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Abstract

Algebraic specifications give succinct specifications for abstract
datatypes, consisting of equations in terms of the values of the
datatypes and the operations performed on them.

One of the prevailing motives in the object-oriented paradigm
is that an object’s behaviour is characterized by the way the object
responds to messages sent to it. Thus, one would expect that the
natural way to specify object-oriented programs would be through
a form of algebraic specification.

Nevertheless, the prevailing approach to specifications of object-
oriented programs is through a kind of Hoare logic: objects’ be-
haviour is defined via an abstract implementation. Classes define
(abstract) variables to hold their state; method definitions act on
that state; and pre- and post- conditions and class invariants de-
scribe permissible states.

In this paper we argue that algebraic specifications for object-
oriented programs would be desirable, we discuss the problems
one faces in applying algebraic specifications to object-oriented
programming, and suggest some potential solutions.

1. Introduction

Algebraic specifications were suggested in the 70s and 80s to
provide precise and succinct specification for algebraic data types
[11,29, 23]. Algebraic data types describe the set of values that may
be created through the application of the operations mentioned in
the data type’s signature. The specification then consists of a set of
equations which mentions the operations from that signature.

For example, the algebraic data type stack could be given as in
the first four lines of figure 1, with the obvious meaning for the
operations empty, push, pop and top.

In an object-oriented language, objects are described through
class or interfaces, which list the constructors and the public meth-
ods available on such objects. The interface of a stack would be
pretty similar to the algebraic datatypes; such a class is given in fig-
ure 1 where the constructor, Stack(), would return an empty stack,
and the public methods push,pop and top correspond to the opera-
tions push,pop and top from the algebraic specification. Of course,
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sig Stack = empty : Stack;
push : int x Stack — > Stack;
pop : Stack — > Stack;
top : Stack — > int

interface Stack { public void push(int);
public void pop();
publicint top(); }

Figure 1. Stack as an algebraic data type and as an interface in an
oo language

the class Stack has some internal state, represented by private in-
stance variables which are not part of its interface.

Algebraic specifications consist of sequences of equations,
which involve expressions of the data type being specified; thus
they usually only involve operations from the particular abstract
data type. For example, the algebraic specification of a stack would
consist of the two equations at the top of figure 2. This specification
is, in our view, the most elegant and succinct specification possible.
Most importantly, it is in terms of the stack itself, and does not refer
to any entities external to the stack.

In the philosophy of the object-oriented paradigm, encapsula-
tion is paramount [18, 28, 24], and objects are meant to be under-
stood in terms of the messages they exchange, and not in terms of
their state (the values held in their instance variables). Dan Ingalls,
for example, gives a polymorphism principle as “A program should
specify only the behavior of objects, not their representation” [18];
Ungar and Smith likewise name this the behaviorist approach [28].
Thus, one would expect an OO specification of a stack to follow the
flavour of the algebraic specification. Nevertheless, the style cur-
rently pursued in specifications of object-oriented programs does
not live up to that philosophy. Instead, it makes use of model fields,
which are an abstract representation of the object’s state, that is,
a high level implementation of the object’s underlying behavioural
specification [5, 19].

Vi :int,s: Stack:
pop(push(i,s)) = s;
top(push(i,s)) = i

{0} s=newStack() {sis=]}
{sis=ss} s.push(i) {sis=iuss}
{s.is:i ss ) ' s.pop() {.s.is':ss}
{sis=i:uss} j:=s.top() {i=i}

Figure 2. Specification of a stack in the algebraic style and the
model based style
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For example, in a model-based system [3, 4, 26, 30] the spec-
ification of a stack would be in terms of a model field is, which
would be a list of integers, with the concatenation operation ::,
and the empty sequence indicated by []. Then, the specification
would be similar to that given in figure 2. The Hoare triple, e.g.,
{sis=1i:ss} s.pop() {s.is = ss} expresses that in a state
where the model field is is a sequence that consists of i followed by
ss, then, after execution of s.pop the model field would contain the
sequence is.

In our opinion, this specification is indirect, in that it specifies
the stack in terms of a further entity, the list, and in that it uses
the model field, which is an abstract representation of the stack’s
state. Relationships between different operations such as push and
pop are not explicit: rather they are mediated through this abstract
implementation. As a result, the model-based specification does not
express the intuition lying behind the stacks. What we would like
to express is the following four properties, where P3 is probably
the most advanced, and difficult to express.

P1 Pushing an element into the stack, then applying some other
operations which do not push nor pop onto the stack, and
then applying top() on that stack will give me that particular
element.

P2 Pushing an element onto the stack, then applying some other
operations which do not push nor pop onto the stack, and then
applying pop() on that stack will give me the original stack.

P3 Reading the top() of a stack does not have any side-effect.

P4 Pushing an element onto the stack, then applying some other
operations which do not affect, and are not affected by the
contents of the stack, and then applying top() on that stack has
the same effect as just doing these operations.

Some attempts have been made to use algebraic specifications
for OO languages, [15, 16, 14, 7] however these have concentrated
on building tools, particularly for testing [27, 8, 17, 31]. To our
knowledge, no work has yet tackled the fundamental questions of
how best algebraic specifications themselves should be adapted for
object-oriented systems; how object-oriented systems should be
defined using such systems; and — most crucially — what such
specifications would actually mean.

It is not without reason that OO specifications do not follow the
algebraic approach. Namely, in adapting algebraic specifications to
the imperative paradigm one has to tackle the following issues:

Equality In the algebraic datatypes setting we make use of pow-
erful equality operators, e.g., we use equality of stacks. This is
possible because the meaning of an expression is the expression
itself, and there is no global state that it depends on. However,
in the imperative OO setting, the meaning of an expression is
“context dependent”, it depends on values stored in the stack
and heap, which are not directly reflected in the expression it-
self.

Thus, it is unclear what is the meaning of equality in the im-
perative oo setting. For example, for two stacks s and s, what
does s = s’ mean? Does it mean that s and s’ point to the same
stack, or that the two stacks contain the the same elements, or
that they contain equal elements?

Intermediate Execution In the algebraic datatypes setting an ex-
pression describes an execution in its entirety. In the impera-
tive OO setting, however, operations on an object do not imme-
diately follow one another; we need to have some guarantees
about an object’s behaviour when e.g., a push is followed by a
sequence of messages on other objects, and then followed by a
pop on the first object.

With this comes the need to characterize how operations inter-
fere. For example, if we modify an object pushed onto the stack,
does that change affect the stack? Alternatively, does pushing
an object onto a stack change the object (if it can be seen from
outside)?

Side-effects In the algebraic data types setting, operations just re-
turn values. But in the imperative, object oriented setting, meth-
ods can return values, and have side-effects. Both the return
value and the side-effect need to be specified.

Point of view When we talk of equality, there is also the issue from
whose point of view we are talking. For example, when we talk
of “does not affect”, there is the issue of how do we know it does
not affect, and “how far does it not affect”. In an OO program
there are, implicitly, several viewpoints, and we shall be able
to write better specifications if we can make these viewpoints
explicit.

We have tackled these issues and have tried several approaches
on cases studies, including, sets, stacks, dictionaries, and a registry
of students with their average marks. None of the approaches, so
far is completely satisfactory.

Nevertheless, we believe that the work is worth pursuing. We
have identified major problems, and have identified some ap-
proaches to solving these. We believe that algebraic specifications
are worthwhile, and that further research is necessary, and would
benefit from our preliminary findings.

In the remainder of the paper we present our approach to the
application of the algebraic specifications philosophy to the object-
oriented paradigm: The equational approach, in section 2 is the
most straightforward object-oriented extension of classical algebric
specifications [11]. The possible worlds approach, in section 3
refies the notion of program state in terms of “worlds”, and then
allows specifications to describe hypothetical worlds and objects
that are not be reached or part of the program being specified.
Finally in section 4 we conclude and describe further work.

2. The equational approach

In this approach, we allow the specifier to define very powerful
comparison operators, based on the equality of basic values (i.e.,
integers, booleans, addresses), and universal quantification over
messages. We also allow these messages to happen in different
states of the execution.

The specification is written in terms of rules, where the premises
of the rule describe some execution, and the conclusion contains
equations in terms of these powerful equality operations.

In the following, we use exp as a metavariable for a sequence of
expressions; we do not allow callbacks, i.e., we require methods in
the interface of a class do not call other methods from that interface.
the meaning of ”does not contain” is that the execution will not call
push not pop on any alias of s. The operation = is the basic equality
that compares basic values — in this case integers. Based on this
basic equality we sill define more complex equivalence operations
that compare two structures in (potentially different) runtime states.

2.1 Expressing P1
(STACKEQ1)

exp does not cause s.push(_) nor s.pop()
s.push(i); exp; j = s.top()
i=]
The rule STACKEQ1 is satisfied, if for all possible runtime states
X, the execution of the sequence s.push(i); exp; j = s.top() in x
returns a value equal to that of j, provided that exp did not cause
s.push() nor s.pop() to be executed.
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Vx, Vexp :
STACKEQ] satisfied, iff s.push(i); exp;s.top(), x ~ exp;
{@} N {s.push(_),s.pop() } = 0
Vx, Vexp :
STACKEQ2 satisfied, iff
{@} N {s.push(.), s.pop() } = 0

Vx, Vexp :

/ — 1) .
STACKEQ3 satisfied, iff d &P, = S:Push(D); exp; s.pop()
exp’,x ~ exp; s.pop(), x1 ~

s.push(i); exp; s.pop(),x ~ exp; s.pop(),x1 ~>

s.pop(), x2 ~ v, x’ =

a !
stop(), x1 ~ s.top(), x2 ~ v, x } = x()=v

(a3

s.pop(), x2 ~ v, X’ } = S, X Sstack S, X’

EXP, X =eff exp', X

{a} N {s.push(.),s.pop(),s.top() } =0

Figure 3. The precise meaning of STACKEQ1, and STACKEQ2

In more detail, execution of some expression exp, does not
cause « iff it does not contain a sub-execution containing c. We
assume that « is either a field access, or method call, or field
assignment, i.e., that o = id.f, or o = id.f = id’, or &« = id.m(id")
for identifiers (or addresses) id. We also assume runtime states X,
and a trace semantics', whereby exp,x ~° v,x’ means that in
the runtime state y the expression exp executes and produces value
v and final states x’, and in the process, it reads/writes fields and
calls methods according to the sequence a. We also write exp, x ~»
v, %, when we are not interested in the trace. Furthermore, we
indicate erroneous executions by exp, x ~+ error, X', and we use
the convention that the metavariable ranges over values, and is
never error.

Then, assuming a deterministic operational semantics we say

exp, X ~ V, X/ does not cause @
. iff
exp, X ~% v, x’, and {@} N {a’} = 0.

For identifiers id, we define their lookup in the runtime state as
x(id)

We now can express the precise meaning of STACKEQI in
figure 3.

2.2 Expressing P2

To express P2, we need a way to compare two stack pointers at
different points of execution. We will say that

(STACKEQ2)

exp does not cause s.push(_) nor s.pop()
s.push(i); exp;s.pop()
Sold =stack Snew

In the above, as standard in Hoare logics, we use the subscripts
old and new to indicate the stack as in the old state and in the new
state.

The next question is the precise meaning of =stack, Which com-
pares two stacks, possibly at different times of execution. We want
to give an extensional definition of =gk, Where we compare the
behaviours of the stacks, rather than their contexts.

In our first attempt, we define in figure 4 the relation =L, and
require that a) any valid manipulations of s are also valid for s/,
and b) after any number of manipulations of the two stacks in their
respective states, the application of top() will return equal values.
Note that for “equal values” we only require the comparison for
basic values.

! For ease of notation, we require the operational semantics to be in terms
of small steps, but also to be transitive.

We implicity close the relationship =L, with respect to sym-
metry, so that it is, as expected, an equivalence relation.

Obviously, determining the relation =2, is not necessarily
straightforward. However, the primary aim of our work is to help
write succinct and natural specifications, rather than provide tools
for testing [15].

Another possible expression of equivalence of stacks, also given
in figure 4, is to define =2, through the use of a smallest fixpoint
construction, whereby we require that the application of top() gives
equal results, and the application of push(...) or pop(..) again yield
equivalent stacks in the sense of =2_,.

We believe that both =L, and =2, neatly capture the ex-
tensional equality of stacks, but while they express programmer’s
intuitions, their definition may be rather demanding. Furthermore,
one might argue that these equality operations introduce a model
through the back door. This is because both these definitions are
effectively building up a model of the stack by canonicalising the
stack via the pop and top operations. Each stack is reduced to a se-
quence starting with the top element, then those elements are com-
pared.

We can easily refactor the definition into =3, also given in
figure 4, to make this model-building clear. We canonicalise the
stacks into sequences through the contents operation, and then
compare the two sequences. This version of =3, has the advan-
tage that it is easy to implement, but has the disadvantage that it is
not extensional.

We can chose any of the above definitions to be the meaning
of =stack, and use it in figure 3 to give a precise meaning to
STACKEQ2.

2.3 Expressing P3 and P4

In order to express the guarantee from P4, we will write

(STACKEQ3)

exp does not cause s.push(_) nor s.pop() nor s.top()
s.push(-); exp; s.pop() =.f exp

The meaning of = is, that execution of the two expressions
has the same “effect” . This is defined in figure 4, where we use the
term z € dom()x) to indicate the entities that can be seen in x>, and

2 In a full formalization, these probably would be all entities that are named
in the current scope, or which are reachable from the current scope through
the public interfaces. Thus, we want to consider all students in the registry
of a course (public interface), but we do not want to consider the nodes that
implement the registry (private implementation).
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Vexp, with's, s’ ¢ free(exp) :

expls/x], x ~ v, = exp[s'/x], X ~ V/,

—1 / !
Sy X =stack S X iff

exp[s/x],xf\» V1, X1 —
5.£0p(), X1 ~ Vs

exp[s’ /x|, X'~ va2, x2
s.top(), x2 ~ V', -
v=Vv

s.top(), x ~ v, x” = stop(),x ~ Vv, X", v=V
S, X =atack 85 X iff s.pop(), X ~ v, X! = s'pop(), X ~ V', X", s, X" =haek 8 X"
S'pUSh(Z)’ X i v’ X// :> Sl'pUSh(z)7 X/ ~* Vl7 XII/7 S7 Xll Estack s/’ X///

S, X =oack S, X iff contents, (s) =seq contents,(s’)
where

contents, (s) = {

v :: contents,/(s'), ifs.top(),x ~ v,x’, ands.pop(),x’ ~ s, x’;
€, if s.top(), x ~ error, x'.

and =sq is sequence equality.

exp, X~ vi,- = Tva: exp’, X~ va,_
exp, X =eff, xexp iff
exp, X ~~ V1, X1 dom(x1) = dom(xz2)
exp’, X ~ V2, X2 vz €dom(x1): T(z,x1) =T(z,x2), and z,X1 =7(:,x1) Z, X2

Figure 4. The meaning(s) of stack equivalence, and the meaning of equivalence of expressions

the notation 7 (z, x) to describe the type of z in the runtime state

X3

We say that exp, x and exp’,x’ are equivalent, if a) all valid
executions of exp, x are valid executions of exp’, X’ *, and b) if the
outcomes of the execution of exp, x and of exp’, x’ are equivalent
with respect to their types. We expect each type type to have
an associated equivalence relation =pe. As for the definition of
=.tack, We implicitly require = to be a symmetric relationship.

We now can express the precise meaning of STACKEQ3 in
figure 3. We can express the guarantee from P3, in a similar way to
P4, but omit it for here, for the sake of brevity.

2.4 Discussion

We believe that the above specifications neatly capture the exten-
sional meaning of stack, even though the definitions of the equality
operations may seem too complex. As we said earlier, these equal-
ities might become simpler, if expressed in a more model-based
style, e.g., the relation =3, reflects a model. The temptation to
work this way may explain some of the popularity of model based
specifications, and the relative neglect of the algebraic approach.

An issue which needs to be tackled in any realistic setting is
that in some sense, specifications have several different aspects.
What if the pop and push operations maintained a counter of the
number of applications of these operations, and in some aspects of
the program the counters were relevant, and in others they were
not? Which specifications should reflect that property and which
should not?

Such aspects can neatly be tackled in the equational approach.
Namely, we can define several different =-relationships for stacks,

3In a full formalization, maybe the use of a static environment, and the use
of static types for z would be better.
41In the definition given in figure 4, we know that the first execution is valid

because it returns vi 7 error, and because vi is a value, the execution
cannot continue. Similar arguments apply to the second execution.

some which make requirements on the values of the counters and
some which do not.

3. The possible worlds approach

The difficulties with the equational approach have led us to investi-
gate another approach, which we call possible worlds. As its name
suggests, this approach makes more use of the worlds  in the spec-
ification. We write rules which describe which worlds can possible
be reached by a series of “moves” from the current worlds. Some of
these worlds will be “possible worlds” because they will be part of
the trace between the initial and final states: we hypothesize about
the results of potential actions that the program does not actually
take. Then, rather than making statements using strong equality
operators, we make statements about the base-level operations in
particular words. Instead of the oracle provide by the equality op-
erations our rules will constrain only the observable behaviours of
the objects in our specification. In this approach, the only equal-
ity operator we permit ourselves is the unadorned = that compares
basic values.

The following rule, STACKTOPEQUALS, is a simple example to
illustrate possible worlds and base-level equality.

(STACKTOPEQUALS)

s'.equals(s), x"* ~ true, x’

s’.top(), X" ~ v, X"

s.top(), X"~ v, X
This rule states that if two stacks are equal in the old world x”“, then
the result of executing top on either of them will be the same. The
“possible worlds” here are the worlds x’ and x”’ which the system
would reach were it to carry out the hyppothetical top and equals
operations involving s’. We read rules such as STACKEQUALS1
as: “If, in x*“, you could have executed s".equals(s) and the result
would have been true, and if in ¥, you could have executed

old
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s’.top() and the result would have been v, then you can actually
execute s.top() from x*“, reaching x""" and returning the result v’

new

3.1 Base-level Equality

The rule to define P1 in possible worlds is the same as in the
equational approach, because STACKEQ1 does not depend on a
strong equality operator.

P2 is a different case because it relies crucially on such an oper-
ator to compare the old and new stacks across the top operation. To
addess this, we can introduce a new base-level operation, equal: of
course, most object-oriented programming languages require ob-
jects to provide an equals operation, so this is not an imposition in
practice. The intuition behind the equals operation is that it should
maintain the following property:

P5 Two stacks are equal if both are empty; once the same object
has been pushed onto two equal stacks; or after two equal stacks
have been popped.

which we can then provide algebraic rules to express. Asserting
empty stacks are equal requires no possible worlds:

(STACKEQUALSEMPTY)

exp, exp’ do not cause s.push(_) ors.pop()
exp, exp’ do not cause s’.push(_) ors’.pop()
s = newStack(); exp; s’ = newStack(); exp’s.equals(s’), x
~  true, x""

old

Rules about commuting equals through push

(STACKEQUALSPUSH)

s.equals(s’), x™ ~ true, X’
exp, exp’ do not cause s.push(_) or s.pop()
exp, exp’ do not cause s’.push(_) or s’.pop()

old new

s.push(i); exp; s’.push(i); exp’; s.equals(s’), x™ ~+ true, x

and pop need a single possible world, to capture the notion that
stacks are equal in the old world.

(STACKEQUALSPOP)
s.equals(s’), x™ ~» true, x’
exp, exp’ does not cause s.push(_) or s.pop()
exp, exp’ does not cause s’.push(_) or s".pop()

old new

s.pop(); exp; s’.pop(); exp’; s.equals(s’), x™ ~» true, x

Note that because the equational approach from section 2, relies
on equational oracles, it does not need a base-level equals opera-
tion®.

‘We now revisit the properties of the stack to see how they can be
expressed without these metatheoretic equivalences in the possible
worlds approach.

3.2 Expressing P2

To continue in this style requires us to not only use possible worlds
but also to hypothesize about possible or potential objects in such

3 Such an equation can be provided, and its specification is trivial:
(STACKEQS5)

S =stack s’
s.equals(s’) = true
thus demonstrating how the oracular =4,k operation is really doing all the
work in the equational approach!

worlds: this allows us to state rules to capture coniditions (such
as P2, P3, and P4) which range across multiple different worlds
— something we can also do directly in equational approach but
not in a strict behavioural approach. We write s : Stack € x
in specifications to hypothesize about the existence of an object
o in world x.5 Then, we use trace exclusions to project these
hypothetical objects forward into possible worlds.

Thus, the STACKEQUALS?2 rule addresses P2 by hypothesizing
a second, ghost stack s’ in ¥ and requiring a) that it is equal to
our stack s; and b) that it is not changed between x°“ and x"*", then
asserting that the two stacks are still equal after s.top().

(STACKEQUALS2)

s’ : Stack € x*
s.equals(s’), x™ ~ true, X’
s.equals(s’), X" ~ true, x"’
X" ~» x"does not cause s’.push(_) or s".pop()
exp does not cause s.push(_) or s.pop()
s.push(i); exp;s.pop(), X" ~+ void, ¥

In the above, the assertion “x” ~+ X" does not cause

s’.push(_) or s’.pop()” means that there exists a transition that
takes the system from world x to world x’, and does not cause
s’.push(_), ors’.pop(). In general, we define X" ~» x"*"does not cause &
iff Jexp,v : exp, X ~=r v, X", and { &’ } N {a} = 0.

new

3.3 Expressing P3

We can express P3 in a similar manner:

(STACKEQUALS3)

s’ : Stack € x*“
s.equals(s’), x” ~» true, \’
s.equals(s’), X" ~» true, x"
X" ~* x"does not cause s’.push(_) or s".pop()

old new

s.top(), X"~ v, X

again stating if two stacks are equal, calling top should not change
that.

3.4 Expressing P4

The final condition is again a framing condition which does not
rely on projection, and only peripherally on possible worlds. Rather
than relying on another oracle (exp’ =t exp) we can say talk about
the transitions between (real) worlds by naming worlds explicitly.

(STACKEQUALS4)

s.push(i); exp; s.pop(), X" ~ v, X"
exp does not cause s.lesth(,) or s.pop() or s.top()

exp, X"~ V', x

new

This rule says is that if you begin in x*“, push something onto
s, do some non-interfering operations then pop s and arrive at
X", you could equally have got from x”“ to x" without any
stack operations — effectively allowing us to eliminate the stack
operations.

We could use this technique to supplement the projection-based

rule for P3 with a similar elimination rule for top:

new

6 The assertion s : Stack €  differs from the assertion s € dom () from
section 2, in that the former talks about al// objects in the runtime state X,
while the latter only talks of the public objects in x. In terms of our earlier
examples, the former also contains the node objects of a registry, while the
latter does not.
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(STACKEQUALS3”)

exp; S.top()7 Xulrl ~ v, erw

old new

exp, X" ~ V', x

4. Discussion & Conclusion

The possible worlds approach, and its treatment of an object-
oriented program as transitions between worlds that both change
state and calculate values, allows objects to be given specifications
that do not rely either on abstract models or complex equivalences.
Unfortunately, that is only the start of the story, not the end! There
are many important issues our basic treatment cannot resolve.

4.1 Inheritance

Object-oriented programming languages generally provide an in-
heritance mechanism: OO specification languages follow this with
support for “specification inheritance” [9, 6, 3, 4, 22]. Rules for
specification inheritance are often complex, generally seeming to
duplicate rules of inheritance in programming languages: maintain-
ing the integrity of pre- and post- conditions and invariants over the
state in their model fields. This complexity strengthens the argu-
ment that such models are abstract implementations, rather than
specifications [19]. In the algebraic approach, we do not expect
such inheritance anomalies: specifications defined solely in terms
of the external behaviour of objects can be inherited and combined
straighforwardly.

4.2 Reference vs Value Semantics

A more subtle issue is the distinction between reference and value
semantics, particularly for equality [2], but also for other opera-
tions. In writing either equational definitions, or the specifications
of base-level equality operations, programmers need to decide on
(and distinguish between) reference, value, or more exotic modes
for communication between objects.

So far, our specifications have been mostly in terms of refer-
ence semantics. Rule STACKEQ1 for example compares the object
pushed on and popped of the stack simply with reference equality
=. We can, however, use hypothetical objects and possible worlds
to write a specification that demands value semantics: effectively
that objects are copied in and out of the stack — copying up to a
particular equals operator.

(STACKVALUEL)

o' : Object € x™

o’.equals(o), x*“ ~» true, x’
o'.equals(o”), X'~ true, X/I
Vexpl . e)(p/7 X/)Izl ,\,}* V, Xnew

exp’ does not involve o
exp does not cause s.push(_) nor s.pop()

s.push(0); exp;s.pop(), X"~ 0", x

Here the hypothetical object o acts as a proxy for the state of o
in x”“; the “does not involve” clause aims to project this object
forward to x"", where it can be compared with whatever object

(0" is popped off the stack.

new

4.3 External Iterators and Separate Interfaces

External iterators, and other objects which provide secondary in-
terfaces to objects, can be challenging to many schemes which aim
to treat objects as encapsulated behind their interfaces [20, 21, 25].
There are typically two main problems here: first the need to grant
controlled access to private state in a specification or programming

language, and second, the requirement to identify that objects ac-
cessing such shared state must be treated as part of the primarly ab-
straction, so that the messages they receive may inspect or alter the
state of the main object. Because behavioural, algebraic specifica-
tions do not explicitly declare shared state, they are not susecptible
to the first problem, but the second still applies.

To take a simple example that illustrates both the problem and
our solution imagine enhancing the stack with a getlter() operation
that returns an iterator; the iterator supports a item() operation that
just returns the top() of the stack. We can specify this as follows:

(STACKSIMPLEITER)

s.getlter(), x"" ~ i, x’
exp, X/ M* v, Xold
S.tOp()7 XU’I’ ~s o’ X///
IItem(), Xold ~> 07 Xnew

the key to this rule being the “backwards-looking” specification
that finds the iterator creation operation (in a prior world x”’), and
uses that to determine the stack s to which the iterator belongs.

4.4 Classes and Shared State

A similar problem can exist if we wish to model state that crosscuts
objects, such as class (static) variables. We can model classes and
their interfaces by reifying them as standalone prototypical objects
[1], but class methods called on instances will by nature look odd:
the specifications must disregard the instance upon which static
messages are called. The following specification states that the
result of calling colour() on a widget is the argument passed in
to the most recent call to setColour() on some other widget — no
matter which widgets are involved.

(WIDGETCLASSCOLOUR)

exp does not cause w’.setColour(c’)

old new

w.setColour(c); exp; w”.getColour(), ™ ~+ ¢, X

4.5 Contracts

It is also interesting to consider how an algebraic approach could
be extended to support interobject contracts [13, 12]. The iterator
and class-wide state examples demonstate that specifications can
be written with surprisingly little respect for object encapsulation
— that is, that these specifications can cut across messages sent
to multiple objects. In the case of contracts, however, we need to
require that groups of objects interact in particular ways whenever
certain events occour.

The canonical example is the observer pattern: whenever no-
tify() is called on a subject, the subject must itself call update()
on all of its observers [10]. The specifications shown in this paper
do not permit us to write such a contract, generally because the
calls to update() must occur during the excution of notify() — so
notify() should not return until all updates are complete. We ex-
pect a relatively straightforward extension, allowing us to consider
method send and return events individually, will support this kind
of contract specifications.

4.6 Worlds and Objects

The final, philosophical question is to return again to the question
of the worlds in our specifications. In section 2.1 we suggested that
x was the runtime state of the system, and was affected by field
reads and writes and method calls. In retrospect, that seems like an
odd defintion, as none of our specifications have discussed reading
or writing fields, and none of the specifications involving methods
have directly described any change of this state: they simply refer to
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arguments or return values of previous message calls. This suggests
an alternative description of the state:

The state of the world is the history of all messages sent
to all objects since the start of the system.

That is, the world (or its state, or the state of a system imple-
menting such a specification) keeps track of all the messages since
the system is started (the “big bang”). It is very tempting, in an
object-oriented system, to hypothesize the following:

The state of an object is the history of all messages sent
to that object since the start of the system.

Unfortunately, while we permit specifications for iterators, ex-
ternal interfaces, class-wide effects and so on, this hypothesis does
not hold: since we can write a specification such that any message
sent anywhere can affect the result of any other message The best
we can do, it seems, is to return to this:

The state of an object is the history of all messages sent
to all objects since the start of the system.

Algebraic specification languages such as Specf and JML are
adopting ownership systems [3, 4] to deal with this issue. Given
that our specifications do not have any implementations, and we
have no representation objects we need to protect, it appears the
algebraic approach does not need an explicit ownership system to
protect invariants induced by the specifications (after all, we do not
write state-based invariants). Rather, we could consider restrictions
on the kind of behaviour we choose to specify — not to preserve
correctness, but rather to ensure that our so-called “object-oriented”
specifications are in practice object-oriented.

4.7 To Conclude

Are algebraic specifications for object-oriented programs desir-
able? Yes, they are; they reflect best the intentions and the phi-
losophy of the paradigm.

Are algebraic specifications for object-oriented programs pos-
sible? We believe they are, and practical experience with relatively
informal algebraic specifications, along with our small examples,
show they can be written and have promise [15, 16, 27, 8, 17].

But much remains to be done. Our further work includes the
consideration of more case studies, the development of syntactic
sugar to make idioms easier to read and write, and the full develop-
ment of the semantics and conceptual foundations for an algebraic
model of specifications for object-oriented systems.
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