
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: of�ce@mcs.vuw.ac.nz

Improving Training Performance of
Genetic Programming for Object

Detection
Malcolm Lett

Supervisor: Dr. Mengjie Zhang

October 23, 2004

Submitted in partial ful�lment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract
Object detection has become an important research topic within computer

science. Databases of images need to be searched, security images and speed
camera images need image processing to search for various information, and
there is an increased desire that computers should be able to recognise human
faces and determine who they are. Genetic programming has been used for these
sorts of tasks with varying success, however object detection is still a dif�cult
task and can require long training times. This project investigates the task of
�nding the accurate positions of objects. From this investigation, two new �tness
functions are devised which are competitive with existing methods in terms of
detection rate, false alarm rate and time to evolve the solution programs when
applied to data sets of increasing dif�culty. Also produced from this investiga-
tion are guidelines for the types of data which should be trained on for object
detection.

Acknowledgements
I would like to acknowledge �rst and foremost my supervisor, Dr. Mengjie Zhang, for in-
troducing me to Genetic Programming, for being my teacher in both Genetic Programming
and the joys and pitfuls of academic research, and for providing superb and helpful feed-
back on my writing and my ideas. And I'm sure that the constant deadlines pushed me to
produce more than I may have done otherwise.

I would also like to thank Yun Zhang for discussions, suggestions, and criticisms through-
out the year, and especially during the last days before deadline.

Lastly I would like to thank everyone else who has had any involvement in my experi-
ences this year. Especially those in the Memphis room who have made things so much more
interesting, and helped out many times during the year, not the least of which was L. Brook
Powell who had the uncanny ability to solve my bugs even when I could barely explain my
programs.

i

Contents

1 Introduction 1
1.1 Issues & Motivation . 1
1.2 Research Goals . 2
1.3 Contributions . 3
1.4 Structure of Document . 3

2 Background 4
2.1 Overview of Machine Learning . 4
2.2 Genetic Programming . 5

2.2.1 Program Representation . 6
2.2.2 Operators . 7
2.2.3 Fitness Function . 8
2.2.4 Evolutionary Engine . 8
2.2.5 Termination and Validation Sets . 9
2.2.6 Summary of GP Parameters . 11

2.3 Object Detection in Computer Vision . 11
2.3.1 Features . 12
2.3.2 Object Classi�cation . 12
2.3.3 Object Detection . 13
2.3.4 Measuring Performance . 15
2.3.5 Detection Rate . 17
2.3.6 False Alarm Rate . 17

2.4 GP for Object Detection . 17
2.4.1 Object Detection Method . 18
2.4.2 Fitness Functions . 19
2.4.3 Features . 19

2.5 Related Work . 20
2.5.1 Fitness Functions . 20
2.5.2 Other Object Detection Work . 21
2.5.3 Training Set Theories . 22
2.5.4 Summary of Fitness Functions . 23

3 Tasks 24
3.1 Data Set . 24
3.2 Tasks . 24

4 New Fitness Functions 26
4.1 Object Detection Method . 26
4.2 Issues for Localisation Fitness Functions . 28
4.3 Localisation Fitness . 29

ii

4.4 Fitness Functions Design Considerations for Localisation 30
4.5 The First New Fitness Function � LFWF . 31
4.6 The Second New Fitness Function - APWF . 32
4.7 An Existing Fitness Function . 32
4.8 Experimental Setup . 33
4.9 Results And Analysis . 33

4.9.1 Further Analysis . 35
4.9.2 Detection Map Analysis . 36

4.10 Chapter Conclusions . 37
4.10.1 Localisation Fitness Radius . 39
4.10.2 Complex Objects . 39

5 Optimising Training Data 42
5.1 Typical Training Data Preparation . 42
5.2 Training Data Types . 42
5.3 Assumptions and Hypotheses . 43
5.4 Introduction to Experimental Setup . 43
5.5 Results . 44
5.6 Chapter Conclusions . 46

6 Summary 49
6.1 New Fitness Functions . 49
6.2 Training Data Proportions . 49
6.3 Free Parameters In Fitness Functions . 50
6.4 Future Work . 50

6.4.1 Extensions for LFWF and APWF . 50
6.4.2 Further testing of New Fitness Functions 51
6.4.3 Further Training Data Proportions Experimentation 51

6.5 Single Stage vs. Multiple Stage Detection Methods 51

A Weighted Precision and Recall 55
A.1 Analysing Genetic Program Results . 57

B Derivation of 'F' w.r.t. True/False Positive/Negative 58

C Pattern Files 59

iii

Figures

2.1 Program representation in GP . 6
2.2 Example of crossover . 8
2.3 Example of mutation . 8
2.4 GP Evolutionary Engine . 9
2.5 Train and Validation �tness curves . 10
2.6 Static Range Selection[18, pp. 178]: (a) program section used to produce classi�cation, (b) how

value range is divided into classes. 13
2.7 Sweeping Window . 14
2.8 Typical multiple stage detection method . 18
2.9 Single stage detection method . 18
2.10 8 concentric circle features[2, pp. 25] . 19
2.11 FAA examples: (a) many false alarm pixels, (b) few false alarm pixels 20

3.1 Data Sets: (a) Easy coins, (b) 5cent coins, (c) 10cent coins. 25

4.1 Two stage detection method . 26
4.2 Example classi�cation of four adjacent pixels 28
4.3 Example positions of detections of a single round object (the small crosses

represent the detected position) . 29
4.4 Detection maps for (a,c,e) Unclustered Results and (b,d,f) Clustered Results using:

(a,b) LFWF, (c,d) APWF, and (e,f) CBF (Crosses are accepted detections, squares are
detections which have been rejected as false alarms 40

4.5 Detection Rates for different values of TOLERANCE, averaged over all data sets . . 41

5.1 Examples of the different types of training data, these are caused by different input window
positions. 42

5.2 Training data proportions: the possible proportions are represented by the surface of the plane. 44
5.3 Relative Fitness using different Training Data Proportions: (a) LFWF �tnesses,

(b) APWF �tnesses . 48
5.4 Generations to train using different Training Data Proportions: (a) LFWF gen-

erations, (b) APWF generations . 48

A.1 Object localisation examples . 55
A.2 Examples of different types of training example: (a) should be classi�ed as

positive, (b) may be classi�ed as positive or negative, and (c) and (d) should
be classi�ed as negative. 57

iv

List of Tables

2.1 Summary of GP Parameters . 11

4.1 GP parameters used . 33
4.2 Detection Accuracy of all �tness functions on coin datasets 34
4.3 Precision and Recall of Localisation Positions within 3 pixels of Object Centres 35
4.4 Analysis of Localisation Positions within 35 pixels of Object Centres 36
4.5 Detection Rates for different values of TOLERANCE, averaged over all data

sets . 38
4.6 False Alarm Rates for different values of TOLERANCE, averaged over all

data sets . 38

5.1 GP parameters used . 45
5.2 Training data proportions tried . 45
5.3 Fitnesses when LFWF is applied to Test data sets using different Training Data

Proportions on: (a) Easy Coins, (b) 5 cent Coins, (c) 10 cent Coins, (d) Hard
Coins data sets. 46

v

Chapter 1

Introduction

Object detection is the task of processing an image to both localise a particular object or
objects and to then classify each object found. The ability to detect multiple classes of ob-
jects is important with the increasing number of images stored in databases, and with the
increasing desire for computers to perform the tasks of humans when examining images for
various information. Examples of tasks include the following:

1. Finding number plates in images of cars.

2. Examining ripeness/quality of fruit in orchards.

3. Reading scanned images of text (computer printed or hand written).

4. Face recognition.

Genetic Programming (GP) is a relatively recent addition in the �eld of arti�cial intelligence.
It has been applied, among others, to the problem of classi�cation and detection of objects
within images. The most successful work in object classi�cation and detection has been
done in single class or binary class problems. Some prior work has been done on the issue of
multiple class object localisation and classi�cation and the various issues are being gradually
resolved.

Detection and classi�cation of New Zealand 5 and 10 cent coins in [2, 13, and others]
has been done with good results (around 80-95% accuracy) for simple images of 3 or less
classes, however results have degraded when more classes are to be detected and for images
with noisy backgrounds which make them harder to classify. The results of localisation and
classi�cation have been varied so far. For simple images, with little to no noise and up to
three classes, good results have been achieved. More recent work [15] has achieved close to
100% classi�cation accuracy on even dif�cult images with 5 classes (heads and tails of 5 and
10 cent coins, plus background).

1.1 Issues & Motivation
Given an image there may be multiple objects present and these objects may be of different
classes. The Localisation stage must determine the position of each object of all classes being
looked for. These localised objects must then be classi�ed. There has been research in both
these �elds but more work needs to be done to improve the ef�ciency and effectiveness
(accuracy) of these localisations and classi�cations.

GP is used to evolve �programs� which solve a given problem. The evolution of these
programs is governed by a ��tness function� which measures the ��tness� of an evolved

1

program to solve the problem. Constructing this function is done by hand and tends to be
very dif�cult to construct well. Some existing work [11, 2] have added extra features as
their need became known. However the most common methods have �free parameters�
which have no de�ned value, nor obvious way to work out their value. Only rough tips and
guidelines can be provided because they do not represent the real situation well.

Some speci�c issues in GP applied to object localisation which have not been satisfacto-
rily addressed are:

1. Constructing a �tness function to be applied to the evolved programs is very dif�cult.
For localisation, �tness functions must consider many different situations and these
are hard to handle well with existing methods. If the training data contains errors, a
�tness function which is not tolerant enough of errors will cause the effectiveness of
trained localisers to be encumbered.

2. A trained localiser tends to �nd many possible positions for objects. These positions
must be grouped together (�clustered�) using some �cluster algorithm�. The centres
of these groups are taken as the position of the found objects. Calculation of the �tness
of programs during evolution traditionally requires these �clusters� to be calculated,
however this adds a very expensive processing overhead which slows evolutionary
performance.

3. Selection of training data examples can affect the effectiveness (usefulness) of an evolved
localiser program. Some work has focused on hand picking a small number of impor-
tant training examples combined with randomly selecting a certain number of other
examples[11, 2]. This hand picking of examples is cumbersome at best and may lead
to errors in the generated programs due to poor selection of training examples. Prob-
lems with complex objects require greater number of training examples than for simple
cases, increasing the time it takes to train an effective localiser. Some guides to what
training examples are best to train with are needed.

This project will investigate and attempt to address these issues.

1.2 Research Goals
The goal of this project is to achieve better evolutionary performance and greater accuracy
of detections by using better measures of program �tness, and by discovering rules for the
selection of training examples which lead to ef�cient training of programs for the task of
locating objects of interest.

The speci�c goals of this project are to:

1. Devise better methods for computing the effectiveness (�tness) of localisation pro-
gram, which consider the complexities of the localisation problem. Determine what
characteristics are desirable and incorporate these into the new methods.

2. Develop a method of improving training performance by eliminating the need for
clustering during evolution.

3. Examine the effects of training data preparation on the evolutionary progress and ef-
fectiveness of programs produced, and discover rules for producing optimal selections
of training examples for localisation.

2

1.3 Contributions
Two new �tness functions for the task of object localisation are introduced. These �tness
functions are shown to perform extremely well when compared to an existing method.

The relative importance of different types of training data are discovered. This affects
training performance as well as localisation effectiveness as training/evolutionary systems
can train with more directed and useful training data than may otherwise be able to.

A paper entitled �New Fitness Functions in Genetic Programming for Object Detection�
was accepted for publication in the Image and Vision Computing New Zealand Conference
2004 (IVCNZ'04), in Akaroa, New Zealand.

1.4 Structure of Document
This chapter has served has a brief introduction into the problems of Genetic Program-
ming for classi�cation and detection, and particularly considering localisation or detection.
The remainder of this document describes the background theories and work in detail and
presents two main new pieces of work: new �tness functions for localisation and a novel
analysis of training data, along with analysis of the new methods. The structure is as fol-
lows.

Chapter 2 contains background information into Object Detection, the Genetic Program-
ming paradigm, and how Genetic Programming can be applied to object detection. Chapter
3 describes the data sets with which our methods are tested. Chapter 4 introduces the theory
and reasoning behind the development of two new �tness functions for object localisation
and provides analysis comparing the new �tness functions to an existing method. Chapter 5
provides a detailed motive and method for examining certain characteristics of the training
data and then devises an experiment and shows results to determine if good heuristic rules
can be determined about the selection of training data. Finally, chapter 6 summarises the
�ndings from the �tness functions and the training data analysis.

Some additional related information can be found in appendices A.1 to A.3.

3

Chapter 2

Background

This chapter serves as a brief introduction into some basic concepts of machine learning
concepts, followed by a more detailed examination of the concepts within the Genetic Pro-
gramming paradigm. Object Detection in Computer Vision is then discussed, with speci�c
emphasis on the issues and performance measures relating to this report. Mention is then
made to some speci�c issues in using GP for object detection. Finally, a brief literature re-
view follows.

2.1 Overview of Machine Learning
Traditionally, programs have been written by people to perform tasks that change in pre-
predicted ways. The programmers have had the insight necessary to handle the different
situations. The programmers have also known how to deal with handling the data within
their speci�c domain. If this has not been the case, the programmers have experimented
until they have devised rules which model the environment in which their programs must
work. Increasingly, the software being written is required to meet needs requiring much
more complicated data processing. The data being processed is now so complex that often
humans cannot easily discover good rules to describe the environment.

From a different direction, there is also the desire that machines should be able to adapt
to their world through learning about it. There should be some way for a system, machine,
or software program, to learn what its environment is, and then react in necessary ways to
achieve the desired result. This is at a runtime level. At a design level, there is also the
desire that software should be produced automatically, particularly when the task is too
complicated for a human programmer to devise the rules that they should be incorporating
into their software. Programmers wish to make their system learn how to perform the task.
Once the task is learned, the program is then published as a working unit.

How does a computer learn?
This is a seemingly daunting task, and it has received much interest over many years. A

lot of research has been done using one broad and seemingly basic method: a possible solu-
tion or set of solutions is generated and then tested for its ability (or effectiveness) in solving the
problem. These solutions are initially generated by some random means. You can imagine
selecting a few solutions from the set of all possible solutions, and then testing their �tness.
The �tness of a solution is usually determined by trying it against the problem and seeing
how well it performs. The next stage in this process is to determine what to do with the
solution or solutions generated so far. Most systems take the existing solution or solutions
and the information on how well they performed, and attempt to improve the solution(s).

Determining how to represent a problem is dif�cult, as many programmers know, and

4

determining how to represent and generate solutions, and then to measure the effective-
ness of these solutions and to improve upon them, is extremely dif�cult and varies widely
depending on the problem domain and the choice of the programmer. Broadly speaking,
learning systems can be divided into three categories:

supervised There are 'correct' outputs which are already know for all inputs during train-
ing. Training data is often referred to as being 'labelled'.

unsupervised There are lots of inputs, but 'labelled' output data is rare or completely ab-
sent. Machine learning programs tend to look for arbitrary patterns relating entirely
to the input values, such as in clustering algorithms.

reinforcement The inputs are not labelled with 'correct' outputs, however the system is
occasionally told whether it has achieved the right or wrong answer. This 'reinforce-
ment' is often delayed in time and the possible reason for the correct action or mistaken
action cannot be directly deduced.

Some of the more common systems in use are: Neural Networks (NNs), Genetic Algorithms
(GAs), Genetic Programming (GP), Decision Trees, and Bayesian Networks. These are typi-
cally used for either supervised or reinforcement learning.

Arti�cial Neural Networks (often abbreviated to Neural Networks) were inspired by
the way that the human and animal brain function through the use of neurons which, at a
basic level, transmit data to its outputs based on the value of the inputs and some learned
behaviour. The learned behaviour maps certain inputs to a desired output by way of setting
some computational parameters within each neuron.

Genetic Algorithms are a classic example of how dif�cult it can be to represent the prob-
lems and solutions. GAs require the solutions to be encoded into a string of values (typi-
cally binary values) like a chromosome would represent information. However this poses
the dif�cult task of decoding the solution back into useful information, and also of how to
represent the problem in order that such solutions can be generated.

Decision Trees and Bayesian Networks are best suited to inputs with discrete values.
Decision trees are used as a classi�cation system by dividing the set of possible outcomes
by each of the inputs. Decision Trees are represented as a tree structure with each node
representing a question, and the edges from the node representing each of the possible an-
swers. Each answer could also represent a range of possible values for the input values. The
learning system attempts to �nd the most broad and shallow tree by checking each possible
input value and comparing how well it separates the known examples into separate and
preferably unique subsets. The shallower the tree, the less inputs need to be examined to
achieve an outcome. The broader the tree, the more expressive it is.

2.2 Genetic Programming
Genetic programming is an exciting method for evolving computer programs to solve com-
plicated tasks. GP was originally devised in 1990 by Hugo de Garis[6], and since then John
Koza has become the main proponent of its use, in [8] and later works.

GP is based on the Darwinian theory of evolution, where the �ttest of a population sur-
vive but the un�t die. In GP, a population of programs is initially randomly created, each
successive generation goes through a process of killing off the un�t programs, retaining the
original programs, and possibly changing the population through evolutionary mutations.

GP is used as a supervised learning mechanism, using a training set of labelled examples,
and some sort of �tness function is used to measure the �tness of programs produced against

5

this training set. This '�tness' is used in determining when to terminate the learning system.
The learning system is called the evolutionary engine.

2.2.1 Program Representation
Genetic Programming enables solutions to be represented as programs. These solution pro-
grams in GP are represented as variable sized tree structures. The leaf nodes are the inputs to
the program, called terminals. The internal nodes form the functional body of the programs,
they are formed from a function set that has been selected to be relevant to the problem
domain. The internal nodes are called the functions. The root node produces a single output
value, called the result.

Figure 2.1 shows a typical program produced by GP. The �nal output represents (xyz −
1.34x2). The programs produced are normally thought of as LISP style expressions (where
the function is speci�ed �rst, then its arguments, separated by spaces). The program in the
�gure represents the LISP S-expression (- (* x (* y z)) (* 1.34 (* x x))).

Figure 2.1: Program representation in GP

Function Set

Typically the functions all return single values or the same type. Often �oating point num-
bers are used as the return type, however boolean operators, or functions returning integer
numbers can be used also. Under Strongly Typed GP (STGP)[9], the functions are able to
return values of different types. This poses many dif�culties regarding the selection of the
function set, the initial generation of programs, the mechanics of the genetic operators, and
the selection of a good �tness function.

There is no limitation on the number of input arguments a function can accept, although
typically each function would accept its own �xed number of arguments. The arguments
can be terminal values or the return values of other functions.

Typical functions used include:
• basic algebraic operations: {+, −, ×, %}

where % represents protected division, whereby divide-by-zero situations are handled
by returning the value 0 (zero),

• trigonometric operations: {sin, cos, exp, log},
• boolean operations: AND, OR, NOT, XOR,
• boolean tests: {IF bool-expr(a) THEN b ELSE c, IF a <0 THEN b ELSE c}
• other domain speci�c operations, such as commands for action.
Other, more complicated, programming structures, such as loops are not usually incor-

porated within the function set. Their use poses a great deal of complication to the evolu-
tionary process and �tness measures.

6

Feature Terminal Set

The terminal set is comprised of some set of features extracted from the input domain, and
optionally some constant values. The constant values are usually created as randomly gen-
erated numbers, but may also include other values such as 0.0 (zero) and other domain
speci�c constants.

The set of features vary greatly depending on the problem domain and the requirements
imposed by the designers.

Closure and Suf�ciency

A useful pair of feature and function sets require two qualities, that of: functional closure and
suf�ciency.

Closure is a mathematical term saying that applying an operation on two inputs of some
type, will result in a value of the same type. This extends to requiring that operators used
in the function set will always result in legal values. Problems such as divide-by-zero situa-
tions leading to not-a-number (NaN) results must be dealt with by forcing these situations
to some standardised answer, or exclude the operation from the function set.

Suf�ciency requires that the function and terminal sets are suf�cient to form a valid solu-
tion.

2.2.2 Operators
The programs in GP are �enhanced� by methods derived from biology. Programs are se-
lected to undergo crossover, mutation, and reproduction at some speci�ed rates. Their use
is intended to provide improvements to existing solutions, to discard bad sections of exist-
ing solutions, and to ensure that the best solutions are not lost entirely. These operations
happen on a random basis, to randomly selected programs, and consequently they have no
inherent ability to produce better programs. Rather, crossover and mutation have an equal
possibility of producing bad programs as good programs. The �tness function is then used
to discard the bad programs and keep the good ones.

Crossover

Crossover takes two existing programs and produces two new programs. The old programs
are replaced by these two new programs. The process involves taking a section from the �rst
program and switching this with a section from the second program, as shown in �gure 2.2.
The �crossover points� select some sub-tree from each program. These points are chosen at
random over the nodes within each of the full programs.

Mutation

Mutation is used to introduce new information into the population. Existing programs are
mutated by randomly selecting a �mutation point�. The sub-tree of nodes at this point is
removed and replaced by a newly randomly generated sub-tree as shown in �gure 2.3.

Reproduction

Also referred to as elitism, reproduction of programs is done by simply copying a �t program
from one evolution to another. This is used to ensure the overall best �tness of the popu-
lation to never decrease. So long as the current best �t program is never lost, the overall

7

Figure 2.2: Example of crossover

Figure 2.3: Example of mutation

population's best �tness will remain monotonically increasing (always equal or greater than
previous value).

2.2.3 Fitness Function
The �tness function is some sort of function which measures how good a program is when
applied to the training set. The training set consists of many examples (ranging from 100 to
100 thousand or more depending on dif�culty of the problem domain and availability of ex-
amples), each of which have been pre-labelled with their desired output. For a classi�cation
problem, a typical �tness function is simply the �accuracy� of the program output. Calcu-
lated by counting how many examples the program produces the correct output for, and
comparing this to the total number of examples the program is tested on. Another example
is using RMS (root-mean-square) error for regression problems.

2.2.4 Evolutionary Engine
Whole populations of programs are created during evolutions in a run of GP. Each program
is tested by applying it to some training set of examples. The test set examples have been
pre-labelled with their correct output values and the �tness of the programs produced are
measured by comparing their outputs with the required outputs. This is called supervised
learning.

The engine for evolving programs in GP follows the steps shown in �gure 2.4. The pop-
ulation is initially generated by randomly selecting the tree nodes from the function and

8

terminal sets. Each individual program within the population is tested against the training
data and its �tness measured. The evolutionary engine is terminated when perfect �tness
has been achieved or a prede�ned number of generations has been reached. When the evo-
lutionary process is terminated, the best program produced so far is returned as the �nal
output.

Figure 2.4: GP Evolutionary Engine

2.2.5 Termination and Validation Sets
Typically the GP evolutionary process will continue until one of two conditions are met:

1. The best �tness has reached ideal �tness. For example, 100% accuracy.

2. The maximum number of generations has been reached. This servers as a way of
limiting training time if the programs never reach ideal �tness or wouldn't reach ideal
�tness without a very long training time.

Using only a single set of training examples tends to cause over �tting, where the solution
found works very well on the training data, but not very well on any other data it is later
applied to. To solve this problem, the evolution is extended to use a second set of examples,
called a validation set. The programs are applied to the validation set either after each test on
the testing set, or at some regular interval of generations. The validation set isn't itself used
to pick �t programs for evolution, rather it is used only to measure whether the programs
are becoming over �t.

Figure 2.5 shows the idealised curves for the training set �tness and validation set �tness.
As the training set �tness becomes increasingly better, the validation set �tness will initially
get better also. However, at some point, the programs become over �t, being highly trained

9

Figure 2.5: Train and Validation �tness curves

for the training set but not trained on the validation set, and consequently the �tness when
applied to the validation set becomes worse. Evolution should be terminated at this point.

The system used within this project is very similar to this process, with the slight varia-
tion that the evolution is not terminated until the maximum number of generations or ideal
�tness is reached. However, the validation set is applied after each generation and the gen-
eration with the highest validation set �tness is used as the best generation. The most �t
program from the best generation is then applied to a third example data set, the test set and
its �tness when applied to the test set, is used as the �nal measure of accuracy of the pro-
gram produced. This ensures that the programs are not over �tted to either of the training
set or validation set, and better measures the solution's generalisation. If the solution is not
general enough, it will misinterpret entirely new examples of the same kind of data.

10

2.2.6 Summary of GP Parameters

Function set A set of operations on terminal set values, typically some-
thing like {+, −, ×, %}

Terminal set The set of possible input values to the programs, varies
greatly from domain to domain, and may contain constant
values which are randomly generated during program gen-
eration and mutation.

Elitism rate Percentage of programs selected for reproduction.
Mutation rate Percentage of programs selected for mutation.
Crossover rate Percentage of programs selected for cross-over.
Population size Number of programs initially generated before evolution

begins (typically large, around 500 programs)
Maximum program depth Maximum size of programs allowed during evolution (typi-

cally around 7 to 15)
Minimum program depth Minimum size of programs allowed during evolution (typi-

cally around 3 to 6)
Number of generations Maximum number of generations attempted before evolu-

tion is terminated. (typically around 50 for easy programs,
up to 200 or more for harder program)

Termination criteria Method for deciding when to terminate, varies depending
whether only only a training set is used, or if a validation
set of examples is used also.

Training set Example data set used to select �t programs for evolution.
Validation set Example data set used to determine when solution pro-

grams are not over �t.
Test set Final example data set used to measure �nal �tness of solu-

tion.

Table 2.1: Summary of GP Parameters

2.3 Object Detection in Computer Vision
Object detection is the task of �nding �objects of interest� within images (Localisation) and
determining the type, class, of the objects found (Classi�cation). Typically these images will
have been acquired using a digital camera, magnetic resonance imaging (MRI), satellite pho-
tography, or digital camera attached to a microscope, among others.

An image may contain many different structures within an image which the human
viewer may perceive to be valid objects. For most images used within this report the dis-
tinction is clear between that of background image and the objects - all of which are con-
sidered �objects of interest�. However, some images may contain many other objects which
are unrelated to the task at hand. For the purposes of making the task simpler, these unre-
lated objects are considered to be part of the background image. Unless otherwise stated,
whenever the word �objects� is used within this report, it is considered to mean �objects of
interest� and to disregard any unrelated objects.

Object Localisation is the task of �nding the positions of images to be classi�ed. It is
convenient to think of using the locations found as representing the positions to �cut-out�.

11

These �cut-outs� are then �passed� to the classi�cation stage. The cut-outs may be de�ned
by the bounds of the area in which the classi�er is to examine the image (centre and width
and height), or they can be actual cut-outs taken from the original images and passed as
smaller sub-images.

Object Classi�cation requires having the positions of images and passing cut-outs of the
objects to the classifying software.

2.3.1 Features
The features used for examining objects within images can very greatly and often can de-
pend on the domain in which the images are acquired (eg: microscope imagery versus satel-
lite imagery).

Technically, feature extraction is a process of reducing the number of potential dimen-
sions needed to be handled by the learning system. A small cut-out of 10x10 has 100 pixels
in total. If only a few data examples (of 10x10 pixels each) are needed, then this level of
resolution can be tolerated. However, the number of feature values increases dramatically
with larger cut-out sizes. A 100x100 pixel cut-out has 10,000 total pixels, which may be too
large to handle for complicated problems requiring many training examples.

Extracting useful features reduces this dimensionality by attempting to remove unwanted
or irrelevant data, to remove redundancy if it is present, and to simplify the learning task by
approximating the data to some acceptable degree.

Past work has tended to focus on using hand crafted rules for feature extraction, or
hand picking features which should be extracted and then training a system to detect these
features [7, 12]. Some recent work has focused on using domain independent features [2, 5,
13, 11, 20, 18] such as statistics (mean and standard deviation) of regions.

2.3.2 Object Classi�cation
The task of Object Classi�cation is:

for each example of an object,
classify its type as one of a set of possible classes.

The set of possible classes may or may not include a class representing �background�. In-
cluding background as a class potentially makes the training harder, because the dif�culty of
learning is partially related to the number of classes, so background is only included when
necessary.

Classi�cation Strategies

The output from programs in GP are generally a single �oating point value. Binary classi�-
cation uses this value by considering values zero or greater as one class, and negative values
as the other class. Using multiple classes (three or more classes) requires more complicated
�classi�cation strategies�.

SRS: is the simplest of such strategies. All values below zero are considered the �back-
ground� class, and the positive values are statically broken into regions of range T, which
is chosen by the user. This is illustrated by �gure 2.6. Better methods have been developed
more recently [14, 15] and the reader is encouraged to investigate these methods..

12

(a) (b)

Figure 2.6: Static Range Selection[18, pp. 178]: (a) program section used to produce classi�cation, (b) how
value range is divided into classes.

2.3.3 Object Detection
Object Detection involves Object Localisation, followed Classi�cation of these objects. Ob-
ject Localisation is done as follows:

1. Pick relevant positions within an image, treating them as individual cut-outs (or ex-
amples), and

2. for each cut-out,
classify its type as one of:

positive (an object of interest is here), or
negative (no object here / background)

In this way, Object Localisation is very similar to binary classi�cation, but with the extra
step of picking relevant positions to `cut-out'. Consequently we can use similar measures of
�tness. For example, precision and recall can be used to consider how many positions are
�classi�ed� correctly as either positive or negative.

Detecting Multiple Classes

Multiple object classes can be grouped into one �object of interest� class, and the localisation
problem is treated as a binary classi�cation problem over the set of cut-outs found using the
sweeping window.

It should be noted here that this is still harder than a purely binary classi�cation problem
where the objects really are of the same class. Training the system to recognise multiple
classes, which may be very different in nature, may require the system to learn disjunctive
rules.

13

A different way to do this is discussed in section 2.4, however this is the approach taken
in this report.

Sweeping Window

The relevant positions can be found using a sweeping window such as shown in �gure
2.7. For training, the input window is moved across all positions of the training image (or
images) and at each position the features are extracted. The correct position of all objects
within the image are known and these positions are used to label the extracted features are
representing an object or just background. The GP process produces a program learned from
these labelled inputs.

During testing, a test image (or set of test images) is used in the same way. The input
window is swept across the test image(s) and the features extracted. The program produced
during training is then used to classify the features extracted from each input window posi-
tion. The result is that all possible input window positions are classi�ed as either �object of
interest� (positive) or �background� (negative). The positively classi�ed window positions
are referred to as Localisations.

Figure 2.7: Sweeping Window

Clustering

The results from applying a localiser to the sweeping window can produce many individual
localisation points for a single object. These individual positions tend to be grouped together
in clusters. These clusters generally exist because the localiser was unable to pin-point the
exact position of the objects. Before later stages, such as classi�cation, can be applied to the
localisation results, generally one needs to produce a single result for each cluster. These
results thus produce the �centres� of clusters and can be used as the detected object position
and supplied to an further processing stages.

The groups of localisation positions are collected using a clustering algorithm.

14

One clustering algorithm, devised for use in Neural Networks in [10] is also applicable
to the detection problems using Genetic Programming. This method, called the Donut Al-
gorithm groups adjacent pixels (individual localisation positions) repeatedly until no more
pixels are added. The result from the Donut Algorithm is a list of points which represent
the overall position of each separate cluster. Different positions can be used, such as the
position half way between the minimum and maximum on both the x and y axis, or a more
sensible �centre of mass� which is calculated by simply averaging all positions of individual
localisations for a given cluster.

This clustering algorithm can process in time linearly proportional to the total number
of pixels in the images. Any pixels which represent localisation positions and which are
directly or diagonally adjacent to any other localisation positions become part of a larger
cluster. It works by scanning each horizontal line in turn, moving progressively down-
wards. At each scan of a line, directly or diagonally adjacent pixels are grouped together
and any information of prior associated clusters are merged into one. Finally, when all pix-
els for any clusters are left without adjacent pixels within the horizontal line immediately
following them, those clusters which have not been continued are known to be searched in
their entirety and they positions can be returned. During the processing, running averages
and counters keep track of the number of pixels involved and the average position of these
pixels. When a cluster has been scanned, the running averages are used to return the �nal
averaged centre. Examples of this method working can be seen by examining the detection
maps described in chapter 4.

The algorithm used here is very ef�cient when used prior to returning the �nal results,
however it still takes time to compute the clustered results and incorporating clustering into
a �tness function can slow the evolutionary process down considerably.

2.3.4 Measuring Performance
Under binary classi�cation, some algorithm either returns positive or negative. The training
data is then used to determine whether the classi�cation was correct (true), or incorrect
(false), giving four possible states: true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). Localisations of multiple classes are typed in the same way as for binary
classi�cation, where background is considered negative, and objects of interest as positive.

Accuracy

Accuracy is the percentage of classi�cations which are correct.

accuracy =
number of correct classi�cations
total number of classi�cations , accuracy ∈ [0, 1] (2.1)

This can also be represented using the true/false values:

accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Standard Precision and Recall

Accuracy has a severe drawback when the ratio of negative to positive examples in the
training set is biased. For example, if there 100 examples in the training set, only 5 of which
are positive, then a classi�er which classi�es everything it sees as negative will have 95%

15

accuracy. For this reason, precision and recall are a much better measure. A classi�er has
positive precision and positive recall, calculated as follows:

precision = number of correct positive classi�cations (true positives)
total number of positive classi�cations made

recall = number of correct positive classi�cations
total number of objects which should be classi�ed as positive

precision, recall ∈ [0, 1]

(2.3)

'F' measure

The 'F' measure combines both positive precision and positive recall into a single value
suitable for use in a �tness function:

F =
2× precision × recall

precision + recall ,F ∈ [0, 1] (2.4)

Representing this using true/false fractions:

F =
2TP

2TP + FP + FN
(2.5)

A full derivation is left to an appendix. It can be seen that this is very similar to accuracy,
the difference being that the TN term is replaced with TP, giving TP the greater importance
over TN. 100% F still is equivalent to 100% accuracy because FN combined with TP and FP
make up for the lack of TN and together mean that 100% F does not allow a classi�er to miss
having the correct number of TN.

Abstract and Concrete Concepts of Object Localisations

At an abstract level, one can talk about �the precision and recall percentages of object locali-
sations� as referring to the ability to �nd the existence of objects at some set of approximate
locations, but without any speci�c coordinates given. The intuitive concept is to consider
whether the localisation resided within the boundaries of the object. A localiser thus has
high precision if its localisations mostly reside within the bounds of the objects it has found.

However, objects have have width, height, radius and perhaps arbitrary shape, and most
systems require a more exact position to be provided for the object of interest. A typical mea-
sure is whether the localisations are within some tolerance of the exact, or true, centres of
the objects. A set of localisation positions will thus only have high precision if most are with
the tolerance of true centres, and these localisation positions will have very low precision if
most reside within the objects' bounds but not at the exact centres. In this scenario, a locali-
sation within the object bounds is considered a �false positive� if it is not at the exact centre.
In other words, it is treated as if it is just as bad as picking some point on the background
and calling it an object of interest.

In chapter 4 this report introduces another version of precision, recall, etc., which closely
resembles the intuitive sense of object bounds, but at the same time prefers programs to �nd
object close to their centres.

The remainder of performance measure descriptions are for the task of object detec-
tion/localisation speci�cally.

16

Average Position Error

Average positional error is the average distance of detections/individual localisation positions
from object centres, and considers only the detections/individual localisations made within
object bounds, ie: within the radius of the object.

2.3.5 Detection Rate
Detection Rate (DR) is simply the percentage of objects detected, or the number of objects
successfully detected within the desired tolerance from true centre, divided by the total
number of target objects. It is equal to the Recall, but is de�ned here as it would be for
multiple class object detection:

DR =
∑n

i=1Ntrue(i)∑n
i=1Nknown(i)

× 100% (2.6)

where:

• n is the number of classes of interest,

• Ntrue is the number of true objects correctly reported for class i,

• Nknown is the number of actual (or known) objects for class i,

2.3.6 False Alarm Rate
False Alarm Rate (FAR) is the total number of false alarms, taken as a percentage of the total
number of target objects. It is generally expressed as either a percentage, or as a fraction of
number of false alarms per object. The false alarm rate is de�ned as:

FAR =
∑n

i=1Nreported(i)−
∑n

i=1Ntrue(i)∑n
i=1Nknown(i)

× 100% (2.7)

where:

• Nreported is the total number of objects reported for class i, whether correct or incorrect.

False Alarm Area

False Alarm Area (FAA), introduced by Pritchard and Zhang in [11], is de�ned as the number
of false alarm pixels or number of individual localisation positions which are not at the
centre of correct clusters, divided by the number of objects. It is approximately equal to the
average area of all clusters. It is reported as the number of false alarm pixels per object.

2.4 GP for Object Detection
The object detection and classi�cation systems to date has typically involved only two classes:
the objects of interest, and the background. Some work [2, 13, 11, 18] has been done on clas-
si�cation of multiple classes, and even less on [2, 11, 18] has been done on detection of
multiple classes.

This project focuses on the problem of locating objects of multiple classes, and of ef�-
ciently producing programs which can perform this task with high detection rate and low
false alarm rate and positional error.

17

2.4.1 Object Detection Method
Formally, object detection involves both localisation and classi�cation. In the past, detection
has been performed using multiple stages of image processing. Each successive stage was
usually domain dependent and hand crafted to �t the problem domain. Such stages could
include: preprocessing, segmentation, �ltering, feature extraction, and �nally object detec-
tion as illustrated it �gure 2.8. [18] de�nes multiple stage detection methods as using each
succesive stage to re�ne or to continuously improve the results from one stage to the next.

Figure 2.8: Typical multiple stage detection method

More recent work [18, 11, 5, 2, 10] has rejected this approach on the basis that its success
relies too heavily on the results of each successive stage. If one stage looses information,
that information will be lost permanently and the �nal stage will only yield the detections
of a fraction of the total original targets.

As such, rente work, particularly in GP and Neural Networks, have focussed on combin-
ing all stages into one. This one stage is learned entirely through some learning process such
as GP or Neural Networks. In particular, both localisation and classi�cation are performed
at once: the output being a class label for each position of a sweeping widnow, as illustrated
in �gure 2.9. This attempts to elliminate any problems of loosing information by performing
all tasks in the single stage.

Figure 2.9: Single stage detection method

However, if using GP a �tness function can be hard to devise to achieve good results as
it needs to consider both the classi�cation accuracy and how close the found positions of ob-
jects are to the objects' true positions (positional accuracy). The latter of these two problems
is typically done by the use a �xed TOLERANCE value [11, 10, 2]. The tolerance de�nes a
square region around the true centres of objects: (x ± TOLERANCE, y ± TOLERANCE). If
the position of an object is detected to be within that region of the object's true centre, (x, y),
then the position is considered to be correct.

The former issue, of classi�cation accuracy, is dealt with by rejecting any positionally
correct detections which were classi�ed incorrectly. The �nal �tness is thus taken from the
number of correct classi�cations at positions within TOLERANCE pixels of an object of that
classi�ed class, the number of incorrect classi�cations, from the detected positions outside
of the TOLERANCE range, and also from the number of objects missed. Speci�cally, the
�tness functions include the Detection Rate (DR), the False Alarm Rate (FAR) and the False
Alarm Area (FAA).

18

With the programs typically produced by GP, the detection problem reduces to a classi-
�cation problem, only that there are a great many more cases of background than objects.
The problem is reduced to classi�cation because the genetically evolved programs are used
by being applied to the features extracted from the sweeping window and in effect it is
classifying the features extracted at each point that the window moves to.

2.4.2 Fitness Functions
Some past research has focused on the use of separately calculated measures which are
separately combined within a weighted sum:

• Detection Rate (DR), the percentage of objects detected.

• False Alarm Rate (FAR), the percentage of incorrect localisations.

• False Alarm Area (FAA), used by [11], measures the number of multiple extra locali-
sations of objects.

• Program Size, used by [2], measures the depth of programs in attempt to produce
smaller and less redundant programs.

This project focuses on the use of the 'F' measure because it has some nice features in the
way that it combines precision and recall:

• Precision and recall are given equal importance.

• Preference is made to having similar values for precision and recall, over having op-
posite extremes for precision and recall (ie: one high, one low).

2.4.3 Features
One suggestion for the features is to use a series of concentric circles[2], such as illustrated
in �gure 2.10. The features are extracted by calculating the mean and standard deviation of
pixel values within each of the circular areas. This set of features has the advantage of being
rotationally independent, meaning that the rotation of the object does not affect the feature
values. It is, however, scalar dependent, meaning that the scale of the object affects the feature
values.

Mean SD Regions
F1 F5 Circular Area 1
F2 F6 Circular Area 2
F3 F7 Circular Area 3
F4 F8 Circular Area 4

Figure 2.10: 8 concentric circle features[2, pp. 25]

19

2.5 Related Work
The following serves as a brief literature survey of some of the areas relevent to the topics
in this report. Firstly the various methods relating to �tness functions are features are pre-
sented, followed by some other work related to object detection. Finally some examples of
learning/training theories relevent to our work is presented.

Various research has been done on image processing, Genetic Programming, and GP
applied to object detection speci�cally. Some research has been done using domain inde-
pendent approaches of classi�cation, using pixel values and statistics of pixels values. Some
of these[2] have divided a �xed sized input window into circular or rectangular regions over
which statistics are calculated.

2.5.1 Fitness Functions
Zhang et al.[21] developed and compared two feature sets for object detection based on
domain independent pixel statistics and also the use of naw pixels. The �rst feature set
divided a square input �eld into four regions and a �fth overlapping region in the centre.
It used the mean and standard deviation of all pixels within the �ve regions and along
four boundary lines. The second used the mean and standard deviation of concentric circle
boundaries. Here, if the input �eld is n×n in size, then dn2 e concentric circles are used, with
radiuses incrementing by a single pixel between each.

The �tness function used detection rate and false alarm rate and combined them in the
following equation:

�tness(FAR,DR) = Wf × FAR+Wd × (1−DR)

Pritchard and Zhang[11] investigated the use of GP for object detection of multiple
classes using a single stage detection method and similar data sets to the ones use in this
project. He introduced a new term in the traditional �tness function for object detection:
False Alarm Area (FAA). Clustering of localisation positions was used. It was found that
Detection Rate and False Alarm Rate were insuf�cient to measure small changes in �tness
whereby the size, or area, of clusters was smaller from some program than another. FAR
only counts the number of false alarm clusters. So FAA measured the total number of pixels
which were involved in false alarm clusters and the extra number of individual localisation
positions, other than true centres, for the true positive clusters.

For example, �gure 2.11(b) is better than �gure 2.11(a) because there are fewer false
alarm pixels. The new �tness function was found to produce very good results. 100% classi-

(a) (b)

Figure 2.11: FAA examples: (a) many false alarm pixels, (b) few false alarm pixels

�cation accuracy was achieved in most cases and around 100% of objects where successfully
localised to within a tolerance of two pixels plus or minus from the true object centres. The
new �tness function contained three free parameters which need experimentation to set.
Typical values used were not speci�ed. Pritchard's �tness function was:

fitness(DR,FAR,FAA) = a× (1−DR) + b× FAA+ c× FAR

20

Bhowan and Zhang[2] compared the use of two �tness functions based on the same
principles as used in papers already mentioned. The �rst was the traditional Detection
Rate and False Alarm Rate based �tness function. The second extended the work of [11]
to include a fourth term: program size. The intention of the program size term was to
reduce the overall program size and hopefully produce simpler programs which are easier
to interpret if later examined. Bhowan used a single stage object detection method.

The two �tness functions were:

�tness(DR,FAR) = K1× (1−DR) +K2× FAR

�tness(DR,FAR,FAA,ProgSize) = K1×(1−DR)+K2×FAR+K3×FAA+K4×ProgSize
Bhowan investigated three methods of training for detection and classi�cation, the last

of which incorporated two training phases. The �rst method, Straight Forward Detection
(SFD), trained programs by directly applying them to the detection problem in the typical
fashion as described in detail in 2.3.3.

The second training method, Object Classi�cation Applied to Detection (OCAD), trained
using only the object classi�cation training data which contains mostly examples of training
cut-outs centred on objects and of background. The training data also includes some spe-
cially selected examples which overlap background and objects. This method is primarily
used because it uses substantially less training examples than SFD.

The third method, Re�ning Object Classi�cation for Detection (ROCD), is a combina-
tion of the �rst two methods, and uses two training phases. The �rst phase trains as for the
training of the OCAD method for some number of generations, generally until perfect classi-
�cation accuracy is achieved. The second phase then continues the training of the programs
produced by the �rst phase by applying them to object detection training data like in SFD.
The training is continued until a reasonable detection rate and false alarm are achieved.

The second of the two �tness functions was found to produce equally successful pro-
grams to the �rst �tness function, with less training generations and the program sizes were
around a third that of the programs produced using the �rst �tness function.

The ROCD method was found to have the best training performance for good detection
effectiveness, however SFD produced fewer false alarms.

Both �tness functions used here involved free parameters which need to be set by exper-
imentation. The typical values used for the coins data set in their report are as follows:

K1 = 5000
K2 = 100
K3 = 10
K4 = 1

2.5.2 Other Object Detection Work
Ny and Zhang[10] investigated the use of Neural Networks for object detection. A clustering
algorithm called the �Donut Algorithm� was used to cluster groups of potential localisation
positions into a single central point and then this result was used to �lter false alarms to
determine whether the cluster represented a true object of a given class or a different class.

The clustering method used in this report, and described later, is as described in their
work on the �Donut Algorithm� in [10].

Schneiderman and Kanade[12] used statistics of image parts for multi-class detection of
objects. Multiple, individual classi�ers where used to manage the separate object classes,
and also for a discrete set of sizes. Each classi�er was based on the statistics of localised
parts. These parts were transformations taken from subsets of wavelet coef�cients, and

21

yielded discrete sets of values for each part. Each classi�er determined its result using a
process similar to a Bayesian Network. They developed a process which could detect human
faces, cars, and door knobs from many different angles and scales and classify the human
faces as facing left, right or towards the camera.

2.5.3 Training Set Theories
Boonyanunta and Zeephongsekul[4] investigated the effect of training set size on the pre-
dictive power of learned classi�ers. The predictive power is the ability of a learning system
to generalise and to produce good results when applied to some test data set. Three stages
of predictive power growth were observed. In the �rst stage, as the number of training
examples is increased, the predictive power increases rapidly. In the second, the power con-
tinues to increase, but at a much slower rate. In the third, the predictive power more or less
plateaus for increased training size. They proposed an equation which models the effective-
ness and can be used to predict an estimate of the the training size required to achieve a
desired level of accuracy:

P (p) = T (1− exp−kp) + P (0) exp−kp (2.8)
where:
• P (0) is the predictive power without training data (for example, a random coin toss

has 0.5)
• k is ef�ciency rate, namely: the rate of improvement in predictive power per unit

increase in ef�ciency.
• p is the training sample size.
There is a theory [17] for Neural Networks that the number of training examples re-

quired to train a network to a given accuracy factor, ε, with N weights within the network,
is approximately equal to N 1

ε . Where ε is the maximum allowed error rate. For example, if
we require 90% accuracy (an ε value of 0.1) we will need 10 times as many training examples
as weights to achieve the desired level of generalisation.

[1] found that learning algorithms could be augmented to attempt to minimise the num-
ber of non-zero weights and thus discard some unnecessary nodes. From this they theorised
a lower bound on the number of training examples required. This lower bound is propor-
tional to the number of hidden nodes, instead of the total number of weights. Their theories
were applied to boolean threshold transfer functions.

[16][ch. 11] includes a section highlighting the existing theories and �rules-of-thumb�
for selecting a good training set for a Neural Network learning system.

1. The training set should be statistically representative of the problem domain: the prob-
abilities of different types of training examples should be approximately equal to the
likelihoods of �nding these types of examples in the application. As an example,
[16][pp. 224] describes a situation where some learning method is applied to men
of different heights. If the training set contains the majority of examples from men of
short stature, then the trained classi�er will produce inaccurate results for taller men.
And vice-versa.

2. Where possible, training sets should be from objective data, rather than subjective
data. Subjective data is based on the opinions or guesses of some expert, but may
be contradicted or disagreed upon by some other accurate expert. Objective data is
generally more accurate and is obtained by some well de�ned rule. However, it is
pointed out, objective data may be impossible to acquire for some problems.

22

[16] also highlighted theories regarding normalisation of training data, generalisation
theory relating to the number of hidden nodes to training set size as discussed by [17], and
the VC dimension as described by Blumer et al. in [3].

2.5.4 Summary of Fitness Functions
Three typical �tness functions have been found in the previous related work search:

[21, 19, 2] �tness(DR,FAR) =

K1× (1−DR) +K2× FAR

[11] �tness(DR,FAR,FAA) =

K1× (1−DR) +K2× FAR+K3× FAA

[2] �tness(DR,FAR,FAA,ProgSize) =

K1× (1−DR) +K2× FAR+K3× FAA+K4× ProgSize

And some suggested values for K1 to K4 are:

K1 = 5000
K2 = 100
K3 = 10
K4 = 1

23

Chapter 3

Tasks

3.1 Data Set
The methods developed for the goals described in section 1.2 have been tested using four
data sets. The �rst is relatively easy, the second and third are equally harder, and the last is
much harder by combining the second and third data sets. All data sets contain gray scale
images. In all data sets, the largest object has a diameter of 70 pixels, and so the �sweeping
window� size is set to 70x70 pixels.

Easy coins. The easiest training set. It contains images of 5 and 10 cent coins on a fairly
uniform light background. There are 24 images in this set, each sized around 540x540 pixels.
There are �ve classes in this set: background, 10c heads, 10c tails, 5c heads, 5c tails. See
�gure 3.1(a).

5cent coins. One of two medium dif�culty training sets. It contains images of 5 cent coins
only, on a noisy dark background. There are 24 images in this set, each sized around 540x540
pixels. There are three classes in this set: background, 5c heads, 5c tails. See �gure 3.1(b).

10cent coins. Second of two medium dif�culty training sets. It contains images of 5 cent
coins only, on a noisy dark background. There are 24 images in this set, each sized around
540x540 pixels. There are three classes in this set: background, 5c heads, 5c tails. See �gure
3.1(c).

Hard coins. The most dif�cult training set. It contains images of 5 and 10 cent coins on
a noisy dark background. For this set, half of the images from the '5cent coins' set are
alternated with half from the '10cent coins' set. This gives a total of 24 images, each sized
around 540x540 pixels. There are �ve classes in this set: background, 10c heads, 10c tails, 5c
heads, 5c tails.

3.2 Tasks
In each data set, the tasks are to:

1. maximum precision and recall,
2. achieve high positional accuracy, and
3. minimise the number of extra localisations per object.

24

(a)

(b) (c)

Figure 3.1: Data Sets: (a) Easy coins, (b) 5cent coins, (c) 10cent coins.

25

Chapter 4

New Fitness Functions

In this chapter we seek to answer the �rst two research goals by devising a �tness function
for object localisation that can be easily used without the need for �nding good values for
many free parameters, and which is ef�cient to calculate without the need for computation-
ally expensive clustering of results. We compare our results against an existing method and
show that our new approach to be extremely competitive, producing similar detection rate
with fewer false alarms and less training time.

For simplicity, we consider objects of interest which are approximately round. We later
suggest that our new method may be suf�cient to handle most detection problems.

4.1 Object Detection Method
Chapter 2 introduced two Object Detection methods used in past research. A different ap-
proach has been taken in this project. Similar to the multiple stage method discussed, the
�nal result is found after two separate stages. The difference is that both stages are per-
formed by evolved genetic programs or some other learning method, such as Neural Net-
works, which can be trained in a fashion independent of the object detection problem.

The �rst of the two stages used here �nds only the locations of the target objects. The goal
for this stage is to achieve high positional accuracy and high recall. The result of this stage
has clustering applied to �nd the centres of �patches� of localisation positions and these cen-
tres are passed as inputs to the classi�cation stage. The second stage performs classi�cation.
The positions found in the �rst stage are used to extract what can be thought of as �cut-outs�
at each of these positions. These cut-outs are classi�ed using an evolved/trained classi�er
independent of the evolved/trained localiser. Figure 4.1 illustrates this approach. The �rst
box represents the raw image, the second shows the resultant positions of localisation and
clustering, the group of cut-outs are extracted and then each is individually classi�ed and
labelled with its class. The positions will also be associated with each object.

Figure 4.1: Two stage detection method

26

The following serves as a comparison of some advantages and disadvantages of the
single and two stage detection methods.

Single stage

• Only one program to train.

• Hard to train because goal is very speci�c and restricted: correct position and correct
class.

• Tends to achieve high recall.

• Potentially could tend to produce bad classi�cation accuracy.

• Generally able to accept greater positional error, because the classi�cation is performed
also.

Two Stage

• More than one set of training: takes longer, have to devise two separate �tness func-
tions.

• Easy to train each stage, �tness functions are simpler and easier to devise,

• especially classi�cation, which is easy to train and achieve high classi�cation accuracy.

• Generally the localisation stage must produce high positional accuracy so that the clas-
si�cation stage can be successful.

• Tends to achieve low recall because of requirement for low positional error.

• High classi�cation accuracy possible, see [14].

It is unlikely that a single stage localisation and classi�cation detector will produce better
recall than one trained for localisation only. The localisation only method is required to do
less and so should be better at it. Consequently, there should be no more information loss
during the localisation stage than would be found in an equivalent single stage program.
The only potential information loss comes from a more subtle difference.

A single stage approach will produce multiple individual localisation positions for a
single object, each with an assigned class. These classes may not agree and a �majority
rules� approach should be applied (although the literature observed so far does not seem to
allude to this point). Here, if for example one object is localised four times as in �gure 4.2,
with one being assigned class 1, and the other three being assigned class 2, the clustering
algorithm should group these as one and assign it class 2.

The two stage method performs clustering before classi�cation is performed, and thus
the class is calculated from features extracted at a single position, unlike the single stage
method which classi�es all pixels. It is thus possible that the localisation stage could de-
termine the object centre to be at the position of the bottom right pixel in �gure 4.2, and
consequently the classi�er would assign the wrong class label.

27

Figure 4.2: Example classi�cation of four adjacent pixels

4.2 Issues for Localisation Fitness Functions
Here the requirements on �tness functions for classi�cation only are compared to the re-
quirements for localisation. So that we can get a clear picture of the what we are asking for.
A �tness function for classi�cation needs only to consider four possibilities:

1. True Positive, where the classi�er correctly classi�ed an object as positive (object of
interest),

2. False Positive (also called False Alarms), where the classi�er incorrectly classi�ed the
background as positive,

3. True Negative, where the classi�er correctly classi�ed the background as negative, and

4. False Negative, where the classi�er missed an object, instead classifying it as negative
(background).

Typically, a simple calculation of the percentage correct is suf�cient for a measure of
�tness for classi�cation. Or, if more control is desired, precision and recall can be used.

Object localisation is similar to object classi�cation because it requires classifying the im-
age surrounding a single point within the image and doing this for every point as sampled
by the sweeping window. A �tness function for object localisation must thus handle the
four cases mentioned for classi�cation, however it must also handle another situation:

�Assuming we de�ne an object's position as its exact centre, should a point
within an object, but not at its exact centre, be classi�ed as object or background?�

In practice we only want the exact centre, but it can be dangerous to accept only these and
reject all the rest as false positives. For one reason, this disregards how close a localisation
is to the exact centre. Thus, if programs localise objects to a position very close to their exact
centres, these localisation positions will be treated as false alarms and consequently these
programs will be considered to be equally un�t to other programs which tend to produce
false alarms on the background. There are two problems with this:

1. As already mentioned, programs which tend to localise objects close to their object
centres are considered no better than programs which tend to localise objects further
from the object centres. For example, the two example detections illustrated in �gure
4.3 may both be considered false alarms as neither are at the object's centre.

2. With the requirement that programs �nd exact centres comes the requirement that the
training data is perfect. This is very dif�cult for real world situations where object
centres may not be entirely clear, and often humans must pick the object centres man-
ually, often with mistakes. Put simply, the training data is not perfect, so the resultant
programs are going to be confused. For example, it would be very bad if the training
data included many examples like that in �gure 4.3(b).

28

(a) (b)

Figure 4.3: Example positions of detections of a single round object (the small crosses repre-
sent the detected position)

The localisation stage should have high recall whenever possible, and it may be possible
to train classi�ers to classify cutouts which are not perfectly centred on objects but have a
small positional error. Thus, a �tness function which accepts small positional errors will
produce better localisers than others for this task. Generally the solution to this has been
the use of a small tolerance. If objects are localised to within, say, three pixels of their true
centres, then the object localisations are considered correct.

4.3 Localisation Fitness
We wish to incorporate some measure of positional accuracy into our �tness functions which
can give individual localisations some value of correctness which ranges from bad to perfect.
This developed into a weight, which we called the �Localisation Fitness�. This is separate to
the full �tness function of the evolved genetic programs associated with training localisers,
instead this measures the relative �tness of an individual localisation position.

Under our new �tness functions, each localisation position of an object is considered
to be �correct� (or �true�) if it was localised within some radius of the object's true centre.
The radius used may be the radius of the object itself, or it may be a �xed radius picked
from a priori knowledge. This radius is discussed further later and it is referred to as the
�Localisation Fitness Radius�, or just �Fitness Radius� for short. The radius used in the
experiments discussed later was the radius of the largest object of interest (35 pixels), and
also equal to half the width of the square sweeping window.

Each correct localisation is given a �localisation �tness�. This �tness is some value be-
tween 0.0 and 1.0, where 1.0 is best, and 0.0 is worst. If all correct localisation �tnesses are
1.0, then the program is picking only exact centres as positives and thus its �precision� is
100%. If all correct localisation �tnesses are 0.0, then the program is picking all objects well
off their true centres and thus it is equivalent to it having a precision of 0%.

The formula used to produce this �tness can be any reasonable function, the choice
thereof affecting slightly the characteristics of the overall �tness function. The function cho-
sen here is a linear one such that localisations made within the radius of the object are given
a value proportional to the distance from the centre (1.0 at exact centre, 0.0 at the very edge).
Any localisations made outside this range are given 0.0. Speci�cally:

localisationFitness =
{

1− d/r if d ≤ r
0.0 otherwise (4.1)

where:
• d is the distance from object centre
• r is the localisation �tness radius (half width of sweeping window in tests done to

date)
• localisationFitness is the weight given to this particular correct localisation when calcu-

lating the precision and recall as discussed below.

29

4.4 Fitness Functions Design Considerations for Localisation
We examined the requirements on �tness functions for localisation problems and found that
the �tness function should order different programs in the following way:

1. Greater number of objects should be localised (their positions found).

BETTER THAN:

2. Fewer numbers of false alarms on the background should be preferred.

BETTER THAN:

3. Localisations should tend to be closer to exact centre than further away.

BETTER THAN:

4. Fewer separate localisations of a single object should be preferred.

BETTER THAN:

5. If an object is given multiple localisations, then these should tend to be closer to the
object's exact centre, they should not be spread out (this makes the results after �nal
clustering better).

BETTER THAN:

6. There is no obvious preference of multiple additional localisations of objects over back-
ground false alarms unless you consider the effect of the �nal clustering stage, which
should collect all additional localisations into one. Consequently it may be best that
the �tness function prefers multiple localisations over background false alarms.

EQUAL/BETTER THAN?:

30

4.5 The First New Fitness Function � LFWF
We now describe the equations for the �rst of two new �tness functions. Localisation Fit-
ness Weighted 'F' Measure (LFWF) incorporates precision and recall for their ability to easily
handle the �rst two of the �tness function design requirements noted previously, and we
introduce weights which handle requirements 3 to 5.

Typical precision and recall are only used for discrete values: correct or incorrect. In
order to use the localisation �tness weight the formulas for precision and recall are modi-
�ed. We consider that counting the number of true positives is equivalent to summing the
number 1 for each true positive. For example, for n true positives:

number of true positives =
n∑

i=1

1

We can replace the `1' with a weight, such as in the following:

number of true positives =
n∑

i=1

weighti

We also need to handle the separate localisations of each individual object. It turns out
that a good method is to take the average localisation �tness of localisations for each object.
A full explanation of the reasoning behind this can be found in appendix A. The precision
and recall are combined using the 'F' measure. The �nal equations involved are as follows:

weightedPrecision =
∑N

i=1 ave({localisationFitnessi,j , j = 1..Li})
L

(4.2)

weightedRecall =
∑N

i=1 ave({localisationFitnessi,j , j = 1..Li})
N

(4.3)

�tnessLFWF =
2×weightedPrecision ×weightedRecall

weightedPrecision + weightedRecall (4.4)

where:

• N is the total number of target objects in the data set,

• L is total number of localisations made by a genetic program,

• localisationFitnessi,j is the localisation �tness of the j-th localisation of object i,

• Li is number of localisations made to object i,

• weightedPrecision is the precision in range [0, 1], 1.0 means all localisations where cor-
rect, with no extra localisations of objects,

• weightedRecall is the recall in range [0, 1], 1.0 means all objects are localised, and

• �tnessLFWF is in range [0, 1], 1.0 means perfect �tness: all localisations are at the exact
object centres with no extra localisations of objects and no false alarms.

31

4.6 The Second New Fitness Function - APWF
Average Position Weighted 'F' Measure (APWF) is based on the same method as LFWF, with
an exception in how the localisation �tness for each object is calculated. In LFWF the local-
isation �tnesses of all localisations for an object are averaged and that value is used in the
sum for the weighted precision and recall. In APWF the positions of the localisations for an
object are averaged, and the individual localisation �tness is calculated for this point only
and this is used as the value in the sum instead.

The reasoning behind this relates to the way that clustering methods decide the �nal
position. The clustering method used in this project takes the average of all points found
within a cluster, and uses this as the �nal position of the cluster. Incorporating the average
position within our �tness function mimics this characteristic.

The equations for APWF are as follows:

weightedPrecision =
∑N

i=1 localisationFitness(x̄i)
L

(4.5)

weightedRecall =
∑N

i=1 localisationFitness(x̄i)
N

(4.6)

�tnessAPWF =
2×weightedPrecision ×weightedRecall

weightedPrecision + weightedRecall (4.7)

where:

• N is the total number of target objects in the data set,

• L is total number of localisations made by a genetic program,

• localisationFitness(x̄i) is the localisation �tness of the average position over all locali-
sations for the i-th object. In other words, take all the localisation positions for the
i-th object, average their x and y coordinates, and use this coordinate to calculate the
localisation �tness for the i-th object.

• weightedPrecision is the precision in range [0, 1], 1.0 means all localisations where cor-
rect, with no extra localisations of objects,

• weightedRecall is the recall in range [0, 1], 1.0 means all objects are localised, and

• �tnessAPWF is in range [0, 1], 1.0 means perfect �tness: all localisations are at the exact
object centres with no extra localisations of objects and no false alarms.

4.7 An Existing Fitness Function
We compared the performance and effectiveness of the two new �tness functions with an ex-
isting method which uses clustering before calculating the �tness and was used by Pritchard
et. al. in [11]. Pritchard found that best results where achieved using Detection Rate (DR)
and False Alarm Rate (FAR) along with False Alarm Area (FAA). We refer to their �tness
function as Clustering Based Fitness(CBF).

The equation for the �tness function calculations is as follows:

fitness(DR,FAR,FAA) = K1× (1−DR) +K2× FAR+K3× FAA

32

number of gens 50
initial population 500
mutation rate 30
elitism rate 10
maximum program depth 6
minimum program depth 3
function set {+, −, ×, %, if<0}
�tness functions LFWF, APWF, CBF
training set size 3968 (samples taken from �rst 8 images in data set)
validation set size 3968 (samples taken from second 8 images)
test set full sweep of last 8 images
K1 5000
K2 100
K3 10

Table 4.1: GP parameters used

4.8 Experimental Setup
To compare the �tness functions we apply them to object localisation training on all four
data sets and measure their training performance and test set detection rates and false alarm
rates. A maximum of only 50 generations are evolved, during which the best program from
each generation is applied to the validation set to avoid over �tting. After all 50 generations
have completed, the program which scored the best �tness on the validation set is taken
as the �nal program. It is then applied to the full test data set and its performance and
effectiveness measured. By restricting the evolutionary process to only 50 generations we
will likely give the programs suf�cient time to evolve workable results but which are not as
good as could be achieved if given a much longer training time. This allows us to measure
well the ability of the �tness functions to quickly produce good genetic programs.

The basic genetic parameters, other speci�c parameters such as the K1, K2, K3 values for
CBF, and details of training data have been set as follows listed in table 4.1.

4.9 Results And Analysis
This section presents results comparing the two new �tness functions to the existing �tness
function. Table 4.2 presents the main results after �nal clustering has been applied to the
individual localisation positions and the cluster centres compared to the target object cen-
tres. If an object is detected to within a TOLERANCE of three pixels of the true object centre,
that detection is considered correct and improves the detection rate, otherwise the detection
is considered a false alarm. Each row within the table represents results averaged over 100
experiments. The training performance columns represent the number of generations and
the time taken to train to that generation when the best validation set results were achieved.
The test accuracy columns measure the detection rate (DR), false alarm rate (FAR) and false
alarm area (FAA) when those best validation set programs where applied to the test set.

For example, the �rst row informs us that when LFWF is used to evolve programs for the
easy coins, best validation set �tness was achieved, on average, in 38.11 generations, taking
113.38 seconds of training time. When applied to the test set, the programs detected 81.04%
of all target objects (within 3 pixels of true centre) with 48.52% false alarm rate (0.49 false

33

Dataset Fitness Training Performance Test Accuracy
function

Generations Time (s) DR (%) FAR (%) FAA
Easy LFWF 38.11 113.38 81.04 48.52 98.35

Coins APWF 36.44 111.33 82.05 43.42 123.17
CBF 13.69 178.99 81.88 92.25 324.09

5 cent LFWF 37.52 118.45 54.50 135.81 103.79
Coins APWF 38.27 121.15 54.39 157.30 145.83

CBF 31.74 432.05 51.66 229.49 930.19
10 cent LFWF 34.35 107.18 52.88 63.18 95.69

Coins APWF 37.88 123.77 50.41 136.16 163.65
CBF 36.90 493.94 31.08 192.04 804.88

Hard LFWF 33.27 105.56 27.34 92.77 114.86
Coins APWF 37.27 118.13 29.34 185.51 187.50

CBF 31.02 431.65 27.54 220.73 1484.51

Table 4.2: Detection Accuracy of all �tness functions on coin datasets

alarms per object, averaged over all objects), and 98.35 false alarm pixels per object (area of
clusters averaged over the number of objects).

Examining the detection rates across data sets we see, as expected, that Easy Coins is
substantially easier than the other three data sets, and Hard Coins is substantially harder.
The 5 cent and 10 cent coins are roughly equally dif�cult, with LFWF and APWF performing
around 20% better on the 10 cent coins than CBF. The 10 cent coins may be harder for CBF
because the 10 cent coins are larger than the 5 cent coins, and consequently there is greater
area over which individual localisation positions may be spread. We will attempt to examine
this effect in the next section.

The FAR and FAA measures also con�rm that Easy Coins are much easer while Hard
Coins are much more dif�cult, and as expected the 5 and 10 cent coins have similar dif�culty.

Examining Easy Coins, we see that all three �tness functions produce very similar de-
tection rates (within 1% of each other), however LFWF resulted in 5% greater false alarm
rate than APWF (0.05 greater number of false alarms per object) and CBF resulted in almost
twice as many false alarms as APWF. This trend of CBF producing around twice as many
false alarms as LFWF and APWF is repeated in all data sets. APWF produced between 11

2
times to 2 times as many false alarms as LFWF on the 5 cent, 10 cent and Hard Coin data
sets.

On all but the 10 cent coin problem, all three �tness functions produced detection rates
within 2 to 3% of each other. LFWF marginally outperformed APWF and CBF on the 5 and
10 cent coins while APWF marginally outperformed LFWF and CBF on the other two data
sets.

The false alarm area per object measurements show the difference of the results for the
three methods prior to clustering. On all data sets, CBF performs substantially worse than
both LFWF and APWF, producing around 3 to 10 times as many individual localisation
positions (ie: false alarm pixels) per object.

We know now that all three �tness functions produce similar detection rates, while CBF
tends to produce more false alarms. Examining the training times we see that, as predicted,
both new �tness functions require much less training time than the clustering based method.
On the 5 cent, 10 cent and Hard Coin data sets, CBF required around four times as much
evaluation time as the new �tness functions, with similar number of generations. On the
Easy Coins, CBF evolved programs in only 14 generations whereas LFWF and APWF both
required around 37 generations, consequently CBF achieved comparable training time on

34

this instance.

4.9.1 Further Analysis
Table 4.2 described the overall training performance and details the accuracy when evolved
programs are applied to the test set. Tables 4.3 and 4.4 examine the individual localisa-
tions produced by the different �tness functions. These form initial analysis of the results
produced by the �tness functions before clustering has grouped individual localisation po-
sitions. Precision (P) and Recall (R) are used to analyse the results instead of Detection
Rate and False Alarm Rate, partly to avoid confusion with the use of Detection Rate and
False Alarm Rate for the results after clustering, and also because they provide more useful
insight. Recall is identical to Detection Rate, while Precision measures the percentage of
individual localisation positions which are correct.

Table 4.3 analyses the individual localisation positions which fall within a tolerance of
3 pixels from the true object centres. For example, the �rst row informs us that when pro-
grams are trained on the Easy Coins using LFWF, they tend to �nd 97.28% of target objects
with some individual localisation positions, however only 24.50% of these individual local-
isations are within the 3 pixel tolerance.

Table 4.4 attempts to examine the individual localisation positions from the point of view
of each entire cluster within the bounds of the objects (or within the typical radius of the ob-
jects). It does this by considering the individual localisation positions in the same way as
table 4.3 but with a tolerance set to the radius of the largest objects. This is also the radius
used for the �tness radius and is half the width of the input window. So, it measures the
precision as the number of target objects which have any individual localisation positions
fall within the 35 pixel tolerance of its true centre as the percentage of the total number of
localisation positions produced. The recall is the number of target objects with any indi-
vidual localisation positions within this tolerance of their centre as a percentage of the total
number of target objects. Table 4.4 also shows the positional error (PosError) or the average
distance in pixels of these localisation positions from the true object centres. For example,
the �rst row states that LFWF applied to the Easy Coins produced 99.98% of localisation po-
sitions being within the 35 pixel tolerance of some object centre and 98.03% of objects were
found somewhere within the tolerance of their centre. Also it shows that, on average, the
localisation positions where 5.3 pixels from the true centre of objects.

Dataset Fitness Accuracy
function

P (%) R (%)
Easy LFWF 24.46 97.28

Coins APWF 21.03 97.77
CBF 9.04 100.00

5 cent LFWF 17.18 83.40
Coins APWF 13.31 89.58

CBF 3.21 99.75
10 cent LFWF 19.96 81.58

Coins APWF 13.73 93.36
CBF 3.86 99.98

Hard LFWF 10.65 59.19
Coins APWF 8.10 70.65

CBF 1.82 97.39

Table 4.3: Precision and Recall of Localisation Positions within 3 pixels of Object Centres

35

Dataset Fitness Accuracy
function

P (%) R (%) PosError
Easy LFWF 99.98 98.03 5.30

Coins APWF 100.00 99.31 5.78
CBF 99.89 100.00 8.24

5 cent LFWF 99.39 87.78 6.55
Coins APWF 99.25 92.97 7.29

CBF 99.33 100.00 14.50
10 cent LFWF 99.43 83.19 6.28

Coins APWF 99.63 96.88 7.93
CBF 98.17 100.00 12.67

Hard LFWF 98.41 72.05 8.69
Coins APWF 97.81 87.21 9.87

CBF 93.50 99.94 17.78

Table 4.4: Analysis of Localisation Positions within 35 pixels of Object Centres

The recall informs us if objects have been found at all, so that we can examine why the
recall is low for the harder data sets. The precision helps us to gauge how many false alarms
are being produced on the background image. If the 35 pixel tolerance based precision is
100% and FAA (from table 4.2 is large, then a great many false alarms are being produced
within objects, but none in the background.

From table 4.3 we know that only 24.5% of localisation positions were within 3 pixels
of object centres when LFWF was applied to the Easy Coins, and that agrees with what
we have just seen about the average positional error. We see that localisation positions are
tending to be away from true object centres. In other words, large clusters are being formed.
This highlights the need for clustering of results.

Our analysis of detection rate and false alarm rate, after clustering, shows that the three
�tness functions achieve similar detection rates on each single data set: around 81%, 54%,
31 to 53% and 28% on each of Easy Coins, 5 cent Coins, 10 cent Coins, and Hard Coins
respectively. Table 4.3 informs us that 98%, 83 to 99%, 81 to 99% and 59 to 97%, respectively,
of objects have individual localisation positions within three pixels of true object centres,
and table 4.4 informs us that around 93 to 100% of all localisation positions are within objects
somewhere, ie: not on the background part of the test images. This raises the question of
what brings the detection rate down.

4.9.2 Detection Map Analysis
Detection maps are a visual way to see how the object detections map onto the original
test images. Figure 4.4 presents a serious of cut-outs from detection maps. Each test data
set contained images with a total of 128 objects. The detection maps shown show the cut-
out area at 15 objects each, to provide a guide to the full detection map of all 128 objects
which would be too large to present here. Typically all three �tness functions were found
to produce very few detections on the background and so we can avoid the extra space by
ignoring the background section of the test images.

These detection maps represent the typical results when each of the three �tness func-
tions are applied to the 10 cent Coins data set. Each row-wise pair show the unclustered
and clustered results for a single �tness function: LFWF, APWF, and CBF in order down the
page. (a) shows the unclustered detection map using LFWF, and (b) shows the clustered
detection map for the same objects using LFWF also, (c) and (d) show the APWF results,

36

and (e) and (f) show the CBF results.
The previous two sections raised the questions: (i) why does CBF perform worse on the

10 cent coins, when its detection rate is similar to the others for the other three data sets, and
(ii) what causes the detection rate to be so low when it can be seen that 93% of objects are
found within the 35 pixel tolerance at worst. Here we can begin to answer these questions.

The detection maps on the right of �gure 4.4 use a �cross� to represent a successful
detection within three pixels of the object centre, and a �square� to represent a detection
which is considered a false alarm because either the object has already been detected or
the detection is too far from the true centre. We see that, by eye, all objects appear to be
successfully detected, however the squares on some of the objects inform us that many false
alarms were very close to the object centres, but have been rejected because they were not
close enough.

From the results of LFWF, this appears to be directly related to the size of the clusters.
The small clusters produce positionally accurate results, while the results from the larger
clusters are rejected as false alarms. This trend is continued to some extent in APWF. CBF,
however, has produced very large clusters, most of which have produced false alarm detec-
tions. This would seem to be the cause for CBF performing so much worse than LFWF and
APWF on the 10 cent Coins.

The results of �gure 4.4 show us that we should consider summarising the detection
results for different tolerances. The results of localisation will have different constraints
depending on the process which uses the detection results and so a plot summarising for
multiple tolerances would be very useful when designing later stages or selecting �tness
functions to meet the requirements of the later stages. Tables 4.5 and 4.6 present results
summarising the detection rates and false alarm rates for all �tness functions on all data
sets with a serious of different values for TOLERANCE. Tables such as this are hard to
interpret, however a lot of information is present. For the sake of brevity, a single plot
has been produced which presents the detection rates of each �tness function averaged over
the four data sets. See �gure 4.5. This is by no way a perfect description, however it gives
a good guide. The false alarm rates can be directly inferred from the values of the detection
rates because the increasing tolerance accepts more detections as correct and thus reduces
the number rejected as false alarms in a linear fashion.

Examining this plot we see that with greater values of TOLERANCE, a greater detection
rate is achieved. All �tness functions achieve their highest detection rate with a TOLER-
ANCE of 10 pixels or greater. We also see that CBF produces better detection rate than
LFWF and APWF when the TOLERANCE is set greater. (Note that the tolerance setting
here does not affect how the programs were trained, CBF still used a 3 pixel tolerance to
calculate its detection rate during training).

4.10 Chapter Conclusions
From our analysis of results we come to the wonderful conclusion that LFWF and APWF
produce similar detection rates to CBF on three of the four data sets, and signi�cantly better
detection rates on the 10 cent coins. Also, both LFWF and APWF have produced fewer false
alarms. However, of signi�cance, is that CBF took around four times as long to evolve its
programs for the same number of evolutions as LFWF and APWF. We would not expect
LFWF and APWF to produce better detection rates than CBF because our goal was to pro-
duce a similar detection rate with much greater training ef�ciency. Results suggest that our
goal has been achieved.

APWF and LFWF performed with very similar detection results on all four datasets,

37

Dataset Fitness Detection Rates (%) for different TOLERANCES
function TOLERANCES

0 1 2 3 4 5 7 9 10 15 20 30
Easy LFWF 7.3 27.2 54.3 81.0 92.7 96.4 97.6 97.8 97.9 98.0 98.0 98.0

Coins APWF 7.5 27.2 55.1 82.1 93.9 97.8 99.2 99.3 99.3 99.3 99.3 99.3
CBF 5.5 24.4 51.1 81.9 96.5 99.7 100.0 100.0 100.0 100.0 100.0 100.0

5 cent LFWF 3.0 12.5 30.3 54.5 69.8 79.5 84.4 85.5 85.7 86.8 87.4 87.7
Coins APWF 2.9 12.4 29.9 54.4 71.7 83.1 90.0 91.3 91.4 92.3 92.7 93.0

CBF 3.3 13.0 28.3 51.7 69.7 84.5 95.3 98.9 99.5 100.0 100.0 100.0
10 cent LFWF 3.1 15.0 32.4 52.9 65.4 74.4 80.4 82.1 82.4 83.1 83.2 83.2

Coins APWF 2.6 13.5 29.0 50.4 65.0 77.3 88.7 93.7 94.9 96.6 96.8 96.9
CBF 1.5 6.2 15.4 31.1 48.4 67.3 87.7 97.3 98.7 100.0 100.0 100.0

Hard LFWF 1.4 6.4 15.0 27.3 37.1 45.2 55.1 61.4 62.9 66.0 68.6 70.5
Coins APWF 1.5 7.0 15.9 29.3 40.7 50.6 63.4 72.5 74.9 80.0 83.1 85.8

CBF 1.5 5.1 13.6 27.5 40.5 56.4 72.5 84.8 87.3 93.7 96.2 98.7
Table 4.5: Detection Rates for different values of TOLERANCE, averaged over all data sets

Dataset Fitness False Alarm Rates (%) for different TOLERANCES
function TOLERANCES

0 1 2 3 4 5 7 9 10 15 20 30
Easy LFWF 122.3 102.3 75.3 48.5 36.8 33.2 31.9 31.8 31.7 31.5 31.5 31.5

Coins APWF 118.0 98.3 70.4 43.4 31.6 27.6 26.3 26.2 26.2 26.2 26.2 26.2
CBF 168.6 149.7 123.1 92.2 77.6 74.5 74.1 74.1 74.1 74.1 74.1 74.1

5 cent LFWF 187.3 177.8 160.0 135.8 120.5 110.8 105.9 104.8 104.6 103.5 102.9 102.6
Coins APWF 208.8 199.3 181.8 157.3 140.0 128.5 121.7 120.4 120.2 119.4 118.9 118.7

CBF 277.9 268.1 252.9 229.5 211.4 196.6 185.9 182.2 181.6 181.1 181.1 181.1
10 cent LFWF 113.0 101.1 83.7 63.2 50.7 41.7 35.7 34.0 33.6 32.9 32.9 32.9

Coins APWF 184.0 173.1 157.6 136.2 121.6 109.3 97.9 92.8 91.7 90.0 89.7 89.7
CBF 221.6 216.9 207.7 192.0 174.8 155.8 135.4 125.8 124.4 123.2 123.1 123.1

Hard LFWF 118.8 113.7 105.1 92.8 83.0 74.9 65.0 58.7 57.2 54.1 51.5 49.6
Coins APWF 213.4 207.9 199.0 185.5 174.2 164.3 151.4 142.4 139.9 134.8 131.8 129.1

CBF 246.8 243.2 234.6 220.7 207.7 191.9 175.8 163.5 160.9 154.5 152.1 149.6
Table 4.6: False Alarm Rates for different values of TOLERANCE, averaged over all data
sets

however LFWF tended to produce either very similar or fewer false alarms. Training times
of both new �tness functions were very similar.

CBF is not good at constraining the spread of clusters, as we have seen. It attempts
to reduce the size of clusters using FAA and the effect of applying clustering before the
detection rate is calculated causes it to attempt to produce clusters which have centres close
to object centres. However, the lack of ability to effectively constrain the spread of clusters
could be the reason for its poor detection rate on the 10 cent coins. LFWF, however, has a
speci�c way of keeping both the number of false alarm pixels and positional error low, and
we have seen this from the results. It appears that this allows LFWF to produce better results
than in some cases because it constrains the clusters better. This is certainly highlighted by
�gure 4.4.

It should be noted here that only one set of CBF parameters (K1 to K3) where used in
our experiments. The values used in work by another author were used. It may be that
better results could be achieved if different values are used, however this highlights one of
the disadvantages that have been found with this method. Namely that the existing �tness
functions use �free parameters� which are hard to determine good values for.

38

4.10.1 Localisation Fitness Radius
The parameters affecting the Localisation Fitness Radius depend very largely on the ability
of the classi�cation stage, and not directly on the size of the objects. This is simply because
it depends on how �exible the classi�er is at accepting cutouts whereby the objects are not
always exactly centred.

This is partly de�ned by the size of the objects trained on, and also on the training tech-
niques. A large number of parameters can affect this radius, and consequently only exper-
imentation and rough heuristics can determine its value. Also note that the radius is really
setting a weighting factor of how important this feature is against other parameters to the
�tness function. These issues are largely outside the scope of this project.

We do, however, suggest suggest some basic heuristics. The exact value of the �tness
radius will not affect the overall effectiveness greatly. It is likely that it is best suited to
detecting objects of similar sizes. If the localiser is detecting objects of different sizes, then
either the radius of the smallest object or of the largest object could be used. Alternatively
the average expected radius could be used.

Our data set contained objects of two separate radiuses: 35 pixels and 29 pixels. We
chose the larger of these as our �tness radius.

4.10.2 Complex Objects
The �tness functions we have devised here worked on the basic assumption that we are
dealing with round objects. We decided that a sensible heuristic for the value of the Fitness
Radius is the radius of the smallest or largest object, or possibly the average radius. The
exact value of the �tness radius should not play a major role in the performance of the
learning system. Its effect is on the relative importance of positionally correct localisations
versus the error of having false alarms. For this reason, it is more a measure of how tolerant
the classi�cation stage is to positionally innaccurate localisations, than of the object size.

Further research would need to investigate the effect of the value of the Fitness Radius on
the effectiveness of trained programs on test data sets. We suggest that our �tness functions
may be applicable to most object localisation problems, not just to round objects as we have
done. We have stated that the �tness radius is affected by the �exibility of the classi�er,
rather than the characteristics of the objects, and therefore it should not be affected by the
shape of objects either. So it seems that objects of complex shape may be accommodated by
our new �tness functions. Future research will need to address this also.

39

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Detection maps for (a,c,e) Unclustered Results and (b,d,f) Clustered Results using: (a,b)
LFWF, (c,d) APWF, and (e,f) CBF (Crosses are accepted detections, squares are detections which have
been rejected as false alarms

40

Figure 4.5: Detection Rates for different values of TOLERANCE, averaged over all data sets

41

Chapter 5

Optimising Training Data

This chapter introduces the concept of Training Data Proportions and the types of data which
may be used to train with. It then describes in detail some characteristics and assumptions
which enable us to reduce the possible number of cases to examine so that we may do exper-
iments to search the relevant parameter space. Finally we describe the experimental results
and draw (some very interesting and surprising) conclusions.

5.1 Typical Training Data Preparation
We could train our object detection system with a full set of cut-outs taken from a window
which is swept over the training images. However, for large images this creates a vast
number of training examples making the training time unsuitably long. One method used
is to reduce the total number of training examples by using a combination of hand-chosen
and randomly chosen samples from the training images [11, 2, 10]. In this project we seek
to answer the question, �are some samples better than others and if so, how do we pick the
better ones?�.

5.2 Training Data Types
One can consider that there are a number of different types of data which can be used for
training localisers, the most obvious and basic of which are �positive� and �negative� ex-
amples. But which label do we attach to an example with half object and half background?
Our new �tness functions addressed this issue with regards to learning from such data, we
now turn our attention to what kinds of training examples we should train with, and, more
speci�cally, what proportions of these different kinds.

We have identi�ed four basic types of training example from our work on the �tness
functions. These are described below and illustrated in �gure 5.1.

(a) (b) (c) (d)

Figure 5.1: Examples of the different types of training data, these are caused by different input window
positions.

42

1. Exact Centre.
Typically there are only a few cases of these. The images we used each contained only
16 objects (and thus 16 exact centre pixels) out of approximately 3 million pixels.

2. Close to Centre.
These training examples have the centre of the input window falling within the bounds
of an object.
This may be de�ned as needed for objects of irregular shape. We worked with round
objects of two different sizes and for simplicity we used the typical radius of the larger
objects as an �ideal object radius� and applied this to all objects when determining
if the centre of the input window was within the object bounds. This eliminated the
need to explicitly de�ne the bounds of each object.

3. Include Objects.
This is de�ned as all training examples which contain any pixels from any object, but
which are not considered �Close to Centre� training examples. Again the �ideal ob-
ject radius� is used and consequently the smaller objects will result in some of these
examples not containing pixels from any objects, however the effect of this error is
small.

4. Background.
These are all remaining examples which do not include any pixels from any of the
objects of interest. These may also contain objects which we are not interested in,
particularly in cluttered images.

5.3 Assumptions and Hypotheses
For a given problem domain within localisation, we assume that there is some proportion
of these four types which is optimal in the sense that the best detection results are achieved
when the detector is trained using this proportion. It is very likely that these �Training Data
Proportions� will be dependent on the domain because, for example, cluttered backgrounds
will be harder to distinguish from objects than uncluttered backgrounds. We produce ex-
perimental results in the hope that the we may uncover some hidden characteristics and at
the very least provide useful guides for problems similar to the ones we have investigated.

With a good proportion chosen, one can vary other parameters, such as training set
size, number of genes, or population size, to achieve the desired level of �tness. Research
done by Boonyanunta and Zeephongsekul in [4] suggests a useful mathematical model for
predicting the improvement in �tness by increased training set size.

If we �nd, for a given problem domain, that certain proportions of the four types of train-
ing example are optimal when training on a small training set, we will assume that these
same proportions will be optimal, or at least close to optimal, when we use a larger training
set. Indeed this should be true if the data is randomly sampled and the same method is used
for both small and large training sets.

5.4 Introduction to Experimental Setup
In our experiments, we �rst note that there are only a very small number of Exact Centre
examples and we thus assume that either: (a) best results are achieved by using all of them,
or (b) no signi�cant loss is incurred by doing so. As such, we always include all of the �rst

43

type of training example and vary the proportions among the remaining three types in order
to �nd the optimal training data proportions.

The remainder of the training data is constrained by the following:

C + I +B = 100% (5.1)

where:

• C = percent Close to Centre.

• I = percent Include Objects.

• B = percent Background.

This has the nice feature that it represents only a single plane in three dimensional space
(see �gure 5.2), effectively reducing the parameter search space to a two dimensional one.

Figure 5.2: Training data proportions: the possible proportions are represented by the surface of the plane.

In our experiments, we used all four data sets as for previous experiments and set the
basic parameters as described in table 5.1. We experimented with 28 separate proportions
sampled from the plane in �gure 5.2 and conforming to equation 5.1 which are listed in table
5.2. Each entry represents the value of I for a given C and B. For example, the �rst three
entries in the �rst row indicate that, using no background (B = 0), we will try 0% Close to
Centre with 100% Include Objects, 17% Close to Centre with 83% Include Objects, and 33%
Close to Centre with 67% Include Objects.

For each sampled proportion, 100 experiments were carried out. These were made up of
10 different random seeds when extracting the training data from the source images, by 10
different random seeds for the GP learning system.

The basic genetic parameters and details of training data have been set as listed in table
5.1.

5.5 Results
Table 5.3 lists the results of the LFWF �tness after 50 generations when the different training
data proportions are used on each of the four data sets. For example, the �rst row of (a)
shows us that using 0% Close to Centre and Background (and thus 100% Include Objects)
gives us 0.00017% �tness, while 17% Close to Centre, 0% Background, and thus 83% Include
Objects, gives us 0.01533% �tness. The best �tness is achieved on the easy coins with 100%

44

number of gens 50
initial population 500
mutation rate 30
elitism rate 10
maximum program depth 6
minimum program depth 3
function set {+, −, ×, %, if<0}
�tness functions LFWF, APWF
training set size 3968 (samples taken from �rst 8 images in data set)
validation set size 3968 (samples taken from second 8 images)
test set full sweep of last 8 images

Table 5.1: GP parameters used

I% for each C and B
B\C 0 17 33 50 67 83 100

0 100 83 67 50 33 17 0
17 83 67 50 33 17 0
33 67 50 33 17 0
50 50 33 17 0
67 33 17 0
83 17 0

100 0
Table 5.2: Training data proportions tried

Close to Centre. All �tnesses are very low, however recalling how LFWF is calculated we
realise that it considers all individual localisation positions and any of these which represent
form false alarm pixels will act heavily against a high �tness.

To show a clear trend, �gure 5.3 shows the combined �tness over all four data sets for
both the LFWF and APWF �tness functions and scaled to show the �tnesses relative to the
best �tness found with that �tness function. The rows coming down to the right (and of
equal shading) represent the columns in table 5.2, the rows going up to the right repre-
sent the rows in the table, and each bar represents the average relative �tness when using
the proportions as speci�ed by the single corresponding entry in the table 5.2. Figure 5.4
summarises the number of generations of training required in a similar way. It shows us
immediately that, except for the case of 0% close to centre, the number of training genera-
tions are all very similar. Not a great deal can be concluded from the number of generations
when 0% close to centre is included in training data as we can see from 5.3 that the �tness
of trained programs in this case are very low.

Results from the four data sets show that the higher �tness results are achieved when the
majority of training/validation examples are of only two types: �Exact Centre� and �Close
to Centre�. This seems to indicate that these �rst two types of example contain the most
useful information for training. This may be a feature of the LFWF �tness function which is
capable of learning well from data which contains both object and background. In fact, this
seems to eliminate the need to use background examples at all.

Consider how weighted precision and recall are calculated. Close To Centre examples
can be classi�ed as positive (object) with a weight to indicate its correctness. However, if
the localiser classi�es it as negative (background), this is also given a good �tness because it
conforms to the �nal intent of the learning strategy.

45

(a)

Fitness on Test Set (%)
B\C 0 17 33 50 67 83 100

0 0.00017 0.01533 0.03174 0.04813 0.07218 0.09334 0.11997
17 0.00018 0.01435 0.03548 0.05302 0.06355 0.10082
33 0.00015 0.01576 0.03578 0.04765 0.06531
50 0.00014 0.01349 0.03352 0.05229
67 0.00016 0.01290 0.02818
83 0.00011 0.01416

100 0.00001

(b)

Fitness on Test Set (%)
B\C 0 17 33 50 67 83 100

0 0.00008 0.00990 0.01701 0.02209 0.03022 0.03469 0.03880
17 0.00009 0.01017 0.01688 0.02291 0.02894 0.03499
33 0.00008 0.01062 0.01707 0.02218 0.03007
50 0.00007 0.01003 0.01635 0.02477
67 0.00005 0.00918 0.01992
83 0.00005 0.00952

100 0.00003

(c)

Fitness on Test Set (%)
B\C 0 17 33 50 67 83 100

0 0.00017 0.01533 0.03174 0.04813 0.07218 0.09334 0.11997
17 0.00018 0.01435 0.03548 0.05302 0.06355 0.10082
33 0.00015 0.01576 0.03578 0.04765 0.06531
50 0.00014 0.01349 0.03352 0.05229
67 0.00016 0.01290 0.02818
83 0.00011 0.01416

100 0.00001

(d)

Fitness on Test Set (%)
B\C 0 17 33 50 67 83 100

0 0.00009 0.00552 0.00952 0.01655 0.01920 0.02276 0.02954
17 0.00008 0.00535 0.01103 0.01459 0.02054 0.02545
33 0.00008 0.00498 0.01210 0.01715 0.02037
50 0.00008 0.00544 0.01003 0.01491
67 0.00006 0.00460 0.00992
83 0.00006 0.00534

100 0.00002

Table 5.3: Fitnesses when LFWF is applied to Test data sets using different Training Data
Proportions on: (a) Easy Coins, (b) 5 cent Coins, (c) 10 cent Coins, (d) Hard Coins data sets.

5.6 Chapter Conclusions
Our results have suggested a most interesting phenomenon: that the best �tness has been
achieved when the majority of training examples are of the �rst two training data types. The
plots in �gure 5.3 indicate that there is an almost direct linear relation between the �nal test
�tness and the percentage of the training data which is composed of close to centre examples.
For each value of Close To Centre, the �tness stays almost constant while only the ratio of
background to include objects examples is varied, particularly for LFWF.

The experiments performed used training and validation sets of equal size and of equal
training data proportions. Thus it is quite obvious that very bad test �tness should result
from training data containing mostly background. If the evolutionary process sees only
background data then it will not evolve successful object detectors. At the other extreme, if
the evolutionary process does not see examples of background, it may not train good object

46

detectors with few false alarms. But the �tness measures we used represent both detection
rates and false alarm rates and show us that detection rates are maximised and false alarm
rates minimised by increasing the number of training examples of objects.

There may be another aspect affecting our results. In the harder three of our four data
sets, the background is noisy but relatively uniform in its level of noise. It is also quite
different to the objects being detected. The consequence of this is that programs may evolve
very quickly to reject background and only require a few training examples. Accurately
detecting object centres, on the other hand is much harder than rejecting background in our
data sets.

There are thus two things which future work needs to investigate regarding the training
data proportion results:

1. What results do we get for data sets where the background is highly cluttered and
similar to actual objects. If the background is much harder to reject as non-object, do
we need a greater proportion of background examples?

2. What is the best proportions and size for the validation set? The validation set is
evaluated only once every evolution, not once for every individual in the population.
Consequently it can be much bigger, or even perform an entire sweep of the validation
set images, rather than a sampled set of examples.

47

(a) (b)

Figure 5.3: Relative Fitness using different Training Data Proportions: (a) LFWF �tnesses,
(b) APWF �tnesses

(a) (b)

Figure 5.4: Generations to train using different Training Data Proportions: (a) LFWF gener-
ations, (b) APWF generations

48

Chapter 6

Summary

In this project we set out to address some of the problems of �tness functions and training
performance for object localisation using Genetic Programming. We applied our methods
to similar data sets of increasing dif�culty.

We developed two new �tness functions from a careful examination of the combinations
of possible localisations of objects and of how their corresponding �tnesses should compare.

LFWF (Localisation Fitness Weighted 'F' measure) was based directly from this study,
while APWF (Average Position Weighted 'F' measure) attempted to match more directly the
way that clustering algorithms calculate the �nal position of objects.

These two �tness functions attempted to produce similar localisation effectiveness as
clustering based �tness functions without the need of a computationally expensive cluster-
ing algorithm during evolution. This type of �tness function has a major advantage because
it takes much less time to evolve and thus reduces training time.

We also examined the effect of the proportions of different types of training example
on the effectiveness of the evolved localiser. This has implications on the training perfor-
mance because GP takes longer to train with greater number of training examples and so it
is undesirable to train with unnecessary or less important data.

6.1 New Fitness Functions
The new �tness functions where found to produce similar detection accuracy to the clus-
tering based �tness function while taking substantially less computation time for �tness
calculations. They where also found to produce around half as many false alarms as the
clustering based method.

A detailed analysis of the characteristics of the new �tness functions and of the existing
�tness function have highlighted the improvements that this new method has introduced.
Our analysis found that programs which produced large clusters of individual localisation
positions tended to produce low detection rate because only the smaller clusters tended to
be detect objects to the desired tolerance level. Our results also showed that the clustering
based method produced very large clusters and consequently its detection rate was low on
occasion.

6.2 Training Data Proportions
The examination of training data preparation highlighted two closely related types of train-
ing example which produce the best �tness of evolved programs. We made the assumption
that all training examples of exact object centres should be included. It was found that best

49

�tness was achieved when the remainder of training data contained mostly (around 85 to
100% depending on which �tness function was used) examples of sweeping window posi-
tions which are centred within the bounds of objects and thus at least around half of their
input pixels are made up from object pixels. This is considered to be a very useful and
interesting discovery for object detection problems using training methods.

Care must be taken with problem domains which differ greatly from the data sets used
by this report as the results found here may not apply to images with backgrounds which
are more similar to the objects than in our data sets.

6.3 Free Parameters In Fitness Functions
One disadvantage with the existing �tness functions has been their use of �free parameters�
which de�ne the relative importance of the different goals for the �tness function. While it
is useful and important to have that control, it can be a great hindrance when �rst starting.
Furthermore, the values of these free parameters have no speci�ed range within which typ-
ical values should be found and the typical values are often orders of magnitude different
to each other.

We now discuss the new �tness functions and what parameters they have. The imme-
diately obvious parameter is the Fitness Radius, and this has been discussed at length in
previous sections. The combination of precision and recall within the formula for the 'F'
measure also creates an implicit parameter which de�nes the relative importance of detec-
tion rate (recall) and detection correctness (precision). It inherently weights the importance
of achieving high recall to be equal with the importance of reducing the number of false
alarms.

Precision and recall can be given different relative importance, if wished, by modifying
the 'F' measure equation. So it is possible to control the relative importance, however there
is a direct and obvious default which makes using these methods very easy.

6.4 Future Work
The analysis on the new �tness functions functions highlighted a number of points to be
considered for future work. Among them are the following:

1. What is the effect of the Fitness Radius on the localiser effectiveness? Does bad selec-
tion of Fitness Radius have a substantial adverse affect on detection rate or false alarm
rate?

2. It appears that LFWF and APWF may be applicable to objects of complex shape. This
needs to be investigated.

Other suggested future work is discussed in the remaining sections.

6.4.1 Extensions for LFWF and APWF
APWF only measures the positional accuracy of the centre of clusters. It does not measure
the extent of the size of clusters, such as using False Alarm Area. It may be possible to
combine some measure of false alarm area in a natural way similar to the way that it is
included in LFWF, and without the need for free parameters.

Also, neither APWF nor LFWF are restricted to single class localisation problems using
a two stage detection method. Both can be extended to calculate the classi�cation accuracy

50

if they are intended to be used for a single stage detection method. One simple approach to
this would be to calculate the weighted precision and recall for each class individually and
combine these by taking the average precision and recall before calculating the �nal �tness.

6.4.2 Further testing of New Fitness Functions
The new �tness functions have been tested and compared to an existing clustering based
method by running experiments with up to 50 generations. This allowed us to gauge per-
formance and effectiveness of these �tness functions under dif�cult circumstances. Namely
that they are given a short period of time to train good object detection programs. We saw
that under these circumstances, the new �tness functions performed similarly well or better
in most cases. These experiments, however, do not test the full ability of the �tness functions
to evolve perfect programs. Other work, [2, 11] have typically trained for between 100 to 200
generations in order to achieve good results. Similar experiments should be done and the
same analysis performed. It may be found that the new �tness functions converge quickly
to their best results, but that methods such as CBF eventually train far better programs for
object detection. Or, LFWF and APWF may still perform better for similar problems.

6.4.3 Further Training Data Proportions Experimentation
Future work needs to continue to experiments started for Training Data Proportions by ex-
perimenting with different data sets containing highly cluttered background which is simi-
lar to the objects of interest.

A more complete survey of theories of validation set size versus the training set size
would also be useful. And then to perform further tests experimentation with the effect
of the validation size on the �nal �tness and how this interrelates with the training data
proportions.

6.5 Single Stage vs. Multiple Stage Detection Methods
The work presented in this report focuses on the use of a two stage object detection system.
The �rst performs localisation to �nd the positions of objects at a high positional accuracy.
The second classi�es all objects at the positions found by the �rst stage. This is different
to previous multiple stage detection methods which used many different methods that are
often domain speci�c.

LFWF may produce programs with poor positional accuracy and one possible solution
may be to use a �nal localisation stage, after classi�cation, to �nd the exact positions of
objects, and perhaps even more detailed information such as the coordinates of their outline,
or some other indication of rotation, shape, etc. The advantage of performing such a �nal
localisation after classi�cation is that the knowledge of the object's class can be used as a
guide for the �nal localiser. For example, one localiser could be trained to localise a single
class, with one localiser for each class. These class speci�c localisers would likely have much
better positional accuracy than a generic multi-class localiser.

One could imagine a system which involves four stages:
stage 1: Initial �there is something around here� localisation using a quick scan of an image,

producing only a region in which an object of interest may reside, rather than a single
(x,y) coordinate. This has an advantage that if a great many number of images need
processing, this can quickly discard useless images. (Later reports will describe this in
more detail). These localisers are trained to identify a sweeping window position as
containing an object if there are any object pixels contained within it.

51

stage 2: localisation. Starting with the areas declared as �something within this region�,
�nd all object centres to within some prede�ned positional accuracy. The positional
accuracy does not need to be very good during this stage. With reduced constraints
on the positional accuracy, the emphasis can be put into gaining high recall.

stage 3: classi�cation. Use the localised object cutouts from stage 2. Use the cutout size
suf�cient to handle the maximum tolerated positional error so that it is guaranteed the
entire object is contained within the cut-out for classi�cation.

stage 4: For each object found and classi�ed, use the �nal localiser which has been tailored
to the object's class to determine its exact centre and any other positional or rotational
information needed.

Advantages This provides a step-by-step style, and thus can be stopped early if no useful
information is being extracted. Such as no objects of interest found after completion of the
�rst stage. It is likely that the �nal localiser would be very accurate under this scheme.

Disadvantages This requires more training time than a system using only a one or two
stage detection, because there are more stages to train programs for. The classi�er also will
be harder to train because it needs to cope with some level of positional error, whereas the
simpler systems assume no positional error on the object cutouts passed to the classi�cation
stage.

Future work needs to determine whether the cost of the extra training times for having more
stages is less or greater than the cost of a single more direct and all-encompassing program,
for the same effectiveness and accuracy.

52

Bibliography

[1] BAUM, E. B., AND HAUSSLER, D. What size net gives valid generalization? Neural
Computation 1 (1990), 151�160.

[2] BHOWAN, U. A domain independent approach to multi-class object detection using
genetic programming. Tech. rep., School of Mathematical and Computing Sciences,
VUW, 2003.

[3] BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. Learnability
and the vapnik-chervonenkis dimension. In Proceedings of the 1988 Workshop on Compu-
tational Learning Theory (San Mateo, CA, 1989), Morgan Kaufmann.

[4] BOONYANUNTA, N., AND ZEEPHONGSEKUL, P. Predicting the relationship between
the size of training sample and the predictive power of classi�ers. ??? (2004).

[5] CHOW, R. Multiple class object detection using pixel statistics in neural networks. Tech.
rep., School of Mathematical and Computing Sciences, VUW, 2002.

[6] DE GARIS, H. Genetic programming: Modular evolution for darwin machines. In Pro-
ceedings of the 1990 International Joint Conference on Neural Networks (1990), L. Erlbaum,
Ed., pp. 194�197.

[7] DEBEVEC, P. A neural network for facial feature location. UC Berkeley CS283, Project
Report, http://www.debevec.org/FaceRecognition/, December 1992.

[8] KOZA, J. R. Genetic Programming: on the programming of computers by means of natural
selection. Cambridge, MA: The MIT Press, 1992.

[9] MONTANA, D. J. Strongly typed genetic programming. BBN Technical Report 7866,
Cambridge, MA 02138, March 1994.

[10] NY, B. Multi-class object classi�cation and detection using neural networks. Tech. rep.,
School of Mathematical and Computing Sciences, VUW, 2003.

[11] PRITCHARD, M. Genetic programming for multi-class object detection. Tech. rep.,
School of Mathematical and Computing Sciences, VUW, 2002.

[12] SCHNEIDERMAN, H., AND KANADE, T. Object detection using the statistics of parts.
Int. J. Comput. Vision 56, 3 (2004), 151�177.

[13] SMART, W. Genetic programming for multi-class object classi�cation. Tech. rep., School
of Mathematical and Computing Sciences, VUW, 2003.

[14] SMART, W. Multiclass object classi�cation using genetic programming. Tech. Rep. CS-
TR-04-2, School of Mathematical and Computing Sciences, VUW, Feb 2004.

53

[15] SMART, W. Probability based genetic programming for multiclass object classi�cation.
Tech. Rep. CS-TR-04-7, School of Mathematical and Computing Sciences, VUW, July
2004.

[16] WASSERMAN, P. D. Advanced Methods in Neural Computing. Van Nostrand Reinhold,
New York, 1993, ch. 11. ISBN: 0-442-00461-3.

[17] WIDROW, B. Adaline and madaline � 1963. In IEEE 1st Int. Con. on Neural Networks
(San Diego, CA, 1987), vol. 1, pp. 143�158.

[18] ZHANG, M. A Domain Independent Approach to 2D Object Detection Based on the Neural
and Genetic Paradigms. PhD thesis, Department of Computer Science, RMIT University,
2000.

[19] ZHANG, M., AND CIESIELSKI, V. A domain independent approach to multiclass 2d
object detection using neural networks and genetic algorithms. Tech. Rep. CS-TR-02-2,
School of Mathematical and Computing Sciences, VUW, Feb 2002.

[20] ZHANG, M., AND CIESIELSKI, V. Neural networks and genetic algorithms for domain
independent multiclass object detection. International Journal on Computational Intelli-
gence and Applications 4, 1 (2004), pp. 77�108.

[21] ZHANG, M., CIESIELSKI, V., AND ANDREAE, P. A domain independent approach to
multi-class object detection using genetic programming. Tech. Rep. CS-TR-02-4, School
of Mathematical and Computing Sciences, VUW, Feb 2004.

54

Appendix A

Weighted Precision and Recall

Objects may be localised more than once, in different locations. For training purposes, it is
useful to detect this in a very particular manner. At �rst it seemed that multiple localisations
of a single object needed to be treated as a single correct localisation (the �best� one), and
the rest as false extra localisations. It later was realised that the distance of these extra local-
isations from the object centres needed to be considered also. We present here a description
of reasoning considering our initial conclusion because it is clearer to explain. We then make
a small adjustment to consider the positional accuracy of all localisations.

Remember equations 4.2 and 4.3 for weighted precision and recall, and abbreviate this
to:

precision = S
L

recall = S
N

where:

• S is∑N
i=1 localisationFitnessi

• L is number of localisations made

• N is the actual number of objects which should be positively classi�ed.

(a) (b)

Figure A.1: Object localisation examples

Let us consider three possible ways of calculating �positive� precision and recall.

Example 1 Accept all �correct� localisations individually:
In this case, for the example in A.1(a), S ∼ 8, N = 4, L = 8. And precision ∼100% (8/8), and
recall ∼200% (8/4).

Multiple localisations of objects cannot be considered separately, or the �tness function
would act as if there are more objects than truly present (recall > 100).

55

Example 2 Accept only best localisation for each object, ignore all others in that object:
Could pick only the best localisation for each object, such as indicated in �gure A.1(b) by
the bold crosses, however, here, S ∼ 2, N = 4, L = 2. This gives precision ∼100% (2/2) and
recall ∼50% (2/4).

However, no distinction has been made between the example of the top right hand object
and the bottom right hand object. Programs which produce only single localisations should
be considered more �t than programs which produce multiple localisations.

Example 3 Accept only best localisation for each object in sum, but still count all localisa-
tions made:
Instead, count all localisations in C, and pick the best �t localisation for inclusion in S. Thus
example 2 gives: S ∼ 2, N = 4, L = 6. And, precision ∼33% (2/6), and recall ∼50% (2/4).

So, when localising, the �tness of each localisation per object is stored, and the highest
�tness value included in the sum of correct localisations. The total number of localisations
made, L, is the exact number of localisations made, regardless of their individual localisa-
tion �tnesses.

The third option is the option chosen, it's formula is as follows:

localisationFitnessi =
N∑

i=1

max(localisationFitnessj,i, j = 1..Li) (A.1)

where:

• N is number of objects.

• localisationFitnessj,i is j-th localisation �tness of object i.

• Li is number of localisations made to object i.

This has the following characteristics:

• It prefers few localisations per object.

• Prefers localisations closer to the object centres.

• Prefers more objects to be localised.

• Prefers more localisations to be correct (not background).

• Some number of extra localisations, say 'x' extras, is considered the same �tness as 'x'
localisations of background (false positives).

• The weights of extra localisations (other than the best localisation), for each object,
don't affect the sum of correct localisations, they only affect the number of localisations
made and thus reduce the precision. Consequently, extra localisations close to the
object centre are considered just as un�t as extra localisations further from the object
centre.

The last characteristic here is a problem. We want the localisations to form a clean cluster
around the region of the centre of each object, without outlying localisations which may not
be grouped into the main cluster during clustering. This function does not give preference
to either. However, we can achieve the desired affect with only a small adjustment. Instead

56

(a) (b) (c) (d)

Figure A.2: Examples of different types of training example: (a) should be classi�ed as
positive, (b) may be classi�ed as positive or negative, and (c) and (d) should be classi�ed as
negative.

of choosing the maximum localisation �tness to represent the �tness with regards to each
object, we can average each individual localisation �tness across all localisations for a single
object and use that value for that object. Thus we have:

localisationFitnessi =
N∑

i=1

ave(localisationFitnessj,i, j = 1..Li) (A.2)

If only a few localisations exist very close to the object centre, then the value for the
average localisation �tness will be close to 1.0. If however, the same number of localisations
are found for a single object, but they tend to be further from the object's centre, then the
value will be less than 1.0. This gives the desired effect.

A.1 Analysing Genetic Program Results
Chapter 5 described four different kinds of training example, these are repeated here in
�gure A.2 for convenience. We consider that localisation is really classi�cation of the image
at speci�c window positions, and consider how different classi�cations should be treaded:
correct or incorrect? The �rst kind should always be classi�ed as positive, and a correct
classi�cation of this kind receives a weight of 1.0. The example in (b) could be classi�ed
as positive or negative. If classi�ed as positive, then it is given some weight less than 1.0,
unless that particular object had already been localised, in which case this new localisation
will be considered incorrect and the precision will reduce. If, however, (b) was classi�ed as
negative, then it would also be considered correct, unless no localisations are made within
the bounds of this object, in which case the recall is reduced. Example (c) and (d) should
always be classi�ed as negative, any positive classi�cations are treaded as incorrect and
reduce the precision.

57

Appendix B

Derivation of 'F' w.r.t. True/False
Positive/Negative

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F = 2×Precision × Recall
Precision + Recall

=
2× TP

TP+FP
× TP
TP+FN

TP
TP+FP

+ TP
TP+FN

=
2× TP2

(TP+FP)(TP+FN)
TP (TP+FN)+TP (TP+FP)

(TP+FP)(TP+FN)

= 2×TP 2

TP ((TP+FN)+(TP+FP))

= 2TP
2TP+FN+FP

58

Appendix C

Pattern Files

The pattern �le stores the training and test examples which are used to �nd program �t-
nesses. The typical format contains only lines of input values and the output class label.
The new �tness functions discussed in this report required the pattern �le format to be
augmented with additional information. This enabled the calculation of the �tness to be
ef�cient. Each training example entry contains a minimum of the following:

1. x, y position within the source image that the example is taken from

2. x, y unique identi�er to the nearest object if this example is taken within the radius of
some object, plus some way of ef�ciently �nding the x, y position of that object.

3. the desired classi�cation

4. a value indicating the correctness of classifying this example as positive (the localisa-
tion �tness)

59

