# The HB theorem and maximal monotonicity 

by

Stephen Simons<br>[simons@math.ucsb.edu](mailto:simons@math.ucsb.edu).


#### Abstract

We introduce a generalized form of the Hahn-Banach theorem, which we will use to prove various results on the existence of linear functionals in functional analysis, convex analysis and optimization, and also to prove a minimax theorem. We also deduce a sharp version of the Fenchel duality theorem, which we will apply to the Fitzpatrick function to obtain criteria for a monotone multifunction, $T$, on a reflexive Banach space to be maximal monotone, with various sharp lower bounds on the solutions, $x$ of the equation $(T+J) x \ni 0$. We do not use any renorming theorems, any fixed-point theorems, or any result that depends on Baire's theorem.


## Downloads

You can download files containing these slides and several related papers from
$<$ www.math.ucsb.edu/ $\sim_{\text {simons }} /$ preprints/Wellington.html $>$.

- The Hahn-Banach theorem and maximal monotonicity -


## Sublinear functionals

Let $E$ be a nonzero real vector space ${ }^{\dagger}$. A sublinear functional on $E$ is a map $S: E \mapsto \mathbb{R}$ such that

$$
x, y \in E \quad \Longrightarrow \quad S(x+y) \leq S(x)+S(y)
$$

and

$$
x \in E \text { and } \lambda>0 \quad \Longrightarrow \quad S(\lambda x)=\lambda S(x) .
$$

- Norms and linear functionals are sublinear.


## Affine functions

Let $D$ be a nonempty convex subset of a vector space, $E$ be a vector space and $a: D \mapsto E . a$ is affine if

$$
x, y \in D \text { and } \lambda \in(0,1) \quad \Longrightarrow \quad a(\lambda x+(1-\lambda) y)=\lambda a(x)+(1-\lambda) a(y) .
$$

- Note that an affine function can map into a vector space.
- The Hahn-Banach theorem and maximal monotonicity -


## Convex functions

Let $C$ be a nonempty convex subset of a vector space, and $f: C \mapsto(-\infty, \infty] . f$ is convex if

$$
x, y \in C \text { and } \lambda \in(0,1) \quad \Longrightarrow \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

provided $\infty+\infty:=\infty$, and $\lambda \times \infty:=\infty$ for $\lambda>0$. $f$ is proper if

$$
\exists x \in C \text { such that } f(x) \in \mathbb{R}
$$

- Sublinear functionals are convex.
- The Hahn-Banach theorem and maximal monotonicity -

Sublinear functional


Convex function


- The Hahn-Banach theorem and maximal monotonicity -


## Sublinear functionals

Let $E$ be a nonzero real vector space. A sublinear functional on $E$ is a map $S: E \mapsto \mathbb{R}$ such that

$$
\begin{array}{lll}
x, y \in E & \Longrightarrow & S(x+y) \leq S(x)+S(y) \\
x \in E \text { and } \lambda>0 & \Longrightarrow \quad S(\lambda x)=\lambda S(x) .
\end{array}
$$

## The Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Then $\exists$ a linear functional $L$ on $E$ such that ${ }^{\dagger}$

$$
L \leq S \text { on } E .
$$

## A generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $D$ be a nonempty convex subset of a (possibly different) vector space, and $a: D \mapsto E$ be affine. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{D} L \circ a=\inf _{D} S \circ a .
$$

## A generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $D$ be a nonempty convex subset of a (possibly different) vector space, and $a: D \mapsto E$ be affine. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{D} L \circ a=\inf _{D} S \circ a
$$

Proof Let $\beta:=\inf _{D} S \circ a$. If $\beta=-\infty$, the result is immediate from the Hahn-Banach theorem (take any linear functional $L$ on $E$ such that $L \leq S$ on $E$ ). So we can suppose that $\beta \in \mathbb{R}$. The result follows by applying the Hahn-Banach theorem to the function $T: E \mapsto \mathbb{R} \cup\{-\infty\}$ defined by

$$
T(x):=\inf _{d \in D, \lambda>0}[S(x+\lambda a(d))-\lambda \beta],
$$

which is, in fact, real and sublinear.

- The technique used above is called the technique of the "auxiliary sublinear functional".


## A generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $D$ be a nonempty convex subset of a (possibly different) vector space, and $a: D \mapsto E$ be affine. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{D} L \circ a=\inf _{D} S \circ a .
$$

- If $E$ is a normed space, $E^{*}$ stands for the norm-dual of $E$.

A separation theorem ("bipolar theorem")
Let $D$ be a nonempty convex subset of a normed space $E$ and $x \in E \backslash \bar{D}$. Then $\exists z^{*} \in E^{*}$ such that

$$
\sup _{D} z^{*}<\left\langle x, z^{*}\right\rangle
$$

Proof Let $S:=\|\cdot\|$ and $a(y):=x-y$ and apply the gHBt. \|

## A generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $D$ be a nonempty convex subset of a (possibly different) vector space, and $a: D \mapsto E$ be affine. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{D} L \circ a=\inf _{D} S \circ a .
$$

We will prove:

## A more generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $C$ be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be $S$-convex. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{C}[L \circ j+k]=\inf _{C}[S \circ j+k] .
$$

- " $j$ is $S$-convex" means that
$x_{1}, x_{2} \in C, \mu_{1}, \mu_{2}>0$ and $\mu_{1}+\mu_{2}=1 \quad \Longrightarrow \quad j\left(\mu_{1} x_{1}+\mu_{2} x_{2}\right) \leq_{S} \mu_{1} j\left(x_{1}\right)+\mu_{2} j\left(x_{2}\right)$,
where the ordering " $\leq_{S}$ " on E is defined by

$$
y \leq_{S} z \Longleftrightarrow S(y-z) \leq 0 .
$$

## A more generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $C$ be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be $S$-convex. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{C}[L \circ j+k]=\inf _{C}[S \circ j+k]
$$

Picture :


Proof This follows from the gHBt with $E$ replaced by $E \times \mathbb{R}$, the sublinear functional defined on $E \times \mathbb{R}$ by $(y, \lambda) \mapsto S(y)+\lambda$, the convex set $D$ defined by

$$
D:=\{(x, y, \lambda) \in C \times E \times \mathbb{R}: S(j(x)-y) \leq 0, k(x) \leq \lambda\}
$$

and the affine function $a: D \mapsto \widetilde{E}$ defined by

$$
a(x, y, \lambda):=(y, \lambda)
$$

- Affine functions are $S$-convex, so the mgHBt generalizes the gHBt.


## A more generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $C$ be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be $S$-convex. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{C}[L \circ j+k]=\inf _{C}[S \circ j+k] .
$$

## Sandwich theorem

Let $S$ be a sublinear functional on $E$ and $k$ : $E \mapsto(-\infty, \infty]$ be proper and convex and $-k \leq S$ on $E$. Then $\exists$ a linear functional $L$ on $E$ such that

$$
-k \leq L \leq S \text { on } E .
$$

Proof Let $C:=E, j(x):=x$ and apply the mgHBt.

## The extension form of the Hahn-Banach theorem

Let $E$ be a normed space, $F$ be a subspace of $E$ and $y^{*} \in F^{*}$. Then $\exists x^{*} \in E^{*}$ such that

$$
\left.x^{*}\right|_{F}=y^{*} \quad \text { and } \quad\left\|x^{*}\right\|_{E} \leq\left\|y^{*}\right\|_{F} .
$$

Proof Let $S:=\left\|y^{*}\right\|_{F}\|\cdot\|, C:=F, j(y):=y$ and $k(y):=-\left\langle y, y^{*}\right\rangle$, and apply the mgHBt. I

## Lagrange multipliers for constrained convex problems

Let $E$ be a normed space and $\preceq$ be a vector ordering on $E$. Let $C$ be a nonempty convex subset of a vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex, $j: C \mapsto E$ be $\preceq-$ convex and $\inf \{k(x): x \in C, j(x) \preceq 0\}=\mu_{0} \in \mathbb{R}$. When can we assert that
$\exists \preceq-$ positive $z^{*} \in E^{*}$ such that $\inf \left\{\left\langle j(x), z^{*}\right\rangle+k(x): x \in C\right\}=\mu_{0}$ ?

Let $N:=\{y \in E: y \preceq 0\}$ and $A:=\left\{x \in C: k(x)<\mu_{0}\right\} \neq \emptyset$.
Classical result: Let $B:=\{x \in C: j(x) \in \operatorname{int} N\} \neq \emptyset$ then ( 60$)$.

## Necessary condition with a bound on the norm

Suppose that $B \neq \emptyset$. Then (

$$
\left\|z^{*}\right\| \leq \inf _{v \in B} \frac{k(v)-\mu_{0}}{\operatorname{dist}(j(v), E \backslash N)}
$$

Necessary and sufficient condition with sharp bound on the norm

$$
(\hat{0}) \Longleftrightarrow \sup _{x \in A} \frac{\mu_{0}-k(x)}{\operatorname{dist}(j(x), N)}<\infty .
$$

Further,

$$
\left.\sup _{x \in A} \frac{\mu_{0}-k(x)}{\operatorname{dist}(j(x), N)}=\min \left\{\left\|z^{*}\right\|: z^{*} \text { satisfies ( (夭) }\right)\right\} .
$$

- The Hahn-Banach theorem and maximal monotonicity -


## A more generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $C$ be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be $S$-convex. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{C}[L \circ j+k]=\inf _{C}[S \circ j+k] .
$$

## Lemma on $m$ convex functions

Let $C$ be a nonempty convex subset of a vector space and $f_{1}, \ldots, f_{m}$ be convex real functions on $C$. Then: $\exists \lambda_{1}, \ldots, \lambda_{m} \geq 0$ such that

$$
\lambda_{1}+\cdots+\lambda_{m}=1 \quad \text { and } \quad \inf _{C}\left[f_{1} \vee \cdots \vee f_{m}\right]=\inf _{C}\left[\lambda_{1} f_{1}+\cdots+\lambda_{m} f_{m}\right] .
$$

Proof This follows from the mgHBt with ${ }^{\dagger} E:=\mathbb{R}^{m}, k:=0$, and $S$ and $j$ defined by

$$
S\left(\mu_{1}, \ldots, \mu_{m}\right):=\mu_{1} \vee \cdots \vee \mu_{m} \quad \text { and } \quad j(c):=\left(f_{1}(c), \ldots, f_{m}(c)\right) . 】
$$

- The Hahn-Banach theorem and maximal monotonicity -


## Lemma on $m$ convex functions

Let $B$ be a nonempty convex subset of a vector space and $f_{1}, \ldots, f_{m}$ be convex real functions on $B$. Then: $\exists \lambda_{1}, \ldots, \lambda_{m} \geq 0$ such that

$$
\lambda_{1}+\cdots+\lambda_{m}=1 \quad \text { and } \quad \inf _{C}\left[f_{1} \vee \cdots \vee f_{m}\right]=\inf _{C}\left[\lambda_{1} f_{1}+\cdots+\lambda_{m} f_{m}\right]
$$



Let $A, B$ be nonempty sets, and $h: A \times B \mapsto \mathbb{R}$.

- It is easily seen that

$$
\sup _{a \in A} \inf _{b \in B} h(a, b) \leq \inf _{b \in B} \sup _{a \in A} h(a, b) .
$$

- This inequality can be strict, take for instance $A=B=\{0,1\}$ and $h(a, b)=0$ if $a \neq b$ and $h(a, b)=1$ if $a=b$.


## The minimax theorem

Let $A$ be a nonempty convex subset of a vector space, $B$ be a nonempty convex subset of a vector space and $B$ also be a compact space. Let $h: A \times B \mapsto \mathbb{R}$ be concave on $A$, and convex and lower semicontinuous on $B$. Then

$$
\sup _{a \in A} \min _{b \in B} h(a, b)=\min _{b \in B} \sup _{a \in A} h(a, b) .
$$

- $h$ is "concave on $A$ " means that

$$
\forall b \in B, \quad-h(\cdot, b) \text { is convex on } A .
$$

$h$ is "convex and lower semicontinuous on $B$ " mean that

$$
\forall a \in A, \quad h(a, \cdot) \text { is convex and lower semicontinuous on } B .
$$

- Note that the set $A$ has no topological structure.
- We can write "min" instead of "inf" because $h$ is lower semicontinuous on $B$ and $B$ is compact.


## The minimax theorem

Let $A$ be a nonempty convex subset of a vector space, $B$ be a nonempty convex subset of a vector space and $B$ also be a compact space. Let $h: A \times B \mapsto \mathbb{R}$ be concave on $A$, and convex and lower semicontinuous on $B$. Then

$$
\sup _{a \in A} \min _{b \in B} h(a, b)=\min _{b \in B} \sup _{a \in A} h(a, b)
$$

Proof Let $\beta:=\sup _{a \in A} \min _{b \in B} h(a, b)$. If we had $\beta<\min _{b \in B} \sup _{a \in A} h(a, b)$ then

$$
\bigcup_{a \in A}\{b \in B: h(a, b)>\beta\}=B .
$$

Since $h$ is lower semicontinuous on $B$, the sets $\{b \in B: h(a, b)>\beta\}$ are open and $B$ is compact, there would exist $a_{1}, \ldots, a_{m} \in A$ such that

$$
\left\{b \in B: h\left(a_{1}, b\right)>\beta\right\} \cup \cdots \cup\left\{b \in B: h\left(a_{m}, b\right)>\beta\right\}=B
$$

and so $\min _{b \in B}\left[h\left(a_{1}, b\right) \vee \cdots \vee h\left(a_{m}, b\right)\right]>\beta$. From the Lemma on $m$ convex functions with $f_{i}:=h\left(a_{i}, \cdot\right)$, there would exist $\lambda_{1}, \ldots \lambda_{m} \geq 0$ such that $\lambda_{1}+\cdots+\lambda_{m}=1$ and

$$
\min _{b \in B}\left[\lambda_{1} h\left(a_{1}, b\right)+\cdots+\lambda_{m} h\left(a_{m}, b\right)\right]>\beta
$$

Since $h$ is concave on $A$, it would follow from this that

$$
\min _{b \in B} h\left(\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}, b\right)>\beta,
$$

which would contradict the definition of $\beta$. So $\beta \geq \min _{b \in B} \sup _{a \in A} h(a, b)$.

- The Hahn-Banach theorem and maximal monotonicity -

On the existence of subgradients
Let $E$ be a normed space, $k: E \mapsto(\infty, \infty]$ be convex, $x \in E$ and $k(x) \in \mathbb{R}$. Does there exist $x^{*} \in E^{*}$ such that

$$
y \in E \quad \Longrightarrow \quad k(x)+\left\langle y-x, x^{*}\right\rangle \leq k(y) ?
$$



## On the existence of subgradients

Let $E$ be a normed space, $k: E \mapsto(\infty, \infty]$ be convex, $x \in E$ and $k(x) \in \mathbb{R}$. Does there exist $x^{*} \in E^{*}$ such that $\quad y \in E \quad \Longrightarrow \quad k(x)+\left\langle y-x, x^{*}\right\rangle \leq k(y)$ ?

$$
\Longleftrightarrow
$$

Do there exist $M \geq 0$ and a linear functional $L$ on $E$ such that $L \leq M\|\cdot\|$ on $E$ and

$$
y \in E \quad \Longrightarrow \quad k(y)+L(x-y) \geq k(x) ?
$$

## A more generalized Hahn-Banach theorem

Let $S$ be a sublinear functional on $E$. Let $C$ be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto(-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be $S$-convex. Then $\exists$ a linear functional $L$ on $E$ such that

$$
L \leq S \text { on } E \quad \text { and } \quad \inf _{C}[L \circ j+k]=\inf _{C}[S \circ j+k] .
$$

From the mgHBt with $S:=M\|\cdot\|, C:=E$ and $j(x):=x-y$, this $\Longleftrightarrow$

$$
\text { Does there exist } M \geq 0 \text { such that, } y \in E \quad \Longrightarrow \quad k(y)+M\|x-y\| \geq k(x) \text { ? }
$$

Thus we have transformed the original problem on the existence of continuous linear functionals into the (much simpler) problem of finding a real constant $M$. This is an example of the "discovery method".

Separating a convex and a concave function
Let $E$ be a normed space and $f, g: E \mapsto(\infty, \infty]$ be proper and convex. Do there exist $z^{*} \in E^{*}$ and $\beta \in \mathbb{R}$ such that

$$
-f \leq z^{*}+\beta \leq g \quad \text { on } \quad E ?
$$



Using the same technique as before, with $C:=E \times E, j(x, y):=x-y$ and $k(x, y):=$ $f(x)+g(y)$, the above problem reduces to:

Does there exist $M \geq 0$ such that

$$
\forall x, y \in E, \quad f(x)+g(y)+M\|x-y\| \geq 0 ?
$$

## Separating a convex and a concave function

Let $E$ be a normed space and $f, g: E \mapsto(\infty, \infty]$ be proper and convex. Do there exist $z^{*} \in E^{*}$ and $\beta \in \mathbb{R}$ such that

$$
\begin{equation*}
-f \leq z^{*}+\beta \leq g \quad \text { on } \quad E ? \tag{8}
\end{equation*}
$$

- The Fenchel conjugate $f^{*}$ is defined by $f^{*}\left(x^{*}\right):=\sup _{E}\left(x^{*}-f\right)$.
- ( ) $\Longleftrightarrow-z^{*}-f \leq \beta$ on $E$ and $z^{*}-g \leq-\beta$ on $E$

$$
\Longleftrightarrow f^{*}\left(-z^{*}\right) \leq \beta \text { and } g^{*}\left(z^{*}\right) \leq-\beta,
$$

- So our question $\Longleftrightarrow$ is it true that

$$
\begin{equation*}
\exists z^{*} \in E^{*} \quad \text { such that } f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right) \leq 0 ? \tag{9-3}
\end{equation*}
$$

When (

- Rockafellar and Attouch-Brezis have given sufficient conditions for the Fenchel duality theorem to be true. The condition on the previous slide is both necessary and sufficient.
- We will use the following special case of Rockafellar's version, that ( $\left(\begin{array}{l}\text { 角 }\end{array}\right.$ ) is true if $f+g \geq 0$ on $E$ and $g$ is continuous.

The following result is very useful in the theory of monotone multifunctions.

## A sharp case of Fenchel duality

Let $F$ be a normed space, $f: F \mapsto(\infty, \infty]$ be proper and convex and

$$
y \in F \quad \Longrightarrow \quad f(y)+\frac{1}{2}\|y\|^{2} \geq 0
$$

Let $\quad M:=\sup _{y \in F}\left[\|y\|-\sqrt{2 f(y)+\|y\|^{2}}\right] \vee 0$.
Then there exists $y^{*} \in F^{*}$ such that $\left\|y^{*}\right\| \leq M$ and

$$
f^{*}\left(y^{*}\right)+\frac{1}{2}\left\|y^{*}\right\|^{2} \leq 0 .
$$

- In fact

$$
\min \left\{\left\|y^{*}\right\|: y^{*} \text { is as in }(\zeta)\right\}=M
$$

Outline of proof. One can prove using ( $\widehat{\aleph}$ ) and Dedekind section that

$$
y \in F \quad \Longrightarrow \quad|\|y\|-M| \leq \sqrt{2 f(y)+\|y\|^{2}} \quad \Longrightarrow \quad f(y)+M\|y\| \geq \frac{1}{2} M^{2} .
$$

Rockafellar's version of the Fenchel duality theorem now gives $y^{*} \in F^{*}$ such that

$$
f^{*}\left(y^{*}\right)+(M\|\cdot\|)^{*}\left(-y^{*}\right) \leq-\frac{1}{2} M^{2}
$$

thus $\left\|y^{*}\right\| \leq M$ and $f^{*}\left(y^{*}\right) \leq-\frac{1}{2} M^{2}$, from which ( $\}$ ) is immediate. Finally, it is not hard to show that

$$
\text { if } y^{*} \in F^{*} \text { satisfies ( (\}) then }\left\|y^{*}\right\| \geq M \text {. }
$$

- $E$ is a reflexive Banach space and $E^{*}$ is its topological dual space.


## Maximal monotone multifunctions

$T: E \rightrightarrows E^{*}$ means that $\forall x \in E, T x$ is a (possibly empty) subset of $E^{*}$. Then

$$
G(T):=\left\{\left(x, x^{*}\right): x \in E, x^{*} \in T x\right\} .
$$

Let $G(T) \neq \emptyset . T$ is monotone if

$$
\left(x, x^{*}\right) \text { and }\left(y, y^{*}\right) \in G(T) \quad \Longrightarrow \quad\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0
$$

$T$ is maximal monotone if $T$ is monotone and

$$
\begin{gathered}
\left(w, w^{*}\right) \in E \times E^{*} \text { and } \quad\left(\left(t, t^{*}\right) \in G(T) \quad \Longrightarrow \quad\left\langle w-t, w^{*}-t^{*}\right\rangle \geq 0\right) \\
\Downarrow \\
\left(w, w^{*}\right) \in G(T) . \\
J \text { and }-J \text { and } T+J
\end{gathered}
$$

The duality multifunction $J: E \rightrightarrows E^{*}$ is defined by:

$$
x^{*} \in J x \Longleftrightarrow \frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2}=\left\langle x, x^{*}\right\rangle .
$$

$J$ is maximal monotone. $-J: E \rightrightarrows E^{*}$ is defined by: $(-J) x:=-J x \quad(x \in E)$. Then:

$$
x^{*} \in-J x \Longleftrightarrow\left\langle x, x^{*}\right\rangle+\frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2}=0 .
$$

If $T: E \rightrightarrows E^{*}$ then, $\forall x \in E,(T+J) x:=\left\{x^{*}+y^{*}: x^{*} \in T x, y^{*} \in J x\right\}$.

- If $\left(x, x^{*}\right) \in E \times E^{*}$ then $\left\|\left(x, x^{*}\right)\right\|:=\sqrt{\|x\|^{2}+\left\|x^{*}\right\|^{2}}$.
- The topological dual of $E \times E^{*}$ is $E^{*} \times E$, under the pairing

$$
\left\langle\left(x, x^{*}\right),\left(u^{*}, u\right)\right\rangle:=\left\langle x, u^{*}\right\rangle+\left\langle u, x^{*}\right\rangle .
$$

- We have $\left\|\left(u^{*}, u\right)\right\|=\sqrt{\|u\|^{2}+\left\|u^{*}\right\|^{2}}$.


## The Fitzpatrick function of $T$

Let $T: E \rightrightarrows E^{*}$ be maximal monotone. We define its Fitzpatrick function, $\varphi_{T}$, by

$$
\varphi_{T}\left(x, x^{*}\right):=\sup _{\left(t, t^{*}\right) \in G(T)}\left[\left\langle t, x^{*}\right\rangle+\left\langle x, t^{*}\right\rangle-\left\langle t, t^{*}\right\rangle\right] .
$$

$\varphi_{T}$ is a proper, convex and lower semicontinuous function from $E \times E^{*}$ into ( $\infty, \infty$ ],

$$
\begin{equation*}
\left(x, x^{*}\right) \in E \times E^{*} \quad \Longrightarrow \quad \varphi_{T}^{*}\left(x^{*}, x\right) \geq \varphi_{T}\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle \tag{照}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{T}^{*}\left(x^{*}, x\right)=\left\langle x, x^{*}\right\rangle \Longleftrightarrow\left(x, x^{*}\right) \in G(T) \tag{q}
\end{equation*}
$$

Proof. If $y=\left(x, x^{*}\right)$ then, from (啫),

$$
\varphi_{T}(y)+\frac{1}{2}\|y\|^{2} \geq\left\langle x, x^{*}\right\rangle+\frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2} \geq \frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2}-\|x\|\left\|x^{*}\right\| \geq 0
$$

- The Hahn-Banach theorem and maximal monotonicity -

$$
\begin{aligned}
& \text { A new property of } \varphi_{T} \\
& y \in E \times E^{*}
\end{aligned}{ }^{\Longrightarrow} \quad \varphi_{T}(y)+\frac{1}{2}\|y\|^{2} \geq 0 .
$$

## A sharp case of Fenchel duality

Let $F$ be a normed space, $f: F \mapsto(\infty, \infty]$ be proper and convex and

$$
y \in F \quad \Longrightarrow \quad f(y)+\frac{1}{2}\|y\|^{2} \geq 0 .
$$

Let

$$
M:=\sup _{y \in F}\left[\|y\|-\sqrt{2 f(y)+\|y\|^{2}}\right] \vee 0 .
$$

- In fact

$$
\min \left\{\left\|y^{*}\right\|: y^{*} \text { is as in }(\zeta)\right\}=M .
$$

Now let $N:=\frac{1}{\sqrt{2}} \sup _{y \in E \times E^{*}}\left[\|y\|-\sqrt{2 \varphi_{T}(y)+\|y\|^{2}}\right] \vee 0$.

## Combination result

$\exists\left(z, z^{*}\right) \in E \times E^{*}$ such that $\quad\|z\|^{2}+\left\|z^{*}\right\|^{2} \leq 2 N^{2} \quad$ and

$$
\left[\varphi_{T}^{*}\left(z^{*}, z\right)-\left\langle z, z^{*}\right\rangle\right]+\left[\left\langle z, z^{*}\right\rangle+\frac{1}{2}\|z\|^{2}+\frac{1}{2}\left\|z^{*}\right\|^{2}\right]=\varphi_{T}^{*}\left(z^{*}, z\right)+\frac{1}{2}\left\|\left(z^{*}, z\right)\right\|^{2} \leq 0 .
$$

Proof. We have $y^{*} \in E^{*} \times E$ such that $\left\|y^{*}\right\| \leq \sqrt{2} N$ and $\varphi_{T}^{*}\left(y^{*}\right)+\frac{1}{2}\left\|y^{*}\right\|^{2} \leq 0$. Let $\left(z, z^{*}\right) \in E \times E^{*}$ be such that $y^{*}=\left(z^{*}, z\right)$.

- Let $E$ be reflexive, $T: E \rightrightarrows E^{*}$ be maximal monotone and

$$
N:=\frac{1}{\sqrt{2}} \sup _{y \in E \times E^{*}}\left[\|y\|-\sqrt{2 \varphi_{T}(y)+\|y\|^{2}}\right] \vee 0 .
$$

## Combination result

$\exists\left(z, z^{*}\right) \in E \times E^{*}$ such that $\quad\|z\|^{2}+\left\|z^{*}\right\|^{2} \leq 2 N^{2} \quad$ and

$$
\left[\varphi_{T}^{*}\left(z^{*}, z\right)-\left\langle z, z^{*}\right\rangle\right]+\left[\left\langle z, z^{*}\right\rangle+\frac{1}{2}\|z\|^{2}+\frac{1}{2}\left\|z^{*}\right\|^{2}\right] \leq 0
$$

Now $\left\langle z, z^{*}\right\rangle+\frac{1}{2}\|z\|^{2}+\frac{1}{2}\left\|z^{*}\right\|^{2} \geq 0$, and (鹤) gives $\varphi_{T}^{*}\left(z^{*}, z\right)-\left\langle z, z^{*}\right\rangle \geq 0$, thus

$$
\varphi_{T}^{*}\left(z^{*}, z\right)=\left\langle z, z^{*}\right\rangle \quad \text { and } \quad\left\langle z, z^{*}\right\rangle+\frac{1}{2}\|z\|^{2}+\frac{1}{2}\left\|z^{*}\right\|^{2}=0
$$

From ( p ) $),\left(z, z^{*}\right) \in G(T)$. Also $\left(z,-z^{*}\right) \in G(J)$, from which $\left\|z^{*}\right\|=\|z\|$ and so $\|z\| \leq N$. Since $0=z^{*}+\left(-z^{*}\right)$, we also have $0 \in(T+J) z$. This proves the "existence" part of:

Reflexivity with maximality theorem
$\exists x \in E$ such that $\|x\| \leq N$ and $(T+J) x \ni 0$.
In fact, $\min \{\|x\|:(T+J) x \ni 0\}=N$.

- Let $E$ be reflexive, $T: E \rightrightarrows E^{*}$ be maximal monotone and

$$
N:=\frac{1}{\sqrt{2}} \sup _{y \in E \times E^{*}}\left[\|y\|-\sqrt{2 \varphi_{T}(y)+\|y\|^{2}}\right] \vee 0 .
$$

## Reflexivity with maximality theorem

$\exists x \in E$ such that $\|x\| \leq N$ and $(T+J) x \ni 0$.
In fact,

$$
\min \{\|x\|:(T+J) x \ni 0\}=N
$$

Rest of Proof. Now we must show that

$$
x \in E \text { and }(T+J) x \ni 0 \quad \Longrightarrow \quad\|x\| \geq N
$$

So suppose that $x \in E$ and $(T+J) x \ni 0$. Then there exists $x^{*} \in T x$ such that $-x^{*} \in J x$. From (마) again,

$$
\varphi_{T}^{*}\left(x^{*}, x\right)+\frac{1}{2}\left\|\left(x^{*}, x\right)\right\|^{2}=\left[\varphi_{T}^{*}\left(x^{*}, x\right)-\left\langle x, x^{*}\right\rangle\right]+\left[\left\langle x, x^{*}\right\rangle+\frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2}\right]=0
$$

The sharp case of Fenchel duality now gives

$$
\left\|\left(x^{*}, x\right)\right\| \geq \sqrt{2} N
$$

But

$$
\|x\|=\frac{1}{\sqrt{2}}\left\|\left(x^{*}, x\right)\right\|
$$

## Reflexivity with maximality theorem

Let $E$ be reflexive, $T: E \rightrightarrows E^{*}$ be maximal monotone and $\ldots$. Then

$$
\exists x \in E \text { such that }(T+J) x \ni 0 \ldots .
$$

## The $-J$ criterion for maximality

Let $E$ be reflexive and $T: E \rightrightarrows E^{*}$ be monotone. Then

$$
T \text { is maximal monotone } \Longleftrightarrow G(T)+G(-J)=E \times E^{*} .
$$

Proof $(\Longrightarrow)$ Let $\left(w, w^{*}\right) \in E \times E^{*}$ and apply the reflexivity with maximality theorem, with $T$ replaced by the multifunction with graph $G(T)-\left(w, w^{*}\right) \subset E \times E^{*}$, which is also maximal monotone. We obtain $\left(t, t^{*}\right) \in G(T)$ such that $\left(t-w, t^{*}-w^{*}\right) \in G(-J)$. But then $\left(w-t, w^{*}-t^{*}\right) \in G(-J)$ and so $\left(w, w^{*}\right)=\left(t, t^{*}\right)+\left(w-t, w^{*}-t^{*}\right) \in G(T)+G(-J)$.
$(\Longleftarrow)$ Let $\left(w, w^{*}\right) \in E \times E^{*}$ and

$$
\left(t, t^{*}\right) \in G(T) \quad \Longrightarrow \quad\left\langle w-t, w^{*}-t^{*}\right\rangle \geq 0
$$

Choose $\left(t, t^{*}\right) \in G(T)$ so that $\left(w-t, w^{*}-t^{*}\right) \in G(-J)$. Then

$$
\frac{1}{2}\|w-t\|^{2}+\frac{1}{2}\left\|w^{*}-t^{*}\right\|^{2}=-\left\langle w-t, w^{*}-t^{*}\right\rangle \leq 0
$$

So $\left(w, w^{*}\right)=\left(t, t^{*}\right) \in G(T)$.

## The $-J$ criterion for maximality

Let $E$ be reflexive and $T: E \rightrightarrows E^{*}$ be monotone. Then

$$
T \text { is maximal monotone } \Longleftrightarrow G(T)+G(-J)=E \times E^{*} .
$$

The range of a multifunction
If $T: E \rightrightarrows E^{*}$,

$$
R(T):=\bigcup_{x \in E} T x .
$$

## Rockafellar's surjectivity theorem

Let $E$ be reflexive, $T: E \rightrightarrows E^{*}$ be maximal monotone and, $\forall x \in E$,

$$
(T+J) x:=\left\{x^{*}+y^{*}: x^{*} \in T x, y^{*} \in J x\right\} .
$$

Then

$$
R(T+J)=E^{*} .
$$

Proof Let $w^{*} \in E^{*}$. From the $-J$ criterion for maximality,

$$
\left(0, w^{*}\right) \in G(T)+G(-J) .
$$

Thus $\exists x \in E, x^{*} \in T x$ and $y^{*} \in(-J)(-x)$ such that $x^{*}+y^{*}=w^{*}$. But then $y^{*} \in J x$, hence

$$
w^{*}=x^{*}+y^{*} \in(T+J) x \subset R(T+J) .
$$

- The Hahn-Banach theorem and maximal monotonicity -


## Minty's Theorem

If $E$ is a Hilbert space and $T: E \rightrightarrows E^{*}$ is monotone then

$$
T \text { is maximal monotone } \Longleftrightarrow R(T+J)=E^{*} \text {. }
$$

It was proved by Rockafellar that this also holds if $E$ is a reflexive Banach space such that the norm on $E$ and the dual norm on $E^{*}$ are strictly convex. Further, it was proved by Asplund that any reflexive Banach space can be renormed so that this property holds.
This result does not hold in a reflexive space where $J$ or $J^{-1}$ is not single-valued.

Various formulas for the minimum norm of solutions of $(T+J) x \ni 0$
If $E$ is reflexive and $T: E \rightrightarrows E^{*}$ is maximal monotone then

$$
\begin{gathered}
\min \{\|x\|: x \in E,(T+J) x \ni 0\} \\
=\frac{1}{\sqrt{2}} \sup _{y \in E \times E^{*}}\left[\|y\|-\sqrt{2 \varphi_{T}(y)+\|y\|^{2}}\right] \vee 0 \\
=\frac{1}{2} \sup _{\left(x, x^{*}\right) \in E \times E^{*}}\left[\|x\|+\left\|x^{*}\right\|-\sqrt{4 \varphi_{T}\left(x, x^{*}\right)+\left(\|x\|+\left\|x^{*}\right\|\right)^{2}}\right] \vee 0 \\
=\sup _{\left(x, x^{*}\right) \in E \times E^{*}}\left[\|x\| \vee\left\|x^{*}\right\|-\sqrt{\varphi_{T}\left(x, x^{*}\right)+\|x\|^{2} \vee\left\|x^{*}\right\|^{2}}\right] \vee 0 .
\end{gathered}
$$

