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MANIFOLD = connected, Hausdorff, locally Euclidean space
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For a manifold M the following are equivalent.
1. M is metrisable;

2. M is paracompact;

3. M is strongly paracompact;

4. M is screenable;

5. M is metacompact;

6. M is σ-metacompact;

7. M is paraLindelöf;

8. M is σ-paraLindelöf;

9. M is metaLindelöf;

10. M is nearly metaLindelöf;

11. M is Lindelöf;

12. M is linearly Lindelöf;

13. M is ω1-Lindelöf;

14. M is ω1-metaLindelöf;

15. M is nearly linearly ω1-metaLindelöf;

16. M is almost metaLindelöf;

17. M is hereditarily Lindelöf;

18. M is strongly hereditarily Lindelöf;

19. M is an ℵ0-space;

20. M is cosmic;

21. every open k-cover of M has a countable k-subcover;

22. M is an ℵ-space;

23. M has a star-countable k-network;

24. M has a point-countable k-network;

25. M has a k-network which is point-countable on some dense subset of
M;

26. M is second countable;

27. M is hemicompact;

28. M is σ-compact;

29. M is Hurewicz;

30. M may be embedded in some euclidean space;

31. M may be embedded properly in some euclidean space;

32. M is completely metrisable;

33. there is a continuous discrete map f : M → X where X is Hausdorff
and second countable;

34. M is Lašnev;

35. M is an M1-space;

36. M is stratifiable;

37. M is finitistic;

38. M is strongly finitistic;

39. M is star finitistic;

40. there is an open cover U of M such that for each x ∈ M the set st(x, U)
is homeomorphic to an open subset of R

m;

41. there is a point-star-open cover U of M such that for each x ∈ M the
set st(x, U) is Lindelöf;

42. there is a point-star-open cover U of M such that for each x ∈ M the
set st(x, U) is metrisable;

43. the tangent microbundle on M is equivalent to a fibre bundle;

44. M is a normal Moore space;

45. M is a normal θ-refinable space;

46. M is a normal subparacompact space;

47. M is a normal space which has a σ-discrete cover by compact subsets;

48. M × M is perfectly normal;

49. M is a normal space which has a sequence 〈Un〉n∈ω of open covers

with ∩nst(x, Un) = {x} for each x ∈ M;

50. M is perfectly normal and there is a sequence 〈Un〉n∈ω of families of

open sets such that ∩n∈C(x)st(x, Un) = {x} for each x ∈ M, where

C(x) = {n ∈ ω / ∃U ∈ Un with x ∈ U};

51. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open

covers such that ∩nst(x, Cn) = {x} for each x ∈ M and for each
x, y ∈ M and each n ∈ ω we have y ∈ st(x, Cn) if and only if
x ∈ st(y, Cn);

52. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open

covers such that ∩nst(x, Cn) = {x} for each x ∈ M and for each
x ∈ M and each n ∈ ω, ord(x, Cn) is finite;

53. M is separable and hereditarily normal and there is a sequence 〈Cn〉n∈ω

of point-star-open covers such that ∩nst(x, Cn) = {x} for each x ∈ M;

54. M is separable and there is a sequence 〈Un〉n∈ω of families of open sets

such that ∩n∈C(x)st(x, Un) = {x} for each x ∈ M, and ord(x, Cn) is

countable for each x ∈ M and each n ∈ ω;

55. M × M has a countable sequence 〈Un : n ∈ ω〉 of open subsets, such
that for all (x, y) ∈ M × M − ∆, there is n ∈ ω such that (x, x) ∈ Un
but (x, y) /∈ Un;

56. For every subset A ⊂ M there is a continuous injection f : M → Y ,
where Y is a metrisable space, such that f(A) ∩ f(M − A) = ∅;

57. For every subset A ⊂ M there is a continuous f : M → Y , where Y is a
space with a quasi-regular-Gδ-diagonal, such that f(A)∩f(M−A) = ∅;

58. M is weakly normal with a G∗
δ -diagonal;

59. M has a quasi-G∗
δ -diagonal and for every closed subset A ⊂ M there

is a countable family G of open subsets such that, for every x ∈ A and
y ∈ X − A, there is a G ∈ G with x ∈ G, y /∈ G;

60. M has a regular Gδ-diagonal;

61. M is submetrisable;

62. M is separable and monotonically normal;

63. M × M is monotonically normal;

64. M is monotonically normal and of dimension ≥ 2 or M ≈ S
1 or R;

65. M is extremely normal;

66. M has property pp;

67. every open cover of M has an open refinement V such that for every
choice function f : V → M the set f(V) is closed in M;

68. every open cover of M has an open refinement V such that for every
choice function f : V → M the set f(V) is discrete in M;

69. M is a point-countable union of open subspaces each of which is metris-
able;

70. M has a point-countable basis;

71. M is separable and Mω is a countable union of metrisable subspaces;

72. Ck(M, R) is Polish;

73. Ck(M, R) is completely metrisable;

74. Ck(M, R) is second countable;

75. Ck(M, R) is a q-space;

76. Ck(M, R) is Fréchet;

77. Ck(M, R) is countably tight;

78. Ck(M, R) is an ℵ0-space;

79. Ck(M, R) is cosmic;

80. Ck(M, R) is analytic;

81. Cp(M, R) has countable tightness;

82. Cp(M, R) has countable fan tightness;

83. Cp(M, R) is analytic;

84. Cp(M, R) is hereditarily separable;

85. Cp(M, R) (equivalently Ck(M, R)) is separable;

86. [M, $] is first countable;

87. [M, $] is countably tight;

88. [M, $] is sequential.
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9. M is metaLindelöf;

10. M is nearly metaLindelöf;

11. M is Lindelöf;

12. M is linearly Lindelöf;

13. M is ω1-Lindelöf;

14. M is ω1-metaLindelöf;

15. M is nearly linearly ω1-metaLindelöf;

16. M is almost metaLindelöf;

17. M is hereditarily Lindelöf;

18. M is strongly hereditarily Lindelöf;

19. M is an ℵ0-space;

20. M is cosmic;

21. every open k-cover of M has a countable k-subcover;

22. M is an ℵ-space;

23. M has a star-countable k-network;

24. M has a point-countable k-network;

25. M has a k-network which is point-countable on some dense subset

of M ;

26. M is second countable;

27. M is hemicompact;

28. M is σ-compact;

29. M is Hurewicz.
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72. Ck(M, R) is Polish;

73. Ck(M, R) is completely metrisable;

74. Ck(M, R) is second countable;

75. Ck(M, R) is a q-space;

76. Ck(M, R) is Fréchet;

77. Ck(M, R) is countably tight;

78. Ck(M, R) is an ℵ0-space;

79. Ck(M, R) is cosmic;

80. Ck(M, R) is analytic;

81. Cp(M, R) has countable tightness;

82. Cp(M, R) has countable fan tightness;

83. Cp(M, R) is analytic;

84. Cp(M, R) is hereditarily separable;

85. Cp(M, R) (equivalently Ck(M, R)) is separable;

86. [M, $] is first countable;

87. [M, $] is countably tight;

88. [M, $] is sequential.
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X a topological space then

Ck(X) = all continuous real-valued functions, compact-open topology

Cp(X) = all continuous real-valued functions, pointwise topology

Sample Preliminary Result: X a q-space:

Ck(X) analytic ⇐⇒Cp(X) analytic ⇐⇒X σ-compact and metrisable

Analytic means continuous image of a Polish space

(= continuous image of P)

q-space means each point admits a sequence 〈Nn〉 of neighbourhoods

such that xn ∈ Nn implies 〈xn〉 clusters

manifold =⇒ first countable =⇒ q-space

A manifold M is metrisable

⇐⇒ M is σ-compact

so

⇐⇒ Ck(M) analytic

⇐⇒ Cp(M) analytic
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second countablehemicompact

ℵ0-space

ℵ-space

point-countable

k-network

k-network
point-countable
on dense subset

σ-compact

Hurewicz

Lindelöf

every open k-cover
has countable k-subcover cosmic

metaLindelöf
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1: locally compact
2: locally second countable
3: connected, locally separable
4: regular, Fréchet
5: regular, locally compact,

locally hereditarily separable
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M a manifold

Ck(M) Polish

Ck(M) analytic Ck(M) completely metrisable

Ck(M) second countable Ck(M) metrisable

Ck(M) ℵ0 Ck(M) Fréchet

Ck(M) cosmic Ck(M) ω-tight
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A: M is hemicompact,
cosmic, k-space

B: M is σ-compact, metrisable
C: M is ℵ0-space
D: every open k-cover of M

has a countable k-subcover
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Cp(M) cosmic

Cp(M) hereditarily separable

Cp(M) separable Cp(M) ω-tight

Cp(M) ω-fan tight
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A: M is σ-compact, metrisable
B: M is submetrisable
C: every finite power Mn

is Hurewicz
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X , a space, is:

• hemicompact if ∃〈Kn〉, compacta, ∀K compact ∃n: K ⊂ Kn;

• Hurewicz if ∀〈Un〉, open covers, ∃〈Vn〉: ∪n∈ωVn = X and Vn is a

finite subfamily of Un ∀n;

• an ℵ0-space if it has a countable k-network, i.e. collection N : ∀K,

compact, ∀U , open, with K ⊂ U ∃N ∈ N with K ⊂ N ⊂ U ;

• an ℵ-space if it has a σ-locally finite k-network;

• cosmic if it has a countable network, i.e. as for k-network but

replace K by a point;

• a k-space if A ⊂ X closed whenever A ∩ K closed ∀K compact;

• Fréchet if ∀x ∈ A ∃〈xn〉 in A converging to x;

• ω-tight if ∀x ∈ A ∃B ⊂ A: x ∈ B and B countable;

• ω-fan tight if ∀x ∈ ∩n∈ωAn ∃ finite Bn ⊂ An: x ∈ ∪n∈ωBn;

• submetrisable if the topology has a metrisable subtopology.

• A k-cover of X : a collection S of subsets with each compactum in

X a subset of some member of S.
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