
COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 99

Though conventional OO design suggests programs
should be built from many small objects, like Lego bricks,
they are instead built from objects that are scale-free,
like fractals, and unlike Lego bricks.

BY ALEX POTANIN, JAMES NOBLE, MARCUS FREAN,
AND ROBERT BIDDLE

SCALE-FREE
GEOMETRY

IN OO PROGRAMS

When executed, OO programs
produce a complex web of objects
that can be thought of as a graph,
with objects as nodes and refer-
ences as edges. From physicists to
biologists to computer scientists,
interest has been increasing in the
geometry of networks, particularly
those of human origin. Many such
networks show a rather striking
property: scale-free geometry. In
the case of the Web, for example,
the number of Web pages with two
incoming links is half the number

of pages with one incoming link.
Then there are half as many pages
with four links as there are with
two links, and so on, all the way
down to Google and other mas-
sively referenced sites [2]. We say
the Web has a “scale-free” network
geometry (the phrase reflects the
fact that if we double the number of
links n, the number of pages is
always halved—or some other fixed
ratio—regardless of the value of n.
Scale-free geometry is very different
from the geometry of a graph in

100 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

which links are randomly distributed among nodes.
In a random graph geometry, nearly all the nodes
have approximately the same number of links. Thus,
every random graph has as its “typical scale” the aver-
age number of links per node. By contrast, the Web
has no typical scale to its connectivity—a remarkable
and somewhat counterintuitive property closely
related to fractals.

Other scale-free graphs include the network
formed by co-authors of articles in scientific journals,
the physical connections forming the Internet, the
network of airports con-
nected by airline flights,
networks of personal
contacts, and even the
patterns of connectivity
between neurons in the
human brain [1]. Well
before being noticed by
mathematicians in real-
world graph structures,
scale-free distributions
were found in other con-
texts, including the rela-
tive frequencies of
English words, the distri-
bution of personal
wealth, the size of cities,
and the number of earth-
quakes of given strength
[11].

Here, we examine the graphs formed by OO pro-
grams written in a variety of languages, showing they
turn out to be scale-free networks as well. Apart from
its considerable intrinsic interest, this unexpected
facet of the geometry of real programs may help us
optimize language runtime systems, improve the
design of future OO languages, and reexamine mod-
ern approaches to software design.

Power Laws
The way to detect a scale-free phenomenon is to see
if it shows up statistically in the form of a power law.
In power law distributions, the number of occur-
rences Nk of some event of size k is proportional to
k raised to some power. One drawback is that very
rare events are by their nature noisy; there may be
one node with, say, 1,000 connections and another
with 1,005, but none with 1,002. For this reason,
statisticians often adopt an alternative approach in
which they first rank the event sizes by how often
they occur, then look for a power law in the rela-
tionship between the number of occurrences Nk and
the rank Rk of the form:

Nk � Rk
s

The easiest way to see a power law is to take loga-
rithms of both sides or plot N vs. R on logarithmic
scales; if the distribution follows a power law, we
would expect to see a straight line with slope s.

Consider how often a particular word appears in
any English novel. Common words like the, of, and
or can be found many orders more times than most
other words, while at the other extreme are a huge
number of words that are used only rarely. In 1925,

George Kingsley Zipf, a
Harvard linguistics pro-
fessor, conducted empiri-
cal studies [12] of word
occurrences, observing
that if we rank the words
by the number of times
they are found in the text
of a particular novel, their
rank will be proportional
to their number of occur-
rences. Hence, if you
draw a logarithmic plot
of the number of times
you find each word
against the rank of such a
word in your favorite
novel, you will see a
straight line.

Object Graphs
An object graph—the
object instances created
by a program and the
links between them—is
the skeleton of the execu-
tion of an OO program.

Because each node in the graph represents an object,
the graph grows and changes as the program runs. It
contains just a few objects when the program is
launched, gains more objects as they are created, and
loses objects when they are no longer required. The
structure of the graph (the links between objects)
changes, too, as every assignment statement to an
object’s field may create, modify, or remove an edge
in the graph.

Figure 1 outlines the object graph of a simple part
of a program—in this case a doubly linked list of
Student objects. The list itself is represented by a
LinkedList object with two references to Link
objects representing the head and tail of the list. Each
Link object has two references to other Link
objects—the previous and the next links in the list,

Students:
LinkedList

Middle: Link Tail: Link

Nelly:
Student

Christina:
Student

Rilla:
Student

Head: Link

Figure 1. A simple object graph
of a linked list. Each link object
has two references to other link
objects, except for the head and
tail of the list. The student
objects stored in the list are
referred to by the link objects
that store them.

plus a third reference to one of the Student objects
in the list.

Object graphs are the most fundamental structure
in the OO domain. The
primary aim of OO
analysis is to model the
real world in terms of
communicating objects
(that is, in terms of an
object graph), while OO
design produces a
description of an object
graph that will eventually
be embodied in a pro-
gram. OO artifacts and
methods (such as classes,
associations, interfaces,
inheritance, packages,
patterns, UML, and
CRC Cards) are ultimately techniques for defining
object graphs by describing the contents of the objects
and the structure of the links between them.

Given that object graphs are so basic to OO pro-
grams, it is surprising that so little attention is paid to
their global structure. Some temporal properties of
object graphs (such as the time performance of
garbage collection algorithms and the distributions of
object life spans) have been analyzed to support
garbage collection [7]. Visualization of object graphs
is used to support debugging [10]. Designers of pro-
gramming languages work to control object graph
structures using type systems [8], and compiler devel-
opers analyze parts of the graph to find ways to
improve program performance [6].

Regarding scale-free structure in programs, the
class diagrams of the Java Development Kit 1.2 (not
the actual instantiation of objects of these classes at
runtime) are scale-free [9]. We can also observe a sim-
ilar structure in the distribution of pointers to atoms
in Lisp [3].

Power Laws in Object Graphs
To analyze the geometry of object graphs in Java pro-
grams we used the Heap Profiler Library and the

Java Virtual Machine Profiler Interface to collect a
corpus of 60 object graphs from 35 programs
encoded as binary snapshots of the Java heap. These

heap snapshots record all
the objects in the pro-
gram, along with the
geometry of the refer-
ences between them, at
one instant of the pro-
gram’s execution—
exactly the kind of
information shown in
Figure 1. To analyze this
corpus, we extended the
Java Heap Analysis Tool
[5], which parses these
snapshots, to determine
the properties of the pro-
gram’s object graphs.

For each graph, we first
counted the number of
objects with k references,
for k of 1 and up. If the
object graph had been
scale-free we should have
seen a straight line when
the number of objects was
plotted against k on log
scales or when plotted

against their rank ordering. Without exception, all the
object graphs in our corpus demonstrated this phe-
nomenon, leading to the conclusion that object
graphs are scale free. The same general effect applies
to both incoming references (reflecting an object’s
popularity) and outgoing references (reflecting an
object’s size); this effect can be detected in multiple
snapshots taken during a single run of some pro-
grams. It appears that the world of object graphs is
indeed scale free, just like the Web, the Internet, and
many other networks we routinely use in our everyday
lives.

Figure 2 includes five large Java snapshots and three
additional object graphs from programs in other OO
languages (see the table). We chose them for their size,

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 101

Program Objects
1 in-refs

Java ArgoUML

Java BlueJ

Java Forte

Java Jinsight

Java Satin

C++ GCC

Self

Smalltalk

203,875

171,666

358,279

76,312

80,415

71,990

120,748

375,529

Description

A popular CASE tool

Visual OO programming and
learning environment

A Java integrated development
environment from Sun Microsystems

A memory analysis tool from IBM

A pen-based user interface research
tool from Stanford University

GCC is a C++ compiler used by
developers for Unix platforms

Self is a prototype-based OO
language and environment

Smalltalk is one of the original OO
languages, self-contained in an
environment developed using Smalltalk

Objects
 1 out-refs

153,106

123,701

267,755

118,272

53,328

15,064

1,259,668

188,031

> >

The object graphs from
Figure 2, listing the number
of objects with at least one
incoming or outgoing reference.
They were obtained when
experienced users were using
the programs. Each C++ and
Java program was run
separately, and all objects
were obtained in the interactive
environments for Self and
Smalltalk.

It appears that the world of object graphs is indeed scale
free, just like the Web, the Internet, and many other

networks we routinely use in our everyday lives.

popularity, and diversity. The plots show all objects
inside a program’s memory at the moment the snap-
shot was taken. Although pointers from local vari-
ables and other references from the stack are included
in the figure, excluding them improves the scale-free
structure.

Perhaps the most intriguing aspect of the ranked
graphs in the figure is that all the plots have similar
slopes. This similarity is surprising because the plots
all come from runtime snapshots of separate pro-
grams written for entirely different purposes in differ-
ent languages. For incoming references the slope of
the line is close to -2.5 while for outgoing references
the slope is close to -3.

Figure 3 shows the number of objects with a given
combination of incoming and outgoing references for
the Forte data (the largest Java heap snapshot in our
study). Notably, no objects have both high in-degree
and high out-degree; on the contrary, the objects with
many incoming references have few outgoing refer-
ences, and vice versa. This effect may be a conse-
quence of widely shared data structures with many
outgoing references (such as arrays) having a proxy
object that hides the actual reference to the array from
the other objects that use it.

No Typical Size for
Objects
If OO programs were con-
structed from completely inde-
pendent components, like Lego
bricks, then we would expect the
distribution of the size and pop-
ularity of objects to stay the
same, no matter how large the
program—just as fixed-size Lego
bricks can be assembled into
structures of any size. The
rhetoric of OO design is that
large programs can be con-
structed the same way as small
programs—by encapsulating
complexity within objects at one
level of abstraction and then
composing these objects together
at the next. Thus all objects
should appear to be the same size
and complexity; larger programs
merely use more objects and more
levels of abstraction. We have
found the exact opposite in our
corpus of OO snapshots. The
power law indicates the reverse of
the Lego hypothesis, that there is
no evidence of a typical size (the
equivalent of a standard Lego
brick) to objects.

The relative steepness of the
slope we obtained reflects the fact
that there is an exceedingly large
number of objects with few refer-

ences among the programs. We might take this to
imply that programmers prefer simple objects over
complex objects, avoiding complexity just as software
engineering guidelines would suggest. The power law
distribution indicates that this adage is not followed;
instead, large programs contain objects that are much
more connected than one might expect. For example,
for the unranked power law, the Java programs in our

102 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

Incoming References

Number of Incoming References Number of Outgoing References

Rank (R) Rank (R)

Outgoing References

106

105

104

103

102

102 104 1061 102 104 1061

10 100 10001 10 100 10001

10

Java ArgoUML
Java Satin

Java BlueJ
Self

Java Forte
Smalltalk

Java Jinsight
C++GCC

Java ArgoUML
Java Satin

Java BlueJ
Self

Java Forte
Smalltalk

Java Jinsight
C++GCC

1

106
107

105

104

103

102

10
1

106

107

105

104

103

102

10

1

106

105

104

103

102

10

1

Figure 2. Power laws
in object graphs.
The upper two figures
plot the number of
objects with k
references vs. the
number of references
k for incoming and
outgoing references,
respectively. The lower
two figures plot the
number of occurrences
of each number of
incoming (and
outgoing) references
vs. their rank, from
highest to lowest
number of references.
All exhibit clear
linearity on log-log
scales, the characteristic
feature of scale-free
networks.

The power law indicates the reverse of the Lego
hypothesis: There is no evidence of a typical size

(the equivalent of a standard Lego brick) to objects.

study all had a slope of approxi-
mately -2; it follows that for a
given number of objects of size k
there are about one quarter that
number of size 2k. Thus a pro-
gram generating 10,000 objects
of size one will also involve about
2,500 objects of size two, 625 of
size four, 156 of size eight, and so
on, leading to an expectation of
one object of size roughly 100. In

programs with twice as many objects altogether, we
expect the number of very popular objects and the size
of the largest object to increase by a factor of �2.

One especially useful aspect of scale-free networks
is their robustness to damage. Because the vast major-
ity of nodes are poorly connected to the rest of the
graph, deleting them has a negligible effect on the
connectivity of the remaining ones [2]. On the other
hand, a small number of hub objects is highly con-
nected, and deleting them is far more destructive. An
implication of having a small number of hubs is that
by concentrating our debugging methodologies on
such popular well-connected objects, rather than on
the unpopular ones, we may be able to improve the
reliability of code—first by eliminating bugs from the
hubs, then by dealing with other objects.

Aside from their scale-free character, power laws are
also notable for having much longer tails than, say,
exponential distributions. Larger programs thus con-
tain considerably larger and more popular objects
than simpler models would predict. Having many
large and many popular objects may have conse-
quences for both the design and implementation of
OO programming languages. For example, it is well
known that garbage collectors can improve their per-

formance by assuming that most objects have only
one or two outgoing references. The scale-free nature
of object graphs explains why making this assump-
tion is worthwhile.

Conclusion
We have found that distributions of incoming and
outgoing references in object graphs follow a power
law. This unexpected result raises theoretical ques-
tions about OO program design and has important
implications for debugging costs, program under-
standing, and garbage collection. More generally, it
challenges the perceived wisdom of OO design;
unlike Lego bricks, objects within large programs
have no characteristic scale.

References
1. Barabasi, A.-L. Linked: The New Science of Networks. Perseus Press,

New York, 2002.
2. Barabasi, A.-L., Albert, R., Jeong, H., and Bianconi, G. Powerlaw dis-

tribution of the World Wide Web. Science 287 (Mar. 24, 2000), 2115.
3. Clark, D. and Green, C. An empirical study of list structures in Lisp.

Commun. ACM 20, 2 (Feb. 1977), 78–87.
4. Erdos, P. and Renyi, A. On the strength of connectedness of random

graphs. Acta Mathematica Acadamiae Scientiarum Hungaricae 12
(1961), 261–267.

5. Foote, B. Heap Analysis Tool Project Web Page;
https://hat.dev.java.net/.

6. Ghiya, R. and Hendren, L. Is it a tree, a DAG, or a cyclic graph? A
shape analysis for heap-directed pointers in C. In Proceedings of the
23rd ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming Languages (St. Petersburg Beach, FL, Jan. 21–24). ACM Press,
New York, 1996, 1–15.

7. Jones, R. and Lins, R. Garbage Collection. John Wiley & Sons, Inc.,
New York, 1996.

8. Noble, J., Vitek, J., and Potter, J. Flexible alias protection. In Proceed-
ings of the 12th European Conference on Object-Oriented Programming
(Brussels, July). Springer-Verlag, Berlin, 1998, 158–211.

9. Valverde, S., Ferrer-Cancho, R., and Sole, R. Scale-free networks from
optimal design. Europhysics Letters 60, 4 (Nov. 2002), 512–517.

10. Zimmermann, T. and Zeller, A. Visualizing memory graphs. In Revised
Lectures on Software Visualization, International Seminar, S. Diehl, Ed.
Springer-Verlag, Berlin, May 2001, 191–204.

11. Zipf, G. Human Behavior and the Principle of Least Effort: An Introduction
to Human Ecology. Hafner, New York, 1965 (facsimile of 1949 edition).

12. Zipf, G. Psycho-Biology of Languages. Houghton-Mifflin, Boston, 1935.

Alex Potanin (alex@mcs.vuw.ac.nz) is a Ph.D. student in the
School of Mathematics, Statistics, and Computer Science at Victoria
University of Wellington, New Zealand.
James Noble (kjx@mcs.vuw.ac.nz) is a professor in the School of
Mathematics, Statistics, and Computer Science at Victoria University
of Wellington, New Zealand.
Marcus Frean (marcus@mcs.vuw.ac.nz) is a senior lecturer in the
School of Mathematics, Statistics, and Computer Science at Victoria
University of Wellington, New Zealand.
Robert Biddle (robert_biddle@carleton.ca) is a professor in the
Human-Oriented Technology Laboratory at Carleton University,
Ottawa, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0001-0782/05/0500 $5.00

c

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 103

500

400

300

200

Outgoing

Incoming

100

1000 200

5000

0
0 5000

300 400 500
0

Figure 3. Distribution
of incoming vs.
outgoing references
in the Forte snapshot.
Lighter squares
correspond to a greater
number of objects
having that combination
of references. The
objects contain up to
6,000 outgoing and
10,000 incoming
references.

