The Slicing Problem

<u>Conjecture</u>: There exists c > 0 (independent of dimension), such that any $K \subset \mathbb{R}^n$ a convex, centrally symmetric body of volume one, has at least one hyperplane section, with

$$\operatorname{Vol}_{n-1}(\mathrm{K} \cap \mathrm{H}) > \frac{1}{c}.$$

• There are only estimates which depend on the dimension:

 $c_n < c'\sqrt{n}$ (straightforward) $c_n < c'\sqrt[4]{n \log n}$ [Bourgain, '88]for general convex bodies.

• In some particular cases, the conjecture is known to be true:

- unconditional bodies.
- zonoids, duals to zonoids.
- duals to bodies with finite volume ratio. [Bourgain, Milman-Pajor, Ball '88-'89]
- Schatten class bodies.

[Dar '96, König, Meyer, Pajor '98]

Integral Formulation

• For any K of volume 1,

$$\frac{1}{Vol(K \cap v^{\perp})} \approx \sqrt{\int_{K} \langle x, v \rangle^{2} dx}$$
where using a write relation [Hampley ?90]

where v is a unit vector [Hensley '80].

• The inertia matrix M_K of K is defined as $\langle M_K u, v \rangle = \int_K \langle x, u \rangle \langle x, v \rangle dx$

Equivalent formulation for the slicing problem: $I_{S} L_{K} = det(M_{K})^{\frac{1}{2n}} bounded by some$ constant, independent of dimension?

 L_K is called the "isotropic constant of *K*". If M_K is a scalar matrix, *K* is called "isotropic".

• K isotropic implies $M_K = L_K^2 Id$ and $nL_K^2 = \iint_K |x|^2 dx$ $\sqrt{nL_K} \approx \iint_K |x| dx$ • Another equivalent formulation of the problem: K isotropic, volume one.

 \overline{D} a Euclidean ball, volume one. Does there exist C > 0 such that

$$Vol(K \cap c\overline{D}) > \frac{1}{2}Vol(K)?$$

• A relaxation of the problem: $d(K,T) = \inf \left\{ ab > 0; \frac{1}{b}K \subset L(T) \subset aK; L \text{ is linear} \right\}$

is the Banach-Mazur distance.

• An isomorphic version of the slicing problem:

Do there exist c_1 , $c_2 > 0$ such that for any dimension *n*, for any $K \subset \mathbb{R}^n$, there exists $T \subset \mathbb{R}^n$ with

$$d(K,T) < c_1$$

 $L_T < c_2?$

Main result

• The isomorphic slicing problem is correct, up to a logarithmic factor.

Theorem:

For any $K \subset \mathbb{R}^n$, there exists $T \subset \mathbb{R}^n$ such that $d(K,T) < c_1 \log n$ $L_T < c_2$

• This logarithmic factor comes from Pisier's estimate for the Rademacher projection.

If K has a non-trivial type, no need for logarithm.

- Proof involves log-concave functions.
 - f is log-concave if **log f** is concave on its support.
 - f is s-concave if $f^{1/s}$ is concave.

Any s-concave is also log-concave.

Log concave functions

- L_f the isotropic constant may be defined.
- If *f* is log-concave and even, then

$$||x||_{f} = \left(\int_{0}^{\infty} f(rx)r^{n+1}dr\right)^{-1/(n+2)}$$

is a norm. Its unit ball is denoted by K_{f} .

Properties:

- related mass distribution: $L_f \approx L_{K_f}$
- If f is s-concave, then

$$d(K_f, supp(f)) < c\frac{s}{n}$$

<u>Aim:</u>

Given $K \subset \mathbb{R}^n$, find a function *f* supported exactly on K such that

- $L_f < \text{const}$
- f is α n-concave, for α not large.

 \Rightarrow K_f is the desired body.

Constructing a function on K

• Define
$$M'$$
 such that
 $Vol\left(K \cap \frac{1}{M'}D\right) = \frac{1}{2}Vol\left(\frac{1}{M'}D\right)$

• The function is:

$$f^{\frac{1}{\alpha n}}(x) = \sup\left\{0 < t < 1; x \in t\left[\frac{1}{M'}D \cap K\right] + (1-t)K\right\}$$

and is *can*-concave.

Main ingredient of the proof: For relatively small α , most of the mass of f is not far from the origin:

$$\int_{K} f(x) dx < 2Vol\left(K \cap \frac{1}{M'}D\right)$$

Mixed Volumes

• Sketch of proof:

$$\int_{K} f(x) dx = \int_{0}^{1} Vol\left(t^{\frac{1}{\alpha n}} \left[K \cap \frac{1}{M'}D\right] + \left(1 - t^{\frac{1}{\alpha n}}\right)K\right) dt$$

• Expand into mixed volumes:

$$Vol\left(s\left[K \cap \frac{1}{M}, D\right] + (1-s)K\right) = \sum_{i=0}^{n} \binom{n}{i} V_{i}s^{i}(1-s)^{n-i}$$

• Simplifying, we obtain

$$\int_{K} f(x) dx \approx V_0 \left[1 + \sum_{i=1}^{n} \left(\frac{1}{c\alpha} \left(\frac{V_i}{V_0} \right)^{1/i} \right)^i \right]$$

• By Alexandrov-Fenchel,
$$\left(\frac{V_i}{V_0}\right)^{1/i} \le \frac{V_1}{V_0}$$
.
Hence enough to take any $\alpha > 2c \frac{V_1}{V_0}$.

Rademacher Projection

• Need to estimate
$$\frac{V_1}{V_0}$$
:
 $V_1 = V\left(K, \frac{1}{M}, D \cap K, ..., \frac{1}{M}, D \cap K\right) \le V\left(K, \frac{1}{M}, D, ..., \frac{1}{M}, D\right)$
and therefore,

$$\frac{V_1}{V_0} \le 2M'(K)M^*(K) \le 4M(K)M^*(K)$$

where $M^*(K)$ is the mean width of K, and M(K) is the mean width of its polar.

• Pisier's result: There exists a linear image of K, for which M(K) M^{*}(K) < c log n.

Summary:

- $\mathbf{K} \subset \mathbb{R}^{\mathbf{n}}$ arbitrary, \tilde{K} a linear image.
- Construct an αn -concave function f on K.
- If $\alpha = c \log n$, then $L_f < \text{const. Set } T = K_f$.
- $L_T < \text{const}, d(K,T) < c \log n$.