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Abstract

We introduce a generalized form of the Hahn–Banach theorem, which we will use to
prove various results on the existence of linear functionals in functional analysis, convex
analysis and optimization, and also to prove a minimax theorem. We also deduce a
sharp version of the Fenchel duality theorem, which we will apply to the Fitzpatrick
function to obtain criteria for a monotone multifunction, T , on a reflexive Banach
space to be maximal monotone, with various sharp lower bounds on the solutions, x of
the equation (T + J)x 3 0. We do not use any renorming theorems, any fixed–point
theorems, or any result that depends on Baire’s theorem.

Downloads

You can download files containing these slides and several related papers from
<www.math.ucsb.edu/∼simons/preprints/Wellington.html>.
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— The Hahn–Banach theorem and maximal monotonicity —

Sublinear functionals

Let E be a nonzero real vector space†. A sublinear functional on E is a map
S: E 7→ R such that

x, y ∈ E =⇒ S(x+ y) ≤ S(x) + S(y)

and
x ∈ E and λ > 0 =⇒ S(λx) = λS(x).

• Norms and linear functionals are sublinear.

Affine functions

Let D be a nonempty convex subset of a vector space, E be a vector space and
a:D 7→ E. a is affine if

x, y ∈ D and λ ∈ (0, 1) =⇒ a(λx+ (1− λ)y) = λa(x) + (1− λ)a(y).

• Note that an affine function can map into a vector space.
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— The Hahn–Banach theorem and maximal monotonicity —

Convex functions

Let C be a nonempty convex subset of a vector space, and f :C 7→ (−∞,∞]. f is
convex if

x, y ∈ C and λ ∈ (0, 1) =⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

provided ∞+∞ :=∞, and λ×∞ :=∞ for λ > 0. f is proper if

∃ x ∈ C such that f(x) ∈ R.

• Sublinear functionals are convex.
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Sublinear functional

Convex function

Affine function
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— The Hahn–Banach theorem and maximal monotonicity —

Sublinear functionals

Let E be a nonzero real vector space. A sublinear functional on E is a map S: E 7→ R
such that

x, y ∈ E =⇒ S(x+ y) ≤ S(x) + S(y)
and

x ∈ E and λ > 0 =⇒ S(λx) = λS(x).

The Hahn-Banach theorem

Let S be a sublinear functional on E. Then ∃ a linear functional L on E such that†

L ≤ S on E.

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly
different) vector space, and a: D 7→ E be affine. Then ∃ a linear functional L on E
such that

L ≤ S on E and infD L ◦ a = infD S ◦ a.
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A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly
different) vector space, and a: D 7→ E be affine. Then ∃ a linear functional L on E
such that

L ≤ S on E and infD L ◦ a = infD S ◦ a.

Proof Let β := infD S ◦ a. If β = −∞, the result is immediate from the Hahn-Banach
theorem (take any linear functional L on E such that L ≤ S on E). So we can suppose
that β ∈ R. The result follows by applying the Hahn–Banach theorem to the function
T : E 7→ R ∪ {−∞} defined by

T (x) := infd∈D, λ>0

[
S
(
x+ λa(d)

)
− λβ

]
,

which is, in fact, real and sublinear.

• The technique used above is called the technique of the “auxiliary sublinear
functional”.
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— The Hahn–Banach theorem and maximal monotonicity —

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly
different) vector space, and a: D 7→ E be affine. Then ∃ a linear functional L on E
such that

L ≤ S on E and infD L ◦ a = infD S ◦ a.

• If E is a normed space, E∗ stands for the norm–dual of E.

A separation theorem (“bipolar theorem”)

Let D be a nonempty convex subset of a normed space E and x ∈ E \ D. Then
∃ z∗ ∈ E∗ such that

supD z
∗ < 〈x, z∗〉.

Proof Let S := ‖ · ‖ and a(y) := x− y and apply the gHBt.
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— The Hahn–Banach theorem and maximal monotonicity —

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly
different) vector space, and a: D 7→ E be affine. Then ∃ a linear functional L on E
such that

L ≤ S on E and infD L ◦ a = infD S ◦ a.

We will prove:

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly
different) vector space, k: C 7→ (−∞,∞] be proper and convex and j: C 7→ E be
S–convex. Then ∃ a linear functional L on E such that

L ≤ S on E and infC
[
L ◦ j + k

]
= infC

[
S ◦ j + k

]
.

• “j is S–convex” means that

x1, x2 ∈ C, µ1, µ2 > 0 and µ1 + µ2 = 1 =⇒ j(µ1x1 + µ2x2) ≤S µ1j(x1) + µ2j(x2),

where the ordering “≤S” on E is defined by

y ≤S z ⇐⇒ S(y − z) ≤ 0.
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— The Hahn–Banach theorem and maximal monotonicity —

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly
different) vector space, k: C 7→ (−∞,∞] be proper and convex and j: C 7→ E be
S–convex. Then ∃ a linear functional L on E such that

L ≤ S on E and inf
C

[
L ◦ j + k

]
= inf

C

[
S ◦ j + k

]
.

Picture :

C
j
↙

k
↘

E
S,L−→ R.

Proof This follows from the gHBt with E replaced by E×R, the sublinear functional
defined on E × R by (y, λ) 7→ S(y) + λ, the convex set D defined by

D :=
{

(x, y, λ) ∈ C × E × R: S
(
j(x)− y

)
≤ 0, k(x) ≤ λ

}
,

and the affine function a: D 7→ Ẽ defined by

a(x, y, λ) := (y, λ).

• Affine functions are S–convex, so the mgHBt generalizes the gHBt.
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A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly
different) vector space, k: C 7→ (−∞,∞] be proper and convex and j: C 7→ E be
S–convex. Then ∃ a linear functional L on E such that

L ≤ S on E and infC
[
L ◦ j + k

]
= infC

[
S ◦ j + k

]
.

Sandwich theorem

Let S be a sublinear functional on E and k: E 7→ (−∞,∞] be proper and convex and
−k ≤ S on E. Then ∃ a linear functional L on E such that

−k ≤ L ≤ S on E.

Proof Let C := E, j(x) := x and apply the mgHBt.

The extension form of the Hahn-Banach theorem

Let E be a normed space, F be a subspace of E and y∗ ∈ F ∗. Then ∃ x∗ ∈ E∗ such
that

x∗|F = y∗ and ‖x∗‖E ≤ ‖y∗‖F .

Proof Let S := ‖y∗‖F ‖ · ‖, C := F , j(y) := y and k(y) := −〈y, y∗〉, and apply the
mgHBt.

10



          

— The Hahn–Banach theorem and maximal monotonicity —

Lagrange multipliers for constrained convex problems
Let E be a normed space and ¹ be a vector ordering on E. Let C be a nonempty
convex subset of a vector space, k: C 7→ (−∞,∞] be proper and convex, j: C 7→ E be
¹–convex and inf{k(x): x ∈ C, j(x) ¹ 0} = µ0 ∈ R. When can we assert that

∃ ¹–positive z∗ ∈ E∗ such that inf{〈j(x), z∗〉+ k(x): x ∈ C} = µ0? ( )

Let N := {y ∈ E: y ¹ 0} and A := {x ∈ C: k(x) < µ0} 6= ∅.

Classical result: Let B := {x ∈ C: j(x) ∈ intN} 6= ∅ then ( ).

Necessary condition with a bound on the norm
Suppose that B 6= ∅. Then ( ) with

‖z∗‖ ≤ inf
v∈B

k(v)− µ0

dist
(
j(v), E \N

) .

Necessary and sufficient condition with sharp bound on the norm

( ) ⇐⇒ sup
x∈A

µ0 − k(x)

dist
(
j(x), N

) <∞.

Further, sup
x∈A

µ0 − k(x)

dist
(
j(x), N

) = min{‖z∗‖: z∗ satisfies ( )}.
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— The Hahn–Banach theorem and maximal monotonicity —

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly
different) vector space, k: C 7→ (−∞,∞] be proper and convex and j: C 7→ E be
S–convex. Then ∃ a linear functional L on E such that

L ≤ S on E and infC
[
L ◦ j + k

]
= infC

[
S ◦ j + k

]
.

Lemma on m convex functions

Let C be a nonempty convex subset of a vector space and f1, . . . , fm be convex real
functions on C. Then: ∃ λ1, . . . , λm ≥ 0 such that

λ1 + · · ·+ λm = 1 and infC [f1 ∨ · · · ∨ fm] = infC [λ1f1 + · · ·+ λmfm].

Proof This follows from the mgHBt with† E := Rm, k := 0, and S and j defined by

S(µ1, . . . , µm) := µ1 ∨ · · · ∨ µm and j(c) :=
(
f1(c), . . . , fm(c)

)
.
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Lemma on m convex functions

Let B be a nonempty convex subset of a vector space and f1, . . . , fm be convex real
functions on B. Then: ∃ λ1, . . . , λm ≥ 0 such that

λ1 + · · ·+ λm = 1 and infC [f1 ∨ · · · ∨ fm] = infC [λ1f1 + · · ·+ λmfm].
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Let A, B be nonempty sets, and h: A×B 7→ R.

• It is easily seen that

supa∈A infb∈B h(a, b) ≤ infb∈B supa∈A h(a, b).

• This inequality can be strict, take for instance A = B = {0, 1} and h(a, b) = 0 if
a 6= b and h(a, b) = 1 if a = b.

The minimax theorem

Let A be a nonempty convex subset of a vector space, B be a nonempty convex subset
of a vector space and B also be a compact space. Let h: A×B 7→ R be concave on A,
and convex and lower semicontinuous on B. Then

supa∈A minb∈B h(a, b) = minb∈B supa∈A h(a, b).

• h is “concave on A” means that

∀b ∈ B, −h(·, b) is convex on A.

h is “convex and lower semicontinuous on B” mean that

∀a ∈ A, h(a, ·) is convex and lower semicontinuous on B.

• Note that the set A has no topological structure.

• We can write “min” instead of “inf” because h is lower semicontinuous on B and B
is compact.
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The minimax theorem

Let A be a nonempty convex subset of a vector space, B be a nonempty convex subset
of a vector space and B also be a compact space. Let h: A×B 7→ R be concave on A,
and convex and lower semicontinuous on B. Then

supa∈A minb∈B h(a, b) = minb∈B supa∈A h(a, b).

Proof Let β := supa∈A minb∈B h(a, b). If we had β < minb∈B supa∈A h(a, b) then⋃
a∈A{b ∈ B: h(a, b) > β} = B.

Since h is lower semicontinuous on B, the sets {b ∈ B: h(a, b) > β} are open and B is
compact, there would exist a1, . . . , am ∈ A such that

{b ∈ B: h(a1, b) > β} ∪ · · · ∪ {b ∈ B: h(am, b) > β} = B

and so minb∈B [h(a1, b) ∨ · · · ∨ h(am, b)] > β. From the Lemma on m convex functions
with fi := h(ai, ·), there would exist λ1, . . . λm ≥ 0 such that λ1 + · · ·+ λm = 1 and

minb∈B [λ1h(a1, b) + · · ·+ λmh(am, b)] > β.

Since h is concave on A, it would follow from this that

minb∈B h(λ1a1 + · · ·+ λmam, b) > β,

which would contradict the definition of β. So β ≥ minb∈B supa∈A h(a, b).
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— The Hahn–Banach theorem and maximal monotonicity —

On the existence of subgradients

Let E be a normed space, k:E 7→ (∞,∞] be convex, x ∈ E and k(x) ∈ R. Does there
exist x∗ ∈ E∗ such that

y ∈ E =⇒ k(x) + 〈y − x, x∗〉 ≤ k(y)?
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— The Hahn–Banach theorem and maximal monotonicity —

On the existence of subgradients

Let E be a normed space, k:E 7→ (∞,∞] be convex, x ∈ E and k(x) ∈ R. Does there
exist x∗ ∈ E∗ such that y ∈ E =⇒ k(x) + 〈y − x, x∗〉 ≤ k(y)?

⇐⇒
Do there exist M ≥ 0 and a linear functional L on E such that L ≤M‖ · ‖ on E and

y ∈ E =⇒ k(y) + L(x− y) ≥ k(x)?

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly
different) vector space, k: C 7→ (−∞,∞] be proper and convex and j: C 7→ E be
S–convex. Then ∃ a linear functional L on E such that

L ≤ S on E and infC
[
L ◦ j + k

]
= infC

[
S ◦ j + k

]
.

From the mgHBt with S := M‖ · ‖, C := E and j(x) := x− y, this ⇐⇒

Does there exist M ≥ 0 such that, y ∈ E =⇒ k(y) +M‖x− y‖ ≥ k(x)?

Thus we have transformed the original problem on the existence of continuous linear
functionals into the (much simpler) problem of finding a real constant M . This is an
example of the “discovery method”.
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— The Hahn–Banach theorem and maximal monotonicity —

Separating a convex and a concave function

Let E be a normed space and f, g: E 7→ (∞,∞] be proper and convex. Do there exist
z∗ ∈ E∗ and β ∈ R such that

−f ≤ z∗ + β ≤ g on E? ( )

Using the same technique as before, with C := E × E, j(x, y) := x− y and k(x, y) :=
f(x) + g(y), the above problem reduces to:

Does there exist M ≥ 0 such that

∀ x, y ∈ E, f(x) + g(y) +M‖x− y‖ ≥ 0?
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Separating a convex and a concave function

Let E be a normed space and f, g: E 7→ (∞,∞] be proper and convex. Do there exist
z∗ ∈ E∗ and β ∈ R such that

−f ≤ z∗ + β ≤ g on E? ( )

• The Fenchel conjugate f∗ is defined by f∗(x∗) := supE(x∗ − f).

( ) ⇐⇒ −z∗ − f ≤ β on E and z∗ − g ≤ −β on E•
⇐⇒ f∗(−z∗) ≤ β and g∗(z∗) ≤ −β,

• So our question ⇐⇒ is it true that

∃ z∗ ∈ E∗ such that f∗(−z∗) + g∗(z∗) ≤ 0? ( )

When ( ) holds, we say that the Fenchel duality theorem is true.

• Rockafellar and Attouch–Brezis have given sufficient conditions for the Fenchel
duality theorem to be true. The condition on the previous slide is both necessary
and sufficient.

• We will use the following special case of Rockafellar’s version, that ( ) is true if
f + g ≥ 0 on E and g is continuous.

19



         

— The Hahn–Banach theorem and maximal monotonicity —

The following result is very useful in the theory of monotone multifunctions.

A sharp case of Fenchel duality

Let F be a normed space, f : F 7→ (∞,∞] be proper and convex and

y ∈ F =⇒ f(y) + 1
2‖y‖2 ≥ 0. ( )

Let M := sup
y∈F

[
‖y‖ −

√
2f(y) + ‖y‖2

]
∨ 0.

Then there exists y∗ ∈ F ∗ such that ‖y∗‖ ≤M and

f∗(y∗) + 1
2‖y∗‖2 ≤ 0. ( )

• In fact min
{
‖y∗‖: y∗ is as in ( )

}
= M.

Outline of proof. One can prove using ( ) and Dedekind section that

y ∈ F =⇒
∣∣‖y‖ −M

∣∣ ≤
√

2f(y) + ‖y‖2 =⇒ f(y) +M‖y‖ ≥ 1
2M

2.

Rockafellar’s version of the Fenchel duality theorem now gives y∗ ∈ F ∗ such that

f∗(y∗) + (M‖ · ‖)∗(−y∗) ≤ − 1
2M

2,

thus ‖y∗‖ ≤ M and f∗(y∗) ≤ − 1
2M

2, from which ( ) is immediate. Finally, it is not
hard to show that

if y∗ ∈ F ∗ satisfies ( ) then ‖y∗‖ ≥M.
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• E is a reflexive Banach space and E∗ is its topological dual space.

Maximal monotone multifunctions

T : E ⇒ E∗ means that ∀ x ∈ E, Tx is a (possibly empty) subset of E∗. Then

G(T ) :=
{

(x, x∗): x ∈ E, x∗ ∈ Tx
}
.

Let G(T ) 6= ∅. T is monotone if

(x, x∗) and (y, y∗) ∈ G(T ) =⇒ 〈x− y, x∗ − y∗〉 ≥ 0.

T is maximal monotone if T is monotone and

(w,w∗) ∈ E × E∗ and
(
(t, t∗) ∈ G(T ) =⇒ 〈w − t, w∗ − t∗〉 ≥ 0

)
wÄ

(w,w∗) ∈ G(T ).

J and −J and T + J

The duality multifunction J : E ⇒ E∗ is defined by:

x∗ ∈ Jx ⇐⇒ 1
2‖x‖2 + 1

2‖x∗‖2 = 〈x, x∗〉.
J is maximal monotone. −J : E ⇒ E∗ is defined by: (−J)x := −Jx (x ∈ E). Then:

x∗ ∈ −Jx ⇐⇒ 〈x, x∗〉+ 1
2‖x‖2 + 1

2‖x∗‖2 = 0.

If T : E ⇒ E∗ then, ∀x ∈ E, (T + J)x :=
{
x∗ + y∗: x∗ ∈ Tx, y∗ ∈ Jx

}
.
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• If (x, x∗) ∈ E × E∗ then
∥∥(x, x∗)

∥∥ :=
√
‖x‖2 + ‖x∗‖2.

• The topological dual of E × E∗ is E∗ × E, under the pairing〈
(x, x∗), (u∗, u)

〉
:= 〈x, u∗〉+ 〈u, x∗〉.

• We have
∥∥(u∗, u)

∥∥ =
√
‖u‖2 + ‖u∗‖2.

The Fitzpatrick function of T

Let T : E ⇒ E∗ be maximal monotone. We define its Fitzpatrick function, ϕT , by

ϕT (x, x∗) := sup(t,t∗)∈G(T )

[
〈t, x∗〉+ 〈x, t∗〉 − 〈t, t∗〉

]
.

ϕT is a proper, convex and lower semicontinuous function from E × E∗ into (∞,∞],

(x, x∗) ∈ E × E∗ =⇒ ϕ∗T (x∗, x) ≥ ϕT (x, x∗) ≥ 〈x, x∗〉, ( )

and
ϕ∗T (x∗, x) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(T ). ( )

A new property of ϕT
y ∈ E × E∗ =⇒ ϕT (y) + 1

2‖y‖2 ≥ 0.

Proof. If y = (x, x∗) then, from ( ),

ϕT (y) + 1
2‖y‖2 ≥ 〈x, x∗〉+ 1

2‖x‖2 + 1
2‖x∗‖2 ≥ 1

2‖x‖2 + 1
2‖x∗‖2 − ‖x‖‖x∗‖ ≥ 0.
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A new property of ϕT
y ∈ E × E∗ =⇒ ϕT (y) + 1

2‖y‖2 ≥ 0.

A sharp case of Fenchel duality

Let F be a normed space, f : F 7→ (∞,∞] be proper and convex and

y ∈ F =⇒ f(y) + 1
2‖y‖2 ≥ 0. ( )

Let M := sup
y∈F

[
‖y‖ −

√
2f(y) + ‖y‖2

]
∨ 0.

Then there exists y∗ ∈ F ∗ such that ‖y∗‖ ≤M and

f∗(y∗) + 1
2‖y∗‖2 ≤ 0. ( )

• In fact min
{
‖y∗‖: y∗ is as in ( )

}
= M.

Now let N := 1√
2

supy∈E×E∗
[
‖y‖ −

√
2ϕT (y) + ‖y‖2

]
∨ 0.

Combination result

∃ (z, z∗) ∈ E × E∗ such that ‖z‖2 + ‖z∗‖2 ≤ 2N2 and[
ϕ∗T (z∗, z)− 〈z, z∗〉

]
+
[
〈z, z∗〉+ 1

2‖z‖2 + 1
2‖z∗‖2

]
= ϕ∗T (z∗, z) + 1

2‖(z∗, z)‖2 ≤ 0.

Proof. We have y∗ ∈ E∗ × E such that ‖y∗‖ ≤
√

2N and ϕ∗T (y∗) + 1
2‖y∗‖2 ≤ 0. Let

(z, z∗) ∈ E × E∗ be such that y∗ = (z∗, z).
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• Let E be reflexive, T : E ⇒ E∗ be maximal monotone and

N := 1√
2

supy∈E×E∗
[
‖y‖ −

√
2ϕT (y) + ‖y‖2

]
∨ 0.

Combination result

∃ (z, z∗) ∈ E × E∗ such that ‖z‖2 + ‖z∗‖2 ≤ 2N2 and[
ϕ∗T (z∗, z)− 〈z, z∗〉

]
+
[
〈z, z∗〉+ 1

2‖z‖2 + 1
2‖z∗‖2

]
≤ 0.

Now 〈z, z∗〉+ 1
2‖z‖2 + 1

2‖z∗‖2 ≥ 0, and ( ) gives ϕ∗T (z∗, z)− 〈z, z∗〉 ≥ 0, thus

ϕ∗T (z∗, z) = 〈z, z∗〉 and 〈z, z∗〉+ 1
2‖z‖2 + 1

2‖z∗‖2 = 0.

From ( ), (z, z∗) ∈ G(T ). Also (z,−z∗) ∈ G(J), from which ‖z∗‖ = ‖z‖ and so

‖z‖ ≤ N . Since 0 = z∗+(−z∗), we also have 0 ∈ (T +J)z. This proves the “existence”
part of:

Reflexivity with maximality theorem

∃ x ∈ E such that ‖x‖ ≤ N and (T + J)x 3 0.

In fact, min
{
‖x‖: (T + J)x 3 0

}
= N.
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• Let E be reflexive, T : E ⇒ E∗ be maximal monotone and

N := 1√
2

supy∈E×E∗
[
‖y‖ −

√
2ϕT (y) + ‖y‖2

]
∨ 0.

Reflexivity with maximality theorem

∃ x ∈ E such that ‖x‖ ≤ N and (T + J)x 3 0.

In fact, min
{
‖x‖: (T + J)x 3 0

}
= N.

Rest of Proof. Now we must show that

x ∈ E and (T + J)x 3 0 =⇒ ‖x‖ ≥ N.
So suppose that x ∈ E and (T + J)x 3 0. Then there exists x∗ ∈ Tx such that
−x∗ ∈ Jx. From ( ) again,

ϕ∗T (x∗, x) + 1
2

∥∥(x∗, x)
∥∥2

=
[
ϕ∗T (x∗, x)− 〈x, x∗〉

]
+
[
〈x, x∗〉+ 1

2‖x‖2 + 1
2‖x∗‖2

]
= 0.

The sharp case of Fenchel duality now gives∥∥(x∗, x)
∥∥ ≥
√

2N.

But
‖x‖ = 1√

2

∥∥(x∗, x)
∥∥.
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Reflexivity with maximality theorem

Let E be reflexive, T : E ⇒ E∗ be maximal monotone and . . . . Then

∃ x ∈ E such that (T + J)x 3 0 . . . .

The −J criterion for maximality

Let E be reflexive and T : E ⇒ E∗ be monotone. Then

T is maximal monotone ⇐⇒ G(T ) +G(−J) = E × E∗.

Proof (=⇒) Let (w,w∗) ∈ E×E∗ and apply the reflexivity with maximality theorem,
with T replaced by the multifunction with graph G(T )−(w,w∗) ⊂ E×E∗, which is also
maximal monotone. We obtain (t, t∗) ∈ G(T ) such that (t−w, t∗−w∗) ∈ G(−J). But
then (w−t, w∗−t∗) ∈ G(−J) and so (w,w∗) = (t, t∗)+(w−t, w∗−t∗) ∈ G(T )+G(−J).

(⇐=) Let (w,w∗) ∈ E × E∗ and

(t, t∗) ∈ G(T ) =⇒ 〈w − t, w∗ − t∗〉 ≥ 0.

Choose (t, t∗) ∈ G(T ) so that (w − t, w∗ − t∗) ∈ G(−J). Then
1
2‖w − t‖2 + 1

2‖w∗ − t∗‖2 = −〈w − t, w∗ − t∗〉 ≤ 0.

So (w,w∗) = (t, t∗) ∈ G(T ).
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The −J criterion for maximality

Let E be reflexive and T : E ⇒ E∗ be monotone. Then

T is maximal monotone ⇐⇒ G(T ) +G(−J) = E × E∗.

The range of a multifunction

If T : E ⇒ E∗,
R(T ) :=

⋃

x∈E
Tx.

Rockafellar’s surjectivity theorem

Let E be reflexive, T : E ⇒ E∗ be maximal monotone and, ∀x ∈ E,

(T + J)x :=
{
x∗ + y∗: x∗ ∈ Tx, y∗ ∈ Jx

}
.

Then
R(T + J) = E∗.

Proof Let w∗ ∈ E∗. From the −J criterion for maximality,

(0, w∗) ∈ G(T ) +G(−J).

Thus ∃ x ∈ E, x∗ ∈ Tx and y∗ ∈ (−J)(−x) such that x∗+y∗ = w∗. But then y∗ ∈ Jx,
hence

w∗ = x∗ + y∗ ∈ (T + J)x ⊂ R(T + J).
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Minty’s Theorem

If E is a Hilbert space and T : E ⇒ E∗ is monotone then

T is maximal monotone ⇐⇒ R(T + J) = E∗.

It was proved by Rockafellar that this also holds if E is a reflexive Banach space
such that the norm on E and the dual norm on E∗ are strictly convex. Further, it
was proved by Asplund that any reflexive Banach space can be renormed so that this
property holds.

This result does not hold in a reflexive space where J or J−1 is not single–valued.

Various formulas for the minimum norm of solutions of (T + J)x 3 0

If E is reflexive and T : E ⇒ E∗ is maximal monotone then

min
{
‖x‖: x ∈ E, (T + J)x 3 0

}

= 1√
2

supy∈E×E∗
[
‖y‖ −

√
2ϕT (y) + ‖y‖2

]
∨ 0

= 1
2 sup(x,x∗)∈E×E∗

[
‖x‖+ ‖x∗‖ −

√
4ϕT (x, x∗) +

(
‖x‖+ ‖x∗‖

)2 ] ∨ 0

= sup
(x,x∗)∈E×E∗

[
‖x‖ ∨ ‖x∗‖ −

√
ϕT (x, x∗) + ‖x‖2 ∨ ‖x∗‖2

]
∨ 0.
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