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Trait distributions
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Data and Goals

Phenotypes: ��� = trait value for mouse �
Genotypes: ����� = 1/0 if mouse � is BB/AB at marker �

(for a backcross)
Genetic map: Locations of markers

Goals:
� Identify the (or at least one) genomic regions

(QTLs) that contribute to variation in the trait.
� Form confidence intervals for QTL locations.
� Estimate QTL effects.

Note: QTL = “quantitative trait locus”



Why?

Mice: Find gene

� � Drug targets, biochemical basis

Agronomy: Selection for improvement

Flies: Genetic architecture

� � Evolution
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Statistical structure

QTL

Markers Phenotype

Covariates

The missing data problem:

Markers � � QTL

The model selection problem:

QTL, covariates � � phenotype



Models: Recombination

We assume no crossover interference.

��� Points of exchange (crossovers) are according
to a Poisson process.

��� The
� �����	� (marker genotypes) form a Markov

chain

Example

A B − B A A

B A A − B A

A A A A A B

?



Models: Genotype � � Phenotype

Let � = phenotype� = whole genome genotype

Imagine a small number of QTLs with genotypes �������������	��
 .
( � 
 distinct genotypes)

E  ��� ��� � ��������������� ��� var  ��� ��� � �� ������������� ���

Models: Genotype � � Phenotype

Homoscedasticity (constant variance): �! �#" �$ 

Normally distributed residual variation: ��� �&% '  �(� � �$ � .

Additivity: �!� � ��������� � � � �*) + 

��, �.- � � � ( � � � / or 0 )

Epistasis: Any deviations from additivity.



The simplest method: ANOVA

� Split mice into groups
according to genotype
at a marker.

� Do a t-test / ANOVA.
� Repeat for each marker.
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ANOVA at marker loci

Advantages
� Simple.
� Easily incorporate

covariates.
� Easily extended to more

complex models.
� Doesn’t require a genetic

map.

Disadvantages
� Must exclude individuals

with missing genotype data.
� Imperfect information about

QTL location.
� Suffers in low density scans.
� Only considers one QTL at a

time.



Interval mapping (IM)

Lander & Botstein (1989)
� Take account of missing genotype data
� Interpolate between markers
� Maximum likelihood under a mixture model
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Interval mapping (IM)

Lander & Botstein (1989)
� Assume a single QTL model.
� Each position in the genome, one at a time, is posited as the

putative QTL.
� Let � � 1/0 if the (unobserved) QTL genotype is BB/AB.

Assume � % '  ��� � � �
� Given genotypes at linked markers, � % mixture of normal dist’ns

with mixing proportion
���  � � / �marker data � :

QTL genotype���	��

BB AB

BB BB �������������������������������� ������������������
BB AB ���������� �����!� ���"��#���������!�
AB BB � � ������ � ���!� ��$��� � � � � �!�
AB AB � � � � ���������� ������ � ����#��� � ������������



The normal mixtures

� � � 
�
7 cM 13 cM

� Two markers separated by 20 cM,
with the QTL closer to the left
marker.

� The figure at right show the dis-
tributions of the phenotype condi-
tional on the genotypes at the two
markers.

� The dashed curves correspond to
the components of the mixtures.
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Interval mapping (continued)

Let ��� � ���  � � � / �marker data �

� � � � � % '  ����� � �  �
���  � � �marker data � ��� � � � � � � � � ���  � �
	 � � � � � )  / � � � � �  � �
	 ��� � � �

where �  ��	 � � � � � density of normal distribution

Log likelihood: �  �� � � � � � � � + ������� ���  � � �marker data � ��� � � � � � �

Maximum likelihood estimates (MLEs) of �� , � � , � :

EM algorithm.



LOD scores

The LOD score is a measure of the strength of evidence for the
presence of a QTL at a particular location.

LOD  � � � � � � � � likelihood ratio comparing the hypothesis of a
QTL at position � versus that of no QTL

� � � � / 0
� ���  � �QTL at � ������ � ���� � � ���� � ����  ��� no QTL ���� ���� � �

�� � � ���� � � ���� � are the MLEs, assuming a single QTL at position � .

No QTL model: The phenotypes are independent and identically
distributed (iid) '  � � �� � .

An example LOD curve
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Interval mapping

Advantages
� Takes proper account of

missing data.
� Allows examination of

positions between markers.
� Gives improved estimates

of QTL effects.
� Provides pretty graphs.

Disadvantages
� Increased computation

time.
� Requires specialized

software.
� Difficult to generalize.
� Only considers one QTL at

a time.



LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL.

Q: How large is large?

� We consider the distribution of the LOD score under the null
hypothesis of no QTL.

Key point: We must make some adjustment for our examination of
multiple putative QTL locations.

� We seek the distribution of the maximum LOD score, genome-
wide. The 95th %ile of this distribution serves as a genome-wide
LOD threshold.

Estimating the threshold: simulations, analytical calculations, per-
mutation (randomization) tests.

Null distribution of the LOD score

� Null distribution derived by
computer simulation of backcross
with genome of typical size.

� Solid curve: distribution of LOD
score at any one point.

� Dashed curve: distribution of
maximum LOD score,
genome-wide.
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Permutation tests

mice

markers

genotype
data

phenotypes

� LOD � � �
(a set of curves)

�
� �

�����	� LOD � � �

� Permute/shuffle the phenotypes; keep the genotype data intact.
� Calculate LOD


 � � � ��� � 
 � �����	� LOD

 � � �

� We wish to compare the observed
�

to the distribution of
� 


.
���� � � 
�� � � is a genome-wide P-value.
� The 95th %ile of

� 

is a genome-wide LOD threshold.

� We can’t look at all ��� possible permutations, but a random set of 1000 is feasi-
ble and provides reasonable estimates of P-values and thresholds.

� Value: conditions on observed phenotypes, marker density, and pattern of miss-
ing data; doesn’t rely on normality assumptions or asymptotics.

Permutation distribution

maximum LOD score
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Multiple QTL methods

Why consider multiple QTLs at once?

� Reduce residual variation.
� Separate linked QTLs.
� Investigate interactions between QTLs (epistasis).

Epistasis in a backcross

Additive QTLs

Interacting QTLs
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Epistasis in an intercross

Additive QTLs

Interacting QTLs
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Abstractions / simplifications

� Complete marker data

� QTLs are at the marker loci

� QTLs act additively



The problem

n backcross mice; M markers

� ��� = genotype (1/0) of mouse � at marker �
� � = phenotype (trait value) of mouse �

� � � � )
�

� � 
- � ����� ) � � Which - � �� 0 ?

��� Model selection in regression

How is this problem different?

� Relationship among the x’s

� Find a good model vs. minimize prediction error



Model selection

� Select class of models
– Additive models

– Add’ve plus pairwise interactions

– Regression trees

� Compare models

– BIC � ��� � �������
RSS ��� �
	 ����"���

����� �
� �

– Sequential permutation tests

– Estimate of prediction error

� Search model space
– Forward selection (FS)

– Backward elimination (BE)

– FS followed by BE

– MCMC

� Assess performance
– Maximize no. QTLs found;

control false positive rate

Why BIC � ?

� For a fixed no. markers, letting � � � , BIC � is consistent.

� There exists a prior (on models + coefficients) for which
BIC � is the –log posterior.

� BIC � is essentially equivalent to use of a threshold on the
conditional LOD score

� It performs well.



Choice of �

Smaller � : include more loci; higher false positive rate

Larger � : include fewer loci; lower false positive rate

Let L = 95% genome-wide LOD threshold
(compare single-QTL models to the null model)

Choose � = 2 L / ����� �� �

With this choice of � , in the absence of QTLs, we’ll
include at least one extraneous locus, 5% of the
time.

Simulations

� Backcross with n=250
� No crossover interference
� 9 chr, each 100 cM
� Markers at 10 cM spacing;

complete genotype data
� 7 QTLs

– One pair in coupling
– One pair in repulsion
– Three unlinked QTLs

� Heritability = 50%
� 2000 simulation replicates
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Methods

� ANOVA at marker loci
� Composite interval mapping (CIM)
� Forward selection with permutation tests
� Forward selection with BIC �
� Backward elimination with BIC �
� FS followed by BE with BIC �
� MCMC with BIC �

� � A selected marker is deemed correct if it is within
10 cM of a QTL (i.e., correct or adjacent)
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Summary

� QTL mapping is a model selection problem.

� Key issue: the comparison of models.

� Large-scale simulations are important.

� More refined procedures do not necessarily give
improved results.

� BIC � with forward selection followed by backward
elimination works quite well (in the case of additive
QTLs).
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