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Abstract

Genetic programming (GP) has had some limited success with solving multi-
class classification problems, however the performance of GP classifiers still lags
behind that of alternative techniques. This project investigates an alternative
form of GP, Linear GP (LGP), which demonstrates great promise as a classifier.
By utilizing the structure of LGP programs, we develop several new LGP op-
erators which provide a significant performance improvement. These include a
new mutation operator which identifies bad instrutions for mutation, and a new
crossover operator which mimics biological crossover between alleles.
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Chapter 1

Introduction

Identifying and classifying objects is a common and important task which humans perform
daily. Knowing the difference between the cereal and the rat poison, identifying which
person is your mother and which is your father, these and many similar classification tasks
are all extremely important. These problems are so trivial for humans that we do not even
realize we are performing them all the time. However, there are other classification tasks
which only some human experts with specialized knowledge can perform, and where even
experts often make mistakes. An example of such a problem is determining if a medical
test result is positive for cancer. For many years people have been designing algorithms
and machines to assist in classifying data where domain experts are rare and expensive [13].
This approch is also applied to data which is too complex, too abstract, or too copious for
human understanding.

This project focuses on solving classification problems of a particularly challenging type:
multiclass classification problems. These are classification problems where the number of
possible classes is large, such as digit recognition or face recognition. It is relatively easy to
solve classification problems where we need only decide between two alternatives. How-
ever when the number of alternatives is large the problem difficulty typically increases as
well [6].

The problems we are most interested in training machines to solve are those which are
sufficiently complex that we cannot design machines to precisely solve them. We have to
train some machine on existing data, much as a human learns how to read and write. Im-
proving the performance of an existing machine by training it on data is the goal entire goal
of machine learning. Two things are important when training machines: how quickly we
can train them and how well they perform after training. Clearly a machine which has per-
fect performance after after many centuries of training is of little use to us, and similarly a
machine which can be trained in a matter of seconds but has terrible performance is also of
no use.

GP is a method for evolving computer programs as potential solutions, in order to solve
a user defined problem [15]. GP is inspired by biological evolution, where life forms adapt
to optimize their performance in their environment. Similarly we wish to evolve computer
programs to give the best possible performance on the problems we want to solve [7, 10].

Genetic Programming (GP) can be used to find a good solution to many problems quickly
and automatically. GP has several advantages over alternative methods. In particular, it is a
more flexible technique and allows for creation of potential solutions not envisioned by the
programmer [15]. Therefore the ability to use GP methods to solve multiclass classification
problems is a highly desirable outcome.

Conventional GP methods using Tree based GP (TGP) are effective at solving many bi-
nary classification tasks, but often perform poorly on multiclass classification problems [33].
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An alternative form of GP, Linear GP (LGP) has been shown to have superior performance
to TGP on many classification problems [8] while retaining the good features which make
conventional GP attractive as a search technique. However despite its promise, according
to our investigations it appears that relatively little research has been done to improve the
performance of LGP. Hence we believe that LGP is a rich ground for research into improving
the performance of GP on multiclass classification problems.

1.1 Goals

We aim to investigate LGP and compare it with conventional TGP. We then aim to improve
the LGP learning algorithm by developing several new operators for LGP and determining
their effectiveness.

Specifically, this report aims to achieve the following research goals:

• To compare the performance of conventional TGP techniques to conventional LGP and
establish a set of baseline results.

• To devise a model of instruction correctness and use it to develop a new mutation
operator which preferentially mutates poor instructions.

• To determine an abstract structure for LGP programs, and use this structure to develop
a new crossover operator which alleviates the problem of building block disruption.

• To improve our new crossover operator by devising a heuristic which predicts which
parts of the parent programs should be exchanged in order to maximize the probability
of high fitness offspring.

• To further improve the new crossover operator by developing elitism and selection
operators which complement previously developed techniques.

In order to investigate these goals, three multiclass classification problems of increasing dif-
ficulty will be used to empirically compare performance in a series of expierments.

1.2 Contributions

This project makes the following contributions:

• This project shows that basic LGP performs comparably to a state-of-the-art TGP clas-
sifier. To do this we describes how to use linear genetic programming (LGP) to solve
multiclass object classification problems and develop a package in java for performing
LGP. This and an existing TGP package are used to empirically compare the perfor-
mance of several TGP classification strategies to LGP. Statistical significance testing is
used to show that LGP can significantly outperform a simple TGP approach.

• This project develops a new mutation operator based on the principle of preferentially
mutating the badly performing parts of programs. As far as we have been able to as-
certain this new operator is significantly different to all existing techniques. This new
operator significantly outperforms the existing mutation operator on all problems. To
develop this operator we devise a model of instruction correctness for LGP programs.
A paper on this method was submitted to the IVCNZ ’09 conference for review and
publication and we are currently awaiting acceptance.
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• This project develops a new form of crossover based on the LGP program structure de-
vised during development of the selective mutation operator. As far as we have been
able to ascertain this new operator is significantly different to all existing techniques. It
is shown that the this new crossover operator outperforms the conventional crossover
operator on all problems. A combinatorial argument is used to show that this new
form of crossover restricts the number of possible exchanges and is less disruptive to
building blocks than conventional crossover.

• This project develops a new crossover operator which increases the likelihood of high
fitness offspring without significantly increasing the computational cost. We develop
a heuristic which can be used to predict which program code should be exchanged to
give the best offspring. It is shown that the this new crossover operator outperforms
the conventional crossover operator and the previously developed crossover operator
on all problems.

• This project develops two new operators which focus on increasing the likelihood that
the two programs chosen as parents for crossover have diverse strengths. It is shown
that LGP with these new operators and our new crossover operator has significantly
superior performance to LGP with only the new crossover operator. We show how we
can increase the diversity of the population through a new elitism operator. We also
show how we can select the second parent to complement the first parent through a
new selection operator.

1.3 Organization

The remainder of this paper is organized as follows:

• Chapter 2 covers a survey of the relevant literature in this area.

• Chapter 3 describes the data sets and parameter configurations used for empirical
testing during the course of this project.

• Chapter 4 describes the first of the contributions, a comparison of TGP and LGP as
methods for solving multiclass object classification problems.

• Chapter 5 devises an abstract model for LGP programs and uses this to develop a
selective mutation operator which focuses on mutating poor instructions.

• Chapter 6 further develops the abstract structure of LGP programs and uses this struc-
ture to develop a new crossover operator which alleviates the problem of building
block disruption.

• Chapter 7 devises a heuristic which can be used to predict the benefits of exchanging
two class trees. This heuristic is used to improve the crossover operator developed in
chapter 6.

• Chapter 8 develops a new elitism operator and a new selection operator both of which
act to increase the likelihood that crossover occurs between parents with diverse strengths.

• Chapter 9 presents the project conclusions as well as possible future work.

• An outline of the new program package JVUWLGP is described in Appendix A.
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Chapter 2

Literature Survey

This chapter reviews the current knowledge and previous research upon which this project
builds. Firstly, we give an overview of Machine Learning, Evolutionary Computation, Genetic
Programming (GP) and Linear Genetic Programming (LGP). This is followed by an overview
of classification problems and GP work related to solving such problems. We conclude with
a brief section on current limitations.

2.1 Overview of Machine Learning

Machine Learning is a subfield of Artificial Intelligence (AI) which deals with automating
the development of some part of a system which performs some task [4, 8]. The part of
the system being learnt can be the algorithm itself, the parameters to the algorithm, or the
learning process. Any automated process which learns from data is performing machine
learning, be it teaching a robot to walk or training a computer to recognize cancerous tissue.
This data can be anything from a large database of customer data to real time video feeds,
anything which exhibits patterns which can be learnt. There are three major types of Ma-
chine Learning: Supervised Learning, Unsupervised Learning and Reinforcement Learning[27].
This project focuses on Supervised Learning, but we will briefly describe and contrast all
three methods.

2.1.1 Main Types of Machine Learning

Supervised Learning/Classification

In supervised learning [25], elements of the input data set are labeled with their desired
output. The machine reads in the inputs and computes an output, which it can then compare
to the desired output. If the generated output differs from the desired output, the machine
then adjusts its internal structure to correct the generated output. This can be visualized as
someone supervising a machine while it tries to learn, and telling it when it makes a mistake.
A typical example of supervised learning might be to identify cancerous tissue in medical
testing. The machine would be presented with a series of test results which have already
been labelled by a medical expert.

Classification is an area of Supervised Learning. A classification problem is one where
we want to determine the class or type of an object given some data about the object. Typical
examples include determining the gender of a person based on their taste in clothing, or
recognizing handwritten digits from their individual pixels. When attempting to solve a
classification problem we train a machine to correctly out the class of various objects given
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that data about them is provided as input. Classification problems come in two types: binary
classification problems and multiclass classification problems.

• Classification into n = 2 classes is called binary classification.

• Classification into n > 2 classes is called multiclass classification.

Many machine learning techniques, particularly genetic programming, excel at binary clas-
sification tasks but struggle with multiclass classification[8].

The aim of classification problems is to maximize the number of test set instances cor-
rectly classified, as this is a measure of the classifiers performance. Hence the fitness of a
classifier is proportional to the number of incorrectly classified training set instances.

We can measure the performance of a learned classifier using a variety of techniques.
The most elementary approach is the classification accuracy. This is the number of objects
which are correctly classified over the total number of objects. A perfect classifier has 100%
classification accuracy, i.e. it classifies every object correctly. The worst possible classifier
has 0% classification accuracy, i.e. it classifies every object incorrectly.

Classification is difficult because two members of the same class can vary greatly, or
two members of different classes can look very similar [6]. For instance if you look at any
two peoples handwriting, you will immediately see differences. It is hard for machines to
learn to ignore these differences and focus on the particular features which are what really
characterize the digit.

Unsupervised Learning

In unsupervised learning, elements of the data set are unlabeled. This means that unlike
supervised learning, there is no expected output which the machine can use to evaluate
its current performance. Instead, in unsupervised learning we use some distance metric
to measure the distance between data points. We can then look for patterns in the data
based on the distances between data points. Unsupervised learning is typically interested
in finding correlations in the data set, for instance determining the relationship between age
and income level [6].

Reinforcement Learning

In reinforcement learning, the machine is rewarded every time it performs a useful action
[25]. In this way we guide the machines’ learning without expecting specific behavior. The
machine will start off performing random actions, and over time will use the rewards asso-
ciated with these actions to shape its future behavior. These rewards may be either positive
or negative, for instance a positive reward may occur when a robot soccer player scores a
goal, and a negative reward when the other team scores.

2.1.2 Paradigms of Machine Learning

There are four main paradigms in Machine Learning:

- Case-based Learning Paradigm: In Case-based learning we directly compare the test in-
stance to the training data. An example of case-based learning is the Nearest Neighbor
Algorithm, where we classify a new object by finding the closest existing object with a
known label.
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- Inductive Learning Paradigm: In Inductive Learning we derive a rule from the training
data based on generalization, and apply this rule to instances of the test set. An exam-
ple of Inductive Learning is the Decision Tree classifier [22].

- Connectionist Learning Paradigm: In Connectionist Learning we learn by making and
changing connections between nodes. An example of Connectionist Learning is Neu-
ral Networks (NNs). NNs are based on mathematical models of groups of neurons.
Typically we decide on a network structure before training, and learning is purely
based on changing the values, or weights, on the connections between nodes [24].

- Evolutionary Learning Paradigm: In Evolutionary Learning we learn by improving indi-
viduals in a population over many generations, where individuals are candidate so-
lutions to a problem [14, 5, 9]. This results in a number of individuals who are well
suited to solving our problem. This can be easily visualized in terms of biological evo-
lution, where the species better suited to the environment survive, and the less well
suited ones die off. This type of learning is discussed in more detail in section 2.2.

2.1.3 Data Sets

Data sets are required in Machine Learning to train the machine and test its effectiveness
once trained. Typically a data set is divided up into three parts; a training set, a validation
set, and a test set. The training set is used to train the machine by comparing outputs and
adjusting internal structure. The test set is used to evaluate the performance of the machine
on unseen data. The validation set is used to prevent over-fitting during training. Over
fitting occurs when the machine stops generalizing and starts learning specific details about
the elements in the training set. When over-fitting occurs the performance on the training
set increases, but the performance on the test set decreases.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a Machine Learning paradigm inspired by biological evo-
lution devised in the 1950’s. EAs mimic Darwinian natural selection for the purpose of
optimizing a solution to a predefined problem [7, 10]. General EA learning procedes as
follows:

• Initialize a population of random individuals (an individual is a candidate solution).
Examples of individuals include computer programs and the parameters for algo-
rithms.

• Select individuals from the population to reproduce, favoring individuals with better
fitness (the fitness of an individual is proportional to how well they perform on the
training data). Basically, better programs should reproduce more often.

• Generate a new population of individuals by applying genetic operators to the selected
individuals. Genetic operators change the “DNA” or code of our programs in a similar
way to what occurs in biological reproduction. Standard genetic operators are:

- Reproduction: Copy an individual without change into the new population.

- Recombination: Randomly exchange substructures between individuals and place
both into the new population.

- Mutation: Randomly replace a substructure in an individual and place it into the
new population.
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• Iterate steps 2-3 until either a perfect solution is found, or the iteration limit is reached.
Each iteration is referred to as a generation due to the obvious biological parallels.

All EAs follow this general model, and the borders between different types of EA’s have
blurred over the years, however several distinct approaches still exist. These approaches in-
clude Genetic Algorithms (GAs), Evolutionary Strategies (ES), Genetic Programming (GP),
particle swarm optimization, and ant colony optimization. In this project we review only
the most common ones such as GA, ES and GP. GP will be discussed in the next section in
detail as it is the focus of this project.

2.2.1 Genetic Algorithms

GAs, first popularized in 1975 by J. Holland [11], are another approach to Evolutionary
Algorithms. In GA the individuals are fixed length bit strings known as chromosomes and
the primary genetic operator is crossover. The emphasis placed on recombination is the key
distinguishing feature of Genetic Algorithms. In crossover two parent individuals exchange
parts of their chromosomes to create two new individuals.

2.2.2 Evolutionary Strategies and Evolutionary Programming

ES and EP are two very similar EA approaches. Both use vectors of real numbers to represent
individuals. Both use mutation as the primary genetic operator. The key difference is that
in ES the vectors of real numbers themselves are the solutions, while in EP the vectors are
translated into finite state machines.

2.3 Genetic Programming

GP is the technique of evolving computer programs to solve problems. GP is the focus
of this research project and will be covered in much more depth then the previous three
EA approaches. GP as a technique was first mentioned by Stephen F. Smith in 1980 and
Forsyth in 1981 [9], but the first instance of GP in its current form was given by Cramer
in 1985 [5]. The technique was expanded on and popularized by Koza in 1989 [16]. GP is
a relatively new approach to Machine Learning. The distinguishing features of GP are its
representation and its operators; the individuals in GP are stand-alone programs and the
operators are modified accordingly. There are several different representations in GP which
have been explored to varying degrees, the three major ones are detailed below.

2.3.1 Tree-Based GP

The original representation for GP programs/individuals, and still the most common, is
Tree-Based GP (TGP) [16]. In TGP programs are either trees or Lisp S-expressions, with these
two representations being interchangeable. An example TGP program is shown in Figure
2.1.

A tree is made up of functions, constants and feature values. The leaf nodes of the tree are
constants and feature values and the non-leaf nodes are functions. Constants return a con-
stant value set when the individual is initialized, feature values return the value associated
with the training example being evaluated, and functions return the result of the function
applied to its children. The functions are drawn from a pool determined by the programmer
and depend heavily on the program domain. Typical examples include addition, subtrac-
tion, multiplication, protected division and simple conditionals such as i f statements. The
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(a) Program code (b) Functional tree

Figure 2.1: An example TGP Program

arguments include image features, constant real numbers (constants), and other arithmetical
expressions.

The tree has a single root node, so the output of a program for a given training example
will be a single value. In basic Tree-Based GP all nodes return the same type and all func-
tional nodes take the same type as arguments. This type is often floating point numbers.
There is also a variant of GP called Strongly Typed Genetic Programming (STGP) which al-
lows nodes to input and output different values [12]. This has the advantage of allowing
for more powerful functions, at the cost of increased complexity and decreased flexibility of
genetic operators.

2.3.2 Linear Graph GP

Linear GP (LGP) [2, 3] is another widely used cousin of Tree-Based GP. In LGP, programs
are finite sequences of instructions from an imperative programming language or machine
language, quite different to the functional trees which characterize TGP. Typical languages
which are often used for LGP are such as Java, C++, or register machines, in this project we
use the language of register machines.

• Register machines consist of an array of values, known as the registers, and a sequence
of instructions which operate on these registers.

• Register Machine instructions consist of one destination register, one operator, and
two arguments. The arguments can be constants, image features, or other registers.

• An LGP program is executed by initializing all registers to the value 0, then executing
the instructions in order. The output consists of the final register values: the numbers
in the registers after all instructions have been executed.

• The number of registers is determined by the user based on the problem.

The program is a finite sequence of instructions, and the output is read from the appro-
priate registers when the program terminates. An example LGP program is shown in Figure
2.2.

Graph GP

Linear GP can also be seen as Graph GP, because a LGP program can be translated into a
multi rooted directed graph. This gives LGP a distinct advantage in flexibility compared to
Tree-Based GP, where all programs must conform to the tree model with a strict hierarchy
and a single output.
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r[1] = 3.1 + f1;
r[3] = f2 / r[1];
r[2] = r[1] * r[1];
r[1] = f1 - f1;
r[1] = r[1] - 1.5;
r[2] = r[2] + r[1];

(a) Program code (b) Directed Acyclic Graph

Figure 2.2: An example LGP program

Code Introns

Linear GP has the distinctive feature of code introns, regions of non-effective code resulting
from the structure of the program [2]. Intron instructions have no effect on the program out-
put simply by virtue of the program structure. For instance, if we assign a value to a register,
any previous value held in that register is deleted. If the value was not previously used then
the instructions which calculated it are redundant and hence introns. Introns are so named
because they are similar to biological introns, redundant areas of genetic material appearing
seemingly at random within an organism’s DNA. Conflicting views are held over code in-
trons, with some experts holding that they are vital to code evolution, and others holding
they serve no useful purpose and simply slow down execution. Those who believe introns
aid program evolution do so for two reasons: introns may reduce the effects of variation on
effective code, and introns allow for code variation which does not change code fitness.

2.4 Terminal Set and Functional Set

Two important aspects of GP are the terminal and functional sets. The functional set is the
set of all possible functions which can appear in evolved programs. The terminal set is the
set of possible arguments which can appear in evolved programs.

The terminal set consists of constants as well as feature values. Constants are randomly
generated from a predefined range, either at initialization or when a mutation occurs. Fea-
ture values are variables in the program which take their value from the object being pro-
cessed.

Functionals operate on inputs to produce outputs. Limiting the functionals to ones
which input and output the same types increases interoperability but decreases expressive-
ness. This is known as closure: A set of functionals and terminals has closure if every func-
tion output and every terminal can be used as an input to any other function. A functional
or terminal set without closure may result in programs which are invalid.

The set of possible functionals and terminals determines the expressiveness of the pro-
grams in the population. A more diverse variety of complex functionals and a larger set of
potential terminals increases the expressiveness of the program, however it also increases
the complexity of the program. We must include a sufficient set of functions and terminals,
one out of which it is possible to construct as solution, but we also want the minimal suffi-
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r0 := r1 + 1
r2 := r2 - 1
r1 := r1 * r1
r1 := r2 * r2
r2 := r2 / r1

(a) Parent

r0 := r1 + 1
r2 := r2 - 1
r0 := r3 * 2/– Start of mutation
r5 := r5 - 9/– End of mutation
r2 := r2 / r1

(b) Child

Figure 2.3: The LGP mutation operator

cient set, as this will have minimal complexity. Thus when performing GP the aim is always
to include the minimum terminal/functional set which is sufficient to express the optimal
solution.

2.4.1 GP Program Generation

GP relies on having an initial population of individuals on which to operate. This initial
population is usually randomly generated [16], with the method of generation of an indi-
vidual within the population differing based on which GP approach is being used.

In Tree-Based GP there are three standard approaches: Grow, Full, and Ramped. Grow
builds a tree from the root down by randomly selecting terminals or non-terminals as chil-
dren for nodes. Full ensures that each program tree branch has the same depth by select-
ing only non-terminals until a predefined depth is reached. Ramped involves performing
Full starting with an initial depth and increasing this depth periodically. Ramped results in
equal numbers of programs at varying depths. A common extension to Ramped is Ramped
Half-and-Half : A compromise between Grow and Full, in which half the individuals in the
population are generated using Full, and half are generated using Grow.

In LGP there is a predefined program size range (i.e. a max allowed program size and a
minimum allowed program size). Random programs are a sequence of instructions where
the number of instructions is a random number selected to lie within a predefined range.

2.5 GP operators

The genetic operators reproduction, mutation and crossover described in section 2.2 take on
new meaning when applied to the GP method.

- Reproduction: In Reproduction, some number of the best individuals in the current gen-
eration are copied whole to the next generation. Reproduction ensures the fitness of
the population does not decrease.

- Mutation: In Mutation, an individual is copied to the mating pool, following which a
random part of the individual’s code is replaced with randomly generated code. In
Tree-Based GP this involves replacing a subtree with a new randomly generated one.
In LGP a subsequence of instructions is replaced with a randomly generated one. Con-
straints are placed on both the size of the subcomponent being replaced and the size of
the component which is replacing it. Mutation ensures the population always contains
a variety of individuals, this is known as maintaining genetic diversity.

- Crossover: In Crossover, two individuals are copied to the mating pool. Following this a
subcomponent from each of them is selected and the two subcomponents are switched.
In Tree-Based GP this means exchanging two subtrees, in LGP this means exchanging
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(Parent 1) (Parent 2)
r0 := r0 + 1 r0 := r0 - 2
r1 := r1 + 1 r1 := r1 - 2/– Start
r2 := r2 + 1/–Start r2 := r2 - 2/– End
r3 := r3 + 1 r3 := r3 - 2
r4 := r4 + 1/–End

(a) Parents

(Child 1) (Child 2)
r0 := r0 + 1 r0 := r0 - 2
r1 := r1 + 1 r2 := r2 + 1/–Start
r2 := r2 - 2/–Start r3 := r3 + 1
r1 := r1 - 2/– End r4 := r4 + 1/– End

r3 := r3 - 2

(b) Children

Figure 2.4: The LGP crossover operator

two sequences of instructions. Crossover allows mixing of genetic material. An ex-
ample of crossover in LGP is shown in Figure 2.4 and the code to be exchanged is
delimited.

2.6 Selection in GP

An important facet of GP is the method used to select the individuals which form the basis
of the next generation. Before we can perform crossover or mutation to produce the next
generation of individuals, we must first select a number of individuals from the current
generation on which to perform these operations. Fitter individuals should contribute more
than poorer individuals to later generations, hence fitter individuals should have a higher
likelihood of being selected.

There are many existing selection methods, here we describe three of the most common:
Proportional, Rank, and Tournament Selection [18].

- Proportional Selection: In proportional selection a given individual in the population has
a likelihood of being selected directly proportional to its fitness. This can be visualized
as spinning a roulette wheel containing a segment for each individual. The size of an
individual’s segment on the wheel is directly proportional to its fitness.

- Rank Selection: In rank selection the rank of each individual within the population is
calculated by ordering the individuals according to fitness. The likelihood of a given
individual being selected is based on a function of the rank of that individual.

- Tournament Selection: In tournament selection we choose a set number of individuals
from the population and hold a tournament between them. The individual with the
highest fitness wins the tournament automatically and is selected.

2.7 GP for Classification and Related Work

GP has been particularly successful in the problem domain of classification, regularly out-
performing other forms of machine learning [17, 23, 28, 1]. This is particularly true of Tree-
Based GP in binary classification problems. TGP programs typically output a single floating
point number, and this has a natural class interpretation; if we choose a class boundary such
as 0, then any number smaller then the class boundary is of class 1, and any number larger
than the class boundary is of class 2. This classification strategy breaks down with Multiclass
classification problems and other solutions are required [26]. Three techniques of varying
effectiveness [27] are described below.
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- Program Classification Map (PCM) is the natural extension of the above approach. If
there are K classes then the natural number line is divided up into K regions, each
of which corresponds to a class. PCM is easy to implement but often has poor perfor-
mance.

- Slotted Dynamic Range Selection is similar to PCM, but with a much larger number of
regions. Thus each class has many slots assigned to it. This technique has been shown
to be more effective then PCM on many problem types.

- Probabilistic Multiclass (PM) [32] is a classification strategy where the outputs of a pro-
gram are used to form K normal distributions where K is the number of classes. Test
instances are classified to the highest probability density function at the value of the
classifier’s output. This technique has been shown to be among the most effective
classification strategies for solving multiclass classification problems.

LGP performs well on binary classification tasks [3]. LGP is also a natural fit for Multi-
class Classification; LGP programs can be seen as multi-rooted directed graphs, where each
root can be seen as an output. We can therefore construct programs which have K outputs,
where K is the number of object classes present. The class predicted will be the one cor-
responding to the highest output. Research in this area has already provided promising
results [3, 8]. However all that said, the performance of LGP is still sub-optimal on many
problems.

2.8 Limitations

GP has proved to be both effective and flexible for solving various tasks, particularly many
classification tasks. Despite this, there are still several limitations in GP which could po-
tentiall benefit from further research. Tree-Based GP works well for many problem types,
and has been researched extensively, however it often performs poorly on some problem
types such as multiclass classification problems. Research has shown that other GP repre-
sentations such as LGP have superior performance on many of the problems Tree-Based GP
struggles with [3, 8], however the research on these representations has been limited thus
far.

Little to no development has been performed on the mutation operator. The mutation
operator is still treated as a black box, used solely for the purposes of maintaining diversity
in the population. Because mutation occurs at random, mutation will often result in a de-
crease in the performance of the mutated individual. Because the number of good programs
is much lower then the number of poor programs, as program fitness increases the likeli-
hood of a poor mutation occurring increases. This is an undesirable result, and it would be
better if the likelihood of a favorable mutation occurring could be increased.

Crossover in GP has been shown to be disruptive to fit programs, particularly as the
number of generations becomes large. This means that crossover is unlikely to combine
existing good sections of program code into new fit programs, but instead is likely to break
up these good code sections. This is highly likely to have a negative impact on both the
training time and the final classification accuracy of GP, and hence on the performance of
GP as a whole.

Work on the crossover operator has focused on new, intelligent forms of crossover which
improve the performance of GP by increasing the likelihood that good offspring will result
from the crossover process. However these new “intelligent” crossover operators often in-
crease the computation cost of crossover by a large amount. This is particularly troubling as
GP is already a computationally costly technique.
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When two individuals are selected from the population for crossover, they are selected
based on their merits as individual programs. The issue is that two individuals performing
well individually does not mean that performing crossover on them will result in good off-
spring. However at present we have no way of determining whether or not two individuals
will produce good offspring.

2.9 Summary

This chapter presents a survey of current work in the field of Machine Learning, focusing
specifically on Genetic Programming. GP has emerged as an effective and flexible technique
for a variety of tasks, in particular for classification problems. However GP still has several
limitations; these include difficulty coping with multiclass classification problems and and
tendency towards code bloat. Both of these areas are the subject of current research.

One approach to GP which has shown promise for Multiclass Classification is LGP, a
variant of GP where programs are represented as sequences of instructions from an imper-
ative programming language. However LGP in general and specifically LGP for multiclass
classification are poorly explored areas of research.

This research project will investigate Linear GP for the purposes of multiclass classifi-
cation. In particular it will focus on developing new operators for LGP which improve the
classification accuracy of LGP on multiclass classification problems.

13



Chapter 3

Data Sets and Experimental Setup

In order to empirically compare the effectiveness of the GP methods described in this report
as techniques for performing multiclass classification, we conducted a series of experiments.
Here we describe the data sets and parameters used during the course of these experiments.

3.1 Data Sets

In the experiments, three image datasets containing classification problems of increasing
difficulty were used. These obtained these data sets from the UCI machine learning reposi-
tory [29]. All of the datasets consist of multiclass classification problems from the computer
vision problem domain. Object detection, feature extraction, and class labeling have all per-
formed by other parties prior to this project.

Multiclass classification problem difficulty is typically determined by three key factors:
the number of classes, the variation in features, and feature overlap[13]. Problems with a
larger number of classes are typically more difficult to solve, particularly for GP classifiers.
Problems with more feature variation within the instances of a single class are also typically
more difficult to solve. Finally, problems where two instances from different classes have
similar features are also typically difficult to solve.

The problems used in the experiments are all intentionally difficult to solve, in order to
make performance comparison between various methods easier.

3.1.1 Artificial Characters

This data set consists of 5000 artificially generated characters from the English alphabet. The
data set was generated using a first order theory which describes the structure of 10 capi-
tal letters from the English alphabet and a random choice theorem prover which accounts
for variation in the instances. This is a class balanced problem, so each class has an equal
number of instances in the data set. Some examples are shown in Fig. 3.1.

Figure 3.1: Artificial Characters Instance Examples

The instances in this data set consist of vectors each with two coordinates and two higher
level features where the high level features are:

14



1. The length the vector.

2. The length of the diagonal of the smallest rectangle which includes the picture of the
character. This will be the same for every vector component of a given character.

Each object instances consists of 8 vectors each of 6 floats. The first 4 floats are the start
and end points of the vector, the third float is the vector length, and the final float is the size
of the character. This gives us a grand total of 48 features for each object instance.

This problem has both a large number of features (48) and a large number of classes
(10), however the feature spaces for different classes are relatively well separated. Hence we
expect this problem to be the easiest to solve of all the problems used.

3.1.2 Image Segmentation

This data set consists of 2100 3x3 pixel regions extracted at random from seven large images
of outdoor areas. These images were hand segmented to create a classification for every
pixel. Example “Segmentation” images are shown in figure 3.2 An instance is labeled with
the type of segment its 3x3 region is located. The 7 possible classes are: brickface, sky,
foliage, cement, window, path, or grass. This is a balanced class problem, so each class has
an equal number of instances in the data set. From each instance 19 features have been
extracted to form the feature vector used in classification. These features are a mixture of
low level pixel features such the position of the 3x3 within the image, and high level features
such as the number of edges in a 3x3 segment.

Figure 3.2: Image Segmentation Instance Examples

This problem has fewer classes (7) and fewer features (19) then the other two problems,
but has a larger amount of variation in its features. Hence we expect this problem to be of
medium difficulty to solve.

3.1.3 Handwritten Digits

This data set consists of 3750 examples of handwritten digits. NIST preprocessing programs
were used to extract normalized bitmaps from the handwriting of 43 people on preprinted
forms. Each character instance consists of an 8x8 bitmap which is a grey scale quantized
image of the original handwritten digit. This is a balanced class problem so there are an
equal number of instances of each class in the data set. Some examples are shown in Fig.
3.3.

Figure 3.3: Handwritten Digit Instance Examples

The feature vectors for instances in this data set consists solely of the bitmap itself. In
other words the only features available for use in classifying the object are the pixels them-
selves. This means that this problem has a large number of features (64), a large number of
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classes (10) and the features are likely to vary widely and have a great deal of overlap with
those of other classes. Hence we expect this problem to the be the hardest of all the problems
used.

3.2 Experimental Setup

In this report we perform a series of experiments using the data sets described above. These
experiments aim to empirically confirm or disprove the hypotheses discussed throughout
this report. The setup and parameters used in these experiments are described in this sec-
tion.

3.2.1 TGP/LGP Parameters

We attempted to keep the settings as similar as possible between methods for comparison
purposes. Parameters common to all methods are identical, and parameters of the same
kind are equivalent. The parameter values used in the experiments are shown in table 3.1.
These values were determined based on common settings and empirical search via initial
experiments.

Table 3.1: parameter configurations
Parameter LGP TGP
Population 500 500
Max Gens 200 200
Mutation 60% 60%
Elitism 10% 10%
Crossover 30% 30%
Max Size 32 8
Tournament Size 4 4
Runs 30 30

LGP and TGP have very different program representations, and hence very different
measures of maximum program “size”. TGP measures maximum program size as the max-
imum permissible tree depth. LGP on the other hand measures maximum program size
as the maximum permissible number of instructions. We need to choose a maximum size
for each type of GP so that the average size of individuals in the population will be the
same for both techniques. Note that in both cases the average size can be approximated as
the maximum size as individuals tend towards the maximum permissible size as evolution
proceeds.

In TGP programs are represented as trees, so there is no direct reuse of code. If two parts
of the operator tree have identical structure that code must be repeated twice. On the other
hand though, all code in a TGP program is structurally effective, insofar as it contributes to
the final result. So in TGP if the maximum tree depth is n, then a tree of maximum depth
has up to 2n − 1 nodes. Up to 2n−1 − 1 of these nodes will be operator nodes, the remaining
2n−1 nodes will be terminal nodes, either features or constants.

On the other hand in LGP programs, code may be reused. Once values have been calcu-
lated and stored in registers, many future instructions may use the stored value to calculate
future results. However in LGP programs it is also the case that some code may not con-
tribute to the final result, i.e. there exist structural introns in the program code. The com-
bination of these factors make it very difficult to precisely calculate the effective number
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of nodes in a LGP program, so we are forced to make some assumptions. Assume 1/4 of
the instructions in an LGP program are introns, and that the average number of nodes used
to calculate the instruction held in a register is n/4, where n is the number of instructions.
Finally, assume that half of all instruction arguments are registers. Note that these values
were determined using based on initial testing. Then the size of an LGP program with n
instructions can be calculated as follows:

• Avg. number of register arguments per instruction = 1.

• Avg. number of nodes per instruction = n/8 + 1 + 1. I.e. one register, one operator,
and one terminal.

• Avg. number of effective instructions = 3n/4.

• Therefore avg. number of nodes = (3n/4) ∗ (n/4 + 1 + 1) = 3n2/16 + 6n/4 = (3n2 +
24n)/16.

So a TGP program of depth 8 has 28 − 1 = 255 nodes, and a LGP of size 32 has (3 ∗ 322 +
24 ∗ 32)/16 = 240 nodes. Hence a TGP program of depth 8 is approximately equivalent to
a LGP program of length 32. Note that these are also the largest program sizes we could
realistically use, as anything larger would take too long to run on the accessible machines to
be plausible for a project of this duration.

3.2.2 Experimental Configurations

Each data set was divided into a training set, a validation set, and a test set, with all sets be-
ing of equal size. After the maximum number of generations was reached, the test accuracy
of the program which performed best on the validation set was recorded. This process was
repeated for at least 150 runs, each time with a random seed. The final statistics for each run
were recorded, then averaged over all runs to provide the final statistics displayed.

3.3 Significance Testing

In order to show that our results are meaningful, we are required to demonstrate their sta-
tistical significance. In other words if we develop a new operator which demonstrates im-
proved performance on our test sets, we need to show that this performance improvement
is unlikely to have occurred by chance. To this end we use tests of statistical significance to
determine whether or not our results constitute a significant improvement. The test used in
this project is a 2-tailed students t-test with a significance criterion of 0.95. The significance
criterion is an arbitrary measure of how different our results must be before we consider
them significant. A significance criterion of 0.95 means we consider our results significant if
the probability that they occurred by chance is less then 0.05 or 5%. This is the convention-
ally used significance criterion, and hence the one used in this project.
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Chapter 4

Basic LGP Approach

4.1 Introduction

In this project we seek to improve on the basic LGP approach by developing new LGP op-
erators that improve the performance of LGP on multiclass object classification problems.
Once we have developed these operators we will need to confirm that in actual fact they
do constitute an improvement over the basic LGP approach. In order to do this we need to
determine the performance of conventional LGP on the problems in our data sets. Once we
have these results we can use them as a baseline for comparison with later results.

In addition we wish to show that seeking to improve the conventional form of LGP is
a worthwhile endeavor. When given two alternative but similar techniques which could
potentially be used to solve a problem, we would clearly choose the better one. So in or-
der to justify improving the LGP technique in terms of its performance multiclass object
classification problems, we need to demonstrate it is indeed the GP technique of choice for
solving such problems. Specifically we need to show that even without any improvements,
the conventional form of LGP outperforms TGP as a method for solving multiclass object
classification problems. Since LGP and TGP have comparable computation time [8] we use
classification accuracy to measure performance.

4.1.1 Chapter Goals

Hence in this chapter we aim to demonstrate the superiority of LGP over TGP as meth-
ods for solving multiclass object classification problems. In the process we will establish a
set of results which can be used as a baseline for empirically testing future developments.
Specifically this chapter has the following research goals:

• To demonstrate the superiority of LGP over TGP as methods for solving multiclass
object classification problems.

• To establish a set of baseline results for the performance of LGP on the multiclass object
classification problems given in chapter 3.

4.2 TGP for object classification

TGP programs by definition have a single output, typically a single floating point number.
In order to use TGP for classification we are required to use a function which maps the
program output value to a number of possible classes.
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If we are performing binary classification, a natural mapping function exists. We can
simply choose a boundary value and classify objects based on which side of boundary value
their outputs lie on. However when performing classification with multiple n classes, we
must choose at least n− 1 boundary values so as to have n regions to map to the classes.

The issue arises because there is no way of knowing if the output values for one class
will lie close to those of another class, and hence whether their class regions on the real num-
ber line should lie close together. If two classes have similar features, their output values
are likely to be similar for any program. If their output values are similar but their class
regions are widely spaced, any evolved program will misclassify many instances of these
two classes. Hence a poor mapping function will result in programs with poor classifica-
tion accuracy, regardless of other factors. Investigating new mapping functions is an area of
active research [30], and there have been several recent improvements, however the results
still leave much to be desired.

The upshot of this is that it would be preferable to use a GP method which does not rely
on a complicated mapping function, and instead has a natural interpretation of program
outputs as classes.

4.3 Linear GP for Classification

In LGP a program has multiple outputs: the set of final register values. When using LGP for
classification we associate each class with a distinct register. If we have n classes, a program
classifies an instance as the class associated with the register with the largest final value.
Figure 4.1 shows an example of this kind. Clearly to use LGP for classification we must
have at least as many available registers as there are classes.

LGP is proposed as a natural alternative to TGP for multiclass classification problems be-
cause LGP allows arbitrarily many outputs. This allows us to sidestep the mapping problem
encountered in TGP entirely by removing the dependence on a mapping function. More-
over, LGP has the power of many tree based expressions executed in parallel, and with
common code reused to form a DAG. There are additional benefits to the LGP output struc-
ture: we can have a probabilistic classifier, a reject option, or a more focused fitness function,
however these are not the focus of this paper.

Figure 4.1: Final register values: Object
would be classified as Class 5

4.4 TGP Classification Strategies

One of our goals for this section is to compare the performance of LGP to that of TGP. How-
ever there are many forms of TGP insofar as there are many different classification strategies
we could use. Since we do not have time to compare to all of them, we have chosen to com-
pare LGP to two TGP strategies, one at either end of the performance spectrum.

The first classification strategy we will use is TGP with the most naive of classification
strategies, program classification map (PCM). Under a PCM classification strategy the real
number line is divided up into as many sections as their are classes, and each class is as-
sociated with a unique section. This is the simplest of mapping functions to implement
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and one of the most commonly used, as it works well with binary classification problems.
However it has been previously demonstrated to perform poorly on multiclass classification
problems, particularly those with a large number of classes [8]. Hence in order for LGP to
be considered an effective method for solving multiclass object classification problems it is
clearly required to outperform basic TGP.

The second comparison we will perform is between the performance of LGP and the
performance of TGP with an advanced classification strategy. If the performance of basic
LGP is comparable to the performance of TGP with an advanced classification strategy, then
we can justifiably claim that LGP is the superior method for multiclass object classification.
The advanced classification strategy that we have chosen is probabilistic multiclass (PM).
This method has been shown to have significantly improved performance over that of PCM
on multiclass object classification problems [27]. Hence if we can outperform PM using LGP,
we can claim to have achieved state of the art performance.

4.5 Results and Analysis

In this section we report on the results of a series of experiments designed to compare the
performance of TGP and LGP as methods for performing multiclass object classification.
The first set of experiments compare LGP to TGP with PCM, while the second set of experi-
ments compare LGP to TGP with PM.

4.5.1 Program Classification Map TGP vs. Basic LGP

The results in table 4.1 were obtained by running TGP using PCM, and LGP on the three
problems. The first line shows that for the artificial characters problem, TGP with PCM
achieved an average accuracy of 55.91% with a s.d. of 8.79% on the test set over 150 runs.
It also shows that the LGP approach achieved an average accuracy of 82.02% with a s.d. of
5.72%.

Table 4.1: Classification Accuracy: Tree-based GP with Program Classification Map vs. Linear
GP

Data Set TGP with PCM LGP
Mean S.D. Mean S.D.

Artificial Characters 55.91% 8.79% 82.02% 5.72%
Segmentation 68.69% 7.51% 75.46% 2.81%
Digit Recognition 45.20% 8.34% 65.46% 3.64%

The results in table 4.2 were obtained by performing a two tailed students t-test based
on the results summarized in table 4.1. The first line describes the results of the t-test on
the artificial characters problem. It shows that the improvement in classification accuracy
that we have obtained on this problem has only a 0.001 probability of having occurred by
chance. It also shows that this is a significant improvement according to our significance
criterion of 0.95.

These results show that LGP outperforms TGP using PCM by a significant amount on
all data sets. In fact, LGP outperforms TGP by a significant and very large amount. This
clearly demonstrates the superiority of LGP over TGP as methods for solving multiclass
object classification problems.

20



Table 4.2: Significance of Results: TGP with PCM vs. LGP
Data Set 2-Tailed P value Significant
Artificial Characters 0.0001 Yes
Segmentation 0.0001 Yes
Digit Recognition 0.0001 Yes

4.5.2 Probabilistic Multiclass TGP vs. Basic LGP

The results in table 4.3 were obtained by running TGP using PM, and LGP on the three
problems. The first line shows that for the artificial characters problem, TGP with PCM
achieved an average accuracy of 81.83% with a s.d. of 5.19% on the test set over 150 runs.
It also shows that the LGP approach achieved an average accuracy of 82.02% with a s.d. of
5.72%.

Table 4.3: Classification Accuracy: Tree-based GP with Probabilistic Multiclass vs. Linear GP
Data Set TGP with PM LGP

Mean S.D. Mean S.D.
Artificial Characters 81.83% 5.19% 82.02% 5.72%
Segmentation 85.99% 8.23% 75.46% 2.81%
Digit Recognition 50.66% 8.38% 65.46% 3.64%

The results in table 4.4 were obtained by performing a two tailed students t-test based
on the results summarized in table 4.3. The first line describes the results of the t-test on
the artificial characters problem and it also shows that this does not constitute a significant
improvement according to our significance criterion of 0.95.

Table 4.4: Significance of Results: class graph crossover vs. selective crossover
Data Set 2-Tailed P value Significant
Artificial Characters 0.7634 No
Segmentation 0.0001 Yes
Digit Recognition 0.0001 Yes

These results show that LGP outperforms TGP with PM on one problem, TGP with PM
outperforms LGP on one problem, and the two methods have similar performance for the
third problem. So these two methods overall achieve similar results on our problems, and
hence this result suggests that these two methods have similar performance.

4.6 Chapter Summary and Future Work

In this chapter we have demonstrated that LGP has significantly superior performance to
TGP using a simple classification strategy, and similar performance to TGP using a state-of-
the-art classification strategy. This tells us that the basic LGP approach is at least as good
as one of the best TGP approaches we currently know. Hence LGP is the superior method
for solving multiclass object classification problems. In addition we have established a set
baseline results for the purposes of comparison with later work. We can use this baseline
to empirically determine whether or not the techniques developed in later chapters signifi-
cantly improve program performance.
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Chapter 5

Selective Mutation

5.1 Introduction and Motivation

Conventionally, mutation has been seen as the less important operator in GP. It is often
treated as simply a tool for maintaining diversity in the population, and preventing a ho-
mologous population. It is usually expected that the major improvements in program fitness
will come from the crossover operator. However, it has been shown that crossover is often a
destructive force, and that for many problems, mutation outperforms crossover as a method
for improving program fitness [19].

As far as we have been able to determine, much work has been done on new crossover
operators but relatively little on new mutation operators. Many new crossover operators
attack the long held belief that crossover is a black box. For instance, intelligent crossover
attempts to keep building blocks intact. However this kind of intelligent approach has yet
to be applied to the mutation operator. Diversity requires randomness, so it is still widely
held that mutation should be a completely random process.

We believe this assumption is flawed, and that it is possible to direct the mutation process
in order to improve the performance of the GP algorithm while still maintaining sufficient
population diversity.

5.1.1 Background and Motivation

In any given program in the population some instructions will be good, and others will be
bad. To be precise, instructions will vary in correctness, ranging from perfect code, though
to totally useless.

The conventional mutation operator does not take instruction correctness into account,
and chooses an instruction to mutate at random. This means that sometimes instructions
which are currently vital to the success of a program are selected for mutation. This sort of
mutation is unlikely to result in an improved individual, hence unlikely to directly benefit
the population as a whole except for maintaining diversity.

The reason that selecting an instruction to mutate at random is a poor approach stems
from two facts.

Firstly, at the instruction level, as instruction correctness increases mutation becomes
an increasingly disruptive force. The number of possible correct instructions is very small
compared to the number of possible instructions, and as instruction correctness increases,
the number of superior instructions becomes smaller still. Hence the mutation of a very
correct instruction is overwhelmingly likely to result in a decrease in instruction correctness.
Conversely, mutating an instruction with poor correctness is much more likely to result in a
highly correct instruction and hence a higher program fitness. Hence mutating instructions
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with poor correctness generally produces better results then mutating instructions with high
correctness.

Secondly, at the program level, as program fitness improves, mutation becomes an in-
creasingly destructive force. At the start of evolution, the number of highly correct instruc-
tions in a given program will be minimal at best, so most mutations will occur in instructions
which have low correctness. However, fitter programs are almost certain to consist primar-
ily of instructions with high correctness. This means the likelihood of a disruptive mutation
taking place becomes very large. So as program fitness increases, the likelihood that mu-
tation will take place in a highly correct instruction also increases. As we just discussed
mutation of a highly correct instruction is usually a disruptive force. Hence as program
fitness improves, the disruptive influence of mutation increases.

Mutation of instructions which have high correctness is a disruptive force, so mutating
randomly becomes increasingly disruptive as program fitness increases. Hence selecting
which instruction to mutate based on instruction correctness could result in improved per-
formance for the GP algorithm. By focusing on mutating those instructions which are caus-
ing errors, and leaving intact those instructions which are performing correctly, fit programs
are more likely to be evolved.

5.1.2 Chapter Goals

This chapter aims to investigate the hypothesis: A new GP mutation operator based on
the principle of selecting instructions to mutate based on their correctness outperforms the
conventional mutation operator on a sequence of multiclass classification problems.

Specifically, it aims to answer the following research questions:

• How can a model of correctness for the instructions of a program be developed?

• How can we use this model to develop a selective mutation operator?

• Does this selective mutation operator outperform the conventional mutation operator
on a sequence of multiclass classification problems?

5.2 A Model for Instruction Correctness

We desire some model of the correctness of the instructions in a program. For example,
given an arbitrary program and an arbitrary instruction in the program, we need a method
which lets us determine the degree of positive influence that instruction has on the program
output. It is impractical to attempt to find a precise measure of instruction correctness,
however it is possible to find an effective approximation.

The only information we have to work with is the program’s performance on the training
data set. Specifically, for any given program, we can determine how many training instances
of each class were misclassified by the program.

Clearly if a program misclassifies a large number of training instances from class i then
one possibility is that the instructions which are responsible for the class i output are flawed.
We know that an LGP program which is a potential solution to an n-class classification prob-
lem can be represented as n overlapping operator graphs, each with a single root. Define
the nth class graph of a program to be the operator graph whose root is the nth register. An
example of an LGP program with the class graphs highlighted can be found in figure 5.1.
Thus we blame all of the instruction in the i’th class graph equally if a program performs
poorly on class i training instances. For simplicities sake we blame them all equally. So each
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instruction in the i’th class graph can be associated with the number of incorrectly classified
training instances of class i.

Figure 5.1: The 3 overlapping class graphs of a LGP program with 3 output registers, r1, r2,
and r3

This all works well for class graphs which are distinct, i.e. have no shared program code.
However, LGP programs by definition are comprised of n overlapping class graphs, so we
need to deal with the case where an instruction is part of two or more class graphs. We
refer to the method used to deal with overlapping class graphs as the propagation strategy.
Several propagation strategies are open to us, including taking the minimum, average, or
maximum value of all class graphs sharing the instruction. The option we choose is to take
the minimum both for theoretical reasons and because it has been shown to work well in
practice. If we modify an instruction, then every class graph which uses the instruction
will be affected. Hence by taking the minimum instructions will only have high mutation
probability if they do not affect good outputs.

So to summarize, we count the number of training instances for each class which are
incorrectly classified and call this number the class value. We then assign to all instructions
in each class graph the corresponding class count. If an instruction is part of two or more
class graphs, we assign that instruction the minimum class count of all the trees it is part of.
This gives us a model of instruction correctness for a given LGP program.

5.3 A New Selective Mutation Operator

Once we can generate a model of instruction correctness for any LGP program, a selective
mutation operator is readily implemented. Instructions in a LGP program are of two possi-
ble types, they are either part of one or more class graphs, or they are not, in which case they
are introns. The latter follows because instructions which are not part of any class graph
have no effect on the program output, and so are introns by definition. By generating a
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model of instruction correctness for this program we generate a correctness value for each
non-intron instruction. The intron code has no effect on program output, so we have no way
of determining its correctness. Therefore we assign to all intron instructions the average in-
struction correctness. This has both a theoretical basis and is the result of intial testing. We
want good instructions to have low mutation likelihood and bad instructions to have high
mutation likelihood. The intron instructions are neither good or bad, but are instead neutral.
Mutating them may result in a good instruction or a bad instruction, and we certainly want
them to have some probability of being mutated, therefore assigning an average correctness
value makes sense.

So now every instruction in the program has a number assigned, indicating its correct-
ness. By normalizing these correctness values we arrive at a probability distribution over all
program instructions! Sampling from this distribution results in instructions being selected
with probability directly proportional to the number of misclassifications the instruction is
responsible for. Under this selective mutation scheme, the likelihood of an instruction being selected
for mutation is inversely proportional to its positive influence on the program output.

5.3.1 Algorithm

The selective mutation operator involves 3 key steps in addition to the steps present in
conventional mutation:

• Determine the number of misclassified training examples for each class, known as the
class values.

• Determine the class graphs and assign correctness values.

• Normalize this distribution.

Once these steps have been completed, to perform selective mutation we need only sample
from the normalized distribution over instructions, and perform a normal mutation on the
selected instruction.

Determining class values

This is done easily and efficiently when program fitness is calculated. Let p be a program,
to calculate the class values we use the following algorithm:

array c lassVa lues ;

f o r each t r a i n i n g s e t i n s t a n c e t
i f t i s m i s c l a s s i f i e d by p

add 1 to c l a s s v a l u e s [ c o r r e c t C l a s s ]

Assign correctness Values

Because we store programs as a linearly ordered sequence of instructions, we do not have
direct access to the class graphs. According to the theory we established earlier, in order to
assign responsibilities we need to calculate the class graph for each class. We know only
that the root node for the class graph must be the last instruction in the program which
assigns a value to the i’th register. Therefore by iterating through the program instructions in
reverse order we can find the “first” instruction easily. If this instruction takes any registers
as arguments, then the “next” instruction (under reverse order) which assigns any such
register a value is also part of the class graph. Doing this repeatedly will result in all of the
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instructions which are part of the class graph being identified. Hence the class graph for
an instruction i can be determined in a single backwards pass through the instructions. The
important thing to note is that if instruction i has destination register d, and instruction i + n
takes register d as an argument, then i influences the execution of i + n. From an alternative
perspective, i is a child of i + n in some class graph.

Let p be a program, let c be a class label.

L i s t r e g i s t e r s ;
L i s t c l a s s T r e e ;

f o r each i n s t r u c t i o n i n s in reverse order
i f the d e s t i n a t i o n r e g i s t e r i s in r e g i s t e r s

add i n s to the c l a s s t r e e ;
remove in s from r e g i s t e r s ;
i f argument 1 i s a r e g i s t e r

add argument 1 to r e g i s t e r s ;
i f argument 2 i s a r e g i s t e r

add argument 2 to r e g i s t e r s ;

However we wish to do this for n many class graphs and we want to assign each in-
struction a responsibility at the same time. Rather then being required to iterate backwards
through the instructions n times, we can find all n class graphs simultaneously in a single
backwards pass through the instructions. Because we are following a minimum propagation
strategy and assigning each instruction the minimum responsibility possible, the process is
also somewhat simplified:

Let n be the number of classes, let r be the number of registers, let x be the number of
instructions in the program and let avg be the average class value.

array r e g i s t e r s ;
f o r each c l a s s c

r e g i s t e r s [ c ] = the c l a s s value of c l a s s c ;
f o r each r e g i s t e r r not a s s o c i a t e d with a c l a s s

r e g i s t e r s [ r ] = −1;
f o r each i n s t r u c t i o n i n s in reverse order

i f in s i s an i n t ro n
give i n s the average c l a s s value ;

e l s e
l e t d = the d e s t i n a t i o n r e g i s t e r of i n s ;
l e t v = the value held in r e g i s t e r s [ d ] ;
give i n s the value v ;
s e t r e g i s t e r s [ d ] = a big number ;
f o r each argument which i s a r e g i s t e r

l e t i be the r e g i s t e r number ;
i f r e g i s t e r s [ i ] i s empty

s e t r e g i s t e r s [ i ] = v ;
e l s e i f v < r e g i s t e r s [ i ]

s e t r e g i s t e r s [ i ] = v ;

5.3.2 Further Discussion

In the resulting distribution, the probability of an instruction being selected for mutation is
directly proportional to how beneficial the instruction is to the program. The basic theory
is that selective mutation builds on the existing program by improving those parts that are
performing worst. This can be thought of as a form of hill climbing, although it should be
noted that the process is stochastic: The worst instruction will not always be selected for
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mutation, it is simply more likely to be selected. An example is shown in figure 5.2. Part (a)
displays the number of misclassifications for each of the 3 classes in the problem, part (b)
displays the program after each instruction has been assigned a responsibility, and part (c)
displays the mutation probabilities after normalization.

Class 1 2 3
Counts 1 10 4
(a) Misclassification counts

Destination Value Responsibility
r[1] = 3.1 + f1; 4
r[3] = f2 / r[1]; 4
r[2] = r[1] * r[1]; 10
r[1] = f1 - f1; 1
r[1] = r[1] - 1.5; 1
r[2] = r[2] + r[1]; 10

(b) Responsibilities

Destination Value Probability
r[1] = 3.1 + f1; 13.3%
r[3] = f2 / r[1]; 13.3%
r[2] = r[1] * r[1]; 33.3%
r[1] = f1 - f1; 3.3%
r[1] = r[1] - 1.5; 3.3%
r[2] = r[2] + r[1]; 33.3%

(c) Probabilities

Figure 5.2: Mutation probabilities after normalization

5.4 Results and Analysis

We attempted to solve the three problems described in chapter 3 first using GP with normal
mutation, then secondly with GP using 50% selective mutation and 10% normal mutation.
Initial results indicated these values to give better results then 60% selective mutation, we
believe this is because the 10% normal mutation helps maintain diversity. All other param-
eters remained constant between the two experiments.

Table 5.1: Parameter Configurations
Parameter LGP LGP + Selective Mutation
Normal Mutation 60% 10%
Selective Mutation 0% 50%

The results in table 5.2 were obtained by running LGP using conventional mutation and
LGP using selective mutation on the three problems described in chapter 3. The first line
shows that for the artificial characters problem, LGP using conventional mutation achieved
an average accuracy of 82.02% on the test set over 150 runs with a standard deviation (s.d.)
of 5.72%. It also shows that the LGP with selective mutation approach achieved an average
accuracy of 85.86% with a s.d. of 4.92%.

The results in table 5.3 were obtained by performing a 2 tailed students t-test based on
the results summarized in table 5.2. The first line describes the results of the t-test on the
artificial characters problem, It also shows that this is a significant improvement according
to our significance criterion of 0.95.
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Table 5.2: Classification Accuracy
Data Set Conventional Mutation Selective Mutation

Mean S.D. Mean S.D.
Artificial Characters 82.02% 5.72% 85.86% 4.92%
Segmentation 75.46% 2.81% 77.91% 4.19%
Digit Recognition 65.46% 3.64% 67.32% 4.29%

Table 5.3: Significance of Results using students t-test
Data Set 2-Tailed P value Is Result Significant
Artificial Characters 0.0001 Yes
Segmentation 0.0001 Yes
Digit Recognition 0.0001 Yes

The improvement gained by using the selective mutation technique is cumulative with
the improvement already achieved by normal LGP over TGP. Hence this confirms our hy-
pothesis that selective mutation as described above is a more effective technique for solving
multiclass classification problems then normal mutation.

5.5 Chapter Summary and Future Work

We conclude that selective mutation is an effective technique for improving LGP perfor-
mance on multiclass classification problems. It is a simple, yet effective technique that can
be easily implemented, and results in a negligible increase in the computational complexity
of mutation. While many people have investigated and developed new crossover opera-
tors, mutation has been left largely untouched. Here we have demonstrated that it is also
possible to improve the performance of GP through modifications to the mutation operator.
This is a particularly important development because we expect that we can combine the
selective mutation operator with an improved crossover operator to increase performance
above what could be obtained by using either by itself. We also hope that this will inspire
others to shift the focus from improving only the crossover operator, to improving both the
crossover and mutation operators.

Two outstanding questions remain unanswered about the selective mutation technique:

• For classification problems, does the arity of the problem (number of classes) affect the
performance of the selective mutation operator.

• Is the selective mutation operator limited to the classification problem domain, or is it a
generally applicable technique for improving LGP performance on arbitrary problem
types.

We are particularly interested in the answer to the second question. The selective mutation
operator has at this time only been tested on multiclass classification problems. However
the theory behind the technique is applicable to GP in general, and as such selective muta-
tion may potentially improve LGP as a technique for solving arbitrary problem types. This
would render selective mutation an important and fundamental technique in LGP. Work
subsequent to this project would likely focus on answering the second of these questions.
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Chapter 6

Class Graph Crossover

6.1 Introduction

This chapter has two primary motivations.
On the one hand, we are motivated by a desire to address the problem of building block

disruption in LGP. Arguments about the existence of building blocks in GP and the question-
able performance of the crossover operator have raged back and forwards for many years
in academic circles. Building blocks are small, fit pieces of program code, which implicitly
may be combined to create larger, fit programs. Building block theory states that the GP
process results in building blocks being highly likely to appear in programs in the popula-
tion. I.e. good bits of code will appear more often then bad bits of code. If building blocks
do exist in the population, then crossover allows these smaller pieces of program code to
be combined into the larger fit programs. This potential for building block recombination
is one of the primary reasons GP is lauded as a search technique by supporters. No other
search technique has a similar ability.

While it is believed that GP does in fact obey the building block hypothesis, it is not
clear that crossover has a positive effect on building blocks. We desire crossover to keep
existing building blocks intact, and combine them into new, fit programs. It is entirely pos-
sible, however, that crossover has a purely destructive influence. In other words crossover
is breaking up existing building blocks and hence retarding the formation of fit programs.
Hence we desire to remove or at least reduce the number of building blocks disrupted dur-
ing crossover.

On the other hand we wish to develop a crossover operator which operates at the class
graph level instead of the instruction level. This goal is motivated by a desire to take the con-
cepts developed in chapter 5 and apply them to the process of crossover in order to develop
a selective crossover operator. These techniques deal with LGP programs as sets of class
graphs instead of sequences of instructions. Therefore without a crossover operator which
deals with class graphs instead of instructions, the work in chapter 5 cannot be successfully
applied. Hence the work in this chapter is also a first step towards a selective crossover
operator.

6.1.1 Chapter Goals

In this section we discuss the failings of conventional crossover insofar as it disrupts build-
ing blocks and focus on developing a new crossover operator which uses the class graph
program structure to alleviate this problem. Specifically, this chapter aims to answer the
following research questions:
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• How do we decompose a LGP program into abstract components which contain entire
building blocks?

• How do we use this decomposition to develop a structured crossover operator for
LGP?

• Does this new crossover operator alleviate the problem of building block disruption?

• Does this crossover operator outperform the conventional crossover operator on a se-
quence of multiclass classification problems?

• Is this work compatible with the selective mutation operator developed in chapter 5.

6.2 Background and Rationale

A crossover is considered destructive if one or more building blocks are disrupted by the
exchange of genetic material. A building block is disrupted if part of the building block is
selected in the code to be exchanged, and part is not. Hence in order for crossover to be non
disruptive, when choosing the code to be exchanged, building blocks must be selected in
entirety or not at all. Clearly using the conventional crossover operator may result in dis-
ruptive crossovers occurring. The conventional crossover operator selects the instruction(s)
to exchange at random. This means that whether or not an entire building block is selected
for exchange is entirely random. If x instructions are selected at random for crossover out
of a program with n instructions, then the probability that a building block of size b is dis-
rupted can be calculated.

A building block is not disrupted if either it is entirely exchanged or none of it is ex-
changed.

• Number of possible code segments which could be exchanged = Cn
x .

• Number of possible exchanges containing entire building block = Cn−b
x . (clearly if

b > n there is no way the entire building block can be exchanged).

• Number of possible exchanges disjoint from building block = Cn
x−b.

• Therefore prob of no disruption = (Cn−b
x + Cn

x−b)/Cn
x .

• and prob of disruption = 1− (Cn−b
x + Cn

x−b)/Cn
x .

So clearly as the numerator (Cn−b
x + Cn

x−b) increases, the probability of disruption de-
creases. Assuming x ≤ n/2, the top term increases as b (the size of the building block)
decreases. I.e. as building block size increases, the likelihood the building block is dis-
rupted by crossover also increases. Certainly, once building blocks exceed a very minimal
size, the likelihood they will be disrupted by crossover becomes overwhelming. This is an
undesirable situation, as this effectively limits the size of building blocks in the population.
Successfully solving a problem usually requires us to build larger building blocks from small
ones, but this process will clearly be retarded by conventional crossover. Clearly we desire
a crossover operator which has a less disruptive influence on larger building blocks.

There have been many new crossover operators developed over the years, each with its
own unique form and benefits. Many of these crossover operators aim to improve GP per-
formance by decreasing the destructive influence of crossover. While some success has been
achieved in this area, many of these techniques require orders of magnitude more compu-
tation time then the original crossover operator. One of the strengths of the conventional
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crossover operator is that once program fitness has been calculated the computational cost
of crossover is linear in program size. However newer, alternative forms of crossover such
as headless chicken crossover or brood crossover require calculating fitness values for mul-
tiple offspring during the crossover process [31]. This means each crossover operation takes
significantly longer, a major disadvantage in a GP operator (this will be shown later). What
is really required is an improved crossover operator which preserves building blocks but
only requires a single fitness evaluation.

6.3 Class Graph Crossover

6.3.1 Biological Crossover

In biology, crossover is limited to exchange of similar DNA. Each physical feature has many
different DNA sequences, called alleles, which code for variations of that feature. When
crossover occurs, the alleles of one parent which code for a certain physical characteristic
are exchanged with the alleles of another parent which code for the same features. In other
words biological crossover always exchange DNA which codes for different variations of
the same features. E.g. DNA for blue and brown eye color might be exchanged. If we
consider the DNA building blocks as sequences within a single allele, then we can clearly
see that biological crossover never destroys building blocks. Either the entire building block
is swapped or it is left in the original DNA sequence.

In future, we will refer to two sequences of code, DNA or program, as position equivalent
if they code for different versions of the same feature, i.e. they are alleles for the same
feature.

6.3.2 Class Graphs

Biological crossover is in stark contrast to conventional GP crossover, where the program
code to be exchanged is chosen at random. By ignoring the abstract structure of the program,
we are making no distinction for building block boundaries. This means it is highly likely
that we will be breaking up building blocks left, right, and center. Therefore conventional
crossover is likely to be a destructive influence. If we take our inspiration from biological
crossover, it makes sense to define some sort of abstract structure within our programs, and
to respect this structure when choosing code to exchange.

Fortunately, in LGP for multiclass classification there is a natural structure already im-
posed on the program. We already discussed how a n-class classification problem can be
viewed as a DAG composed of n overlapping graphs. Recall that the nth class graph in any
program is the graph whose root is the nth register. In other words the graph associated
with the class n. Therefore sequences of instructions are position equivalent if and only if
they are class graphs for the same feature. So we aim to develop a new crossover operator
based on the class graphs, and we call it Class Graph Crossover (CGC).

6.3.3 Algorithm

In CGC we use program class graphs as the basis for an exchange of program code. Under
a CGC scheme, only positional equivilent code is exchanged. In other words, given any two
programs, we select one or more classes, and exchange the corresponding class graphs in
the two programs. An example can be found in Figure 6.1. When performing class graph
crossover we could produce two children, but choose to only produce one. Basically we
build on class graph crossover to create selective crossover, and selective crossover requires
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we only produce one child. The reasons for this are explained in chapter 7 when we discuss
one child crossover.

Class Graph Determination

In order to perform crossover we must determine which instructions we should exchange.
In CGC this means determining which instructions belong to the class graphs we are ex-
changing. We can find all of these instructions in a single backwards pass through the pro-
gram by building up each class graph from its root node.
L i s t i n s t r u c t i o n s ; //those i n s t r u c t i o n s in any c l a s s t r e e we want
Set r e g i s t e r s ;

add a l l the indexes f o r the c l a s s e s we want c l a s s t r e e s f o r to r e g i s t e r s ;

f o r each i n s t r u c t i o n i n s in reverse order
i f i ns i s not a in t ro n

f l a g = f a l s e ;
i f i ns i s a c o n d i t i o n a l

i f i n s t r u c t i o n s conta ins the next i n s t r u c t i o n
add i n s to i n s t r u c t i o n s ;
f l a g = true ;

e l s e
l e t d = the d e s t i n a t i o n r e g i s t e r ;
i f r e g i s t e r s conta ins d

add i n s to i n s t r u c t i o n s ;
remove d from r e g i s t e r s ;
f l a g = true ;

i f f l a g
f o r argument which i s a r e g i s t e r

l e t r be the r e g i s t e r ;
i f r e g i s t e r s does not conta in r

add r to r e g i s t e r s ;

Class Graph Crossover

l e t f i r s t , second be two programs ;
l e t c l a s s e s be the s e t of c l a s s e s we are exchanging a l l e l e s from ;

f o r each c l a s s c
add c to c l a s s e s with p r o b a b i l i t y 0 . 5 ;

l e t ins1 be the i n s t r u c t i o n s to exchange from program 1 ;
l e t ins2 be the i n s t r u c t i o n s to exchange from program 2 ;

l e t n = min of | ins1 | , | ins2 | ;

f o r 1<=i<=n
r e p l a c e i n s t r u c t i o n ins1 [ i ] with i n s t r u c t i o n ins2 [ i ] in program 1 ;

i f | ins1 | > | ins2 |
f o r n<=i <=| ins1 |

remove i n s t r u c t i o n ins1 [ i ] from program 1 ;
e l s e i f | ins2 | > | ins1 |

f o r n<=i <=| ins2 |
add i n s t r u c t i o n ins2 [ i ] to the end of program 1 ;
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(a) Parent 1 (b) Parent 2

(c) Offspring

Figure 6.1: Example of Class Graph Crossover where the r1 class graph is exchanged

6.4 Results and Analysis

We attempted to solve the three problems described in chapter 3 first using GP with con-
ventional crossover, then secondly with GP using class graph crossover. All other parame-
ters remained constant between the two experiments. The parameter configurations can be
found in table 6.1. Note that we are required to use a larger number of runs in this set of
experiments in order to demonstrate the significance of our results.

Table 6.1: Parameter Configurations
Parameter LGP LGP + Class Graph Crossover
Conventional Crossover 30% 0%
Class Graph Crossover 0% 30%
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The results in table 6.2 were obtained by running LGP and LGP + CGC on the three prob-
lems. The first line shows that for the artificial characters problem, LGP with conventional
crossover achieved an average accuracy of 82.02% with a s.d. of 5.72% on the test set over
150 runs. It also shows that the LGP with CGC approach achieved an average accuracy of
84.61% with a s.d. of 5.75%.

Table 6.2: Classification Accuracy
Data Set Normal Crossover Class Tree Crossover

Mean S.D. Mean S.D.
Artificial Characters 82.02% 5.72% 84.61% 5.73%
Segmentation 75.46% 2.81% 76.30% 3.90%
Digit Recognition 65.46% 3.64% 68.04% 3.86%

The results in table 6.3 were obtained by performing a 2 tailed students t-test based
on the results summarized in table 6.2. The first line describes the results of the t-test on
the artificial characters problem. It shows that the improvement in classification accuracy
that we have obtained on this problem has only a 0.0001 probability of having occurred by
chance. It also shows that this is a significant improvement according to our significance
criterion of 0.95.

Table 6.3: Significance of Results
Data Set 2-Tailed P value Is Result Significant
Artificial Characters 0.0001 Yes
Segmentation 0.0331 Yes
Digit Recognition 0.0001 Yes

These results show that GP using CGC demonstrates improved classification accuracy
over GP using conventional crossover on all test data sets, and the improvement is statisti-
cally significant in all three problems. This clearly indicates that GP using CGC is superior
to GP using conventional crossover for solving multiclass classification problems.

So in Summary, we have structured and restricted the crossover process with a negligi-
ble increase in complexity, and the resulting operator shows significant improvement over
the original operator. So despite restricting crossover, performance has actually increased,
which indicates that crossover restricted to the alleles defined in this chapter is superior
to the conventional unrestricted crossover operator. We believe that this indicates that the
restriction on code exchange is being compensated for by a decrease in building block dis-
ruption.

6.5 Further Discussion

6.5.1 Building Blocks

In CGC, we are swapping the class graphs for some random number of classes. If a building
block is present in the program, it must affect the final value of a class register. This means
it must be entirely contained within the class graph of that class. So if that class graph is
exchanged, the entire building block is exchanged as well. Since we are swapping entire
class graphs, this means that we are exchanging nothing but entire building blocks. This
is a distinct improvement on conventional crossover where partial building blocks may be
exchanged
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While CGC ensures that only entire building blocks are exchanged, we have said noth-
ing of those building blocks not exchanged. Because LGP programs consist of overlapping
class graphs, it is possible that part of a building block may belong to more then one class
graph. This means building blocks not exchanged may be disrupted by CGC. However CGC
replaces every class graph with a position equivalent class graph, and position equivalent
class graphs code for the same class. Two code sequences which aim to perform the same
function are statistically more likely to be similar than two random instruction sequences.
This means that position equivalent class graphs are more likely to have similar code then
two random sequences of instructions. It is possible that disrupted building blocks may
be repaired by the code which replaces the amputated part of the building block. Because
position equivalent class graphs are more likely to have similar code, the likelihood of re-
pair is higher under CGC. So even though building blocks which are not exchanged may be
disrupted by CGC, they are more likely to be repaired by the substituted code.

Hence it is likely that CGC is superior to conventional mutation as a crossover operator
in terms of the number of building blocks it disrupts.

6.5.2 Crossover Complexity

The difference between CGC and conventional crossover becomes most apparent if we con-
sider the number of possible crossovers which can occur under each technique.

Under a conventional crossover scheme, instructions are exchanged at random. Assume
for simplicities sake that the number of instructions exchanged is the same for both parents,
i.e. n instructions from program 1 are exchanged with n instructions from program 2. Then
if we exchange x instructions from programs of size n, then:

• Number of possible sets of instruction from a single program = Cn
x .

• Number of possible crossovers = Cn
x × Cn

x .

Under a CGC scheme, we exchange only class graphs during crossover. Hence if we
exchange x class graphs for a problem with c classes:

• Number of possible crossovers = Cc
x.

Notice how the number of possible crossovers depends only on the number of classes and
the number of classes to be exchanged, i.e. it is independent of the program size!

To give some idea of the difference this makes, we calculate an example based on the
very modest maximum program size used during these experiments.

• Max program size = 32, number of classes = 10.

• Let crossover be 50% of program size, so 16 instructions or 5 class graphs.

• Conventional Crossover = C32
16 = 6.01× 108

• Class Graph Crossover = C10
5 = 2.52× 102

So we have reduced the number of possible crossovers by 6 orders of magnitude, even for
this very modest program size. This gives some idea of how severely the CGC operator re-
stricts code exchange compared to conventional crossover. Crossover is all about searching
for the code to exchange which results in the best children, with the conventional crossover
operator doing this by blind trial and error. Hence the problem complexity is proportional
to the number of possible children, and hence the number of possible crossovers. So if we
can decrease problem complexity by 6 orders of magnitude and still achieve similar results
we have made major progress in improving the crossover operator.
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6.6 Chapter Summary and Future Work

In this section we have introduced a new form of crossover, class graph crossover. This
form of crossover limits the sets of valid instructions which can be swapped by introducing
a knowledge of abstract program structure into the crossover procedure. To be precise we
only exchange position equivalent class graphs during crossover. By following this proce-
dure and restricting code exchange, we believe that the disruptive effects of crossover are
minimized. We have shown that this new form of crossover significantly improves the per-
formance of LGP on multiclass classification tasks.

So in short we have severely restricted which sections of code can be exchanged, yet the
average program performance has improved! We attribute this to the postulated decrease
in building block disruption under a CGC scheme. If we have significantly reduced build-
ing block disruption, this represents an important milestone. Future work would focus on
building block analysis and determining if CGC really does decrease building block disrup-
tion, likely through empirical means.

In addition to decreasing building block disruption and improving program perfor-
mance, the introduction of abstract structure to the crossover operator, at negligible complex-
ity cost, is an important developmental step in and of its own right. This structure can form
the basis of further improvement to the crossover operator. Specifically the CGC operator is
used to develop a selective crossover operator in chapter 7.
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Chapter 7

Selective Crossover

7.1 Introduction

Historically, the conventional crossover operator was introduced as a black box, a stochastic
process which could result in solutions which may or may not be superior to the original
ones [15]. More recently developed crossover operators focus on improving GP performance
by increasing the likelihood that crossover will result in children superior to the parents [31].
These are directed crossover operators: the process of generating children is no longer en-
tirely random, instead there is some sort choice or direction involved. Such methods include
brood recombination crossover, where many children are created, and only the best selected,
and headless chicken crossover, where the children replace the parents only if they outper-
form them. While these types of methods have been shown to give improved performance
on many problem types [31], they suffer from several known problems.

Firstly, many of these methods such as the headless chicken crossover method use a
hill climbing approach to improve classification accuracy. Hill climbing methods attempt
to exploit existing potential solutions to find better solutions. When using a hill climbing
search algorithm we only ever update our potential solutions if they are better then the
previous one. In the context of GP, this means that crossover will only replace the parents
with the children if the children outperform the parents.

Hill climbing techniques give excellent results on many problems, particularly those
where there is only one hill to climb, because hill climbing in such a context will always
result in an optimal solution [20]. However, a large number of interesting search problems
have many hills, some peaking lower than others. This means hill climbing techniques can
get stuck at a low peak, known as a local optima, and thus be unable to find a good solution.
To avoid this problem, known as the local optima problem, a search technique must be able
to search in all directions, not just uphill. This is can be achieved by use of randomness,
with solutions being selected stochastically instead of deterministically. Existing GP opera-
tors which exhibit hill climbing behavior rarely take this into account and hence often fail
on problems with many local minima [20].

Secondly, these methods typically come with a large increase in computational overhead.
Hence although they improve GP performance in terms of increased classification accuracy
after a given number of generations, such a comparison is not a fair one. This comparison
does not take into account the difference in the number of function evaluations performed
by the two methods.

In GP, the primary computational cost is fitness evaluation. Evaluation of a population
of n individuals with x training instances requires each individual to be evaluated against
each instance, total cost nx. Under many of these schemes such as brood recombination
crossover, we are required to evaluate the fitness of many potential children in order to
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select the actual children. This means many more fitness evaluations, and thus a higher
computational cost. If we have a 50% crossover rate, and each crossover operator requires
evaluation of 4 children, then the new computational cost will be nx + 0.5 ∗ n ∗ 4 ∗ x =
nx + 2nx = 3nx. Hence we have effectively tripled the computational cost of GP. So in effect,
performing GP with brood crossover for x generations is equivalent to performing GP with
normal crossover for 3x generations. When GP is run for a larger number of generations,
the classification accuracy typically increases, so the performance of normal GP will almost
certainly improve from x generations to 3x generations. Hence comparing performance
based solely on classification accuracy after a given number of generations is a flawed test.

Fair tests are likely to reveal that such computationally intensive crossover operators
don’t give classification accuracy improvements on the scale originally thought. Clearly
what is required to give a real performance improvement is a crossover operator which lets
us select for superior children without the necessity of evaluating the fitness of additional
programs.

In short, a good crossover operator has two key properties. Firstly, it exploits good so-
lutions by attempting to find better ones nearby by using some form of hill climbing, but
does so stochastically to avoid getting stuck at local optima. Secondly, it has a low compu-
tational cost, which means it cannot require performing any extra fitness evaluations. We
believe that a crossover operator with both of these properties should outperform conven-
tional crossover in a fair test.

7.1.1 Chapter Goals

In this chapter we aim to develop such an operator by building on the Class Graph Crossover
operator developed in chapter 6. Specifically, this chapter aims to answer the following re-
search questions:

• How can we create a crossover operator which exploits good existing solutions whilst
avoiding the local optima problem?

• How can we create a crossover operator which has increased likelihood of good off-
spring with at most a negligible increase in computational cost?

• Does this selective crossover operator outperform the conventional crossover operator
on a sequence of multiclass classification problems?

• Does this selective crossover operator outperform the class graph crossover operator
on a sequence of multiclass classification problems?

• Does the combination of selective crossover and selective mutation outperform either
operator alone on a sequence of multiclass classification problems?

7.2 Selective Crossover

As it turns out, we can develop a crossover operator that exploits existing solutions and has
low computational cost by modifying the Class Graph Crossover (CGC) operator developed
in chapter 6. However before we discuss this we need to cover an important point.

7.2.1 One Child Crossover

Normal crossover takes two parents and produces two children by an exchange of code,
however this has a major issue if we are trying to optimize the offspring produced. In order
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to optimize one child, we will have to give all of the good code to that child. This means the
second offspring will receive the remaining, rejected code. Hence the more we manage to
optimize one offspring, the worse the second one will be likely to get. So then let’s consider
the case where we have two parents, but produce only a single child, by substituting code
from the second program into the first one. In this way we avoid the problem of almost
always producing a poor child.

7.2.2 Directed Class Graph Crossover

In CGC, crossover is constrained to the exchange of position equivalent class graphs. If there
are n classes, each program has n class graphs. We are choosing x of these to exchange, so
there are nCx possible combinations of instructions we could potentially exchange. Of the
nCx possible children which would result from these combinations, some will result in good
children, and some will result in poor children. What we really want is to exchange the sub-
set of class graphs which results in the children with the best fitness. To solve this problem
precisely we would be required to try every possible subset of class graphs, and choose the
subset which results in the best children. While this is a significantly lower number of pos-
sibilities than conventional crossover, this method requires exponentially many fitness eval-
uations, so is clearly undesirable. An alternative, used in brood recombination crossover, is
to try some small number of children and select the best from this sample. Brood crossover
is a computationally feasible compromise of this method where we use some small sample
of subsets instead of all possible subsets, however we have already rejected brood crossover
because of its computational overhead.

7.2.3 Main Idea of Selective Crossover: Introducing Heuristics into CGC

A superior technique, and the one developed in this chapter, is to use a heuristic to predict
which subsets will result in good children without having to actually generate and evaluate
those children! A more accurate heuristic can replace the costly process of generating and
testing children and hence solve our computational cost problems. All we need to do, then,
is to find a heuristic which allows us to cheaply predict the best subset of class graphs to
exchange.

The heuristic we have developed is based closely on the work in chapter 5 on selective
mutation. By definition, each class graph has a class, and hence each class graph is responsi-
ble for a certain number of misclassified training instances (see chapter 5 for details). Good
class graphs are responsible for a low number of misclassifications, bad class graphs are re-
sponsible for a large number of misclassifications. A good program has good fitness, and
hence a small number of misclassifications. So all of the class graphs in a good program are
good class graphs, i.e. each class graph is responsible for only a small number of misclas-
sifications. So in other words we are aiming for a program which consists entirely of good
class graphs. Replacing a poor class graph with a good class graph should improve program
fitness. Therefore a crossover can be considered good if it replaces one or more class graphs
with better class graphs, and bad if it replaces one or more good class graphs with a poorer
ones.

Because the correctness of each class graph is represented by a single integer, the differ-
ence in correctness between class graphs can be calculated by simple subtraction. If we then
order the class graphs in descending order according to this difference, it is clear that taking
the first x class graphs as our subset should give the optimum children. In other words, we
find the class graphs in the second program which are better then the position equivalent
class graphs in the current program, and exchange these class graphs preferentially. So sup-
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pose parent one is poor at classifying certain class instances, whereas parent two is good
at classifying these same class instances. Then the selective crossover operator would be
expected to replace the poor code in program one with the good code in program two.

7.2.4 Discussion of Stochasticity

It should be noted that this is not strictly hill climbing because the process is stochastic
insofar as it will sometimes result in children which are worse then the parents. There are
three primary sources of stochasticity in selective crossover.

Firstly, just because a class graph gives good performance in program two, there is no
guarantee that same class graph will perform well in program one. In other words, our
prediction is just that, a prediction, and as such may be wrong. In fact sometimes it may
be the case that exchanging the class graphs predicted to be worst could even turn out to
give the best possible child! However the theoretical basis of selective crossover lies in
the fact that a class graph which performs well in one program is likely to perform well
in another program. Certainly such a class graph should be more likely to perform well
than a randomly selected class graph would be. What this means is that while SC should
often be producing high fitness children, this will not always be the case. Hence this is a
semi-stochastic process and not true hill climbing.

Secondly, we are choosing the number of class graphs we are exchanging at random.
A true hill climber would only exchange those class graphs which lead to an increase in
the fitness of the child. So if there are n class graphs in the second program which outper-
form the structure equivalent class graphs in the first program, a true hill climber would
exchange only these n graphs. In contrast, the selective crossover operator will exchange
a random number of class graphs. This means it may make poor exchanges, or not make
exchanges which our heuristic predicts would have been beneficial. Some work was done
on a deterministic selective crossover operator which made exactly those exchanges our
heuristic predicted would be beneficial. However preliminary results indicated this overly
constrained the permissible code exchanges, and hence gave poor results.

Finally, we are selecting class graphs to exchange semi-stochastically. To be precise the
likelihood that we select any two position equivalent class graphs is directly proportional
to the expected improvement to be gained from such an exchange. The expected improve-
ment from exchanging any two position equivalent class graphs is simply the difference in
class values as discussed above. Therefore the likelihood that we select any two position
equivalent class graphs is directly proportional to the difference in their class values. Note
that if the class graph in the original program has a higher class value then the class graph
in the second program, then the difference will be negative. In this case we simply make the
difference one, as do we if the class values are equal. This gives such class graphs a minimal
likelihood to be selected for exchange, but does not preclude the possibility entirely. In other
words we will occasionally end up exchanging good class graphs for poor class graphs.

7.2.5 Algorithm

We find then that we have arrived at our algorithm. By finding the difference in class values
for each pair of position equivalent class graphs, and ordering the difference, we can predict
the optimum set of class graphs to exchange, achieving our first goal. In addition, we can
do all this for negligible cost, so we have also achieved our second goal. The details are as
follows.
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Determine Class graphs

The algorithm for determining class graphs is described in detail in chapter 6 on CGC. To
recap: it consists of building all the class graphs simultaneously from the root up by iterat-
ing backwards through the program. Clearly the same algorithm is applicable to selective
crossover since we are building on the CGC operator.

Determine Class Values

The algorithm for determining class values is described in detail in chapter 5 on Selective
Mutation. To recap: it consists of counting the number of training instances of each class
which are misclassified. Clearly we can use this same procedure to assign a class value to
each class graph.

Performing Crossover

Once we have decomposed each program into a set of class graphs with assigned class
values, the actual crossover process is relatively straight forward:

l e t f i r s t , second be two programs
l e t fClass , sClass be t h e i r r e s p e c t i v e arrays of c l a s s values

array d i f f = f C l a s s − sClass ;
l e t l i s t 1 , l i s t 2 be two l i s t s of i n s t r u c t i o n s ;

normalize d i f f to generate a prob d i s t r i b u t i o n over the c l a s s numbers ;
sample from t h i s d i t r i b u t i o n to get the required number of c l a s s numbers ;
f o r each c l a s s number cn in r e s u l t

add to l i s t 1 the i n s t r u c t i o n s in the program 1 c l a s s t r e e with index cn ;
add to l i s t 2 the i n s t r u c t i o n s in the program 2 c l a s s t r e e with index cn ;

exchange the i n s t r u c t i o n s in l i s t 1 and l i s t 2 ;

7.3 Complexity Analysis

In order to demonstrate that our tests are fair tests, we need to show that using the selective
crossover operator results in a negligible increase in computational cost. In GP the primary
computational cost is in fitness evaluation. If we have n training instances, and programs
have length l, then evaluating the fitness of a single program takes n ∗ l steps. Meanwhile
performing conventional crossover on a program involves exchanging x < l instructions,
so takes x steps. Typically values for these parameters would be 1,000 training examples,
with programs of at most length 100. So fitness evaluations takes 1000 ∗ 100 = 100,000 steps,
whereas crossover takes at most 100 steps. We can clearly see that conventional crossover
has negligible computational cost compared to the cost of fitness evaluation.

Selective crossover clearly has a higher computational cost than conventional crossover,
as we are required to do the extra work of calculating class values for the class graphs in each
parent. It remains to show that even though the computational cost is increased, this cost
is still negligible compared to the computational cost of fitness evaluation. Calculating the
class values for each class graph can be done during fitness evaluation. Instead of keeping
track of simply the number of misclassifications, we can instead keep track of the number
of misclassifications for each class, for no extra cost. The only cost will be a small increase
in memory usage since we have to store a larger number of fitness values for each class.
Determining which class graphs to exchange involves comparing the class values of position
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equivalent class graphs. If c is the number of possible classes, then this comparison will take
c steps, note that c < l. Finally, we must determine which instructions belong to the class
graphs we are exchanging. This process requires a single backwards pass through each
program, so computational cost will be linear in program length. In other words calculating
which instructions to swap will take l steps. So the cost of selective crossover will be the cost
of conventional crossover + the sum of the new costs described, i.e. at most l + l + l = 3l.
So on the same example data the cost of selective crossover will be 300 steps, which is still
negligible compared to the 100,000 steps required for fitness evaluation.

Hence we have shown that selective crossover results in a negligible increase in com-
putational cost, and hence comparing selective crossover directly to CGC or conventional
crossover constitutes a fair test.

7.4 Results and Analysis

We attempted to solve the three problems described in chapter 3 firstly using GP with con-
ventional crossover, then secondly with GP using class graph crossover, and finally with GP
using selective crossover. All other parameters remained constant between the experiments.
The parameter configurations can be found in table 7.1. Note that we are required to use a
larger number of runs in this set of experiments in order to demonstrate the significance of
our results.

Table 7.1: Parameter Configurations
Parameter LGP LGP + Class Graph Crossover Selective Crossover
Population 500 500 500
Max Gens 200 200 200
Normal Mutation 60% 60% 60%
Elitism 10% 10% 10%
Conventional Crossover 30% 0% 0%
Class Graph Crossover 0% 30% 0%
Selective Crossover 0% 0% 30%
Max Size 32 32 32
Tournament Size 4 4 4
Runs 150 150 150

7.4.1 Selective Crossover vs. Normal Crossover

The results in table 7.2 were obtained by running LGP and LGP with selective crossover on
the three problems. The first line shows that for the artificial characters problem, LGP with
conventional crossover achieved an average accuracy of 82.02% with a s.d. of 5.72% on the
test set over 150 runs. It also shows that the LGP with selective crossover approach achieved
an average accuracy of 86.65% with a s.d. of 4.74%.

The results in table 7.3 were obtained by performing a 2 tailed students t-test based
on the results summarized in table 7.2. The first line describes the results of the t-test on
the artificial characters problem. It shows that the improvement in classification accuracy
that we have obtained on this problem has only a 0.0001 probability of having occurred by
chance. It also shows that this is a significant improvement according to our significance
criterion of 0.95.
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Table 7.2: Classification Accuracy: conventional crossover vs. selective crossover
Data Set Class Graph Crossover Selective Crossover

Mean S.D. Mean S.D.
Artificial Characters 82.02% 5.72% 86.65% 4.74%
Segmentation 75.46% 2.81% 77.47% 3.91%
Digit Recognition 65.46% 3.64% 69.16% 3.21%

Table 7.3: Significance of results: conventional crossover vs. selective crossover
Data Set 2-Tailed P value Significant
Artificial Characters 0.0001 Yes
Segmentation 0.0001 Yes
Digit Recognition 0.0001 Yes

First we compare the performance of LGP using the selective crossover operator to the
performance of the LGP using the conventional crossover operator. The results, summarized
in table 7.2 show that LGP using selective crossover outperforms LGP using conventional
crossover on all data sets. In addition, a simple 2 class students t-test of statistical signifi-
cance with a 95% confidence threshold demonstrates that this improvement in classification
accuracy is a significant improvement.

While this is a good result, we developed the selective crossover operator by extending
the class graph crossover operator, which already outperforms the conventional crossover
operator by a significant amount. Hence all we have really demonstrated is that our mod-
ifications have not adversely affected the performance of our crossover operator. To really
show that LGP using selective crossover is a worthwhile technique, we need to demonstrate
its superiority to LGP using class graph crossover. In other words we need to show that our
modifications have improved the performance by a significant amount. This leads us to our
second set of experiments.

7.4.2 Class Graph Crossover vs. Selective Crossover

The results in table 7.4 were obtained by running LGP with CGC and LGP with selective
crossover on the three problems. The first line shows that for the artificial characters prob-
lem, LGP with CGC achieved an average accuracy of 84.61% with a s.d. of 5.73% on the test
set over 150 runs. It also shows that the LGP with selective crossover approach achieved an
average accuracy of 86.65% with a s.d. of 4.74%.

Table 7.4: Classification Accuracy: class graph crossover vs. selective crossover
Data Set CGC Selective Crossover

Mean S.D. Mean S.D.
Artificial Characters 84.61% 5.73% 86.65% 4.74%
Segmentation 76.30% 3.90% 77.47% 3.91%
Digit Recognition 68.04% 3.86% 69.16% 3.21%

The results in table 7.5 were obtained by performing a 2 tailed students t-test based
on the results summarized in table 7.4. The first line describes the results of the t-test on
the artificial characters problem. It shows that the improvement in classification accuracy
that we have obtained on this problem has only a 0.0009 probability of having occurred by
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chance. It also shows that this is a significant improvement according to our significance
criterion of 0.95.

Table 7.5: Significance of Results: class graph crossover vs. selective crossover
Data Set 2-Tailed P value Significant
Artificial Characters 0.0009 Yes
Segmentation 0.0099 Yes
Digit Recognition 0.0067 Yes

In our second set of experiments, we compare the performance of the selective crossover
operator to the performance of the class graph crossover operator. The results, summarized
in table 7.4 show that LGP using selective crossover outperforms LGP using conventional
crossover on all data sets. In addition, a simple 2 class students t-test of statistical signifi-
cance with a 95% confidence threshold demonstrates that this improvement in classification
accuracy is a significant improvement on all problems.

These results clearly demonstrate the superiority of LGP using selective crossover over
LGP using class graph crossover and conventional crossover, as a method for performing
multiclass classification. In addition, this is a fair test, because our modifications to the
CGC operator result in only a negligible increase in computation complexity. So LGP using
selective crossover results in a genuine and significant improvement in classification accuracy
over LGP using class graph crossover.

7.4.3 Combining Selective Crossover with Selective Mutation

In our final set of experiments we compare the performance of LGP using both selective
crossover and selective mutation to the performance of LGP with either selective crossover
or selective mutation but not both.

The results in table 7.6 were obtained by running LGP with both selective crossover and
selective mutation and against LGP with just one of the two new operators on the three
problems. The first line shows that for the artificial characters problem, LGP with selective
mutation achieved an average accuracy of 85.86% with a s.d. of 4.92% on the test set over
150 runs. It also shows that the LGP with selective crossover approach achieved an average
accuracy of 86.65% with a s.d. of 4.74%. Finally it shows that LGP with both new operators
achieved an average accuracy of 87.69% with a s.d. of 4.10%.

Table 7.6: Classification Accuracy: class graph crossover vs. selective crossover
Data Set Selective Mutation Selective Crossover Both

Mean S.D. Mean S.D. Mean S.D.
Artificial Characters 85.86% 4.92% 86.65% 4.74% 87.69% 4.10%
Segmentation 77.91% 4.19% 77.47% 3.91% 78.45% 4.00%
Digit Recognition 67.32% 4.29% 69.16% 3.21% 70.61% 3.59%

The results in table 7.7 were obtained by performing a 2 tailed students t-test based on
the results summarized in table 7.6. The first line describes the results of the t-test on the
artificial characters problem. Firstly it describes the significance of the performance im-
provement obtained by changing from using only the selective mutation operator, to using
both new operators. It shows that the improvement in classification accuracy which occurs
has only a 0.0005 probability of having occurred by chance. It also shows that this is a signif-
icant improvement according to our significance criterion of 0.95. In addition it shows that
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the improvement Secondly it describes the significance of the performance improvement
obtained by changing from using only the selective crossover operator, to using both new
operators. It shows that the improvement in classification accuracy which occurs has only
a 0.0430 probability of having occurred by chance. It also shows that this is a significant
improvement according to our significance criterion of 0.95

Table 7.7: Significance of Results: class graph crossover vs. selective crossover
Data Set Selective Mutation Selective Crossover

2-Tailed P value Significant 2-Tailed P value Significant
Artificial Characters 0.0005 Yes 0.0430 Yes
Segmentation 0.0478 Yes 0.0327 Yes
Digit Recognition 0.001 Yes 0.0003 Yes

We can see that LGP using LGP using both selective mutation and selective crossover
outperforms LGP using only one of the two methods by a significant amount on all prob-
lems. These results clearly demonstrate the superiority of LGP using both new operators
over LGP using only one of the two new operators, as a method for performing multiclass
classification.

7.5 Chapter Summary and Future Work

In this chapter we have developed a new crossover operator that has positively answered
all of the research questions asked at the start of this chapter. By using a heuristic to predict
which class graphs should be exchanged in order to maximize offspring fitness, we can
direct the crossover process without requiring any extra fitness evaluations. This selective
crossover operator has a computational complexity negligible higher than that of class graph
crossover, yet achieves significantly improved classification accuracy. Hence it genuinely
outperforms both the conventional crossover operator, and the CGC operator from which it
was developed.

The use of a heuristic to predict the optimal crossover points is a major development,
but would not be possible without the work done in chapter 6. This work is specific to the
domain of object classification problems, and cannot be directly applied to other problem
domains such as regression. This means that to apply the technique of heuristically directed
crossover to a given LGP problem type, a model must first be developed for the programs
evolved. This model must decompose programs into distinct components which can some-
how be given an estimate for how much they contribute to program correctness. Once a
model has been developed which satisfies this property, developing a heuristically driven
crossover operator is a simple task. Future work will focus on developing such models for
problems not in the object classification problem domain.

While selective crossover demonstrates significant improvement on all data sets, we be-
lieve that the technique can be improved further. At the heart of selective crossover is the
heuristic used to predict the optimal offspring. More precise predictions are likely to result
in a selective crossover operator that has higher classification accuracy. Hence if we can im-
prove the precision of our heuristic, we should be able to further improve the performance
of the selective crossover operator. That said, we need to increase prediction precision with-
out introducing a significant increase in the computational cost, or any improvements we
achieve will be negated. Future work will focus on developing a better estimate of which
components should be exchanged to produce highly fit offspring.
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Chapter 8

Additional Extensions to LGP

8.1 Introduction

Improvements to the GP learning algorithm are often developed in a modular fashion. By
this we mean that research into GP will often focus on improving one feature of GP in iso-
lation from all others. This can be seen from the large number of new crossover opera-
tors which have been developed in isolation such as brood crossover [31], headless chicken
crossover [21]. We believe that it is possible to improve the performance of one area of GP
by a complementary modification to another area. Specifically, we believe that it is possible
to improve the performance of the class graph crossover operator, through modifications to
other components of the LGP algorithm.

In class graph crossover, some number of position equivalent class graphs are exchanged
between two programs. A good program is composed entirely of good class graphs, hence
a successful crossover is one that results in an offspring consisting entirely of good class
graphs. In order for a good class graph to occur in an offspring, it must first appear in at
least one of the parent programs. Hence if n is the class number, and both parents have a bad
nth class graph, then any offspring will be almost certain to also have a bad nth class graph.
So what we really want is for both parents to complement each other. In other words, if
parent one has a weak nth class graph, then parent two should have a good nth class graph,
and vice versa. Hence two mediocre parents which are strong in different areas are more
desirable than two parents which are stronger individually, but weak in the same areas.

So if we can encourage the mating of programs which have strengths in different areas,
we should be able to improve the performance of both class graph crossover and selective
crossover. It should have a particularly pronounced effect on selective crossover, because se-
lective crossover heuristically selects the stronger parent allele to form the offspring. Hence
selective crossover will exploit the strengths of both parents to form an offspring which
contains these strengths.

There are at least two ways we can improve the likelihood that the programs chosen to
mate complement each others strengths. The first option is to increase the diversity of the
population. In other words we encourage the emergence of programs with diverse strengths
to appear in the population. The second option is to select complementary programs to be
parents. In other words once we have selected the first parent, we select the second parent
based on how well it complements the first one. Both of these approaches require us to
make changes to the LGP learning algorithm which are outside the scope of the crossover
operator, however both approaches indirectly influence the crossover operator.
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8.1.1 Chapter Goals

In this chapter we aim to develop two new modifications to the LGP learning algorithm
which complement the class graph crossover and selective crossover operators developed in
chapters 6 and 7. Specifically this chapter aims to answer the following research questions:

• How can we modify the LGP learning algorithm to encourage individuals with diverse
strengths to occur in the population?

• How can we modify the LGP learning algorithm to increase the likelihood that com-
plementary programs are selected as parents during crossover?

• Does LGP with selective crossover and either or both of the above modifications sig-
nificantly outperform LGP with only selective crossover on a sequence of multiclass
classification problems?

• Does LGP with selective crossover, selective mutation and either or both of the above
modifications significantly outperform LGP with selective crossover and selective mu-
tation on a sequence of multiclass classification problems?

8.2 Diversive Elitism

Our first question asks whether and how we can diversify our population to preferentially
contain individuals with strengths in different area. What we really care about is preserving
the programs with the best performance so far in each area. Hence we are really dealing
with a modification to the elitism operator. The existing elitism operator copies the best x
individuals directly from the current generation to the next generation. Hence conventional
elitism ensures that the fitness of the next generation is at least as good as the fitness of the
current generation.

We propose a new form of elitism that selects individuals based on the performance of
their class graphs, instead of based on program performance as a whole. To be precise,
for each class we would copy to the next generation the x/n (where n is the number of
classes) programs with the best performance on training instances of that class. This means
that we encourage the emergence of programs which are good at classifying each of the
n classes of instances. Hence we ensure that for every class i there are programs present
in the population with good i’th class graphs which can be potentially selected as parents.
We refer to this new form of elitism as Diversive Elitism (DE), and postulate that it should
outperform conventional elitism on a sequence of multiclass classification problems.

8.2.1 Algorithm

l e t n be the number of c l a s s e s
l e t x be the number of programs generated by e l i t i s m

f o r each c l a s s 1<=i<=n
order the programs by the performance of the $i$ ’ th c l a s s t r e e ;
s e l e c t the top x/n i n d i v i d u a l s and place them in the next gen ;

8.3 Class Graph Selection

Our second questions asks whether and how we can increase the likelihood that the pro-
grams chosen to be parents will be complementary to each other. If we assume the first
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parent is chosen at random, then what we are really asking is can we increase the average
amount by which the second parent complements the first parent.

Assume we are using tournament selection. In conventional tournament selection, the
program with the best fitness wins the tournament and is selected for reproduction. But is
this really the best strategy? What we are really trying to do is to select the parents which
will give us the best offspring. We already discussed how two very fit programs with the
same weaknesses typically give worse results then two weaker programs that specialize in
different areas. Hence selecting parents based solely on fitness is clearly not always a good
strategy. What we really need is a heuristic that given any two parents, can be used to predict
the fitness of offspring.

As it turns out, we have already developed such a heuristic in chapter 7! In chapter 7,
we calculate the difference in class tree values and use it as a heuristic to predict which class
trees to exchange. By summing the possible improvement for each class tree, we arrive at
a prediction of how much improvement is possible for the entire program. So we can then
predict the possible improvement to be gained from mating with each individual in the
tournament, and select the one with the greatest possible predicted improvement. Mating
with this individual is more likely to produce high fitness offspring than mating with any
other individual in the tournament pool. We call this new selection operator Class Graph
Selection (CGS).

8.3.1 Algorithm

s e l e c t parent one using normal tournament s e l e c t i o n ;
s e l e c t n random i n d i v i d u a l s from the population ;
f o r each indiv idua l

determine the predic ted improvement from mating with t h a t indiv idua l ;
s e l e c t the indiv idua l with highes t predic ted improvement as parent 2 ;

8.4 Results and Analysis

Because these techniques are designed to complement selective crossover, applying them to
crossover which does not use selective crossover does not make sense. Hence we only apply
them to LGP using selective crossover. In addition both techniques complement each other,
being two facets of the same idea. Hence both techniques would always be applied together
so testing them individually is pointless. Therefore our primary set of experiments consist
of comparing LGP with selective crossover to LGP with selective crossover and both the
diversive elitism and class graph selection methods. We also rerun the same tests, but with
LGP using all of the above and additionally selective mutation. This final test represents the
culmination of all of the work in this project, insofar as it uses every new operator we have
developed, and hence we should expect it to achieve the best results of all experiments so
far.

8.4.1 LGP with SC, DE and CGS vs LGP with SC

The results in table 8.1 were obtained by running TGP with selective crossover, diversive
elitisim and class graph selection, and LGP with selective crossover on the three problems.
The first line shows that for the artificial characters problem, TGP with selective crossover,
diversive elitism and class graph selection achieved an average accuracy of 86.65% with a
s.d. of 4.74% on the test set over 150 runs. It also shows that the LGP with selective crossover
approach achieved an average accuracy of 88.72% with a s.d. of 5.19%.
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Table 8.1: Classification Accuracy: LGP with SC, DE and CGS vs. LGP with SC
Data Set LGP with SC LGP with SC, DE and CGS

Mean S.D. Mean S.D.
Artificial Characters 86.65% 4.74% 88.72% 5.19%
Segmentation 77.47% 3.91% 78.50% 4.85%
Digit Recognition 69.16% 3.21% 69.99% 3.13%

The results in table 8.2 were obtained by performing a 2 tailed students t-test based
on the results summarized in table 8.1. The first line describes the results of the t-test on
the artificial characters problem. It shows that the improvement in classification accuracy
that we have obtained on this problem has only a 0.0009 probability of having occurred by
chance. It also shows that this is a significant improvement according to our significance
criterion of 0.95.

Table 8.2: Significance of Results: LGP with SC, DE and CGS vs. LGP with SC
Data Set 2-Tailed P value Significant
Artificial Characters 0.0009 Yes
Segmentation 0.0099 Yes
Digit Recognition 0.0067 Yes

So LGP with SC, DE and CGS outperforms LGP with SC by a significant amount on
all test sets. This indicates that DE and CGS are superior techniques for solving multiclass
classification problems.

8.4.2 LGP with all techniques vs LGP with SC and SM

The results in table 8.1 were obtained by running GP with selective crossover, selective mu-
tation, diversive elitisim and class graph selection, and LGP with selective crossover and
selective mutation on the three problems. The first line shows that for the artificial charac-
ters problem, TGP with selective crossover, selective mutation, diversive elitism and class
graph selection achieved an average accuracy of 86.65% with a s.d. of 4.74% on the test set
over 150 runs. It also shows that the LGP with selective crossover and selective mutation
approach achieved an average accuracy of 88.72% with a s.d. of 5.19%.

Table 8.3: Classification Accuracy: LGP with Selective Crossover and Selective Mutation vs.
LGP with Selective Crossover, Selective Mutation, Diversive Elitism and Class Graph Selec-
tion

Data Set LGP with SC and SM LGP with SC, SM, DE and CGS
Mean S.D. Mean S.D.

Artificial Characters 87.69% 4.10% 89.86% 4.49%
Segmentation 78.45% 4.00% 79.03% 3.93%
Digit Recognition 70.61% 3.59% 71.46% 3.85%

The results in table 8.4 were obtained by performing a 2 tailed students t-test based on
the results summarized in table 8.3. The first line describes the results of the t-test on the
artificial characters prob, and it also shows that this is a significant improvement according
to our significance criterion of 0.95.
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Table 8.4: Significance of Results: LGP with Selective Crossover and Selective Mutation vs.
LGP with Selective Crossover, Selective Mutation, Diversive Elitism and Class Graph Selec-
tion

Data Set 2-Tailed P value Significant
Artificial Characters 0.0001 Yes
Segmentation 0.2062 No
Digit Recognition 0.0489 Yes

So LGP with all techniques outperforms LGP with SM and SC by a significant amount on
two problems, and a non-significant amount on oneproblem. This is a strong indication that
using DE and CGS is a superior techniques for solving multiclass classification problems,
although less strong than if the performance improvement on all three problems had been
significant.

8.5 Chapter Summary and Future Work

In this chapter we have developed two new operators which encourage the crossover of
individuals with diverse strengths, with the aim of complementing the selective crossover
operator and producing fitter children. The first of these operators is a new elitism opera-
tor called diversive elitism, which selects the fittest individuals in each area, instead of just
the fittest individuals overall. The second of these operators is a new selection operator
called class graph selection, which selects two programs which best complement each other
for crossover, instead of the two fittest children. Diversive Elitism and Class Graph Selec-
tion together clearly improve the performance of LGP on a series of multiclass classification
problems. Hence this indicates that LGP with these two techniques is a superior method for
performing multiclass classification.

Future work would investigate each of these techniques in more detail and on and in-
dividual basis. While it is likely that primarily these two new operators would be applied
together, it would be nice to know whether using just one new operator also results in a sig-
nificant performance improvement. In addition, we would like to determine the optimum
settings for these the parameters for both of these methods. In other words, do changes such
as increasing the elitism rate, or increasing the tournament size improve the performance of
DE, or CGS respectively.
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Chapter 9

Conclusions and Future Work

In this chapter the research, results, and conclusions of chapters 4-8 are summarized, and a
number of overall conclusions are presented. In addition, the future work which is revealed
and motivated by the work in this project is discussed.

9.1 Conclusions

Multiclass classification problems occur naturally in many computer vision applications
tasks and potential good solutions are of great importance. Currently GP methods are not
favored for solving multiclass classification problems due in large part to the program struc-
ture of the conventional TGP method. Experiments with an alternative form of GP, LGP,
have led us to explore a better program structure and learning algorithm for these types of
problems.

The overall goal of this project was to investigate a new approach in LGP for multiclass
classification problems. This goal was successfully achieved by developing five new genetic
operators and corresponding learning algorithms. These methods were examined and om-
pared with the canonical algorithms. These methods were examined and compared to the
canonical LGP and TGP on three multicass (object) classification problems of increasing dif-
ficuly. THe empirical results and theretical analyses show that these methods significantly
outperformed the standard LGP and TGP on these problems.

In the rest of the section, we describe the major conclusions derived from the project.

9.1.1 Tree based GP vs. Linear GP

Theory shows LGP is naturally suited to multiclass classification problems because it al-
lows for arbitrarily many outputs and our results back this theory up. Basic LGP outper-
formed TGP using a naive mapping function all of our problem sets, moreover basic LGP
had comparable performance to TGP with a state-of-the-art mapping function. In other
words the basic LGP approach which has not been specialized for solving multiclass classi-
fication problems has comparable performance to a heavily researched TGP approach which
has been optimized for solving such problems. So if the basic LGP technique performs so
well, it should be possible to achieve excellent results by optimizing LGP. This motivates
our later research into improving the basic LGP method, and we also hope it motivates
other researchers to investigate the area.
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9.1.2 Selective Mutation

The conventional mutation operator mutates program instructions at random. This is prob-
lematic because conventional mutation of fit programs is very likely to cause good instruc-
tions to be changed into bad instructions. We have developed a new mutation operator
which focuses on mutating the parts of an LGP which are bad, and keeping intact those
parts which are good. Our results show that LGP using this new selective mutation oper-
ator has significantly superior performance to LGP using conventional mutation on all the
problems investigated in this project.

9.1.3 Class Graph Crossover

The conventional crossover operator exchanges program instructions at random between
two LGP programs. This is problematic because exchanging instructions at random is likely
to break up good sections of code known as building blocks. We have developed a new form
of crossover, called Class Graph Crossover (CGC), which we believe alleviates this problem.
CGC is inspired by biological crossover, where code exchange only occurs between two
code sequences which determine the same feature. In other words both code sequences
must determine eye color, or both code sequences must determine gender etc. In the case of
LGP programs, both code sequences must determine the same register output. Our results
show that LGP with this new crossover operator has significantly superior performance to
conventional LGP on all problems.

9.1.4 Selective Crossover

Current advances in crossover operators focus on improving GP performance by increasing
the likelihood that the offspring produced by crossover have high fitness. The issue with
these methods is that they dramatically increase the computational cost of the crossover
operator because they calculate the fitness of many offspring. We have developed a new
crossover operator, called selective crossover, which addresses this problem by using a com-
putationally cheap heuristic to predict offspring fitness. This means we no longer have to
evaluate offspring, instead we simply use our heuristic to predict how to get better off-
spring. Our results show that selective crossover outperforms both conventional crossover
and class graph crossover by a significant amount on all problems.

9.1.5 Diversive Elitism and Class Graph Selection

Classification accuracy is not good grounds for selecting programs for crossover. Just be-
cause two programs each perform well individually does not mean they are well suited to
produce good offspring. Crossover, and particularly selective crossover, works best if the
two parents have strengths in different areas. We have developed a new elitism operator,
and a new selection operator, which both focus on increasing the likelihood that the parents
selected for crossover have contrasting strengths. The former acts by increasing the diver-
sity of the population, and the latter acts by selecting the second parent to contrast the first.
Our results show that together these two new operators improve the performance of LGP
with selective crossover by a significant amount on all problems. Hence we conclude that
increasing the likelihood that the parents selected for crossover have contrasting strengths
increases LGP performance.
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9.2 Future Work

In this section we discuss the future work which this project has motivated.

9.2.1 Selective Mutation

The concept behind selective mutation is simple in its elegance: if we can rate instruction
correctness, we can choose which instructions to mutation. Hence while currently this tech-
nique can only be applied to classification problems, we believe that it could be adapted and
used to improve the performance of LGP on many different problem domains. Future work
could focus on developing a model of instruction correctness for LGP programs in other
problem domains and using this to expand the the number of problem domains selective
mutation can be applied to.

9.2.2 Class Graph Crossover

CGC massively reduces the number of possible code exchanges which could take place,
while significantly improving performance. We hypothesize that this is because CGC in-
creases the likelihood of fit offspring by reducing the likelihood of building blocks being
disrupted. Future work would focus on confirming this hypothesis, preferably using a com-
bination of statistical proofs and empirical tests.

9.2.3 Selective Crossover

The performance of selective crossover is directly related to the effectiveness of the heuristic
used. We hypothesize that further improvement could be gained by designing new and
better heuristics that allow us to predict with more accuracy which crossovers would result
in the best offspring. Future research would focus on designing, implementing and testing
such heuristics. Additionally the concept of using heuristics to predict which instructions
should be exchanged during crossover is not limited to multiclass classification problems.
Future work could also focus on developing a selective crossover operator for use on other
problem domains.

9.2.4 Diversive Elitism and Class Graph Selection

The We are not sure which parameter values result in optimal results for either of these
operators. It could be the case the changing the diversive elitism rate, or changing the num-
ber of programs considered when using the class graph selection operator could improve
performance. Future work could focus on determining the optimal parameter settings.

9.3 Final Remarks

In this report we have developed a number of new operators, all with the goal of improv-
ing the performance of LGP on multiclass classification problems. All five operators have
demonstrated significantly improved performance on several multiclass classification prob-
lems. We believe that this demonstrates the potential in LGP for improvement and we hope
it motivates future researchers to further develop the LGP technique, both for multiclass
classification problems and problems in other domains.
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Appendix A

JVUWLGP

The research described in this report was carried out using a package called JVUWLGP
developed by Carlton Downey in 2009. This package is based heavily on the VUWLGP
package developed by Christo Fogelberg in 2005. The architecture and usage of JVUWLGP
is described in this appendix.

A.1 Introduction

VUWLGP is a LGP package written in ANSI STL C++. Java VUWLGP (JVUWLGP) is an LGP
package developed in Java based off the architecture of VUWLGP. JVUWLGP is an extend-
able library for performing linear genetic programming of all types including regression,
classification, multiclass classification etc. I have also written an extension of this library for
multiclass classification using LGP.

A.1.1 Motivation

The VUWLGP package was written in an archaic version of C++ which resulted in hun-
dreds of errors when it was compiled with a more recent compiler. I could potentially have
modified the package to run with a modified compiler, however the nature of these errors
and the complex way in which the package was written made writing my own implemen-
tation based off the package architecture in a more user friendly language a better option.
By writing my own implementation in Java I have decreased program complexity, improved
readability, improved error checking ability and made the task of extending the package eas-
ier. In addition it allowed me to gain an integral understanding of how the package works,
which will be of enormous value when the time comes to extend the package. The package
was previous written in C++ because it was historically much faster then Java. However
with modern advances in Java compilers, I believe that there will not be a significant runtime
discrepancy between a Java and a C++ implementation. With this disadvantage removed, a
Java package is superior because it is easier to read, debug and extend.

A.1.2 Major changes from vuwlgp

In writing Jvuwlgp I have stuck as closely as possible to the original architecture of the
vuwlgp package. However in many cases the difference between the two languages (C++
and Java) made it necessary to write parts of the program in a different way. The changes
listed below were largely motivated by three factors:
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In Java we no longer have to deal with memory management because of the Java garbage
collector. This means a great deal of code which dealt with explicit memory management
was not included in the Java translation because it became redundant.

There exists implicit code in C++ classes which must be translated into explicit code in
Java because in Java, the implicit code does not exist.

There are several language features present in C++ which we do not have access to in
Java. These include pointers, structs ands unions, function pointers, and multiple inheri-
tance. Also some language features in C++ such as templates allow more freedom then their
equivalent features such as generics in Java. In order to translate code written using any
of these features into Java, several workarounds were required. In particular, I have made
extensive use of the factory pattern.

A.1.3 Class Diagram

The following is a class diagram of the JVUWLGP package. Readers will note that most of
the classes are abstract and must be extended by an implementation of the library.

Figure A.1: Class Diagram for the JVUWLGP library

A.1.4 Description of the classes in Jvuwlgp

The following is a brief discription of each of the main classes in JVUWLGP and their pur-
pose. This is aimed to help programmers wishing to use or extend the JVUWLGP library.

ArgumentGenerator: A factory class which exists solely to create instances of IInstruc-
tionArgument. Each time IInstructionArgument is subclassed, ArgumentGenerator
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will also be subclassed.

ArgumentType: An Enumerated Type, but expressed using integers. Different integers rep-
resent different argument types.

Config: Holds the various user defined settings required for linear genetic programming.
These include the population size, the maximum program length etc.

ConstantFactory: A factory class which exists solely to create instances of InstructionArgu-
mentConstant.

FileReader: Deals with reading data in from a file and performing preprocessing on this
input, before using it to create FitnessCase instances.

FitnessEnvironment: Stores the FitnessCase instances used to evaluate the fitness of an
IProgram instance.

FitnessCase: A single labeled data instance which can be used to partially evaluate the fit-
ness of an IProgram. Contains a list of features to be used in the evaluation.

IFtinessMeasure: A measure of a program?s fitness at some point in time. Instances of
this class are used to cache the fitness of IProgram instances. This cacheing is done to
improve library performance.

IInstructionArgument: An argument for an instruction. Arguments provide values to be
used in the execution of an Instruction. Examples of arguments are registers, constants
and features.

IInstructionOperation: An operation to be performed on Arguments to produce a value.
Examples of operations include +, -, /, *, lt.

Instruction: An instruction in a program. LGP programs are comprised of a list of instruc-
tions to be executed in order. An instruction consists of a destination register, an op-
eration to perform, and 2 arguments to perform the operation on. The result of per-
forming the operation on the arguments is written to the destination register upon
execution of the program.

IPopulation: This class and IProgram are the core of the JVUWLGP library. Instances of this
class represent a population of individual programs. Contains a list of the programs in
a population and methods for operating on the population of individuals as a whole.
The primary loop for iterating through the generations is contained within this class
in the evolve() method.

IProgram: Instances of this class represent individual programs in the population. Contains
a list of the instructions to be executed in order, as well as methods which operate on
individual programs. Execution of the instructions results in a change to the values
held in the program registers. These values are the output of the program.

IProgramFactory: A factory class which exists solely to create instances of a IProgram.
Users of this library must extend both the IProgram class, and the IProgramFactory
class.

OperationGenerator: A factory class which exists solely to create instances of IInstruction-
Operation.
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Rand: A utility class which contains methods for producing the sorts of random numbers
required for this program.

RegisterCollection: Contains a list of registers and methods for operating on this list, such
as adding registers, writing to registers, etc.

WeightedCollection: A utility class. Is very similar to a set but each element is given a
weight when it is added to the collection. These weights allow random selection of
elements from the collection proportional to the weight. Used for randomly selecting
programs for reproduction according to fitness.
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