and truncating the leftover fractional part. By using the same precision con-
stant as a denominator, a rational representation can be very quickly found.

Hash(A) = A×precision
precision mod p

4.3.2 Variables/Features
In a GP system, a variable/feature can represent anything, may it be image features, pixel statistics or
even other LISP-S expressions. The important attribute is that in any GP system, a variable/feature
always represents the same value (i.e. if, for a single particular object pattern f0 = 7, then for any
program acting on that same pattern, f0 = 7). Keeping this in mind, variables/features are assigned
random hash values at the beginning of the GP run and are kept consistent through till termination.

Hash(Featuren) = a random value in Zp

4.3.3 The Arithmetic Operators
Because the hashing method takes place in a �nite �eld, all of the standard arithmetic methods are
easily handled using modulo arithmetic. Hashing of these operators is equivalent to evaluating them
within the �eld:

Hash(A+B) = (A+B) mod p
Hash(A−B) = (A−B) mod p
Hash(A×B) = (A×B) mod p
Hash(A÷B) = (A÷B) mod p

4.3.4 The 'if' operator
The IF function is a more dif�cult case, as it is not an arithmetic function and so cannot simply be
converted to its modulo arithmetic equivalent. Additionally, it consists of three parameters: a condition,
a true branch and a false branch. All three of these parameters must be considered when hashing this
function as well as the order in which they appear. The following approach was formulated to handle
this function:

Hash(IF (A,B,C)) = (A× C
B ) mod p

This uses division to take into account the position of the three parameters (condition, true branch,
false branch). Interestingly, it also can handle the following two equivalent expressions:

if<0(A, B, if<0(C, B, D)) and
if<0(C, B, if<0(A, B, D))

This can be shown by assigning the variables random values as the hashing method describes and evaluating:
Let A = 4, B = 8, C = 9, D = 2 and let the hash values be in Z11:
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if<0(A, B, if<0(C, B, D)) = 4 * ((9 * (8 / 2) / 8)) = 7
if<0(C, B, if<0(A, B, D)) = 9 * ((4 * (8 / 2) / 8)) = 7

The two expressions used above are the same as those used in [40, Zhang, 2004] as an example of
the dif�culty in hashing the IF function.

4.3.5 Operator Closure
All of the functions supported are closed, meaning that for any of the functions � ∈ {+,−,×,÷, IF},
Hash(A) �Hash(B) = Hash(A �B). More speci�cally:

Hash(A+B) = Hash(A) +Hash(B)
Hash(A−B) = Hash(A)−Hash(B)
Hash(A×B) = Hash(A)×Hash(B)
Hash(A÷B) = Hash(A)÷Hash(B)
Hash(IF (A+B,C,D)) = Hash(A+B)× Hash(D)

Hash(C)

This means that by storing already calculated hash values within the tree node structure, one does
not need to recalculate the hash values of subtrees each time a tree is to be hashed, as hash values
of subtrees can be combined to give correct hash values of the whole tree. This property reduces the
time complexity for using this approach to a linear one (O(n)).

4.3.6 Examples
Here are a couple of examples of how the algebraic equivalence hashing works. The �rst is a diagram
of a simple program being hashed. The second is an example of hashing a more complicated �real
world� evolved program.

Example 1

Figure 4.1: Example 1 of algebraic equivalence

Example 2

Original Program

(+ (- (* (+ f0 (* -0.018733 f0)) -5.068436) (if<0 f0 f0 (% 0.988933 f0)))
(* (* (if<0 f0 f0 0.578400) f0) f0))
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Program with Hash Value Substituted

= (+ (- (* (+ 4 (* 735 4)) 1008) (* 4 (% (% 61 4) 4))) (* (* (* 4 (%
2 4)) 4) 4))

= (+ (- (* 1167 1008) (* 4 16)) (* (* (* 4 889) 4) 4))
= (+ (- 1739 64) 42)
= (+ 1675 42)
= 1717

Let f0 = 4 (randomly chosen), �eld order p = 1777 (semi-large prime number) and constant
precision = 1000000. The constants (-0.018733, -5.068436, 0.988933, 0.578400) are each con-
verted to rational numbers ( 18733

1000000 , 5068436
1000000 , 988933

1000000 , 578400
1000000 ) and evaluated mod 1777 to obtain their

hash value representations (-0.018733 = 735, -5.068436 = 1008, 0.988933 = 61, 0.578400
= 2). The if<0 operator is also changed into its hashing function.

This process yields the following program (with hash values substituted in), which is evaluated
to the �nal hash value representing the entire program.

As the program hashes to 1717, this program is deemed algebraically equivalent to any other pro-
gram that hashes to 1717, even to the numerical constant 1717 itself. The key to this approach is to
use a large �eld order, so that collisions are kept minimal.
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4.4 Testing and Results

In this section, the results for each experimentation task is presented followed by a discussion of the
results of all the tasks. Also as part of the results is a list of the 3 �best/�ttest� programs yielded by
each of the GP systems. This is a large list and so has been relegated to a section in the appendix.
Any program in that list that is referred to in the discussion is restated.

In addition to the GP system parameters, the following additional �simpli�cation parameters�
need to be speci�ed:

Parameter Value
Field Order (for Alg. Simp.) 1000077157

Constant Precision 10000000
Proportion 100%
Frequency Varied: Every [0, 1, 2, 4, 6] Gens.

Table 4.1: Algebraic Simpli�cation: Simpli�cation Parameters

Field Order de�nes the number of distinct hash values that programs can be hashed to. For rea-
sons explained earlier, this has been given a large value. Constant Precision is the number of decimal
places that are considered when hashing a �oating point number (i.e. the precision that is kept). This
is used when converting �oating points to a rational number �equivalent�. Proportion is simple the
percentage of programs which are simpli�ed when the simpli�cation system is invoked. In this set
of experiments, this is set to all programs. Frequency decides when simpli�cation should take place.
In this set of experiments, this was varied to help investigate the effect of frequency on simpli�cation
results. Five different values for frequency were tested, obtaining results for systems: without sim-
pli�cation, simpli�cation every generation, every 2nd generation, every 4th generation, and every 6th
generation.

These parameters govern the behaviour and reliability of the algebraic simpli�cation systems.

The results table contains averages and standard deviations of the following:

• Final Generation - The generation at which the system terminates with its �nal solution.

• Final Best Fitness - The �tness of the �nal solution that the system outputs.

• Time - The time (in seconds) that the system takes to train/evolve its �nal solution.

• Average Program Size - The average size (number of nodes) of the programs in the system, in-
cluding all programs from all generations.

• Average Program Fitness - The average �tness (as determined by the �tness function) of the
programs in the system, including all programs from all generations.

The best case for each of the above is also highlighted in each column. Graphs of the �Average
Program Size� and �Final Best Fitness� over generational time are also presented.

Note: The �Final Best Fitness� graphs have had their y-range adjusted to make the separations between
lines more clear.
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4.4.1 Easy Regression
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Figure 4.4: Easy Symbolic Regression - Average Program Size per Generation
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Figure 4.5: Easy Symbolic Regression - Fitness of Best Program per Generation

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 28.781 ± 13.427 0.005± 0.013 1.221± 0.501 37.611± 5.634 421807.87± 207935.21
Every 1 32.438± 13.119 0.011± 0.042 1.232± 0.464 25.606 ± 2.937 373212.90± 147767.37
Every 2 31.562± 14.291 0.005± 0.013 1.109± 0.486 27.232± 3.667 401389.21± 188242.12
Every 4 31.094± 13.359 0.027± 0.119 1.071± 0.494 28.412± 5.074 397186.03± 182768.07
Every 6 31.688± 12.228 0.003 ± 0.009 1.070 ± 0.359 29.200± 4.581 367574.34 ± 127265.58

Table 4.2: Easy Symbolic Regression - Results

For this particular task, the �nal generation for each of the systems using simpli�cation was higher
than the standard GP system. But, the execution times for the systems with simpli�cation were lower,
with only simpli�cation at every generation having a higher execution time.
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The average program size (over all generations) was signi�cantly reduced when using simpli�ca-
tion, with the largest reduction when using simpli�cation at every generation. This is also evidenced
in the �rst graph, which shows the average program size during the GP system runs. The �rst time
simpli�cation is invoked, a large drop in program size can be seen.

Best �tness showed a comparable �tness at every 2nd generation and an improvement in �tness
when applied every 6 generations.

As shown in the best �tness graph, none of the systems were continuously �tter than other other
systems. So which system yields the �best� result seems to be dependent on when the system stops
executing.

4.4.2 Hard Regression
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Figure 4.6: Hard Symbolic Regression - Average Program Size per Generation
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Figure 4.7: Hard Symbolic Regression - Fitness of Best Program per Generation
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Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 44.875± 4.756 83.774± 75.283 5.141± 1.019 104.436± 22.171 414357.68 ± 87175.63
Every 1 44.875± 4.756 92.884± 80.624 5.206± 0.861 74.362 ± 13.642 465193.18± 76491.16
Every 2 44.875± 4.756 67.346 ± 59.315 4.270± 0.759 74.841± 13.886 439192.59± 76727.60
Every 4 44.875± 4.756 82.471± 85.606 4.152± 1.069 77.337± 21.487 467364.06± 114495.28
Every 6 44.875± 4.756 85.301± 93.883 3.989 ± 0.627 75.549± 12.840 477070.71± 108510.25

Table 4.3: Hard Symbolic Regression - Results

In this task, the �nal generation for each of the systems was identical. The execution times for the
systems with simpli�cation were all lower, again with only simpli�cation at every generation having
a higher execution time.

The average program size was again signi�cantly reduced when using simpli�cation.
Best �tness showed a comparable �tness at every 4 generations and an improvement in �tness is

apparent when applied every 2 generations.
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4.4.3 Coin Dataset
For classi�cation tasks, Final Best Fitness in the results table is replaced by Final Best Accuracy, which
is the �nal solutions accuracy in classifying instances in the test set. This differs from regression as,
in regression the training and test sets are identical. Whereas in classi�cation, training and test sets
are kept dissimilar in order to prevent over�tting.
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Figure 4.8: Coins Dataset - Average Program Size per Generation
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Figure 4.9: Coins Dataset - Fitness of Best Program per Generation

Final Gen Final Best Acc Time(s) Avg. Prog Size Avg. Prog Fit
Without 35.750± 11.200 0.973± 0.025 1.657± 0.532 44.476± 7.302 0.530 ± 0.066
Every 1 37.469± 10.992 0.964± 0.039 1.700± 0.452 32.539 ± 5.622 0.515± 0.063
Every 2 35.031 ± 11.290 0.974 ± 0.028 1.492± 0.407 34.720± 4.253 0.516± 0.055
Every 4 36.656± 10.527 0.974± 0.032 1.477 ± 0.411 34.884± 5.264 0.521± 0.055
Every 6 37.250± 10.336 0.954± 0.054 1.522± 0.355 36.566± 3.919 0.529± 0.052

Table 4.4: Coin Dataset - Results
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In this task, the �nal generation was optimal when simpli�cation was applied at every 2 genera-
tions, but at other simpli�cation frequencies was slightly higher. The execution times for the systems
again exhibited the same behaviour as the above two tasks, with all simpli�cation frequencies apart
from 'every generation' having lower times.

The average program size was again signi�cantly reduced when using simpli�cation.
Best �tness was slightly improved when simpli�cation was at every 4 generations and when sim-

pli�cation was performed at every 2 generations.

4.4.4 Face Datasets

Because of the relatively low number of patterns available for each class (64 for 5 classes), the experi-
ments on this dataset used a 10-fold cross validation method to obtain more accurate results.
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Figure 4.10: Faces Dataset #1 - Average Program Size per Generation
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Figure 4.11: Faces Dataset #1 - Fitness of Best Program per Generation
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Final Gen Final Best Acc Time(s) Avg. Prog Size Avg. Prog Fit
Without 46.077± 3.578 0.855± 0.117 2.646± 0.578 37.861± 8.755 0.427 ± 0.052
Every 1 45.712 ± 4.415 0.876 ± 0.104 2.622± 0.583 29.798± 6.571 0.427± 0.057
Every 2 45.885± 3.717 0.867± 0.117 2.367± 0.460 29.364± 5.966 0.423± 0.050
Every 4 46.077± 3.578 0.851± 0.105 2.251 ± 0.441 28.917 ± 5.757 0.413± 0.054
Every 6 46.077± 3.578 0.866± 0.075 2.288± 0.464 30.081± 6.274 0.421± 0.051

Table 4.5: Faces Dataset #1 - Results

In this task, the �nal generation was optimal when simpli�cation was applied at every genera-
tion. The execution times slightly deviated from the trend in the other tasks, with lower times for all
frequencies used.

The average program size was again signi�cantly reduced when using simpli�cation.
Best �tness was generally higher when using simpli�cation, with higher �tnesses for all frequen-

cies except every 4 generations.

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 S
iz

e

Generations

Without
Every 1
Every 2
Every 4
Every 6

Figure 4.12: Faces Dataset #2 - Average Program Size per Generation
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Figure 4.13: Faces Dataset #2 - Fitness of Best Program per Generation
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Final Gen Final Best Acc Time(s) Avg. Prog Size Avg. Prog Fit
Without 44.481± 5.442 0.897± 0.097 2.681± 0.451 39.566± 5.905 0.430 ± 0.056
Every 1 44.365± 6.235 0.889± 0.093 2.714± 0.548 30.653 ± 5.734 0.421± 0.053
Every 2 42.865 ± 7.905 0.928 ± 0.089 2.422± 0.487 31.230± 4.416 0.425± 0.050
Every 4 43.692± 6.244 0.917± 0.086 2.332 ± 0.419 31.356± 4.738 0.428± 0.056
Every 6 44.635± 5.356 0.917± 0.088 2.371± 0.363 31.992± 4.252 0.427± 0.044

Table 4.6: Faces Dataset #2 - Results

In this �nal task, the �nal generation was optimal when simpli�cation was applied at every 2
generations. The execution times were back in line with the �rst 3 tasks, with lower times for all
frequencies apart from every generation.

The average program size was again signi�cantly reduced when using simpli�cation.
Best �tness was generally higher when using simpli�cation, with higher �tnesses for all frequen-

cies but every generation.

4.5 Discussion of Results
4.5.1 Effectiveness
The results gathered show that using simpli�cation on these tasks can obtain comparable or even
superior results to the system without simpli�cation. In all but one dataset (faces dataset #1), ap-
plying simpli�cation at every generation led to a small loss in �tness. This suggests that in general,
simpli�cation should not be done at every generation. Each of the results gathered (even without
simpli�cation) fall within a standard deviation of one another. Due to the unpredictable nature of
genetic programming, a substantial variance/standard deviation is to be expected. This makes com-
parisons between system results hard to derive in some cases without resorting to using only direct
mean comparisons.

GP systems using simpli�cation generally performed better than the standard GP system on both
of the face datasets. This suggests that this simpli�cation method is particularly effective on relatively
dif�cult tasks.

The frequency that yielded, on average, the �ttest solutions varied across the experimentation
tasks. But simplifying every 2 generations shows itself on more than one occasion to be a good
starting point when determining the frequency parameter (every 2 was optimal for: hard regression,
coins and faces #2). Frequency presents itself, like most GP parameters, to be task dependent and
requires multiple experiments to �nd an optimal value for a speci�c task.

4.5.2 Ef�ciency
In all �ve of the tasks, the average size of each program (in terms of the number of nodes each
program contains) is signi�cantly reduced. This can be seen in the results tables as well as in the
graphs. The graphs also show the periodic effect of simpli�cation on the average program size. Pro-
gram growth occurs in-between the generations where simpli�cation takes place before simpli�ca-
tion induces a steep reduction in size. Not surprisingly, performing simpli�cation at lower frequen-
cies results in a higher average program size (than performing at every generation). But this increase
in size is very small, showing that simpli�cation need not be performed at every generation in order
to have a big effect of the average size of programs.

As the number of nodes used in the system is reduced (correlated to the average program size),
this result also means that the required memory usage for a system with simpli�cation is less than that
of a standard GP system.

In terms of real/wall-clock time, the systems using simpli�cation generally take less time due to
the fact that the system has to process smaller programs in each generation. The exception to this
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is simpli�cation at every generation, which in all cases but the Face Dataset #1 led to a very small
increase in execution time. This can be attributed to the overhead introduced into the system by the
simpli�cation component. This overhead, when occurring at every generation, outweighs the time
saved from processing smaller programs and so overall execution time increases.

In terms of generational time (i.e. the number of generations that the system goes through before
terminating with a solution), all of the GP systems were relatively the same, with only savings of 1
or 2 generations possible (if at all).

4.5.3 Comprehensibility
In a symbolic regression task, where the goal is the simply extract the original mathematical equation
from the set of given data-points. A simpli�ed expression is usually the easiest to comprehend. For
the easy symbolic regression task, the difference in the solutions obtained is quite apparent.

To give contrast on the difference in the solutions given by the system, here is a program from the
system without simpli�cation:

Every 0
(+ (if<0 (+ (- f0 (+ 0.409400 f0)) -0.553533) 0.762133 (* (+ (% -0.274267 f0)
(+ f0 f0)) (if<0 (- f0 f0) (+ 0.691800 0.587400) (+ f0 -0.794400)))) (+ (if<0
(* f0 -0.553533) (if<0 (+ 0.533533 0.807933) (- 0.587400 -0.601733) f0) (- f0
0.056600)) (+ (* f0 f0) (% -0.362467 (if<0 0.845267 f0 -0.108933))))),0.00013

It is dif�cult to compare this to the original equation ('x2 + x + 4.5') and realise that they are
indeed representative of the same set of data. Inspection reveals two (+ f0 f0) sub-expressions
and a single (- f0 f0) sub-expression, which accounts for the 'x2' in the original equation. The
presence of multiple unnecessary conditional if<0 statements adds to the possible confusion when
interpreting the information, and suggest that the original equation was a piece-wise one (which it is
not).

On the other hand, this is a program with similar �tness (0.00013 vs. 0.000112) from the
system with simpli�cation every 4 generations:

Every 4
(+ 0.291074 (+ (+ 0.536400 f0) (- (* f0 f0) -3.161922))),0.000112

While this is not the shortest program from any of the systems, it shows a solution with similar �t-
ness which is indeed much shorter and easier to comprehend. Comparing it to the original equation
(x2 + x + 4.5), there is clearly a x2 term ((* f0 f0)) and an x term (f0) present. It is also easy to
see that the constants combine to be close to the 4.5 in the original equation. This program is much
clearer for humans to interpret, as well as being more ef�cient for a computer system to interpret.
Clearly this is program is a �solution� to the easy regression problem, and so is easy to comprehend.

For a classi�cation task, understanding why a program performs well is less trivial. It requires
knowledge of the features the program is using as well as the effect of performing operations on
those features.

Firstly, take a program from the top 3 programs in not applying simpli�cation. This program in
its entirety is:

Every 0
(- (% (if<0 (if<0 f2 (+ 0.069133 0.188200) (if<0 f5 0.261400 0.316067))
0.755667 (* -0.180333 (- f1 0.261400))) 0.904267) (if<0 (* (- (* f6
0.224133) (if<0 -0.356267 0.076467 -0.383400)) 0.224133) -0.180333
0.418067)),0.992188
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This program relies on 4 features from the dataset: f1, f2, f5, f6, which encompass a single
feature from each concentric square region. The expression can be inspectively split into two sec-
tions: The �rst being (% (if<0 (if<0 f2 (+ 0.069133 0.188200) (if<0 f5 0.261400
0.316067)) 0.755667 (* -0.180333 (- f1 0.261400))) 0.904267) and the second be-
ing (if<0 (* (- (* f6 0.224133) (if<0 -0.356267 0.076467 -0.383400)) 0.224133)
-0.180333 0.418067).

The f6 feature (which corresponds to the mean of the outer most square) used in the second sec-
tion appears to distinguish between 10c and 5c objects. The (- ... at the very beginning will either
take away -0.180333 or -0.418067 depending on f6. From the raw dataset (before normalisa-
tion), the value of f6 for 5c is usually around 90 and for 10c is usually around 50, with an average
or around 70. This means that when normalised to [-1,1], f6 will carry negative values for 10c and
positive values for 5c. If negative, the program will minus -0.180333, which is actually adding
0.180333, pushing the �nal output towards the positive numbers (which carry the two 10c classes).
If positive, the program will take minus 0.418067, pushing the �nal output towards the negative
numbers (which carry the two 5c classes).

The other three features in the �rst section, appear to then determine when the coin is a heads or a
tails object. Firstly the f2 (mean of 2nd inner square) feature is evaluated, which is usually negative
for heads and positive for tails, but borderline cases do exist which makes this feature not entirely
reliable. The other two features used (f1 (standard deviation of inner most square) and f5 (mean of
3rd square)) are used to handle these borderline instances. Bringing the output value into a region
where subtracting the evaluated value of the second section will bring the output into the correct
classi�cation class boundary.

Now we look at a program with the same �tness from a GP system using simpli�cation:

Every 6
(- (% (* -0.100933 (- f1 0.575133)) 0.571400) (if<0 (* (if<0 (if<0 f7
f0 0.803933) -0.654600 (% f5 -0.698933)) 0.224133) -0.180333 0.418067))
,0.992188

The �rst thing one notices is that this expression is much smaller, with no redundant conditionals
or operations of only constants. This reduces the amount of information needed to be processed by a
human reader. Understanding this problem though still requires some thought.

Again, this program appears to split the problem into two sections. The �rst (% (* -0.100933
(- f1 0.575133)) 0.571400), which uses the standard deviation of the innermost square, ap-
pears to determine whether the image is of a head or a tail. The other section is much like the �rst
section. It uses a three features from the same square regions as the �rst program (although not
exactly the same ones) and appears to determine whether a given pattern is of a 10c or a 5c coin.

4.6 Summary
In this chapter, an algebraic simpli�cation method was developed, which acted directly on tree-based
programs. This method used basic rules similar to STRIPS operators, and covered forms of redun-
dancy for each of the arithmetic operators (+,−, /, ∗), as well as the conditional operator (if<0).
An algebraic equivalency component was also added to expand the set of expressions that could be
simpli�ed.

When applying this method to a GP system, an improvement in the performance of the system
was achieved. In all tasks, comparable or better �tness solutions were able to be obtained when using
simpli�cation. Simpli�cation also reduced program size and execution time, improving the overall
ef�ciency of the system.
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Chapter 5

Integration of Prime Number
Simpli�cation and Algebraic Equivalence

One of the problems with a rule based algebraic simpli�cation system is that de�ning rules that reach
beyond neighbouring nodes to an arbitrary depth in the tree is infeasible (one would have to cover
all possible combinations and depths). This means that the system is restricted to only local simpli�-
cations and cannot perform deeper leveled simpli�cation (e.g. (- x (+ y (+ x 2)) is equivalent
to (+ y 2), but a localised rule would only see the y and + nodes and not simplify). To solve this
problem, an algorithm which can perform deeper level simpli�cation should be added. This comes
in the form of the PRES algorithm.

The original PRES algorithm [40] featured a few problems in its original form. In this chapter,
each problem is explained and the approach to solving it detailed. Then the entirety of the altered
algorithm is outlined.

The four main problems identi�ed were:

• Hash Function - The hash function used in PRES is a two-phase modulus function over the
primes 47, and 13. This allows for a total of 611 different hash values which is considered
low when one considers the number of possible expressions in a basic GP system, especially in
larger and more complex programs.
• Simpli�cation of if - if is not easily represented in a structure with only 2 �layers�, as it is a

function which takes three parameters.
• Arithmetic Over�ow - Because the prime product quartuple is made up of the mathematical

product of (possibly) many subtrees, it is easy to see that it grow exponentially, quickly out-
growing the normal 32-bit integer space. A program (+ (+ (+ (+ (+ (+ (+ (+ x x)
x) x) x) x) x) x) x), which has 9 nodes to combine together into the prime product
quartuple now has to store the number p9, where p is the prime number allocated to x.
• Monte Carlo Simpli�cation - PRES had the side effect of causing an �unstable� simpli�cation ef-

fect (the program could be reconstructed in a different order, e.g. (x + y) may restructure to
(y + x)). This could allow for new building blocks to be formed during the simpli�cation
process, and so this property should be harnessed in the algorithm. PRES originally determin-
istically chose the subtree, not using the �unstable� property of the algorithm.

5.1 Integrating Algebraic Equivalence
In chapter 4 a method for determining algebraic equivalence of two expressions was described. One
of the advantages of PRES is its ability to equate expressions which only differ in the order the termi-
nals appear in (e.g. x + y and y + x).
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However for more complicated equivalences, where two seemingly dissimilar expressions can
actually represent the same expression (e.g. sin(x)2 + cos(x)2 = 1, 5(x + 1) = 5x + 5), PRES treats
them as separate equations. Using the addition of algebraic equivalence hashing, these types of
expressions can be simpli�ed.

The use of a algebraic equivalence also relieves PRES from having to deal with the if function,
which has no �inverse� but is a simpli�able expression. Recall that if is handled in the algebraic
equivalence method, allowing for two equivalent if statements to be identi�ed correctly.

5.2 Prime Product Over�ow
One of the problems with building the prime product quartuple is that it tends to grow very quickly.
In the original PRES algorithm, subtrees were allocated these primes by hashing the prime product
over the numbers 47 and 13, making the maximum prime number possible the 611th which is 4513.

This kept the prime factors relatively small, so over�ow was not that large of an issue. With the
inclusion of algebraic equivalence to determine the prime factor (and thus a requirement for a larger
number of hash values), the over�ow issue is a much larger problem.

In order to remedy this issue, an arbitrary precision integer library (The GNU Multiple Precision
Arithmetic Library [10]) was used in the implementation of PRES. This allows (limited by the amount
of system memory) the prime product to be built for larger and more complex programs without the
risk of over�ow preventing the GP system from �nishing execution.

5.3 Monte Carlo Reconstruction
As PRES associates equivalent expressions with the same prime number, these expressions can be
assumed to be equivalent expressions with the only difference being the way they are expressed.
This means when reconstructing a program from the simpli�ed prime product quartuple, if there is
more than one choice of subtree in the hashtable that matches a prime number, it should not matter
which subtree is chosen. This gives light to several possible ways of choosing a subtree:

• Choosing the smallest subtree: This is the most intuitive solution, as the goal of simpli�cation is
to create the smallest program. But as it always favours the smallest subtrees, this may aid the
extinction of some building blocks.

• Choosing a subtree purely at random: As every program is functionally equivalent, then choosing
a subtree should be as good as choosing any other subtree. This may aid in keeping a better
distribution of building blocks.

• Choosing a subtree at random, where the chances of being chosen is proportional to the size of the subtree:
This is a middle ground between the previous two. This results in all subtrees having a chance
of being chosen, but through probability will favour the smaller subtrees. This is the method
used in the implementation in this project.

The original PRES algorithm deterministically chose the �rst available subtree in the hashtable,
which doesn't use the potential of unstable restructuring. For example: if ( - (+ a b) c) restruc-
tures to (+ (- a c) b)), then a new (- a c) building block is introduced which may be useful
for the particular task.

5.4 The Algorithm
The modi�ed algorithm is detailed in this section. It makes use of a relatively simple problem to help
illustrate the stages in the algorithm.

The following program will be used as an example to help explain the algorithm:
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Figure 5.1: Prime Simpli�cation: Original program tree

Also note that the prime product quartuple consists of (top deck/numerator, bottom deck/denominator,
operator family, constant). In this report, the prime product quartuple is referred to using only the
numerator and denominator, in the form p

q .

5.4.1 Encoding
Firstly, the program tree is traversed from the bottom-up (like in the algebraic system), and the
ālgebraic equivalence hash calculated. These hash values are used to allocate prime numbers to each
of the leaf-nodes. For the example, suppose Hash(2) = 2 and Hash(x) = 6. It follows that the 2nd

prime number is 3 and the 6th prime number is 13.

Figure 5.2: Prime Simpli�cation: Encoding leaf-nodes

Handling of the internal nodes is trickier. The prime product quartuple is constructed in such
a way that the numerator (what Zhang describes as the �top deck�) represents the positive side of an
operator family, and the denominator (�bottom deck�) represents the negative side (e.g. for addi-
tion/subtraction the numerator would hold all things added and the denominator would hold all
things subtracted in an expression). �Representing� simply means that the number in the numera-
tor/denominator is a product of all the primes allocated to the nodes being encoded.

Numerically valued nodes are accumulated in the constant portion of the prime product quartu-
ple. This effectively combines constants which can be combined together into a single node when the
program is reconstructed.
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This means that for the expression (+ x 2), the resulting prime product is 3×13
1 = 39

1 (x and 2
on the top). While for the expression (- x 2), the resulting prime product is 13

3 (x on the top, 2 on
the bottom). Obviously with this approach, one cannot encode all types of operators into a single
prime product (i.e. encoding × and +).

Therefore, during the bottom-up construction, if the current node being looked at is of the same
operator �family� (i.e. addition vs. subtraction, multiplication vs. division etc.) then the node is
added to the current prime product quartuple. But, if there is a change in operator family then
the subtree up to this point is wrapped, meaning the subtree is simpli�ed using its prime product
quartuple (explained in the next subsection) and then the result is allocated a new prime number to
represent it in the simpli�cation system.

Figure 5.3: Prime Simpli�cation: Encoding internal-nodes

In �gure 5.3, the subtree (+ x 2) uses the operator family +/-, while the parent node uses the
operator family */%. This means the subtree is wrapped and allocated the prime 19 (as Hash((+ x
2)) = Hash(x) + Hash(2) = 2 + 6 = 8, and the 8th prime is 19). The prime product for the
subtree (* 2 (+ x 2)) is now 3×19

1 as it uses the newly wrapped subtree.
Each subtree that is wrapped or otherwise encoded as a prime number is stored in a hashtable so

that it can be later retrieved for program reconstruction. The prime number is simply modulo hashed
to �t it within the tables bounds, and the subtree is stored in that location in the hashtable:

Figure 5.4: Prime Simpli�cation: Storing in hashtable

Figure 5.5 shows the fully encoded program tree. The �nal prime product constructed for the
whole program is: 11713

53 .
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Figure 5.5: Prime Simpli�cation: Fully encoded program tree

5.4.2 Simpli�cation
Once the prime product quartuple has been fully calculated for the whole program tree, it is time to
perform the simpli�cation step. This is a very simple procedure which consists of factoring out the
Greatest Common Divisor for the numerator and denominator. Let the prime product be denoted in
the form pold

qold
. Then simpli�cation is:

let d = gcd(pold, qold)
pnew = pold

d , qnew = qold
d

pnew
qnew

form the new prime product. For the example program, the simpli�cation is as follows:

let d = gcd(11713, 53) = 53
pnew = 11713

53 , qnew = 53
53

Therefore the new prime product quartuple is 221
1

5.4.3 Reconstruction
Now that the simpli�cation has been performed, the original tree program structure and represen-
tation needs to be reconstructed from the new prime product quartuple. Recall that each leaf-node
and wrapped subtree that has been associated with a prime number has been stored in a hashtable.
In order to reconstruct, one has to obtain a sequence of prime numbers from the prime product. This
is done using a trivial prime factoring algorithm (�direct search factorization� or �trial division�):

procedure PrimeFactor (Integer q, ListOfFactors f)
for each prime number p up to the square root of q
if p divides q then
add p to f
q = q / p

This algorithm simply tests all prime number up to the square root of the number to be factored.
If a prime is a divisor of the number, it is factored out and added to the ListOfFactors. This
process is repeated until no factors can be found.

This is far from the quickest factorisation algorithm (one would ideally use a quadratic sieve [3,
Boender 1995] or even a non-deterministic algorithm such as pollard-rho), but in this algorithm the
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prime factors are usually �small� primes (in number theory terms) and so the performance loss is not
extremely great.

For the example, the list of factors is:

ListOfFactors = { 13, 17 } for the numerator and
ListOfFactors = { } for the denominator (empty set).

Each prime factor in the outputted list of factors represents a subtree that makes up part of the
simpli�ed program. Each subtree is retrieved from the hashtable, and placed in the new program
structure, with the subtrees from the numerator forming the left side of the tree and the subtrees
from the denominator forming the right side of the tree. These two sides are joined at a new root
node, which takes the value of the �negative� operator in the operator family (e.g. −, /).

Figure 5.6: Prime Simpli�cation: Retrieving from hashtable

For the example, the reconstructed simpli�ed program simply constitutes of the subtrees stored
in 13 and 17. Also, as the denominator is an empty set, a new root node is unnecessary, and only the
left side of the tree is left.

Figure 5.7: Prime Simpli�cation: Reconstructed Simpli�ed Program

After simpli�cation using this algorithm is �nished, the program is passed to an algebraic sim-
pli�cation system. This is because, while good at simplifying at multiple-levels, this algorithm is not
suited for more speci�c types of simpli�cation which are not easily represented in the prime product
quartuple structure (e.g. combining constants). The two systems complement each others weak-
nesses, and together form a Catholic simpli�cation system. The system comprising of both the prime
number simpli�cation algorithm and algebraic simpli�cation algorithm is the system tested in this
chapter.
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5.5 Testing and Results
The same experiments were executed using the above described algorithm instead of the algebraic
simpli�cation system used in the previous chapter. In addition to the GP system parameters, the
following additional �simpli�cation parameters� need to be speci�ed:

Parameter Value
Field Order (for Prime Simp.) 8011

Hashtable Size 20011
Constant Precision 10000000

Proportion 100%
Frequency Varied: Every [0, 1, 2, 4, 6] Gens.

Table 5.1: Prime Simpli�cation: Simpli�cation Parameters

While Constant Precision, Proportion, and Frequency parameters are identical to those used in chap-
ter 4, the �eld order had to be drastically reduced. This is because it now has the added responsibility
of determining how large the prime factors used in the system are (this needs to be kept reasonably
small). As an additional parameter, the hashtable size has to be de�ned. This dictates where subtrees
will be stored in the hashtable and how many different slots exist in the table. The value for this is
allowed to be considerably higher than the �eld order, as it is not constrained by the size of the prime
factors that the computer system can handle.

The tables of results are as follows (graphs did not provide any additional insight and so have
been omitted):

5.5.1 Easy Regression

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 28.781 ± 13.427 0.005 ± 0.013 1.221 ± 0.501 37.611± 5.634 421807.87± 207935.21
Every 1 29.667± 12.853 0.028± 0.063 157.694± 73.785 26.749 ± 7.056 345666.50± 148756.53
Every 2 34.500± 11.396 0.014± 0.088 91.119± 34.463 28.521± 5.397 273421.31 ± 67254.80
Every 4 32.917± 12.616 0.091± 0.013 49.811± 22.965 29.714± 7.050 299817.90± 94513.05
Every 6 33.333± 13.852 0.049± 0.021 28.332± 15.617 30.458± 7.046 311773.40± 149803.96

Table 5.2: Easy Regression - PRES Results

In this task, the standard GP system obtained the best results in �nal generation, �nal best �tness and
execution time. This is markedly different to the results obtained in chapter 4 where simpli�cation
was able to produce a system with better �tness. Smaller average program sizes are still obtained.

5.5.2 Hard Regression

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 39.667± 9.326 69.014 ± 72.431 5.081 ± 1.126 102.547± 25.519 446443.40± 117854.71
Every 1 39.667± 9.326 111.035± 115.985 403.450± 129.810 69.629 ± 14.209 435066.31± 79681.43
Every 2 39.250 ± 9.350 76.010± 198.152 227.773± 120.131 71.386± 47.681 408031.31 ± 64702.02
Every 4 39.667± 9.326 80.808± 44.058 126.664± 40.069 76.912± 17.285 411292.00± 71872.91
Every 6 39.667± 9.326 110.356± 83.934 106.896± 45.003 76.493± 25.284 414579.00± 73036.77

Table 5.3: Hard Regression - PRES Results
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In this task, again the GP system with no simpli�cation attains the best �nal �tness and execution
time. The �nal generations for each of the systems were identical, with the exception of performing
at every 2 generations, which has a minor improvement.

5.5.3 Coins Dataset

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 28.833± 13.099 0.982 ± 0.024 5.117 ± 2.152 43.765± 8.157 0.503± 0.084
Every 1 33.000± 11.083 0.977± 0.023 98.041± 46.129 36.388± 4.915 0.506± 0.038
Every 2 32.500± 11.264 0.973± 0.031 56.190± 20.809 32.837 ± 5.648 0.487± 0.055
Every 4 35.083± 11.623 0.958± 0.038 32.329± 12.341 36.305± 5.791 0.522 ± 0.062
Every 6 24.917 ± 11.377 0.980± 0.031 13.928± 3.935 35.179± 4.518 0.474± 0.071

Table 5.4: Coins Dataset - PRES Results

In this task, yet again the GP system with no simpli�cation obtains better �nal �tness and execution
time results. All simpli�cation systems obtain worse �nal generation results, with the exception of
performing at every 6 generations, which had trained slightly faster.

5.5.4 Face Dataset #1

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 39.667± 9.326 0.887± 0.045 6.233 ± 1.252 46.080± 8.505 0.472 ± 0.033
Every 1 39.667± 9.326 0.812± 0.127 125.087± 25.745 29.479 ± 2.463 0.403± 0.019
Every 2 39.667± 9.326 0.872± 0.051 67.629± 9.832 31.240± 3.317 0.434± 0.034
Every 4 39.667± 9.326 0.894 ± 0.078 38.581± 5.671 32.074± 2.118 0.440± 0.039
Every 6 39.667± 9.326 0.891± 0.032 25.472± 7.563 34.156± 5.827 0.447± 0.037

Table 5.5: Face Dataset 1 - PRES Results

This task's results are interesting, as unlike the previous three, two of the systems using simpli�cation
produce improved �nal �tness over the standard GP system (Every 4 and Every 6). However, the
best execution time is still held by no simpli�cation.

5.5.5 Face Dataset #2

Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit
Without 44.481± 5.442 0.897± 0.097 5.612 ± 1.385 39.566± 5.905 0.430 ± 0.056
Every 1 44.635± 4.835 0.913± 0.080 90.600± 32.412 31.066 ± 6.706 0.417± 0.040
Every 2 44.750± 5.108 0.924± 0.079 51.654± 16.930 31.690± 6.078 0.423± 0.046
Every 4 43.638 ± 7.194 0.925 ± 0.076 29.314± 9.413 32.177± 5.963 0.417± 0.058
Every 6 44.615± 5.486 0.894± 0.099 20.182± 6.042 32.249± 5.682 0.424± 0.067

Table 5.6: Face Dataset 2 - PRES Results

This task shows three systems with simpli�cation obtaining improved �nal �tness results over the
standard GP system (Every 1, Every 2 and Every 4). These results, combined with the results for faces
dataset #1, suggest that relatively dif�cult tasks bene�t from the application of simpli�cation.

As always, the average program size for each simpli�cation system is better that the standard GP
system, with simpli�cation at every generation producing the smallest programs.
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5.6 Discussion of Results
5.6.1 Effectiveness
In the Algebraic Simpli�cation Method in chapter 4, the solutions found by systems using this simpli-
�cation system are slightly lower in �tness than the standard GP system. Interestingly, the system
did not perform as well as the algebraic system in chapter 4, with lower �tnesses that the standard
GP occurring more often. The exception to this is in both of the faces datasets, where simpli�cation
on the whole does well. This suggests that simpli�cation is well suited for the face dataset tasks and
should probably be used for tasks using similar features and of similar dif�culty.

5.6.2 Ef�ciency
This is where the algorithm starts the falter, with very high memory usage and real/wall-clock execu-
tion times. The high memory usage is caused by a number of things: The necessity of storing subtrees
of programs so that they can be reconstructed after simpli�cation, which causes the number of nodes
required to be allocated by the GP system to drastically increase. So while the number of nodes being
used by programs is being reduced, this is offset by the duplication of nodes when storing them in
the hashtable. The use of a arbitrary precision math library also consumes a lot of memory as the
prime product quartuple is being constructed and factored. Additionally, the use of a math library
instead of using quick hardware supported arithmetic instructions causes heavy slowdown in the
construction and especially factoring of the prime product quartuple. This leads to times that are
many times that of the standard GP system. As both of the problems can be linked to use of an ar-
bitrary math library which is necessary to solve the problem of �arithmetic over�ow�, it can be said
that the algorithm itself has high hardware requirements. Ideally hardware with large amounts of
memory, and high precision math processing (in excess of 64-bits) such as a grid computing setup or
supercomputer. Using a lower frequency of simpli�cation is also a viable solution, as it brings down
execution times to only around 3 to 4 times the standard GP execution time.

5.6.3 Comprehensibility
The results gathered in terms of comprehensibility are similar to chapter 4 and so this section is
more brief. The combined simpli�cation system performs very well in this area, due to the fact that
both deep level and local simpli�cation is performed. This leads to minimally represented expressions
which reduce the amount that a person needs to understand.

For example in the easy regression problem, several solutions from the systems using simpli-
�cation are very similar to the �ideal�/original equation. This contrasts with a solution from the
standard GP system.

Every 0
(+ (% (if<0 (% -0.791133 (* 0.184067 -0.508333)) (* (- f0 f0) (* f0 f0)) (+ (+ f0
f0) f0)) f0) (+ (+ (* f0 f0) (% (- f0 f0) (% f0 f0))) f0)),0.00016

Every 1
(+ 2.582333 (+ (* f0 f0) (+ f0 1.428980))),0.000128

Every 2
(- (+ (* f0 f0) (+ 3.186244 f0)) -0.802933),0.000117

Every 6
(+ 4.010031 (+ (* f0 f0) f0)),0.0001

For the three solutions taken from systems with simpli�cation, it is very clear that these programs
closely match the original equation.
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5.7 Summary
In this chapter, several improvements were made to the PRES simpli�cation algorithm. The largest
of these was the integration of an algebraic equivalence component (using the same hashing method
used in chapter 4), which allowed the algorithm to identify and possibly cancel expressions which
are functionally equivalent, but appear entirely dissimilar.

Another improvement made was the introduction of Monte Carlo Reconstruction, which added
indeterminism to the reconstruction process (based on the size of the subtree). This indeterminism
allows for new building blocks to be created during the simpli�cation process.

Finally, an arbitrary math library was used for constructing the prime product quartuple. This
prevented over�ow problems, and allowed application of the algorithm to larger programs.

It was found that when applying this algorithm to GP systems, that while effectiveness was
slightly lower on the tasks, superior �tness was obtainable on both face recognition datasets, sug-
gesting that this method is well suited for relatively dif�cult tasks. Recall that this was also the case
for the algebraic simpli�cation system, so the hypothesis can be extended to: simpli�cation is well
suited for relatively dif�cult tasks.

This method was able to achieve signi�cantly lower program sizes, which partially addresses
the problem of program bloat. However, when the algorithm was implemented, it was found to be
resource intensive due to the need to process very large numbers. Applying the algorithm at lower
simpli�cation frequencies allows for more reasonable execution times.

The results that have been obtained so far in this report have been gathered using simpli�cation
on all genetic programs in the population. As varying frequency has had a clear impact on the per-
formance of GP systems, it can be hypothesized that applying simpli�cation to only a proportion of
programs in a population can be used to further improve performance of a GP system. The next
chapter investigates this conjecture.
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Chapter 6

Effects of Proportional Simpli�cation

6.1 Proportion

In the previous chapters, the experimentation performed included adjusting the frequency of simpli-
�cation. This adjustment led to small variations in effectiveness and ef�ciency, and in some cases an
improvement in �nal �tness results. This chapter looks into the effects of varying the proportion of
programs that are simpli�ed each generation.

It should be noted that because of the large amount of time it takes to run GP systems with the
PRES algorithm, all of the experiments in this section were performed using the simpler algebraic
simpli�cation system described in chapter 4.

6.2 Using Different Proportion Selection Methods

Varying the proportion introduces yet another question: �Which programs should be selected to be
simpli�ed?�. In this section, three different program selection schemes are tested to see the effect
of changing simpli�cation selection criteria has on the GP system. The usual GP system parameters
were used (those outlined in 3.4), but instead of varying frequency, frequency was �xed to 1 (every
generation) and instead proportion was varied (in the range of [0%, 20%, 40%, 60%, 80%, 100%]). A
proportion of 20% means selecting and simplifying 20% of the program population.

The three selection methods and their results are as follows:

6.2.1 Selection Method 1: Random Selection

This is the most trivial method, where randomly selected programs are selected to �ll the simpli�ca-
tion proportion. This allows every program to have equal chance in being selected for simpli�cation
regardless of their characteristics.
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Task Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit

Easy

0% 28.781± 13.427 0.005 ± 0.013 1.221± 0.501 37.611± 5.634 421807.87± 207935.21

20% 28.182 ± 14.246 0.033± 0.096 1.075 ± 0.494 30.430± 4.057 432062.34± 209462.21

40% 30.818± 14.151 0.026± 0.095 1.158± 0.484 27.994± 3.297 402400.09± 207574.68

60% 31.318± 12.514 0.005± 0.015 1.188± 0.463 26.758± 3.795 363001.50 ± 123769.71
80% 30.000± 12.292 0.013± 0.034 1.163± 0.421 25.766± 2.856 376000.50± 127014.46

100% 32.438± 13.119 0.011± 0.042 1.232± 0.464 25.606 ± 2.937 373212.90± 147767.37

Hard

0% 44.875± 4.756 83.774± 75.283 5.141± 1.019 104.436± 22.171 414357.68 ± 87175.63
20% 44.875± 4.756 75.327± 77.955 4.710± 1.482 87.436± 28.735 454719.65± 103974.89

40% 44.875± 4.756 131.793± 317.490 4.272 ± 0.763 73.824 ± 13.699 493562.34± 124712.84

60% 44.875± 4.756 65.681 ± 42.750 4.892± 0.977 79.452± 16.697 446154.43± 102302.37

80% 44.875± 4.756 98.556± 138.783 5.049± 1.123 77.566± 17.797 460109.00± 112727.93

100% 44.875± 4.756 92.884± 80.624 5.206± 0.861 74.362± 13.642 465193.18± 76491.16

Coins

0% 35.750± 11.200 0.973 ± 0.025 1.657± 0.532 44.476± 7.302 0.530± 0.066

20% 37.719± 11.791 0.968± 0.032 1.632 ± 0.508 36.032± 5.783 0.531± 0.063

40% 39.406± 10.494 0.965± 0.026 1.779± 0.507 34.479± 6.039 0.541 ± 0.068
60% 34.844 ± 10.796 0.968± 0.044 1.682± 0.489 34.666± 5.042 0.519± 0.055

80% 36.938± 11.204 0.967± 0.040 1.787± 0.486 33.336± 5.530 0.514± 0.061

100% 37.469± 10.992 0.964± 0.039 1.700± 0.452 32.539 ± 5.622 0.515± 0.063

Faces 1

0% 46.077± 3.578 0.855± 0.117 2.639± 0.578 37.861± 8.755 0.427 ± 0.052
20% 45.981± 3.639 0.860± 0.091 2.289 ± 0.356 29.721± 4.579 0.416± 0.041

40% 46.077± 3.578 0.849± 0.112 2.305± 0.396 28.413± 5.053 0.412± 0.056

60% 46.077± 3.578 0.866± 0.084 2.465± 0.497 29.032± 5.993 0.420± 0.063

80% 45.692 ± 4.497 0.872± 0.102 2.580± 0.552 29.334± 6.193 0.425± 0.054

100% 46.077± 3.578 0.876 ± 0.095 2.646± 0.488 28.262 ± 5.305 0.421± 0.050

Faces 2

0% 44.481± 5.442 0.897± 0.097 2.699± 0.451 39.566± 5.905 0.430 ± 0.056
20% 43.962± 6.175 0.903± 0.089 2.289 ± 0.389 31.021± 4.729 0.416± 0.048

40% 44.096± 6.348 0.890± 0.096 2.333± 0.389 29.982 ± 3.994 0.416± 0.057

60% 43.865± 7.011 0.904± 0.092 2.496± 0.473 30.544± 4.287 0.429± 0.056

80% 43.596 ± 6.423 0.913 ± 0.093 2.645± 0.458 31.299± 4.857 0.423± 0.053

100% 43.673± 7.067 0.906± 0.096 2.762± 0.561 31.060± 5.903 0.426± 0.057

Table 6.1: Random Selection Method - Results

This table shows that lower run times are achievable for all tasks when using simpli�cation at
lower proportions. Almost all of the lowest run times are achieved when using the lowest proportion
value (20%).

Lower program sizes were most often achieved when proportion was set to 100% (easy regres-
sion, coins dataset and faces #1). While �nal �tnesses were mostly comparable with the standard GP
system, with improved �nal �tness recorded at using 60% for the hard regression task, 100% for the
faces #1 dataset and 80% for the faces #2 dataset.
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6.2.2 Selection Method 2: Fitness Based Elitism

This selection scheme is the same as that used in GP reproduction. It sorts the programs in terms of
�tness (decided by the �tness function), then takes the X �ttest programs and sends them to the sim-
pli�cation component to be simpli�ed. The motivation behind this selection scheme is that the �ttest
programs are more likely to survive and be present in the next generation. Therefore simpli�cation
should only be applied to these in order to reduce overhead caused by simpli�cation.

Task Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit

Easy

0% 28.781± 13.427 0.005± 0.013 1.221± 0.501 37.611± 5.634 421807.87± 207935.21

20% 27.364 ± 13.252 0.003± 0.010 0.935 ± 0.370 27.320± 2.744 425751.34± 173370.71

40% 32.727± 13.440 0.002 ± 0.005 1.168± 0.429 26.935± 3.232 359198.31± 155816.78

60% 30.227± 15.034 0.007± 0.014 1.123± 0.508 26.238± 2.440 427832.81± 249503.70

80% 34.227± 12.126 0.005± 0.014 1.447± 0.559 27.691± 4.082 331366.68 ± 123966.32
100% 32.438± 13.119 0.011± 0.042 1.232± 0.464 25.606 ± 2.937 373212.90± 147767.37

Hard

0% 44.875± 4.756 83.774± 75.283 5.141± 1.019 104.436± 22.171 414357.68 ± 87175.63
20% 44.875± 4.756 111.863± 117.870 4.094 ± 0.612 75.609± 12.282 510018.71± 130535.07

40% 44.875± 4.756 117.564± 198.966 4.170± 0.837 71.814 ± 14.839 466109.40± 96110.77

60% 44.875± 4.756 77.730 ± 73.513 4.629± 0.942 75.355± 15.644 464869.34± 101284.79

80% 44.875± 4.756 96.386± 73.106 5.296± 1.577 81.316± 25.186 470749.62± 111109.85

100% 44.875± 4.756 92.884± 80.624 5.206± 0.861 74.362± 13.642 465193.18± 76491.16

Coins

0% 35.750 ± 11.200 0.973 ± 0.025 1.657± 0.532 44.476± 7.302 0.530± 0.066

20% 39.219± 11.392 0.953± 0.049 1.584 ± 0.478 35.398± 6.799 0.536 ± 0.060
40% 36.000± 11.579 0.970± 0.035 1.661± 0.588 36.928± 7.313 0.532± 0.067

60% 36.500± 10.697 0.969± 0.040 1.723± 0.497 35.492± 5.563 0.527± 0.060

80% 35.781± 10.260 0.970± 0.033 1.736± 0.442 34.975± 6.472 0.520± 0.042

100% 37.469± 10.992 0.964± 0.039 1.700± 0.452 32.539 ± 5.622 0.515± 0.063

Faces 1

0% 46.077± 3.578 0.855± 0.117 2.646± 0.578 37.861± 8.755 0.427 ± 0.052
20% 46.077± 3.578 0.871± 0.091 2.337 ± 0.488 30.392± 6.589 0.417± 0.049

40% 45.712 ± 4.415 0.846± 0.130 2.366± 0.451 29.279± 5.496 0.411± 0.051

60% 46.058± 3.579 0.872± 0.089 2.544± 0.583 29.720± 7.130 0.418± 0.050

80% 46.077± 3.578 0.849± 0.090 2.587± 0.511 29.235 ± 5.642 0.416± 0.052

100% 45.712± 4.415 0.876 ± 0.104 2.622± 0.583 29.798± 6.571 0.427± 0.057

Faces 2

0% 44.481± 5.442 0.897± 0.097 2.681± 0.451 39.566± 5.905 0.430± 0.056

20% 45.769± 3.817 0.890± 0.093 2.376 ± 0.351 30.637 ± 4.537 0.430± 0.056

40% 43.692 ± 5.979 0.904± 0.095 2.460± 0.408 31.963± 5.575 0.434 ± 0.049
60% 44.115± 6.178 0.904± 0.092 2.609± 0.484 31.903± 5.515 0.432± 0.055

80% 44.692± 5.450 0.908 ± 0.093 2.659± 0.458 30.668± 5.006 0.428± 0.045

100% 44.365± 6.235 0.889± 0.093 2.714± 0.548 30.653± 5.734 0.421± 0.053

Table 6.2: Fitness Based Selection Method - Results

When comparing this to the Random Selection Method, the results are very similar. Final �tness
for easy regression was better (0.002 vs. 0.005), while �nal �tnesses for hard regression (77.730 vs.
65.681) and faces #2 (0.908 vs. 0.913) were slightly lower. For the remaining two datasets (coins and
faces #1), the best �nal �tnesses were identical (0.973 and 0.876).

In terms of execution time and average program size, the two sets of results were almost indistin-
guishable. With very minor differences between the two for each task.

6.2.3 Selection Method 3: Fatness (Size) Based Elitism

This is the most intuitive of the three methods, as one of the problems simpli�cation is targeted at
solving is that of program bloat. It is sensible to select the largest programs in the population for
simpli�cation in order to get maximum reduction in program size. This selection method simply sorts
the programs in terms of size and takes the X largest programs and sends off to be simpli�ed by the
simpli�cation component.
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Task Final Gen Final Best Fit Time(s) Avg. Prog Size Avg. Prog Fit

Easy

0% 28.781 ± 13.427 0.005± 0.013 1.221± 0.501 37.611± 5.634 421807.87± 207935.21

20% 30.727± 14.441 0.010± 0.029 1.060 ± 0.409 26.753± 2.990 401906.56± 207145.00

40% 30.000± 14.165 0.003± 0.009 1.183± 0.581 27.581± 5.119 404264.93± 197351.78

60% 34.545± 12.389 0.003± 0.006 1.347± 0.437 26.228± 3.658 342317.84 ± 162105.00
80% 30.273± 14.412 0.001 ± 0.005 1.237± 0.595 25.982± 4.484 408594.25± 199233.90

100% 32.438± 13.119 0.011± 0.042 1.232± 0.464 25.606 ± 2.937 373212.90± 147767.37

Hard

0% 44.875± 4.756 83.774± 75.283 5.141± 1.019 104.436± 22.171 414357.68 ± 87175.63
20% 44.875± 4.756 56.764 ± 45.882 4.383 ± 1.534 77.703± 29.461 482652.65± 122734.78

40% 44.875± 4.756 85.186± 111.938 4.387± 0.914 72.026± 15.854 471394.15± 104739.37

60% 44.875± 4.756 88.535± 97.251 4.684± 1.382 72.482± 22.921 487436.87± 113535.41

80% 44.875± 4.756 71.687± 82.134 4.865± 1.308 71.575 ± 20.886 476821.21± 91336.75

100% 44.875± 4.756 92.884± 80.624 5.206± 0.861 74.362± 13.642 465193.18± 76491.16

Coins

0% 35.750± 11.200 0.973 ± 0.025 1.657± 0.532 44.476± 7.302 0.530± 0.066

20% 37.719± 11.791 0.968± 0.032 1.633 ± 0.508 36.032± 5.783 0.531± 0.063

40% 39.406± 10.494 0.965± 0.026 1.779± 0.507 34.479± 6.039 0.541 ± 0.068
60% 34.844 ± 10.796 0.968± 0.044 1.681± 0.489 34.666± 5.042 0.519± 0.055

80% 36.938± 11.204 0.967± 0.040 1.788± 0.487 33.336± 5.530 0.514± 0.061

100% 37.469± 10.992 0.964± 0.039 1.700± 0.452 32.539 ± 5.622 0.515± 0.063

Faces 1

0% 46.077± 3.578 0.855± 0.117 2.646± 0.578 37.861± 8.755 0.427 ± 0.052
20% 46.000± 3.616 0.873± 0.072 2.330 ± 0.476 29.436± 5.855 0.420± 0.050

40% 46.077± 3.578 0.856± 0.097 2.394± 0.446 28.443 ± 5.352 0.412± 0.050

60% 46.077± 3.578 0.859± 0.092 2.608± 0.564 29.786± 6.665 0.422± 0.050

80% 46.077± 3.578 0.866± 0.077 2.696± 0.528 29.478± 5.646 0.418± 0.052

100% 45.712 ± 4.415 0.876 ± 0.104 2.622± 0.583 29.798± 6.571 0.427± 0.057

Faces 2

0% 44.481± 5.442 0.897± 0.097 2.681± 0.451 39.566± 5.905 0.430 ± 0.056
20% 44.115 ± 6.750 0.899± 0.091 2.357 ± 0.395 31.023± 4.692 0.419± 0.058

40% 45.173± 4.549 0.870± 0.088 2.530± 0.368 30.499± 4.426 0.414± 0.054

60% 44.692± 5.335 0.904± 0.092 2.577± 0.334 30.206 ± 4.720 0.429± 0.038

80% 44.231± 6.292 0.919 ± 0.082 2.743± 0.568 31.147± 5.451 0.423± 0.052

100% 44.365± 6.235 0.889± 0.093 2.714± 0.548 30.653± 5.734 0.421± 0.053

Table 6.3: Fatness Based Selection Method - Results

Compared to the other two methods, again the execution times and average program sizes are
minutely different. More interestingly, when using this method, the �nal �tnesses for easy regression
(0.001 vs. 0.002 vs. 0.005), hard regression (56.764 vs. 77.730 vs. 65.681) and faces #2 (0.919 vs. 0.908
vs. 0.913) were all higher. For the remaining two datasets (coins and faces #1), the best �nal �tnesses
remained identical (0.973 and 0.876) for all three methods.

6.2.4 Discussion of the Selection Methods
While all three methods posted similar results, the 'fatness' based selection method did manage to
achieve better �tnesses in the easy regression, hard regression and faces #2 tasks then the other two
methods. In terms of ef�ciency (average program size and execution time), all three methods had
very similar results (with only minute variations). As �tness was the only real separating factor
between the methods, the 'fatness' based selection method shows itself as the best method of the
three for selecting programs for simpli�cation.

6.3 Balancing Frequency and Proportion
In essence, variation in frequency addresses the question of �how often?...� simpli�cation should be
performed in a system run, and variation in proportion addresses the question of �...and to which
programs?�. Experiments where these two parameters are varied may provide guidelines as the
what values these parameters should initially be set to when applying simpli�cation to a new GP
task.
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This section shows the effects of varying these parameters has on the experimentation tasks, while
using the fatness based elitism selection method described earlier.

Each experimentation subsection contains 3D graphs of �nal program size, �nal system �tness, execu-
tion times and number of generations for each combination of frequency/proportion to provide insight
into the effects of frequency and proportion on the ef�ciency and effectiveness of the GP system.

6.3.1 Results
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Figure 6.1: Easy Regression - Frequency vs. Proportion

These four graphs show the results for varying combinations of proportion and frequency.
Firstly, the program size graph shows clearly that applying simpli�cation every generation to all the

programs results in the smallest average program size. By lowering either frequency or proportion,
the average program size increases, shown by the upward slope of the graph surface.

The �nal �tness graph shows the average �nal �tness of solutions evolved in the various systems.
Several dark regions can be seen interspersed on the surface, and a �tness �spike� is clearly noticeable
in the centre of the surface. This suggests that �best� �tness can occur at various combinations of
frequency/proportion and that �tness at one combination does not necessarily mean a similar �tness
at neighbouring combinations.

The generations graph continues to show (as in other results gathered so far) that the number
of generations the system requires to evolve a solution unpredictably changes from combination to
combination. Although in this case it seems that �at best�, simpli�cation systems can generate a
solution in the same number of generations as a system without simpli�cation.

The execution time graph also �uctuates as frequency or proportion are changed.
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Figure 6.2: Hard Regression - Frequency vs. Proportion

In this task, the program size graph exhibits the same trends as the easy regression task and all com-
binations of frequency/proportion result in lower program size. The �nal �tness graph also shows
similar behaviour to its counterpart in the easy regression task. A �spike� in �tness is again apparent
in the middle of the surface.

Unlike the easy regression task, the execution time does not �uctuate and shows a clear trend that
as frequency and proportion are lowered, the execution time of the system also lowers. This further
reinforces the idea that a GP system with lower frequency and proportion still gains bene�t from
having smaller programs to process, while also bene�ting from reduced simpli�cation overhead.

A graph of �nal generations was not included for this task at they were all identical (at 50),
providing an uninteresting graph.
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Figure 6.3: Coins Dataset - Frequency vs. Proportion

The program size graph exhibits the same trends as the two regression tasks, with higher frequency
and proportion providing the smallest programs. The �nal �tness graph is more erratic than the
regression tasks, with several �peaks� and �valleys�.

Like in the easy regression task, the execution time graph �uctuates. This property is only seen in
this task and the easy regression tasks (the two �easiest� experimentation tasks). Inspection of the
graphs shows that both these tasks have execution times of below 2 seconds. It is theorised that tasks
which have evolvable solutions in shorter time have more �uctuation in that time when adjusting
frequency and proportion.
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Figure 6.4: Faces Dataset 1 - Frequency vs. Proportion
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The program size and execution time graphs show similar trends to their counterparts in the hard
regression task. Whereas the �nal �tness graph is similar to its counterpart in the coins classi�cation
task.
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Figure 6.5: Faces Dataset 2 - Frequency vs. Proportion

In this �nal task, the results are very much like those in face dataset #1. The only difference is that
execution time has steeper transitions and �uctuates a little more. Inspection of the graph shows that
execution time for this task is less that 2.05 seconds, which supports the above theory.

6.3.2 Discussion of Results
Effectiveness

Considering the scale of the axes, the �tnesses of each task do not �uctuate very much at all, but it
can be seen that better �tnesses occur in interspersed �pockets�. This shows that a balance between
frequency and proportion is needed to achieve the best system for a task. But the �tness graph sur-
faces are also unstable and show no clear trend as to what combination of frequency and proportion
is best for those tasks. Even though some combinations in the middle of the surface provide better
�tness, there are also some combinations that provide noticeably worse �tness (e.g. the �tness spikes
in the easy regression and hard regression tasks). Frequency and proportion appear to be parameters
that require a lot of �tweaking� to get correct.

Ef�ciency

Unsurprisingly in each task, the smallest average program size occurs when frequency is performed
at every generation and on every program. Average program size also tended to increase gradually
as either frequency or proportion are lowered, as this allows programs to grow for larger amounts of
generations before simpli�cation reduced their size again. The gradient in the graphs for frequency
is larger than that of proportion, suggesting that frequency has a larger effect on program size than
proportion.

In terms of generational time, the results were very erratic, showing no clear trend. This result is
similar to the generational time results from earlier chapters and shows that improving a systems
ef�ciency by reducing the number of generations to train it is not an easy task to accomplish.
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In terms of real/wall-clock time, the behaviour as frequency and proportion changed depended on
the experimentation task. For �easier� tasks, in which a solution could be found in small amounts
of time, execution time changed erratically as frequency and proportion were changed (though the
difference in time is very small). For more dif�cult tasks, changes in execution time as frequency and
proportion were varied were smoother, displaying a trend that the shortest execution times appeared
when frequency and proportion were reduced.

This observation shows that if one solely wants the lowest execution times, which is more im-
portant in �dif�cult� tasks, then using simpli�cation with a lower frequency and lower proportion
(which combines lessening simpli�cation overhead with the execution time gain from processing
smaller programs) is generally the best choice.

Overall, the execution times for systems using simpli�cation at a lower frequency than every gen-
eration are almost always lower than that of the standard GP system. Therefore, if one wants to
achieve better execution times with comparable/better effectiveness, then concentrating on optimiz-
ing effectiveness alone is generally suf�cient to obtain improvements in both.

6.4 Summary
In this chapter, three different methods for selecting programs to be simpli�ed were tested: Random
Selection, Fitness Based Elitism and Fatness Based Elitism. The results for all three were all very similar,
with Fatness Based Elitism having a slight advantage in �tness over the other two methods.

Using this selection method, several combinations of frequency (varied between 0 and 6) and
proportion (varied between 0% and 100%, in steps of 20%) were tested for all of the experimentation
tasks.

When varying both frequency and proportion, it was generally found that simplifying 100% of
programs at every generation provided the smallest programs, while simplifying at 0-20% every 6th
generation generally provided the fastest execution times for relatively �dif�cult� programs.

The optimal combination of frequency/proportion to get the best �tness however, was varied
for each experimentation task, and was quite erratic (�tnesses for one combination were not always
similar to �tnesses for neighbouring combinations).

Execution times and program sizes were typically lower for systems using simpli�cation. It
was so decided that, when applying simpli�cation to a new GP task, �nding a combination of fre-
quency/proportion that results in optimal �tness is all that is required to bene�t from both improved
ef�ciency and effectiveness.
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Chapter 7

Building Block Analysis

This chapter will use similar methods to those used by Poli and Langdon [26, Poli, Langdon 1997] to
investigate and discuss the effects (if any) of simpli�cation on schema during a GP run. Particularly,
whether the simpli�cation process breaks up building blocks in the GP system.

7.1 Poli and Langdon's Schema De�nition
The schema de�nition used by Poli and Langdon follow the GA schema de�nition more closely than
other GP schemas. A schema is de�ned as a tree, with the function nodes taken from the set {F∪ =}
and terminal nodes from the set {T∪ =}. The = node represents an �anything� node, which matches
any node in the set of functions/terminals (F/T ).

For example, in a system with function set F = {+,−} and terminal set T = {x, y}, the schema
(= x =) represents the set of programs {(+ x x),(+ x y),(- x y),(- x x)}.

The order of a schema is de�ned as the total number of non-= symbols. The length is de�ned as
the total number of nodes, and the de�ning length is de�ned as the number of links in the minimum
subtree including all the non-= symbols.

Using the above example ((= x =)), the order is 1, the length is 3 and the de�ning length is 1.

Figure 7.1: List of the 8 schema from a single program

These schema can be viewed as representations of the building blocks in a GP system, and by
tracking individual schema and the �tness of schema, the propagation and elimination of building
blocks can be investigated.

Matching schema is where the methods used in this project differ from Poli and Langdon's de�ni-
tion and experiments. In their work, a particular schema only matched an exact copy of that schema
(e.g. (= x =) would only match (= x =)). In this project, the matching scheme has been relaxed
a little to mean that if an existing schema is a substring of the other, then the schema match and the
appropriate count/�tness tracking variables updated accordingly. This was done as to more closely
follow the concept of a 'building block', and it is reasonable to say that if a program yields a schema
(+ y (= x =)), that this schema also includes (= x =) and so the second schema must also be
counted and �tness updated.
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By processing and analysing programs from smallest to largest, all schema can be correctly and
accurately accounted for.

7.2 Test Results
For this task, it is necessary for the problem used to be a very simple one, with solutions available
at very short tree depths. The reason for this is that using the above schema de�nition, every pro-
gram has 2n different schema, where n is the number of nodes in the tree. This means at the usual
program depths of 5 or 6 deep, the number of schema runs into the many thousands, making in
depth analysis intractable (at a depth of 5, the number of possible schema for a fully grown tree is
9223372036854775808, generating and analysing each of these is not feasible).

Many tasks can be classed as simple, including very basic regression tasks and the santa fe ant
problem [18, Poli and Langdon 1998]. But as in Poli and Langdons work, the XOR problem was �nally
decided as the experimentation task, as it is fairly simple and required no additional operators or
simpli�cation rules to implement.

The XOR problem is a basic machine learning problem wherein the learning system is given the
task of creating a solution that can mimic the functionality of the binary XOR logic operation. In
other words, for the four possible input patterns, the solution will output the correct value.

Pattern Input 0 Input 1 Output
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Table 7.1: The four possible XOR patterns

The function set used was the basic set of arithmetic functions {+,−, ∗, /} and the terminal set was
the two inputs required for XOR {Input1, Input2}, no randomly generated terminals were used. The
�tness function was the classi�cation accuracy for the four XOR patterns. Unlike most GP systems,
the system was not terminated if a solution was found (i.e. a program that handles all four patterns
correctly) and terminated only when the 50 generation limit was reached. This was so that schema
propagation could be monitored throughout the full 50 generations and not just the few generations
it might take to derive a solution.

The results in this chapter are less concerned with the actual performance results of the system,
and are more concerned with the inner workings of the system and how schemata are propagating
in the system.

7.2.1 Selection Only
The following GP parameters were used for the system:

Crossover and mutation rates were not used in the system (both set to 0%) for this part of the
experimentation in order to identify the effects of the simpli�cation method alone and its impact on
the schemata in the system.

Instead of strict elitism/reproduction, a roulette wheel selection scheme was used. This assigns
each program in the population a chance of being promoted to the next generation based in how �t
the program is (i.e. �tter programs have a higher chance of being promoted). Programs are then ran-
domly selected until the number of programs to be copied through reproduction is met. Programs
are also allowed to be selected more than once, allowing multiple copies of a single program to be
present in the next generation.
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Generations 50
Population Size 20
Mutation Rate 0%
Reproduction Rate 100%
Crossover Rate 0%
Min. Tree Depth 1
Max. Tree Depth 3

Table 7.2: Genetic Programming System Parameters

The following graph shows the convergence of schema in the XOR problem using selection only
with varying frequencies of simpli�cation:
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In the absence of crossover and mutation, the only difference in results between the different
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frequencies is where the initial drop in number of (distinct) schema and schema size occurs.

The roulette wheel selection genetic operator favours the �ttest programs, promoting them to the
next generation, sometimes multiple times. This means that the population will eventually converge
to a small set of the �ttest programs that were originally generated. This is shown by the smooth
decline in both number of schema and schema size (smaller programs do not contain as many schema
as larger programs).

Without simpli�cation, the number of schema present throughout the GP run is higher than those
systems with simpli�cation. This is because the systems with simpli�cation eliminate larger pro-
grams from the system and reducing the number of instances that populate larger schema. This
either totally eliminates these larger schema or reduces their in�uence within the population. This
reduction in schema size and number of schema is clearly shown by the initial drops in each graph.

However, although these larger programs are no longer in the genetic program population, they
have been replaced with smaller programs of equal �tness. These smaller programs populate the
smaller schema within the system, causing those schema to become �tter. So although larger, possibly
highly �t schema may be removed, they are replaced by shorter schema of relatively equal �tness.

This is further shown by the fact that in all the system runs, the best �tness for each generation
was the identical. But while simpli�cation itself does not disadvantage the system, the true test of
simpli�cation will be its effect on the GP system when combined with crossover.

7.2.2 With Crossover

For these experiments, crossover was applied to 50% of the program population and elitism to the
other 50%. Mutation was again left at 0% as its presence would make analysis of schema propagation
much harder.

The following GP parameters were used for the system:

Generations 50
Population Size 20
Mutation Rate 0%
Reproduction Rate 100%
Crossover Rate 0%
Min. Tree Depth 1
Max. Tree Depth 3

Table 7.3: Genetic Programming System Parameters
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Figure 7.4: Generations vs. No. of Schema - Selection and Crossover
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Figure 7.5: Generations vs. Average Schema Size - Selection and Crossover

The inclusion of crossover means that the system never converges on a set of programs (as hap-
pens when selection is the only operator). This is shown in the graphs by the �uctuation in both
number of schema and schema size. This means that while simpli�cation favours and populates
smaller schema by reducing the size of programs, the recombination and creation of larger programs
caused by crossover allows larger schema to stay in the system. This also maintains the diversity of
building blocks within the system.

7.3 Another Perspective: Tri-Blocks
One of the limitations of using schema analysis is that for �real� problems, where programs can be
around a tree-depth of 7+, the number of schema for a single program is very large. This makes
experimental analysis very time consuming, if not intractable.

Therefore, a different way of looking at �building blocks� needs to be used. The main reason for
the number of schema per program being very large is that it allows schema of the form (+ (= x
y) y), that is, it allows unconnected nodes to constitute a building block.
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If we disallow these unconnected blocks, then the number of schema from a single program is
decreased, and analysis of larger programs can be performed. In this section, local, connected groups
of 3 nodes were counted and tracked in the GP system, these groups are dubbed tri-blocks.
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Figure 7.6: Generations vs. Number of Tri-Blocks - Selection Only
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Figure 7.7: Generations vs. Number of Tri-Blocks - Selection and Crossover

These results are similar to those when using Poli and Langdon's schema de�nition. The differ-
ence in these sets of experiments is that all measured building blocks are of the same size. So while
a reduction in schema in the above experiments could be partially accounted for by the reduction in
size of programs, a reduction in (distinct) tri-blocks can only be due to fewer tri-blocks.

Again, when crossover is added, the convergence of tri-blocks is counteracted slightly. Simpli�-
cation clearly causes a reduction in the number of tri-blocks in the GP system. It can be concluded
that simpli�cation causes an overall reduction in the number of building blocks within a GP system.

7.4 Summary
In this chapter, using the schema de�nition put forward by Poli and Langdon's earlier work, schema
analysis was performed on a simple GP task (the XOR problem). Results from these analyses sug-
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gested that while simpli�cation may remove some larger building blocks, it effective shifts the �t
programs from larger schema to shorter schema. Therefore, equally �t, smaller building blocks can
effectively replace the larger building blocks. Crossover's recombination effect also rebuilds some of
the larger building blocks during the GP run.

A more simple way of de�ning buildings blocks was then used (tri-blocks) to analyse a larger ver-
sion of the XOR problem. Tri-blocks are simply locally connected groups of 3 nodes. These tri-blocks
were tracked and analysed within GP systems (with and without simpli�cation) running the XOR
problem with larger programs (depths of 7 allowed). The results found for this de�nition strongly
suggested that building blocks are removed from the system by the simpli�cation process.

More work needs to be done in this area, most importantly to determine whether good/�t building
blocks are disrupted by simpli�cation.
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Chapter 8

Conclusions

This project aimed to develop simpli�cation techniques and explore the effect that simpli�cation has
on a GP system when applied during evolution.

8.1 Using Algebraic Simpli�cation during Evolution
In line with the �rst goal of this project, chapter 4 developed a simple algebraic approach to the
simpli�cation of genetic programs. This system used a set of basic rules along with an algebraic
equivalence component to simplify tree-based programs directly without needing to translate it into
another format.

The integration of this method into a GP system to simplify all programs was found to slightly
improve effectiveness, although achieving this required �nding an appropriate value for frequency.
Performing simpli�cation every generation led to slightly poorer effectiveness in programs.

The average size of programs and thus the memory usage of the GP system was signi�cantly
lowered when simpli�cation was used, regardless of how often the simpli�cation component was
invoked (frequency). This reduction in memory and lower amounts of program processing leads in
most cases to lower execution times and overall better GP system ef�ciency.

Comprehensibility is made easier when using simpli�cation as it reduces the amount of infor-
mation (program) that needs to be interpreted and understood. Other factors can also in�uence
comprehensibility such as what range the features have been normalised to.

Overall, the performance of GP systems was improved with the addition of a simpli�cation com-
ponent. Programs of comparable or better effectiveness were obtainable for all of the experimentation
tasks, regardless of dif�culty.

8.2 Using Prime Number Simpli�cation with Algebraic Equivalence dur-
ing Evolution

Another objective of this project was to show how a numeric hashing method could be used to sim-
plify the genetic programs. Improvements to the PRES algorithm, a numeric hashing method for
simplifying genetic programs, were made. These included the integration of an algebraic equivalence
component, monte carlo program reconstruction, and usage of a arbitrary precision math library to
prevent over�ow problems.

When applying this simpli�cation component to a GP system, effectiveness was usually slightly
reduced in most tasks. With the exception of the face datasets. It was thus shown that simpli�cation
bene�ts relatively dif�cult GP tasks.

Like with the algebraic simpli�cation system, program sizes were signi�cantly smaller than the
standard GP system for all tasks.

However, the algorithm uses a very high amount of resources which results in very high ex-
ecution times. This was caused by the necessity of using an arbitrary precision math library for
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calculations to prevent arithmetic over�ow. Using the algorithm at low frequencies (e.g. every 6)
brought the execution times to �acceptable� levels (e.g. 29.332 for easy regression, 13.928 for
coins dataset).

Overall, this algorithm is seen as being useful for relatively dif�cult problems, especially dif�cult
classi�cation problems.

8.3 Effects of Frequency and Proportion
This project also set out to discover how frequency and proportion affect the performance of GP
systems. Three different proportion selection scheme were devised (random selection, �tness based
selection and fatness (size) based selection). Fatness based selection was found to be marginally
better than the other two schemes.

Using this scheme to select program proportions, a balance between frequency and proportion
was found to be easily found if ef�ciency (high speed and low memory usage) is the sole goal, with
both execution times and program sizes having �smooth� surfaces that can easily be followed when
running multiple tests (or even possibly using hill climbing). However a balance was found to be
very dif�cult to �nd when attempting to optimize the effectiveness (�nal �tness of outputted solu-
tions) of the system. The surfaces for all of the experimental tasks were unstable and largely variant,
and testing of all possible combinations of frequency/proportion is likely to be necessary to �nd a
good balance.

These �ndings helped achieve the goal, and provided some guidelines for applying simpli�cation
with varied frequency and proportion to new systems.

8.4 Building Blocks
Lastly, this project aimed to determine whether the process of simpli�cation destroys good building
blocks in the GP system during evolution. In order to determine this, two different perspectives were
used: Poli and Langdon's Schema De�nition, and local groups of 3 nodes (Tri-Blocks).

Results using schema analysis showed that simpli�cation reduced the number of building blocks
in a GP system, which is a clear disruption of building blocks. Results also showed that crossover
counteracts simpli�cation through recombination and creates new building blocks (as has been con-
cluded in other work).

Experiments using selection only showed that while simpli�cation reduced or eliminated larger
building blocks, smaller building blocks could be created in the process. Whether the good building
blocks are disrupted or merely transformed into smaller building blocks remains to be investigated.

Results from tracking tri-blocks also showed that simpli�cation removes building blocks.

Overall, adding simpli�cation to a GP system can signi�cantly reduce evolution time, reduce pro-
gram size (and thus memory usage), and improve comprehensibility of evolved genetic programs.
This can all be achieved without loss of system accuracy/effectiveness, and in some instances can
slightly improve the effectiveness of the system, particularly for relatively dif�cult tasks.

8.5 Future Work
8.5.1 Face Dataset: Removing Lighting Variation
The variation in lighting poses a real problem in evolving a classi�er using GP. While using the
distance ratios improved the effectiveness of GP, getting these types of features is not a trivial task. It
may involve several feature recognisers to be able to centre of the main facial features such as eyes,
mouth and nose.

Another approach that is worth looking into is a way to normalise the lighting variation in a
preprocessing step, thus removing the variance issue and allowing the GP system to focus on the
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sin(x) = eix−e−ix
2i

Table 8.1: Exponential form of sine

differences in facial features themselves. This has been looked into by [34, Wang, Li et al.] by trans-
forming an image into its Self-Quotient Image, which is lighting independent. The following �gure
shows an example of such an image:

Figure 8.1: Example of an SQI and its deshadow effect

Incorporating this, or a similar method into a GP system will increase the performance that GP
has in generating a face recogniser. Something possibly to look into in the future.

8.5.2 Algebraic Simpli�cation: Smarter Rules
In addition to simpli�cation rules that work on algebraic rules, additional rules (mostly affecting
conditional operators) that are task dependent can be added. For example, a program from Every 0
for the Coins Dataset (Algebraic Simpli�cation System) contains the sub-expression (if<0 f2 (+
0.069133 0.188200)...). If the features in this case were normalised to between 0 and 1 (which
is a relatively common practice), we would know that none of the features used in the coins dataset
are negative. For whenever this sub-expression is evaluated, the �rst branch will never be executed
and so is irrelevant.

Similarly, as another hypothetical example, consider the sub-expression (if<0 (+ f1 1.0)
0.344 0.577) (and using the range used in the rest of this project [-1,1]). Since we know f1 is at
the very least -1, (+ f1 1.0) will never be <0, so this expression can be simpli�ed as well.

Adding these domain/task speci�c simpli�cation rules will allow more more compact programs
and further redundancy reduction.

8.5.3 Algebraic Equivalence and Hashing: Other Functions
Only the basic arithmetic operators, constant and IF operators/terminals are handled in the current
hashing function. Extending this to trigonometric and exponential functions is the next logical step
and would require determining an element in Zp which can represent e and an element that can
represent the imaginary element i. The properties of these elements must be preserved (e.g. i2 + 1 =
0). Having these two elements would allow not only exponential operators to be hashed, but also
trigonometric functions as these can be expressed in terms of e and i. For example:

8.5.4 Simpli�cation as a search
The algebraic simpli�cation system used in this project is basically a `greedy search for the optimally
simpli�ed expression, as it simply iterates through a list of simpli�cation rules and attempts to apply
them sequentially. This will not necessarily lead to an optimally simpli�ed expression, just as a
greedy path search will not necessarily lead to an optimal path.

Instead of applying the rules sequentially, one can imagine the system as an n-dimensional space,
where n denotes the number of simpli�cation rules in the system. Simpli�cation can then be treated
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Figure 8.1: Simpli�cation as a search

as a search through this space, where each simpli�cation rule used is a �move� in that direction in
the space. Of course, one can also choose to �do nothing� as a �move� as well, which means moving
to the parent node without applying any rules to this node. This means more optimal searching
methods such as iterative deepening search can be used in future designs of the algebraic system.

8.5.5 Prime Number Simpli�cation
Prime number factoring

A problem which is being researched in the number theory community, is that of factoring large
numbers into their factors. For this implementation, the trivial method of dividing by primes less
than or equal to the square root of the product was used. This is perfectly �ne for �small� numbers
(i.e. less than 20 digits), but for larger numbers, a faster method should be used.

Several possible methods include the Pollard-rho (a non-deterministic algorithm that uses spe-
cial properties of numbers, and so will not always give a factoring), Pollard-Strassen [27] (the fastest
known deterministic algorithm) and the Quadratic Sieve [3] methods. Using one of these methods
will ensure that the prime number hashing method can be used on larger scale problems.

Limitations of Prime Product Quartuple: Using an n-tuple

One of the limitations of the prime product quartuple is the existences of a single positive layer and
single negative layer. This essentially only supports operators which act on one axis of �negation�
(i.e. + vs. -. up vs. down).

Consider a simpli�ed arti�cial ant problem similar to the one brie�y described in chapter 2. Let
this problem contain the function set { move up, move down, move left, move right }.
Now these are essentially all part of the same operator family, and a sequence move up, move
left, move left, move down should cancel out the move up and move down actions. But
one cannot encode all four operators in the family into a single prime product, and wrapping subtrees
will cause the algorithm to fail to �see� that move up and move down cancel each other out.

Extending the quartuple to an n-tuple, which allows multiple negative/positive layer pairs, will
allow more than one set of opposing operators to be encoded and canceled correctly. This would
allow for easier application of this simpli�cation algorithm into domains that do not use arithmetic
or mathematical operators (e.g. robotics, video games).

8.5.6 Dynamic Adjustment of Proportion/Frequency
The results gathered in this project suggest that there is a combination of frequency and proportion
that can lead to optimal performance in a GP system. However, like most GP parameters, there
may be guidelines to what values these should start at, but overall there is no way to know what
combination works best without extensive testing.
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One wonders whether it is possible to dynamically adjust the frequency and proportion during
the course of evolution to react to the conditions of the GP system (i.e. increasing frequency or
proportion if memory/resource usage is becoming too high, or decreasing if best program �tness
is stagnating and not becoming �tter for a certain number of generations). This may provide an
easier way of applying simpli�cation to a new task, as multiple experiments to discover the optimal
combination of frequency/proportion may not be necessary.

Alternatively, a type of momentum parameter may be introduced. Momentum is a parameter in
Neural Networks which ampli�es the learning rate as the network trains, causing a network to con-
verge on an �answer� more quickly. If simpli�cation is more important in the early stages, it makes
sense to perform simpli�cation more often in the early generations and then lower the frequency as
time goes on (and vice versa if simpli�cation is more important in the latter stages).

8.5.7 More Building Block Analysis
While initial �ndings in this project indicate that building blocks are removed from the GP system
when simpli�cation is invoked, there are no indications whether good building blocks are disrupted.
The fact that simpli�cation systemscan improve the effectiveness of tasks suggests that good building
blocks must remain in the system, and large building blocks may meerely be tranformed into smaller,
equally �t building blocks. More investigation into these aspects, as well as on more dif�culy tasks
needs to be undertaken.
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Appendix A

Appendix I: Simpli�cation Rules

The following is the list of simpli�cation rules used in the algebraic simpli�cation system. Constants
are denoted by lower case letters (a, b, c etc.) and variables by upper case letters (A,B,C etc.). If a
numeric value is listed (e.g. 1, 0), the actual rule matched any expression equivalent to that numeric
value.

Simpli�cation Rule
if < 0(a,B,C)→ B if a < 0, C if a ≥ 0
if < 0(A,B,B)→ B

a+ b→ c, c = a+ b
a− b→ c, c = a− b
a× b→ c, c = a× b
a÷ b→ c, c = a÷ b
a+ (b+ C)→ c+ C, c = a+ b
a+ (b− C)→ c− C, c = a+ b
a− (b+ C)→ c+ C, c = a− b
a− (b− C)→ c− C, c = a− b
a× (b× C)→ c× C, c = a× b
a× (b÷ C)→ c÷ C, c = a× b
a÷ (b÷ C)→ c× C, c = a÷ b
a+ (B + c)→ b+B, b = a+ c
a+ (B − c)→ b+B, b = a− c
a− (B + c)→ b−B, b = a+ c
a− (B − c)→ b−B, b = a− c
a× (B × c)→ b×B, b = a× c
a× (B ÷ c)→ b×B, b = a÷ c
a÷ (B ÷ c)→ b÷B, b = a× c
A÷ 1→ A
A÷A→ 1
0÷A→ 0
0×A = A× 0→ 0
A× 1 = 1×A→ A
A+ 0 = 0 +A→ A
A− 0→ A
A−A→ 0
A× 1

B = 1
B ×A→ A

B

A× B
A = B

A ×A→ B

Table A.1: Simpli�cation system rules
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Appendix B

Appendix II: Developed Programs and
Utilities

B.1 VGP Analysis Tool
The VGP analysis tool is a command line program developed for this project, designed to take raw
generational information from a system run and output several statistics, formatted in .csv (comma
separated values �le), .dat (gnuplot graph) or .tex(latex table formatted). It was neccesary to construct
this tool in order to process and analyse VGP log �les in depth, with special attention to schema
analyses.

The vgp package was modi�ed to produce a log �le that contained a raw dump of each genera-
tion's set of programs, followed by a summary of the systems �nal results:

Generation: 0
Pop has 500
Prog 0 : (10000000.000000)
(+ (% (* (if<0 0.105133 f0 0.712933) (* f0 f0)) (+ (% f0 -0.977000) (+ -0.292200
f0))) (- (- f0 -0.829800) (% (+ 0.167600 f0) f0)))
Prog 1 : (10000000.000000)
(* (+ (if<0 -0.244400 (- f0 f0) (% 0.528667 f0)) (+ (* f0 f0) (* -0.947467 f0)))
(% (+ (* f0 -0.516733) (if<0 f0 f0 0.808400)) (% (+ -0.510733 0.073400)
-0.571800)))
Prog 2 : (10000000.000000)

...

Prog 499 : (199.916527)
(+ (- (% (- f0 (- (+ (% -0.846667 f0) (if<0 f0 f0 -0.548933)) (* (% 0.238600
-0.184133) (% -0.379000 f0)))) (* 0.666400 (% f0 (if<0 (+ f0 0.090333) (*
0.625200 f0) (% -0.591733 0.114533))))) (- (if<0 -0.272533 f0 -0.846667)
(if<0 (if<0 (- (% f0 -0.455867) (* f0 f0)) (% (- -0.128800 f0) (% 0.600400
-0.861800)) (+ (if<0 f0 f0 0.983867) (- f0 0.723600))) (% (if<0 (+ f0 0.090333)
(* 0.625200 f0) (% -0.591733 f0)) (% (if<0 f0 f0 f0) (- f0 f0))) (if<0 (* (*
0.517733 -0.800733) (if<0 0.932133 f0 -0.408533)) (- (% f0 -0.113733) (% f0 f0))
(- (+ f0 0.016400) (- 0.481000 f0)))))) (* (if<0 (+ (* (% (% f0 0.240000) (- f0
-0.906067)) (+ (* f0 -0.902267) (- 0.072067 -0.122200))) (if<0 (if<0 (* -0.576400
0.967000) (if<0 f0 -0.595533 f0) (- -0.730867 0.823667)) (* (- f0 f0) (* f0 f0))
(- (if<0 0.228333 f0 f0) (+ -0.611133 -0.443600)))) (* (* (* (+ -0.422200
-0.843333) (+ -0.529400 0.364200)) (- (if<0 f0 -0.781067 -0.307533) (% f0 f0)))
(* (if<0 (if<0 -0.655000 0.542133 0.393600) (if<0 f0 f0 f0) (% -0.394933
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-0.511133)) (- (if<0 f0 f0 -0.184133) f0))) (if<0 f0 (* (if<0 (+ f0 f0) (+
0.248933 f0) (if<0 -0.395333 f0 -0.197267)) (+ (if<0 -0.591733 0.894600 f0)
(+ -0.409600 f0))) (* (+ (+ 0.090333 -0.713133) (% f0 -0.797467)) (if<0 (if<0
f0 f0 -0.769867) (% f0 -0.886533) f0)))) (if<0 f0 f0 f0)))

Gens: 50 Final_fitness: 100.506036 Took: 7.49 seconds
Best Program: (+ (- (% (- f0 (- (+ (% -0.846667 0.090333) (if<0 f0 f0 f0))
(* (% 0.238600 -0.184133) (% -0.379000 f0)))) (* 0.666400 (% f0 (if<0 (+ f0
0.090333) (* 0.625200 f0) (% -0.591733 f0))))) (- (if<0 -0.272533 f0 -0.846667)
(if<0 (if<0 (- (% f0 -0.455867) (* f0 f0)) (% (- -0.128800 f0) (% 0.600400
-0.861800)) (+ (if<0 f0 f0 0.983867) (- f0 f0))) (% (if<0 (+ f0 -0.422067) (*
0.625200 -0.529667) (% -0.591733 f0)) (% (% -0.131933 -0.681133) -0.443600))
(if<0 (* (* 0.517733 -0.800733) (if<0 0.932133 f0 -0.408533)) (- (% f0 -0.113733)
(% f0 f0)) (- (+ f0 0.016400) (- 0.481000 f0)))))) (* (if<0 (+ (* (% (% f0
0.240000) (- f0 -0.906067)) (+ (* f0 -0.902267) (- 0.072067 0.625200))) (if<0
(if<0 (* -0.576400 0.967000) (if<0 f0 -0.595533 f0) (- -0.730867 0.823667)) (*
(- 0.496267 f0) (* f0 f0)) (- (if<0 0.228333 f0 f0) (+ -0.611133 -0.443600))))
(* (* (* (+ -0.422200 -0.843333) (+ -0.529400 0.364200)) (- (if<0 f0 -0.781067
-0.307533) (% f0 f0))) (* (if<0 (if<0 -0.655000 f0 0.393600) (if<0 f0 f0 f0)
(% -0.394933 -0.511133)) (- (if<0 f0 f0 -0.184133) f0))) (if<0 (- (+ f0 f0) (-
f0 f0)) (* (if<0 (+ f0 f0) (+ 0.248933 f0) (if<0 -0.395333 f0 -0.197267)) (+
(if<0 f0 0.894600 f0) (+ -0.409600 f0))) (* (+ (+ -0.109733 -0.713133) (% f0
-0.797467)) (if<0 (if<0 f0 f0 -0.769867) (% f0 -0.886533) f0)))) (if<0 f0 f0
(% -0.083333 0.019867))))

The VGP analysis tool tranforms this log �le into a csv �le of tables for Average Sizes, System
Average Size, Best Fitnesses, System Best Fitness, Average Fitness, Execution Times, Best Accuracy,
No. of Schema, Schema Fitness, Best Programs in System::

Average Size
0,36.876,36.688,36.202,34.202,35.64,36.592,36.022,36.932,36.564,35.472,35.72,
35.682,36.248,35.346,37.93,37.42,36.536,35.592,36.222,38.302,36.572,35.484,
35.928,35.604,38.146,=AVERAGE(B2:Z2)
1,37.544,38.848,37.308,34.512,37.15,38.29,38.198,36.214,36.432,37.228,36.076,
37.634,37.072,36.936,37.814,38.536,38.048,37.232,37.834,40.928,38.1,36.158,
37.818,36.334,41.43,=AVERAGE(B3:Z3)
...

(if<0 (% (if<0 f7 (+ (- f5 f7) f5) (* (+ -0.420600 f3) (+ f3 0.323800)))
(% 0.289267 0.854200)) (* -0.555667 (- (+ f7 -0.461200) -0.448333)) (*
(if<0 (+ (% f2 0.323800) 0.738667) (* -0.505200 -0.953800) 0.777000) (if<0
0.175933 0.175933 (* (if<0 0.643067 f4 0.009667) (+ f2 f1))))),0.96875
(if<0 (% (if<0 f7 (+ (- f5 f7) f5) (* (+ -0.420600 f3) (+ f3 0.323800)))
0.289267) (* -0.555667 (- (+ f7 -0.461200) -0.448333)) (* (if<0 (if<0
0.740200 f7 0.009667) (* -0.505200 -0.753867) 0.777000) (if<0 0.175933 (-
(% f2 f4) (if<0 0.833533 -0.930467 f4)) (* (if<0 0.740200 f4 0.009667) (+
f5 f1))))),0.96875

Finally, the present(er) and gnuplotter tools use the csv �les to generate tables and graphs
ready for inclusion into a LATEXdocument. Combined with scripts, this streamlines the whole process
of results analysis and gathering.
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B.2 Present(er)
This utility takes the (usually) 6 csv �les generation by the analysis tool and puts them into a latex
or gnuplot presentable form. It also calculates the mean and standard deviations for the results tables
(the raw csv �le leaves this task for an application such as OpenOf�ce to calculate).

An example of the output from this utility follows.

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Edit Me & & Final Gen & Final Best Fit & Time(s) & Avg. Prog Size & Avg.
Prog Fit\\
\hline
\multirow{5}{*}{Edit Me} &
Every 0 & $28.727 \pm 12.685$ & $0.006 \pm 0.015$ & $1.239 \pm 0.458$ &
$37.295 \pm 6.029$ & $391977.188 \pm 164428.188$\\ \hline
& Every 1 & $33.682 \pm 11.552$ & $0.018 \pm 0.050$ & $1.301 \pm 0.420$
& $24.590 \pm 3.080$ & $335315.906 \pm 98895.508$\\ \hline
& Every 2 & $28.636 \pm 13.096$ & $0.006 \pm 0.013$ & $1.102 \pm 0.490$
& $28.016 \pm 4.639$ & $401917.156 \pm 158858.312$\\ \hline
& Every 4 & $29.636 \pm 13.488$ & $0.006 \pm 0.018$ & $1.077 \pm 0.411$
& $29.284 \pm 4.539$ & $388406.812 \pm 151176.547$\\ \hline
& Every 6 & $27.909 \pm 13.249$ & $0.002 \pm 0.005$ & $1.026 \pm 0.415$
& $30.227 \pm 4.809$ & $409113.812 \pm 155984.328$\\ \hline
\hline
\end{tabular}
\caption{}
\end{center}
\end{table}

\begin{center}
\begin{verbatim}

Every 0
(+ (if<0 (+ (- f0 (+ 0.409400 f0)) -0.553533) 0.762133 (* (+ (% -0.274267
f0) (+ f0 f0)) (if<0 (- f0 f0) (+ 0.691800 0.587400) (+ f0 -0.794400))))
(+ (if<0 (* f0 -0.553533) (if<0 (+ 0.533533 0.807933) (- 0.587400
-0.601733) f0) (- f0 0.056600)) (+ (* f0 f0) (% -0.362467 (if<0 0.845267
f0 -0.108933))))),0.00013

...

0 10000000.000000 10000000.000000 10000000.000000 10000000.000000
1 18.268148 18.268148 18.268148 18.268148
2 11.468711 11.468711 11.468711 11.468711
3 7.838078 7.840739 7.838078 7.838078
4 5.700742 5.334342 5.754585 5.700742
5 4.249721 4.796186 3.392497 4.249721

...
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Appendix C

Appendix III: Algebraic Simpli�cation -
Best Programs

Easy Regression
Every 0
(+ (if<0 (+ (- f0 (+ 0.409400 f0)) -0.553533) 0.762133 (* (+ (% -0.274267 f0)
(+ f0 f0)) (if<0 (- f0 f0) (+ 0.691800 0.587400) (+ f0 -0.794400)))) (+ (if<0
(* f0 -0.553533) (if<0 (+ 0.533533 0.807933) (- 0.587400 -0.601733) f0) (- f0
0.056600)) (+ (* f0 f0) (% -0.362467 (if<0 0.845267 f0 -0.108933))))),0.00013

(+ (if<0 (+ (* f0 (+ f0 0.531267)) (if<0 (+ -0.718200 f0) f0 -0.136667))
0.676467 (+ -0.315867 (% f0 f0))) (+ f0 (+ (* f0 f0) (% -0.362467 (if<0
0.845267 f0 -0.108933))))),0.00013

(+ (if<0 (* f0 -0.553533) 0.762133 f0) (+ (if<0 (- f0 (* f0 -1.000000)) (if<0
f0 0.676467 (* 0.944733 f0)) (- f0 f0)) (+ (* f0 f0) (% -0.362467 -0.109333))))
,0.000124

Every 1
(+ (* f0 f0) -0.017933),0.000107
(+ (+ 3.970196 (* f0 f0)) (- (- (- f0 -0.200133) f0) -3.648647)),0.000112
(+ (+ 3.970196 (* f0 f0)) (- f0 -0.019200)),0.000112

Every 2
(+ (- (+ (+ f0 0.923600) 1.000000) -2.093948) (- (+ f0 (if<0 -0.025733 0.813667
(% 0.069533 f0))) -1.357800)),0.000102

(if<0 (- (- (if<0 f0 f0 -0.506533) (* f0 (% f0 0.062200))) (% (* (* f0 f0) f0)
f0)) (+ (- (+ f0 0.558333) -2.093948) (- (* f0 f0) -1.357800)) (if<0 f0 -0.072467
f0)),0.000102

(if<0 (- (- (if<0 f0 f0 -0.506533) (* (% f0 0.090333) (% f0 0.062200))) 0.371333)
(+ (- (+ f0 0.558333) -2.093948) (- (* f0 f0) -1.357800)) (if<0 f0 -0.072467 f0))
,0.000102

Every 4
(+ 0.291074 (+ (+ 0.536400 f0) (- (* f0 f0) -3.161922))),0.000112

(+ 0.291074 (+ (+ 0.536400 f0) (- (* f0 f0) -3.161922))),0.000112

(+ 0.291074 (+ (+ 0.536400 f0) (- (* f0 f0) -3.161922))),0.000112

Every 6
(+ (+ (+ (+ f0 (* f0 f0)) (+ (- 0.843333 0.320200) (if<0 -0.108267 -0.684333
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-0.962733))) 1.625600) 2.524733),0.000118

(+ (+ (+ (+ f0 (* f0 f0)) (+ (- 0.843333 0.320200) (if<0 -0.108267 -0.684333
-0.962733))) 1.625600) 2.524733),0.000118

(+ (+ (+ f0 f0) 0.848333) 3.114133),0.000118

Hard Regression

Every 0
(+ (if<0 (- (% f0 (* (+ (+ f0 f0) (- -0.914000 f0)) (% (+ f0 -0.247067) (-
-0.089867 0.724333)))) (* 0.731200 0.065133)) (+ 0.609333 (if<0 (- (% (-
f0 f0) -0.459533) (* 0.731200 0.065133)) (+ 0.609333 f0) (* (if<0 f0 f0
0.579600) (* f0 f0)))) (* (if<0 f0 f0 0.579600) (* f0 f0))) (- (% (- (*
(+ (% 0.972867 f0) f0) (% f0 f0)) (if<0 (* (- -0.224933 f0) 0.015933)
0.568800 (- (- -0.367467 f0) f0))) (if<0 0.579600 -0.960733 -0.710800))
(if<0 (* 0.617267 f0) (+ f0 f0) (% (% (- (% 0.060533 0.206467) (% 0.692067
f0)) (if<0 (if<0 f0 f0 f0) (+ -0.282267 -0.397067) (* -0.073400 0.758067)))
f0)))),4.36864

(+ (if<0 (- (% f0 -0.459533) (* 0.731200 0.065133)) (+ 0.609333 (if<0 (- (%
(- f0 f0) -0.459533) (* 0.731200 0.065133)) (+ 0.609333 f0) (* (if<0 f0 f0
0.579600) (* f0 f0)))) (* (if<0 f0 f0 0.579600) (* f0 f0))) (- (% (- (* (+
(% 0.972867 f0) f0) (% f0 f0)) (if<0 (* (- -0.224933 f0) 0.015933) 0.568800
(- (- -0.367467 f0) f0))) (if<0 0.579600 -0.960733 -0.710800)) (if<0 (*
0.617267 f0) (+ f0 f0) (% (% (- (% 0.060533 0.206467) (% 0.692067 f0))
(if<0 (if<0 f0 f0 f0) (+ -0.282267 -0.397067) (* -0.073400 0.758067)))
f0)))),6.27138

(if<0 (* 0.617267 f0) (+ f0 f0) (% (% (- (- f0 f0) (% 0.692067 f0)) (if<0
(if<0 f0 f0 f0) (+ -0.826333 -0.956667) (* -0.073400 0.758067))) f0)),4.36864

Every 1
(% (- -0.724333 (if<0 (* (- (+ f0 0.617400) (* f0 f0)) (+ f0 -0.894467)) (%
(if<0 f0 f0 (% -0.637800 (* f0 f0))) -0.139747) (- (- (% f0 0.281800) f0)
(* (* (* f0 f0) 0.427333) (- (- f0 0.334600) -0.624733))))) (if<0 (* (% f0
0.034600) (* (* (* (* f0 f0) 0.427333) (- f0 -0.624733)) -0.188467)) (* (%
0.393267 f0) (+ f0 (* (+ (% 0.202867 f0) f0) (* (% -0.006533 f0) (* f0 f0))
))) (+ f0 -0.894467))),9.33643

(% (- (+ f0 (- (+ (* (% -0.843267 f0) (- 0.757933 f0)) (% (+ 0.153867 f0) (-
f0 -0.250333))) f0)) (if<0 (* 0.617400 (+ f0 -0.894467)) (% (if<0 f0 f0 (%
-0.637800 (* f0 f0))) -0.139747) (- (- f0 -0.894467) (* (* (* f0 f0) 0.427333)
(- f0 -0.624733))))) (if<0 (* (- f0 -0.624733) (* f0 -0.188467)) (* (%
0.393267 f0) (+ f0 (* f0 (* (% -0.006533 f0) (* f0 f0))))) (+ f0 (* (%
-0.006533 f0) (* f0 f0))))),9.33643

(% (- (+ f0 (- 0.872479 f0)) 0.691733) (if<0 (* (- f0 -0.624733) (* f0
-0.188467)) (* (% 0.393267 f0) (+ f0 (* (+ (% 0.202867 f0) f0) (* (% -0.006533
f0) (* f0 f0))))) (+ f0 -0.894467))),9.33643

Every 2
(+ (if<0 (- (% f0 -0.459533) 0.047625) (- (- (* -11.862152 (% (if<0 f0
-0.405200 1.000000) (* f0 f0))) (- (% f0 -0.459533) 0.047625)) (+ -0.395400
f0)) (* (if<0 f0 f0 (+ f0 -3.618123)) (* f0 f0))) (- (+ (- (if<0 (+ (*
-0.663800 f0) 0.579600) 0.015980 (- (- 0.685933 f0) f0)) f0) 1.000000) (if<0
(* f0 -0.663800) (if<0 (+ f0 f0) (+ f0 f0) 0.759467) (+ -0.684043 (% (+ (*
0.648667 f0) f0) (if<0 f0 0.579600 f0)))))),0.561069
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(+ (if<0 (- (% f0 -0.459533) 0.047625) (- (- (* -11.862152 (% (if<0 f0
-0.405200 1.000000) (* f0 f0))) (- (% f0 -0.459533) 0.047625)) (+ -0.395400
f0)) (* (if<0 f0 f0 (+ f0 -3.618123)) (* f0 f0))) (- (+ (- (if<0 (+ (*
-0.663800 f0) 0.579600) 0.015980 (- (- 0.685933 f0) f0)) f0) 1.000000) (if<0
(* f0 -0.663800) (if<0 (+ f0 f0) (+ f0 f0) 0.759467) (+ -0.684043 (% (+ (*
0.648667 f0) f0) (if<0 f0 0.579600 f0)))))),0.561069

(+ (if<0 (- (% f0 -0.459533) 0.047625) (- (- (* -11.862152 (% (if<0 f0
-0.405200 1.000000) (* f0 f0))) (- (% f0 -0.459533) 0.047625)) (+ -0.395400
f0)) (* (if<0 f0 f0 (+ f0 -3.618123)) (* f0 f0))) (- (+ (- (if<0 (+ (*
-0.663800 f0) 0.579600) 0.015980 (- (- 0.685933 f0) f0)) f0) 1.000000) (if<0
(* f0 -0.663800) (if<0 (+ f0 f0) (+ f0 f0) 0.759467) (+ -0.684043 (% (+ (*
0.648667 f0) f0) (if<0 f0 0.579600 f0)))))),0.561069

Every 4
(+ (if<0 (- (% f0 -0.459533) f0) (+ 0.609333 (+ (+ (+ (% 0.728200 f0) f0)
0.007049) (% -4.955772 (* f0 (* 0.412867 f0))))) (* (if<0 f0 f0 0.579600) (*
f0 (% (* -0.486267 (- f0 f0)) f0)))) (- (+ (- (if<0 (+ (% 0.728200 f0) f0)
0.015980 -0.133067) f0) 0.809267) (if<0 (% (if<0 (+ -0.328800 f0) (* (% f0
0.922800) (- 0.000533 f0)) 0.513733) (* (- f0 (if<0 f0 0.527200 f0)) (- (+
-0.865200 f0) -0.498600))) (+ (+ (if<0 (- f0 0.875067) (- f0 0.776733)
-0.783133) (+ (+ f0 f0) f0)) f0) (% 0.275200 (- f0 -0.989800))))),0.281126

(+ (if<0 (- (% f0 -0.459533) 0.047625) (+ f0 (+ (% (+ 0.609333 f0) f0) (%
(if<0 (% 0.275200 f0) 1.000000 -4.955772) (* f0 (* 0.412867 f0))))) (* (if<0
f0 f0 0.579600) (* (if<0 (+ -0.653933 f0) f0 -1.548328) f0))) (- (+ (- (if<0
(+ f0 f0) (% (+ f0 f0) f0) -0.591867) f0) (+ (if<0 (* (* f0 0.932200) f0) (+
f0 f0) f0) (- 0.382733 f0))) (if<0 (* 0.617267 f0) (+ 0.617267 f0) (%
0.275200 (- -0.724383 f0))))),0.260796

(+ (if<0 (- (% f0 -0.459533) 0.047625) (+ f0 (+ (% (+ 0.609333 f0) f0) (%
(if<0 (% 0.275200 f0) 1.000000 -4.955772) (* f0 (* 0.412867 f0))))) (* (+
f0 f0) (* (if<0 (+ -0.653933 f0) f0 -1.548328) f0))) (- (+ (- (if<0 (+ f0
f0) (% (+ f0 f0) f0) -0.591867) f0) (+ (if<0 (* (* f0 0.932200) f0) (+ f0
f0) f0) (- 0.382733 f0))) (if<0 (* 0.617267 f0) (+ (+ (if<0 (- f0 -0.989800)
(- f0 -0.132933) -1.200943) (+ (+ f0 f0) f0)) f0) (% 0.275200 (- -0.724383
f0))))),0.328898

Every 6
(+ (if<0 (- (% f0 -0.459533) 0.047625) (+ 1.300351 (+ (- (% (- -0.412667 f0)
(% f0 f0)) (+ (% f0 f0) (% f0 f0))) (% 0.808200 (* (* 0.085000 f0) (* f0
-0.797333))))) (* (if<0 f0 f0 0.579600) (* f0 f0))) (- (+ (- (if<0 (%
-0.554400 f0) 0.015980 (+ (% f0 -0.166333) 1.000000)) f0) (- (if<0 (*
-0.524969 f0) 0.003275 (if<0 (if<0 f0 f0 -0.289800) (+ 0.310000 f0) 1.000000))
(% f0 (* 3.323473 f0)))) (% (% (if<0 (% -0.814267 f0) 0.134219 -0.661267)
(- (% (if<0 f0 0.328467 -0.936333) -0.225834) 1.128670)) (if<0 (* (if<0 (%
-0.814267 f0) 0.134219 -0.661267) (* 3.323473 f0)) (% -0.745733 f0) -0.700533)
))),0.476262

(+ (if<0 (- (% f0 -0.459533) 0.047625) (+ 1.300351 (+ f0 (% 0.808200 (* (*
0.085000 f0) (* f0 -0.797333))))) -0.797333) (- (+ (- (if<0 (* -0.348819 f0)
0.015980 (+ (% f0 -0.166333) 1.000000)) f0) (- (if<0 (* -0.524969 f0) 0.003275
(- (+ f0 f0) f0)) (% f0 (* f0 f0)))) (if<0 (+ (if<0 (- -0.148933 f0) (if<0 f0
-0.463733 -0.785733) (% f0 0.218733)) (- (% f0 0.205067) (* f0 -0.630467))) (%
(if<0 (% (* f0 0.914133) 0.015980) 0.215467 (+ (* f0 f0) (+ f0 f0))) (if<0 (*
0.047163 f0) (+ (* f0 f0) (if<0 f0 -0.477200 -0.364067)) (+ f0 (% -0.745733 f0
)))) (% (+ -0.455933 (* -0.067203 f0)) f0)))),0.420479

(+ (if<0 (- (% f0 -0.459533) 0.047625) (+ 1.300351 (+ f0 (% 0.808200 (* (*
0.085000 f0) (* f0 -0.797333))))) (* (if<0 f0 f0 0.579600) (* f0 f0))) (- (+
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(- (if<0 (% -0.554400 f0) 0.015980 (+ f0 1.000000)) f0) (- (if<0 (* -0.524969
f0) 0.003275 (- (+ f0 f0) f0)) (% (* 0.085000 f0) (* f0 f0)))) (% (% (% (%
-0.047467 f0) (% 0.554533 (+ f0 f0))) (- (% (if<0 f0 0.328467 -0.936333)
-0.225834) 1.128670)) (* (+ (% 0.296867 f0) (+ f0 (* -0.182667 f0))) 0.127133)
))),0.330665

Coins Dataset

Every 0
(- (% (if<0 (if<0 f2 (+ 0.069133 0.188200) (if<0 f5 0.261400 0.316067))
0.755667 (* -0.180333 (- f1 0.261400))) 0.904267) (if<0 (* (- (* f6
0.224133) (if<0 -0.356267 0.076467 -0.383400)) 0.224133) -0.180333
0.418067)),0.992188

(- (% (if<0 (if<0 f2 (+ 0.069133 0.188200) (if<0 f5 0.261400 0.316067))
0.755667 (* -0.180333 (- f1 0.261400))) 0.904267) (if<0 (* (- (* f6
0.224133) (if<0 -0.356267 0.076467 -0.383400)) 0.224133) -0.180333
0.418067)),0.992188

(- (% (if<0 (if<0 f2 (+ 0.069133 0.188200) (if<0 f5 0.261400 0.316067))
0.755667 (* -0.180333 (- f1 0.261400))) 0.904267) (if<0 (* (- (* f6
0.224133) (if<0 -0.356267 0.076467 -0.383400)) 0.224133) -0.180333
0.418067)),0.992188

Every 1
(* (% (- -0.775733 (% f4 -0.462933)) (if<0 (+ f3 (% f6 f2)) (- (+ f7 f7)
(% f3 f6)) (+ (if<0 f0 -0.846400 0.859467) (- f2 -0.113733)))) (if<0
(+ (+ (- f2 -0.113733) 1.000000) (% f1 0.169933)) 0.169933 (- (-
0.369267 (* f5 0.254600)) (* (* -0.720733 f3) 0.292600)))),0.992188

(* (% (- -0.775733 (% f4 -0.462933)) (if<0 (+ f3 (% f6 f2)) (- (+ f7 f7)
(% f3 f6)) (+ (if<0 f0 -0.846400 0.859467) (- f2 -0.113733)))) (if<0 (+
(+ (- f2 -0.113733) 1.000000) (% f1 0.169933)) 0.169933 (- (- 0.369267
(* f5 0.254600)) (* (* -0.720733 f3) 0.292600)))),0.992188

(if<0 (* 0.763400 f6) (if<0 (- (% f3 -0.720733) (if<0 (- f5 0.825467)
0.373511 (+ f7 f7))) -0.462933 0.412600) (+ f3 (* -0.855267 f3)))
,0.992188

Every 2
(if<0 (% (- f6 (if<0 f3 (- 0.431600 f1) -0.648067)) (- (- f6 (* f6
0.474733)) (- 0.003160 f6))) (* 0.003160 f5) (if<0 (% 0.289333 (if<0
(- f7 0.516733) -0.205333 -0.473000)) (* (* (- f6 f2) f7) -0.941965)
(- (% (+ f5 0.103667) f5) (if<0 f1 f0 0.681067)))),0.992188

(if<0 (% (- f6 (if<0 f3 (- 0.431600 f1) -0.648067)) (- (- f6 f2) (-
0.431600 f6))) (* 0.003160 f5) (if<0 (% 0.289333 (if<0 (- f7 0.516733)
-0.205333 (* 0.516733 f7))) (* (* 0.516733 f3) -0.941965) (* (- f7
0.274078) (+ -0.789873 f5)))),0.992188

(if<0 (% (- f6 (if<0 f3 0.289333 -0.648067)) (- (- f6 f2) (- 0.431600
f6))) (* 0.003160 f5) (if<0 (% 0.289333 (if<0 (- f7 0.516733) -0.310867
(- f3 0.994600))) (* (* 0.516733 f7) -0.941965) (- (% 0.535267 f5)
(if<0 f1 f0 0.681067)))),0.992188

Every 4
(if<0 (- (* (% f6 f1) -0.587423) -0.295655) (* (% (- (- -0.203667 f4)
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0.927267) -1.055533) (* -0.158200 (- (- f6 f5) (* f3 -0.740267)))) (*
-0.587423 f7)),0.992188

(if<0 (if<0 (* 0.887867 (* (+ f3 -0.387667) (+ 0.424333 f3))) (+ (% (%
f0 f2) (+ f3 -0.495000)) (% (+ -0.922000 f4) 0.365133)) (+ f4 f6)) (*
-0.352110 (if<0 f7 -0.740267 f6)) (* f3 0.052200)),0.992188

(if<0 (- (* (% -0.584733 f1) (if<0 (+ f4 -0.221533) (- -0.648067 f7) f0))
-0.295655) (* (% f7 -1.055533) (* -0.158200 (- (- f6 f5) (* f3
-0.740267)))) (% -0.584733 f1)),0.992188

Every 6
(- (% (* -0.100933 (- f1 0.575133)) 0.571400) (if<0 (* (if<0 (if<0 f7
f0 0.803933) -0.654600 (% f5 -0.698933)) 0.224133) -0.180333 0.418067))
,0.992188

(- (% (* -0.100933 (- f1 0.575133)) 0.571400) (if<0 (* (if<0 (if<0 f7 f0
0.803933) -0.654600 (% f5 -0.698933)) 0.224133) -0.180333 0.418067))
,0.992188

(- (% (if<0 (if<0 3.837545 0.257333 0.316067) f1 (* -0.100933 (- f1
0.575133))) 0.571400) (if<0 (* f6 3.837545) -0.180333 (if<0 (* f6
0.224133) (- -1.250067 (if<0 f6 -0.650667 0.211200)) 0.418067)))
,0.992188

Faces Dataset #1

Every 0
(% (if<0 (- (% -0.428067 f4) (* 0.801200 -0.971133)) (if<0 (+ (+ -0.344333
f5) (if<0 0.921400 0.429133 -0.414133)) (if<0 f0 (- 0.890733 0.627133)
-0.736267) (+ (+ -0.344333 f13) 0.097600)) (- (- 0.401867 0.712067) (*
0.351400 f0))) (+ -0.736267 (% 0.440067 (- (if<0 0.689200 0.440067
-0.347800) 0.965800)))),0.996528

(% (if<0 (- (% -0.428067 f4) (* 0.801200 -0.971133)) (if<0 (+ (+ -0.344333
f5) (if<0 0.921400 0.429133 -0.414133)) (if<0 f0 (- 0.890733 0.627133)
-0.736267) (+ (+ -0.344333 f13) 0.097600)) (- (- 0.401867 0.712067) (*
0.351400 f0))) (+ -0.736267 (% 0.440067 (- (if<0 0.689200 0.440067
-0.347800) 0.965800)))),0.996528

(% (if<0 (- (% -0.428067 f4) (* 0.801200 -0.971133)) (if<0 (+ (+ -0.344333
f5) (if<0 0.921400 0.351400 -0.414133)) (if<0 f1 (- 0.890733 0.627133)
-0.736267) f10) (- (- (* 0.801200 -0.971133) 0.712067) (* 0.351400 f0)))
(+ -0.736267 (% 0.440067 (- (if<0 0.689200 f0 -0.347800) 0.965800))))
,0.996528

Every 1
(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 f0 0.351400 -0.832400) (-
-0.310200 (* 0.351400 f0))) -1.185417),0.996528

(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 f0 0.351400 -0.832400) (-
-0.310200 (* 0.351400 f0))) -1.185417),0.996528

(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 f0 0.351400 -0.614400) (-
-0.310200 (* 0.351400 f0))) (+ (- (+ 0.050090 f14) (* f14 f1)) (+
0.050090 f14))),0.996528

Every 2
(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 (* 0.351400 f0) 0.253133
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(- f4 1.000000)) (- -0.310200 (* 0.351400 f0))) -1.288493),0.996528

(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 (* 0.351400 f0) 0.253133
(- f4 1.000000)) (- -0.310200 (* 0.351400 f0))) -1.288493),0.996528

(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 (* 0.351400 f0) 0.253133
(- f4 1.000000)) (- -0.310200 (* 0.351400 f0))) -1.288493),0.996528

Every 4
(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 f0 0.298267 -0.778667) (-
-0.310200 (* 0.351400 f0))) -1.149821),0.996528

(% (if<0 (- (% -0.428067 f4) -0.778072) (if<0 f0 0.298267 -0.778667) (-
-0.310200 (* 0.351400 f0))) -1.149821),0.996528

(% (if<0 (- (% -0.428067 (% -0.428067 f4)) -0.778072) (* (if<0 f14
-0.487133 -0.536592) (if<0 f4 (* -0.104800 f4) 0.298267)) (- -0.310200
(* 0.351400 f0))) -1.300260),0.996528

Every 6
(* (if<0 f4 (* (* (* 0.373733 f14) 0.202133) (+ (* f11 0.097200) (-
-0.362400 f2))) 0.298267) (if<0 (+ (% 0.129335 f4) -0.564533) (if<0
(% -0.360733 (* -0.696200 f6)) (if<0 (+ 0.989133 f4) (* f6 -0.519133)
(- -0.307200 f4)) (if<0 (+ f0 -0.747400) 0.684606 1.871153)) (+ (- f0
-0.681400) (+ (* f0 -0.519133) (- f0 -0.681400))))),0.947917

(* (if<0 f4 (* (* (* 0.373733 f14) 0.202133) (+ (* f11 f7) (- 0.974533
f14))) 0.298267) (if<0 (+ (% -0.008933 f4) -0.564533) (if<0 (% -0.360733
(* -0.696200 f6)) (- -0.307200 f4) (if<0 (+ f4 -0.747400) 0.684606
1.871153)) (+ (% (* f9 f17) (- -0.008933 0.038600)) (+ (- f6 -0.374067)
(- f0 f4))))),0.947917

(* (if<0 f4 (* (* (* 0.373733 f14) 0.202133) (+ (* f11 1.871153)
0.989539)) 0.298267) (if<0 (+ (% 0.129335 f4) -0.564533) (if<0 (- (-
f17 0.913867) (- -0.162600 f13)) (if<0 (+ 0.989133 f4) -0.274200 (-
-0.307200 f4)) (if<0 (+ f0 -0.747400) 0.684606 1.871153)) (+ (% (% f3
0.311200) f6) (+ (* -0.307200 0.298267) (- f0 -0.681400))))),0.947917

Faces Dataset #2

Every 0
(- (* (* -0.056600 f19) (- (+ (+ f0 0.756200) (+ f4 -0.670867)) (if<0
0.151467 (% -0.713333 f13) -0.056600))) (if<0 (if<0 (* -0.056600 (-
-0.056600 f0)) f18 -0.713333) (if<0 f18 -0.157200 -0.713333) 0.151467))
,0.996528

(- (* (* -0.056600 f19) (- (+ (+ f0 0.756200) (+ f4 -0.670867)) (if<0
0.151467 (% -0.713333 f13) -0.056600))) (if<0 (if<0 (* -0.056600 (-
-0.056600 f0)) f18 -0.713333) (if<0 f18 -0.157200 -0.713333) 0.151467))
,0.996528

(* (- (+ (% f2 (if<0 -0.538600 0.604733 f6)) (% (% 0.606667 0.261867) (*
f6 0.841267))) f4) (if<0 (- (+ -0.953600 -0.039000) (- -0.200533 f19))
(if<0 f18 0.689200 (if<0 -0.039000 -0.567667 (if<0 -0.200533 -0.285067
0.298267))) (+ (+ 0.987333 f0) f9))),0.996528

Every 1
(if<0 (* 0.725933 (+ (+ (* f17 0.351667) -0.108933) (* (% f19 0.652400)
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-1.423800))) (* (- 0.918267 (* 0.107333 f2)) (if<0 f0 -0.139467
0.657067)) (if<0 (% (% f19 0.104200) (+ f0 -0.577600)) f16 (- (- f19
-0.139467) -0.849133))),0.996528

(if<0 (* (% f19 0.652400) -1.423800) (* (- 0.918267 (* 0.107333 f2))
(if<0 (if<0 f11 f0 (+ f0 0.725933)) f0 0.657067)) (if<0 (% (% f19
0.104200) (+ f0 -0.577600)) -0.110333 (- (if<0 -0.664733 (- f6 f19)
(+ f18 0.524467)) -0.766667))),0.996528

(if<0 (* 0.351667 (+ (+ (* f8 0.351667) (* f16 f7)) (* (% f1 0.313133)
-1.423800))) (* (- 0.918267 (* 0.107333 f2)) (if<0 (+ f0 -0.577600)
-0.139467 0.657067)) (if<0 (- (- f2 -0.748733) (if<0 f18 f2 -0.190850))
f16 (- (- f18 -0.139467) -0.849133))),0.996528

Every 2
(if<0 (+ (+ -0.064070 f18) 0.215200) (+ f19 0.961933) (* 0.554667 (if<0
(- f2 (* f18 -0.582000)) (+ (+ f0 f19) -0.443771) 0.853800))),0.996528

(if<0 (+ (+ (+ -0.064070 f18) f4) (+ (+ f0 (+ f9 0.554667)) f18)) (+ f19
0.961933) (* 0.554667 (if<0 f6 -0.328674 0.961933))),0.996528

(if<0 (+ (+ -0.064070 f18) 0.215200) (+ f19 0.961933) (* 0.554667 (if<0
(- f2 (* f18 -0.582000)) (+ (+ f0 f19) -0.443771) 0.853800))),0.996528

Every 4
(if<0 (* (* 0.184400 f19) -0.782867) (if<0 (% (- (if<0 f2 -0.923800
0.533800) -0.164600) (- (* -0.905267 f19) (+ f5 0.962267))) 0.538533
(if<0 (- (* -0.444933 f18) (* f19 f7)) (* (if<0 f19 f19 0.622467)
0.981867) (if<0 (if<0 f3 f0 0.882867) -0.213733 0.763200))) (+ 0.934867
f18)),0.996528

(if<0 (* (* 0.184400 f19) -0.782867) (if<0 (% (- (if<0 f2 -0.923800
0.533800) -0.164600) (- (* -0.905267 f19) (+ f5 0.962267))) 0.538533
(if<0 (- (* -0.444933 f18) (* f19 f7)) (* (if<0 f19 f19 0.622467)
0.981867) (if<0 (if<0 f3 f0 0.882867) -0.213733 0.763200))) (+ 0.934867
f18)),0.996528

(if<0 (* (* 0.184400 f19) -0.782867) (if<0 (% (- (if<0 f2 -0.923800
0.533800) -0.164600) (- (* -0.905267 f19) (+ f5 0.962267))) 0.538533
(if<0 (- (* -0.444933 f18) (* f19 f7)) (* (if<0 f19 f19 0.622467)
0.981867) (if<0 (if<0 f3 f0 0.882867) -0.213733 0.763200))) (+ 0.934867
f18)),0.996528

Every 6
(if<0 (* (if<0 (+ 0.024733 (% 0.603867 f18)) (+ (* f13 f13) f18)
0.603867) 0.460733) (+ 0.934867 f18) (if<0 (- f0 0.603867) -0.262272
(* 0.274400 (+ 0.931467 (- f6 -0.798267))))),0.996528

(if<0 (* (if<0 (+ 0.024733 (% 0.603867 f18)) (+ (* f13 -0.185600) f18)
0.603867) 0.460733) (+ 0.934867 f18) (if<0 (- f0 0.603867) -0.262272 (*
0.274400 (+ 0.931467 (% 0.947933 f18))))),0.996528

(if<0 (* 0.274400 (+ (if<0 (% f5 f7) f6 (if<0 f6 f6 -0.202467)) (% (-
0.324267 -0.673533) f18))) (+ 0.934867 f18) (if<0 (- f0 0.603867)
-0.262272 (* 0.274400 (+ 0.934867 (% 0.947933 f18))))),0.996528
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Appendix D

Appendix IV: Prime Number
Simpli�cation - Best Programs

Easy Regression

Every 0
(+ (% (if<0 (% -0.791133 (* 0.184067 -0.508333)) (* (- f0 f0) (* f0 f0)) (+ (+ f0
f0) f0)) f0) (+ (+ (* f0 f0) (% (- f0 f0) (% f0 f0))) f0)),0.00016

(+ (+ (if<0 (* 0.164000 -0.312133) (* 0.164000 -0.312133) (- -0.750333 (- f0
0.463600))) (- (- (if<0 f0 0.469067 f0) (if<0 f0 f0 f0)) (if<0 (* f0 f0) (if<0 f0
0.420067 f0) (* f0 f0)))) (- (* f0 f0) (+ (% 0.697667 -0.476933) (- -0.969200 f0))))
,0.000205

(+ (if<0 (if<0 (% (+ f0 f0) -0.850533) (% f0 f0) (if<0 0.434333 0.465467 0.784667))
(if<0 (if<0 (if<0 -0.450867 -0.925467 f0) (if<0 f0 0.397600 f0) (% -0.111133 f0))
(% f0 (+ 0.261067 0.133667)) (+ f0 f0)) (% -0.482533 -0.253600)) (+ 0.600733 (+ (-
(* f0 f0) (if<0 -0.627533 -0.443200 -0.854333)) (+ 0.933733 f0)))),0.000138

Every 1
(+ 2.582333 (+ (* f0 f0) (+ f0 1.428980))),0.000128

(+ 2.582333 (+ (* f0 f0) (+ f0 1.428980))),0.000128

(+ 2.582333 (+ (* f0 f0) (+ f0 1.428980))),0.000128

Every 2
(- (+ (* f0 f0) (+ 3.186244 f0)) -0.802933),0.000117

(if<0 (- (% 0.190781 f0) 0.429000) (- (+ (* f0 f0) (+ 3.186244 f0)) -0.802800) (%
(* -0.865067 (+ -0.388867 f0)) (- (% f0 0.958667) (% -0.432333 f0)))),0.000117

(- (+ (* f0 f0) (+ 3.186244 f0)) -0.802933),0.000117

Every 4
(+ (if<0 (% (+ 0.045467 f0) f0) (+ 2.896934 f0) (% (+ 0.604400 f0) f0)) (+ (* f0
f0) (+ 0.160154 f0))),0.000137

(+ (* f0 f0) (+ (+ 0.999572 f0) (if<0 (% (+ f0 f0) f0) (+ 2.230156 (if<0 f0
0.604400 f0)) (% (+ (+ f0 f0) f0) f0)))),0.000137

(+ (if<0 (% (+ 0.045467 f0) f0) 2.845800 (% (+ (+ f0 f0) f0) f0)) (+ (+ 1.011821
f0) (* f0 f0))),0.000137
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Every 6
(+ 4.010031 (+ (* f0 f0) f0)),0.0001

(+ (+ f0 3.676363) (+ (* f0 f0) f0)),0.0001

(+ 4.010031 (+ (* f0 f0) f0)),0.000101

Hard Regression

Every 0
(+ (+ -0.874800 (* (+ -0.613600 (* (if<0 (* -0.291667 f0) (% 0.876800 f0) (if<0
f0 f0 f0)) (if<0 (% f0 f0) f0 (- f0 -0.505267)))) f0)) (if<0 (- (% 0.718000 f0)
0.055800) (% (- (- (if<0 (+ f0 0.009267) (% 0.892267 0.539533) (* f0 -0.383400))
-0.291667) (if<0 (* (* 0.334467 f0) f0) (+ (* f0 f0) 0.754533) (* (% 0.896800
0.121133) (+ f0 f0)))) (- 0.433600 f0)) (* (% (* (if<0 (* -0.900467 f0) (%
-0.774400 f0) (if<0 f0 f0 f0)) (- (+ 0.114667 0.936000) (- f0 f0))) f0) (- (*
(* (% f0 -0.616533) (- -0.752467 0.038067)) (% (% 0.718000 0.084067) (* f0
0.777600))) (* (- 0.260867 0.718000) (% (if<0 -0.564467 0.190400 -0.480067) 0.261733)))))),7.34199

(+ (+ (- (if<0 (+ (% (* -0.717400 -0.588533) (- f0 f0)) (+ (if<0 f0 f0 0.864467)
(- 0.883933 f0))) (+ (+ (% f0 f0) (* f0 -0.375933)) (% (% 0.358267 f0) (- f0
f0))) (- (+ (if<0 0.716133 f0 -0.816467) (if<0 f0 f0 0.736533)) (if<0 (+ f0 f0)
(+ f0 f0) (* 0.205000 f0)))) (% (if<0 (if<0 (* f0 f0) (% f0 f0) (* 0.541600
0.062067)) (if<0 (if<0 f0 -0.140733 -0.543733) (if<0 0.144400 f0 0.245400)
(if<0 f0 -0.147200 f0)) (if<0 (* -0.019133 -0.046333) (% 0.206267 f0) (* f0
-0.007000))) (% (+ (- f0 0.326733) (* f0 f0)) (+ (- 0.465067 0.569800) (*
0.747400 f0))))) (* (+ -0.613600 (* (if<0 (* -0.291667 f0) (% 0.718000 f0)
(if<0 f0 f0 -0.505267)) (if<0 (% f0 f0) (+ 0.084067 f0) (- f0 -0.505267))))
f0)) (if<0 (- f0 (% f0 -0.506667)) (% (if<0 (* (- 0.260867 (if<0 f0 f0
-0.505267)) (% 0.919333 -0.781133)) 0.870667 f0) (- 0.433600 0.231000))
(* (% (% f0 f0) f0) (- (- (% (* f0 -0.777133) (* f0 f0)) (% (if<0 0.038067
-0.992533 0.986467) (* f0 0.089467))) -0.291667)))),6.99765

(+ (+ -0.874800 (* (+ -0.616533 (* (if<0 (* -0.291667 f0) (% -0.122600 f0)
(if<0 f0 f0 f0)) (if<0 (% -0.506667 f0) f0 (- f0 -0.505267)))) f0)) (if<0
(- (% 0.718000 f0) f0) (% (- (- (if<0 (+ f0 0.009267) (% 0.892267 0.539533)
(* f0 -0.383400)) (% (- 0.153867 0.740200) (+ f0 f0))) (if<0 (* (* 0.334467
f0) f0) (+ 0.718000 0.754533) (* (% 0.896800 0.121133) (+ f0 f0)))) (-
0.433600 f0)) (* (% (* (if<0 (* -0.900467 f0) (% -0.774400 f0) (if<0 f0
f0 f0)) (- (+ 0.114667 0.936000) (- f0 f0))) f0) (- (* (* (% f0 -0.616533)
(- -0.752467 0.038067)) (% (% 0.718000 0.084067) (* f0 0.777600))) (* (-
0.260867 (% f0 -0.506667)) f0))))),7.34199

Every 1
(+ -0.407600 (+ (* -0.977533 (if<0 (if<0 (* (- f0 -0.505267) (- f0
0.513067)) (% f0 -0.314733) (if<0 (* f0 0.890000) 0.036303 -0.713253)) (-
(* 1.766469 (- (% 0.561733 f0) f0)) (% (% 0.899867 f0) (* f0 -0.076067)))
(+ (- (+ f0 f0) (if<0 f0 f0 0.509133)) (* 0.503667 f0)))) (* f0 (+ -0.820000
(* (if<0 (* -0.291667 f0) (% -0.774400 f0) f0) (- f0 -0.505267)))))),29.8924

(+ -0.407600 (+ (* -0.977533 (if<0 (if<0 (* (- f0 -0.505267) (- f0 0.513067))
(% f0 -0.314733) (if<0 (* f0 0.890000) 0.036303 -0.713253)) (- (* 1.766469
(- (% 0.561733 f0) f0)) (% (% 0.899867 f0) (* f0 -0.076067))) (+ (- (+ f0
f0) (if<0 f0 f0 0.509133)) (* 0.503667 f0)))) (* f0 (+ -0.820000 (* (if<0
(* -0.291667 f0) (% -0.774400 f0) f0) (- f0 -0.505267)))))),29.8924

(+ (- f0 -0.505267) (+ (* -0.977533 (if<0 (if<0 (* -1.004890 (- f0 0.513067))
(* f0 -0.311667) 0.890000) (- (* 1.766469 (- -0.505267 f0)) (% (% 0.561733
f0) (* f0 -0.076067))) f0)) (* -0.977533 (if<0 (if<0 (* (- f0 -0.505267)
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(- f0 0.513067)) (% f0 -0.314733) (if<0 (* f0 0.890000) 0.036303 -0.713253))
(- (* 1.766469 (% (% f0 0.687800) (* f0 f0))) (% (% 0.899867 f0) (* f0
-0.076067))) (+ (- f0 (if<0 f0 f0 0.509133)) (* 0.503667 f0))))))
,30.6921

Every 2
(if<0 (if<0 f0 0.448498 (+ -0.685800 (+ (* -1.657868 (+ f0 f0)) 0.855352)))
(% (+ (if<0 f0 (if<0 f0 0.242067 (if<0 (+ f0 -0.657000) 1.000000 0.542171))
f0) (* 15.486235 (- 0.141733 (* 2.229490 f0)))) (* f0 f0)) (* (+ (- (-
0.685800 (* (% 0.164067 f0) (% f0 0.045400))) (- (- (* -0.132867 f0) f0)
-0.691000)) (* f0 f0)) (- -0.996045 f0))),1.33094

(if<0 (if<0 f0 0.448498 (+ -0.685800 (+ (* -1.657868 (+ f0 f0)) 0.855352)))
(% (+ (if<0 f0 (if<0 f0 0.242067 (if<0 (+ f0 -0.657000) 1.000000 0.542171))
f0) (* 15.486235 (- 0.141733 (* 2.229490 f0)))) (* f0 f0)) (* (+ (- (-
0.685800 (* (% 0.164067 f0) (% f0 0.045400))) (- (- (* -0.132867 f0) f0)
-0.691000)) (* f0 f0)) (- -0.996045 f0))),1.33094

(if<0 (if<0 f0 0.448498 (+ -0.685800 (+ (* -1.657868 (+ f0 f0)) 0.855352)))
(% (+ (if<0 f0 (if<0 f0 0.242067 (if<0 (+ f0 -0.657000) 1.000000 0.542171))
f0) (* 15.486235 (- 0.141733 (* 2.229490 f0)))) (* f0 f0)) (* (+ (- (-
0.685800 (* (% 0.164067 f0) (% f0 0.045400))) (- (- (* -0.132867 f0) f0)
-0.691000)) (* f0 f0)) (- -0.996045 f0))),1.33094

Every 4
(if<0 (* (+ -0.871333 f0) (* (+ 1.000000 f0) (+ f0 f0))) (* (- (* 0.424733
(% (if<0 (% f0 -0.527533) -1.115000 f0) (* (* f0 f0) -0.023067))) (* f0
f0)) (if<0 (% -0.191400 (* (* f0 f0) -0.768267)) (* f0 -0.889867) (% f0
(% f0 (- -0.521867 (if<0 f0 f0 0.025867)))))) (- (% (if<0 (if<0 (* f0 (-
-0.989067 f0)) f0 (- 0.593334 f0)) 1.000000 (if<0 (+ (- -0.088933 f0) (+
f0 -0.135333)) 3.243011 (- (+ f0 f0) (if<0 f0 -0.248067 -0.016867)))) (-
0.696267 f0)) (- (- f0 0.322423) f0))),26.2377

(if<0 (* (+ -0.871333 f0) (* (+ 1.000000 f0) (+ f0 f0))) (* (- (* 0.424733
(% (if<0 (% f0 -0.527533) -1.115000 f0) (* (* f0 f0) -0.023067)))
(* f0 f0)) (if<0 (% -0.191400 (* (* f0 f0) -0.768267)) (* f0 -0.889867)
(% f0 (% f0 (- -0.521867 (if<0 f0 f0 0.025867)))))) (- (% (if<0 (if<0 (*
f0 (- -0.989067 f0)) f0 (- 0.593334 f0)) 1.000000 (if<0 (+ (- -0.088933
f0) (+ f0 -0.135333)) 3.243011 (- (+ f0 f0) (if<0 f0 -0.248067
-0.016867)))) (- 0.696267 f0)) (- (- f0 0.322423) f0))),26.2377

(if<0 (* (+ -0.871333 f0) (* (+ 1.000000 f0) (+ f0 f0))) (* (- (* 0.424733
(% (if<0 (% f0 -0.527533) -1.115000 f0) (* (* f0 f0) -0.023067))) (* f0
f0)) (if<0 (% -0.191400 (* (* f0 f0) -0.768267)) (* f0 -0.889867) (% f0
(% f0 (- -0.521867 (if<0 f0 f0 0.025867)))))) (- (% (if<0 (if<0 (* f0 (-
-0.989067 f0)) f0 (- 0.593334 f0)) 1.000000 (if<0 (+ (- -0.088933 f0) (+
f0 -0.135333)) 3.243011 (- (+ f0 f0) (if<0 f0 -0.248067 -0.016867)))) (-
0.696267 f0)) (- (- f0 0.155437) f0))),25.6071

Every 6
(if<0 (+ -0.140534 (if<0 f0 f0 (- f0 -0.990267))) (* (- (* f0 f0) (+
3.003267 f0)) (% f0 0.920467)) (- (+ (- f0 (+ (- (+ -0.871200 f0)
-0.923467) f0)) (+ -2.723933 (if<0 f0 -0.196667 (- f0 -0.196667)))) (+
-3.265909 (% (% 1.291734 (if<0 f0 -0.512933 0.108733)) (if<0 (% f0
-0.624333) (* f0 f0) (if<0 f0 f0 0.218867)))))),4.83683

(if<0 (+ -0.140534 (if<0 f0 f0 (- f0 -0.990267))) (* (- (* f0 f0) (+
3.003267 f0)) (% f0 0.920467)) (- (+ (- f0 (+ (- (+ -0.871200 f0)
-0.923467) f0)) (+ -2.723933 (if<0 f0 -0.196667 (- f0 -0.196667)))) (+
-3.265909 (% (% 1.291734 (if<0 f0 -0.512933 0.108733)) (if<0 (% f0
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-0.624333) (* f0 f0) (if<0 f0 f0 0.218867)))))),4.83683

(if<0 (+ -0.140534 (if<0 f0 f0 (- f0 -0.990267))) (* (- (* f0 f0) (+
2.721467 f0)) (% f0 0.920467)) (- (+ (- f0 (+ (- (* f0 0.949333)
-0.923467) f0)) (+ (- -1.446133 (* 0.234133 f0)) (+ (if<0 f0 (-
-0.245800 f0) (- f0 -0.196667)) -0.739267))) (+ (+ 1.109734 (* (% f0
0.171467) (% -0.739067 f0))) (% (% 1.291734 (if<0 f0 -0.512933
0.108733)) (if<0 (% f0 -0.624333) (* f0 f0) (if<0 f0 f0 0.218867)))
))),4.79333

Coins Dataset

Every 0
(+ (- (if<0 (* f7 0.461333) (* -0.248000 -0.442467) (* -0.828800 0.461333)) (*
(- f5 0.522600) (if<0 -0.746733 0.128733 f5))) (if<0 (if<0 (% (% 0.215000 f7)
-0.011000) (if<0 0.117933 (+ f6 -0.634333) f5) -0.676333) (* (% 0.171867
-0.634333) (* f0 0.195800)) (% (% -0.373133 (if<0 0.226533 f4 0.637067)) (% (*
f0 f2) -0.676333)))),0.953125

(+ (- (if<0 (* f7 0.461333) (* -0.248000 -0.442467) (* -0.828800 0.461333)) (*
(- f5 0.522600) (if<0 -0.746733 0.128733 f5))) (if<0 (if<0 (% (% 0.215000 f7)
-0.011000) (if<0 0.117933 (+ f6 -0.634333) f5) -0.676333) (* (% 0.171867
-0.634333) (* f0 0.195800)) (% (% -0.373133 (if<0 0.226533 f4 0.637067)) (% (*
f0 f2) -0.676333)))),0.953125

(+ (- (if<0 (* f7 0.461333) (* -0.248000 -0.442467) (* -0.828800 0.461333)) (*
(- f5 0.522600) (if<0 -0.746733 0.128733 f5))) (if<0 (if<0 (% (% 0.215000 f7)
-0.011000) (if<0 0.117933 (+ f6 -0.634333) f5) -0.676333) (* (% 0.171867
-0.634333) (* f0 0.195800)) (% (% -0.373133 (if<0 0.226533 f4 0.637067)) (%
(* f0 f2) -0.676333)))),0.953125

Every 1
(if<0 (* (- (* f3 f6) f6) (% f3 -0.806867)) (% 0.112933 (- (if<0 (% -1.078400
f3) (% -0.466467 f7) -0.250600) (% f3 -0.806867))) (- (if<0 (% -0.218067 f3)
(* f1 -0.237467) 0.584577) (if<0 (- (+ f7 -0.242600) (* 0.244133 f7)) (* f1
-0.242600) (* 0.244133 f7)))),0.960938

(if<0 (* (- (* f3 f6) f6) (+ (* f3 (+ f2 f5)) 0.977134)) (% 0.112933 (- (if<0
(% f4 f3) (+ f1 -0.794267) -0.250600) (% f3 -0.806867))) (- (if<0 (% -0.218067
(if<0 f4 f0 f3)) (* f5 0.244133) 0.584577) (if<0 (- (+ f6 f0) (% f7 -0.109133))
(* f5 -0.242600) (if<0 (- 0.610667 f0) (- f6 f3) (- f1 0.939067))))),0.960938

(if<0 (* (- (* f3 f6) f6) (+ f7 0.977134)) (% 0.112933 (- -0.305867 (% f3
-0.806867))) (- (if<0 (% -0.218067 f3) (* f5 -0.237467) 0.584577) (if<0 (-
-0.473600 (% f7 -0.109133)) (* f5 -0.242600) (* 0.244133 f7)))),0.960938

Every 2
(* (- -1.212734 (* f3 f7)) (* (if<0 (if<0 (- f5 f7) f5 (* f7 f0)) 0.364600 (*
(* 0.932733 f7) (- f7 f1))) f7)),0.929688

(* (if<0 (if<0 (- -1.212734 f7) f5 (- f5 0.364600)) 0.364600 (* (* f3 f7)
-1.212734)) (* (- -1.212734 (* f5 (* (- f7 f1) f7))) f7)),0.929688

(* (- -1.212734 (* (if<0 (% f3 f3) (- -0.466467 -0.002000) (- f4 -0.347133))
f7)) (* (if<0 (if<0 (- 0.364600 f7) -0.777667 (+ f3 f6)) 0.364600 (* f7 (* f3
f7))) f7)),0.929688

Every 4
(- (* (- -1.212734 (* f5 f7)) (* (- -1.530467 f2) (* f7 -0.289333))) (* 0.044259
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(if<0 (if<0 f6 (- f7 f2) f5) (* f7 f1) (- -2.428534 (* f7 f2))))),0.945312

(- (* (- -1.212734 (* f5 f7)) (* (- -1.530467 f2) (* f7 -0.289333))) (* 0.044259
(if<0 (if<0 f6 (- f7 f2) f5) (* f7 f1) (- -2.428534 (* f7 f2))))),0.945312

(- (* (- -1.212734 (* f5 0.044259)) (* (- -1.530467 f2) (* f7 -0.289333))) (*
(if<0 (if<0 f6 (- f7 f2) f5) (* f7 f1) (- (+ -0.898067 f6) (* f7 f7)))
0.044259)),0.945312

Every 6
(* (if<0 (- (+ (% f6 f2) f1) (* 0.182400 f2)) 0.170200 (% -0.058067 (- 0.115666
f4))) (if<0 (- (+ f0 f1) (+ (if<0 f3 f1 f0) (% -0.160067 -0.972133))) (* (- f3
f1) -0.461375) (* 0.933733 (- 0.993400 f5)))),0.929688

(- (% (if<0 (if<0 (- f0 f1) 0.257333 (if<0 f5 0.261400 0.316067)) (% (- -0.616800
f0) (+ 0.101800 f6)) (* -0.100933 (- f1 0.575133))) 0.575133) (if<0 (* f6
0.224133) -0.180333 0.418067)),0.929688

(- (% (if<0 (if<0 (- f0 f1) 0.257333 (if<0 f5 0.261400 0.316067)) (% (-
-0.202600 f0) (+ 0.101800 f6)) (* -0.100933 (- f1 0.575133))) 0.575133) (if<0
(* f6 0.224133) -0.180333 0.418067)),0.929688

Face Dataset #1

Every 0
(% (if<0 0.571600 (+ (+ (- f5 f4) (+ 0.569667 -0.775867)) (+ (if<0 -0.808133
-0.832267 f1) (% 0.930133 f1))) (+ (% (* f4 f0) 0.845067) (- 0.223200 0.744800)))
(if<0 (+ f0 -0.405867) (% f0 -0.064200) (if<0 (% -0.064200 (* f7 0.729600)) f4
f2))),0.78125

(% (if<0 0.571600 (+ (* (% -0.379933 f9) (if<0 0.223200 f3 f13)) -0.862000) (+
(% (* f4 f0) 0.845067) (- 0.223200 0.744800))) (if<0 (+ f0 -0.405867) (% f0
-0.064200) (if<0 (% 0.744800 f3) f4 f2))),0.78125

(% (if<0 0.571600 (+ (+ (- f5 f4) (+ 0.569667 -0.775867)) (+ (if<0 -0.808133
-0.832267 f1) (% 0.930133 f1))) (+ (% (* f4 f0) 0.845067) (- 0.223200 0.744800)))
(if<0 (+ f0 -0.405867) (% f0 -0.064200) (if<0 (% -0.064200 (* f7 0.729600))
f4 f2))),0.78125

Every 1
(if<0 (+ f4 f4) (* (% (if<0 f9 0.690733 f2) (- 0.488267 f2)) (* (* (* f8
0.171467) (+ 0.037533 f7)) (if<0 (- -0.550333 f12) (+ f13 f11) (* 0.803533
f16)))) f0),0.579861

(if<0 (+ f4 f4) (* (% 0.690733 (- 0.488267 f2)) (* (* (* f8 0.171467) (+
0.190867 f7)) -0.359133)) f0),0.579861

(if<0 (* -1.019733 (- (% 0.775200 f7) (% 0.207800 f2))) (* (% (if<0 f9 0.690733
f13) (- 0.488267 f2)) (* (- (* f5 -0.164933) 0.514600) (- 0.121934 f3))) f0)
,0.579861

Every 2
(if<0 (* 0.274400 (+ (+ 0.274400 f4) f2)) (* -1.019733 (if<0 (- f0 (- f7 f2))
-0.104600 -0.757134)) (if<0 f0 -0.262272 0.603867)),0.770833

(if<0 (* 0.274400 (+ (+ 0.274400 f4) f2)) (* -1.019733 (if<0 (- f0 (- f7 f2))
-0.104600 -0.757134)) (if<0 f0 -0.262272 0.603867)),0.770833
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(if<0 (* 0.274400 (+ (+ 0.274400 f4) f2)) (* -1.019733 (if<0 (- f0 (- f7 f2))
-0.104600 -0.757134)) (if<0 f0 -0.262272 0.603867)),0.770833

Every 4
(if<0 (* f0 (- (if<0 (* -0.577133 -0.347933) 0.050867 (+ 0.521200 f13)) (%
0.591933 f2))) (if<0 (* f0 0.147267) (% 0.044310 f0) (if<0 f0 (* f15 0.105667)
0.591933)) (* f0 0.591933)),0.809028

(if<0 (* f0 (- f6 (* 13.358903 f0))) (if<0 (* f0 0.147267) (% 0.044310 f0)
(if<0 (* (- 0.950333 f2) -0.297933) 0.770386 0.591933)) (if<0 f9 (* (+ (*
f16 0.046400) (* 0.124933 f9)) 0.107600) 0.645933)),0.770833

(if<0 (* f0 (- -0.377867 (% 0.591933 f2))) (if<0 (* f0 (- (* 0.055267 0.289600)
(if<0 f4 f4 f1))) (% 0.044310 0.770386) (if<0 f0 0.770386 0.591933)) 0.770386)
,0.770833

Every 6
(+ (% (if<0 (* f1 0.422133) -0.075376 0.109800) 0.684933) (if<0 (- 0.058207 (+
f4 f0)) (* 0.721333 f0) (* 0.076267 (if<0 (% -0.950133 f14) -0.616467 (* 0.109800
f13))))),0.78125

(+ (if<0 (- 0.058207 (+ -0.322733 f0)) (* 0.721333 f0) (* 0.076267 (if<0 (*
-0.616467 f4) -0.235000 0.721333))) (% (if<0 (* f1 0.422133) -0.075376
0.109800) 0.684933)),0.78125

(+ (% (if<0 (* f1 0.422133) -0.075376 0.109800) 0.684933) (if<0 (- 0.058207
(* 0.721333 f0)) (* 0.721333 f0) (* 0.076267 (if<0 (* -0.616467 f4) -0.235000
(* 0.109800 f13))))),0.78125

Face Dataset #2

Every 0
(* (if<0 (if<0 (+ (+ -0.007400 0.333867) 0.855533) -0.316867 (- -0.131733 f0))
f4 -0.316867) (if<0 (+ f0 0.385533) -0.131733 (+ 0.248600 (+ (+ -0.905600
0.855533) 0.333867)))),0.770833

(* (if<0 (if<0 0.333867 -0.854467 (- -0.131733 f0)) f4 (% (+ -0.965267
0.266267) f0)) (if<0 (+ f0 f4) -0.131733 (+ 0.248600 (+ -0.007400 (+
-0.007400 0.333867))))),0.770833

(* (if<0 (if<0 (+ (+ -0.007400 0.333867) 0.855533) -0.316867 (- -0.131733
f0)) f4 -0.316867) (if<0 (+ f0 0.385533) -0.131733 (+ 0.248600 (+ (+
-0.905600 0.855533) 0.333867)))),0.770833

Every 1
(if<0 (+ f0 (* (if<0 f18 0.451133 (+ -0.258600 f11)) (* 0.441449 f4))) (* (-
(* (* 0.441449 f4) f3) 0.283933) (% (+ f0 0.631046) 0.920467)) (* 0.441449
f4)),0.777778

(if<0 (+ f0 (* (if<0 f18 0.451133 (+ -0.258600 f11)) (* 0.441449 f4))) (* (-
(* (* 0.441449 f4) f3) 0.283933) (% (+ f0 0.631046) 0.920467)) (* 0.441449
f4)),0.777778

(if<0 (+ f0 (* (if<0 f18 0.451133 (+ -0.258600 f11)) (* 0.441449 f4))) (* (-
(* (* 0.441449 f4) f3) 0.283933) (% (+ f0 0.631046) 0.920467)) (* 0.441449
f4)),0.777778

Every 2
(if<0 (- (if<0 f6 -0.141760 0.014614) (% -0.704733 (+ f18 (+ f18 -0.383667))))
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(* (+ (- (% f18 -0.513800) 1.000000) (- (* 0.655467 f4) (* f0 -0.840000)))
0.141563) 0.666067),0.760417

(if<0 (- (if<0 f6 0.074786 0.141563) (% -0.704733 (+ f18 (+ f18 -0.383667))))
(* (+ (- (% f18 -0.513800) 1.000000) (- (* 0.655467 f4) (* f0 -0.840000)))
0.141563) 0.666067),0.760417

(if<0 (- (if<0 f6 -0.141343 0.014614) (% -0.704733 (+ f18 (+ f18 -0.383667))))
(* (+ (- -0.195552 1.000000) (- (* 0.445000 f4) (* f6 -0.840000))) 0.141563) 0.666067),0.756944

Every 4
(* (- (if<0 (- f4 f19) -1.559267 -0.060236) f4) (* -0.602800 (if<0 f4 (*
-0.085120 f4) (% (* (if<0 f10 0.749600 f7) 0.951933) 0.857067)))),0.746528

(* (- (if<0 (- f4 f19) f13 -0.060236) f4) (* -0.602800 (if<0 (- f4 f10)
-0.068374 (% (* (if<0 f10 0.749600 f7) f19) 0.857067)))),0.746528

(if<0 (+ (if<0 f0 f4 0.603467) 0.483764) (* (if<0 (if<0 f9 f1 0.900200)
-0.689267 f5) 0.483764) (* (if<0 (if<0 (% f6 -0.500867) (+ f4 f0) f1) (if<0
f2 -0.154658 (+ f16 f16)) 0.219733) (+ (if<0 f19 0.483764 1.528936)
0.483764))),0.756944

Every 6
(if<0 (* f4 0.772333) (* f4 0.534600) (* (* f10 (% (* f4 0.202333) (% f19
0.549400))) (* (* f0 1.117133) 0.951933))),0.625

(% (if<0 (if<0 f0 0.284954 (if<0 f5 f16 f9)) 0.514400 (* (- 0.165600 f1)
0.074649)) (% (if<0 (- 1.117133 (* f16 0.637333)) f5 f0) 0.952734)),0.625

(% (if<0 (if<0 f0 0.284954 (if<0 f5 f16 f9)) 0.514400 (* (- 0.165600 f1)
0.074649)) (% (if<0 (- 1.117133 (* f16 0.637333)) f5 f0) 0.952734)),0.625
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