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Abstract

Crossover operator is the predominant operator in most of Genetic Program-
ming (GP) system. The empirical evidence shows that along with building blocks
are constructed bigger and bigger as GP evolution proceeds, the crossover oper-
ator tends to disrupt those building blocks rather than preserve them. The tra-
ditional GP crossover primarily acts as macromutation. Looseness is used for
representing how ”sticky” two nodes at the two ends of the link should be. We
use looseness to control the selection of crossover points in our extended Loose-
ness Controlled Crossover (hereafter referred as eLCC) approach. The eLCC ap-
proach somehow eliminates the disruptive effect of the crossover operator ex-
plicitly. On the other hand, brood recombination crossover is the analogy of
biological crossover, which mainly focus on modelling animal species breeding
and preserves the homology in an implicit way. There exists a brood-diversity
point for brood recombination crossover. The brood-diversity point stops further
performance improvement while increasing brood size.
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Chapter 1

Introduction

1.1 Motivation

Information exchange is more and more in form of graphics, ”animated gif is worth one
mega-word” [7]. The rapid increase on visualized information results in the high cost of
manipulating information by human. This trend calls for automated programs. GP is one
of the approaches to automatic programming.

GP is a relatively new and fast developing technique in evolutionary computation since
1992, when John R. Koza set GP as a individual part in Machine Learning by publishing
the book ”Genetic Programming: On the Programming of Computers by Natural Selection”
and other three proceedings in various conference.

Search techniques are among the most important aspects of any machine learning sys-
tem, because they define the manner in which the system moves through the space of can-
didate solutions. The crossover operator is the predominant search operator in most GP
systems. The crossover operator applies the most of searching time, whereas mutation and
reproduction operators apply the least of search time. GP’s heavy use of crossover is more
than just a preference, because it mimics the process of sexual mating. It is expected that
good building blocks of a GP program are likely to be constructed and spread as they are
exchanged among individuals. The remarkable amount of biological energy that goes into
maintaining species and homologous crossover suggests that crossover may well be an ef-
fective search operator in population-based machine learning systems like GP [4]. It should
be more effective than systems based on random transformations (such as mutations).

However, the randomness of crossover point selection in GP makes that the traditional
GP crossover acts as macromutation. A lot of empirical evidence shows the traditional GP
crossover operator is a disruptive force as well as a constructive force - putting building
blocks together and than tearing them apart [4, 23, 22] and does not consider much about
preserving the homology.

When candidate programs contain small good building blocks, these building blocks
tend to be combined together by crossover, because the probability that the crossover points
are selected inside the blocks is small; but when candidate programs contains large good
building blocks, these building blocks tend to be broken by crossover, because the prob-
ability that the crossover points are selected inside the blocks is big. Along with the GP
evolutionary process is more and more successful in assembling small building blocks into
larger and larger blocks, the whole structure becomes more and more fragile because it is
more prone to being broken up by subsequent crossover.
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Additionally, principal constraints on biological crossover are noticed [4]:

• Biological crossover takes place only between members of the same species.

• Biological crossover occurs with remarkable attention to preservation of semantics.

• Biological crossover is homologous.

These constraints give us the clues that the traditional GP crossover could be improved
in the way that eliminates randomness and adds more control over crossover operation.

1.2 Goals

The overall goal of the project is to investigate various new approaches to improve the
conventional GP crossover operator so as to improve the performance for solving image
recognition problems. These approaches will be examined and compared with the basic GP
crossover on image recognition problems of increasing difficulty. Specifically, the following
research goals will be investigated:

• to find out what features will be relatively suitable for specific tasks of multi-class
object classification, which will be used as a baseline for comparison purpose in the
basic GP approach.

• to investigate the crossover-is-macromutation theory by applying basic GP crossover
and headless chicken crossover on image recognition.

• to design and develop new crossover operator to avoid good building blocks from
being disrupted and preserve homology.

• to investigate one of the most promising GP crossover operator - brood recombination
crossover in detail, justify the relation between brood size and the improvement of
performance as well as the strategy of the dynamic brood size.

1.3 Contributions

In applying the basic GP approach, the fact that different features selected for the tasks
with different difficulty level lead to the different classification performance reveals that
the feature selection and extraction is still a very important aspect for image recognition
problem. Although more ”powerful” features are extracted as inputs to GP system, the
unsatisfactory results on hard task by basic GP approach give the need for improving GP
system in other aspects, rather than from feature selection and extraction. The project has
the following major contributions:

• The investigation on hill climbing crossover — headless chicken crossover on image
recognition domain adds more weights to the crossover-is-macromutation theory. The
investigation also predicts the directions for further efforts on improving traditional
GP crossover, and turns on the light of stagnation of GP runs, that occurs as the result
of what is referred as ”bloat” — the exponential growth of GP ”introns”.
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• The new crossover operator — extended Looseness Control Crossover (eLCC) is intro-
duced, which directly makes effort on the selection of crossover points and the preser-
vation of good building blocks. Giving more control over the selection of crossover
points, eLCC finds a new way to reduce the disruptive effect of crossover. By propos-
ing the concept of link looseness or stickiness, eLCC also finds a way to identify good
building blocks from other parts in a tree.

• The investigation on brood recombination crossover on image recognition problem
makes the trends of improving crossover by homologous crossover more persuad-
able. Also, this investigation issues a new concept — brood-diversity point, which is
believed to be an important aspect to reveal the relationship between the brood size
and the improvement of performance.

1.4 Structure

In this report, Chapter 2 briefly reviews GP and machine learning theory, summarises re-
search problem concerning GP. We describe the three tasks of increasing difficulty and the
corresponding three datasets used in this project in details in Chapter 3. In Chapter 4, we
apply the basic GP approach to the three tasks. In details, we assigns values to the various
experimental parameters for three tasks respectively, gives termination criteria, explains the
details of the features selected and extracted for each task, provides the results based on
different combination of features, summarizes the most suitable features which will be used
in the chapters that follow. In Chapter 5, headless chicken crossover is investigated on the
three tasks, we discuss its advances and shortages based on comparison with basic GP ap-
proach. Chapter 6 introduces the basic concept of link looseness and how we attempt to
control crossover operation by it, i.e. the Looseness Control Crossover (hereafter referred
as LCC). We describes the methodology we used, gives the experimental results of this first
attempt in this direction and analyses further possible improvement in this direction. In
Chapter 7, we review and justify the hypothesis we made in LCC, extend LCC to eLCC,
improve the methodology, give the experimental results and analyse the results. in Chapter
8, we investigate one of the most promising crossover operator — Brood Recombination, we
also compare the results with basic approach and analyse some important and interesting
points in this approach. The last chapter comprehensively compares the four approaches
we investigated in this project, draws our final conclusions, and indicates future work.
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Chapter 2

Background

2.1 Overview of Machine Learning

2.1.1 What is Machine Learning

Since the 1950, computer scientists have made varying degrees of success to give computers
the ability to learn. The most contemporary definition of machine learning is the study
of computer algorithms that improve automatically through experience [12]. All machine
learning systems try to solve, at the highest level, a similar task — how to learn from its
experience of the environment. The learning method has to be told precisely how to learn
rather than how to perform the task required in a specific problem [5]. Machine learning is
a process that defines the environment and the techniques for letting the machine study
the environment by training and evaluate the learning by testing. This process begins with
the identification of learning domain and ends with evaluating and using the results of the
learning.

2.1.2 Important Issues in Machine Learning

The key parts of machine learning process are the ”learning domain”, the ”training set”, the
”learning system”, ”testing” the results and ”monitoring” the learning procedure [22, 4].

A learning domain is set of problems or facts where the ”features” of the domain can
be identified, selected and extracted. For example, for image object recognition problems,
the features, such as brightness, contrast, texture or appearance, could be measured by the
images pixel statistic data and the various calculations on the data.

Machine learning occurs by training on examples, each of which contains data repre-
senting one instance of relationship between the chosen features and a result or results. For
example, in bank loan decision system, two examples can be:

ID Income Marriage Status Num. of Children Credit Record Result
56 $60,000 Married 2 Excellent Approved
66 $45,000 Single 0 Bad Conditional Approval

According to the usage of the examples in a machine learning system, the examples can
be splitted in three sets: training set, test set and validation set.

The collection of examples from which the learning knowledge or rules are induced
is called the training set. A machine learning system goes through the training set and
attempts to learn from the examples.
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The collection of examples for measuring the quality of the learnt knowledge or rules is
called the test set. The examples in test set are from the same domain the system trained
upon and is never used during the system training time.

The ability of a system to predict the results or outputs of the test set is often referred to as
”generalization” [4]. Generalization occurs when learning knowledge or rule also is valid
on test set. Good learning system would learn the true relationship between the features
(inputs) and results (outputs) and ignore the noise existed in training set. However, many
machine learning systems can and do continue to improve its fitness to the training set by
leaning the noise unique to the training example. This results in that the knowledge or rules
learnt highly fits into the training set but has very bad performance in test set. The problem
is called overfitting or overtraining. In causing overfitting, three factors may play a part:

• complexity of the learnt solution: The simpler the model being learnt, the higher the
probability of being generalized.

• amount of time spent on training: too much time spending on training tends to make
learnt knowledge overfit the training set.

• size of training set: the smaller the training set is, the small the reliability of prediction
on test set will be, and the more difficult to get good generalization

To solve the overfitting problem, another collection of examples is used for monitoring and
terminating the training procedure. This set is called validation set, it is independent from
training set and test set and is not directly used in training.

2.1.3 Search Strategies in Machine Learning

A machine learning system targets at find a final solution that can be translated into the
knowledge or rules modelled. The candidate solutions comprise the search space. This
search space is usually huge for non-trivial problems. Thus, each learning system must de-
fine a search scheme operator which decides how and in what order the system will search
through a limited portion of huge search space, i.e. which candidate solution will be eval-
uated first, which next and when to stop the search [4]. There are different types of search
operators, and here we only have a quick look at four of them: blind search, hill climbing
search, simulated annealing search and beam search.

Blind Search

A system with blind search strategy goes through the search space and picking up a candi-
date solution without knowledge of the search space and the results from the previous step
in the search. The search is directed by no heuristics.

Blind search usually moves a tree structure to represent the search space, in which each
node represents a candidate solution and the edges represent the ”jumps” through the
search space among nodes [4].

Blind search traverses the tree either in breadth-first or depth-first manner. Breadth-first
search means searching each level of the tree until a good solution is found or the whole tree
is finished. Depth-first search means searching the maximum depth of the tree down the first
path dictated by the tree. If it reaches a leaf, it backtracks up the tree until it sees a branch
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which has not been visited yet. It searches down this unvisited branch to the maximum
depth. This exploration continues until an acceptable solution is found or the whole tree is
completed.

Both breadth-first and depth-first search are exhaustive type search, and almost all in-
teresting learning domains in machine learning have far too large search spaces to using the
blind search.

Hill Climbing Search

Hill climbing search have one candidate solution evaluated and transformed to make new
candidate solution, the new solution is evaluated. It is kept if it is better than the old one.
Otherwise, it is discarded and the old one is kept and transformed again to make another
candidate solution, the newly formed solution is evaluated, kept or discarded until a termi-
nation criterion is met [4].

The key of hill climbing search is that the system always currently keeps best solution
seen so far. It guarantees that all the solutions previously kept are worse than the one cur-
rently kept, and the one next kept will be better than the one currently kept. Also, it is
usually easier to form a better solution (which is the one next kept) from a good solution
(which is the one currently kept) than from a worse solution (which is the one previously
kept). Thus, hill climbing probably limit its search on a small portion of search space of all
candidate solutions. Hill climbing therefore is not exhaustive type of search.

However, this search strategy suffers from the problem so called ”local maxima” (or
”local minima” if switching our view to gradient descent — targeting at minimum cost)
[16], because it can stunk on a solution which is locally best.

Simulated Annealing Search

Simulated annealing is quite similar to hill climbing, except it avoids local maxima (minima)
problem by allowing the search to continue after it reaches the local peak (in case of hill
climbing) or the local bottom (in case of gradient descent). We can view our tasks as getting
a ping-pong ball into the deepest crevice in a bumpy surface [16]. Once the ball gets into a
local pit, we need to shake the surface so as to bounce the ball out of the pit. The key lies in
that we should shake the surface hard enough for bouncing the ball out of the local minima
but not enough for bouncing the ball out of the globally deepest crevice [16].

Keeping the imagination above in mind, when the search moves to the next solution,
it is not necessarily a best move. It allows random moves. That is, if the move finds a
better solution, it is always acceptable. Otherwise, depending on the stage which the search
is in and how ”bad” the move is, it is accepted or discarded. The ”bad” moves are more
likely to be allowed at the start and more likely to be refused at the end. The likelihood of
being accepted is decreased along with the search proceeds or if ”badness” of the moves
gets bigger.

Beam Search

Unlike blind search and hill climbing which are single point-to-point searches in the search
space, beam search maintains a population of search points. In a beam search, some ”evalu-
ation metric” is used to select out a certain number of the most promising solutions, which
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comprise the so-called ”beam”, for further transformation. All others solutions are dis-
carded. In another word, a beam search limits the points it can find in search space to all
possible transformations that result from applying the search operators to the individuals in
the beam [4]. We will address this search strategy in a little detail in Section 2.2

2.2 Overview of Genetic Programming

Genetic programming (GP) is the automated learning of computer programs [4], which can
be solutions to problems.

Based on the concept of biologically inspired operations (crossover, mutation and re-
production, etc) and the principles of Darwinian natural selection (survival of the fittest),
GP iteratively transforms a population of randomly generated computer programs into a
new generation of programs by applying these operators to individuals selected according
to their fitness. The core of Darwinian natural selection reveals that ”The fittest survive”,
GP follows the same theory, i.e. the individual program with the best fitness are selected to
participate those operations and form the next population. The iteration of transformation
goes on until the termination criteria are satisfied and the final single best program probably
solves the problems under the problem domain.

GP systems can be designed for solving problems by finding the best solution, which can
be presented in many forms, such as linear string, tree structure or graph. GP dealing with
tree presentation of program is called tree-based GP system, we will only address tree-based
GP system in this project.

Most computer programs usually can be presented as a tree structure, in which the root
and the internal nodes are called functions and the leaves are called terminals in GP. Func-
tions are categorized as general functions and domain specific functions, whereas terminals
are usually the attributes/features of a problem and some random selected real numbers.

The fitness function is used to select out a population of the most promising solutions for
further evolution, thereby, GP employs a beam search algorithm form in term of machine
learning. GP retains a population of candidate solutions that is smaller than the set of all
possible solutions, in which the evaluation metric for the beam is the ”fitness function”
and the beam is referred as the ”population” [17]. Machine learning systems have search
operators that regulate both the contents and ordering of the beam. In GP, the contents of
the beam are regulated by the genetic operators: reproduction, crossover and mutation, and
the ordering is regulated by fitness-based selection.

2.2.1 The Primitives of GP

The functions and terminals are the primitives with which a program in GP is built. In a tree
presentation of programs, terminals give valued to the system, whereas functions process
those value provided by terminals. Functions and terminals are regarded as nodes of the
tree presentation of programs.

The Terminal Set

Definition: The terminal set is comprised of the inputs to the GP program, the constants supplied to
the GP program, and the zero-argument functions with side-effects executed by the GP program. [4]
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The terminals, by name, terminate a branch of a tree structure in GP. They are inputs to
the program, constants or functions without argument, and they return an actual numeric
value.

In Section 2.1, we spoke the learning domain and the features that is selected, extracted
to represent the problems under the learning domain, the selected features become the input
data for system to be trained and tested. In the same way, the selected features are put into
training and test sets, and then are input into terminal set.

The terminal set also includes constants with is randomly select in a range at the be-
ginning of the run and keep unchanged. These constants in terminal can construct other
constants within programs by arithmetic function in GP.

The Function Set

Definition: The function set is composed of the statements, operators and functions available to the
GP system. [4]

The function can be selected in a very broad range and be application-specific and learn-
ing domain specific. In general, it may use any programming construct that is available
in any programming language. For example, they can be arithmetic functions (PLUS, MI-
NUS, MULTIPLY or DIVIDE), Boolean functions (AND, OR, NOT or XOR), standard trian-
gle functions (SIN, COS, TAN) assignment statement (ASSIGN X 3), conditional statement
(IF...THEN...ELSE or SWITCH) or loop statement (WHILE...DO, FOR...DO), etc.

Selection of Terminal and Function Set

The selection of terminals and functions, sometimes, can be critical to the success to solve
problems by GP. In general, the abstraction of terminals and functions might be too high or
too low to allow for a sensible evolution of individuals [22]. If two low, the system will find
the task too complicated to move in the various directions necessary to improve a solution.
If two high, the task can not be broken down appropriately.

GP have a significant ability to form new constants by applying function to terminal
constants within a program, we don’t need to assign the same number of constants to all
nodes that labels used for constant. For example, if a program has 120 nodes in its tree
presentation, among which 40 nodes are labelled for functions and other 80 are labelled for
constants. We only need to assign constants to the terminal set with a number much less
than 80. The more the constants assigned, the bigger the search space.

For function set, if it contains too less or too simple functions, it will probably not solve
many very interesting problems. On the other hand, if a function set is too large, it will
increasing the difficulty for finding the solution because of the increased search space.

A good start point for function set might be some simple combinations of arithmetic and
logic operations.

While selecting functions for function set, the closure property must be considered. The
closure property of function set is that each function should be able to accept gracefully all
values it might receive as input. For example, the normal division can not handle zero as
the divisor, so when selecting division as one member of function set, it has to be changed
into sort of ”protected” division which can also handle zero as divisor by explicitly coding
this ability. The closure property of terminal set needs to be considered in the same way.
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In practice, GP has surprising ability to take simple functions and create what it needs
by combining them. In fact, those sophisticated functions are often ignored during GP evo-
lution. It is advised one should not spend too much time designing specific functions and
terminals that seems perfectly attuned to the problem.

The following heuristic guidelines for design terminal set and function set are given [26]:

• Sufficiency and closure.

• As small as possible, to shorten search time

• For relative easy problems, use standard functions

• For relative difficult problems, add more customised functions.

• Have functions permitting non-linear behaviour, such as conditional branch state-
ments (eg. IF...THEN...ELSE), triangle functions (eg. SIN, COS) and exponent factions
(eg. XY ) for hard tasks.

• If the problem is expected to be solved by smooth curves, functions that can generate
smooth curves should be used, and vice versa.

2.2.2 Fitness Function

Purpose of Fitness Function

Definition: Fitness is the measure used by GP during simulated evolution of how well a program
has leaned to predict the output(s) from the input(s) — that is, the features of the learning domain.
[4]

The examples which contains the features (inputs) and results (output) in term of ma-
chine learning are called fitness cases or patterns. As we mentioned earlier in this section,
the GP’s evaluation metric is called a fitness function, which is used to evaluate candidate
solutions upon fitness cases in training set.

Fitness of a program generated by the evolutionary process is evaluated according to the
fitness function defined for the GP system.

Fitness Function Design

Fitness function is designed to give feedback on which individuals should be selected to
participate in the transformation to form the next population and which individuals should
be discarded. So fitness controls the procedure of evolutionary process.

The fitness function should be designed to give graded and continuous feedback about
how well a program performs on the training set. Usually, the fitness function is application-
specific. For example, for image matching, the fitness of a program can be the number of
matched pixels; for classification task, fitness of a program can be the number of correctly
classified examples, error rate or classification accuracy; for GP-controlled agent in a betting
gram, fitness can be the amount of money won. Fitness function is the core of any fitness-
based selection system, like GP.

For complex GP system, there might be more than one goal, instead, multiple goals.
Accordingly, the design of the fitness function needs to consider those multiple goals. For
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example, there are two main goals in object detection system: high detection rate or recall
and low false alarm rate or high precision. A function f(recall, precision), which combines
the two goals, need to be considered correspondingly.

2.2.3 Program Generation and Initialization a GP Population

One of the important parameter of a GP run is the maximal program size permitted. In
tree-based GP, it is usually expressed by maximum depth of a tree, where depth of node is
defined as the minimal number of nodes that must be traversed to get from the root node to
the selected node.

There are several ways of generation programs and initialising GP population: full, grow
and ramped half-and-half.

By full generation method, functions are assigned to the nodes of tree until a given depth
is reached, then the terminals are assigned to form the leaf nodes. This method generates
full, entirely balanced trees. However it results in a uniform set of structures in the initial
population.

By grow generation method, nodes are selected from either functions or terminals. When
a terminal is selected, this branch with the terminal is terminated and the construction goes
on to the next non-terminal branch in the tree.

By ramped half-and-half method, the population is divided equally among individuals to
be initialized with trees having depth 2, 3, ..., n, supposing the maximum depth parameter
is n. For each depth group, half of the trees are generated in full method and the other half in
grow method. Ramped half-and-half method adds the diversity to programs in GP populations
which is very valuable.

2.2.4 Genetic Operators in GP

The initial population usually has very bad fitness. Evolution proceeds by transforming the
initial population by the use of genetic operators. These operators are search operators in
term of machine learning. The most fundamental genetic operators in GP are reproduction,
crossover and mutation.

Reproduction simply copies a selected program from the current generation to next gen-
eration, as show in Figure 2.1 (a). This operator allows good program to survive.
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Figure 2.1: Three fundamental genetic operators in GP: (a) Reproduction (b) Crossover (c)
Mutation

By crossover operation, the genetic material of two selected parent programs is combined
by swapping a subtree of one parent with a subtree of the other, then the new two programs
are put into next generation, as shown in Figure 2.1 (b). This operator tries to mimic the
biology sexual mating behaviour to take advantage of different selected programs with a
population, and integrate the useful attributes from them.

Mutation operates on a single selected program. As shown in Figure 2.1 (c), a random
subtree of the program is replaced by another subtree, which is generated by one of the
full, grow and ramped half-and-half methods. This operator adds the valuable diversity to the
population.

2.2.5 Selection

The most GP systems employ one of the two selection methods for choosing individuals to
participating to the next generation: proportional selection and tournament selection.

The proportional selection specifies probabilities for individuals to be given a chance to
pass offspring into the next generation. The probability is proportionally mapping with the
individual’s fitness.

The tournament selection is based on competition within only a subset of the population
rather than the whole population. The size of the subset is called tournament size. The
individuals in the subset are randomly selected from the whole population. The winner of
the tournament participates the genetic operations (mainly mutation and crossover), and its
offspring replaces the loser.

2.2.6 Main Parameters

There are very important parameters to be chosen appropriated before starting to run a GP
system. Usually, bad choice of important parameters leads to very slow convergence, and
even can not find a satisfied solution. These parameters are [26]:
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• population size: the number of individuals in population.

• maximum number of generations: the maximum index of generation for the evolu-
tionary process to be terminating.

• reproduction rate: the percentage of individuals in next generation that are to be pro-
duced by reproduction.

• crossover rate: the percentage of individuals in next generation that are to be produced
by crossover.

• mutation rate: the percentage of individuals in next generation that are to be produced
by mutation.

• maximum program size: the limitation on how big individual programs in a popula-
tion can be.

Population Size

Population size has two sides of influence in GP run. On one hand, bigger populations take
more time for transforming a generation. On the other hand, because bigger populations
have more genetic diversity and make more areas of search space being explored, it tends
to reduce the number of evaluations for finding a solution. Banzhaf [2] claimed that in
range of 10 to 1,000,000, increasing population size gives a nearly linear improvement in
performance of the system. The selection of population size is also related to number of
training examples. In general, the more the training examples, the larger the population
size required. A common setting is 500 supposed by Koza.

Maximum Number of Generations

The argument on maximum number of generations is boiling in GP community. One point
of view is that 50 generations are enough, because it is believed that what has not been
achieved in a GP run in 50 generations will never be achieved. Another view supports that
interesting evolution can be delayed to generation 1000, even more. Some researchers have
made their efforts on the study of how to combine population size with maximum number
of generations, i.e. small population size with big maximum number of generations vs.
large population size with small maximum number of generations and how to trade off.
Some researchers set the strategy: Start with large maximum number of generations and
make early stop when constructive crossover falls to below 10% of all crossover events. A
well recognized starting point for maximum number of generations is between 50 - 100.

Reproduction Rate vs. Crossover Rate vs. Mutation Rate

If a basic GP system uses only reproduction, crossover and mutation operator, then the sum
of reproduction rate, crossover rate and mutation rate should be 100% according to their
definitions. The discussion on how to allocate the value amongst the three operators has
been hot since early 1990’s.

The goal of reproduction is to allows the best individuals in a population survives,
crossover is for combining the advantage of different selected individuals in a population
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and establish, whereas mutation is to keep the diversity of a population. Form their impor-
tance of view, crossover and mutation are more critical than reproduction in simulating the
biological evolution.

Comparing the importance between crossover and mutation, Koza [10] proposed that
mutation is useless in 1992. Wolfgang Banzhaf, Frank D. Francone and Peter Nordin [3]
found that a balance of crossover and mutation (50% vs. 50%) led to better results for
difficult problems in 1996. Harries argued that mutation is more useful than crossover in
1997, and Matthias Fuchs, Dirk Fuchs and Marc Fuchs [6] claimed in 1998 that mutation
is more useful when they used GP to solve the problems of combinatory logic. However,
the most up-to-date common sense is that crossover plays a dominant role, especially in the
early stage of the evolutionary process. In most GP system, GP crossover has been used
for the claim that GP search is more effective than system based on random transforma-
tions/mutation, like annealing search. So a common setting is high rate of crossover and
low rate of mutation; when the acceptable results cannot be obtained, mutation rate can be
increased.

Maximum Program Size

The program size can be limited in two ways: maximum number of nodes allowed in an
individual program and maximum depth of tree structure. The definition for depth of a
node is referred to Section 2.2.3. The most commonly used one in tree-based GP is the
maximum depth.

GP system usually uses different values for initial generation and the further evolved
generation. Initial maximum depth is defined as the maximum depth of randomly gener-
ated programs in the initial population. Maximum depth is defined as the maximum depth
permitted for programs resulting from crossover and mutation operations [26]

Typical initial program size should be very small to allow the system build up good
individuals piece by piece. Giving small value to initial program size eases the process that
building blocks grow from small size to large size. For difficult problems, the initial program
size needs to be tried with larger value if no acceptable results can be obtained. This will
allows the GP system to start with pre-matured complexity and avoids early local minima.
In general, the initial program size should be less 10 and 4 - 6 is a good starting point [22].

when giving a value to maximum program size, the general rule is that this size should
be large enough so as that the GP system has a sufficient search space. Maximum program
size is task specific, and it should become bigger along with increasing difficulty of tasks.
Starting point should less 10 for easy tasks and up to 25 or more for hard tasks.

2.2.7 The Basic GP Algorithm

Holding all the definitions of main aspects and key parameters of GP in hand, now we can
describe the basic GP algorithm by steps that a GP system goes through during a run as
follow [8]:

• Initialize a population of individuals programs composed of function set and terminal
set at generation 0

• Go through evolution loop, which iteratively performs the following sub-steps:
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1. Measure the fitness of each individual program in the population against the
training set composed of fitness cases

2. Select 1 or 2 individual programs based on best fitness to participate new indi-
vidual program(s) generation

3. Transform individual program(s) and insert the transformed individual program(s)
to new population by applying one of the following operations:

(a) Reproduction: duplication of one selected individual program, see Section
2.2.4

(b) Crossover: recombination of randomly selected parts of two selected indi-
vidual programs, see Section 2.2.4

(c) mutation: random mutation of a randomly selected parts of one selected in-
dividual program, see Section 2.2.4

4. Designate the best individual program as execution result if one of the termina-
tion criteria is satisfied, otherwise goes to step 2

2.3 Related Work

The parameters for controlling the run can be optimized for a specific task, if we run many
different experiments with different combination of different parameters’ values. Then the
optimized parameters usually improve the performance of the GP system for that specific
problem. But as the difficulties of the tasks increase, the performance can not longer meet
the requirement only by optimized parameters, new improved approaches are called for
[24].

2.3.1 Recent GP Approaches On Result Designation and Probability-based Fit-
ness Function

The researchers have got great consequence on investigation of improving GP approaches.
Amongst them, SCBD (Slotted dynamic class boundary determination) [18], CDCBD (cen-
tered dynamic class boundary determination) [18] and probability based GP [19] are very
recent reported approaches on multiple classification task.

The output of a numeric expression GP classifier is a numeric value, which should be
further translated into a class label. Traditionally, this translation is made by falling each
output in the region separated by man-made predefined thresholds/boundaries. However,
firstly, it is very difficult to find the appropriate threshold/boundaries value for multiple
classification problems and involve some hand-craft work; secondly, value inappropriately
set will often make long training time and poor effectiveness, consequently, resulting com-
plicated computer programs.

Both CDCBD and SCBD approaches use new translation strategies to allow each genetic
program to use a set of dynamically determined class thresholds, the value of these thresh-
olds will be automatically determined and regulated along with the evolutionary process.
Probability-based GP is an even more creative approach. It evolves not only the translation
strategy but also fitness measurement.

However, these improved approaches did not consider the disruption of good ”build-
ing block” by crossover operator, though they have a great step ahead for overcoming the
shortage due to the static man-made predefined thresholds and fitness measurement.

14



2.3.2 Crossover — The Center of the Storm

Crossover is the predominant search operator in most GP systems [25] [22] [4]. In Genetic
Algorithm (GA), it is proved that there are good building blocks which can improve the
fitness of individuals. Theoretically, GP should work faster than systems which just base
on mutations, because good building blocks can grow larger and larger to form better in-
dividuals by crossover operation. However, the randomness of crossover point selection
increases the risk that good building blocks are disrupted, particularly in the later stage of
evolutionary process.

The famous Gedanken Experiment has a look at the probability of disruption issue of
crossover. It is concluded that there might be two different phases in a GP run: in the first
phase, the building blocks are relatively small in early stage of evolution process, the proba-
bility of the building blocks being disrupted by crossover are small too, where the evolution
completely depends on fitness; in the second phase, the building blocks are large enough in
later stage of evolution process, the probability of building blocks being disrupted are large,
too, where the evolution depends on both fitness and individual structure. As an extreme
example, when a final best program is evolved, the whole program is probably a perfect
building block, if we apply the crossover operator to this program, then the probability of
building block being disrupted is 100%.

Additionally, the effect of crossover on the relative fitness of parents and their offspring
was measured in 1995 on tree-base GP system[13] [14]. The measurement shows that the
fitness of the children is less than half the fitness of the parents in about 75% of all crossover
events. It is concluded that crossover has an overwhelmingly negative effect on the fitness
of the offspring of the crossover.

2.3.3 Standard GP Crossover — A Type of Macromutation

Lang [11] lunched his argument that traditional GP crossover did not perform nearly as
well as a macromutation operator in 1995. His whimsically dubbed crossover operator —
headless chicken crossover is a macromutation operator and in the form of hill climbing
search. Lang claimed that headless chick crossover was much better than traditional GP
operator. But his conclusion is only based on fairly easy task (Boolean 3-multiplexer prob-
lem) and therefore questionable. Because every machine learning technique has a bias - a
tendency to perform better on certain types of problems than on others [4], whereas Boolean
3-multiplexer problem has no local minima, one can conclude that the bias of hill climbing
algorithm is particularly well for Boolean 3-multiplexer problem. The mutate-simulated an-
nealing and hill climbing crossover should be applied to more suites of problems to extend
this theory.

2.3.4 Some Other Improved Crossover Operators Reported

The two most promising approaches developed recently are brood recombination by Tackett
[20] and smart crossover by Iba and Garis [9]. Tackett create a ”brood” each time crossover
was performed to model the observed and only two best children survives and all others
die. This is an analogy of the observed fact that many animal species produce offspring far
more than the expected to live. This approach will be addressed in Chapter 8. In general,
this approach focus on making better crossover, but it did not consider intelligent selec-
tion of the crossover point, though it dose preserve the building block and homology in
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a sort of hidden way. Iba and Garis add intelligence to the crossover operator, which be-
comes ”smart crossover”. Smart crossover evaluates performance for subtrees and selects
the crossover point in the individual program based on these evaluations. This approach
focus on determining the crossover points and constructing good building block, but it did
not consider the homology. Eg. assume that a good building block is built up by smart
crossover, it might be moved into a new individual that does not use it as a good building
block, in another word, it might be moved into an inhospitable context.

The authors of [4] proposed a homologous crossover operator (unnamed) in their works.
This crossover operator measures the structural similarity functional similarity of each sub-
trees by edit distances, between two programs. The two measurements are interpreted as
probabilities and then use it to select crossover points. The building block hypothesis is still
weak today, this is the main weakness of the proposal, especially when the proposal is lack
of support of experimental results.

2.4 Clues from Biological Crossover

The fact that the traditional GP crossover reduces the fitness of offspring substantially com-
paring to their parents, stands in stark contrast to biological crossover. There are very inter-
esting facts in biology that are sighted by GP researchers and this project will seek/investigate
improving crossover by following some of these clues:

• In biological crossover, the gene is swapped only with the corresponding gene in the
other parent. For example, the skin color gene never swapped with tallness. Further-
more, the different alleles in the swapped genes make only minor changes on the basic
function after crossover due to homology. However, there is no requirement either on
the relation between the two swapped context nor on the similarity between two fac-
tions that two swapped subtrees fulfil due to randomness of crossover points selected.

• The biology crossover swaps only between similar genetic material. This keeps gene
function with only minor change. For example, the hair color gene crossed over in
the new chromosome still decides hair color rather than other aspects of the offspring
and has relatively independent function from other gene. However, once a good build
block is constructed by GP crossover, it would be likely disrupted by crossover rather
than preserved.

• The different species rarely mate, eg. a butterfly rarely crossover its DNA with a
dragon fly. But, in GP system, it is very hard to say that the individual programs
in a population are in the same specie — they are just randomly initialized.

These hints suggest there might still be room for improving the traditional GP operator.

2.5 Chapter Summary

GP, as another machine leaning system, represents a problem as the set of all possible com-
puter programs, uses the genetic operators: reproduction, crossover, mutation to transform
candidate solution into new candidate solutions in its evolutionary process. GP uses a
beam search, where the population size constitutes the size of the beam and the fitness
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function serves as the evaluation metric. Empirical evidence shows applying crossover to
program structures often destroy valuable ”building blocks” of sub-programs, randomness
in crossover point selection reduces the ability to mimic the biological crossover. Crossover
operator becomes the center of the storm. Although there are lots of newly developed
crossover operators, there are still rooms worthy to make further effort on crossover. New
approaches on crossover operators need to be developed to minimize its disruptive effect as
well as preserve the homology.
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Chapter 3

Tasks and Datasets

To compare the performance of various approaches investigated in this project, we design
three tasks under image recognition problem domain. They are all multi-class object classi-
fication problems but varied in difficulty.

3.1 Shape Dataset

The first task is to classify a group of shapes on images, which are computer generated
with a certain level of noise. Correspondingly, the first set of images is generated to give
different shapes with some certain noise in each pixel against a noisy background, as shown
Figure 3.1. Besides the shape difference, the different noise setting also makes brightness
and contrast for each class to be different too. The three classes are named as black circle, grey
square and white circle. There are 120 objects cutouts from these images distributed evenly
among the 3 classes, i.e. there are 40 objects cutouts for each class. This set is referred as
shape for the convenience of presentation.

Figure 3.1: Sample image in dataset Shape
.
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3.2 Coin Dataset

The second task is to classify coins appeared in different sides (heads and tails) in images,
which are photographed with relatively large noise. Accordingly, the second set of im-
ages contains a bunch of New Zealand 10-cents coins against a highly noisy background, as
shown Figure 3.2. They are placed in different orientations and appeared in different sides,
i.e. head and tail. Thus, if the highly cluttered background is treated as a class, totally 3
classes are formed:head, tail and background. There are totally 500 objects cutouts from these
images are made. Among the 500 cutouts, there are 160 cutouts for head, 160 cutouts for tail
and 180 cutouts for background respectively. This set is referred as coin.

Figure 3.2: Sample image in dataset Coin
.

3.3 Texture Dataset

The third one to classify different texture, which are also photographed and looked very
similar. So, the third set of images is a series of 4 similar textures images, which are taken
by a camera under the natural light, as shown in Figure 3.3 (c). The images are taken out
from a web-based image database held by SIPI of USC [21]. The four texture classes are
named woollen cloth, wood grain, raffia and herringbone weave respectively. Because they are
quite similar in every aspect and character, this set is the most difficult one to be classified.
There are 900 sample cutouts from 4 large images, each class has 225 samples. This dataset
is referred as texture.
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Figure 3.3: Sample images in dataset Shape

3.4 Summary on Characteristics of Datasets

The main characteristics of the datasets corresponding to each task are summarised in Table
3.1.

Table 3.1: Main characteristics of datasets

Dataset Num. of Similarity Class Name Mean Noise Degree or Num. of
Classes Degree Std. Deviation cutouts

black circle 10 5 40
Shape 3 low grey square 180 50 40

white square 220 220 40
head unknown high 160

Coin 3 middle tail unknown high 160
background unknown high 180
woollen cloth unknown middle 225

Texture 4 high wood grain unknown middle 225
raffia unknown middle 225
herringbone weave unknown middle 225
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Chapter 4

Basic Approach

In applying the GP basic approach to the three tasks described in 3, we mainly focus on
feature selection and extraction.

4.1 Chapter Goals

The feature selection and extraction are always specific down to the task level. Even under
the same problem domain, different tasks require different features input into GP system.
We target at the following goals in this chapter:

• to identify suitable features, particularly for Texture classification.

• to provide a baseline for later chapters for the purpose of comparison and analysis.

4.2 Feature Selection, Extraction and Terminal Set

For the simple object classification tasks, the commonly used features under spatial domain
are good enough to construct fitness cases. However, for some difficult tasks, such as classi-
fication of similar texture, the features under spatial domain are no longer sufficient. Some
features under other domains might be needed to compose the terminal set.

For those image objects which do not have uniformity of intensities in small local regions,
such as texture and medical X-Ray images, we need to extract some features which can
reflect the variability in grey scale as well as capture the coarseness or fineness of surface of
an object. This requires that the features under frequency domain are selected for putting
into GP terminal set for some tasks like texture classification.

When pixels in an image has a sufficiently strong central tendency, i.e. a tendency to
cluster around some particular value, then it may be useful in characterizing the image by a
few numbers that are related to its moments [15] — the sums of integer powers of the pixel
values.

Besides lower-order histogram features —Mean and Standard Deviation, two higher-
order momentum features — Skewness and Kurtosis, are often extracted for hard tasks. In
out application of basic GP approach, several combinations of these features are assigned to
GP terminals for more difficult tasks (coins and texture).
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4.2.1 Mean as the 1st Order Moment

Mean is to estimate the value around which central clustering occurs, its formula is:

X̄ =

∑

N

i=1 Xi

N

The pixels distribution of an image with larger mean will be on the right to the distribution
with smaller mean, as shown in Figure 4.1 (a).

larger mean

1st Moment (Mean)

smaller mean larger standard deviation

2st Moment (Standard Deviation)

smaller standard deviation

(a) (b)

positive skewness

3rd Moment (Skewness)

negative skewness  leptokurtic

4th Moment (kurtosis)

platykurtic

(c) (d)

Figure 4.1: Pixels distribution of images: (a) larger mean vs smaller mean; (b) larger standard
deviation vs smaller standard deviation; (c) positive skewness vs negative skewness; (d)
platykurtic vs leptokurtic.

4.2.2 Standard Deviation as 2nd Order Moment

Having characterized a distribution’s central value by 1st moment, one conventionally next
characterizes its ”width” or ”variability” around that value. Standard Deviation is such a
feature used to describe the dispersion of the pixels in an image, its formula is:

σx =

√

∑

N

i=1 (Xi − X̄)
2

N

If two distributions have same Mean value, the one with larger Standard Deviation value
will have a wider distribution body than the one with smaller Standard Deviation value, as
shown in Figure 4.1 (b).

4.2.3 Skewness as 3rd Order Moment

Skewness is to characterize the degree of asymmetry of a pixel distribution around its Mean.
Unlike Mean and Standard Deviation which have the same units as raw pixels — ”grey
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degree”, the skewness is defined in such a way as to make it has different unit from row
pixels. It is a pure number that characterizes only the shape of pixel distribution. Its formula
is:

Skewness(X) =

∑

N

i=1 (Xi − X̄)
3

Nσ3

If skewness is negative, the pixels are spread out more to the left of Mean than to the right,
and vice versa, as shown in Figure 4.1 (c). The Skewness of a normal distribution is zero.

4.2.4 Kurtosis as 4th Order Moment

Kurtosis measures how outlier-prone the pixel distribution is, that is, measures the relative
peakedness or flatness of the distribution. Its formula is:

Kurtosis(X) =

∑

N

i=1 (Xi − X̄)
4

Nσ4

The kurtosis of a normal distribution is 3. Distributions that are more outlier-prone than the
normal distribution have kurtosis greater than 3, and have a sharp peak around Mean. It is
termed leptokurtic [15]. Distributions that are less outlier-prone have kurtosis less than 3,
and have a flat around Mean. It is termed platykurtic [15], as shown in Figure 4.1 (d).

4.3 Function Set

In this project, we use the combination of normal arithmetic operators { +, -, *, % (protected
division) }, Boolean statement {IF...THEN...ELSE}to compose in function set. Thus F = {
+, -, *, %, IF...THEN...ELSE }. The meaning of ”protect” can be referred to Section 2.2.1
Page 8. In our application, we let protected division returns 0 when it takes 0 as divisor.
All the normal arithmetic operators form 2nd order nodes (i.e. take two arguments). Like
the normal conditional branch, IF...THEN...ELSE statement form 3rd order nodes and takes
three arguments: the first one is used as IF condition, the other two are used to be returned
according to the evaluation of IF condition.

4.4 Parameters Selected and Termination Criteria

The fitness cases for each of the three sets are uniformly split into 3 portions to form train-
ing set, validation set and test set respectively. As the evolution proceeds, fitness drop,
which indicates the over-fitting point, is checked every 10 generations, for an early stop-
ping, although the best program and its fitness on validation set are recorded in the every
generation base.

Both in initialization of 0 generation and mutation of programs, we use ramped half-
and-half method to keep a certain degree of grogram tree balance and also a certain degree
of randomness.

4.4.1 Parameters

The parameters are optimized based on many experiments with different parameter val-
ues. The parameters are summarized as below. For convenience of quick reference, we also
summarize them in Table 4.1 for each task.
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• population size: 300 for Shape, 500 for both Coin and Texture

• initial-max-depth: 5

• initial-min-depth: 3

• max-depth: 5 for Shape, 6 for Coin and 8 for Texture

• min-depth: 3

• maximal number of generations: 50

• crossover rate: 50%

• mutation rate: 30%

• reproduction rate: 20%

Table 4.1: Main parameter values for applying basic GP approach on shape, coin and texture
datasets

Dataset Parameter Value
Pop. Size 300
Initial Max. Depth 5
Initial Min. Depth 3
Max. Depth 5

Shape Min. Depth 3
Max. Num. of Generations 50
Crossover rate: 50%
Mutation rate: 30%
Reproduction rate 20%
Pop. Size 500
Initial Max. Depth 5
Initial Min. Depth 3
Max. Depth 6

Coin Min. Depth 3
Max. Num. of Generations 50
Crossover rate: 50%
Mutation rate: 30%
Reproduction rate 20%
Pop. Size 500
Initial Max. Depth 5
Initial Min. Depth 3
Max. Depth 8

Texture Min. Depth 3
Max. Num. of Generations 50
Crossover rate: 50%
Mutation rate: 30%
Reproduction rate 20%

4.4.2 Termination Criteria

We terminate a GP run when any of followings is satisfied:
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• when the classification accuracy on the training set is 100%, OR

• when the maximal generation number (50) is reached, OR

• when over-fitting point is reached

4.5 Fitness Function

In this project, we calculate the correct classification percentage for a program over a set of
fitness cases as the program’s fitness. That is to say, a program’s fitness is its classification
accuracy.

The program in a population with the highest fitness is regarded as the best program. Its
fitness on validation set is considered as the whole population’s fitness when dealing with
the termination criteria concerning overfitting.

4.6 Experimental Results

The final performance measure is in term of effectiveness and efficiency. The effectiveness
for classification refers to the classification accuracy, which is calculated fitness of best pro-
gram against test set. The efficiency is evaluated on both the training time and the index of
the generation at which the final solution is found. The results of each experiment on each
task are the average values based on 80 runs. The results are summarized in the Table 4.2.

Table 4.2: Results comparison of different feature combinations on the shape, coin and texture
datasets using basic GP approach.

Dataset No of Exp. Feat Dscptn Gen. Time(s) Acc(%)
Exp. 1 2 feats (Mean, SD) 7.51 0.07 97.62 %

Shape Exp. 2 4 feats (+ CircMean, CircSD) 8.59 0.09 96.16 %
Exp. 3 8 feats (+ More CircMean, CircSD) 9.28 0.10 93.81 %
Exp. 4 2 feats (Mean, SD) 28.62 1.85 91.16 %

Coin Exp. 5 4 feats (+ CircMean, CircSD) 28.64 1.78 90.37 %
Exp. 6 10 feats (+ More CircMean, CircSD) 32.70 2.09 93.13 %
Exp. 7 12 feats (+ Skew, Kurt) 31.51 2.01 94.67 %
Exp. 8 2 feats (Mean, SD) 18.32 1.10 58.19 %
Exp. 9 4 feats (+ CircMean, CircSD) 21.57 1.23 62.17 %

Texture Exp. 10 6 feats (+ More CircMean, CircSD) 25.73 1.57 59.23%
Exp. 11 4 feats (Mean, SD, Skew and Kurt) 29.99 1.83 71.45 %
Exp. 12 6 feats (+ CircMean, CircSD) 26.76 1.59 71.35 %

4.6.1 Abbreviations

The abbreviations in Table 4.2 are explained as follows:

• Mean: Mean over all the pixels of a sample image cutout, referred as overall Mean in
the text.
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• SD: Standard Deviation over all the pixels of a sample image cutout, referred as overall
Standard Deviation in the text.

• CircMean: Mean on a selected circle on an image cutout, referred as circle Mean in the
text.

• CircSD: Standard Deviation on a selected circle on an image cutout, referred as circle
Standard Deviation in the text.

• Skew: Skewness of the pixel distribution of an image cutout.

• Kurt: Kurtosis of the pixel distribution of an image cutout.

• ”+”: The symbol ”+” means that beside the features used in the last experiment, more
features which follows ”+” are added.

• Exp: Experiment.

4.6.2 Feature Combinations and Experimental Arrangement

We only extract Mean / Standard Deviation for shape dataset, because it is a relatively simple
task. The first experiment on shape dataset (Exp. 1) is based on overall Mean / Standard
Deviation. The second experiment (Exp. 2) is based on 4 features: besides overall Mean
/ Standard Deviation, one pair of circle Mean / Standard Deviation is added. In the third
experiment (Exp. 3), we two more pairs of circle Mean / Standard Deviation on two different
circles on a cutout are added. Thus, we make Exp. 3 to be based on 8 features.

For coin dataset and texture dataset, we extract features in the similar way, except that we
add the Skewness and Kurtosis for some experiments.

For coin dataset, the first experiment (Exp. 4) is based on 2 features: overall Mean Stan-
dard Deviation. The second experiment (Exp. 5) is based on 4 features: besides overall Mean
/ Standard Deviation, a pair of circle Mean / Standard Deviation are added. The third ex-
periment (Exp. 6) uses 10 features: overall Mean / Standard Deviation plus 4 pairs of circle
Mean / Standard Deviation. In the last experiment (Exp. 7), we use previous 10 features in
Exp. 6, plus the Skewness and Kurtosis, i.e. we get 12 features in total.

For texture set, the feature selection for the first two experiments (Exp. 8 and Exp. 9)
is same as coin; In the third experiment (Exp. 10), we add one more pair of circle Mean /
Standard Deviation, forming 6 features. In the forth experiment (Exp. 11), we use 4 fea-
tures: overall Mean, overall Standard Deviation, Skewness and Kurtosis. The last experi-
ment (Exp. 12) is based on 6 features: 4 features are same as last experiment, plus a pair of
circle Mean / Standard Deviation.

Such a feature selection and experiments arrangement are mainly for two purposes:

• try to reveal whether the better performance can be obtained with more features used.

• try to reveal whether the features which characterize different aspects of an image
cutout help in improving performance
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4.7 Analysis and Discussion

A general rule revealed by all results is the more the features used for the terminal set, the
longer the time to converge. This is because adding more features to the system enlarges the
search space.

4.7.1 Analysis for Shape Task

In general, the results on shape show that Mean / Standard Deviation can lead to satisfactory
results for easy image recognition problem.

Comparing Exp. 1, 2 and 3, we can see along with adding more circle Means / Standard
Deviations to the terminal set, the performance (both effectiveness and efficiency) is getting
worse. This is not a surprising result. Because the noise in each pixel of one class of shape
is generated randomly around its Mean and all pixels is uniformly spread over the whole
shape, the Circle Mean / Standard Deviation characterize the same aspects as the overall
Mean / Standard Deviation. Adding more circle Means and Standard Deviations is just
to increase the search space without adding valuable candidate solution. Consequently, it
makes the efficiency worse.

Furthermore, circle Mean / Standard Deviation are calculated on less pixels than overall
Mean / Standard Deviation, its ”quality” is not as good as overall Mean / Standard Devia-
tion. This adds more noise to features that belongs to Mean / Standard Deviation Category.
In machine learning term, it increases the search space by adding worse candidate solution
to it. Therefore, it decreases the effectiveness as well.

4.7.2 Analysis for Coin Task

In general, the results on coin dataset show that overall Mean / Standard Deviation can ob-
tained the reasonable performance on tasks with middle-level difficulty like em coin (Exp.
4), but adding different features can improve the classification accuracy (Exp. 5, Exp. 6 and
Exp. 7). It should be noticed that although overall Mean / Standard Deviation and circle
Mean / Standard Deviation are still in same category, but they capture different characteris-
tics of the object appearance this time, becausecoins do vary their appearances radically.

The interesting fact (refer to Exp. 4, Exp. 5 and Exp. 6) is that adding circle Means /
Standard Deviations sometimes makes effectiveness worse, and sometimes better. For coin
task, exactly selecting the circle center and radius becomes the key. If the selection of circle
center and radius happens to make the circle Mean / Standard Deviation capturing some
characteristics of a coins appearance, this set of features will help in improving the effective-
ness. Otherwise, it adds erroneous values to terminal set and consequently decreases the
classification effectiveness. The circle center and radius are manually selected during object
cutouts preparation.

The two higher-order momentum features are originally expected for improving clas-
sification accuracy for texture set, fortunately, they also help in coin set. Adding Skewness
and Kurtosis to terminal set (Exp. 7) gets the highest effectiveness than just using Mean
/ Standard Deviation (Exp. 4, 5 and 6) for this task. This reveals that the higher-order
moment-based features do reflect some aspect of image appearance such as fineness.
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4.7.3 Analysis for Texture Task

The experiments on texture dataset clearly reveal that Skewness and Kurtosis add ”power”
to features. It makes the classification accuracy improved obviously. In detail, comparing
Exp. 9 with Exp. 11 as well as Exp. 10 with Exp. 12, we find that Exp. 9 and Exp. 11, Exp. 10
and Exp. 12, use same number of features, but the classification accuracy of Exp. 11 and Exp.
12 are much better than Exp. 9 and Exp. 10. At the same time, they do not decrease much on
the classification efficiency. One should conclude that adding different ”type” of features,
which capture different aspects over the object cutout, will greatly increase the classification
effectiveness. The feature selection should mainly focus on quality of features rather than
quantity of features.

It is same that adding circle Means / Standard Deviations sometimes makes effectiveness
worse, and sometimes better, for texture task, too. But we argue that the reason is absolutely
different. Although texture does vary its pixel value in radius direction, this variation is
occurs only in a small location. In larger scale, there is no radical variation.

However, there is no satisfactory classification accuracy reached only by adding higher-
order momentum features. More ”powerful” features (such as ”energy”) or more ”power-
ful” feature extraction methods (such as Wavelet transform) are needed for a good result,
but this is out of the scale of this project.

We also need to find other ways around GP itself, rather than feature selection and ex-
traction, to improve GP performance on image recognition.

4.8 Chapter Summary

For a specific task, adding features which capture the different characters of the object helps
in improving classification effectiveness, at the same time, does not lower down much the
GP process efficiency. Adding more but the same ”type” of features does not help in im-
proving effectiveness, and sometimes even decreases the effectiveness, but the effect is mi-
nor. Generally, if the features newly added to the terminal set reflect the same aspect of
the objects that has already captured by old one, it will enlarges the search space and make
efficiency worse.

For relatively hard task, performance improvement by only feature selection and extrac-
tion is not big enough. GP should find its own way for difficult image recognition problem.

Overall, the basic GP approach did not achieve satisfactory results on relatively difficult
problems. However, the application of the basic GP approach provides a basic line of this
project as a starting point. In later chapters, we will extend the crossover in some smarter
ways and examine whether the extended crossover operators can improve the performance.

In this project, we mainly focus on a comparison between basic GP approach and other
newly developed GP crossover operators, and a comparison among the three tasks. For
convenience and comparability, we will use 4 features for each task in the experiments for
later chapters, they are Exp. 2 for shape, Exp. 5 for coin and Exp. 11 for texture in Table 4.2.
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Chapter 5

Headless Chicken Crossover

The basic GP approach can not get acceptable result for hard tasks, as shown in Chapter 4.
We have doubted that the hill climbing crossover greatly outperforms the basic GP approach
for difficult tasks in Section 2.3 of Chapter 2 (Page 14). In this chapter, we will investigation
this crossover operator on our three tasks so as to reason our doubtfulness.

5.1 Chapter Goals

The reason that crossover is the predominant operator lies in: the individuals in a pop-
ulation can communicate each other by crossover rather than mutation or reproduction.
However, a lot of empirical evidence shows that the standard GP crossover acts primarily
as a macromutation operator. That is why there is a lot of empirical evidence showing that
mutation-base system works well or slightly better than GP system.

Although headless chicken crossover combines GP crossover with hill climbing search,
it is still a sort of macromutation. The big performance improvement by headless chicken
crossover on some tasks only prove that the bias of hill climbing algorithm is particularly
well for some specific problem, such as Boolean 3-multiplexier problem [11], which has no
worry about local minima.

In this chapter, we will investigate headless chick crossover operator on our three tasks.
In particular, we are trying to achieve the following goals:

• to add more weights to the crossover-is-macromutation theory.

• to justify that headless chicken crossover is still in scale of macromutation.

• to verify that headless chicken crossover fails in elimination the disruptive effect of GP
crossover by the observed the stagnation of GP runs — the result of GP ”bloat”.

• to give more confidence to the direction on improving crossover by preservation of
good building block as well as homology.

5.2 Revisit of Headless Chicken Crossover

As shown in Figure 5.1, only one parent A is selected and an entirely new individual B1 is
created randomly. The selected parent A is then crossed over with the new and randomly
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Figure 5.1: The illustration of headless chicken crossover

created individual B1. The offspring C1 is kept if it is better than or equal to the parent A
in fitness. Otherwise, it is discarded and entirely new individual B2 is created randomly, a
new crossover occur between A and B2. The iteration goes on until the offspring Cn is better
than or equal to the parent A in fitness. Cn is kept and put in the next generation. Thus,
headless chicken crossover is a form of hill climbing.

5.3 Experimental Results and Analysis

To be consistent with previous chapters, the results on each task are the average values
based on 80 runs with different random seeds. Noticed that evaluation of children will be
time-consuming, we only use 1/5 training set to save time, because it is only important that
the child selected to put in the next generation is approximately better than the parent.

During doing the experiments, we found, for some selected parent which has a very
high fitness, and it takes hours to produce a good child by headless chicken crossover, this
extremely slow down the evolutionary process. So we limit the number of crossover itera-
tions for one parent to be 10000, when the operation exceeds this number, the iteration stop
and the candidate parent is put into the next generation directly without any change, i.e.
crossover turns to reproduction for this parent, though this situation is quite rare.

The results is shown in Figure 5.1 with result of basic GP approach for comparison.

The results in Table 5.1 shows that the performance improvement on hard tasks like text
is still unsatisfactory by headless chicken crossover.

As we expected, headless chicken crossover slightly outperforms standard GP crossover
from classification accuracy point of view. But the significant improvement is on the number
of generations needed to find solution, i.e. the convergence speed. This proves that the
performance improvement is mainly the result from the effect of employing the hill climbing
strategy rather than crossover operation itself.

However, although we have already made effort to save time, such as using small train-
ing set to evaluate children, this approach is still extremely time-consuming. This is because
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Table 5.1: Results of headless chicken crossover and basic GP approach on shape, coin and
texture datasets

Dataset Approach Generation Time(s) Accuracy(%)
Shape Basic GP crossover 8.59 0.09 96.16%

Headless Chicken Crossover 2.29 0.49 98.03%
Coin Basic GP crossover 28.64 1.78 90.37%

Headless Chicken Crossover 20.14 42.16 92.37%
Texture Basic GP crossover 29.99 1.83 72.45%

Headless Chicken Crossover 19.23 71.40 74.78%

it makes too much effort on hill climbing, and this search is ”headless”. The randomness of
creation of another parent and randomness of selection of crossover point are the source of
this headlessness.

Headless chicken crossover, in fact, turns off the primary crossover and turns on sort of
hill climbing mutation, because it cuts off the communication among the existing members
of a population. Thus, headless chicken crossover also cuts off the possibility to preserve
homology and simulate biologically homologous crossover, which should be the central
issue in redefining the crossover operation. Headless chicken crossover is still in the scale of
macromutation.

The fact that headless chicken crossover turns off the standard GP crossover proves that
macromutation techniques with hill climbing techniques may perform as well as and some-
times slightly better than basic GP crossover. This, from another perspective, also proves
that the traditional GP crossover acts primarily as macromutation.

Additionally, we found the evolution process converge relatively faster at the begin-
ning and become very slow at the end of a run. We have also monitored the tree structure
changes during a GP run. We found that programs are fairly small and unbalance in early
stage of the evolution, but they are getting bigger very fast and tend to become more bal-
anced. These two observed facts are highly consistence with the stagnation of GP run —
the result of GP ”bloat”. The disruptive effect of crossover is the most suspicious source for
GP bloating effect. This, from another perspective again, proves that performance improve-
ment by headless chicken crossover is mainly from hill climbing rather than eliminating the
disruptive effect of crossover.

5.4 Chapter Summary

Focussing on the combining genetic operator with hill climbing search strategy, headless
chicken crossover slightly outperforms the traditional GP crossover. However, it is an ex-
tremely time-consuming approach and a trade-off between effectiveness and efficiency need
to be carefully considered before adoption of the approach in practice. Headless chicken
crossover cuts off the possibility of homologous crossover, leave very litter room for fur-
ther improvement. Headless chicken crossover is still in the scale of macromutation and
the fact it is slightly better than basic GP crossover, somehow, prove that basic GP crossover
is macromutation. The fact that headless chicken crossover also has the GP bloating effect
shows that it does not preserve good building block very much.
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Because preserving good building block as well as homology becomes the center of
storm in GP crossover research, we do not regard headless chicken crossover as the direction
for further development.
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Chapter 6

Looseness-controlled Crossover

6.1 Introduction

The basic GP approach and headless chicken crossover can not get acceptable result for hard
task as shown in Chapter 4 and 5. As we discussed in Chapter 1 and 2, crossover operator
tends to break good building block at later stage of an evolution process, this is due to
the randomness of selection for the crossover points. In this chapter, we describe a new
crossover operator we have developed — Looseness Controlled Crossover (LCC).

6.2 Chapter Goals

LCC approach is based on selected crossover points to improve GP performance, we will
introduce our development concerning this approach in this chapter and its extension in
next chapter. In this chapter, we try to achieve the following goals:

• to propose a way to identify a good building block from other part of a tree.

• to build up our methodology in controlling selection of crossover points, which targets
at eliminating the disruptive effect of standard GP crossover.

• to construct the fundamental elements for further improvement in this direction.

6.3 Basic Idea

To avoid randomly selecting the crossover points, we give each link between two nodes in
a program tree a value - looseness, and let this value reflect how ”sticky” the two nodes
should be with each other. Ideally, the looseness values of links within a good building
block should be smaller than other parts of the tree, i.e. the nodes within this block should
be more sticky one another. The smaller the looseness value, the better the block. On the
other hand, when we select the point for crossover, only the link with the biggest looseness
value in the tree are selected. If more than one links have the biggest looseness value, the
selection among these links are random.

According to the definition of looseness above, we state our hypothesis on LCC:
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Figure 6.1: The illustration of looseness-controlled crossover

Hypothesis: If we assign looseness value to each link at start point and update them during the
evolutionary proceeds, then according to the value, a good building block is more sticky than other
non-building-block parts which have higher looseness value. By selecting the crossover point only on
those loosest links, the disruptive effect of crossover should be eliminated.

How building block grows or in which way it grows is still an issue that is far more
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from being discovered. Thus, according to the range in which the links are made sticky after
crossover, we propose three versions of this new crossover operator. The three versions will
be addressed and experimented individually in the rest of this chapter.

6.4 Methodology

6.4.1 Version 1

As shown in Figure 6.1, in generation 0, all links in all grogram trees are assigned 0 as the
looseness value. This is reasonable, because no good building block has been recognized
at generation 0 (even though there might exist), and we treat all links equally. Thus, the
selection of the crossover point are random at the first round evolution. Once crossover
happened between two nodes, supposing that the new link are better than the old one, we
give the crossover-ed point a smaller looseness value, so that the two nodes connected by
this link are more sticky than other parts of the tree. This is done by keeping the looseness
value of this link unchanged and increasing values of all other links of the tree by 1, i.e. the
looseness value of these other links will have same number as the index of generation. In
next round of evolution, this link will not be selected as the crossover point, the two nodes
are considered as a small good building block. With the evolution process going on, more
and more nodes are getting sticky and the good building blocks grow and connect with
each other, when all links have a looseness value of gen-1 where gen is the index of current
generation, a new loop of further reducing the looseness down to gen-2 starts. We expect
that the final solution program is itself a good building block as a whole and have a fairly
small looseness value.

Old Crossover Point

The area being made sticky

The area being
made sticky

(a) Version 1 (b) Version 2 (c) Version 3

The area being
made sticky

Old Crossover Point Old Crossover Point

Figure 6.2: The illustration of 3 versions for basic looseness-controlled crossover: (a) Version
1 (b) Version 2 (c) Version 3

6.4.2 Version 2 and Version 3

The above version focuses on making only the link selected as the crossover point more
sticky than the other parts of the tree as shown in Figure 6.2 (a). However, building block
can grow in other ways rather than the way shown in Figure 6.2. So after the crossover
operation, we can select other range of links to make sticky. Thus, we get another two
versions: supposing that the whole new subtree including the crossover point is better than
the old one, version 2 makes the subtree crossovered more sticky, including the crossover
link itself, as shown in Figure 6.2 (b). On the other hand, supposing that only the new
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subtree but excluding the crossover point are better than the old one, version 3 makes only
the crossovered subtree more sticky, excluding the crossover link itself, as shown in Figure
6.2 (c).

6.5 Experimental Results

To be consistent with previous chapters, the results on each task are the average values based
on 80 runs with different random seeds. The three versions of LCC are examined individ-
ually and the results are extracted in the Figure 6.1 together with the basic GP approach
results for the convenience of comparison.

Table 6.1: Results of three versions of LCC and basic approach on the shape, coin and texture
datasets

Dataset Approach Generation Time(s) Accuracy(%)
Shape Basic 8.59 0.09 96.16%

LCC(version1) 8.68 0.13 97.53%
LCC(version2) 9.03 0.14 97.17%
LCC(version3) 8.47 0.13 96.73%

Coin Basic 28.64 1.78 90.37%
LCC(version1) 28.80 3.36 91.02%
LCC(version2) 29.69 3.54 90.35%
LCC(version3) 29.62 3.55 90.85%

Texture Basic 29.99 1.83 72.45%
LCC(version1) 26.31 2.05 70.07%
LCC(version2) 26.39 2.07 71.81%
LCC(version3) 25.76 1.81 69.68%

From the table above, the three versions of LCC, in general, slightly improve the clas-
sification accuracy for the first two tasks, but surprisingly make little worse for the texture
task. It seems the new crossover operator does not help in improving the effectiveness. In
term of efficiency, the situation is just reversed, the more difficult the task, and the quicker
the convergence of the evolution process.

Amongst the three versions, the first two are definitely better than the third one from
effectiveness point of view. We noticed that the first two versions are both involved the
crossover links itself: i.e. the first version makes only the links themselves sticky; the second
version makes the whole subtree sticky, including the links. Whereas, the third version
makes the whole subtree sticky, but excluding the links. On the other hand, there is no big
difference amongst all three versions from efficiency point of view, although the average
execution time of LCC increases a bit due to a high calculation complexity.

LCC seems failed, because it almost does not help in improving the performance in gen-
eral.

After a detail analysis, we found that our hypothesis is not very accurate. Our hypothe-
sis is based on, for all three of the versions, a precondition: after the crossover, the new link,
the new subtree (including the crossover point) or the new subtree (excluding the crossover
point) are better than those old ones in the new context. However, a normal crossover op-
eration does not guarantee this. On one hand, after the crossover, the new link or subtree
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might be worse than the old one in the new context. On the other hand, even if the new pro-
gram’s performance gets better after the crossover, we can not say it must be resulted from
the crossovered link (as a small building block) or crossovered subtree, it might be resulted
by another part of the program tree in the new tree structure, or some lager-scale subtree
which contain the crossovered subtree and link.

During the experiments, we observed that a good building block in a program can lead to
a very poor performance if put it in the wrong place of another program, and a bad building
block in a program can lead to a very good performance if put it in the ”right context” of
another program. We also observed experimental fact that two programmes can produce
very bad offspring by crossover operation, even though the two crossovered subtrees are
both good building block in the original parent program, and vice versa.

6.6 Chapter Summary

The idea of the LCC is launched to eliminate the randomness of crossover point selection.
We expect the links within a building block have less looseness (i.e. are more sticky) than
other parts of the program tree. But it is hard to identify where the good building block is
in a program, because one building block can be ”good” only in this program’s context, and
it might result in a very bad performance while putting it in another program and coping
with other parts of the program.

After this very first try on this direction, we need further exploration on this approach.
We have to put more efforts on making the precondition of our hypothesis become true. We
will make an extension on LCC in next Chapter.
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Chapter 7

Extended Looseness-controlled
Crossover

7.1 Introduction

In last chapter, we have described LCC approach in which we introduce the idea of loose-
ness. We use looseness value to reflect how ”sticky” to adjacent nodes are and distinguish a
good build block from other parts in a program tree. We also use it to minimize the random-
ness of selecting crossover points so as to reduce the destructive effect of normal crossover
operation. However, the manipulating and updating the looseness values of links is based
on the assumption that new programs after crossover have better building blocks around
crossover points than their parents, but this is not always true.

Borrowing some ideas from headless chicken crossover[11], which, in term of machine
learning, combine hill climbing search on individual crossover operation and beam search
on whole generation, we try to extend the basic LCC approach by enforcing the assump-
tion above to be true in this chapter. That is our extended Looseness Controlled Crossover
(eLCC).

7.2 Chapter Goals

Based on basic LCC approach, eLCC is purely a methodological extension, by which we try
to make the pre-condition of our hypothesis in Section 6.4 of last chapter guaranteed. In
detail, we try to achieve the following goals in this chapter:

• Verify the hypothesis given for LCC

• Extend the basic methodology of LCC in the way of enforcing that the precondition of
our hypothesis to be true

• Predict the future works on this approach
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7.3 Theory Behind

Our hypothesis of LCC is assuming that new programs after crossover have better building
blocks around crossover points than their parents. But this assumption needs to be pre-
satisfied to make the hypothesis accurate.

In last chapter, we argued that a good building block in one solution can become the
source of bad performance of another solution. The figure 7.1 shows one case of this pos-
sibility. Before the crossover, the program has two good building blocks. It is expected to
grow one of them by crossover to make a larger good building block. After the crossover,
although it replace the unsatisfied part of the larger block with a good building block from
another program, it is not guaranteed to form a larger good building block. To check if the
larger area is a good grown building block, we need to evaluate the new program.

got by crossover          
good block

good block A larger block
expected to be

Before Crossover

good by crossover

The fitness is better than before, we regard the block as a good grown building block, otherwise
there is no building block has been grown.

The larger block is better or worse can be evaluated by the whole program’s fitness: if the

Crossover

After Crossover

from other program
Good block

good block

A larger bolck           

Figure 7.1: The illustration of building block growing

To make an offspring program contain better building block around the crossover point
than its parent, we evaluate it by comparing its fitness value with its parent’s one. If the
program has better fitness than its parent, we consider this crossover as a successful one, and
a larger good building block has been formed. Otherwise, we treat this crossover operation
as a failed one. The failed crossover operation is undone and a new crossover operation is
attempted. This progress continues till the offspring has better fitness than its parent. In this
way, we suppose that the building block around the crossover point has been grown or has
been getting better.

7.4 Methodology Extended

We assign looseness values in generation 0, update and manipulate these values in other
generations in the same way as described in last chapter. We keep the same way to select
crossover points, too. The extension focuses on how we make the offspring programs has
better building block than the parents.
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Figure 7.2: The illustration of extended looseness-controlled crossover

As shown in Figure 7.2, originally, two parent programs A and B1 are selected and their
crossover points a and b1 are chosen according to the looseness value on each link. Then
crossover operation occurs by replacing the subtree at a with the subtree at b1, we get a child
C1. We then evaluate it by compare its fitness with its parent A’s. If it is getting better, we
update the looseness value; otherwise, we undo the crossover operation and find another
parent B2, and try a new crossover operation, this process continues in the form of loop till
we find a child with better fitness, such as Cn.

In deed, the number of the iteration n can be any of the natural number from 1 to ∞,
because there is the case that a successful crossover can never be found, due to the reason
that the candidate parent as a whole is already a quite good building block and no other
suitable program in the current population can make it better by crossover. In practice, we
limit this number to 1000, i.e. when the iteration has been executed beyond 1000 times and
still no better child has been found, we terminate the iteration and elite the parent and put
the copy in the next generation.

Again, we implementation three version for eLCC, according to the range that the links
are made ”sticky” after the successful eLCC crossover, the same way as described in LCC.
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7.5 Experimental Results and Analysis

To be consistent with previous chapters, the results on each task are the average values based
on 80 runs with different random seeds. The three versions of eLCC are examined individ-
ually and the results are extracted in the Figure 7.1 together with the basic GP approach
results for the convenience of comparison.

Table 7.1: Results of three versions of eLCC and basic approach on shape, coin and texture
datasets

Dataset Approach Generation Time(s) Accuracy(%)
Shape Basic 8.59 0.09 96.16%

eLCC(version1) 4.21 0.31 97.88%
eLCC(version2) 4.33 0.32 97.75%
eLCC(version3) 4.53 0.31 97.84%

Coin Basic 28.64 1.78 90.37%
eLCC(version1) 19.96 9.23 92.74%
eLCC(version2) 20.09 8.77 92.56%
eLCC(version3) 20.64 9.74 92.21%

Texture Basic 29.99 1.83 72.45%
eLCC(version1) 22.50 12.84 77.18%
eLCC(version2) 21.86 11.22 76.74%
eLCC(version3) 21.77 10.20 76.15%

The above figure shows that all three versions of eLCC, in general, have improved clas-
sification accuracy and used less number of generations than basic GP approach for all three
tasks. Furthermore, with the tasks’ difficulty increasing, the performance improvement is
getting more impressive. But in term of execution time, eLCC approach is extremely time-
consuming due to the effort that is made when the each individual crossover operation tries
to make the hill climbing search. A further investigation is needed to shorten the execution
time. For example, when we evaluation the child program, if we can check its fitness only
on small subset of validation set rather than the whole validation set.

Amongst the three versions, the first two versions are slightly but definitely better than
the third one. This is consistent with the assumption that the range to be make ”sticky” after
crossover should cover the crossover points themselves rather then only the crossover-ed
subtree, so that these points are not to selected as the crossover points in the next generation.

Between the first two versions, the first one is slightly better than the second, which
suggests another hypothesis that the building blocks grows in a way of ”link-by-link” rather
than ”block-by-block”, as shown in figure 7.3, and it needs to be examined further, but this
is out of the range of this project.

7.6 Chapter Summary

Combining the hill climbing search theory for individual program and the selective crossover
point, eLCC outperforms basic GP approach as well as LCC described in last chapter in
both classification accuracy and the speed of convergence. With the increment of difficulty
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Figure 7.3: The illustration of the way in that building blocks grow: (a) link-by-link (b)
subtree-by-subtree

of tasks, the improvement is getting more. From time consumption point of view, eLCC
is also an acceptable approach. Comparing to headless chicken approaches, it saves huge
amount of running time by limiting the crossover points with highest looseness value in
each program tree.

However, eLCC mainly focus on preserving the good building block rather than homol-
ogy. We can still extend it further to have the homology issues considered or combined.
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Chapter 8

Brood Recombination Crossover

8.1 Introduction

The ordinary crossover operator constructs good building blocks at the early stages and
tears them apart at the later stages during the GP evolution process, as discussed in previous
chapters. We have developed eLCC approach to minimize the destructive effect of crossover
operation in Chapter 6 and Chapter 7. In this chapter we examine another approach —
brood recombination crossover, which focuses on giving GP the ability to look ahead when
adjusting the beam/population and eliminating the disruptive force of normal GP crossover.

Five times crossover

Evaluate each
child in brood,
best two survive

Figure 8.1: The illustration of brood recombination crossover

Firstly drawn on work by Altenberg [1], Tackett developed the new crossover operator
— brood recombination in 1994[20]. In the real world, many animal species produce far

43



more offspring than needed to survive, and to keep the population size of one specie not
changed much, only small amount individuals out of the ”brood” live, others die. Tack-
ett has modelled this observed fact in brood recombination crossover: when doing each
crossover, this operation will happen more than once on same pair of parent programs, and
a brood is produced, as shown on Figure 8.1. The size of the brood should be natural num-
ber multiply 2, i.e. 2N. Then all children in the brood is evaluated by its fitness, only the best
two survive, others all discarded.

However, there seems to be a shortage with this approach. GP is usually slow in per-
forming evaluation. Instead of having only two children to evaluate in basic GP, GP with
brood recombination crossover will have a whole brood to be evaluated. The large amount
of evaluations on those broods in this approach will make GP extremely slow. To solve this
problem, Altenberg and Tackett evaluate the broods only on a small portion of the training
set. They argues that it is only important that the selection on the brood selects children that
are ”in the ballpark” — not that they are certainly the best of the brood [4]. We will follow
this idea to do the experiments in this Chapter. We only use 1/5 portion of training set for
the evaluation of each brood.

Additionally, as the building blocks got larger, the probability of destructive crossover
would increase. This suggests that a dynamic form of brood recombination, i.e. the brood
size should grow as evolution proceeds to protect larger building block from disruption.

The key parameter in brood recombination is the brood size 2N. In Figure 8.1, the brood
size is 10, i.e. N=5.

8.2 Chapter Goals

Based on the existing ideas of brood recombination crossover, we will further investigate :

• Whether increasing the brood size 2N will help in improving performance, and if so,
how big the improvement will be.

• whether a variable brood size 2N in one GP run will help in improving performance

• some suitable functions N(gen) which can be used to adjust N during evolution pro-
cess, where gen is the index of generation, and compare these functions

The new ideas will be examined and compared with basic GP approach on the same
three classification tasks described earlier.

8.3 Experimental Results and Analysis on fixed Brood Size

To be consistent with previous chapters, the results on each task are the average values based
on 80 runs with different random seeds.

We firstly examine the relationship between the performance and the brood size 2N. To
do this, we have fixed the N with 4, 8, 12, 16, and 20 respectively when we run GP with
brood recombination crossover for each tasks. A collection of the result is give in Table 8.1
together with the basic GP approach results for the convenience of comparison.
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Table 8.1: Results of brood recombination crossover with fixed different brood size and basic
approach on the shape, coin and texture datasets

Dataset Approach Generation Time(s) Accuracy(%)
Shape Basic (N=1) 8.59 0.09 96.16%

Brood Recombination (N=4) 5.26 0.10 98.25%
Brood Recombination (N=8) 3.48 0.10 98.25%
Brood Recombination (N=12) 3.01 0.11 98.12%
Brood Recombination (N=16) 2.66 0.12 98.44%
Brood Recombination (N=20) 2.30 0.13 98.03%

Coin Basic (N=1) 28.64 1.78 90.37%
Brood Recombination (N=4) 21.88 2.50 92.42%
Brood Recombination (N=8) 19.70 3.07 93.08%
Brood Recombination (N=12) 17.59 3.53 92.82%
Brood Recombination (N=16) 15.85 3.89 93.08%
Brood Recombination (N=20) 15.94 4.49 92.80%

Texture Basic (N=1) 29.99 1.83 72.45%
Brood Recombination (N=4) 26.01 3.31 76.68%
Brood Recombination (N=8) 21.82 4.23 76.46%
Brood Recombination (N=12) 23.69 6.09 79.82%
Brood Recombination (N=16) 20.00 6.12 80.71%
Brood Recombination (N=20) 17.80 6.50 78.13%

The table above shows that GP with brood recombination greatly improves the perfor-
mance in term of classification accuracy and number of generations needed for the solution
for all three tasks, comparing with the basic GP approach. The more difficult the task, the
more obvious the improvement.

However, along with the brood size increasing, the classification accuracy is not im-
proved in a linear mode, and neither the convergence speed.

8.3.1 Curves: Accuracy vs N and Generations vs N

If we treat the basic GP approach as a special situation of brood recombination, where N=1
and brood size is 2, then we can abstract two sorts of curves as shown in Figure 8.2 to
show the relationship between brood size 2N and the performance. In Figure 8.2 (a), the
horizontal axis is the value of N, the vertical axis is the classification accuracy. In Figure8.2
(b), the horizontal axis is still the value of N, the vertical axis is the number of generations
needed to find the solution. Thus, we have drawn two series of curves to show how the
performance is effected by N: Figure8.2 (a) shows how the classification accuracy is effected
by N, Figure 8.2 (b) shows how number of generations needed for finding the solution is
effected by N, i.e. how convergence speed of GP evolution process is effected by N. Each
curve is for a task. In both (a) and (b), we have shifted the curves vertically so that they
all have the same starting point. There are two reasons to do this shifting: firstly, these
curves are abstracted to reveal not only the relationship between performance and N, but
also to show how big the performance improvement is among the three tasks; secondly, this
shifting can save large room on the figure.

Figure 8.2 (a) shows before N is increased up to around 6, the classification accuracy
is improved fast and stably for all three tasks. After the accuracy reach the peak where N
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Figure 8.2: Improvement by brood recombination crossover for the three tasks (a) Accuracy
(b) Generation

has the value 6, and along with N increasing, different task has different performance: for
Shape and Coin, the accuracy goes to almost unchanged; for Texture, the accuracy goes to
unstable with a generally improving trend, it goes to a second peak, where N has the value
around 15. Figure 8.2 (b) shows a similar situation: while N is increased up to around 8, the
number of generations needed to find the solution are decreased fast and stably for all three
tasks, and the GP convergence gets faster. After this point, the curve for Shape goes down
continuously but relatively slowly, the curve for Coin go down but relatively fast, the curve
for Texture goes unstable with a generally going-down trend.

8.3.2 Brood-diversity Point

The situation shown by Figure 8.2 are interesting. Unlike the real animal world, where two
parents can produce a large brood, in which there is almost no same individuals due to
big size of the parents’ chromosome. The big size of chromosome results huge number of
crossover points. Additionally, the biological crossover allows multiple crossover points in
one chromosome in one crossover operation. But the candidate programs in GP have very
small size, and in one crossover operation only one crossover point is selected, i.e. only
single part of the program tree (rather than multiple parts) is crossed over. Furthermore,
in our GP system, we limit each programs by programs size criteria, such as maximal tree
depth, minimal tree depth, etc, we thus have very even fewer number of crossover points for
each candidate parent, because once a subtree is selected in a parent, the range of subtrees in
another parent is restricted due to the reason that the selected subtree has to fit into the size
limitation criteria after crossover, and vice versa. So, when N exceeds a level in GP system,
there must be the same children in a brood. We call this point ”brood-diversity” point. Once
N exceed this number, no matter how big N is, GP with brood recombination crossover will
not help much, because two parents can produce only limit different children. That is to say,
if the brood size exceeds this limitation, all other children are just the duplication of those
different ones.
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8.3.3 Effect of Brood-diversity Point

This brood-diversity point depends on different tasks and the different parameters selected
while running GP system. In our experiments, we have limited the program size for the
three tasks with maximal depth of 5 (for Shape, 6 forCoin) and 8 (for Texture) individually,
the results in Table 8.1 and curves in Figure 8.2 show that GP with brood recombination
crossover for tasks Shape gets very satisfactory classification accuracy while N reach 6, af-
ter that the accuracy has no improvement, although its convergence speed continuously
get improved but slowly; GP with brood recombination crossover for tasks Coin gets very
satisfactory classification accuracy while N is up to 8 - 10, after that the accuracy has al-
most no improvement, although its convergence speed still get improved; for task Texture,
GP with brood recombination crossover gets the best accuracy and also satisfactory conver-
gence speed while N is around 15, after that both the accuracy and convergence speed get
worse. This reveals that the value of brood-diversity point is related to program size. In
general, the bigger the program size, the higher the brood-diversity point.

We argue that the brood-diversity point must not be the maximal number of different
children that two program can produce by crossover operation. Instead, it should be less
than that. For example, two parents can produce maximally 12 different children in the-
ory, but in practice, they might already have duplicated children in a brood of size 8 due to
randomness of selection of crossover point. An extreme situation is two parents have same
pair of children with brood size 4. So the brood-diversity point for each crossover operation
also random and should shift in a range. The bigger the program size, the bigger this ran-
domness, the bigger the range of the brood-diversity point. This could be the reason for task
Texture (which is run with maximal depth of 8) why GP with brood recombination crossover
gets most unstable performance improvement, whereas it gets most stable performance im-
provement for task Shape (which is run with maximal depth of 5).

Furthermore, in our GP system, it allows one candidate program to be selected more than
once to make the crossover operation in one generation, thus GP with brood recombination
crossover has a potential shortage: reduce the generations’ diversity. When one program
crossovers with other programs, the possibility to produce the same best child in different
crossover operation is getting increased, along with N getting bigger. This will also affect
the performance and make the operator highly task specific (e.g. depending on the number
of feature), because once the diversity is decreased, although the convergence of evolution
process is getting fast, the effectiveness is getting no change. This can explain why, for some
tasks (e.g. Shape and Coin), while their N exceed the brood-diversity point, the convergence
speed continuously improved, but the classification accuracy does not further improved.

8.4 Experimental Results and Analysis on Varied Brood Size

To be consistent with previous chapters and the section above, the results on each task are
still the average values based on 80 runs with different random seeds in this section.

8.4.1 Four Functions We Used

As proposed in Section 8.1, when the building blocks got larger, the probability of de-
structive crossover would increase, this suggests the dynamic form of brood recombination
crossover— the brood size should grows as evolution proceeds to protect larger building
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block from disruption. We examine this idea by a second series of experiments in this sec-
tion.

We propose two dynamic ways to grow brood size — linearly and non-linearly. We
formed the following three relations, in which the first one is linear relation, and the other
two are non-linear ones:

N(gen) = A1 ∗ gen + B1

N(gen) = A2 ∗ gen2 + B2

and
N(gen) = A3 ∗ √gen + B3

where gen is the index of the generation in evolution process

In last section, we have examined the fixed N with different values. For convenience of
comparison, we let B1, B2 and B3 be 4, thus we have N equal to 4 at generation 0 for all
dynamic ways above so that we can compare them with fixed N with value 4. We assign A1
with 0.4 and 1.0 respectively. When A1 = 0.4, we have the function:

N(gen) = 0.4 ∗ gen + 4 (8.1)

where N starts with 4 at generation 0 and ends with 25 at generation 50;

When A1 = 1.0, we have the function:

N(gen) = 1.0 ∗ gen + 4 (8.2)

where N starts with 4 at generation 0 and ends with 54 at generation 50.

To be comparable, we assign A2 with 0.0084 and we get function:

N(gen) = 0.0084 ∗ gen2 + 4 (8.3)

where N starts with 4 at generation 0 and ends with 25 at generation 50, which is consistent
with the linear function 8.1.

To be comparable, we assign A3 with 2.97 and we get the function:

N(gen) = 2.97 ∗ √gen + 4.0 (8.4)

where N starts with 4 at generation 0 and ends with 25 at generation 50, which is consistent
with the first linear function and the square function 8.1.

These relations between N and gen we examined are summarised in Figure 8.3.

8.4.2 Results and Analysis

The experimental results are collected with the results of fixed N with 4 and basic GP ap-
proach together in Figure 8.2 for the convenience of comparison.
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Figure 8.3: Dynamic N vs fixed N

Table 8.2: Results comparison : basic GP vs brood recombination crossover with fixed N
(N=4) vs brood recombination crossover with dynamic N on the Shape, Coin and Texture
datasets

Dataset Approach Generation Time(s) Accuracy(%)
Shape Basic (N=1) 8.59 0.09 96.16%

BR (fixed N=4) 5.26 0.10 98.25%
function 8.1: N=0.4*gen+4 4.40 0.09 98.62%
function 8.2: N=1.0*gen+4 4.35 0.10 98.97%
function 8.3: N = 2.97 ∗ √gen + 4 4.54 0.12 97.38%
function 8.4: N = 0.0084 ∗ gen2 + 4 4.99 0.09 98.00%

Coin Basic (N=1) 28.64 1.78 90.37%
BR (fixed N=4) 21.88 2.50 92.42%
function 8.1: N=0.4*gen+4 20.59 3.44 92.91%
function 8.2: N=1.0*gen+4 19.26 5.25 93.17%
function 8.3: N = 2.97 ∗ √gen + 4 20.59 4.71 93.23%
function 8.4: N = 0.0084 ∗ gen2 + 4 23.26 3.36 92.87%

Texture Basic (N=1) 29.99 1.83 72.45%
BR (fixed N=4) 26.01 3.31 76.68%
function 8.1: N=0.4*gen+4 21.93 4.63 80.50%
function 8.2: N=1.0*gen+4 20.27 6.67 80.56%
function 8.3: N = 2.97 ∗ √gen + 4 21.31 6.11 77.18%
function 8.4: N = 0.0084 ∗ gen2 + 4 23.88 4.07 76.32%

The Table 8.2 shows that brood recombination with dynamically varied N also outper-
forms basic GP approach in term of both classification accuracy and number of generations
needed to find the best solution. And with the increasing difficulty of the tasks, the im-
provement is getting more obvious.
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Linear Functions with Different Slope

The two linear functions have different slope. function 8.2 with slope of 1.0 is slightly better
than function 8.1 with slope of 0.4. This is reasonable, because function 8.2 intends to in-
crease N more quickly than function e:linear1 as evolution proceeds, so it gives more guar-
antee to preserve the building blocks when they are growing.

Varied N vs Fixed N

Comparing the dynamically varied N with fixed N, depending on different function we
used, the improvement is different. In general, the linear functions 8.1 and 8.2 get slightly
better performance then fixed N approach for both Shape and Text dataset in term of both
classification accuracy and number of generations needed to find the solution, and clearly
get large improvement for task Texture. Whereas, non-linear function 8.3 and 8.4 have not
got obvious improvement in all cases.

Functions 8.1, 8.3 and 8.4 all have the same starting N at generation 0 and ending N at
generation 50. Function 8.1 increases N in a steady speed with the evolutionary process;
function 8.3 increases N faster at early stage but slower at later stage; function 8.3, just the
opposite, increases N slower at early stage but faster at later stage. Surprisingly, the linear
function 8.1 gets the best result in most cases. Particularly, for the most difficult task Texture,
the difference on classification accuracy is obvious. This is consistent with the implication
that building block grows in a way of link-by-link rather than block-by-block, which is pro-
posed at the end of Chapter 7.

However, because we only examine two sorts of functions for non-linear relationship on
N(gen): square and square-root, more formulas on N(gen) in the future should be explored
to draw a complete conclusion here.

8.5 Chapter Summary

Focussing on giving GP the ability to look ahead when adjusting the beam and the preserva-
tion of building blocks, GP with brood recombination crossover outperforms the basic GP.
In general, the more difficult the task is, the more the performance improvement gets.

Increasing the brood size (2N) can improve the performance before N reaches the brood-
diversity point. When N exceeds the brood-diversity point, the performance improvement
is not guaranteed and sometimes gets unstable.

The improvement by brood recombination is fairly task specific, usually depending on
experimental parameters, such as number of features selected, program size limitation, etc.

Brood recombination with dynamic varied N slightly outperforms brood recombination
with fixed N. Linearly increasing N along with generation is a good way to vary N.

More formulas on N(gen) need to be investigated in the future to reveal how building
block grows as the evolution proceeds. The relation between the number of fitness cases
used for evaluation broods and the performance improvement is also left to be examined in
the future.
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Chapter 9

Conclusions

In this project, we have investigated the various possibilities for improving GP performance
on the three tasks of increasing difficulty. In applying the basic GP approach, we mainly
focus on the selection and extraction of ”powerful” features. In other attempts, we made
our efforts on improving the basic GP crossover operators. We have added our voice to
the crossover-is-macromutation theory by the investigation of headless chicken crossover
on our tasks, developed our new crossover operator — eLCC and examined the effect on
the performance by brood size for brood recombination crossover.

9.1 Comprehensive Comparison

We collect the experiments which we have done when we applied the basic GP approach to
our three object classification of tasks and are the base for investigation of other improved
approaches. We put their results in the Table 9.1 for a comprehensive comparison.

Table 9.1: Best experimental results of each approach on the shape, coin and texture datasets

Dataset Approach Generation Time(s) Accuracy(%)
Basic GP approach 8.59 0.09 96.16%

Shape GP with headless chicken crossover 2.29 0.49 98.03%
GP with eLCC 4.21 0.31 97.88%
GP with brood recombination crossover 4.35 0.10 98.97%
Basic GP approach 28.64 1.78 90.37%

Coin GP with headless chicken crossover 20.14 42.16 92.37%
GP with eLCC 19.96 9.23 92.74%
GP with brood recombination crossover 19.26 5.25 93.17%
Basic GP approach 29.99 1.83 72.45%

Texture GP with headless chicken crossover 19.23 71.40 74.78%
GP with eLCC 22.50 12.84 77.18%
GP with brood recombination crossover 20.27 6.67 80.56%

Clearly, three advanced approaches outperform the basic GP approach, particularly for
hard tasks.

Amongst the three advanced approaches, the GP with brood recombination crossover
gets best performance. GP with brood recombination crossover simulates the observed fact
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in the real world that many animal species breed far more offspring than needed to survive.
It therefore mimics the biological homologous crossover in a hidden way. In another word,
brood recombination crossover, preserves the homology implicitly. Brood recombination
crossover, in a certain sense, eliminates the disruptive effect of crossover as well, because
the child with highest fitness is more likely made from constructing a building block rather
than tearing a building block apart.

Our newly developed crossover operator — eLCC also gets an impressive performance.
eLCC focuses on selecting crossover points by their looseness values, and thus mainly makes
effort on preventing the good building block from being torn apart. Our first try of this
controlled selection of crossover points has not considered much about biological homology.
This leaves a big room for further improvement in this direction. For example, combine this
approach with other proposed homologous crossover.

Headless chicken crossover slightly improves the performance. GP with headless chicken
crossover combines the beam search between generations and the hill climbing search in-
side of a population. The improvement of performance is considered as being from the hill
climbing effort rather than preserve the building block and homology, because it turns off
the crossover between the existing members in a generation. Additionally, it is an extremely
time-consuming methodology because it climbs the hill in a ”blind” or ”headless” way.

9.2 Conclusions

For image recognition problems, the basic GP approach is usually good for relatively easy
tasks but not satisfactory for hard tasks. Adding features to GP terminal set will help in
improving GP performance, if the features can capture different aspects or characteristics of
the objects classified. When we select and extract more ”suitable” features for GP terminal
set, the performance can be improved, but it is not enough for some tough tasks.

Headless chicken crossover turns off the primary GP crossover and turns on hill climbing
sort of mutation. It is still in the scale of macromutation. The fact it works as well as or
slightly better than basic GP approach, from another perspective, proves the traditional GP
crossover primarily acts as macromutation. It cuts off the possibility of communication
between existing individuals in a population, thus it is not a homologous crossover. The
GP bloating effect still exists as the evolution proceeds. This is a clue that the performance
improvement comes from hill climbing effort rather than eliminating the disruptive effect
of crossover.

Looseness value on a link is used for presenting how ”sticky” two nodes at each end
of the link should be. It provides a way to identify a good building block from other parts
in a tree program. eLCC combines hill climbing search strategy for manipulation of loose-
ness values as evolution proceeds and the techniques of selective crossover points using
looseness value. eLCC focuses directly on eliminating the disruptive effect of traditional GP
crossover and preserving building block. It is a new approach for improving the basic GP
crossover, with a big room for further improvement in this direction.

Brood recombination crossover implicitly preserves the building block and homology.
The brood size is a key parameter which effects the performance improvement. We find
that there is a brood-diversity point in GP with brood recombination crossover. However,
this point seems task specific. It is also related to experimental parameters, such as pro-
gram limitation criteria and number of features (size of terminal set). The performance can
greatly be improved before brood size increases up to the brood-diversity point. When
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brood size exceeds the brood-diversity point, the classification can not be improved or get
unstable. The brood recombination crossover implemented in our GP system has the short-
age of decreasing the population diversity, which could be one reason for the observed fact
that convergence is still getting fast but classification accuracy stops to improve after brood
size reaches the brood-diversity point. The dynamic varied brood size is aiming to preserve
building blocks as much as possible when they grow. The dynamic varied brood size does
improve the performance. The linear mode, in which the brood size increases along with
evolution proceeds, is a best one observed by us so far.

9.3 Future Work

In this project, we have tried to improve the performance of GP system mainly by means
of feature selection/extraction and modifying the traditional crossover operator. This left
many works worthy to attempt in the future.

During applying the basic GP approach to relatively hard task, such as texture, we only
tried part of advanced features. It is almost sure that there are still a large bunch of other
features that can improve GP performance for that task, such as the features that capture
energy information of an image appearance. Also, various transformations which trans-
form the features from spatial domain to spectral domain are worthy to try for performance
improvement for texture task.

In eLCC approach, we use hill climbing search to enforce that a better building block
has been constructed or grown around the crossover point. But this is still not an ideal way,
although promising. In fact, a child program with a better fitness than its parent can be
resulted from other reasons, such as a bad building block is put into a very hospitable con-
text. We are still on the way to find more guaranteed way to manipulating and updating the
looseness values. We need to try assigning and updating the looseness values not only ac-
cording to the whole program’s fitness but also other factors, such as evaluation on subtrees
or evaluation of how similar the two crossovered parts are. These evaluation methods also
need to be explored.

When we investigate GP with brood recombination crossover, we only tried very sim-
ple non-linear functions by which the dynamic varied brood size increases as evolution
proceeds. That is not enough to support any conclusion about the way in which building
blocks grow or what is the function that describes the relation between brood size and index
of generation best, more sophisticated functions might be examined, such as exponent or
logarithm functions. Additionally, whether the size of training set used in evaluation chil-
dren in broods affect the performance and how big the effect will be is another work in the
future.

It is obvious that preserving building block will help in preserving homology, and vice
versa. They are related but still two independent aspects in improving crossover. Preserva-
tion of good building block is more syntax-like or structural problem, whereas preservation
of homology is more semantics-like or contextual problem. Finding the balance between
them or finding which one is predominant issue, is another big research topic left for GP
community.
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