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Abstract

Multi-class image classification is an important research topic within com-
puter science and artificial intelligence. A wide range of images of different types
need to be classified, and the techniques developed for multi-class image classi-
fication can often be applied to other forms of multi-class classification. Genetic
programming has had some success with these problems in the past, however
multi-class image classification is still a difficult task and the resulting classifiers
are often very hard for humans to understand. This project develops a method-
ology using linear genetic programming for multi-class image classification. A
new fitness function is developed to improve this methodology and the stan-
dard tree-based genetic programming methodology. Two heuristics are found
to guide initial decisions on a linear genetic programming configuration and to
aid in comparing tree-based genetic programming and linear genetic program-
ming configurations. The resulting methodology is compared to the standard
genetic programming approach to multi-class image classification. The method-
ology developed outperforms the standard genetic programming methodology
on all six of the varying tasks and does so significantly on five of them. A hill
climbing algorithm is also developed and this algorithm augments the powerful
evolutionary beam search linear genetic programming uses.
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Chapter 1

Introduction

Classification tasks (problems) are tasks which involve classifying some example as one of a
number of classes. Each example is typically represented by a set of features (a feature vector).
Finding an algorithm which can map a feature vector to a class requires the use of machine
learning and search techniques. Multi-class image classification is a kind of classification
task which involves processing an image and then assigning this image to one of the more-
than-two possible classes.

The ability to perform such classification tasks programmatically is becoming increas-
ingly important as greater and greater quantities of information is digitised and requires
analysis. Human analysis of this information is often impractical: the information may be
too voluminous or expert analysis may be overly expensive, and the classes may be too sim-
ilar or the images too noisy for a human to perform well on the task. Some examples of
multi-class classification tasks are:

• Optical character recognition of typed or handwritten digits and letters.

• Face classification (by personal identity or by some other characteristic, such as eth-
nicity).

• Analysis and classification of experimental data, such as the spectral patterns of astro-
nomical phenomena.

• Object recognition, such as types of military aeroplane and vehicle.

• Quality evaluation of agricultural products, such as fruit: ”ripe“, ”too ripe“, ”unripe“.

Genetic programming (GP) [23] is a relatively recent artificial intelligence technique
which has been used for a range of tasks, including classification problems. Binary clas-
sification tasks in which there are only two classes and some multi-class classification tasks
have been well solved. For example, the detection and classification of the heads and tails
of New Zealand 5 and 10 cent coins can be done with approximately 80-95% accuracy [47].
Similarly, recent research [49] has achieved very good results on a 5 class problem which
is not noisy. However as the number of classes or the noise level is increased results are
degraded. For problems in which the objects which need to be classified are noisy or very
similar to members of another class the problem is particularly severe. These kinds of prob-
lems will be considered in this research.
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1.1 Issues and Motivation

Many of the most interesting and important types of object images which need to be classi-
fied are noisy or very difficult. These include face recognition and the classification of noisy
images of complex objects.

Genetic Programming (GP) [23, 1] is a promising approach for building reliable clas-
sification programs quickly and automatically, given only a set of examples on which a
program can be evaluated. GP uses ideas analogous to biological evolution to search the
space of possible programs to evolve a good program for a particular task. A strength of
this approach is that evolved programs can be much more robust [23] and flexible than the
highly constrained, parameterised models used in other techniques such as neural networks
and support vector machines. GP has been applied to a range of image classification tasks
[16, 11, 19, 39] with some success.

There are at least two limitations in the currently-used GP program structures and fitness
functions that prevent GP from finding acceptable programs in a reasonable time.

The programs that GP evolves are typically tree-like structures [24], which map a vector
of input values to a single real-valued output [50, 29, 52, 56]. For classification tasks, this
output must be mapped into a set of class labels through the use of an output interpretation
algorithm. For binary classification problems, there is a natural mapping of negative values
to one class and positive values to the other class. For multi-class classification problems,
finding the appropriate boundaries on the number line to separate the classes is very dif-
ficult. Several new translations have recently been developed in the interpretation of the
single output value of the tree-based GP [29, 57, 58], with differing strengths in address-
ing different types of problem. While these translations have achieved better classification
performance the evolved programs are hard to interpret, particularly for more difficult prob-
lems or problems with a large number of classes.

In solving classification problems, GP typically uses the classification accuracy, error
rate or a similar measure as the fitness function [52, 57, 58]. The fitness function should
approximate the true fitness of an individual program as accurately as possible. Given that
the training set size is often highly limited, such a function frequently fails to accurately
approximate a program’s classification of the true feature space.

In addition, it is often very difficult to understand why a genetic program works (or does
not) and the role played by various features and terminals is unclear. Likewise, despite the
strength of the the evolutionary beam search as a searching algorithm, hardware constraints
means it cannot guarantee to find the local maximum. The solution will generally be near
some optimum but the stochastic search process means that it will not be guaranteed to be
at the optimum. This means that a solution may frequently be improvable by some small
margin.

To summarise, the problems faced by existing GP approaches to multi-class classification
problems are as follows:

• The resulting programs often classify poorly and inconsistently from run-to-run.

• Existing traditional fitness functions often perform poorly on some types of image data
set, leading to poorer results.

• It is difficult to understand how these programs work and which features are impor-
tant to the classification of each class.

• Due to hardware constraints the evolutionary process can not guarantee local opti-
misation — any specific configuration for a problem can only ensure that it at least
operates in a ratchet fashion [53] through the use of elitism.

2



1.2 Research Goals

To address the problems outlined in section 1.1 this research will investigate the use of linear
genetic programming [1] for multi-class classification. This will achieve the following goals:

• Develop and analyse a linear genetic programming methodology for multi-class clas-
sification problems (chapter 4 and 8, respectively).

• Evaluate a new fitness function to address the hurdle problem (chapter 5).

• Ascertain the relationship between program length, accuracy and problem difficulty
and the value of extra registers beyond those interpreted as part of the output (chap-
ter 6)

• Create and apply an explicitly hill climbing algorithm to the methodology for multi-
class classification developed in chapter 4 and improved in chapter 5. Evaluate this
algorithm (chapter 7).

1.3 Contributions

This project has made the following major contributions:

1. This project shows how to use linear genetic programming (LGP) to construct ge-
netic programs for multi-class classification problems. A new methodology for ad-
dressing multi-class classification tasks using LGP is introduced. The performance of
this methodology is compared to the standard GP methodology using a heuristic de-
veloped which aids in creating comparable TGP and LGP configurations. The new
methodology performs better on all data sets evaluated when compared to a standard
GP methodology.

2. This project investigates the aspects of a classification task which make it more or
less difficult. A new fitness function (the decay curve) has been developed to more
accurately estimate the proportion of the feature space which is correctly classified.
This fitness function minimises the impact of one of the aspects which can make a
classification task difficult and significantly improves results.

3. This project shows how to determine the optimal maximum program length and num-
ber of registers in an LGP configuration, based on the number of classes in the classi-
fication task. The value of extra registers and the relationship between the length of
an LGP program and the number of classes in a multi-class classification task has been
investigated.

4. This project shows how to apply hill climbing techniques to improve performance in
LGP systems. A hill climbing algorithm which fine tunes an LGP program has been
developed. The value of this algorithm has been evaluated and the results show the
expected improvements.

5. This research has been carried out using an LGP package which needed to be devel-
oped. This package is called VUWLGP and was written using ANSI Standard C++. It
has been flexibly developed and can be used for non-classification tasks as well as for
classification tasks.
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6. A paper titled ”Linear Genetic Programming for Multi-class Object Classification“ has
been accepted for presentation as a full paper at the 18th Australian Joint Conference
on Artificial Intelligence and will be published in the Lecture Notes in Artificial Intelli-
gence. A copy of this paper is provided in appendix B.

1.4 Structure

This chapter has briefly introduced the concepts of a classification task and genetic pro-
gramming and the problems faced by existing GP approaches to classification tasks. The
following chapters describe the research carried out to address these limitations.

Chapter 2 summarises existing and related research. Section 2.1 provides a more in-
depth and general overview of search algorithms and multi-class classification. Types of
multi-class classification are discussed in section 2.2. Genetic programming is introduced
more fully in section 2.3. Existing methods of performance evaluation are discussed in sec-
tion 2.4.

In chapter 3 the tasks used in this research are presented. The features extracted from
each image are described and some general characteristics of the experimentation which are
true of all experiments for any task are presented. The data sets for some tasks are sourced
from the Yale Face Database B [14] and this database is described here.

The results of the experiments which meet the goals and answer the research questions
outlined in section 1.2 are presented and discussed in chapters 4–8. Each of these chapters is
readable largely independently of the others, provided the reader is somewhat familiar with
genetic programming, evolutionary computation and multi-class classification. However
readers are advised to scan chapter 4 first to orient their reading.

In chapter 9 the results presented and discussed in chapters 4–8 will be summarised and
synthesised into a number of overall conclusions and recommendations.
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Chapter 2

Background

This chapter introduces some of the basic concepts behind machine learning, focusing on
techniques which can be applied to multi-class classification problems. Multi-class clas-
sification problems are then discussed. Following that a brief literature review of genetic
programming and performance evaluation is presented. Note that details pertinent to only
one of the research questions being addressed are covered in the chapter which presents the
results of the experimentation for that question.

2.1 Machine Learning

2.1.1 What is Machine Learning and Why is it Necessary?

Machine learning is the process of automating the development of some part of a system
which performs some task. The algorithm, parameters to an algorithm or process can be
learnt adaptively over a period of time [46]. There are two types of situation where machine
learning is necessary.

The first kind of situation is one in which a human cannot easily, quickly or reliably
create a system (including the algorithm and its parameters) which performs some task.
Most multi-class classification tasks, described in section 2.2 fall into this category. Note
that there is a significant difference between a human’s inability to do some task (trained
experts can perform most tasks) and a human’s inability to create an algorithm which can do
the same. Such systems are needed because, while experts are normally able to perform
these tasks, the cost and number of experts may be insufficient compared to the need for
their ability.

In the second situation a human is perfectly able to create a system which performs
rapidly, reliably and quickly on some task. However, because this algorithm does not
change, if the situation changes it will start to generate inaccurate or bad results. These
kinds of ”Red Queen“-type [42] situations are very common, especially if humans are in-
volved in some way in the process the system is being applied to. Detecting credit card
fraud, for example, is the detection of a ”moving target“, as fraudsters learn new techniques
and adapt old ones to circumvent changed protective measures.

2.1.2 Performing Machine Learning

The overall structure of a machine learning approach to a problem involves three steps [46]:

1. The generation of some representation of a solution to the problem.

2. The evaluation of the generated solution.
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3. If the evaluated solution is not good enough, the solution is iterated (i.e. almost always
improved) and the machine learning process goes to step (2).

I will now discuss each of these three steps in more detail.

2.1.3 Types of Generation and Representation

Given the selection of some representation of a solution to the problem, the initial gener-
ation is usually random but constrained by some parameters. For example, in a neural
network the structure is fixed and the weight associated with each link is generated ac-
cording to some algorithm which ensures that the initially generated solution will almost
certainly not be the same from time-to-time. However, there are a wide variety of possi-
ble representations, including feed-forward neural networks, genetic algorithms, support
vector machines, simulated annealing, decision trees, Bayesian networks and genetic pro-
gramming. Excluding genetic programming I will now discuss each of these representations
briefly. Genetic programming is discussed in more depth in section 2.3.

Feed-forward Neural Networks

Feed-forward neural networks [45] are based on a model of the biological brain. Inputs are
passed to some input neurons. These input neurons generate some output which is passed
along links (which will scale the output) to another layer of neurons. This process of apply-
ing some function to a neuron’s input and then passing the value of this function on to the
next layer, moderated by some weight, continues until the output layer is reached. The re-
sults of applying the processing function to the output layer’s input is considered the output
of the neural network. This output then needs to be interpreted. In multi-class classification
there is usually one output neuron for each class and a winner-takes-all algorithm is used,
with the class represented by the output neuron with the largest value being interpreted as
the output of the neural network.

Figure 2.1: A feed-forward neural network [43].

Genetic Algorithms

Genetic algorithms (GA) [15] require a solution to be encoded into a fixed-length string of al-
leles (typically base-2 bits). A decoding algorithm, d is created by the programmer, and d can
be applied to any genotype of the appropriate length and format to create the solution that

6



genotype specifies. Creating d and the representational schema is complex and can make
working with genetic algorithms difficult. This genotype-phenotype translation is unnec-
essary in genetic programming. For multi-class classification tasks, most GA ”phenotypes“
are systems which output one value [25, 28, 38] and the output interpretation algorithms
discussed in the context of GP in section 2.3.6 can be used.

Support Vector Machines

Support vector machines (SVM) [8] can generate either binary classifications or regress a
function from some set of training data. In the context of binary classifications, an SVM
is used to find a hyperplane in the dimensional space which the features sketch out (the
feature space, discussed in sections 5.2 and 5.3.1). This hyperplane separates the two classes
into two regions so that the nearest example of each class is as far from the hyperplane as
possible. Applying binary-class classification systems to multi-class classification problems
is difficult and can only be done by training multiple binary-class classifiers for one multi-
class classification problem.

Simulated Annealing

Simulated annealing [30] is a generalised Monte Carlo method. Annealing is a process ap-
plied to metals and involves heating them to a very high temperature and then slowly cool-
ing them so that the system remains in thermodynamic equilibrium. A system which is in
thermodynamic equilibrium is in the same state, i.e. at the same temperature, in all parts.
Cooling the metal sufficiently slowly ensures that the metal attains and retains the most
ordered (and therefore strongest) state possible. Computationally, this is modelled by gen-
erating an initial solution randomly. Random changes are then made to this solution and
automatically accepted if they improve the solution or accepted with some probability p if
they worsen it. As the ”temperature“ is decreased p is decreased as well.

Decision Trees and Bayesian Networks

Decision trees and Bayesian networks [46] work with discretely valued inputs. Continuous
inputs (height, temperature, size, brightness, etc.) need to be made discrete prior to them
being usable in a decision tree or Bayesian network. As such decision trees and Bayesian
networks are ideally suited to some kinds of multi-class classification task, but it is very
difficult to use them for tasks involving image processing and classification.

A decision tree is evaluated by beginning at the root [46]. Each internal node of the
tree has some condition and a node has one child per possible answer to this question.
Depending on the answers to these questions the tree is traversed until a leaf is reached. The
leaves of the tree are either discrete answers (such as a class) or a probability distribution
across two or more possible answers.

A Bayesian network is a directed acyclic graph [46]. Each node in this graph represents
some variable which can have a finite number of discrete values. The causal relations be-
tween nodes are shown by arcs. Given some evidence regarding the state of some nodes
and through the use of Bayes Law and algorithms which allow evidence to be propagated
the updated probabilities of other nodes in the Bayesian network can be determined. When
using a Bayesian network for multi-class classification one node will represent all of the
possible classes and other nodes will represent features whose values can be known and
intermediate levels of causal linking.
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2.1.4 Types of Iteration

There are, broadly, three ways in which the iteration from one solution to the next can be
performed. This iteration is how the search for a good solution is carried out. Each of the
three types of iteration will be summarised briefly and one way of carrying out two of these
types will then be discussed in more detail.

unsupervised Unsupervised learning is normally used to locate patterns in the input data.
No information is given to the system which finds the patterns as to the correctness or
incorrectness of the patterns. The patterns it finds may therefore be arbitrary or they
may actually be representative of some real underlying process which caused them to
appear. See [9] for more detail.

reinforcement In terms of the quantity of information given to the systen regarding the cor-
rectness of its output, reinforcement learning [46] is intermediary between supervised
and unsupervised learning. When reinforcement learning is used some information
is given to the system at some time regarding the correctness of a prediction it made.
This information ranges in precision from a categorisation of a response as ”right“ or
”wrong“ to a precise amount of error, expressed numerically. At the latter degree of
precision it differs from supervised learning only in the way the information is pre-
sented.

supervised When supervised learning is used the precise, correct output which should
have been given for any particular training input is known to the system and used
by the system to adjust the answer it will give to other training examples [46].

Hill Climbing and Gradient Descent

A form of supervised or reinforcement learning which is frequently used is hill climbing. Hill
climbing is a form of iteration in machine learning which aims to improve a candidate so-
lution by advancing it some amount in the direction which (at least in the very short term)
leads towards a better solution. Hill climbing can either be done explicitly, when the direc-
tion of the best step is determined, or implicitly, through the impact of stochastic learning
processes (as in simulated annealing). All of the representations discussed above are a form
of either implicit or explicit hill climbing. In the remainder of this section explicit hill climb-
ing will be discussed more fully.

By conceptualising the current solution as having some position in some space (given
different names in different contexts but typically with its dimensional structure given by
the parameters to the solution) hill climbing can be performed. This space will have maxima
and minima (or peaks and hollows) which reflect the quality of a solution at this position in the
space. For the purpose of clear discussion in this report the peaks are assumed to be better,
although the opposite assumption is also frequently made use of when it makes more sense
to talk about the objective of an AI application as the minimisation of some cost. In an itera-
tion involving a hill climbing algorithm the direction in this space towards a better solution
is at least roughly calculated. The need to calculate this direction is why hill climbing can-
not be carried out in an unsupervised fashion. The candidate solution is then moved some
distance towards this peak. The distance moved is normally determined by some function
which estimates how beneficial a move in this direction will be. If it the estimate indicates
it will be very dramatic improvement a larger move is normally safer. This movement can
also be scaled by some value and it can be adjusted by past movements (i.e. if momentum is
modeled). Modeling momentum helps a hill climbing algorithm avoid becoming trapped at
the smaller local peaks, although it also increases the chance that a candidate solution will
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oscillate about the global peak. Whether or not momentum is modeled, one weakness of hill
climbing algorithms is that it can over-step a peak if the function which estimates how far it
should move over-estimates. This sort of situation can be seen in figure 2.2. In addition it is
important to remember that hill climbing algorithms are not guaranteed to find the global
optimum, and as the space in which they climb becomes craggier they are more and more
likely to become trapped at a sub-optimal, local peak.

the peak.
Solution "climbs" past

Figure 2.2: How too-large an adjustment when hill climbing can worsen a solution.

Gradient descent is a specific kind of of hill climbing which relies on a continuous cost
function. As a result of this requirement the direction and extent to which a solution can
be improved can be calculated much more precisely. However this precision does not pro-
tect gradient descent algorithms from the problems of over-fitting or oscillation about some
peak in the landscape which are also present in hill climbing algorithms. The same prob-
lems faced by hill climbing algorithms are also necessarily a problem for gradient descent
algorithms. In addition, due to the greater accuracy with which gradient descent algorithms
improve a solution in the apparent direction of the global optima they are at least as vulner-
able to being trapped at local optima.

2.1.5 Types of Evaluation

The types and ways in which evaluation can be carried out is discussed in section 2.4.

2.2 Multi-class Classification Problems

Only a very brief further discussion of multi-class classification tasks will be given in this
section. A reasonably full discussion of multi-class classification was given in chapter 1 and
the aspects of a multi-class classification task that make it hard are discussed in chapter 5
and especially in section 5.4. In this section, the value of this research will be highlighted
through a more in-depth discussion of the types and kinds of multi-class classification tasks
which exist.

Image classification tasks are one kind of classification task which are frequently a multi-
class classification task. Possible image classification tasks include the classification of med-
ical imagery (x-rays, MRI scans or digital photos of cells) to aid in the diagnosis of a variety
of injuries and diseases. Similarly, analysis of maps to determine the proportion of various
covers (asphalt, trees, soil, roofing) may be necessary. Classification of certain kinds of ob-
jects in images which are primarily ”background“ is also often necessary. An example of
this kind of problem is the classification of ships in synthetic aperture radar imagery [18].
Optical character recognition of digits and letters, either handwritten or typed, represent a
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third important category of multi-class image classification. A fourth important kind of im-
age classification task is the recognition of a number of possible faces (perhaps people who
need to be identified and monitored for security reasons) from a crowd. Such a situation
may arise at an airport where cameras may programmatically scan faces, checking for the
presence of wanted criminals.

The classification of medical and biological data represents another important kind of
multi-class classification task. An example of this kind is the classification of cells as either
non-cancerous or as one of several types of cancer through examination of the gene expres-
sion profile [34]. Another example is the classification of the structure of protein folds in
various proteins. Understanding the ways in which proteins fold is important, because al-
though it ”isn’t likely to create a revolution the way Watson and Crick’s discovery of the
structure of DNA transformed biology, or that Einstein’s theory of relativity transformed
physics. [...] it will provide a profound new insight into life’s basic units, and the evolution-
ary process that produced them“ [7].

A third important type of multi-class classification problem is the classification of text
documents. This is done to, for example, improve the semantic accuracy of document
searches by reducing the number of false-positives. [40] and [41] provide a good summary
of the kinds of ways in which text documents can be classified and the features that are used.

Another kind of problem closely related to multi-class classification problems are prob-
lems which involve multiple, inter-dependent outputs. This kind of problem has not been
considered in this research, although we hypothesise the methodologies developed will be
easily applicable to it and we expect them to have a similar degree of success. Investment
decisions represent an example of this kind of problem [27, 6]. The risk tolerance of any in-
dividual investment depends both on the decision made regarding its absolute size and also
its size relative to the total portfolio. A decision regarding the degree to which risk (negative
events) will be tolerated should not be made without also considering the absolute size of
the investment. Similarly, the absolute size of the investment should not be decided upon
without considering the risk which will be tolerated. Generating answers to these two ques-
tions should be done in an interdependent manner, as this manner will probably be both
more efficient and almost certainly more accurate (if it were not then the decisions are not
truly interdependent).

2.3 Genetic Programming

Genetic Programming (GP) [23, 1] is a promising approach for building reliable classification
programs quickly and automatically, given only a set of examples on which a program can
evaluate. In this introductory section I will first briefly explain how genetic programming
works and the important elements of a genetic programming configuration for a particular
problem. I will then explain the nature of traditional tree-based genetic programming (TGP)
[23].

GP uses ideas analogous to biological evolution to search the space of possible programs
to evolve a good program for a particular task. A large number of random programs are
generated using one of the methods outlined in section 2.3.2. Each program is then evalu-
ated against each fitness case in the training set Straining. Each program will have some fitness
as a result of performing to a certain extent on the fitness cases in the training set, which is
assumed to be representative. Based on this level of performance, individuals are selected
for evolutionary operations, which create offspring who are evaluated in the next generation.
After some maximum number of generations or when some level of fitness, ǫ, is reached
evolution is terminated. This creates a beam search on a particular problem that is resistant
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to local minima and often finds very good solutions quickly.

2.3.1 Program Representation

In TGP each program is a function tree, as shown by the example in figure 2.3. The leaves
are members of a fitness case’s feature vector (every fitness case is required to take the same
format) or ephemeral random constants (R), introduced by Koza [23]. Internal nodes rep-
resent functions whose semantic meaning is defined as part of the configuration. if<0,
for example, is a function usually defined as having the value of its second argument if its
first is less than zero, and of having the value of its third argument otherwise. When a TGP
program is evaluated the leaves which are not random constants are replaced by the values
of the appropriate member of the feature vector and the values are calculated in a recursive
manner. Each tree produces one output. This is almost always a real-numbered value, al-
though the evolutionary method does not require this and research into strongly-typed genetic
programming (STGP) [32] illustrates other possibilities. This output is interpreted for each fit-
ness case and some fitness level is calculated. Techniques for achieving this in multi-class
classification tasks and the problems they have are discussed in sections 2.3.6 and 4.2.

(* (- (+ (/ f1 -0.268213)
(/ -0.828695 f6))

(/ (/ f7 f6)
(+ -0.828695 f5)))

(* (- (if<0 f3 f1 f5)
(/ f5 f6))

(+ (- f4 -0.828695)
(+ f1 f2)))

)

output

*

−

+ /

/ /

f1 R R f6

/

f7 f6

+

R f5

− +

if<0

f3 f1 f5

/

f5 f6

−

f4 R

+

f1 f2

*

Figure 2.3: A sample program for a 10-class problem evolved by TGP. Different values of R
(ephemeral random constants) are not shown due to space constraints.

2.3.2 Program Generation

Programs are initially generated in one of three ways. They can be grown, where a random
function or terminal is selected as the root of the tree and then a random terminal or func-
tion is selected for each child of that node. This process is repeated recursively until the
maximum depth is reached where a terminal is randomly selected from the set of termi-
nals. Alternatively trees can be full. When a tree is built to depth n functions are randomly
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selected at the root and for each child until nodes at depth n are being selected, when ter-
minals from the terminal set are randomly selected. The third approach is to generate half
of the programs using the full method and half using the growth method. This is known as
ramped half-and-half and was used by Koza [23]. Ramped half-and-half has been used in all
TGP configurations in this research.

2.3.3 Selection Algorithms

Selection of individuals to participate in evolutionary operations is typically achieved through
one of two approaches. Proportional selection [23] involves assigning to each individual pro-
gram pi some fitness less than 1 and proportional to the sum fitness of all programs in the
population, as shown in equation 2.1. Each parent individual in an evolutionary operation
is selected in a roulette-wheel fashion with probability fproportional(pi).

fproportional(pi) = fraw(pi)/
∑

p

fraw(p) (2.1)

Alternatively, tournament selection is often used. The tournament size is specified in the
genetic programming configuration (the typical size used is in the range 4–6) and this many
individuals are selected in a uniformly random manner from the population. The fittest
individual in this group is then chosen for the operation. If more than one individual is
needed for some operation then multiple independent tournaments with replacement are
usually conducted. Size-4 tournament selection has been used in this research.

2.3.4 Evolutionary Operators

Individual programs are normally selected for one of three evolutionary operations. Evo-
lutionary operations can either be assigned (10% of all operations will be X, where X is
some operator) or probabilistically selected (there is a 10% chance of this operation being X,
where X is some operator). In this research the former method was used.

Reproduction

Reproduction involves copying, unchanged, the selected program to the next generation. This
operation is usually implemented as elitism. Elitism automatically selects the fittest k% (e.g.
10%) of the population and copies them unchanged to the next generation. This is a minimal
form of local optimisation which ensures the evolution operates in a ratchet fashion [53]. A
ratchet is a kind of evolutionary situation in which a population can only improve or stay
the same from generation-to-generation, it cannot get worse.

Mutation

Individuals selected for a mutation operation have some randomly selected sub-tree replaced
with a new randomly generated tree but are otherwise copied unchanged into the next gen-
eration. The use of this evolutionary operation helps ensure that a certain degree of diversity
exists in the population, helping prevent any selection pressure for local optimisation from
limiting the quality of the solution and (consequentially) causing poor results [23].
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Crossover

Crossover is an evolutionary operation which involves two individuals. Two parents are se-
lected and a sub-tree of each parent is uniformly randomly selected1. The sub-trees are then
swapped from one parent to the other and the changed first parent is copied into the next
generation. If desired, the changed second parent can also be copied into the next genera-
tion (this reduces the number of evolutionary operations which need to be performed). An
example TGP crossover is shown in figure 2.4. If one of the resulting trees is either too deep
or too shallow the typical response is simply to instead copy the first parent, unchanged,
into the next generation.

Child 1

+

f1

f2

*

/

f3f2

/

−

f2f4f2

+

f2

/

−

f2f4f2

+

+

f1

f2

*

/

f3f2

f2

Parent 1 Parent 2

Child 2

Figure 2.4: An example of a TGP crossover. Highlighted sub-trees are swapped from one
parent to the other to produce the offspring.

2.3.5 Genetic Programming and Hill Climbing/Gradient Descent

Tree-based GP (TGP) and hill climbing algorithms have been combined in two ways in past
research.

One approach is to adjust the ephemeral random constants [23] which served as numeric
terminals in order to slightly adjust a program’s output (developed in 2003, described in
[48]) so that its classification accuracy was improved. The amount by which the numeric
terminals are adjusted is scaled by a parameter, η.

On several tasks of mid-to-easy difficulty this algorithm achieved improvements in both
learning time and accuracy. Unfortunately no consistent value of η was found to give the
best results, although all values of η lead to more accurate results when compared to the
basic TGP configuration.

A second approach was developed by William Smart in 2004 and described in [60]. In
this approach the basic TGP representation is modified. Individual programs are still ex-
pressed as trees but each link between nodes in such a tree has a weight associated with
it. This entails some changes to the evolutionary operations used. In addition, when eval-
uating a program the value of a sub-tree is multiplied by the weight on the link which is
the last link on the path leading from the root of the tree to that node. This means that if a
sub-tree consistently causes a program to generate an output that is either too large or too

1i.e. each node has the same chance of being selected as the root of the sub-tree
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low its weight will be adjusted so that the program’s output is closer to the ideal output. Ini-
tial weights for each link are 1.0. This means that each tree is initially identical to a normal
TGP program with no hill climbing. The results of this research, presented in [48] and [60],
were very similar to those obtained using the first algorithm and show that the previous
algorithm may be a special case of this seemingly quite-different algorithm [48].

For both algorithms the learning can be carried out in either an online or offline manner.
If online learning is used the weights or numeric terminals are updated after evaluating each
fitness case in the training set. On the other hand, in offline learning, all fitness cases in the
training set are presented and a program’s error is summed across these fitness cases and
the hill climbing algorithm is applied to the summed error. How error can be summed is
discussed briefly in section 2.4.

2.3.6 Genetic Programming for Multi-class Classification

Although some brief work [4] comparing the performance of linear genetic programming in
multi-class classification problems to feed-forward neural networks has been done this work
was only carried out on either binary or quite easy 3-class classification tasks. In addition,
the methodology used only one register when interpreting the output of the program. In
most respects this research is therefore very similar to existing TGP research into multi-class
classification.

In this section I will describe a number of approaches used to apply TGP (in which
programs produce only one output) to multi-class classification. The first three all present
different ways of partitioning the number line and thus different ways of interpreting the
output of a TGP program. The fourth modifies the structure of a TGP program. A fifth
approach, used in [25], is to develop n − 1 programs to classify each of the classes in an n
class problem. This method is computationally very expensive and makes it very difficult to
take interdependencies between classes into account. Because of these weaknesses it is not
discussed in detail in this literature survey.

Static Class Boundary Determination

As shown in figure 2.5, when using static class boundary determination predefined boundaries
are established on the number line on which the output of a TGP program is interpreted
[29]. The class of a particular fitness case or example is determined by which region on the
number line the output falls into.

T3

class1 class3 class4 class5class2

0T1T2

Figure 2.5: Static class boundary determination. This images shows how the numberline is
divided up into regions, one per class, for a five-class problem.

Slotted Dynamic Class Boundary Determination

In slotted dynamic class boundary determination [59] the real number line is divided into 200
slots. A slot is assigned to represent whichever class makes up the largest proportion of ex-
amples which fall into it. During the evolutionary process the class a slot represents may
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change. Because of this mutual adaptation the output interpretation algorithm and pro-
grams could be seen to be involved in a form of co-evolution.

Centred Dynamic Class Boundary Determination

When using the centred dynamic class boundary determination methodology [59] to interpret
the output of a tree-based GP (TGP) program the boundaries are determined dynamically.
The arithmetic mean of all results for each class is calculated, giving the centre of that class.
The boundaries of this class’s region is then midway between the centre of this class and
the next class in each direction on the number line. If there is no next class in one of the
directions on the number line then this class’s region is assumed to extend to infinity. As
with slotted dynamic class boundary determination, a co-evolutionary description of this
algorithm could be given.

Modi-GP

Static class boundary determination, slotted dynamic class boundary determination, and
centred dynamic class boundary determination all work to apply TGP to multi-class classi-
fication problems by providing schema which change the way a TGP program’s output is
interpreted. Modi-GP is a different approach, developed by Yun Zhang [61] in 2004, which
instead changes the program structure to make it more suitable for multi-class classification.

Modi-GP is an attempt to more accurately replicate the many-to-many structure which
can be found in feed forward neural networks [45]. A Modi-GP program is still structurally
equivalent to a normal TGP program but the program structure has been augmented so
that it simulates a subset of the possible directed acyclic graphs (DAGs) a multiple-roots
program tree could represent.

The program structure is modified by associating an output vector (with one element for
each class) with each program. This output vector is virtual and does not really exist [61].
Each function node in a program tree has a certain probability of being linked to one of the
elements of the output vector (the element it is linked to, if any, is selected in a uniformly
random manner). Such a node is referred to as a modi node. See figure 2.6 for an example.
Prior to evaluating a Modi-GP program the output vector is zeroed. The program tree is then
evaluated in the standard manner except that when a modi node is encountered the value
of the operation is added to the existing value at the element of the output vector it links
to. The value of its right child is then passed to its parent as the value of this function. As
a result, when a Modi-GP program has been executed one floating point value is produced
for each class. A winner-takes-all algorithm is used to interpret the program’s output and
the class represented by the element of the vector with the largest value is interpreted as the
program’s output.

This method does lead to improved results across a range of data sets. In addition,
some have claimed [61] that this method might make understanding why and how a TGP
program works slightly easier. Possible future work involving this method may include
the use of Skinnerian creatures - that is, the addition of a translation step from genotype to
phenotype, rather than the interpretation just of the genotype. Similar steps remain to be
considered for LGP.

2.4 Performance Evaluation

A number of ways of measuring performance (fitness) in multi-class classifications have
been developed, although the approach used to develop these methodologies has often been
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Figure 2.6: A Modi-GP program. This figure shows an example of a Modi-GP program [61].

pre-theoretical. A more in-depth and theoretical analysis of the function of the fitness func-
tion is given in chapter 5. In this section we will consider a number of previously used
evaluation methods which will be referred to in this research as the traditional fitness func-
tions. Note that a number of these are identical to each other when localisation is not being
considered.

Each of these evaluation measures can also be combined in different ways when the
results from several cases need to be considered simultaneously. Total sum squared error (or
TSS) involves summing the square of the error on each case to give the total error across all
of the cases. Mean sum squared error is the arithmetic mean of TSS. The root mean squared error
for a problem with n examples in m classes is calculated as described in equation 2.2.

RMSE =

√

2 × TSS

n × m
(2.2)

Accuracy

Accuracy is a measurement of the percentage of classifications which are correct. A higher
accuracy is better. The formula for the calculation of a system’s accuracy is as follows:

Accuracy =
Ncorrectly classified

Ntotal

× 100% (2.3)

The accuracy can be calculated on a per-class basis or across all classes being considered.
In the latter case it can be a simple or weighted average of the accuracy of the solution for
each of the classes.

Error Rate

The error rate is very similar to the accuracy, except that a lower error rate is fitter than a
higher one. The formula for the error rate is as follows:

Error Rate = 100% − Accuracy =
Ntotal − Ncorrectly classified

Ntotal

× 100% (2.4)

True Positive Fraction

The true positive fraction (TPF) is a measurement of fitness which can be calculated on a per-
class basis and then combined to give an overall measurement of fitness in the same way
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the accuracy or error rate can be combined. How the TPF is calculated for some class c of
size |c| is described in equation 2.5.

TPFc =
Ncorrectly classified as c

|c|
(2.5)

False Positive Fraction

Given some class c, the false positive fraction (FPF) is the fraction of examples which are not
members of c, but which are mistakenly classified as members of c. More formally, how the
FPF is calculated for some class c of size |c| is described in equation 2.6.

FPFc =
Nincorrectly classified as c

Ntotal − |c|
(2.6)

Detection Rate

In multi-class classification object problems which do not include localisation, the detection
rate is fundamentally identical to the accuracy. Hence this performance measure will not be
discussed in this background.

False Alarm Rate

In multi-class classification, as with the detection rate, when localisation is not being consid-
ered (and any false positive is therefore also a false negative of another class) the false alarm
rate (FAR) is identical to the error rate. Aside from noting several points that the FAR high-
lights it will not be discussed in detail here. Firstly, it should be noted that the FAR provides
a more discriminative measure of the extent to which a system is ”over-eager“ when local-
ising. This discriminative capacity is taken advantage of in the extended ROC curve [54]. In
addition, note that when localisation is being considered seeking to improve the detection
rate also leads to an increase in the false alarm rate. This factor is analysed in more depth in
[31]. Finally, an extension of the false alarm rate developed to give better results especially
for localisation is the false alarm area. See [26] for more detail on this method of performance
evaluation.
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Chapter 3

Data Sets

A range of data sets, of varying difficulty and difficult in different ways, were used in this
research on linear genetic programming in multi-class image classification tasks. Each of
the three types of data set used is outlined below and the general characteristics of the type
of data set are described as well. The data sets have been presented in a rough ascending
order of difficulty but the different ways they are difficult makes a strict ordering difficult
or impossible and hence this has not been attempted.

3.1 Shape

Only one data set of type shape was used. For convenience it has been given and is referred
to by the same name, shape.

3.1.1 Description

This data set was defined to give well-defined objects against a relatively clean background.
The pixels of the objects were produced using a Gaussian generator with different means
and variances for each class and the background. Four classes of 600 small objects (150 of
each class) make up the training set. 600 more such objects make up the test set. The four
classes are:

• Dark circles — DC or class1.

• Light circles — LC or class2.

• Dark squares — DS or class3.

• Light squares — LS or class4.

The mean and standard deviation of the brightness of each part of each image (with
white being 255 and black being 0) is specified in table 3.1.

Example members of each class are presented in figure 3.1. Note that class 1 and class
3, and class 2 and class 4 objects are very similar in their overall mean brightness. This
makes the problem reasonably difficult. The features used have been selected in order to
maximise this difficulty and exacerbate the hurdle problem (discussed in chapter 7) as much
as is reasonable, in order to provide a good data set for experimentation regarding ways in
which the hurdle problem can be addressed.

19



Table 3.1: Mean (µ) and standard deviation (σ) of class pixels in shape.

Class Component µ Brightness σ Brightness

Background 140 50
DC Circle 20 160

Background 140 50
LC Circle 180 160

Background 140 50
DS Square 60 160

Background 140 50
LS Square 220 160

Class1 (DC) Class2 (LC)

Class3 (DS) Class4 (LS)

Figure 3.1: Examples of each class in shape.

3.1.2 Features

Eight features extracted from the shape data set and ephemeral random constants (R) [23]
were used as the terminal set. The eight features are shown in figure 3.2. The LGP method-
ology is described in chapter 4 but preluding that note that feature n is mapped to feature
register cf[n − 1].

Feature LGP Index Description

f1 cf[0] mean brightness of the entire object

f2 cf[1] mean of the top left quadrant

f3 cf[2] mean of the top right quadrant
f4 cf[3] mean of the bottom left quadrant

f5 cf[4] mean of the bottom right quadrant

f6 cf[5] mean of the centre quadrant
f7 cf[6] standard deviation of the whole object

f8 cf[7] standard deviation of centre quadrant

Figure 3.2: Terminal set for the shape data set. The location of the feature positions described
on the right are shown in the diagram on the left.
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3.2 Digits

3.2.1 Digits15

Description

Each digits image is a 7 × 7 binary image of one of the ten digits 0–9. Each image has 15%
of its pixels flipped due to noise. See figure 3.3(a) for an example member of each class in
digits15. Notice that human eyes cannot distinguish the majority of the patterns, particularly
6, 8 and 3, even 1 and 5. The problem is made even more difficult by the high number of
classes.

Figure 3.3: Digits data (a) digits15; (b) digits30.

Features

For simplicities sake and to ensure the problem retained a high level of difficulty the 49 raw
pixels were used as the features. In addition, ephemeral random constants [23], R, were
available. This resulted in the creation of a very large feature space (see section 5.3.1) with a
high degree of noise. This created a problem in which it was particularly difficult to improve
beyond a certain base level of fitness.

3.2.2 Digits30

This data set is identical to the digits15 data set, except that each image has 30% of the pixels
flipped due to noise. The same features were used for digits30 as for digits15. See figure 3.3(b)
for an example member of each class in digits30. Notice that human eyes cannot distinguish
the majority of the patterns, especially 8 and 9, 3, 5 and 6, and even 1, 2 and 0. The problem
is made even more difficult (as with digits15) by the high number of classes.

3.3 Faces

Data sets of the faces type investigated the classification of images of faces. Each image of a
face was taken in different lighting conditions and from the same pose as all other images
of that face.

3.3.1 Yale Face Database B

All faces data sets were based on the Yale Face Database B [14]. This database (hereafter just
referred to as the Yale DB) consists of 5760 images of 10 faces in 576 different viewing con-
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ditions, namely all combinations of one of 9 poses and one of 64 lighting levels. In addition
there was one photograph taken with ambient lighting of each face (not of each pose). Of
these, only those photos taken from the directly-onwards angle (which include the ambient
photos) were used in this project and there were thus 65 members of each of the ten classes.
What differentiated members of one class from another were the different faces in each im-
age. What differentiated one member in a class from another in that class was the angle
and brightness of the lighting at the time the photo was taken. 3 examples from 3 classes
(nine examples in all) have been provided in figure 3.4. These example images highlight the
difficulty of this data set, due to the inherent similarity some members of each class have to
members of other classes, rather than to members of their own. Data sets based on the Yale
DB are also made more difficult by the fact that only 65 (often very different) members of
each class exist and that the test and training set must be made up of independent subsets
of these 65. Typically a training or test set consists of several hundred objects (depending
on the difficulty of the problem). The reader is referred to [13] for more information on the
Yale DB.

3.3.2 Faces1

Description

Five randomly selected classes from the Yale DB were chosen for the faces1 data set, includ-
ing the first and second in figure 3.4. All 65 members of each class were used. Ten-fold
cross-validation was used in any experiment which used this data set, as the number of pos-
sible training and test examples was very low. This data set was the easiest faces dataset and
is referred to as faces1 for convenience.

Features

A 330 × 432 cutout of each face was used and 11 pixel statistics extracted from this were
used in experiments involving faces1. These features are deliberately not optimal, as it was
important that the problem remain difficult. Through the use of pixel statistics situations
are deliberately created in which (in a Euclidean space) members of one class are nearer
to members of other classes than they are to members of their own class. Despite this the
features selected were more than sufficient to allow members of one class to be distinguished
from members of another by focussing on the distinguishing areas of the face (the eyes and
nose) and the general skin colour in different regions. Ephemeral random constants (R) [23]
were also used in the terminal set. The 11 features are shown in figure 3.5.

3.3.3 Faces2

Description

faces2 uses each of the ten classes in the Yale DB (see section 3.3.1) but uses only the 40 most
similar members of each class in the training and test sets. While this does reduce the max-
imum possible size of the test and training set it also significantly reduces the difficulty of
the problem by removing those members of the classes most similar to members of another
class rather than to members of their class. Hence, for example, example (a) of each class
in figure 3.4 was not used in faces2. As with faces1, ten-fold cross-validation was used in all
experiments involving this data set.

22



a) 120◦ Left b) 15◦ right, 20◦ up c) 70◦ right

a) 120◦ Left b) 15◦ right, 20◦ up c) 70◦ right

a) 120◦ Left b) 15◦ right, 20◦ up c) 70◦ right

Figure 3.4: 9 examples from 3 classes in the Yale DB. Class 1 examples are given in the first
row, class 5 examples in the second, class 8 examples in the third. Captions below each
image describe the angle the lighting was at when the photo was taken. Vertical triplets
highlight how similar the pixel statistics of different classes are under certain lighting con-
ditions. The individuals in each class were not named.

Features

The features used in the faces2 data set are identical to those used in faces1 (see section 3.3.2).

3.3.4 Faces3

Description

This data set is the most difficult data set used in the research reported in this paper. It uses
all 65 of the images considered for each of the 10 classes. The resulting problem is extremely
difficult: there are 10 classes, very few training and testing examples and the feature set
makes the feature space patchy, meaning it is difficult because members of one class can be
nearer to members of other classes than their own, when distance is measured in a Euclidean
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Feature LGP Index Description

f1 cf[0] mean brightness of the entire cut out

f2 cf[1] mean of the top-left hexant
f3 cf[2] mean of the top-right hexant

f4 cf[3] mean of the middle-left hexant

f5 cf[4] mean of the middle-right hexant
f6 cf[5] mean of the bottom-left hexant

f7 cf[6] mean of the bottom-right hexant
f8 cf[7] standard deviation of the left-most semi-hexant

f9 cf[8] standard deviation of the centre-left semi-hexant

f10 cf[9] standard deviation of the centre-right semi-hexant
f11 cf[10] standard deviation of the right-most semi-hexant

Figure 3.5: Terminal set for the faces1 data set. The location of the feature positions described
on the right are shown in the diagram on the left.

manner. As with faces1, ten-fold cross-validation was used in all experiments involving this
data set.

Features

The features used in the faces3 data set are identical to those used in faces1 (see section 3.3.2).
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Chapter 4

LGP for Multi-class Classification

4.1 Overview

In this chapter we seek to achieve the goal of developing a linear genetic programming
methodology for multi-class object classification problems. This configuration must address
the problems faced by current techniques for multi-class classification using TGP by exploit-
ing the linear genetic programming representation. In addition, a heuristic which allows
TGP and linear genetic programming configurations to be compared is developed.

No evaluation of the developed methodology is carried out in this chapter. This is done
in a fuller and more complete manner in chapter 8.

The structure of this chapter is as follows. In section 4.2 problems faced by existing TGP
methodologies for multi-class classification problems are analysed. The form of linear ge-
netic programming used in this research is discussed in section 4.3. A heuristic which allows
the comparison of TGP and linear genetic programming configurations of the form used in
this research is developed in section 4.4 and the initial generation, output interpretation al-
gorithm and evolutionary operators used in this linear genetic programming configuration
are described in sections 4.5, 4.6 and 4.7, respectively. Finally other elements of the configu-
ration are described in section 4.8.

4.2 Problems with Current Techniques for TGP

Two key problems impede the use of TGP in multi-class classification tasks. Both of these
stem from the fact that TGP programs evolve tree-like structures [24], which map a vec-
tor of input values to a single real-valued output [50, 29, 52, 56]. For classification tasks,
in a second step, this output must be mapped onto a set of class labels. For binary classi-
fication problems, there is a natural mapping of negative values to one class and positive
values to the other class. For multi-class classification problems, finding the appropriate
boundaries on the number line to separate the classes is very difficult. The output of a TGP
program does not map naturally to a multi-class classification problem in which one output
(a metaphorical ”degree of confidence“) for each class makes the most sense.

The understandability of TGP programs is already low. Consider the program in fig-
ure 2.3 (page 11). This program uses nearly every feature and the role played by each feature
(even if the output interpretation algorithm is borne in mind) is unclear. A TGP program for
a multi-class classification task is generally difficult to understand. This is because both the
program and the output interpretation algorithm need to be kept in mind and also because
the contribution of each feature to the classification of an example for each class is unclear.
Is the value of f3 important when deciding whether an example is a member of class4?
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This two-stage calculation and interpretation process also manifests itself in the results.
Ordinary TGP programs do less well on some tasks — the mean accuracy is lower and the
variance in this mean is higher [61]. Several new translations have recently been developed
in the interpretation of the single output value of the tree-based GP [29, 57, 58] with differing
strengths in addressing different types of task. While these translations have achieved better
classification performance the evolved programs are hard to interpret, particularly for more
difficult problems or problems with a large number of classes.

4.3 Linear Genetic Programming Overview

In this research register-machine LGP [1] has been used. In LGP each program is a sequence
of register machine instructions. This is typically expressed in human-readable form as C-
style code. Other variants of linear genetic programming are discussed in [20], but they are
not considered in this research.

Prior to any program being executed, the registers which it can read from or write to
are zeroed. The features representing the objects to be classified are loaded into predefined
registers. The program is executed in an imperative manner and represents a directed acyclic
graph (DAG, see figure 4.1 for a simple example). This is different from tree-based GP which
represents a tree. Any register’s value may be used in multiple instructions during the
execution of the program.

Instructions in an LGP program may also be introns - i.e. code whose execution has no
impact on the output of the program. The existence of introns can significantly improve
the evolvability of a solution by allowing good building blocks to exist non-destructively
in a distributed manner across several individuals, each of which has a small part of the
building block. A partial building block may have a negative impact on fitness. This impact
is eliminated when it is present as an intron. As with biological evolution, introns also
reduce the frequency of destructive evolutionary operations which slow the evolution of
fit individuals, as defined and discussed in [36] and [35]. After the final instruction in the
program has been executed the values of the registers are interpreted as the output.

//r[1] = r[1] / r[1];
//r[3] = cf[0] + cf[5];
//if(r[3] < 0.86539)
//r[3] = r[3] - r[1];
r[0] = 0.453012 - cf[1];
//r[3] = r[2] * cf[5];
r[1] = r[0] * 0.89811;
if(cf[6] < cf[1])
r[2] = 0.453012 - cf[3];
r[3] = cf[4] - 0.86539;

4

0.453

0.87
F F

F

F

7
42

5

0.9

* if

1C C2 C3
C

Figure 4.1: A very simple sample program evolved by LGP and a DAG representation of it.
See figure 8.1 for a larger program and a fuller discussion.

4.4 Comparing TGP Depth to LGP Length

In this research it has often been necessary to compare a TGP and LGP configuration. In
order to make this possible a heuristic which allows configurations to be made as similar as
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possible has been developed. We call this the conversion heuristic.
This heuristic relates the number of nodes allowed in a maximum-depth TGP program

to the number of instructions in a maximum-length LGP program. An LGP instruction
typically consists of one or two arguments and an operation, each of which corresponds to a
node in a TGP program tree. Hence an LGP instruction might initially seem equivalent to 3
nodes. However, considering that each TGP operation might be used by its children and/or
parents, an LGP instruction corresponds to roughly 1.5 tree nodes. Assuming each non-leaf
node has two children (or more for some functions), we can calculate the expressive capacity
of a depth-n TGP in LGP program instructions.

4.5 LGP Program Initial Generation

In this research, based on initial empirical research, the methodology was structured so that
all programs were initially generated at the full length. This was motivated by three factors.

Firstly, most final solutions in TGP and LGP are of the maximum allowed length, even
if they are initially generated at much less than this. It is hypothesised that this is because
a longer program provides more expressiveness and evolutionary ”material“ for the beam
search to work with. Whatever the cause, beginning evolution at this point short-circuits
the part of the evolutionary process in which generations are expended evolving larger pro-
grams.

Secondly, a greater length increases the probability that any one instruction is an intron.
Therefore it decreases the chance of a destructive evolutionary operation [36, 35] breaking
up a building block. This is because there are more places a crossover can occur which
do not break a building block. The number of crossover locations which will break one also
increase (as the overall average program length increases) but this number does not increase
at the same rate.

Thirdly, unlike in TGP, the chance of an entirely unproductive crossover is dramatically
minimised. Crossover is discussed in section 4.7.1. This means that the costs of crossover on
full length programs are negligible. Boosting the proportion of productive crossover is one
of the key motivations for generating programs at less than their maximum length.

4.6 LGP Output Interpretation in Multi-class Classification

An LGP program often has only one register interpreted when determining its output [37, 1].
This configuration can be easily used for regression and binary classification problems as in
TGP.

In this work, we use LGP for multi-class object classification problems. We want an LGP
program to produce one output for each class. Thus, instead of using only one register as
the output, each register used corresponds to one class. The winner-takes-all strategy is
then applied and the class represented by the register with the largest value is considered
the class of the input object by that genetic program.

This representation of each output node as one class is reflected in figure 4.1 and is very
similar to a feed forward neural network classifier [44]. However, the structure of such an
LGP program is more flexible than the architecture of the feed forward neural network.

4.7 LGP Evolutionary Operators

LGP evolutionary operators are very similar to TGP evolutionary operators. Reproduction
(described in section 2.3.4), linear crossover and two forms of mutation (micro-mutation and
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macro-mutation) [3] have been used in this research.

4.7.1 Linear Crossover

The linear crossover operator involves two parents. A random sequence of instructions in
the first parent is selected and replaced with a random sequence of instructions from the sec-
ond parent. The resulting program is the offspring. If the newly produced program is longer
than the maximum length allowed, then an instruction is randomly selected and removed
until the program can fit into the maximum length. This is similar to two-point crossover
in GAs [15], but the two sections chosen from the parents can have different lengths. An
example of linear crossover is shown in figure 4.2.

Offspring

In
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ru
ct

io
n 

D
um

p

Parent 2Parent 1

Figure 4.2: An example of an LGP crossover. This example shows how a different length
segment can be selected from each program. Lightly highlighted instructions in the first
parent are removed and replaced with the lightly highlighted instructions from the second
parent. The darkly highlighted instruction in the offspring is the one randomly selected and
culled to reduce it to the maximum allowed length of 8 instructions. In this example none of
the crossed over instructions was randomly selected for culling, although they could have
been.

4.7.2 Micro-mutation

Micro-mutation changes only either the destination register, a source register or the opera-
tion of one instruction. Note though that these operations can cause dramatic changes in the
DAG that a program represents [5].

4.7.3 Macro-mutation

Macro-mutation replaces one randomly selected instruction in a program with a randomly
generated one. The program is copied otherwise unchanged into the next generation.
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4.8 Other LGP Configuration Details

4.8.1 Fitness Function

The fitness function used in this research is discussed in more detail in chapter 5, however
all fitness functions used in this research were based on the error rate.

4.8.2 Function Set

The set of available functions for use in each operation was the standard arithmetic opera-
tors, protected when necessary, and one conditional. They are detailed in table 4.1. Sequen-
tial conditionals cascade to form a conjunction.

Table 4.1: Functions used in the LGP methodology developed.

Function Description

+ Standard arithmetical addition.
- Standard arithmetical subtraction.
* Standard arithmetical multiplication.
/ Protected division. Returns 0 on a divide-by-zero.

if< Skips the next assignment if the first argument is >= the second.

4.8.3 Terminal Set

The terminal set is dependent on the data set being evaluated. These have been discussed
in chapter 3. In addition to problem-specific terminals the ephemeral random constant, R,
was available in all terminal sets.

4.9 Chapter Summary

In this chapter the goal of developing an LGP methodology for multi-class classification
problems was addressed. A new crossover operator and a heuristic which allows an LGP
configuration using this methodology to be compared to a TGP configuration were also
developed. These developments contribute by showing how to apply the relatively new and
powerful technique of linear genetic programming [1] to multi-class classification problems.
The full scope of the impact of these contributions are analysed in chapter 8.
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Chapter 5

Fitness Functions in Multi-class
Classification

5.1 Overview

The LGP methodology developed and described in chapter 4 is extended and improved in
this chapter by addressing the goal of developing and evaluating a new fitness function
which is resistant to one of the factors that can make a multi-class classification problem
difficult.

This chapter is structured as follows. The role (or telos) of a fitness function is first anal-
ysed in a theoretical manner in section 5.2. Some definitions relevant to the fitness function
which is developed are then given in a more formal manner in section 5.3. The ways in
which a multi-class classification problem can be difficult are analysed in section 5.4. Given
this theoretical grounding a new fitness function is developed in section 5.6 and the experi-
ment used to evaluate it is described in section 5.7. The impact of this new fitness function
is discussed in section 5.8.

5.2 The Role of the Fitness Function

The function of the fitness function in any configuration of a genetic programming run
against a problem is to approximate, as closely as possible, how well any one individual
program solves the problem. Because the size of the set of fitness cases against which a pop-
ulation is trained is finite and because the set of possible fitness cases in almost all interesting
problems is infinite any individual program’s fitness on a set of fitness cases is necessarily
an approximation to an individual program’s true fitness, its actual ability to correctly solve
the problem.

Two factors which can effect the accuracy of a fitness function’s approximation to true
fitness is the degree to which the fitness cases are representative of the feature space (defined
in section 5.3.1) and any assumptions built into the fitness function. Given a (randomly
selected, statistically likely and representative) set of fitness cases these assumptions may
positively or negative bias the fitness function.

In classification problems a program’s true fitness is the proportion of the feature space it
correctly classifies, perhaps weighted by the probability of a fitness case occurring at each
point in this space. The feature space is the multi-dimensional space sketched out by the
features and their possible values that a program can use to make a classification. A fitness
function in a classification problem should serve to estimate as accurately as possible the
proportion of the feature space that any one individual program can correctly classify.
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Within the context of this report a traditional fitness function is one in which fitness de-
creases linearly as the number of misclassifications of any class increases. In other words,
the 150th misclassification of a class has just as negative an impact on fitness as the 1st —
no more and no less. The detection rate (DR), false-alarm rate (FAR) [55], true positive frac-
tion (TPF), false positive fraction (FPF), accuracy, error rate or any combination of these in a
multi-objective fitness function are traditional fitness functions [52, 57, 58].

5.3 Salient Definitions

Prior to discussing the fitness function in any further detail it is valuable to tangent briefly
and define a number of concepts and terms whose use will be necessary later in this chapter.
In these definitions, for the sake of avoiding confusion, the statistical aspect of many of them
will be sketched out in full. In discussion using the terms this wordiness will generally be
avoided for clarity’s sake. When some statistic or stochastic process is spoken of in a definite
or certain sense though it is important to remember that any consequences being referred to
are likely or probabilistic and represent some sort of average or expected outcome.

5.3.1 Feature Space

Given these caveats the feature space does not need to be defined more strongly than it
was above. Instead it is important simply to note the size of this space. If a problem uses
9 features and those 9 features are discrete and each has only 256 possible values (say we
are looking at the raw pixels of a 3 by 3 PGM image) then the possible number of different
fitness cases is 2569 = 4, 722, 366, 482, 869, 645, 213, 696 ≈ 4.7× 1021! While it is not true that
this feature space is infinite there is no way every possible fitness case can be used, and the
fitness function must be an approximation of some kind.

5.3.2 Program Space

Another important and related abstract space is the program space. This concept is analogous
to the biological concept of the fitness landscape, as discussed in [17] and [21]. Within the
context of genetic programming, each possible program (on which evolutionary operations
can be carried out) occupies some place in the program space, a very high-dimensional
space. Each position in this space therefore has a fitness associated with it.

The program space can be conceptualised in a number of ways. One approach is to view
each possible instruction as a dimension. An individual program’s position on this (discrete)
dimension is then determined by whether or not it possesses this instruction and if it does,
at what position (index) in the program. Using this conceptualisation, the 9th instruction in
the program would have a value of 9 in the dimension in the program space representing
that instruction. Another approach is instead to create a set of binary dimensions for each
pair of possible instructions and possible indexes - if a program has a particular instruction
at a particular index then its value in that specific dimension is 1. For all other dimensions
for that instruction it is 0. In both approaches each ephemeral constant (R) generated in a
population can simply be treated as another register index (and thus another dimension).

To give an example of the number of dimensions that the program space has, consider an
extremely simplified program structure. There are only two instructions in each program.
For each instruction, there are four possible operators (+, -, ×, /), and each of these uses
three registers - two arguments, one destination. Each of those three registers can be only
one of two possible registers. An example program is below:
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void VUWLGP::Program::Execute(std::vector<double>& r) const {
r[1] = r[0] + r[0];
r[0] = r[1] / r[0];

}

Using the second conceptualisation of the dimensions and given the above description
of the possible instructions we can conclude that there are 4 operators × 2 registers × 3 ar-
guments = 24 possible instructions. There are two possible positions for an instruction, and
thus 48 dimensions per instruction, or 96 in total for a program. These dimensions are not
completely orthogonal — two different instructions cannot both have the same index and
therefore some positions in some pairs of dimensions cannot both be occupied at the same
time, but this is a contingent fact and does not reduce the dimensionality of the program
space. The dimensionality of the program space in a more realistic configuration would ob-
viously be substantially larger — consider one where the maximum program length was 40,
with five possible operations (each with three arguments) and 90 or so possible registers or
constants.

The program space is obviously a complex concept. Why is it important? The answer
to this question first requires understanding what the program space actually is. This is
relatively simple - it is the landscape across which evolution takes place and in which the
evolution happens. Each point in this landscape represents a mapping of classes to spaces
in the feature space. Hence each point in the program space has a fitness (a height) and the
program space is in fact a meta-feature map. Individual members of the population climb as
a result of evolutionary operations in this program space. The nature of the program space
and the way levels of fitness are distributed across it obviously affects the difficulty of the
problem a configuration is tasked with, and for that reason the program space is important.

5.3.3 Monotonic Program Space

Thirdly I would like to define what it means for a program space to be a monotonic program
space. A monotonic program space is one in which (it is statistically probable that) the rela-
tionship between the fitness of any two individuals will also exist in their offspring. Thus, if
one is fitter than the other, we would statistically expect the offspring to (on average) retain
this difference in fitness. While the highly probable increase in both average and best fitness
from generation-to-generation, towards perfect fitness, means that the relationship will not
be linear or even proportional (asymptotically hyperbolic perhaps?) for a program space to
be monotonic this relationship, in whatever form it takes, must exist. For example, if two
offspring are more likely to have the fitness of the others’ parent(s) than their own parent(s)
the space is decidedly non-monotonic!

5.3.4 Average Evolutionary Operation

Fourthly and finally I’d like to define the average evolutionary operation. This will not be
defined precisely and mathematically (although it could be) as this is not necessary in the
way I will be using it. For any given program in some population there are a finite number of
possible evolutionary operations which change some of the instructions in that program. All
of the other possible positions (programs) in the program space thus have some probability
of being the ”destination“ of an evolutionary operation. An average operation is roughly
analogous to the expected (or average, or probabilistic) distance in the program space the
offspring will be from the parent(s) as a result of an evolutionary operation.
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5.4 What Makes A Problem Difficult

A multiclass classification problem can be difficult in at least three ways.

5.4.1 The First Difficulty

Firstly, a problem may be difficult because at some particular point(s) within its feature
space members of multiple classes may exist. At such points no individual program can
successfully discriminate between members of the different classes which occur there, and
thus no individual program can have perfect true fitness, in the form of a 100% accuracy
rate.

The claim that for some problems 100% fitness is an impossibility has seemed overly
strong to some people, and so I’d now like to take some time just to sketch out more fully
why this is the case. There are three causal reasons objects from different classes can exist at
the same point in the feature space. The reason the existence of multiple classes at the same
point in the feature space precludes the evolution of perfect accuracy I take to be obvious.

The first cause of this first difficulty is that it may be the case that manifestly different fit-
ness cases in fact have identical features. Consider the artificial and manufactured example
of a four-class problem in figure 5.1. If only one feature is used and that feature is the mean
brightness of the entire object then there is no way to distinguish between a member of class
1, class 2, class 3 and class 4.

class 4class 1 class 2 class 3

Figure 5.1: An example of a four class classification task, vulnerable to the first problem.

Secondly, it may also be the case that for some problems all information — or, more re-
alistically, all knowable information — is simply insufficient to discriminate between mem-
bers of different classes. The stereotypical binary-class ”bank manager“ problem is a good
example of this: barring exceptional fortune and without appealing to the impractical and
impossible philosopher’s super-physicist there is simply no way a bank manager can decide
with 100% reliability whether or not to loan somebody money. They will make mistakes and
loans they approved will be defaulted on, just as they will refuse to loan money to people
who it turns out would have been able to repay them.

object 1 object 2

Figure 5.2: Two objects in class 8.

Thirdly, if examples which need to be classified are strongly corrupted by noise, relative
to the degree of difference between members of the class, then the classes will simply begin
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to ”blur“ together. Consider the two example digits given in figure 5.2. Each digit in this
figure is a member of the class ”8“ from the digits15 problem. Notice how object 1 looks
exactly like a ”0“, and how object 2 looks a lot like a noise-free ”6“. Despite this, both
are in fact still members of class ”8“ and should be considered a member of this class by the
evolutionary process. For a more complete discussion of this topic I strongly refer the reader
to [9].

Of these, the first and third cause of this difficulty — the selection of an imperfect feature
space and noise — are far more common. However, this does not mean that the problem of
noise or of having many classes map to one point in the feature space can be trivially avoided
simply by selecting the feature set carefully or by somehow reducing noise. Noise is, by
definition, entropy and cannot be programmatically reduced. Similarly, predicting what
kinds of values members of each class will have in advance is not trivial, except for overly
simple examples where multiple deliberately overlapping features are used. If the kinds
of values members of each class might have for each of the features cannot be predicted
though then this cause of a many-to-one mapping of classes to points in the feature must be
considered.

5.4.2 The Second Difficulty

Secondly, a problem can be difficult because the feature space is huge, with many dimen-
sions, or because there are a large number of classes which any one fitness case might be a
member of. This problem, in both of its forms, occurred in the digits data sets.

5.4.3 The Third Difficulty

Thirdly, a program space can be difficult to learn in if it is strongly non-monotonic. This
leads to what is called the hurdle problem, due to the way it manifests itself: if a generation-
by-generation log of best and average individual fitness is reviewed in a run in which the
non-monotonicity of the program space is an issue the best program’s fitness will appear to
hit some level of fitness from which it will not improve for several generations. However
during this time the average fitness will continue to improve. In essence, the population is
stalled against a barrier level of fitness which it is more difficult to improve beyond than
other levels of fitness. Indeed, once the barrier is broken improvement is almost always
exceptionally rapid.

While the details of the hurdle problem will be discussed below it’s valuable to note here
the similarities of the hurdle problem to the problem of local peaks or minima when a hill
climbing or gradient descent algorithm is being used (e.g. the back propagation algorithm
[45]). It is similar in three important ways. Firstly, the extent to which non-monotonicity is a
problem in any particular run is highly contingent on the initial random generation of pro-
grams and the random selection of evolutionary operations. Due to this it manifests itself
as a meta-element of the results and is not explicitly visible in the results of any one run —
instead, due to the delay in jumping the hurdle, a GP configuration may simply look like it
is unsuitable for that problem. Secondly, some problems are less monotonic (and thus more
problematic) than others. Thirdly, while it is less irrevocable for GP than it is for hill climb-
ing, the hurdle is sometimes contingently un-jumpable and a population of programs may
be permanently trapped at what is precisely analogous to a local peak. Evolution will then
be terminated only when the maximum number of generations has elapsed. Ascertaining
exactly what, if any, differences exist between the hurdle problem and the problems posed
by local peaks or minima requires further research.
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5.5 What Causes The Hurdle Problem

The hurdle problem occurs in a program space which forms a jagged or discontinuous sur-
face and is structured in such a way that an easily found local peak exists from which no (or
very few) average evolutionary operations will result in the offspring’s fitness being better
than their parents. This is a non-monotonic feature space. In this situation an increasing
proportion of the population will tend to become trapped at this peak. It is only through
a fortuitous and exceptional evolutionary operation that an offspring can escape the peak.
Due to the shape of the program space, selection will tend to draw lineages of programs
and their offspring not at the peak towards it. Just as genetic programming is analogous
to explicitly hill climbing algorithms in some ways (as described above, in section 5.4.3),
it is important not to forget that genetic programming is also analogous to simulated an-
nealing [30] in other ways. Like simulated annealing it is a form of implicit hill climbing
(through the selection pressure the fitness function exerts) and — like simulated annealing
— stochastic processes reduce the probability of an entire population being trapped by local
peaks.

The conditions which can lead to such a program space being a jagged or discontinuous
(and thus non-monotonic) surface are complex and this is one area further research needs
to be carried out. Despite this lack of knowledge the fact that it occurs most frequently
in any configuration which addresses the shape data set allows a number of preliminary
conclusions to be drawn.

The shape data set was designed to be as difficult a dataset as it could possibly be without
being difficult due to blurriness or an overly large feature space. Instead it was designed to
be difficult due to classes having complex boundaries in the feature space. This means that
it is very difficult for an evolved program to distinguish any one fitness case as belonging to
a single class based on only one feature - at least two are needed. For example, consider the
feature vectors given in figure 5.3 for each class in shape.

cf[0] cf[1] cf[2] cf[3] cf[4] cf[5] cf[6] cf[7]
----------------------------------------------------------------------
Obj1 (class1): 0.2720 0.3139 0.2748 0.2905 0.2087 0.1063 0.4658 0.2174
Obj2 (class2): 0.6425 0.6253 0.6469 0.6394 0.6583 0.7013 0.1743 0.0912
Obj3 (class3): 0.2727 0.2968 0.2865 0.2750 0.2325 0.2227 0.2296 0.1043
Obj4 (class4): 0.8124 0.7730 0.8057 0.8137 0.8571 0.8568 0.2296 0.1049

Figure 5.3: Example feature vectors for each class in the shape data set. The cf registers
contains the 8 features described in section 3.1 in registers cf[0] to cf[7].

These classes form (in the feature space) spaces with complex boundaries. Figure 5.4 il-
lustrates a simplified two-dimensional feature space situation analogous to one in which the
hurdle problem could occur. Note that because of the figure’s low-dimensional simplicity I
am not convinced the actual feature space shown is sufficiently non-monotonic for the hur-
dle problem to ever be a noticeable problem, however the situation would be different if it
were a five- or six-dimensional space (one obviously not representable in two-dimensional
form) and just as jagged.

In the situation shown in figure 5.4 class 1 and class 2 represent the two sets of fitness
cases between which the hurdle problem occurs. In the example shown there are only two
sets and they constitute all fitness cases. The hurdle problem could occur if there were more
than two sets of fitness cases and these sets could also be a sub-set of the set of all training
fitness cases, but for explanatory simplicity it has been illustrated this way.

Correctly classifying members of more than one of the sets (in this case, both sets) is dif-
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Class 1

f2

f1

Class 2

Figure 5.4: An example of the hurdle problem. This diagram shows the feature space and
the set of fitness cases that a program is evolved against. Regions represent where members
of class 1 and class2 can be found. +’s are fitness cases in class 1 and 2’s are fitness cases
in class 2. In this hypothetical example it is assumed that objects are more likely to occur
near the boundary between the classes and that the set of fitness cases shown is therefore
representative.

ficult because it is difficult for any evolutionary operation to accurately model the boundary
in true fitness space (described by the zig-zagging line). Instead almost all evolutionary
operations (and therefore the average evolutionary operation) will simply move a much
simpler line, one with two or three segments to it perhaps, around a bit — adding another
segment here or there and shifting it slightly to the left or slightly to the right.

Because this boundary is so difficult to learn the easiest hill for any individual program
to climb will be the the hill which leads to it correctly classifying 100% of one class and
(because this is such a simple example) perhaps 1 or 2 of the other class. Once this situation
has occurred the boundary between the classes must be accurately learnt and, as discussed
above, this is a very difficult task. It is likely that all attempts to achieve this will result
in the offspring having worse fitness than their parent(s) and while the best individual’s
fitness will not get any worse (due to elitism) it also will not improve until an exceptionally
un-average evolutionary operation takes place. A related cause of the hurdle problem with
similar characteristics is a patchy feature space, illustrated in figure 5.5.

c1

f2

f1

c1

c1
c1

c1

c1

Figure 5.5: A patchy feature space for a three class problem. This diagram shows the feature
space and contiguous regions that members of a class can be found in. Only regions in which
members of class c1 are found have been marked. Other classes have been left unmarked
for clarity.

Let us now summarise the causes and impact of the hurdle problem. It is caused by
a strongly non-monotonic program space. Such a program space is probably (but not cer-
tainly) caused by a jagged (diagrammed in figure 5.4) or discontinuous (i.e. patchy) feature
space (diagrammed in figure 5.5). In such a situation a traditional fitness function will not
accurately estimate the proportion of the feature space correctly classified. This inaccurate
relationship between the value given by the fitness function and an individual’s true fitness
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leads to inefficient evolution. There is strong selection pressure against crossing the hur-
dle as most evolutionary operations which begin the crossing lower an individuals overall
fitness, and the hurdle thus represents something analogous to a local peak in hill climb-
ing, escapable only because of the stochastic nature of genetic programming. The impact
of this on the fitness of the best individual in a run of a genetic programming configuration
against a problem is visible in a generation-by-generation log of fitness, as some level of
fitness at which improvement stalls at for several generations. Consequently, mean training
time is lengthened and mean accuracy is decreased. Mean variation in training time may
be decreased (if the hurdle is particularly high) or increased (if it is often, but not always,
jumped).

5.6 Addressing the Hurdle Problem — New Decay Curve Fitness

Function

The hurdle problem can be addressed by assuming that an individual which correctly classi-
fies objects from more classes is fitter than an individual which correctly classifies the same
number or slightly more individuals but from fewer classes. This assumption is manifested
by penalising proportionally more strongly later misclassifications of the same class than
earlier misclassifications. The first misclassification of a class might attract a penalty of 0.5
and the second might attract a penalty of 1.0. Thus the program diagrammed in figure 5.6(b)
will attract a penalty of 1.5. The program diagrammed in figure 5.6(c) will only have a sum
penalty of 0.5 + 0.5 = 1.0 and thus has a better fitness. This is appropriate as it also more
accurately models the feature space. From generation to generation the population’s ability
to ”jump the hurdle“ and accurately model the feature space will grow as programs like (c)
are preferentially selected.

c2

f2

f1

f2

f1

(b) (c)(a)

f2

f1
c1

c3

c2
c1

c3

c2
c1

c3

Figure 5.6: Another example of the hurdle problem. Each diagram shows the feature space
and the set of fitness cases that a program is evolved against. The regions marked in (a)
show the true regions. The regions marked in (b) and (c) show how two individuals classify
the feature space. Incorrect classifications in (b) and (c) are represented by filled boxes. If a
traditional fitness function is used then (c) is not preferred to (b) despite classifying more of
the feature space correctly and therefore having a higher true fitness than (b).

It is theoretically true that in some situations an individual which misclassifies two mem-
bers of class c2 will have a better true fitness than an individual which misclassifies one from
c1 and one from c3. However, if a good distribution of fitness cases is used it is only in ex-
tremely rare situations that this is the case. Hence the decay curve fitness function (to be
described below) will more accurately measure how well an individual program classifies
the feature space almost all of the time.

Note though that we cannot just reduce the penalty of the first n misclassifications of
a class, or increase the penalty of the last k misclassifications. Such an approach does not
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remove the hurdle problem - it simply moves it, to the k + 1’th or n + 1’th member of each
class. Thus we introduced a new fitness function, fdecay, with an increasing penalty for each
of the Mc misclassifications of some class c. An individual program’s fitness in a task with
N fitness cases can be calculated as described by equation 5.1.

fdecay =
∑

c

Mc
∑

i=0

αβi/N (5.1)

The values of α and β can be determined through empirical search. Larger values are
generally better, although this depends on the extent to which classes are similar. The fdecay

presented and discussed above is the function used in this paper and is an error rate-based
decay curve fitness function. Any other function which has this increasing penalty will also
probably avoid the hurdle problem.

Obviously as α approaches 1 fdecay becomes more and more like a traditional fitness
functions. Similarly as β approaches 0 the curve becomes progressively flatter and the fit-
ness function becomes more traditional. Old fitness functions have α = 1 and β = 0. Fitness
functions with values of α smaller than 1 or with values of β smaller than 0 are either math-
ematically nonsensical or exacerbate the hurdle problem by creating a line which slopes the
wrong way.

Finally, as discussed above, the hurdle problem almost always occurs at the boundary
between two classes. Generally all fitness cases for all but one class can be correctly classified
relatively easily. For this final class no fitness cases are correctly classified. In situations in
which the feature space is patchy (for example, figure 5.5) some but not all of the fitness
cases for that class may be correctly classified, resulting in an intra-class hurdle. Due to the
exponential nature of fdecay an intra-class hurdle is as easily jumped as an inter-class one.

5.7 Experimental Design

To investigate whether the new fitness function is helpful in addressing the hurdle problem
the shape data set was used and the performance of the new and old fitness function (error
rate) has been compared.

5.7.1 LGP Configuration

In these experiments a reduced maximum program size has been used for LGP, with the
maximum number of instructions reduced to 10 (the standard maximum length for this
problem, based on the heuristic developed in chapter 6, is 16). This emphasises the impact
of the hurdle problem.

By applying the LGP-to-TGP conversion heuristic (section 4.4) we see that the appropri-
ate depth range for a TGP program compared to a length-16 LGP program is 3–5. While
it is reasonable to reduce this depth to 2–4 (in the same way we have reduced the depth
of the LGP program to maximise the occurrence of the hurdle problem) this has not been
done. This is because the TGP configuration of depth 3–5 is shallow enough, relative to the
difficulty of the problem, that the hurdle problem is already a significant factor.

The other parameters for TGP and LGP are presented in table 5.1. The two fitness func-
tions used were the error rate, a traditional fitness function, and fdecay, described in sec-
tion 5.6.

39



Table 5.1: The LGP configuration for the fitness function experiments.

LGP TGP

pop size 500 500
base program size 16 3–5
elitism rate 10% 10%
crossover rate 30% 30%
macromutation rate 30% 30%
micromutation rate 30% 30%
tournament size 4 4
α 1.15 1.15
β 0.18 0.18

5.8 Results and Discussion

The mean and standard deviations of 50 runs of the LGP and TGP configurations against
the shape data set are presented in table 5.2.

Table 5.2: A comparison of the two fitness functions on the shape data set.

Method Fitness Function Training Accuracy Test Accuracy
(µ ± σ) (µ ± σ)

TGP old 77.31% ± 6.74% 77.14% ± 6.68%
new 85.04% ± 16.49% 84.41% ± 17.17%

LGP old 98.90% ± 4.98% 98.76% ± 5.04%
new 99.97% ± 0.11% 99.60% ± 0.25%

For the TGP configuration the new fitness function led to a very significant improvement
on both the training set and the test set. For the LGP method, the classification accuracy was
also improved using the new fitness function, but the improvement was not as significant as
for the TGP method. This was mainly because the LGP method with the traditional fitness
function already performed quite well (test accuracy of 98.76%) due to the strength of LGP
on this problem.

Further inspection of the results using the TGP method on the shape data set shows that
only 6 of the 50 runs using the traditional fitness function had a test or training accuracy
greater than 75%. When those 6 runs are excluded the µ and σ becomes 74.95% ± 0.0019%
on the training set and 74.86% ± 0.0024% on the test set. These figures indicate how solid
the hurdle actually is in situations where the problem is at the limit of a GP configuration’s
expressiveness. By using the new decay curve fitness function 36 of the 50 TGP runs finished
with test and training accuracies greater than 75%

5.9 Chapter Summary

In this chapter the goal of developing a fitness function which gives better performance on
hard multi-class classification problems has been achieved. Along with the detailed analysis
of the role played by the fitness function in LGP and TGP this contribution greatly strength-
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ens the methodology developed in chapter 4. The importance of carefully analysing a prob-
lem when selecting a fitness function has also been highlighted.
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Chapter 6

Program Length and Extra Registers

6.1 Overview

In this chapter the results of two experiments are presented and discussed. Both experi-
ments concern important aspects regarding the configuration of LGP for multi-class classi-
fication problems. These experiments address the third goal given in section 1.2 and serve
to further extend the LGP methodology developed in chapters 4 and 5.

In the first experiment the relationship between the difficulty of a multi-class classifica-
tion problem and the program length needed for a solution to be reliably and quickly found
was investigated. In the second experiment the value of extra registers not involved in the
interpretation of the output was investigated. Prior to discussing each experiment the data
sets used in both experiments and the common aspects of the configuration is described.

6.2 Data Sets

The shape, digits15 and faces1 data sets were used in these experiments. These data sets span
a range of difficulties.

The shape data set was selected to provide an indication of how well the various con-
figurations tested performed on a relatively easy four-class classification task. In addition
the effect of the various configurations on the hurdle problem (in the mean and especially
the standard deviation of the test and training accuracy) have also been investigated. The
impact of the hurdle problem is discussed more fully in chapter 5.

digits15 is a mid-difficulty ten-class classification task in which a reasonably high degree
of accuracy can be obtained. One of the key contributors to the difficulty of this data set is
the size of the feature space (defined in section 5.3.1). In the other two data sets this factor is
not an important contributor to difficulty.

faces1 is a five-class classification task which has a high level of difficulty. Of the three
data sets it is also the most representative of a typical multi-class classification problem: it
has a reasonable number of features and the hurdle problem is not a major issue. The task is
difficult primarily because any given member of one class is often more similar to members
of another class than members to of its own class (assuming nearness in the feature space is
measured in a Euclidean manner).

6.3 Common Configuration

In this experiment the decay curve fitness function fdecay was used. This fitness function is
described in chapter 5. All other details of the configuration are provided in table 6.1.
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Table 6.1: The LGP configuration for the registers and length experiments.

shape digits15 faces1

pop size 500 500 500
base program length 16 40 20
base num registers 4 10 5
elitism rate 10% 10% 10%
crossover rate 30% 30% 30%
macromutation rate 30% 30% 30%
micromutation rate 30% 30% 30%
tournament size 4 4 4
α 1.20 1.15 1.15
β 0.24 0.18 0.18

6.4 Registers Experiment

6.4.1 Motivation

Koza [23] originally put forward the idea of improving the understandability and perfor-
mance of evolved programs through the use of automatically defined functions (ADFs).

When using ADFs, TGP programs are changed to take the form of a forest of trees. One
of these trees (typically the last) is defined as the output of the program. All of the other
trees represent automatically defined functions and can be used (as terminals or functions)
in later trees or the output tree. Koza suggested [23] that this approach would make more
likely the evolution of subsumption architectures with better performance and more easily
comprehensible structure. As a result he recommended that 2–3 ADFs be used.

One way of applying this approach to LGP is to increase the number of registers beyond
those interpreted as part of the output. Assignments to these registers can never directly
contribute to the accuracy of an object’s classification. Instead, they can serve as building
blocks which can be used in the calculation of the final value of multiple registers, each of
which represents one class. While this process can take place to a limited extent even with
no extra registers (if the final value of a register for one class is used as part of an operation
for another, or if a register is used in this manner prior to it being used to calculate the final
value for the class it represents) this is unlikely. Instead the typical program calculates each
output register largely independently of the others. This experiment evaluates the value of
extra registers which allow interdependent calculation of final register values more easily.

6.4.2 Configuration

Each data set has a certain number of classes. Between 1 and 10 extra registers not used
in the interpretation of a program’s output were evaluated. The results of a run in which
no extra registers were available have also been provided for comparative purposes. All
other configuration parameters were as provided above in section 6.3 and table 6.1. Each
experiment was run 50 times and the mean and standard deviation of the results are given
in the next sub-section.
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6.4.3 Results and Discussion

The results for the shape, digits15 and faces1 data set have been presented in tables 6.2, 6.3 and
6.4, respectively. The mean and standard deviation of the number of generations needed for
the shape data set has also been included. All runs on digits15 and faces1 used 50 generations.

Table 6.2: The impact of extra registers on the shape data set.

Extra Registers Generations (µ ± σ) Training Acc. % (µ ± σ) Test Acc. % (µ ± σ)

0 18.28 ± 11.80 99.90% ± 0.68% 99.84% ± 0.80%

1 20.02 ± 11.17 99.69% ± 1.75% 99.65% ± 1.74%
2 23.22 ± 13.47 98.79% ± 5.70% 98.68% ± 6.09%
3 22.62 ± 13.07 99.28% ± 3.62% 99.31% ± 3.56%
4 25.22 ± 12.15 99.38% ± 4.06% 99.29% ± 4.10%
5 26.54 ± 14.15 98.15% ± 6.07% 98.14% ± 6.05%
6 22.24 ± 12.89 99.47% ± 2.46% 99.36% ± 2.66%
7 31.44 ± 14.42 96.98% ± 8.71% 96.98% ± 8.66%
8 23.96 ± 13.41 98.92% ± 4.95% 98.89% ± 4.94%
9 21.64 ± 14.35 98.05% ± 6.22% 97.97% ± 6.32%

10 36.48 ± 13.68 95.61% ± 9.09% 95.42% ± 9.37%

Table 6.3: The impact of extra registers on the digits15 data set.

Extra Registers Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

0 66.26% ± 4.62% 62.07% ± 5.81%

1 65.89% ± 3.87% 61.58% ± 4.27%
2 64.97% ± 4.51% 61.39% ± 5.54%
3 66.38% ± 4.39% 61.68% ± 5.75%
4 66.45% ± 4.19% 62.37% ± 4.52%
5 65.61% ± 4.29% 61.36% ± 5.49%
6 66.52% ± 3.89% 63.04% ± 3.98%
7 66.38% ± 4.24% 63.06% ± 4.54%
8 64.96% ± 4.69% 60.24% ± 5.52%
9 64.94% ± 4.20% 60.92% ± 5.50%

10 66.29% ± 4.01% 62.34% ± 5.18%

The results from the shape data set show a clearly and dramatically increasing learning
time for this task as the number of extra registers is increased. In addition, the mean test
and training accuracy decreased and the variation increased. For the shape data set, extra
registers show no value.

Similar results can be observed for the faces1 task. All runs used the maximum 50 gen-
erations (because no run achieved perfect fitness on the training set) and so the difference
in learning time can not be directly observed. Despite this, the negative impact of the extra
registers is clearly visible in the steadily decreasing mean accuracy on the test and training
set. It is hypothesised that this problem occurred for both shape and faces1 because of the
relative increase in the size of the program space. A run against the faces1 problem with 15
registers involves a program space (section 5.3.2) at least three times as large as a run against
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Table 6.4: The impact of extra registers on the faces1 data set.

Extra Registers Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

0 57.34% ± 5.03% 50.85% ± 9.35%

1 55.23% ± 5.61% 49.30% ± 10.19%
2 53.40% ± 5.30% 49.14% ± 10.48%
3 52.69% ± 5.60% 48.00% ± 9.96%
4 53.73% ± 5.62% 48.54% ± 9.84%
5 54.79% ± 5.72% 48.32% ± 11.66%
6 53.31% ± 5.62% 47.14% ± 10.19%
7 54.09% ± 4.91% 47.78% ± 10.84%
8 52.28% ± 5.31% 45.51% ± 10.52%
9 52.50% ± 5.14% 45.41% ± 10.74%

10 53.36% ± 4.65% 45.14% ± 9.77%

it using only 5 registers.

The results for digits15 are different. The mean results of the runs with 6, 7 and 10 extra
registers seem to buck a relatively clear trend, however this trend does not show the de-
creasing performance visible in the results for faces1 and shape. Instead performance seems
relatively constant regardless of the number of extra registers. No firm conclusions as to the
reasons for this anomaly have been drawn.

Across the three data sets, inspection of the resulting programs reveals that the extra
registers are rarely used. This seems to indicate that no, or at most one or two, extra registers
is the ideal configuration. Along with the research carried out in [33], this suggests that
Koza’s claims regarding the utility of ADFs may be more limited than initially thought.

Rather than increasing the number of registers, one alternative implementation of ADFs
in LGP would be to implement them as they are in TGP, by having multiple programs with
earlier programs becoming features or functions for later programs. However this approach
would multiplicatively increase the run time and would seem to bring little benefit. This is
because TGP ADFs give it a DAG-like nature, allow sub-programs to be reused and increase
the understandability of the final program. All of these aspects are already present to the
same extent in basic LGP.

6.5 Length Experiment

6.5.1 Motivation

Although no strongly consistent conclusions have been reached for TGP, research into the
necessary and useful depth of tree which leads to solutions being found for a variety of
problems has been conducted [23, 1]. This research suggests that the initial minimum and
maximum depths of the programs be in the range 3–15, depending on problem difficulty. If
early results are poor then increasing these values by three or four is recommended.

Similar research has unfortunately not been carried out for LGP and hence this problem
has been briefly investigated (in the context of multi-class classification) in this research and
the results presented here.
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6.5.2 Configuration

All experiments were run with 0 extra registers. Excluding the maximum allowed program
length, which varied as shown in the results tables (tables 6.5, 6.6 and 6.7) all other configu-
ration parameters were as provided above in section 6.3.

Program length was varied relative to the number of classes, and ranged from one fewer
instructions than there were classes to 10 times as many instructions as there were classes.
One fewer instructions can be used because the register not assigned to will have the value
of 0 and would be the largest if all the other registers were assigned negative values. The
entry in each table corresponding to the number of classes has been highlighted to facilitate
reading. Each experiment was run 50 times and the mean and standard deviation of the
results are given in the next sub-section.

6.5.3 Results and Discussion

Results for the three data sets (shape, digits15 and faces1) are presented in tables 6.5, 6.6 and
6.7. As with the register experiments the mean and standard deviation of the generations
used in evolution is presented only for shape as all runs on digits15 and faces1 used 50 gener-
ations.

Table 6.5: The impact of program length on the shape data set.

Program Length Generations (µ ± σ) Training Acc. % (µ ± σ) Test Acc. % (µ ± σ)

3 36.26 ± 16.32 89.55% ± 11.62% 89.46% ± 11.76%

4 41.26 ± 14.04 88.76% ± 11.83% 88.89% ± 11.64%

5 26.02 ± 14.51 98.15% ± 5.85% 98.16% ± 5.83%
6 25.70 ± 14.96 97.51% ± 6.27% 97.33% ± 6.42%
8 24.24 ± 14.63 98.13% ± 6.14% 97.98% ± 6.33%
10 26.26 ± 14.33 98.87% ± 5.14% 98.85% ± 5.20%
12 23.52 ± 13.80 98.96% ± 4.24% 98.98% ± 4.14%
16 24.10 ± 13.85 99.80% ± 0.79% 99.73% ± 0.96%
20 23.30 ± 13.81 99.61% ± 2.50% 99.55% ± 2.61%
25 19.72 ± 12.23 99.33% ± 3.71% 99.31% ± 3.63%
30 21.78 ± 13.00 99.71% ± 1.19% 99.67% ± 1.30%
40 19.46 ± 11.56 99.49% ± 3.53% 99.42% ± 3.53%

The results for faces1 and shape indicate that increasing length generally leads to increas-
ing performance, although the high degree of variance in the results make this trend a noisy
one. Despite this, for both data sets, improvements in performance seem to tail off once
there are roughly 3.5–4 times as many registers as classes. This suggests that the maximum
allowed program length should be 3.5–4 times the number of classes. Call this heuristic the
class-length heuristic. This heuristic is an important and significant result because the shape
and faces1 data sets are of very different degrees of difficulty. This therefore seems to indi-
cate that the program length is at least somewhat independent of the problem difficulty for
LGP classification of multi-class problems. If this is the case this is an important strength of
LGP in multi-class classification problems.

As in the previous experiment (section 6.4) digits15 has produced somewhat exceptional
results. Again, no clear explanation of these results emerges: it seems surprising that the
best results in a problem with 10 classes and 49 features were consistently achieved when
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Table 6.6: The impact of program length on the digits15 data set.

Program Length Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

9 64.44% ± 3.76% 60.51% ± 5.35%

10 65.82% ± 3.89% 61.28% ± 5.29%

11 67.23% ± 4.08% 63.21% ± 4.34%
12 66.49% ± 4.71% 63.20% ± 5.05%
14 66.62% ± 3.38% 63.28% ± 5.20%
16 65.88% ± 4.00% 62.09% ± 4.95%
20 66.72% ± 3.67% 62.30% ± 4.42%
30 66.78% ± 3.61% 63.11% ± 4.53%
40 66.26% ± 4.62% 62.07% ± 5.81%
55 65.10% ± 3.45% 61.10% ± 4.36%
70 63.53% ± 4.58% 59.50% ± 5.20%
85 63.40% ± 4.14% 59.46% ± 4.81%

100 63.34% ± 5.01% 59.50% ± 5.55%

Table 6.7: The impact of program length on the faces1 data set.

Program Length Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

4 48.63% ± 5.17% 43.30% ± 9.32%

5 51.49% ± 5.28% 44.43% ± 9.30%

6 51.53% ± 5.73% 46.32% ± 10.05%
8 53.78% ± 5.25% 48.49% ± 9.85%

10 54.49% ± 6.57% 47.78% ± 10.72%
12 54.94% ± 5.18% 48.05% ± 8.57%
15 55.36% ± 5.72% 50.22% ± 9.54%
20 57.34% ± 5.03% 50.85% ± 9.35%
25 55.21% ± 5.11% 49.14% ± 10.21%
30 56.13% ± 5.48% 50.00% ± 12.16%
40 55.49% ± 6.17% 48.43% ± 10.92%
50 54.90% ± 6.18% 48.59% ± 9.32%

there were only roughly as many instructions as classes, and therefore when the register for
each class would only be assigned to once or at most twice. No good explanation for these
unusual results has been found, although it is strongly suspected that the feature set (the 49
binary pixels) is a contributing factor.

6.6 Chapter Summary

In this chapter the LGP methodology for multi-class classification developed in chapters 4
and 5 was analysed. The goal of analysing the relationship between good program length
and the number of classes in a problem has been achieved, and the value of extra registers
has also been considered. Important heuristics which guide the development of the initial
configuration for a multi-class classification problem have been developed. Because these
heuristics provide initial guidance on what kinds of configuration will work well for a par-
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ticular problem they are a key contribution in the use of LGP for multi-class classification
problems.
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Chapter 7

Hill Climbing in Linear Genetic
Programming

7.1 Overview

Hill climbing is a kind of machine learning iteration, discussed in section 2.1.4 of chapter 2.
In this chapter the fourth goal described in section 1.2 is addressed. An algorithm which
combines hill climbing and an evolutionary beam search is developed and its effect on per-
formance is analysed.

The structure of this chapter is as follows. The motivations for combining the evolution-
ary beam search and hill climbing are discussed first in section 7.2. In section 7.3 the hill
climbing algorithm which was created is described and the way in which the hill climbing
and evolutionary beam search are integrated is justified. The experimental design used to
evaluate this algorithm is discussed in section 7.4 and the effect of integrating hill climbing
and the LGP evolutionary beam search are presented and discussed in section 7.5.

7.2 Hill Climbing - Motivations

In LGP multi-class classification problems the landscape evolution and hill climbing can
happen on is the program space, as discussed in section 5.3.2. Hill climbing and the beam
search of evolutionary computing have different advantages and disadvantages. Hill climb-
ing provides some guarantee of local optimisation. This local optimisation can be a global
optimisation in a sufficiently simple space. Evolutionary approaches, such as linear genetic
programming, can not take advantage of this form of reinforcement learning [51] but are
much less likely to become trapped at a local maxima, for two reasons. Firstly, a popula-
tion of programs is used and it is therefore highly likely that at least one individual will
not become trapped in this way, except in limited circumstances (see section 5.4.3). Sec-
ondly, the stochastic nature of the search in evolutionary computing means that short-term
sub-optimal changes to a lineage of individuals can occur (although with reduced chance of
persistence from generation-to-generation). Therefore, even if a lineage of programs does
become trapped at a local maxima it can escape.

The motivation for seeking to combine hill climbing and linear genetic programming is
to investigate the ways in which the strengths of the two approaches can be combined. Past
work [48, 60] has successfully applied hill climbing (gradient descent) to TGP and achieved
improvements, indicating that this combination may be possible. This research assumes that
the degree to which a task is successfully addressed can be measured on some real scale in
a continuous and scalar manner.
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When neural networks — a key example of a successful application of gradient descent
— are considered two important similarities with LGP can be noted. The underlying repre-
sentation of both methods is a DAG, and the interpretation of their output in a multi-class
classification (winner-takes-all) is the same. It is hoped that hill climbing will augment the
evolutionary beam search, enabling the final solution to be fine tuned and locally optimised
in the program space. We expect this to improve the accuracy (fitness) of the best individu-
als.

7.3 LGP Hill Climbing Algorithm

7.3.1 New Program Structure

So that hill climbing can be performed more easily the program structure has been modified.
Each instruction now has a weight associated with it. These weights are initialised to some
random value between −1.0 and 1.0 but the hill climbing algorithm can adjust them to any
value. The results of an operation are multiplied by this weight prior to being assigned
to the destination register. When the LGP instructions are converted to human-readable
C-style code they now have the form:

r[d] = (r[s1] + r[s2]) * w;

Where + can be any function in the function set.

7.3.2 Weight Adjustment Algorithm

This hill climbing algorithm is applied as directly as possible to the program space. Thus
it is the instructions themselves (i.e. entities which define part of a program’s position in
the program space) which have weights and on which hill climbing is performed. A simple
example program, converted to human-readable C++, will illustrate this most clearly:

void VUWLGP::Program::Execute(std::vector<double>& r) const {
r[0] = (r[1] + cf2[1]) * 0.6783 // instr1
r[2] = (0.8734 + 0.1925) * 0.9821 // instr2
r[0] = (r[1] * 0.8734) * 0.3689; // instr3
if(r[0] < r[2]) // instr4
r[1] = (r[2] - r[2]) * 0.0836; // instr5

}

The floating point value which trails the first, second, third and fifth instructions is the
weight, wi, on which hill climbing is performed. In this algorithm the idea of applying a
weight to an if< instruction is meaningless. How conditional statements are incorporated
into this algorithm will be discussed below.

Figure 7.1 shows how the example LGP program above can be represented as a DAG
of instructions. This graph illustrates a number of important elements implicit in the hill
climbing algorithm (described below) but which might otherwise go unnoticed. Because of
this, a less formal description of the algorithm and these elements will be given first.

• instr1 is a structural intron, and so it is not present in the graph. instr5 could be
a semantic intron, but this cannot be discovered efficiently through static analysis and
so it is included in the graph. However if it turns out to be a semantic intron the
algorithm will not adjust its weight.
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Figure 7.1: A DAG of program instructions and their links, built from the relatively simple
program described above.

A structural intron is an instruction which can never have an impact on the final out-
put, because the value it calculates is overwritten by another instruction before that
value can contribute to the final output of the program in any way. [2] provides an al-
gorithm which can be used to find these instructions in O(l) time, where l is the length
of the program.

A semantic intron is an instruction following a conditional which is never executed
because the conditional is never true. Determining whether or not a particular condi-
tional will ever be true depends on the possible values of the features involved and
the calculations performed on them prior to the conditional being reached. [2] notes
that semantic introns may not be completely detectable.

• The graph is comprised of links between instructions. A link is added to this graph
whenever the register value an instruction results in is used in a later instruction. In
addition, the final instruction to write to each register also has an ”output link”, rep-
resented by the link to a register in the top portion of the graph and with a sign of
+1.

• All links have a sign. The sign of a link between two instructions is determined by
the way in which the value of the destination register of the instruction which the link
starts at is used in the instruction the link ends at. How these signs are determined
is given in table 7.1. The sign of a link is determined entirely by the operation the
destination register is used in and its role (first or second argument) in that operation.
If it is used in both two links will be generated, one for each argument.

• The exception to the backwards direction of propagation of links are conditional state-
ments. With all other operations used in this approach to LGP multi-class classifica-
tion, instruction i’s contribution to the program’s error is determined entirely by what
other instructions do with the value instruction i writes to a register and the final val-
ues of the registers whose value it contributes to. However conditional statements
(which precede i in the list of instructions) may mean i is never even executed and
thus had no contribution — positive or negative — to a program’s error and accuracy.
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Table 7.1: Instruction/argument position to link sign mapping.

Operation Argument 1’s Sign Argument 2’s Sign

output +1
+ +1 +1
- +1 -1
* +1 +1
/ +1 -1
if< signs are determined case-by-case — 1 if it was true, 0 otherwise

It is for this reason that there is a link from instr5 to instr4 in figure 7.1 and it is
for this reason that instr5’s sign depends on instr4’s sign.

Unlike all other operations, instr4’s sign cannot be statically analysed. Thus, when
updating each instruction’s contribution to error after evaluating a fitness case, infor-
mation about whether or not a conditional was true needs to be retained. If the condi-
tional was true then its sign will be +1. If it was false its sign will be 0. Given this, the
contribution to error of the assignment instruction which followed it is either passed
through unchanged (by the sign of +1) or set to 0 (by the sign of 0). This approach
works even if several conditional statements follow each other sequentially and also
ensures that an instruction’s weight is not adjusted for error it did not create.

• Final register values have a ”sign“ (error value) too. This is because output links are
defined to have a sign of +1 (as noted above). The final register value an output link
”links“ to may either be too large or too small. If the final register value is too large
then the ”instruction sign“ of this final register value will be negative, and vice-versa
if the final register value is too small. This value should be passed through unchanged
to whichever instruction is at the other end of the output link. Calculation of the error
in a final register value and its sign are described below, in equation 7.1.

• As with the final register values, all instructions have a sign. An instruction’s sign is
determined entirely by the signs of its links and the signs of the instructions it links
to. Each link’s sign is multiplied with the sign of the instruction it links to in order to
provide a net link sign. These net link signs are then interpreted as shown in table 7.2
to calculate the sign of the instruction.

Table 7.2: Determining an instruction’s sign. Net link signs with a value of 0 are not counted.

Net link signs are... Instruction sign is...

Majority positive +1
Equal positive, negative 0
Majority negative -1

For example, consider instr2 as shown in figure 7.1. If instr4 is true and r[2] and
r[2] both had an error of +0.5 then both instr4 and instr5 will have an instruction sign
of +1 because instr4’s only net link sign is 0.5 × 1 (positive) and because instr5’s only
net link sign is also therefore positive. instr2 has one link to the output (which has a net
link sign of 1 × 0.5), one positive link to the sign of instr5 and one negative link to the
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sign of instr5. Therefore instr2’s net link signs are 0.5, 0.5 and -1, respectively. Based on
these net link signs, instr2 has an instruction sign of +1 as the majority of its net link signs
are positive. Note that the instruction sign of instr2 is never used in this graph. However
this example was selected for discussion in this paragraph because it illustrated how the
signs are determined in a more complex situation.

Given this informal but relatively complete discussion of the algorithm and its subtler
elements the algorithm will now be presented more formally. Four key sub-algorithms and
functions are used. They are:

1. The link building algorithm.

2. The desired output function.

3. The calculation of δi and ∆i.

4. The weight adjustment algorithm.

The reader may need to refer table 7.1 and table 7.2.

Link Building Algorithm

Expressed in pseudo code, and assuming a length l program with instructions which have
k arguments, an O(lk) algorithm which builds the DAG of links between instructions is
given in figure 7.2. This algorithm could also be trivially modified to incorporate Brameier’s
algorithm for finding structural introns [2]. By beginning at the output links and following
the links backwards instructions can be marked as ”not a structural intron“. Once all such
links have been traversed all the unmarked instructions are structural introns.

Desired Output Register Values

Desired output register values have been arbitrarily set at 1.0 for the register which repre-
sents the correct classification class of the fitness case and 0.0 for the registers which repre-
sent other classes. If the register value of the correct class is greater than 1 or the register
value of the incorrect classes are less than 0 we do not want to lessen the amount by which
the program gave the correct answer. Therefore, our determination of the error in the final
register value, e(r), for register r is given in equation 7.1.

e(r) =

{

1 − min(register[r], 1) if r represents the correct class
−max(register[r], 0) if r represents an incorrect class

(7.1)

Calculation of δi

The contribution of instruction i to the program’s error for one fitness case but across all
registers is given by δi, and is calculated as follows:

δi = Σfor each of i’s links, l

{

e(r) if l is an output link (sign = +1) to register r
δj × s × PropScale if l is a link to instruction j with net link sign s

(7.2)
PropScale is a constant which geometrically reduces the contribution to error (δi) of the

instruction a link starts at as the instruction occurs at a greater remove from the instruction
which writes the final register value. This is because any instruction’s contribution to error
in the final register value of r1 is expected to be relatively less than its contribution to the
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// dict[r] maps from register r to the i’th instruction
create a dictionary dict, leave it blank

// Build the internal links:
foreach instruction i, starting from the first

if i is a conditional and is is not the last instruction then
add a back-link from instruction i + 1 to i
set the sign of this link to ’?’

else if i is not a conditional instruction
foreach register r used in an argument to i’s operation

if dict[r] is set then
add a link from instruction dict[r] to i
set this link’s sign as per table 4.2

end if
end foreach

set dict[i.destinationIndex] = i
end if

end foreach

// Build the output links for the final register values:
foreach output register r which represents a class

if dict[r] is set then
add an output link from the instruction dict[r] to register r
set the sign of this link to 1

end if
end foreach

Figure 7.2: The link building algorithm, used in the hill climbing algorithm.

error in the final register value of r2 if its output is ”filtered” through fewer instructions
when determining the final value of r2 than when determining the final value of r1. Because
the graph is acyclic though the value of δj will never depend on the value of δi if the value
of δi depends on the value of δj .

Calculation of ∆i

∆i is referred to colloquially as ”the mean δ of instruction i” and is calculated for instruction
i as the mean of δ over all fitness cases in the training set. More formally:

∆i = δi over all fitness cases (7.3)

Weight Adjustment Algorithm for instruction i, given some ∆i

For some instruction i, given its ∆i we adjust its weight wi through the use of a tan-sigmoid
function ftan scaled by some constant η (equation 7.4). η serves simply to moderate the
size of the steps taken when the hill climbing is done and is identical in function to the
role played by η in standard feed-forward neural network back propagation [45]. ftan is
bi-polar (see figure 7.3, which compares tan-sigmoid and log-sigmoid, the traditional acti-
vation function in neural networks [45]). In a continuous fashion and as with η it serves to
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scale ∆wi to reasonable values, but in a non-linear manner and regardless of the value of ∆i.
As can be seen from equation 7.5, tan-sigmoid also takes a second parameter, γ. The ideal
value of γ depends on the desired rate at which ftan should approach its maxima (1.0) and
minima (-1.0). From empirical search a value of 2.0 was found to work well with the values
of ∆ that occurred. All information on tan-sigmoid has been sourced from the online lecture
notes at [10].

∆wi = η × ftan(∆i, γ) (7.4)

ftan(∆i, γ) =
2

1 + e−γ∆i

− 1 (7.5)

Figure 7.3: The log-sigmoid (top) and tan-sigmoid functions.

7.3.3 Evolutionary Integration

Explicit hill climbing can be applied to any members of any population at any time and there
are therefore obviously a large number of possible ways of integrating hill climbing and an
evolutionary beam search. Four possible approaches were investigated in this research:

1. Apply hill climbing to every member of the population after each full evaluation of
the training set but before the performance of any evolutionary operations (evolution-
ary offline hill climbing). Whether or not the hill climbing leads to improved perfor-
mance is not considered - all adjustments to each instruction’s weights are retained.
Whether or not it improves performance is not considered because this would require
re-evaluating the entire training set for each individual, which would double the num-
ber of instructions which needed to be executed in any one generation. This would be
too inefficient.

2. Apply hill climbing to every member of the population prior to any evolutionary oper-
ations taking place, i.e. just after the initial generation has been evaluated against the
training set. Evaluate the population again before performing evolutionary operations
(to update the fitness values). It is hoped that this approach (analogous to biological,
Larmarckian evolution) would improve performance by accelerating the creation of
useful building blocks.

3. Apply hill climbing after all evolution has terminated and before evaluating the best
individual against the test set. Hill climbing is only applied if the best individual does
not attain 100% accuracy on the training set. This approach is precisely analogous to
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standard biological learning, in which an evolutionary beam search conducts the gross
search and neural learning (”hill-climbing”) locally optimises the results.

4. Apply hill climbing prior to any evolutionary operations (as with (2)) and also follow-
ing all evolutionary operations if perfect fitness is not attained by the best individual
on the training set (as with (3)). A biological analogy to this approach would be Lar-
marckian evolution with intra-lifetime skill acquisition also considered. It is hoped
that this approach will improve performance by both precipitating the evolution of
useful building blocks early on and by then locally optimising the final result.

Of these approaches (1) was found to be clearly inferior, leading to worse and more
variable performance. This is because many of the evolutionary operations — particularly
on highly fit individual programs — did not improve fitness and occasionally worsened it.
In addition, this integration was also the most computationally expensive. The results for
(2), (3) and (4) are presented in table 7.3. The configuration of the LGP runs for the results
presented in this table was identical to that presented in table 7.4. All runs were done on the
mid-level difficulty data set digits15 and with an η and PropScale of 0.25.

Table 7.3: Effect of hill climbing at different times on digits15 data set.

Method Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

Before evolution (2) 64.11% ± 4.78% 59.50% ± 6.03%
After evolution (3) 65.00% ± 4.89% 61.08% ± 6.66%
Before and after evolution (4) 65.83% ± 5.57% 61.84% ± 5.94%

The results presented in table 7.3 suggest that learning both before and after all evolution
is the better method for the digits15 data set. This method had the best training fitness, the
best test fitness and lowest test variation. However, this integration of hill climbing will
almost never speed up the evolution of a good solution in most cases. This is because —
except in the rare circumstances a perfect solution to the test set can be hill climbed prior to
any evolution — further hill climbing will only be done after all evolution has taken place
and only if the maximum number of generations has been used and a perfect solution has
not been found. Despite this, method (4) was used for all data sets in the experiment whose
results are outlined in section 7.4 and section 7.5 below.

7.4 Experimental Configuration

The hill climbing algorithm given above in section 7.3 was evaluated 50 times with each
configuration against three data sets — faces1, shape and digits15. Nine pairs of values of
η and PropScale were trialled and the results are presented below. Excluding the different
values of η and PropScale the same LGP configuration was used for each data set. For the
purposes of comparison a set of 50 runs with no hill climbing but with an otherwise identical
configuration was used for each data set. The use of additional, non-representative registers
has not been explicitly considered in this algorithm. This is because these extra registers
were found to generally have no or a negative impact on performance (see section 6.4).
However, no modification of the link building algorithm would be necessary to incorporate
them. The other configuration details for each data set are presented in table 7.4. The pairs
of values of η and PropScale are presented in the results tables, tables 7.5, 7.6 and 7.7.
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Table 7.4: The LGP configuration for the hill climbing experiments.

shape digit15 faces1

pop size 500 500 500
max program length 16 40 20
elitism rate 10% 10% 10%
crossover rate 30% 30% 30%
macromutation rate 30% 30% 30%
micromutation rate 30% 30% 30%
tournament size 4 4 4
α 1.15 1.15 1.15
β 0.18 0.18 0.18

7.5 Results and Discussion

The results of applying this hill climbing algorithm to each of the three data sets evaluated
are presented along side results found which used no hill climbing to facilitate an evaluation
of the hill climbing algorithm.

Table 7.5 shows the results of running the hill climbing algorithm against the shape data
set. Of the three data sets evaluated statistics regarding the learning time (number of gener-
ations used) are presented only for this data set. This is because each run for the other two
data sets always used the maximum number of generations.

Table 7.5: Hill climbing results for the shape data set.

PropScale η Generations (µ ± σ) Training Acc. % (µ ± σ) Test Acc. % (µ ± σ)

0.25 0.25 27.16 ± 13.86 97.94% ± 6.62% 97.78% ± 6.78%
0.25 0.50 27.64 ± 14.14 98.74% ± 4.60% 98.78% ± 4.34%
0.25 0.75 28.84 ± 14.94 98.79% ± 4.97% 98.71% ± 4.97%

0.50 0.25 25.60 ± 14.73 99.38% ± 3.56% 99.38% ± 3.57%
0.50 0.50 24.12 ± 13.18 99.89% ± 0.53% 99.81% ± 0.53%
0.50 0.75 20.96 ± 15.05 99.86% ± 0.72% 99.75% ± 0.94%

0.75 0.25 26.56 ± 16.88 97.27% ± 7.36% 97.26% ± 7.34%
0.75 0.50 25.20 ± 14.59 99.64% ± 1.45% 99.66% ± 1.12%
0.75 0.75 24.20 ± 14.75 98.85% ± 5.74% 98.68% ± 6.08%

No HC 20.36 ± 12.11 99.65% ± 2.43% 99.58% ± 2.66%

Table 7.6 shows the results of running the hill climbing algorithm on the digits15 problem.
Table 7.7 shows the results of running the hill climbing algorithm on the faces1 problem.

The results of the application of this hill climbing algorithm to shape, digits15 and faces1
show that the best parameters give improved accuracy (by approximately 2%, uniformly
across each of the data sets) for all data sets and at the cost of only a slight increase in
variance. These improved results show that PropScale = 0.50 and η = 0.75 is a good starting
point for the parameters to the algorithm.

Interestingly there might not have been any improvement in the number of generations
needed for a population to learn shape. This result is confusing as earlier results (table 7.3)
showed that the Larmarckian learning with intra-lifetime skill acquisition was better. Con-
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Table 7.6: Hill climbing results for the digits15 data set.

PropScale η Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

0.25 0.25 65.83% ± 5.57% 61.84% ± 5.94%
0.25 0.50 64.18% ± 4.29% 59.44% ± 5.33%
0.25 0.75 64.76% ± 3.71% 60.56% ± 5.30%

0.50 0.25 66.06% ± 4.36% 62.02% ± 4.88%
0.50 0.50 65.56% ± 4.15% 61.32% ± 4.81%
0.50 0.75 66.00% ± 4.03% 62.66% ± 5.39%

0.75 0.25 64.60% ± 5.43% 60.44% ± 5.90%
0.75 0.50 65.92% ± 5.34% 61.67% ± 6.02%
0.75 0.75 65.19% ± 4.17% 60.90% ± 5.62%

No HC 64.96% ± 4.99% 60.53% ± 5.87%

Table 7.7: Hill climbing results for the faces1 data set.

PropScale η Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

0.25 0.25 55.42% ± 5.25% 48.48% ± 9.60%
0.25 0.50 56.21% ± 5.13% 48.85% ± 8.91%
0.25 0.75 56.32% ± 5.57% 48.97% ± 10.41%

0.50 0.25 56.96% ± 6.07% 50.85% ± 10.61%
0.50 0.50 55.61% ± 5.46% 47.70% ± 9.60%
0.50 0.75 57.17% ± 5.96% 52.48% ± 10.77%

0.75 0.25 56.12% ± 5.44% 52.36% ± 10.60%
0.75 0.50 57.15% ± 5.46% 50.85% ± 10.32%
0.75 0.75 57.09% ± 6.21% 49.88% ± 10.99%

No HC 57.34% ± 5.03% 50.85% ± 9.35%

firming whether or not this is the case will require a generation-by-generation analysis of
fitness. It may be though that the hill climbing algorithm can only help in the construction
of building blocks on data sets with certain characteristics. The improvements to the mean
accuracy observed in the results may only be due to the result of hill climbing on individuals
with imperfect training fitness (although this still leaves the integration results in table 7.3
unexplained).

The similar and improved relationship (when compared with the no-hill climbing re-
sults) between training and test accuracy for digits15 and faces1 is also significant. These
results indicate that the hill climbing algorithm actually seems to reduce any overfitting
that does occur. Comparing the hill climbing and non-hill climbing results for shape do not
show this same trend, however the fact that the accuracy is already so close to perfect makes
basing any conclusions on this relation in this data set very difficult.

In addition, the form of evolutionary integration adopted used the hill climbing algo-
rithm sparingly (at the beginning and at the end only if perfect fitness on the training set
was not attained). This means that the integration of the hill climbing algorithm imposed
no significant penalties on the time taken to perform the evolution.
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7.6 Chapter Summary

In this chapter the fourth research goal described in section 1.2 has been achieved. The
problem of evolutionary beam search results not necessarily being locally optimised has been
addressed through the development of a hill climbing algorithm for LGP and an evaluation
of its value for three problems with different levels of difficulty.

This algorithm represents an important contribution in two ways. Firstly, it improves the
LGP methodology developed in chapters 4, 5, 6 and analysed in chapter 8. Importantly, it
achieves this at little computational cost. Secondly, the research carried out on evolutionary
integration and the example this algorithm provides illustrate some of the other ways in
which an evolutionary beam search and a hill climbing algorithm can be integrated. These
offer important and exciting areas of future research and suggest further improvement over
the excellent results achieved is possible.
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Chapter 8

A Comparison of LGP and TGP

8.1 Overview

In this chapter the goal of analysing and comparing the performance of the LGP method-
ology in multi-class classification problems is achieved. A configuration developed using
the methodology described in chapters 4, 6 and 5 (but excluding the hill climbing algorithm
developed in chapter 7) is compared to a standard TGP configuration for a number of multi-
class classification problems.

The structure of this chapter is as follows. First an LGP configuration is developed for
each of the data sets being considered. Then, using the heuristic given in section 4.4 a com-
parable TGP configuration is developed. The maximum TGP tree depth is rounded up so
that the comparison between LGP and TGP is biased slightly towards TGP. Following that
the experimental configuration and results will be presented and discussed. As part of this
discussion the understandability of an LGP program is compared to the understandability
of a TGP program of the same fitness.

8.2 Data Sets

The comparison between LGP and TGP was done using the following data sets, described
in chapter 3:

• shape

• digits15

• digits30

• faces1

• faces2

• faces3

Ten-fold cross validation [22] was used on the three faces data sets. The results presented
in table 8.3 are the mean and standard deviation of 50 runs of a maximum of 50 generations
against each data set.

63



8.3 LGP Configuration

The configuration used for each LGP run against each data set is presented in table 8.1.
The evolutionary operators discussed in section 4.7 were used in these experiments, as was
the fitness function developed in chapter 5. The program length was set according to the
class-length heuristic discussed in section 6.5.3.

Table 8.1: The LGP Configuration for the comparison experiments.

shape digit15 digits30 faces1 faces2 faces3

pop size 500 500 500 500 500 500
max program length 16 40 40 20 20 20
elitism rate 10% 10% 10% 10% 10% 10%
crossover rate 30% 30% 30% 30% 30% 30%
macromutation rate 30% 30% 30% 30% 30% 30%
micromutation rate 30% 30% 30% 30% 30% 30%
tournament size 4 4 4 4 4 4
α 1.15 1.15 1.15 1.15 1.15 1.15
β 0.18 0.18 0.18 0.18 0.18 0.18

8.4 TGP Configuration

The LGP approach developed in this work is compared to the basic TGP approach [24].
The ramped half-and-half method was used for initial generation of the TGP programs [1]
and the conversion heuristic was used to help find comparable configurations. The tour-
nament selection mechanism and the reproduction, crossover and mutation operators [24]
were used in the learning and evolutionary process. As with LGP, the mix of evolutionary
operators which gave the best results are presented here. The program output was trans-
lated into a class label according to the static class boundary determination method [29]. The
TGP system used the same terminal sets, function sets, fitness function, population size and
termination criteria for the three data sets as the LGP approach. Other configuration details
are specified in table 8.2.

Table 8.2: The TGP configuration for the comparison experiments.

shape digit15 digits30 faces1 faces2 faces3

pop size 500 500 500 500 500 500
program depth 3–5 4–6 4–6 3–5 4–6 4–6
elitism rate 10% 10% 10% 10% 10% 10%
crossover rate 60% 60% 60% 60% 60% 60%
mutation rate 30% 30% 30% 30% 30% 30%
tournament size 4 4 4 4 4 4
α 1.15 1.15 1.15 1.15 1.15 1.15
β 0.18 0.18 0.18 0.18 0.18 0.18
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8.5 Experimental Results and Discussion

The results of these experiments are presented in table 8.3 and discussed in this section.

Table 8.3: The results from comparing equivalent TGP and LGP configurations.

Data Set Method Generations Training Accuracy % (µ ± σ) Test Accuracy % (µ ± σ)

shape TGP 41.92 ± 14.48 85.04% ± 16.49% 84.41% ± 17.17%
LGP 24.10 ± 13.85 99.80% ± 0.79% 99.73% ± 0.96%

digits15 TGP 50 53.57% ± 5.96% 47.84% ± 5.63%
LGP 50 66.26% ± 4.62% 62.07% ± 5.81%

digits30 TGP 50 41.29% ± 4.16% 33.71% ± 4.79%
LGP 50 55.93% ± 6.33% 50.46% ± 6.96%

faces1 TGP 50 59.17% ± 6.59% 50.76% ± 11.18%
LGP 50 57.39% ± 5.17% 51.62% ± 10.13%

faces2 TGP 50 34.31% ± 5.17% 25.65% ± 8.05%
LGP 50 37.47% ± 2.87% 29.75% ± 6.79%

faces3 TGP 50 27.94% ± 4.44% 21.82% ± 5.36%
LGP 50 29.96% ± 2.68% 25.85% ± 5.99%

8.5.1 Performance

Two key results emerge from the performance documented in table 8.3. Firstly, it is impor-
tant to note the much better performance of the LGP configuration than the TGP configura-
tion on the shape and digits problems. The LGP configuration seems to use roughly half as
many generations on the shape data set and the mean final accuracy is markedly better on
this data set and the digits15 and digits30 data set.

The performance on the three faces data sets is interesting because the difference in per-
formance is less significant. The LGP configuration still performs significantly better than
the TGP configuration does but the difference is not as large, especially on the faces1 task.
This could be for a number of reasons. It may be the case that neither the TGP nor the LGP
configuration is well suited to these tasks. It may however be the case though that the fea-
ture set constrains how good the solution can be. Given that the feature set was selected to
be deliberately difficult this is a possibility which cannot be discounted.

Specifically referring to the faces1 problem, it is hypothesised that the difference is less
due to the smaller number of classes (which makes it more suitable for the TGP method
using static class boundary determination) and due to the features not being the ideal feature
set, a choice made to ensure the problem retained its difficulty.

It is thought that the better overall performance of LGP when compared to TGP is due to
the greater suitability of the LGP methodology for multi-class classification. This method-
ology means that only a much simpler output interpretation algorithm (winner-takes-all)
needs to be learnt, and it uses a representation that is probably much more appropriate.

8.5.2 Understandability

In this section the relative understandability of a TGP and LGP program for the shape prob-
lem will be examined and their understandability compared. Two typical programs with
identical fitness are shown in this section.
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An LGP Program

An LGP program with perfect fitness on the shape problem is provided in figure 8.1. Due
to the simple nature of this task each class can be classified in a reasonably independent
manner, although it is important to note the interdependence and sub-program reuse which
does exist and also the multiple reuse of many of the same features (rather than the use of
more different features).

Structural introns, discussed in section 4.3, are commented out using //. The DAG
representation of the program is shown in figure 8.1 (right) after the introns are removed. It
is important to note the presence and distribution of the introns in this program and how
they reduce the chance of a destructive evolutionary operation [36, 35].

r[2] = r[1] - cf[1];
//if(r[1] < r[1])
//r[1] = r[2] / r[1];
//r[3] = r[2] - r[1];
r[1] = r[2] - cf[1];
//if(0.574554 < cf[5])
//r[3] = r[0] * r[1];
r[3] = cf[3] * r[1];
//r[2] = r[1] + cf[7];
r[1] = r[3] + 0.8399;
//r[3] = cf[3] + cf[1];
r[0] = cf[2] / cf[5];
r[0] = r[0] + 0.617964;
r[3] = cf[5] + cf[5];
r[2] = 0.714758 / cf[1];
r[1] = r[3] / r[1];

+

r[3]r[0] r[2]r[1]

/+ /

+

−

−

0.714758

*

0.617964

f3 (cf[2])

0.8399

f6 (cf5)

0

f2 (cf[1])

f4(cf[3])

/

Figure 8.1: An LGP program with perfect fitness on the shape data set. Structural introns are
commented out and not shown in the DAG representation (right).

The role played by a limited sub-set of the features is made clear, especially by the DAG
representation (figure 8.1, right). Note that only four of the features are used to discrimi-
nate the classes in this LGP program: the mean brightness of three of the quadrants and the
mean brightness of the centre quadrant. This suggests that the LGP approach can automat-
ically select features relevant to a particular task. The DAG representation of the program
(figure 8.1, right) shows that the LGP approach can co-evolve sub-programs together each
for a particular class and that some terminals and functions can be reused by different sub-
programs. In addition, the process used to calculate the ”number of votes“ for each of the
classes is fairly straightforward and understandable to a human, as is visible in the DAG in
figure 8.1.

An example feature vector for each class is provided in figure 8.2. In this configuration
the 8 feature registers are represented by the array cf in the indexes cf[0] to cf[7], inclu-
sive. The registers r[0], r[1], r[2], and r[3] represent class1, class2, class3, and
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cf[0] cf[1] cf[2] cf[3] cf[4] cf[5] cf[6] cf[7]
----------------------------------------------------------------------
Obj1 (class1): 0.2720 0.3139 0.2748 0.2905 0.2087 0.1063 0.4658 0.2174
Obj2 (class2): 0.6425 0.6253 0.6469 0.6394 0.6583 0.7013 0.1743 0.0912
Obj3 (class3): 0.2727 0.2968 0.2865 0.2750 0.2325 0.2227 0.2296 0.1043
Obj4 (class4): 0.8124 0.7730 0.8057 0.8137 0.8571 0.8568 0.2296 0.1049

Figure 8.2: Example feature vectors of each class in the shape data set. The cf registers
contain the 8 features described in section 3.1 in registers cf[0] to cf[7].

class4 respectively. After evaluating the LGP program the final values of the four registers
are shown in table 8.4. These results show how the results for a TGP program are not just
understandable to a human but also easily calculated and manually verified.

Table 8.4: The final register values of the LGP program in figure 8.1. This table shows the
final register values of the LGP program given in figure 8.1 after classifying the examples
given in figure 8.2. The register values with the largest values and representing the classified
class (through the use of a winner-takes-all algorithm) are bolded.

Object True-Class r[0] r[1] r[2] r[3] Classified-Class
Obj1 class1 3.2009 1.5404 1.9045 1.5583 class1
Obj2 class2 0.3236 34.7961 0.6582 -4.0985 class2
Obj3 class3 2.2771 1.1431 2.4079 0.9246 class3
Obj4 class4 0.2127 1.4026 0.4454 1.7136 class4

A TGP Program

On the other hand, a program evolved by the TGP approach can only produce a single value,
which must be translated/interpreted into a set of class labels. A TGP program with perfect
fitness on the shape problem is provided in figure 8.3. Note how it uses every feature. How
each feature contributes to the classification of an object as any particular class is unclear. In
addition, human verification of the results is extremely difficult: calculating the final value
of the tree is difficult and error prone and having done so one also needs to bear the output
interpretation algorithm in mind. Using one of the often more accurate approaches (e.g.
[57, 58, 61]) may not make the problem less difficult as these methods have a much more
complex output interpretation algorithm than the basic static class boundary determination
method.

(ifltz (ifltz (ifltz (+ f8 -0.276997) (- f3 f6) (+ f1 f5))
(/ (- 0.825937 f6) f4)
(* (- f1 f7) (+ f1 -0.566267)))

(/ (* (ifltz f6 f7 f2) (/ f4 f3))
(/ (ifltz f1 f2 f4) (+ f1 f5)))

(- (ifltz (/ f3 f4) (/ f3 f3) (/ f6 0.430889))
(+ (/ 0.384887 0.425971) (/ f3 f2)))

)

Figure 8.3: An example TGP program with perfect fitness on the shape data set.
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8.6 Chapter Summary

In this chapter the key contributions made in the previous chapters are made clear. The
new LGP methodology outperformed a standard TGP methodology on all of the problems
considered and significantly outperformed it on five of the problems considered. This chap-
ter also highlights how much more easily LGP programs can be understood by a human
than a TGP program of comparable performance. This understandability is another very
important contribution, particularly in the fields of data mining and knowledge discovery.

To summarise, the results from the comparison of LGP to TGP in this chapter highlight
how strongly the first, second and third goals described in section 1.2 have been addressed
and how the problems outlined in section 1.1 have been resolved.
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Chapter 9

Conclusions

In this chapter the various results presented and discussed in chapters 4–8 are synthesised
and summarised into a number of overall conclusions and recommendations.

In this research a number of the problems faced by standard TGP for multi-class clas-
sification have been considered. A new methodology and configuration for LGP designed
to work well for multi-class classification has been developed which addresses these. As
part of developing this methodology an output interpretation algorithm and a crossover
operator were created.

The strength of this methodology has been assessed on a range of multi-class object clas-
sification problems of varying difficulty. A theoretical analysis of fitness functions and a
new fitness function designed to work well with tasks which have a complex feature space
has also been developed and analysed. A hill climbing algorithm which ensures local opti-
misation and two heuristics which aid in creating TGP and LGP configurations in a number
of situations have been created.

9.1 An LGP Methodology for Multi-class Classification

A methodology for using LGP to solve multi-class classification problems was developed.
This methodology was applied to six multi-class image classification problems of differing
difficulty. These problems had greatly varying difficulty, numbers of features and numbers
of classes and are possibly representative of image classification tasks. Six tasks are used to
examine the applicability of LGP to multi-class image classification. An output interpreta-
tion algorithm using the winner-takes-all methodology and a crossover operator based on
GA two-point crossover [15] were developed.

A program length heuristic was developed to guide the selection of the initial maximum
program length in an LGP configuration. This heuristic is interesting because the difficulty
of the problem is not directly considered in the heuristic. Only the number of classes a
problem has is a factor in determining the suggested length of the program.

In addition, research was conducted on the optimal number of registers, relative to the
number of classes. This research suggests that having no extra registers did not bring any
penalty and often led to slightly better results.

A methodology which generated all programs at the maximum length allowed was cre-
ated. This included the development of a crossover operator which ensured that a greater
proportion of the crossover operations were productive. Only if exactly and only the instruc-
tions swapped over were randomly culled would the crossover regress to a reproduction.

The results showed that the LGP methodology out-performed the TGP methodology
on all six of the problems considered. In addition, the programs evolved were much more
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understandable and LGP performed significantly better than TGP on five of the problems.

9.2 Fitness Functions in Multi-class Classification

A theoretical analysis of the role played by a fitness function was undertaken. Three ways
in which a multi-class classification problem can be difficult were discussed. Inspired by the
theoretical analysis, one of these — the hurdle problem, which occurs when a feature space
is particularly complex — was successfully addressed through the development of a new
fitness function, fdecay.

This new fitness function leads to much more accurate results for both TGP and LGP
and also much more consistent results for LGP. This research suggests careful analysis and
tailoring of the fitness function to the kind of problem being addressed is a valuable aspect
of the process of developing a GP configuration for a problem.

9.3 LGP Compared to TGP

The LGP methodology and configuration was compared to the standard TGP methodology
and configuration for multi-class classification. The new LGP methodology and configura-
tion was found to be better on all six problems evaluated. The difference was small only for
a problem which was very difficult but which had few classes (meaning a TGP approach
was less inappropriate). Even in this situation LGP still performed better than TGP.

A conversion heuristic was developed to ensure LGP and TGP configurations had com-
parable expressivity. By doing this other elements such as the relative suitability and rate of
learning of LGP and TGP for particular problems could be compared.

This research has suggested that LGP is generally better for multi-class classification than
TGP in a wide range of domains, particularly when there are a large number of classes in
the problem.

9.4 LGP and Hill Climbing

A new program structure and hill climbing algorithm was developed for the LGP configu-
ration and methodology earlier research suggested and discussed above in sections 9.1 and
9.2. This algorithm was found to give the expected improvements in the results. Due to
the way in which the hill climbing and evolutionary beam search were integrated the hill
climbing could be done with little extra computation and was relatively inexpensive.

This algorithm could be applied to any LGP problem and in some other types of prob-
lems (such as function regression) it may show even greater benefits. It is hypothesised that
different evolutionary integrations would be more appropriate for other types of problem.

9.5 Future Work

In this section the areas of possible future work will be considered. They will be presented
in the same structure as the conclusions were in sections 9.1–9.4. No further work regarding
the comparison of TGP and LGP will be detailed as the ways in which this can be carried
out are relatively obvious and also highly problem-dependent.
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9.5.1 Methodology

There are a number of areas where the methodology developed could be extended.
The class-length heuristic could be investigated in more detail, especially the reasons

why the multiple of 3.5–4 times the length was most appropriate. It is hypothesised that as
the length gets longer the proportion of introns rises and that there is therefore a decreasing
marginal benefit [6] in increasing the maximum program size allowed.

Similarly, the generation of programs at their initial maximum length could also be in-
vestigated further. The cursory empirical results which motivated this decision could be
supported by further theoretical and empirical research.

The value of allowing the evolution to proceed over more generations needs to be in-
vestigated more formally. Observation of the generation-by-generation records of best and
average fitness show a clearly decreasing benefit in allowing evolution to continue from
generation-to-generation, however past research [12] has suggested that longer evolution-
ary periods may be valuable in some situations.

The multiple-output (multi-out) methodology developed could also be extended in a
number of other ways. It could be applied to other kinds of problems which require multiple
inter-dependent answers, such as the stock prediction problem discussed in section 2.2.

A further extension of this multi-out structure would be a generalisation which allowed
recurrent graphs to be evolved. This could be particularly valuable for prediction problems
with a temporal component.

9.5.2 Fitness Functions in Multiclass Classification

A fuller theoretical analysis of the fitness function has been given in this work. This analysis
of the two types of space (the feature space and the program space) could be generalised
and applied to other kinds of problems to aid in developing more appropriate fitness func-
tions for problems in other domains. Further examination of the differences and similarities
between the problems caused by local peaks and minima and the problems caused by a
hurdle still needs to be done. Likewise, ways the first and second difficulties described in
sections 5.4.1 and 5.4.2 can be addressed also need to be considered explicitly.

In addition, the key idea of differentially valuing different levels and kinds of success,
used in fdecay, could be particularly applicable to problems such as the Santa Fe ant trail
problem [23].

9.5.3 Hill Climbing

Extra registers which are not involved in the interpretation of an LGP program’s output were
not explicitly considered when the hill climbing algorithm was developed. Although the
existing algorithm would not need to be changed in order to allow them to be incorporated
the impact of these additional registers on the value of hill climbing and the results which
can be obtained still need to be investigated.

In addition, the best way in which to integrate the evolutionary beam search and the
hill climbing needs to be considered in more detail and for a wider range of problems. The
current results are confusing and unclear. To achieve this clarification the impact of various
evolutionary integrations of hill climbing on the rate at which a population can learn needs
to be investigated in more detail with a generation-by-generation analysis of fitness being
carried out.

Finally, different program structures and approaches to hill climbing for LGP also need
to be investigated.
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Appendix A

VUWLGP

The research described in this report was carried out using a package developed by Christo-
pher Fogelberg in March, April and May of 2005. The architecture and usage of this package
is described in this appendix.

A.1 Code Overview

VUWLGP was developed in ANSI STL C++ and has a configurable architecture. Programs
are represented by the Program class, and instructions are represented by the Instruction
structure. A population of programs is represented and managed by one instance of the
Population class. The FitnessCase class represents fitness cases and the Fitness class
is responsible for organising, loading and managing the test, training and — if used — vali-
dation sets of fitness cases. Each of these classes will now be discussed briefly.

The Instruction structure encapsulates whatever components comprise an individ-
ual instruction and provides a number of methods. The output of these methods is (in
normal usage) interpreted by methods of the Program class. The methods include those
which return the operator, the index and type of register of any arguments and the desti-
nation register the result of calculating the operation the instruction represents should be
stored in. There are also methods which convert an Instruction into a C-style string.

Any one program is an instance of the Program class. This class stores the sequence
of instructions which comprise a program and also some associated data such as the indi-
vidual’s fitness, and its fitness on a per-class basis (which assists in investigating the hurdle
problem, see chapter 5). The DAG of instructions and links necessary for the hill-climbing
algorithm and which varies by class is also stored in an instance of this class.

Similarly, the Program class provides methods associated with this data and also meth-
ods associated with the execution and evolution of a program. These methods include those
which zero, update and return the program’s fitness, and also those which execute it against
a particular FitnessCase, cross it over with another Program and apply micro- or macro-
mutation operators.

The Program::Executemethod is the area of tightest cohesion with the Instruction
structure. In this method the values returned by the methods in Instruction, such as
those identifying the operator or the type of array being used, are given their semantic
meaning by the impact they have on the registers passed to this method and initialised
with the features of a FitnessCase.

Each individual fitness case is represented by one instance of the FitnessCase class.
This class stores the feature values of the fitness case it represents and also the correct out-
puts (final register values). In addition, it stores the relative importance of each of the final
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register values. This is valuable should VUWLGP be configured to run against a problem
which has multiple outputs in which one of the outputs is less important and should there-
fore make a much smaller negative contribution to fitness than the others. The Fitness
class simply represents a training, test and validation set of fitness cases.

Finally, the Population class serves as the general evolutionary interface with methods
that evaluate a population of programs against a set of fitness cases (through the use of a
Fitness objects) and which builds the next generation of Programs based on the current
generation’s fitnesses. This class also includes the methods which orchestrate the selection
of individual programs from the population for use in evolutionary operations.

An application which uses VUWLGP must do the following steps in the following order:

1. Create a Fitness object, e.g. f. Tell it in which files it can find the fitness cases for
test, training and validation.

2. Call f.InitFitness. This method will load the sets of fitness cases and ensure that
the information specified on the command line or set as defaults in the Config class
is correct.

3. Create an instance of the Population class, e.g. p. This class must be instantiated
after the call to Fitness::InitFitnesshas made any corrections to the configura-
tion that need to be made.

4. Until the termination criteria (perfect fitness on the training set or the maximum num-
ber of generations) is met evaluate the current population against the training set and
evolve the next generation.

5. Evaluate the best individual against the test set and output the statistics of this run.

A number of other programmatic elements touched on already encapsulate other func-
tionality. The generation of random numbers is managed by code in the namespace Rand.
This code is relatively simple and will not be discussed further here. The way in which any
one application of VUWLGP is configured is managed by the Config class, which is dis-
cussed in more detail in section A.2. How another operator — for example an if> operator
— could be added is discussed in section A.3. Finally, the applications which manage and
generate fitness cases from raw data are discussed in section A.4 and the text format of a
fitness case is described in section A.5.

A.2 Configuration

The class Config represents most of the configuration details of any VUWLGP run against
a problem and also contains the functions which parse these arguments if they are presented
on the command line. Variables in this class define the following aspects of the configura-
tion:

• The number of registers, features and classes.

• The maximum and minimum length of a program and the maximum length at the
time of the initial generation.

• The size of the population and the maximum number of generations which can be
used.

• The percentage of each type of each evolutionary operation.
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In addition, a number of other minor details (such as the log path) are defined, and elements
such as PropScale, α, and β (see chapter 7 and chapter 5) are also defined in this class if used.

A.3 Adding an Operator

Due to the division of some responsibilities amongst several classes in VUWLGP the addi-
tion of a new operator requires modifying 2 classes. This configuration was chosen (over the
alternative of having the semantics stored in subclasses of Instruction) in order to create
code which is as efficient as possible.

Instruction::ExtractOpString in the file Instruction.hneeds to be modified,
and the ToString methods (in the file Instruction.cpp) may also need to be modified.

In addition, the semantics of the new operation need to be represented in Program::Execute.
The variable NumOps in this method needs to be incremented and a case for the number of
the new operator needs to be added to the switch statement in this method.

A.4 Fitness Case Generation

The way in which fitness cases are generated for each type of problem are different, however
a number of common features are encapsulated in the class Pattern and then processed by
the code in the application defined in Generator.cpp. See or extend this code in order to
understand in more detail how to generate patterns for other problems.

The Pattern class is encapsulated entirely in the file Pattern.h. An instance of this
class can be constructed either from an existing text representation (described below) or by
passing its constructor a number of parameters. These parameters are:

• The image from which the pattern came, or else some other human-readable name-
type std::string. This string cannot contain any white space.

• The x and y coordinate of the image the pattern came from. Alternatively, any two
unsigned integers which have some semantic meaning for the problem can be used.

• A std::string with no white space which is the name of the class this pattern is a
member of.

• An unsigned int representing the number of the class this pattern belongs to.

• An unsigned int specifying the number of features in this fitness case/pattern.

• An array of double containing each of the features in this fitness case.

A.5 Fitness Case Text Format

The string-format of a pattern (fitness case) is as follows:

[image file or name] [x-position] [y-position] [class-number] [class-name] [f1] [f2] ... [fn]

81



82



Appendix B

Paper Accepted to the 18th Joint
Australian Conference on Artificial
Intelligence

This appendix contains a full copy of the paper submitted to the 18th Australian Joint Con-
ference on Artificial Intelligence and accepted as a full paper. It will be published in the
Lecture Notes in Artificial Intelligence.
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Abstract. Multi-class object classification is an important field of re-
search in computer vision. In this paper basic linear genetic program-
ming is modified to be more suitable for multi-class classification and its
performance is then compared to tree-based genetic programming. The
directed acyclic graph nature of linear genetic programming is exploited.
The existing fitness function is modified to more accurately approximate
the true feature space. The results show that the new linear genetic
programming approach outperforms the basic tree-based genetic pro-
gramming approach on all the tasks investigated here and that the new
fitness function leads to better and more consistent results. The genetic
programs evolved by the new linear genetic programming system are also
more comprehensible than those evolved by the tree-based system.

1 Introduction

Image classification tasks occur in a wide variety of problem domains. While
human experts can frequently accurately classify the data manually, such experts
are typically rare or too expensive. Thus computer based solutions to many of
these problems are very desirable.

Genetic Programming (GP) [1, 2] is a promising approach for building reliable
classification programs quickly and automatically, given only a set of examples
on which a program can be evaluated. GP uses ideas analogous to biological
evolution to search the space of possible programs to evolve a good program for
a particular task.

While showing promise, current GP techniques frequently do not give sat-
isfactory results on difficult classification tasks, particularly multi-class classi-
fication (tasks with more than two classes). There are at least two limitations
in currently used GP program structures and fitness functions that prevent GP
from finding acceptable programs in a reasonable time.

The programs that GP evolves are typically tree-like structures [3], which
map a vector of input values to a single real-valued output[4–6]. For classifica-
tion tasks, this output must be mapped into a set of class labels. For binary
classification problems, there is a natural mapping of negative values to one
class and positive values to the other class. For multi-class classification prob-
lems, finding the appropriate boundaries on the number line to separate the
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classes is very difficult. Several new translations have recently been developed in
the interpretation of the single output value of the tree-based GP [4, 7, 8], with
differing strengths in addressing different types of problem. While these transla-
tions have achieved better classification performance, the evolution is still slow
and the evolved programs are hard to interpret, particularly for more difficult
problems or problems with a large number of classes.

In solving classification problems, GP typically uses the classification accu-
racy, error rate or a similar measure as the fitness function [5, 7, 8], which ap-
proximates the true fitness of an individual program. Given that the training set
size is often highly limited, such an approximation frequently fails to accurately
estimate the classification of the true feature space.

1.1 Goals

To address the problems above, this paper aims to investigate an approach to
the use of linear genetic programming (LGP) and a new fitness function for
multi-class object classification problems. This approach will be compared with
the basic tree-based GP (TGP) approach on three image classification tasks of
increasing difficulty. Specifically, we are interested in:

– Whether the LGP approach outperforms the basic TGP approach on these
object classification problems in terms of classification performance.

– Whether the genetic programs evolved by LGP are more comprehensible.
– Whether the new fitness function improves the classification performance

over the existing fitness function.

2 LGP for Multi-class Object Classification

2.1 LGP Overview

This work used register machine LGP (hereafter just LGP) [2], where an indi-
vidual program is represented by a sequence of register machine instructions,
typically expressed in human-readable form as C-style code.

Prior to any program being executed, the registers which it can read from
or write to are zeroed. The features representing the objects to be classified
are loaded into predefined registers. The program is executed in an imperative
manner and represents a directed acyclic graph (DAG). This is different from
tree-based GP which represents a tree. Any register’s value may be used in
multiple instructions during the execution of the program.

2.2 Multi-class Output Interpretation

An LGP program often has only one register interpreted in determining its
output [9, 2]. This configuration can be easily used for regression and binary
classification problems as in the tree-based GP.
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In this work, we use LGP for multi-class object classification problems. We
want an LGP program to produce one output for each class. Thus, instead of us-
ing only one register as the output, we use multiple registers each corresponding
to one class. The winner-takes-all strategy is then used and the class represented
by the register with the largest value is considered the class of the input object
by that genetic program.

This program output representation for the different classes is very similar
to a feed forward neural network classifier [10]. However, the structure of such
an LGP program is more flexible than that of the feed forward neural network.

2.3 Evolutionary Operators

We used reproduction, crossover and mutation as genetic operators. In repro-
duction, the best programs in the current generation are copied into the next
generation without any change.

We used two different forms of mutation [11] in this work. Macromutation

involves the replacement of an entire instruction with a randomly generated one.
Micromutation changes only either the destination register, a source register or
the operation. These operations can cause dramatic changes in the DAG that a
program represents [12].

In the crossover operator, we randomly choose a section from each of the
two parents, then swap them to produce offspring. If a newly produced program
is longer than the maximum length allowed, then an instruction is randomly
selected and removed until the program can fit into the maximum length. This
is similar to two-point crossover in GAs[13], but the two sections chosen from
the parents can have different lengths here.

2.4 The Old Fitness Function and the Hurdle Problem

Given that the size of the training set must be finite, any fitness function can
only be an approximation to an program’s true fitness. This can lead to problems
such as overfitting, where a program’s true fitness is sacrificed for fitness on
the training set. In a multi-class object classification problem, a program’s true
fitness is the fraction of the feature space it can correctly classify. A good fitness
function is one which accurately estimates this fraction.

A typical fitness function for classification problem is the error rate of a pro-
gram classifier. This was also used in our early experiments. While it performed
reasonably well, this fitness function frequently fails to accurately estimate the
fraction of the feature space correctly classified by a program.

Figure 1 shows a simple classification problem with two features. Figure 1(a)
shows the true feature space — feature vectors of class c1 objects always appear
in the fraction of the feature space denoted “c1”, and similarly for the fractions
denoted “c2” and “c3”. Figure 1(b) shows that program1 misclassifies two ob-
jects of c2 as c3. This program has an error rate of 18% (2/11). Figure 1(c)
shows that program2 misclassifies one object from class c3 and one object from
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Fig. 1. The hurdle problem. Solid objects are misclassified.

class c1 as c2. This program also has an error rate of 18% and will be treated the
same as the program1. program2 actually approximated the true fitness more
accurately than program1, but the fitness function cannot accurately reflect this
difference.

We call this problem the hurdle problem. It occurs when (any two) classes
have a very complex boundary in the feature space. In such a situation, it is
easy to classify the bulk of fitness cases for one class correctly, but learning to
recognise the other class often initially comes only at an equal or greater loss
of accuracy in classifying the first class. This creates a strong selection pressure
against making the classification boundary in the feature space more complex
and GP with such a fitness function often cannot surmount the hurdle.

2.5 The Decay Curve Fitness Function

To address the hurdle problem, we introduced a new fitness function, the decay

curve fitness function to estimate true fitness more accurately. The new fitness
function uses an increasing penalty for each of the Mc misclassifications of some
class c, as shown in equation 1.

fdecay =
∑

c

Mc
∑

i=0

αβi/N (1)

The values of α and β are determined through empirical search. We used a fitness
function with α > 1 to approximate the true fitness so that the penalty of later
misclassifications increased exponentially. N is the number of training examples.

Obviously, as α approaches 1.0 and β approaches 0.0, the curve becomes
progressively flatter and more similar to a traditional fitness function (error rate
in this case).

3 Experiment Design and Configuration

3.1 Data Sets

Experiments were conducted on three different image data sets providing object
classification problems of increasing difficulty. Examples are shown in figure 2.
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Class1 (DC) Class2 (LC)

Class3 (DS) Class4 (LS)

Fig. 2. Image data sets. (a) shape; (b) digit15; (c) digit30.

The first data set (figure 2a) was generated to give well defined objects against
a relatively clean background. The pixels of the objects were produced using a
Gaussian generator with different means and variances for each class. Four classes
of 600 small objects (150 for each class) were used to form the classification data
set. The four classes are: dark circles (class1), light circles (class2), dark squares
(class3), and light squares (class4). This data set is referred to as shape. The
objects in class1 and class3, and in class2 and class4 are very similar in the
average values of pixel intensities, which makes the problem reasonably difficult.

The second and third data sets are two digit recognition tasks, each consisting
of 1000 digit examples. Each digit is represented by a 7×7 bitmap image. In the
two tasks, the goal is to automatically recognise which of the 10 classes (0, 1,
2, ..., 9) each bitmap belongs to. Note that all the digit patterns have been
corrupted by noise. In the two tasks (figure 2 (b) and (c)), 15% and 30% of
pixels, chosen at random, have been flipped. In data set 2 (digit15), while some
patterns can be clearly recognised by human eyes such as “0”, “2”, “5”, “7”,
and possibly “4”, it is not easy to distinguish between “6”, “8”and “3”. The
task in data set 3 (digit30) is even more difficult — human eyes cannot recognise
majority of the patterns, particularly “8”, “9” and “3”, “5” and “6”, and even
“1”, “2” and “0”. In addition, the number of classes is much greater than that
in task 1, making the two tasks even more difficult.

3.2 Primitive Sets

Terminals. In the shape data set, we used eight features extracted from the
objects and an random number as the terminal set. The eight features are shown
in figure 3.

For the two digit data sets, we used the raw pixels as the terminal sets,
meaning that the feature vector of each object has 49 values. The large number
of terminals makes these tasks more difficult, but we expect that the GP evolu-
tionary process can automatically select those highly relevant to each recognition
problem.
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Feature LGP Index Description

f1 cf[0] mean brightness of the entire object

f2 cf[1] mean of the top left quadrant

f3 cf[2] mean of the top right quadrant

f4 cf[3] mean of the bottom left quadrant

f5 cf[4] mean of the bottom right quadrant

f6 cf[5] mean of the centre quadrant

f7 cf[6] standard deviation of the whole object

f8 cf[7] standard deviation of centre quadrant

Fig. 3. Terminal set for the shape data set.

Functions. The function set for all the three data sets was {+, -, *, /,

if}. Division (/) was protected to return 0 on a divide-by-zero. if executes the
next statement if the condition is true.

3.3 Parameters and Termination Criteria

The parameter values used for the LGP system for the three data sets are shown
in table 1. Evolution is terminated at generation 50 unless a successful solution
is found, in which case the evolution is terminated early.

Table 1. Parameter values for the LGP system for the three data sets.

parameter name shape digit15 digit30 parameter name shape digit15 digit30

pop size 500 500 500 macromutation rate 30% 30% 30%
max program length 15 35 35 micromutation rate 30% 30% 30%
reproduction rate 10% 10% 10% α 1.2 1.2 1.2
crossover rate 30% 30% 30% β 0.24 0.24 0.24

3.4 TGP Configuration

The LGP approach developed in this work was compared to the basic TGP
approach [3]. In TGP, the ramped half-and-half method was used for initial
generation and mutation[2]. The proportional selection mechanism and the re-
production, crossover and mutation operators [3] were used in the learning and
evolutionary process. The program output was translated into a class label ac-
cording to the static range selection method [4].

The TGP system used the same terminal sets, function sets, fitness function,
population size and termination criteria for the three data sets as the LGP
approach. The reproduction, mutation, and crossover rates used were 10%, 30%,
and 60%, respectively. The program depth was 3–5 for the shape data set, and
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4–6 for the two digit data sets. All single experiments were repeated 50 times.
The average results are presented in the next section.

The program depths above in TGP were derived from the LGP program
lengths based on a heuristic. An LGP instruction typically consists of one or
two arguments and an operation, each corresponding to a node in a TGP pro-
gram tree. Considering that each TGP operation might be used by its children
and/or parents, an LGP instruction roughly corresponds to 1.5 tree nodes. As-
suming each non-leaf node has two children (or more for some functions), we can
calculate the expressive capacity of a depth-n TGP in LGP program instructions.

4 Results and Discussion

4.1 Classification Performance

Classification Accuracy. Table 2 shows a comparison between the LGP ap-
proach developed in this work and the standard TGP approach for the three
object classification problems.

Table 2. Classification accuracy of the LGP and TGP on the three data sets.

Data set Method Training Set Accuracy % (µ ± σ) Test Set Accuracy % (µ ± σ)

shape LGP 100.00 ± 0.00 99.91 ± 0.17
TGP 85.04 ± 16.49 84.41 ± 17.17

digit15 LGP 68.02% ± 4.16% 62.48% ± 5.03%
TGP 52.60% ± 6.65% 51.80% ± 6.85%

digit30 LGP 55.22% ± 3.49% 51.04% ± 4.26%
TGP 41.15% ± 5.03% 35.00% ± 6.17%

On the shape data set, our LGP approach always generated a genetic program
which successfully classified all objects in the training set. These 50 program
classifiers also achieved almost perfect classification performance on the unseen
objects in the test set. On the other hand, the TGP approach only achieved about
85.04% and 84.41% accuracy on the training and the test sets, respectively. In
addition, the LGP approach resulted in a much smaller standard deviation than
the TGP approach. This shows that the LGP method is more stable and more
reliable than the TGP approach on this problem. These results suggest that the
LGP approach greatly outperforms the TGP approach on this data set in terms
of the classification accuracy.

The classification results on the two digit data sets show a similar pattern
to those on the shape data set. In both cases, the LGP approach achieved a
higher average value and a lower standard deviation of the classification accuracy
on the test set than the corresponding TGP approach. The improvements are
quite considerable, suggesting that the LGP approach is better than the TGP
approach for these multi-class object classification problems.
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Training Efficiency. Inspection of the number of generations used reveals that
the LGP approach is more efficient than the TGP approach in finding a good
genetic program classifier for these object classification problems. For example,
in the shape data set, the µ ± σ of the number of generations for the LGP
approach was 16.46 ± 10.22, which was much smaller than the corresponding
number for the TGP approach (41.22 ± 14.11).

4.2 Comprehensibility of the Evolved Genetic Programs

To check whether the genetic programs evolved by the LGP approach are easy
to interpret or not, we use a typical evolved program which perfectly classified
all objects for the shape data set as an example. The code of the evolved genetic
program is shown in figure 4 (left). Note that structural introns are commented
using //. The DAG representation of the simplified program is shown in figure
4 (right) after the introns are removed.

//r[1] = r[1] / r[1];

//r[3] = cf[0] + cf[5];

//if(r[3] < 0.86539)

//r[3] = r[3] - r[1];

r[0] = 0.453012 - cf[1];

//r[3] = r[2] * cf[5];

r[1] = r[0] * 0.89811;

if(cf[6] < cf[1])

r[2] = 0.453012 - cf[3];

r[3] = cf[4] - 0.86539;

4

0.453

0.87
F F

F

F

7
42

5

0.9

* if

1C C2 C3
C

Fig. 4. A sample program evolved by LGP.

In this program, the array cf (cf[0] to cf[7]) are the eight feature ter-
minals (f1, ..., f8) as described in figure 3 and the register array r (r[0] to

r[3]) correspond to the four class labels (class1, class2, class3, class4).
Given an object, the feature values and the register values can be easily calcu-
lated and the class of the object can be simply determined by taking the register
with the largest value. For example, given the following four objects with differ-
ent feature values:

cf[0] cf[1] cf[2] cf[3] cf[4] cf[5] cf[6] cf[7]

----------------------------------------------------------------------

Obj1 (class1): 0.3056 0.3458 0.2917 0.2796 0.3052 0.1754 0.5432 0.5422

Obj2 (class2): 0.6449 0.6239 0.6452 0.6423 0.6682 0.7075 0.1716 0.1009

Obj3 (class3): 0.2783 0.3194 0.2784 0.2770 0.2383 0.2331 0.2349 0.0958

Obj4 (class4): 0.8238 0.7910 0.8176 0.8198 0.8666 0.8689 0.2410 0.1021

we can obtain the following register values and classification r[] for each object
example.
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Object True-Class r[0] r[1] r[2] r[3] Classified-Class

Obj1 class1 0.1474 0.13240 0.0000 -0.5602 class1
Obj2 class2 -0.1919 -0.1723 -0.1893 -0.1972 class2
Obj3 class3 0.1747 0.1569 0.1760 -0.6271 class3
Obj4 class4 -0.3708 -0.3330 -0.3668 0.0012 class4

As can be seen from the results, this genetic program classified all the four
object examples correctly. Examining the program and features used suggests
that the genetic programs evolved by LGP are quite comprehensible.

Further inspection of this program reveals that only four of eight features
were selected from the terminal set. This suggests that the LGP approach can
automatically select features relevant to a particular task. The DAG represen-
tation of the program (figure 4b) shows that the LGP approach can co-evolve
sub-programs together each for a particular class and that some terminals and
functions can be reused by different sub-programs.

On the other hand, a program evolved by the TGP approach can only produce
a single value, which must be translated/interpreted into a set of class labels. A
typical genetic program evolved by the TGP approach is:

(* (- (+ (/ f1 -0.268213) (/ -0.828695 f6))

(/ (/ f7 f6) (+ -0.828695 f5)))

(* (- (/ f1 f5) (/ f5 f6))

(+ (- f4 -0.828695) (+ f1 f2)))

)

This program used almost all the features and it is not clear how it does
the classification. Such programs are more difficult to interpret for multi-class
classification problems.

4.3 Impact of the New Fitness Function

To investigate whether the new fitness function is helpful in reducing the hurdle
problem, we used the shape data set as an example to compare the classification
performance between the new fitness function and the old fitness function (error
rate).

When doing experiments, we used a slightly different setting in program
size. Notice that the frequency of the hurdle problem will drop as the program
size is increased, although it is not eliminated. Hence the LGP programs in the
assessment of the new decay curve fitness function use a program length 10,
which is still long enough to express a solution to the problem — solutions have
been found when the maximum length is 5. In TGP the tree depths are left at
3–5. These limits are likely to be representative of the situation when a much
more difficult problem is being addressed. In such tasks, the maximum depth
which is computationally tractable with existing hardware may also be so short
relative to the problem’s difficulty that the hurdle problem is a major issue.

Table 3 shows the classification results of the two fitness functions using both
the TGP and the LGP methods for the shape data set. For the TGP method, the



93

new fitness function led to a very significant improvement on both the training
set and the test set. For the LGP method, the classification accuracy was also
improved using the new fitness function, but the improvement was not as signif-
icant. This was mainly because the LGP method with the old fitness function
already performed quite well (98.76%) due to the power of LGP. When using ei-
ther the old or the new fitness functions, the LGP method always outperformed
the TGP method. This is consistent with our previous observation.

Table 3. A comparison of the two fitness functions on the shape data set.

Method Fitness Function Training Accuracy Test Accuracy
(µ ± σ) (µ ± σ)

TGP old 77.31% ± 6.74% 77.14% ± 6.68%
new 85.04% ± 16.49% 84.41% ± 17.17%

LGP old 98.90% ± 4.98% 98.76% ± 5.04%
new 99.97% ± 0.11% 99.90% ± 0.25%

Further inspection of the results using the TGP method on the shape data
set shows that only 6 of the 50 runs using the old fitness function had a test
or training accuracy greater than 75%. When those 6 runs are excluded, the µ
and σ becomes 74.95% ± 0.0019% on the training set and 74.86% ± 0.0024% on
the test set. These figures indicate how solid the hurdle actually is in situations
where the problem is at the limit of a GP configuration’s expressiveness. By
using the new decay curve fitness function, 36 of the 50 runs finished with test
and training accuracies greater than 75%.

5 Conclusions

The goal of this paper was to investigate an approach to the use of LGP and a
new fitness function for multi-class object classification problems. This approach
was compared with the basic TGP approach on three image data sets providing
object classification problems of increasing difficulty. The results suggest that
the LGP approach outperformed the TGP approach on all tasks in terms of
classification accuracy and evolvability.

Inspection of the evolved genetic programs reveals that the programs evolved
by the LGP approach are relatively easy to interpret for these problems. The
results suggest that the LGP approach can automatically select features relevant
to a particular task, that the programs evolved by LGP can be represented as
a DAG, and that the LGP approach can simultaneously sub-programs together,
each for a particular class.

A comparison between the old fitness function and the new fitness function
has also highlighted the nature of the fitness function as an approximation to
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the true fitness of a problem. The results show that the new fitness function,
with either the TGP approach or the LGP approach, can bring better and more
consistently accurate results than the old fitness function.

Although developed for multi-class object classification problems, we expect
that this approach can be applied to other multi-class classification problems.
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