The Slicing Problem

Conjecture: There exists $c>0$ (independent of dimension), such that any $K \subset \mathbb{R}^{\mathrm{n}}$ a convex, centrally symmetric body of volume one, has at least one hyperplane section, with

$$
\operatorname{Vol}_{\mathrm{n}-1}(\mathrm{~K} \cap \mathrm{H})>\frac{1}{c} .
$$

- There are only estimates which depend on the dimension:
$c_{n}<c^{\prime} \sqrt{n}$
(straightforward)
$c_{n}<c \cdot \sqrt[4]{n} \log n \quad$ [Bourgain, '88] for general convex bodies.
- In some particular cases, the conjecture is known to be true:
- unconditional bodies.
- zonoids, duals to zonoids.
- duals to bodies with finite volume ratio.
[Bourgain, Milman-Pajor, Ball '88-'89]
- Schatten class bodies.
[Dar '96, König, Meyer, Pajor '98]

Integral Formulation

- For any K of volume 1 ,

$$
\frac{1}{\operatorname{Vol}\left(K \cap v^{\perp}\right)} \approx \sqrt{\int_{K}\langle x, v\rangle^{2} d x}
$$

where v is a unit vector [Hensley '80].

- The inertia matrix M_{K} of K is defined as

$$
\left\langle M_{K} u, v\right\rangle=\int_{K}\langle x, u\rangle\langle x, v\rangle d x
$$

Equivalent formulation for the slicing problem:
Is $L_{K}=\operatorname{det}\left(M_{K}\right)^{\frac{1}{2 n}}$ bounded by some constant, independent of dimension?
L_{K} is called the "isotropic constant of K ". If M_{K} is a scalar matrix, K is called "isotropic".

- K isotropic implies $M_{K}=L_{K}^{2} I d$ and

$$
\begin{aligned}
n L_{K}^{2} & =\int_{K}|x|^{2} d x \\
\sqrt{n} L_{K} & \approx \int_{K}|x| d x
\end{aligned}
$$

Mass distribution

- Another equivalent formulation of the problem: K isotropic, volume one.
\bar{D} a Euclidean ball, volume one.
Does there exist $\mathrm{C}>0$ such that

$$
\operatorname{Vol}(K \cap c \bar{D})>\frac{1}{2} \operatorname{Vol}(K) ?
$$

- A relaxation of the problem:

$$
d(K, T)=\inf \left\{a b>0 ; \frac{1}{b} K \subset L(T) \subset a K ; L \text { is linear }\right\}
$$ is the Banach-Mazur distance.

- An isomorphic version of the slicing problem:

Do there exist $\mathrm{c}_{1}, \mathrm{c}_{2}>0$ such that for any dimension n, for any $\mathrm{K} \subset \mathbb{R}^{\mathbf{n}}$, there exists $\mathrm{T} \subset \mathbb{R}^{\mathbf{n}}$ with

$$
\begin{gathered}
\mathrm{d}(\mathrm{~K}, \mathrm{~T})<\mathrm{c}_{1} \\
\mathrm{~L}_{\mathrm{T}}<\mathrm{c}_{2} ?
\end{gathered}
$$

- The isomorphic slicing problem is correct, up to a logarithmic factor.

Theorem:

For any $K \subset \mathbb{R}^{n}$, there exists $T \subset \mathbb{R}^{n}$ such that

$$
\begin{gathered}
d(K, T)<c_{1} \log n \\
L_{T}<c_{2}
\end{gathered}
$$

- This logarithmic factor comes from Pisier's estimate for the Rademacher projection.

If K has a non-trivial type, no need for logarithm.

- Proof involves log-concave functions.
- f is \log-concave if $\log \mathbf{f}$ is concave on its support.
- f is s-concave if $\mathbf{f}^{1 / s}$ is concave.

Any s-concave is also log-concave.

Log concave functions

- L_{f} - the isotropic constant - may be defined.
- If f is log-concave and even, then

$$
\|x\|_{f}=\left(\int_{0}^{\infty} f(r x) r^{n+1} d r\right)^{-1 /(n+2)}
$$

is a norm. Its unit ball is denoted by K_{f}.

Properties:

- related mass distribution: $L_{f} \approx L_{K_{f}}$
- If f is s-concave, then

$$
d\left(K_{f}, \operatorname{supp}(f)\right)<c \frac{s}{n}
$$

Aim:

Given $\mathrm{K} \subset \mathbb{R}^{\mathbf{n}}$, find a function f supported exactly on K such that

- $\mathrm{L}_{f}<$ const
- f is α-concave, for α not large.
$\Rightarrow \mathrm{K}_{f}$ is the desired body.

Constructing a function on K

- Define M^{\prime} such that

$$
\operatorname{Vol}\left(K \cap \frac{1}{M^{\prime}} D\right)=\frac{1}{2} \operatorname{Vol}\left(\frac{1}{M^{\prime}} D\right)
$$

- The function is:

$$
f^{\frac{1}{\alpha n}}(x)=\sup \left\{0<t<1 ; x \in t\left[\frac{1}{M^{\prime}} D \cap K\right]+(1-t) K\right\}
$$ and is αn-concave.

Main ingredient of the proof: For relatively small α, most of the mass of f is not far from the origin:

$$
\int_{K} f(x) d x<2 \operatorname{Vol}\left(K \cap \frac{1}{M^{\prime}} D\right)
$$

Mixed Volumes

- Sketch of proof:

$$
\int_{K} f(x) d x=\int_{0}^{1} \operatorname{Vol}\left(t^{\frac{1}{\alpha n}}\left[K \cap \frac{1}{M^{\prime}} D\right]+\left(1-t^{\frac{1}{\alpha n}}\right) K\right) d t
$$

- Expand into mixed volumes:
$\operatorname{Vol}\left(s\left[K \cap \frac{1}{M^{\prime}} D\right]+(1-s) K\right)=\sum_{i=0}^{n}\binom{n}{i} V_{i} s^{i}(1-s)^{n-i}$
- Simplifying, we obtain

$$
\int_{K} f(x) d x \approx V_{0}\left[1+\sum_{i=1}^{n}\left(\frac{1}{c \alpha}\left(\frac{V_{i}}{V_{0}}\right)^{1 / i}\right)^{i}\right]
$$

- By Alexandrov-Fenchel, $\left(\frac{V_{i}}{V_{0}}\right)^{1 / i} \leq \frac{V_{1}}{V_{0}}$.

Hence enough to take any $\alpha>2 c \frac{V_{1}}{V_{0}}$.

Rademacher Projection

- Need to estimate $\frac{V_{1}}{V_{0}}$:

$$
V_{1}=V\left(K, \frac{1}{M^{\prime}} D \cap K, \ldots, \frac{1}{M^{\prime}} D \cap K\right) \leq V\left(K, \frac{1}{M^{\prime}} D, \ldots, \frac{1}{M^{\prime}} D\right)
$$

and therefore,

$$
\frac{V_{1}}{V_{0}} \leq 2 M^{\prime}(K) M^{*}(K) \leq 4 M(K) M^{*}(K)
$$

where $M^{*}(K)$ is the mean width of K, and $M(K)$ is the mean width of its polar.

- Pisier's result: There exists a linear image of K, for which $M(K) M^{*}(K)<c \log n$.

Summary:

$-\mathrm{K} \subset \mathbb{R}^{\mathbf{n}}$ arbitrary, \tilde{K} a linear image.

- Construct an αn-concave function f on \tilde{K}.
- If $\alpha=c \log n$, then $\mathrm{L}_{f}<$ const. Set $\mathrm{T}=\mathrm{K}_{f}$.
- $\mathrm{L}_{\mathrm{T}}<$ const, $\mathrm{d}(\mathrm{K}, \mathrm{T})<c \log n$.

