
The Slicing Problem 
 

Conjecture: There exists c > 0 (independent of 
dimension), such that any K ⊂ �n  a convex, 

centrally symmetric body of volume one, has at 
least one hyperplane section, with 

   Voln-1(K ∩ H) > 
1

c . 

 
 

• There are only estimates which depend on the 
dimension: 

'nc c n<              (straightforward) 
4' lognc c n n<     [Bourgain, ’88] 

for general convex bodies. 
 
 

• In some particular cases, the conjecture is 
known to be true: 

- unconditional bodies. 
- zonoids, duals to zonoids. 
- duals to bodies with finite volume ratio.  

[Bourgain, Milman-Pajor, Ball ’88-’89] 

- Schatten class bodies.  
[Dar ’96, König, Meyer, Pajor ’98] 



Integral Formulation 
 
 
• For any K of volume 1, 

21
,

( ) K

x v dx
Vol K v

� ≈
∩ ∫

 
where v is a unit vector [Hensley ’80]. 

 
 
• The inertia matrix MK of K is defined as 
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Equivalent formulation for the slicing problem: 

Is 
1

2n
K KL = det(M )  bounded by some 

constant, independent of dimension? 
 
LK is called the “ isotropic constant of K” .  
If MK is a scalar matrix, K is called “ isotropic” .  
 

• K isotropic implies 
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Mass distribution 
 
 
• Another equivalent formulation of the problem:  
         K isotropic, volume one.  

        D  a Euclidean ball, volume one.  
Does there exist C > 0 such that  
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• A relaxation of the problem: 
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is the Banach-Mazur distance.  
 
 
• An isomorphic version of the slicing problem: 
 
Do there exist c1, c2 > 0 such that for any 
dimension n, for any K ⊂ �n, there exists T ⊂ �n 

with           
d(K,T) < c1 

LT  < c2? 
 



Main result 
 
 
• The isomorphic slicing problem is correct, up 

to a logarithmic factor.  
 

Theorem:  
For any K ⊂ �n, there exists T ⊂ �n  such that  

d(K,T) < c1 log n 
LT  < c2 

 
 

• This logarithmic factor comes from Pisier’s 
estimate for the Rademacher projection.  

 
If K has a non-trivial type, no need for 
logarithm.  

 
• Proof involves log-concave functions. 

 
- f is log-concave if  log f  is concave on its 

support.  
- f is s-concave if  f1/s  is concave. 
 

Any s-concave is also log-concave. 



Log concave functions 
 

 
• L f - the isotropic constant - may be defined. 

 
• If f is log-concave and even, then 
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 is a norm. Its unit ball is denoted by Kf. 
 
 
Properties: 
 

- related mass distribution:  
- If f is s-concave, then 
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Aim: 
 
Given K ⊂ �n, find a function f supported exactly 

on K such that 
- L f < const 
- f is αn-concave, for α not large.  

 
⇒  Kf  is the desired body. 

ff KL L≈



Constructing a function on K 
 
 
• Define 'M  such that 
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• The function is: 
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and is αn-concave. 
 
 
Main ingredient of the proof: For relatively small 
α, most of the mass of  f  is not far from the origin: 
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Mixed Volumes 
 
 
• Sketch of proof: 
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• Expand into mixed volumes:  
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• Simplifying, we obtain 
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• By Alexandrov-Fenchel, 
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Hence enough to take any 
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Rademacher Projection 
 
 

• Need to estimate 
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where M*(K) is the mean width of K, and M(K) is 
the mean width of its polar. 
 
 
• Pisier’s result: There exists a linear image of 

K, for which M(K) M*(K) < c log n. 
 
 
Summary: 

- K ⊂ �n  arbitrary,  K�  a linear image. 

- Construct an αn-concave function  f on K� .  
- If α = c log n, then Lf < const. Set T = Kf. 
- LT < const, d(K,T) < c log n. 

 


