The HB theorem and maximal monotonicity

by

Stephen Simons

<simons@math.ucsb.edu>.

Abstract

We introduce a generalized form of the Hahn-Banach theorem, which we will use to prove various results on the existence of linear functionals in functional analysis, convex analysis and optimization, and also to prove a minimax theorem. We also deduce a sharp version of the Fenchel duality theorem, which we will apply to the Fitzpatrick function to obtain criteria for a monotone multifunction, T, on a reflexive Banach space to be maximal monotone, with various sharp lower bounds on the solutions, x of the equation $(T + J)x \ge 0$. We do not use any renorming theorems, any fixed-point theorems, or any result that depends on Baire's theorem.

Downloads

You can download files containing these slides and several related papers from www.math.ucsb.edu/~simons/preprints/Wellington.html.

Sublinear functionals Let E be a nonzero real vector space[†]. A sublinear functional on E is a map $S: E \mapsto \mathbb{R}$ such that $x, y \in E \implies S(x+y) \leq S(x) + S(y)$ and

$$x \in E \text{ and } \lambda > 0 \implies S(\lambda x) = \lambda S(x).$$

• Norms and linear functionals are sublinear.

Affine functions

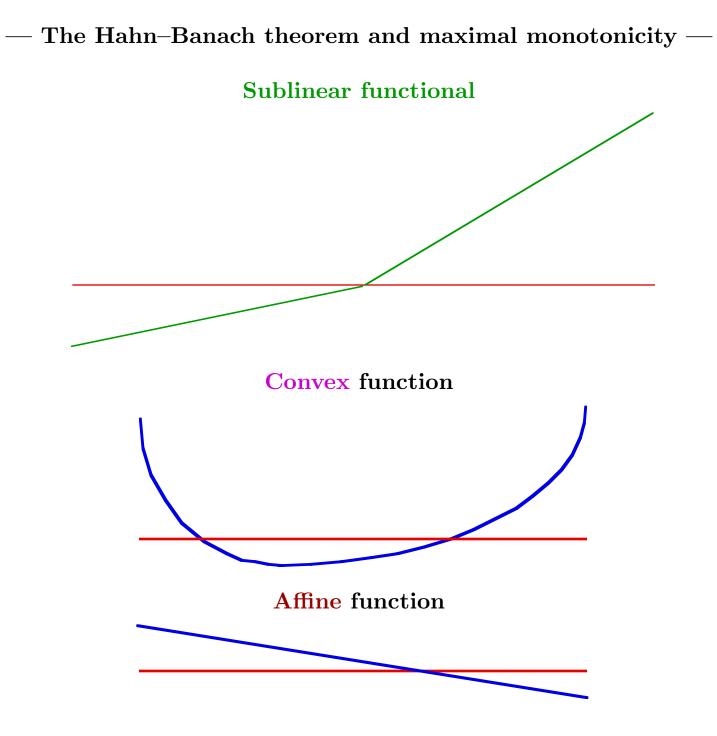
Let D be a nonempty convex subset of a vector space, E be a vector space and $a: D \mapsto E$. a is **affine** if

 $x, y \in D \text{ and } \lambda \in (0, 1) \implies a(\lambda x + (1 - \lambda)y) = \lambda a(x) + (1 - \lambda)a(y).$

• Note that an affine function can map into a vector space.

Convex functions Let C be a nonempty convex subset of a vector space, and $f: C \mapsto (-\infty, \infty]$. f is **convex** if $x, y \in C$ and $\lambda \in (0, 1) \implies f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$, provided $\infty + \infty := \infty$, and $\lambda \times \infty := \infty$ for $\lambda > 0$. f is **proper** if $\exists x \in C$ such that $f(x) \in \mathbb{R}$.

• Sublinear functionals are convex.



Sublinear functionals Let E be a nonzero real vector space. A sublinear functional on E is a map $S: E \mapsto \mathbb{R}$ such that $x, y \in E \implies S(x+y) \leq S(x) + S(y)$ and $x \in E$ and $\lambda > 0 \implies S(\lambda x) = \lambda S(x)$.

The Hahn-Banach theorem

Let S be a sublinear functional on E. Then \exists a linear functional L on E such that[†] $L \leq S$ on E.

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly different) vector space, and a: $D \mapsto E$ be affine. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_D L \circ a = \inf_D S \circ a.$

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly different) vector space, and a: $D \mapsto E$ be affine. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_D L \circ a = \inf_D S \circ a.$

Proof Let $\beta := \inf_D S \circ a$. If $\beta = -\infty$, the result is immediate from the Hahn-Banach theorem (take any linear functional L on E such that $L \leq S$ on E). So we can suppose that $\beta \in \mathbb{R}$. The result follows by applying the Hahn-Banach theorem to the function $T: E \mapsto \mathbb{R} \cup \{-\infty\}$ defined by

$$T(x) := \inf_{d \in D, \ \lambda > 0} \left[S(x + \lambda a(d)) - \lambda \beta \right],$$

which is, in fact, real and sublinear.

• The technique used above is called the technique of the "auxiliary sublinear functional".

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly different) vector space, and a: $D \mapsto E$ be affine. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_D L \circ a = \inf_D S \circ a.$

• If E is a normed space, E^* stands for the norm-dual of E.

A separation theorem ("bipolar theorem")

Let D be a nonempty convex subset of a normed space E and $x \in E \setminus \overline{D}$. Then $\exists z^* \in E^*$ such that

 $\sup_D z^* < \langle x, z^* \rangle.$

Proof Let $S := \| \cdot \|$ and a(y) := x - y and apply the gHBt.

A generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let D be a nonempty convex subset of a (possibly different) vector space, and a: $D \mapsto E$ be affine. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_D L \circ a = \inf_D S \circ a.$

We will prove:

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto (-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be S-convex. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_C \left[L \circ j + k \right] = \inf_C \left[S \circ j + k \right].$

• "j is S-convex" means that

 $x_1, x_2 \in C, \ \mu_1, \mu_2 > 0 \text{ and } \mu_1 + \mu_2 = 1 \implies j(\mu_1 x_1 + \mu_2 x_2) \leq_S \mu_1 j(x_1) + \mu_2 j(x_2),$ where the ordering " \leq_S " on E is defined by

$$y \leq_S z \iff S(y-z) \leq 0.$$

 A more generalized Hahn–Banach theorem

 Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly different) vector space, k: $C \mapsto (-\infty, \infty]$ be proper and convex and j: $C \mapsto E$ be S-convex. Then \exists a linear functional L on E such that
 $L \leq S \text{ on } E \quad \text{and} \quad \inf_{C} [L \circ j + k] = \inf_{C} [S \circ j + k].$

 Picture :
 $\int_{C}^{j} k \\ \int_{C} k \\ E \quad \longrightarrow \\ E \quad \longrightarrow \\ E \quad M.$

Proof This follows from the gHBt with E replaced by $E \times \mathbb{R}$, the sublinear functional defined on $E \times \mathbb{R}$ by $(y, \lambda) \mapsto S(y) + \lambda$, the convex set D defined by

$$D := \{ (x, y, \lambda) \in C \times E \times \mathbb{R} \colon S(j(x) - y) \le 0, \ k(x) \le \lambda \},\$$

and the affine function $a: D \mapsto \widetilde{E}$ defined by

$$a(x, y, \lambda) := (y, \lambda).$$

• Affine functions are S-convex, so the mgHBt generalizes the gHBt.

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto (-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be S-convex. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_C \left[L \circ j + k \right] = \inf_C \left[S \circ j + k \right].$

Sandwich theorem

Let S be a sublinear functional on E and k: $E \mapsto (-\infty, \infty]$ be proper and convex and $-k \leq S$ on E. Then \exists a linear functional L on E such that $-k \leq L \leq S$ on E.

Proof Let C := E, j(x) := x and apply the mgHBt.

The extension form of the Hahn-Banach theorem

Let E be a normed space, F be a subspace of E and $y^* \in F^*$. Then $\exists x^* \in E^*$ such that

 $x^*|_F = y^*$ and $||x^*||_E \le ||y^*||_F$.

Proof Let $S := ||y^*||_F || \cdot ||, C := F, j(y) := y$ and $k(y) := -\langle y, y^* \rangle$, and apply the mgHBt.

Lagrange multipliers for constrained convex problems Let E be a normed space and \leq be a vector ordering on E. Let C be a nonempty convex subset of a vector space, $k: C \mapsto (-\infty, \infty]$ be proper and convex, $j: C \mapsto E$ be \leq -convex and $\inf\{k(x): x \in C, j(x) \leq 0\} = \mu_0 \in \mathbb{R}$. When can we assert that $\exists \leq$ -positive $z^* \in E^*$ such that $\inf\{\langle j(x), z^* \rangle + k(x): x \in C\} = \mu_0$? (56)

Let $N := \{y \in E: y \leq 0\}$ and $A := \{x \in C: k(x) < \mu_0\} \neq \emptyset$.

Classical result: Let $B := \{x \in C: j(x) \in int N\} \neq \emptyset$ then (6).

Necessary condition with a bound on the norm Suppose that $B \neq \emptyset$. Then (So) with $k(v) = u_0$

$$|z^*|| \le \inf_{v \in B} \frac{\kappa(v) - \mu_0}{\operatorname{dist}(j(v), E \setminus N)}.$$

Necessary and sufficient condition with sharp bound on the norm(...)(...)(...)(...)Further, $\sup_{x \in A} \frac{\mu_0 - k(x)}{\operatorname{dist}(j(x), N)} = \min\{||z^*||: z^* \text{ satisfies (...)}\}.$

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto (-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be S-convex. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_C \left[L \circ j + k \right] = \inf_C \left[S \circ j + k \right].$

Lemma on m convex functions

Let C be a nonempty convex subset of a vector space and f_1, \ldots, f_m be convex real functions on C. Then: $\exists \lambda_1, \ldots, \lambda_m \ge 0$ such that

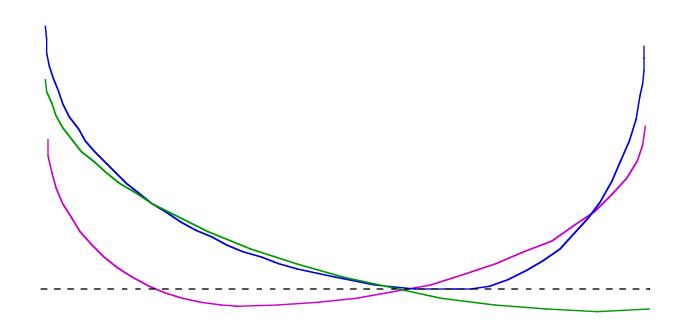
 $\lambda_1 + \dots + \lambda_m = 1$ and $\inf_C [f_1 \vee \dots \vee f_m] = \inf_C [\lambda_1 f_1 + \dots + \lambda_m f_m].$

Proof This follows from the mgHBt with[†] $E := \mathbb{R}^m$, k := 0, and S and j defined by $S(\mu_1, \ldots, \mu_m) := \mu_1 \lor \cdots \lor \mu_m$ and $j(c) := (f_1(c), \ldots, f_m(c))$.

Lemma on m convex functions

Let B be a nonempty convex subset of a vector space and f_1, \ldots, f_m be convex real functions on B. Then: $\exists \lambda_1, \ldots, \lambda_m \ge 0$ such that

 $\lambda_1 + \dots + \lambda_m = 1$ and $\inf_C [f_1 \vee \dots \vee f_m] = \inf_C [\lambda_1 f_1 + \dots + \lambda_m f_m].$



Let A, B be nonempty sets, and h: $A \times B \mapsto \mathbb{R}$.

• It is easily seen that

$$\sup_{a \in A} \inf_{b \in B} h(a, b) \le \inf_{b \in B} \sup_{a \in A} h(a, b).$$

• This inequality can be strict, take for instance $A = B = \{0, 1\}$ and h(a, b) = 0 if $a \neq b$ and h(a, b) = 1 if a = b.

The minimax theorem

Let A be a nonempty convex subset of a vector space, B be a nonempty convex subset of a vector space and B also be a compact space. Let $h: A \times B \mapsto \mathbb{R}$ be concave on A, and convex and lower semicontinuous on B. Then

 $\sup_{a \in A} \min_{b \in B} h(a, b) = \min_{b \in B} \sup_{a \in A} h(a, b).$

• h is "concave on A" means that

 $\forall b \in B, -h(\cdot, b) \text{ is convex on } A.$

h is "convex and lower semicontinuous on B" mean that

 $\forall a \in A, \quad h(a, \cdot) \text{ is convex and lower semicontinuous on } B.$

• Note that the set A has no topological structure.

• We can write "min" instead of "inf" because h is lower semicontinuous on B and B is compact.

The minimax theorem

Let A be a nonempty convex subset of a vector space, B be a nonempty convex subset of a vector space and B also be a compact space. Let $h: A \times B \mapsto \mathbb{R}$ be concave on A, and convex and lower semicontinuous on B. Then

 $\sup_{a \in A} \min_{b \in B} h(a, b) = \min_{b \in B} \sup_{a \in A} h(a, b).$

Proof Let $\beta := \sup_{a \in A} \min_{b \in B} h(a, b)$. If we had $\beta < \min_{b \in B} \sup_{a \in A} h(a, b)$ then $\bigcup_{a \in A} \{b \in B: h(a, b) > \beta\} = B.$

Since h is lower semicontinuous on B, the sets $\{b \in B: h(a,b) > \beta\}$ are open and B is compact, there would exist $a_1, \ldots, a_m \in A$ such that

$$\{b \in B: h(a_1, b) > \beta\} \cup \cdots \cup \{b \in B: h(a_m, b) > \beta\} = B$$

and so $\min_{b \in B} [h(a_1, b) \lor \cdots \lor h(a_m, b)] > \beta$. From the Lemma on m convex functions with $f_i := h(a_i, \cdot)$, there would exist $\lambda_1, \ldots, \lambda_m \ge 0$ such that $\lambda_1 + \cdots + \lambda_m = 1$ and $\min_{b \in B} [\lambda_1 h(a_1, b) + \cdots + \lambda_m h(a_m, b)] > \beta$.

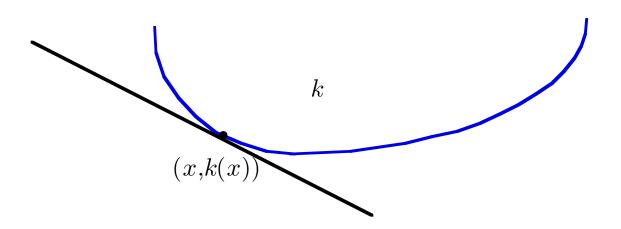
Since h is concave on A, it would follow from this that

$$\min_{b\in B} h(\lambda_1 a_1 + \dots + \lambda_m a_m, b) > \beta,$$

which would contradict the definition of β . So $\beta \geq \min_{b \in B} \sup_{a \in A} h(a, b)$.

On the existence of subgradients Let E be a normed space, $k: E \mapsto (\infty, \infty]$ be convex, $x \in E$ and $k(x) \in \mathbb{R}$. Does there exist $x^* \in E^*$ such that

$$y \in E \implies k(x) + \langle y - x, x^* \rangle \le k(y)?$$



On the existence of subgradients Let *E* be a normed space, $k: E \mapsto (\infty, \infty]$ be convex, $x \in E$ and $k(x) \in \mathbb{R}$. Does there exist $x^* \in E^*$ such that $y \in E \implies k(x) + \langle y - x, x^* \rangle \leq k(y)$?

Do there exist $M \ge 0$ and a linear functional L on E such that $L \le M \| \cdot \|$ on E and $y \in E \implies k(y) + L(x - y) \ge k(x)$?

 \iff

A more generalized Hahn–Banach theorem

Let S be a sublinear functional on E. Let C be a nonempty convex subset of a (possibly different) vector space, $k: C \mapsto (-\infty, \infty]$ be proper and convex and $j: C \mapsto E$ be S-convex. Then \exists a linear functional L on E such that

 $L \leq S \text{ on } E \text{ and } \inf_C \left[L \circ j + k \right] = \inf_C \left[S \circ j + k \right].$

From the mgHBt with $S := M \| \cdot \|$, C := E and j(x) := x - y, this \iff

Does there exist $M \ge 0$ such that, $y \in E \implies k(y) + M ||x - y|| \ge k(x)$?

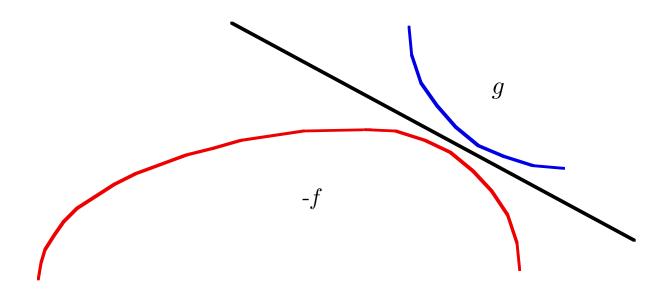
Thus we have transformed the original problem on the existence of continuous linear functionals into the (much simpler) problem of finding a real constant M. This is an example of the "discovery method".

— The Hahn–Banach theorem and maximal monotonicity —

Separating a convex and a concave function

Let *E* be a normed space and $f, g: E \mapsto (\infty, \infty]$ be proper and convex. Do there exist $z^* \in E^*$ and $\beta \in \mathbb{R}$ such that

$$-f \le z^* + \beta \le g \quad \text{on} \quad E? \tag{(1)}$$



Using the same technique as before, with $C := E \times E$, j(x, y) := x - y and k(x, y) := f(x) + g(y), the above problem reduces to:

Does there exist $M \ge 0$ such that $\forall x, y \in E, \quad f(x) + g(y) + M ||x - y|| \ge 0$?

Separating a convex and a concave function

Let E be a normed space and $f, g: E \mapsto (\infty, \infty]$ be proper and convex. Do there exist $z^* \in E^*$ and $\beta \in \mathbb{R}$ such that

$$-f \le z^* + \beta \le g \quad \text{on} \quad E?$$
 (4)

(57

• The **Fenchel conjugate** f^* is defined by $f^*(x^*) := \sup_E (x^* - f)$.

•
$$(\ref{eq:point}) \iff -z^* - f \le \beta \text{ on } E \text{ and } z^* - g \le -\beta \text{ on } E$$

 $\iff f^*(-z^*) \le \beta \text{ and } g^*(z^*) \le -\beta,$

• So our question \iff is it true that

$$\exists z^* \in E^* \text{ such that } f^*(-z^*) + g^*(z^*) \le 0?$$

When (\mathbf{F}) holds, we say that the Fenchel duality theorem is true.

• Rockafellar and Attouch–Brezis have given sufficient conditions for the Fenchel duality theorem to be true. The condition on the previous slide is both necessary and sufficient.

• We will use the following special case of Rockafellar's version, that $(\not =)$ is true if $f + g \ge 0$ on E and g is continuous.

The following result is very useful in the theory of monotone multifunctions.

A sharp case of Fenchel dualityLet F be a normed space,
$$f: F \mapsto (\infty, \infty]$$
 be proper and convex and $y \in F \implies f(y) + \frac{1}{2} ||y||^2 \ge 0.$ (\checkmark)Let $M := \sup_{y \in F} \left[||y|| - \sqrt{2f(y)} + ||y||^2 \right] \lor 0.$ Then there exists $y^* \in F^*$ such that $||y^*|| \le M$ and $f^*(y^*) + \frac{1}{2} ||y^*||^2 \le 0.$ (\S)• In fact $\min \left\{ ||y^*||: y^* \text{ is as in } (\S) \right\} = M.$

Outline of proof. One can prove using (\mathbf{x}) and Dedekind section that

$$y \in F \implies ||y|| - M| \le \sqrt{2f(y) + ||y||^2} \implies f(y) + M||y|| \ge \frac{1}{2}M^2.$$

Rockafellar's version of the Fenchel duality theorem now gives $y^* \in F^*$ such that

$$f^*(y^*) + (M \| \cdot \|)^*(-y^*) \le -\frac{1}{2}M^2,$$

thus $||y^*|| \leq M$ and $f^*(y^*) \leq -\frac{1}{2}M^2$, from which (§) is immediate. Finally, it is not hard to show that

if $y^* \in F^*$ satisfies ((§) then $||y^*|| \ge M$.

• E is a reflexive Banach space and E^* is its topological dual space.

Maximal monotone multifunctions

 $T: E \rightrightarrows E^* \text{ means that } \forall x \in E, Tx \text{ is a (possibly empty) subset of } E^*. \text{ Then} \\ G(T) := \{(x, x^*): x \in E, x^* \in Tx\}.$

Let $G(T) \neq \emptyset$. T is monotone if

$$(x, x^*)$$
 and $(y, y^*) \in G(T) \implies \langle x - y, x^* - y^* \rangle \ge 0.$

T is **maximal monotone** if T is monotone and

$$J$$
 and $-J$ and $T+J$

The duality multifunction $J: E \rightrightarrows E^*$ is defined by:

 $x^* \in Jx \iff \frac{1}{2} \|x\|^2 + \frac{1}{2} \|x^*\|^2 = \langle x, x^* \rangle.$

J is maximal monotone. $-J: E \rightrightarrows E^*$ is defined by: (-J)x := -Jx $(x \in E)$. Then:

$$x^* \in -Jx \iff \langle x, x^* \rangle + \frac{1}{2} \|x\|^2 + \frac{1}{2} \|x^*\|^2 = 0.$$

If $T: E \Rightarrow E^*$ then, $\forall x \in E, (T+J)x := \{x^* + y^*: x^* \in Tx, y^* \in Jx\}.$

- If $(x, x^*) \in E \times E^*$ then $||(x, x^*)|| := \sqrt{||x||^2 + ||x^*||^2}$.
- The topological dual of $E \times E^*$ is $E^* \times E$, under the pairing

$$\langle (x, x^*), (u^*, u) \rangle := \langle x, u^* \rangle + \langle u, x^* \rangle.$$

• We have $||(u^*, u)|| = \sqrt{||u||^2 + ||u^*||^2}$.

The Fitzpatrick function of T

Let $T: E \Rightarrow E^*$ be maximal monotone. We define its *Fitzpatrick function*, φ_T , by $\varphi_T(x, x^*) := \sup_{(t,t^*) \in G(T)} [\langle t, x^* \rangle + \langle x, t^* \rangle - \langle t, t^* \rangle].$ φ_T is a proper, convex and lower semicontinuous function from $E \times E^*$ into $(\infty, \infty],$ $(x, x^*) \in E \times E^* \implies \varphi_T^*(x^*, x) \ge \varphi_T(x, x^*) \ge \langle x, x^* \rangle,$ (§

and

$$\varphi_T^*(x^*, x) = \langle x, x^* \rangle \iff (x, x^*) \in G(T).$$
(1)

A new property of
$$\varphi_T$$

 $y \in E \times E^* \implies \varphi_T(y) + \frac{1}{2} ||y||^2 \ge 0.$

Proof. If $y = (x, x^*)$ then, from (\underline{y}) ,

 $\varphi_T(y) + \frac{1}{2} \|y\|^2 \ge \langle x, x^* \rangle + \frac{1}{2} \|x\|^2 + \frac{1}{2} \|x^*\|^2 \ge \frac{1}{2} \|x\|^2 + \frac{1}{2} \|x^*\|^2 - \|x\| \|x^*\| \ge 0.$

A new property of
$$\varphi_T$$

 $y \in E \times E^* \implies \varphi_T(y) + \frac{1}{2} ||y||^2 \ge 0.$

A sharp case of Fenchel dualityLet F be a normed space,
$$f: F \mapsto (\infty, \infty]$$
 be proper and convex and $y \in F \implies f(y) + \frac{1}{2} ||y||^2 \ge 0.$ (\checkmark)Let $M := \sup_{y \in F} \left[||y|| - \sqrt{2f(y) + ||y||^2} \right] \lor 0.$ Then there exists $y^* \in F^*$ such that $||y^*|| \le M$ and $f^*(y^*) + \frac{1}{2} ||y^*||^2 \le 0.$ In factmin $\{ ||y^*||: y^* \text{ is as in } (\xi) \} = M.$

Now let
$$N := \frac{1}{\sqrt{2}} \sup_{y \in E \times E^*} \left[\|y\| - \sqrt{2\varphi_T(y) + \|y\|^2} \right] \lor 0.$$

Combination result
 $\exists (z, z^*) \in E \times E^* \text{ such that } \|z\|^2 + \|z^*\|^2 \le 2N^2 \text{ and}$
 $\left[\varphi_T^*(z^*, z) - \langle z, z^* \rangle \right] + \left[\langle z, z^* \rangle + \frac{1}{2} \|z\|^2 + \frac{1}{2} \|z^*\|^2 \right] = \varphi_T^*(z^*, z) + \frac{1}{2} \|(z^*, z)\|^2 \le 0.$

Proof. We have $y^* \in E^* \times E$ such that $||y^*|| \leq \sqrt{2}N$ and $\varphi_T^*(y^*) + \frac{1}{2}||y^*||^2 \leq 0$. Let $(z, z^*) \in E \times E^*$ be such that $y^* = (z^*, z)$.

• Let E be reflexive, $T: E \rightrightarrows E^*$ be maximal monotone and

$$N := \frac{1}{\sqrt{2}} \sup_{y \in E \times E^*} \left[\|y\| - \sqrt{2\varphi_T(y) + \|y\|^2} \right] \vee 0.$$

Combination result

 $\exists (z, z^*) \in E \times E^* \text{ such that } \|z\|^2 + \|z^*\|^2 \le 2N^2 \text{ and }$ $\left[\varphi_T^*(z^*, z) - \langle z, z^* \rangle\right] + \left[\langle z, z^* \rangle + \frac{1}{2} \|z\|^2 + \frac{1}{2} \|z^*\|^2\right] \le 0.$

Now
$$\langle z, z^* \rangle + \frac{1}{2} ||z||^2 + \frac{1}{2} ||z^*||^2 \ge 0$$
, and ()) gives $\varphi_T^*(z^*, z) - \langle z, z^* \rangle \ge 0$, thus $\varphi_T^*(z^*, z) = \langle z, z^* \rangle$ and $\langle z, z^* \rangle + \frac{1}{2} ||z||^2 + \frac{1}{2} ||z^*||^2 = 0$.
From (), $(z, z^*) \in G(T)$. Also $(z, -z^*) \in G(J)$, from which $||z^*|| = ||z||$ and so $||z|| \le N$. Since $0 = z^* + (-z^*)$, we also have $0 \in (T+J)z$. This proves the "existence" part of:

Reflexivity with maximality theorem

 \mathbf{SO}

$\exists x$	$\in E$ such that \mid	$\ x\ \le N$	and $(T+J)x \ni 0$.
	$\min\big\{\ x\ \colon($	(T+J)x	$ \ni 0 \Big\} = N. $

In fact,

• Let E be reflexive, $T: E \rightrightarrows E^*$ be maximal monotone and

$$N := \frac{1}{\sqrt{2}} \sup_{y \in E \times E^*} \left[\|y\| - \sqrt{2\varphi_T(y) + \|y\|^2} \right] \vee 0.$$

Reflexivity with maximality theorem

$$\exists x \in E \text{ such that } ||x|| \le N \text{ and } (T+J)x \ni 0.$$
$$\min \{ ||x||: (T+J)x \ni 0 \} = N.$$

In fact,

Rest of Proof. Now we must show that

$$x \in E \text{ and } (T+J)x \ni 0 \implies ||x|| \ge N.$$

So suppose that $x \in E$ and $(T + J)x \ni 0$. Then there exists $x^* \in Tx$ such that $-x^* \in Jx$. From (?) again,

$$\varphi_T^*(x^*, x) + \frac{1}{2} \left\| (x^*, x) \right\|^2 = \left[\varphi_T^*(x^*, x) - \langle x, x^* \rangle \right] + \left[\langle x, x^* \rangle + \frac{1}{2} \| x \|^2 + \frac{1}{2} \| x^* \|^2 \right] = 0.$$

The sharp case of Fenchel duality now gives

$$\left\| (x^*, x) \right\| \ge \sqrt{2}N.$$

But

$$||x|| = \frac{1}{\sqrt{2}} ||(x^*, x)||.$$

Reflexivity with maximality theorem

Let E be reflexive, T: $E \rightrightarrows E^*$ be maximal monotone and ... Then

 $\exists x \in E \text{ such that } (T+J)x \ni 0 \dots$

The -J criterion for maximality

Let E be reflexive and T: $E \rightrightarrows E^*$ be monotone. Then

T is maximal monotone $\iff G(T) + G(-J) = E \times E^*$.

Proof (\Longrightarrow) Let $(w, w^*) \in E \times E^*$ and apply the reflexivity with maximality theorem, with T replaced by the multifunction with graph $G(T) - (w, w^*) \subset E \times E^*$, which is also maximal monotone. We obtain $(t, t^*) \in G(T)$ such that $(t - w, t^* - w^*) \in G(-J)$. But then $(w - t, w^* - t^*) \in G(-J)$ and so $(w, w^*) = (t, t^*) + (w - t, w^* - t^*) \in G(T) + G(-J)$.

$$(\Leftarrow) \text{ Let } (w, w^*) \in E \times E^* \text{ and} \\ (t, t^*) \in G(T) \implies \langle w - t, w^* - t^* \rangle \ge 0.$$

Choose $(t, t^*) \in G(T)$ so that $(w - t, w^* - t^*) \in G(-J)$. Then
 $\frac{1}{2} \|w - t\|^2 + \frac{1}{2} \|w^* - t^*\|^2 = -\langle w - t, w^* - t^* \rangle \le 0.$
So $(w, w^*) = (t, t^*) \in G(T).$

The -J criterion for maximality

Let E be reflexive and T: $E \rightrightarrows E^*$ be monotone. Then

T is maximal monotone $\iff G(T) + G(-J) = E \times E^*$.

The range of a multifunction

If $T: E \rightrightarrows E^*$,

$$R(T) := \bigcup_{x \in E} Tx.$$

Rockafellar's surjectivity theorem			
Let E be reflexive, T: $E \rightrightarrows E^*$ be maximal monotone and, $\forall x \in E$,			
$(T+J)x := \{x^* + y^*: x^* \in Tx, y^* \in Jx\}.$			
Then			
$R(T+J) = E^*.$			

Proof Let $w^* \in E^*$. From the -J criterion for maximality,

 $(0, w^*) \in G(T) + G(-J).$

Thus $\exists x \in E, x^* \in Tx$ and $y^* \in (-J)(-x)$ such that $x^* + y^* = w^*$. But then $y^* \in Jx$, hence

$$w^* = x^* + y^* \in (T+J)x \subset R(T+J).$$

Minty's Theorem

If E is a **Hilbert space** and T: $E \rightrightarrows E^*$ is monotone then

T is maximal monotone $\iff R(T+J) = E^*$.

It was proved by Rockafellar that this also holds if E is a reflexive Banach space such that the norm on E and the dual norm on E^* are strictly convex. Further, it was proved by Asplund that any reflexive Banach space can be renormed so that this property holds.

This result does **not hold** in a reflexive space where J or J^{-1} is not single-valued.

Various formulas for the minimum norm of solutions of $(T+J)x \ni 0$ If E is reflexive and T: $E \rightrightarrows E^*$ is maximal monotone then $\min \{ \|x\|: x \in E, (T+J)x \ni 0 \}$ $= \frac{1}{\sqrt{2}} \sup_{y \in E \times E^*} \left[\|y\| - \sqrt{2\varphi_T(y) + \|y\|^2} \right] \lor 0$ $= \frac{1}{2} \sup_{(x,x^*) \in E \times E^*} \left[\|x\| + \|x^*\| - \sqrt{4\varphi_T(x,x^*) + (\|x\| + \|x^*\|)^2} \right] \lor 0$ $= \sup_{(x,x^*) \in E \times E^*} \left[\|x\| \lor \|x^*\| - \sqrt{\varphi_T(x,x^*) + \|x\|^2 \lor \|x^*\|^2} \right] \lor 0.$