Victoria International Conference 2004 Wellington

10 February, 2004

Function Spaces and Metrisability of Manifolds

David Gauld¹ and Frédéric Mynard²

1. The University of Auckland

2. The University of Auckland and (present address) The University of Mississippi.

MANIFOLD = connected, Hausdorff, locally Euclidean space

For a manifold M the following are equivalent.

- 1. M is metrisable;
- M is paracompact;
- 3. M is strongly paracompact;
- M is screenable;
- M is metacompact;
- M is σ-metacompact;
- M is paraLindelöf;
- 8. M is σ -paraLindelöf:
- M is metaLindelöf;
- M is nearly metaLindelöf;
- 11. M is Lindelöf;
- 12. M is linearly Lindelöf;
- 13. M is ω_1 -Lindelöf;
- 14. M is ω_1 -metaLindelöf;
- 15. *M* is nearly linearly ω_1 -metaLindelöf;
- 16. M is almost metaLindelöf;
- 17. M is hereditarily Lindelöf;
- 18. M is strongly hereditarily Lindelöf;
- 19. M is an \aleph_0 -space;
- 20. M is cosmic;
- 21. every open k-cover of M has a countable k-subcover;
- 22. M is an \aleph -space;
- M has a star-countable k-network;
- 24. M has a point-countable k-network;
- 25. M has a k-network which is point-countable on some dense subset of
- 26. M is second countable;
- 27. M is hemicompact;
- 28. M is σ -compact;
- 29. M is Hurewicz;
- 30. M may be embedded in some euclidean space;
- 31. M may be embedded properly in some euclidean space;
- 32. M is completely metrisable;
- 33. there is a continuous discrete map $f:M\to X$ where X is Hausdorff and second countable;
- M is Lašnev;
- 35. *M* is an M₁-space;
- 36. *M* is stratifiable:
- 37. *M* is finitistic;
- M is strongly finitistic;
- 39. M is star finitistic;
- 40. there is an open cover $\mathcal U$ of M such that for each $x\in M$ the set $st(x,\mathcal U)$ is homeomorphic to an open subset of $\mathbb R^m;$
- 41. there is a point-star-open cover ${\mathcal U}$ of M such that for each $x\in M$ the set $st(x,{\mathcal U})$ is Lindelöf;
- 42. there is a point-star-open cover ${\mathcal U}$ of M such that for each $x\in M$ the set $st(x,{\mathcal U})$ is metrisable;
- 43. the tangent microbundle on ${\cal M}$ is equivalent to a fibre bundle;
- M is a normal Moore space;
- 45. M is a normal θ -refinable space;
- 46. M is a normal subparacompact space;
- 47. M is a normal space which has a $\sigma\text{-discrete}$ cover by compact subsets;

48. $M \times M$ is perfectly normal;

- 49. *M* is a normal space which has a sequence $\langle \mathcal{U}_n \rangle_{n \in \omega}$ of open covers with $\cap_n \overline{st(x, \mathcal{U}_n)} = \{x\}$ for each $x \in M$;
- 50. *M* is perfectly normal and there is a sequence $\langle \mathcal{U}_n \rangle_{n \in \omega}$ of families of open sets such that $\bigcap_{n \in C(x)} \overline{st(x, \mathcal{U}_n)} = \{x\}$ for each $x \in M$, where

 $C(x) = \{ n \in \omega / \exists U \in \mathcal{U}_n \text{ with } x \in U \};$

- 51. *M* is separable and there is a sequence $\langle C_n \rangle_{n \in \omega}$ of point-star-open covers such that $\cap_n st(x, C_n) = \{x\}$ for each $x \in M$ and for each $x, y \in M$ and each $n \in \omega$ we have $y \in \overline{st(x, C_n)}$ if and only if $x \in \overline{st(y, C_n)}$;
- 52. *M* is separable and there is a sequence $\langle C_n \rangle_{n \in \omega}$ of point-star-open covers such that $\bigcap_n \overline{st(x, C_n)} = \{x\}$ for each $x \in M$ and for each $x \in M$ and each $n \in \omega$, $\operatorname{ord}(x, C_n)$ is finite;
- 53. *M* is separable and hereditarily normal and there is a sequence $\langle C_n \rangle_{n \in \omega}$ of point-star-open covers such that $\cap_n \overline{st(x, C_n)} = \{x\}$ for each $x \in M$;
- 54. *M* is separable and there is a sequence $\langle U_n \rangle_{n \in \omega}$ of families of open sets such that $\bigcap_{n \in C(x)} \overline{st(x, u_n)} = \{x\}$ for each $x \in M$, and $\operatorname{ord}(x, \mathcal{C}_n)$ is countable for each $x \in M$ and each $n \in \omega$;
- 55. $M \times M$ has a countable sequence $\langle U_n : n \in \omega \rangle$ of open subsets, such that for all $(x, y) \in M \times M \Delta$, there is $n \in \omega$ such that $(x, x) \in U_n$ but $(x, y) \notin \overline{U_n}$;
- 56. For every subset $A \subset M$ there is a continuous injection $f : M \to Y$, where Y is a metrisable space, such that $f(A) \cap f(M - A) = \emptyset$;
- 57. For every subset $A \subset M$ there is a continuous $f: M \to Y$, where Y is a space with a quasi-regular- G_{δ} -diagonal, such that $f(A) \cap f(M-A) = \emptyset$;
- 58. *M* is weakly normal with a G^*_{δ} -diagonal;
- 59. *M* has a quasi- G^*_{δ} -diagonal and for every closed subset $A \subset M$ there is a countable family \mathcal{G} of open subsets such that, for every $x \in A$ and $y \in X A$, there is a $G \in \mathcal{G}$ with $x \in G, y \notin \overline{G}$;
- 60. *M* has a regular G_{δ} -diagonal;
- M is submetrisable;
- 62. *M* is separable and monotonically normal;
- 63. $M \times M$ is monotonically normal;
- 64. *M* is monotonically normal and of dimension ≥ 2 or $M \approx S^1$ or \mathbb{R} ;
- 65. M is extremely normal:
- 66. M has property pp;
- 67. every open cover of M has an open refinement \mathcal{V} such that for every choice function $f: \mathcal{V} \to M$ the set $f(\mathcal{V})$ is closed in M;
- 68. every open cover of M has an open refinement \mathcal{V} such that for every choice function $f: \mathcal{V} \to M$ the set $f(\mathcal{V})$ is discrete in M;
- M is a point-countable union of open subspaces each of which is metrisable;
- M has a point-countable basis;
- 71. *M* is separable and M^{ω} is a countable union of metrisable subspaces;
- 72. $C_k(M, \mathbb{R})$ is Polish;
- 73. $C_{I_{\bullet}}(M, \mathbb{R})$ is completely metrisable;
- 74. $C_k(M, \mathbb{R})$ is second countable;
- 75. $C_{l_1}(M, \mathbb{R})$ is a *q*-space;
- 76. $C_k(M, \mathbb{R})$ is Fréchet;
- 77. $C_k(M, \mathbb{R})$ is countably tight;
- 78. $C_k(M, \mathbb{R})$ is an \aleph_0 -space;
- 79. $C_k(M, \mathbb{R})$ is cosmic;
- 80. $C_k(M, \mathbb{R})$ is analytic;
- ο ο κ (····, ··) ··· ·······,
- 81. $C_p(M, \mathbb{R})$ has countable tightness;
- 82. $C_{p}(M, \mathbb{R})$ has countable fan tightness;
- 83. $C_p(M, \mathbb{R})$ is analytic;
- 84. $C_p(M, \mathbb{R})$ is hereditarily separable;
- 85. $C_p(M, \mathbb{R})$ (equivalently $C_k(M, \mathbb{R})$) is separable;
- 86. [M, \$] is first countable;
- 87. [M, \$] is countably tight;
- 88. [M, \$] is sequential.

- 9. M is metaLindelöf;
- 10. M is nearly metaLindelöf;
- 11. M is Lindelöf;
- 12. M is linearly Lindelöf;
- 13. M is ω_1 -Lindelöf;
- 14. M is ω_1 -metaLindelöf;
- 15. M is nearly linearly ω_1 -metaLindelöf;
- 16. M is almost metaLindelöf;
- 17. M is hereditarily Lindelöf;
- 18. M is strongly hereditarily Lindelöf;
- 19. M is an \aleph_0 -space;
- 20. M is cosmic;
- 21. every open k-cover of M has a countable k-subcover;
- 22. M is an \aleph -space;
- 23. M has a star-countable k-network;
- 24. M has a point-countable k-network;
- 25. M has a k-network which is point-countable on some dense subset of M;
- 26. M is second countable;
- 27. M is hemicompact;
- 28. M is σ -compact;
- 29. M is Hurewicz.

- 72. $C_k(M, \mathbb{R})$ is Polish;
- 73. $C_k(M, \mathbb{R})$ is completely metrisable;
- 74. $C_k(M, \mathbb{R})$ is second countable;
- 75. $C_k(M, \mathbb{R})$ is a *q*-space;
- 76. $C_k(M, \mathbb{R})$ is Fréchet;
- 77. $C_k(M, \mathbb{R})$ is countably tight;
- 78. $C_k(M, \mathbb{R})$ is an \aleph_0 -space;
- 79. $C_k(M, \mathbb{R})$ is cosmic;
- 80. $C_k(M, \mathbb{R})$ is analytic;
- 81. $C_p(M, \mathbb{R})$ has countable tightness;
- 82. $C_p(M, \mathbb{R})$ has countable fan tightness;
- 83. $C_p(M, \mathbb{R})$ is analytic;
- 84. $C_p(M, \mathbb{R})$ is hereditarily separable;
- 85. $C_p(M, \mathbb{R})$ (equivalently $C_k(M, \mathbb{R})$) is separable;
- 86. [M, \$] is first countable;
- 87. [M, \$] is countably tight;
- 88. [M, \$] is sequential.

X a topological space then

 $C_k(X)$ = all continuous real-valued functions, compact-open topology $C_p(X)$ = all continuous real-valued functions, pointwise topology

Sample Preliminary Result: X a q-space:

 $C_k(X)$ analytic $\iff C_p(X)$ analytic $\iff X \sigma$ -compact and metrisable

Analytic means continuous image of a Polish space (= continuous image of \mathbb{P})

q-space means each point admits a sequence $\langle N_n \rangle$ of neighbourhoods such that $x_n \in N_n$ implies $\langle x_n \rangle$ clusters

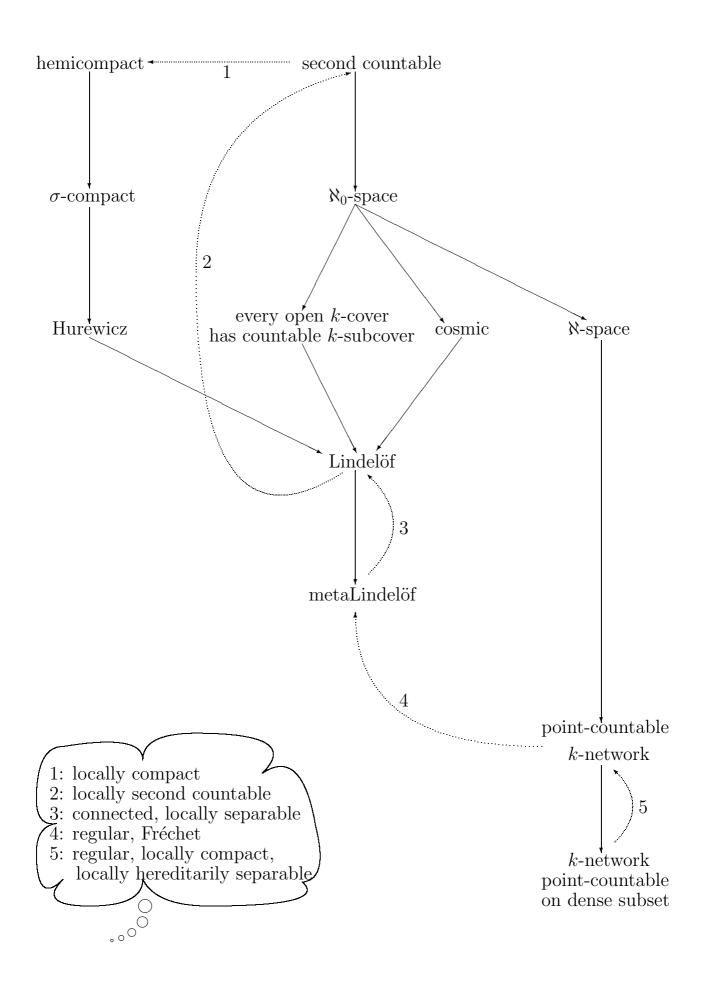
manifold \implies first countable \implies q-space

A manifold M is metrisable $\iff M$ is σ -compact

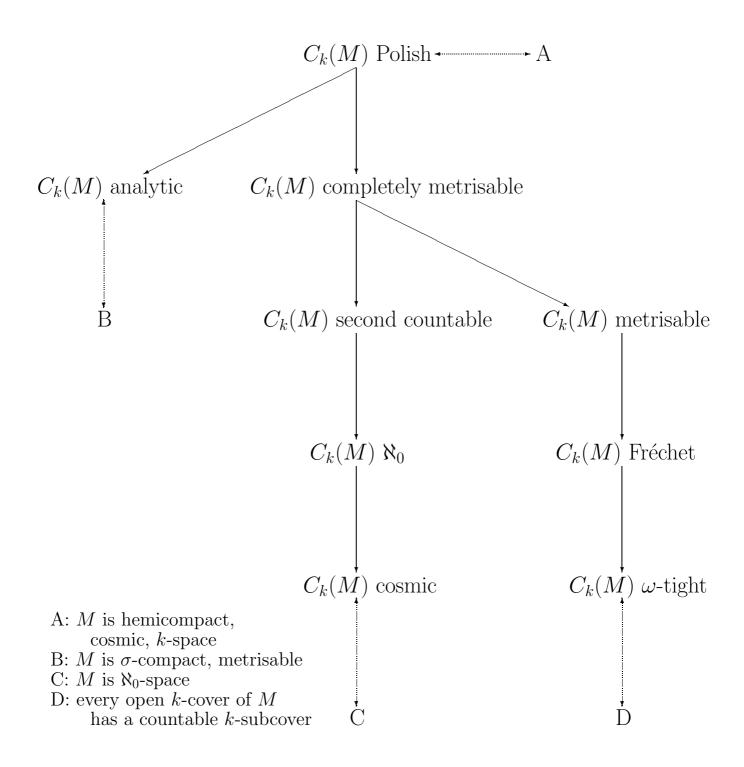
SO

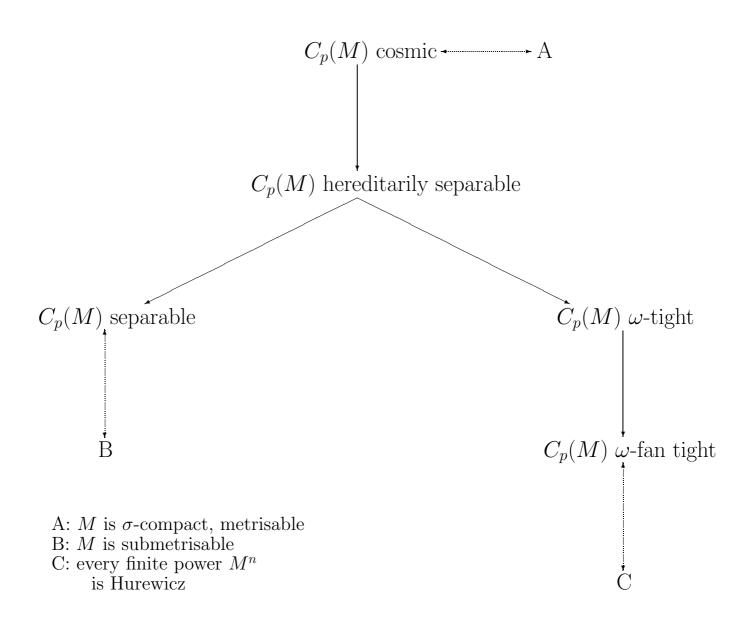
 $\iff C_k(M)$ analytic

 $\iff C_p(M)$ analytic



M a manifold





X, a space, is:

- hemicompact if $\exists \langle K_n \rangle$, compacta, $\forall K$ compact $\exists n: K \subset K_n$;
- Hurewicz if $\forall \langle \mathcal{U}_n \rangle$, open covers, $\exists \langle \mathcal{V}_n \rangle$: $\bigcup_{n \in \omega} \mathcal{V}_n = X$ and \mathcal{V}_n is a finite subfamily of $\mathcal{U}_n \forall n$;
- an \aleph_0 -space if it has a countable k-network, i.e. collection \mathcal{N} : $\forall K$, compact, $\forall U$, open, with $K \subset U \exists N \in \mathcal{N}$ with $K \subset N \subset U$;
- an \aleph -space if it has a σ -locally finite k-network;
- cosmic if it has a countable network, i.e. as for k-network but replace K by a point;
- a k-space if $A \subset X$ closed whenever $A \cap K$ closed $\forall K$ compact;
- Fréchet if $\forall x \in \overline{A} \exists \langle x_n \rangle$ in A converging to x;
- ω -tight if $\forall x \in \overline{A} \exists B \subset A: x \in \overline{B}$ and B countable;
- ω -fan tight if $\forall x \in \bigcap_{n \in \omega} A_n \exists$ finite $B_n \subset A_n$: $x \in \overline{\bigcup_{n \in \omega} B_n}$;
- *submetrisable* if the topology has a metrisable subtopology.
- A k-cover of X: a collection \mathcal{S} of subsets with each compactum in X a subset of some member of \mathcal{S} .