Need to Know: Patterns for Coupling
Contexts and Components

James Noble
Computer Science,
Victoria University of Wellington, New Zealand.
kjx@mcs.vuw.ac.nz

Abstract

Many object-oriented design patterns — including State, Strategy, and
Observer — split objects up into a context and a component: the context
is fixed, while the variable component typically provides some services
to the context. Control primarily flows from context to component, and
accompanying data must flow the same way. This paper contains four
patterns that describe how to design the interfaces between contexts and
components. These patterns should help programmers to design the in-
terfaces introduced by patterns that split contexts and components.

Introduction

Taking things apart, that’s easy.
Putting them back together, that’s the trick.
Attributed to David Holmes

Many object-oriented design patterns from Design Patterns [4] or Patterns
of Software Architecture [3] increase the flexibility, longevity, complexity, and ar-
guably the ineffable quality [1] of program designs by introducing (or “finding”)
new objects. For example, the State, Strategy and Observer patterns introduce
eponoymous State, Strategy, and Observer objects: although these are three
behavioral (sic) patterns [4] the creational Prototype pattern and structural
Bridge patterns share the same dynamic.

A key part of all these patterns this that they split an existing object, intro-
ducing a new object (technically a new participant or role [9]) to encapsulate
variation, and refactor some of the responsibilities of the existing object into
the new object. We call this new object the component, and the the remainder
of the existing object of which it may have been a part we call the context [2].
Figure 1 shows how these patterns split objects into contexts and components.

But, as David Holmes, Humpty Dumpty, and the second law of thermody-
namics all attest, it’s easier to separate things out than put them back together
again. An important part of using all these patterns successfully is designing
the interface between the new component and the existing context. This in-
terface design is particularly important for longevity and reuse: especially as
many programs and frameworks need to be able to reuse both contexts and

Pattern | Intent Context Component

Strategy vary algorithms Context Strategy

State alter behaviour Context State

Observer | vary dependent aspects Subject Observer

Prototype | vary class of created object | Client Prototype

Bridge decouple abstractions Abstraction | Implementor
and implementations

Figure 1: Contexts and Components

components. Although many patterns motiavate the split on the basis that
contexts can reused by changing components, it’s often equally important that
components can be used in many different contexts — for example, we hope
one Subject can be used with many kinds of Observers, but in practice it’s also
important that one type of Observer can be used with many kinds of Subjects.

This paper presents four basic patterns for designing the interfaces inside
these patterns, that is, for coupling contexts and components. Coupling —
determining how much components need to know about their contexts and vice
versa — is also the main force between these patterns.

Figure 2 summarises the problems dealt with by this collection of patterns,
and the solutions they provide.

Form

The patterns are written in modified electric Portland form. Each begins with
a question (in italics) describing a problem, followed by a bullet list of forces
and discussion of the problems the pattern addresses. A boldface “Therefore:”
introduces the solution (also italicised) followed by the consequences of using
the pattern (the positive benefits first, then the negative liabilities, separated by
a boldface However:), an example of its use, and some known uses and related
patterns.

Pattern Problem Solution

text .
Contex How can the context receive the in- Pass parameters along with the re-
passes formation it needs from the context? | quests from context to componnet.
parameters :
Component . cpe s . .
Kknows How can the component receive con- Initialise a unique component with

. X o . f
parameters stant information from the context? the constant information.
Context How can the component retrieve
. . Pass the context as a parameter to

passes large amounts of information from : X
. methods that need the information.
itself the context?
S:;:vr;onent How can the component and context | Initialise a unique component object
Context interact without restriction? with a pointer to the context.

Figure 2: Summary of the Patterns

1 Context passes parameters

How can a component receive the information it needs from the context?

You have split an object into a context and a component.

The context delegates operations to the component.

The context needs to pass information to the component with these oper-
ations.

Most of this information changes for each delegated operation.

Therefore: Pass parameters with the requests from context to componnet.

Design the component’s interface so that each delegated operation receives
the information that it needs as its parameters. Ensure that the context passes
the correct information as it delegates operations to the component. When
the component’s method is starts running, the necessary information should be
right at hand.

Example

Consider a system for physiolometric simulation of the consumption of alcoholic
drinks. The context (the simulation framework) can construct a new component
(a drink object) and then send messages to that object, passing parameters to
describe the amount of liquid drunk.

Drink absolut = new Vodka();
absolut.drink (100);
absolut.drink (150) ;

context absolut
new Vodka(). ... o
drink(100) >
drink(150) >
0

Figure 3: Context passes parameters

Consequences

This pattern makes the component easy to design, because the information
its methods need will be present as their arguments. Since components are
not storing information about their contexts, a single context can easily be
shared amongst several contexts (this is the underlying dynamic of the Flyweight

pattern). The data flow is simple, directly from context to component along
with (and in the same direction as) the control flow, making this design easy
to undestand and debug. Because the component doesn’t require callbacks
to retrieve information out of the component, this makes a concurrent design
easier: the context object can operate in a parallel thread without a direct risk
of interfeering with any threads executing in the component.

However: This makes components easy to design by making protocols hard
to design: the protocol needs to deliver the right information to the right meth-
ods at the right time. Such complex protocols complicate contexts, which must
supply this information to the components, whether they need it or not. If
there are more than a few parameters to pass, the protocol between context
and component can become large and unweildy. To design a minimal protocol,
you have to know in advance which parameters will be needed when: and (as
Kent Beck would say) I hope you're better at fortune-telling than I am.

Known Uses

Observers in Smalltalk and Java are typically passed parameters describing
details of the event they are observing upon. Strategies and Bridge implemen-
tations are passed parameters to the operations that are being delegated — in
a strategy to format a printout, for example, each element to be printed will be
passed as a parameter to the strategy object in turn.

Related Patterns

If the values of the parameters are the same across the calls, consider COMPO-
NENT KNOWS PARAMETERS (2) (or CURRIED OBJECT [7] in extreme cases). If
a large amount of dynamic information needs to be transferred, consider using
an ARGUMENTS OBJECT [7] to package that information into a single parame-
ter. For a large amount of more static information, consider CONTEXT PASSES
ITSELF (3).

2 Component knows parameters

How can the component receive constant information from the context?

You have split an obejct into component and surrounding context.

e The context delegates operations to the component.

The context needs to pass information to the component with these oper-
ations.

The component needs a large amount information about its context.

This information is the same for most operations delegated to the compo-
nent.

Therefore: Initialise a unique component with the constant information

Design the component so that it stores the information it needs to complete
its work. You will need to ensure that the component has some way to receive

this information, typically by initialising this when it is created using extra
parameters to its constructor methods: the component (or other object) will
need to pass this information when the component is created. You will also
need somewhere to store this information, typically instance variables (member
fields) in the component object.

Then, this information will be available when the component needs to carry
out its reponsibilities.

Example

Imagine modelling a drink dispenser, rather than a glass where different amounts
can be drunk at a time. We can initialise the dispenser with the amount to be
dispensed for each shot, and no longer need to pass an amount swallowed each
time a drink is drunk.

Dispenser finlandia = new Vodka(100);
finlandia.drink();
finlandia.drink();

context finlandia
hnew Vodka(00) . o
drink() >
drink() >
N

Figure 4: Context knows parameters

Consequences

Once a component knows its parameters, you don’t have to pass them every
time: this makes the protocol between context and component simpler, and
the context easier to write. The component is no more difficult to write either,
because the paramters are just as available in an instance variable as they would
be in a method parameter.

However:

You have to design the initialisation protocol carefully, so that it passes
all the values correctly. You have to store parameter values in the component
(but then, you probably had to store them somewhere, right?). You can only
share components between different contexts if they have the same values for
the shared parameters, or else some context could get a component with the
wrong parameter values. You have to know the values of the parameters when
you create the component, or you have to provide an subsidiary interface to
allow the context to change the values.

Known Uses

Many components accept configuration parameters — for example, a stragegy
used to lay out a dialog box will have parameters to control the spacing and
margins in the layout; a character flyweight will have a parameter to record the
character code and font information. These are often known by the strategy or
flyweight rather than being initialised in advance. Observers (such as views or
widgets) also often have configuration parameters describing how they should
display themselves, such as fonts and colours once again, and so on.

Related Patterns

If the values of the parameters differ across the calls, consider passing them
rather than making the component know about them. If large amounts of
information is involved, consider passing or storing the context itself, rather
than each parameter individually.

3 Context passes itself

How can the component retrieve large amounts of information from the context?

e You have split an object into context and component.
e The context delegates operations to the component.

e The component needs a large amount of information from the context,
complicating the protocol between the two objects.

e It’s not always obvious what information the component will need, or
when it will need it.

Therefore: Pass the context as a parameter to methods that need the infor-
mation.

Rather than trying to guess which information the component will need,
make the context pass itself to the component. In this way, the component can
retrieve whatever information it needs from the context, just when it needs it:
that is, when it has been delegated the responsibilty to perform some operation
on behalf of the component.

Example

In a wine (or vodka) tasting session, multiple drinkers each drink from the same
bottle (usually using different glasses that are then discarded, however). How
each drink is rated depends on a number of features of each drinker, such as
their thirst, inebriation, and in some cases dipsomania. We can model this by
making each drinker a context, and passing the drinker to the (shared) drink.

Drinker james = new Drinker();
Drinker ali = new Drinker();

Drink smirnoff = new Drink();

/...

smirnoff.drink(james,100);
smirnoff.drink(ali,150);

Being passed its context (drinker), the drink object can make whatever in-
quiries are appropriate as part of the drink method (see Figure 5).

james ali smirnoff
L drink(james,100) > J.
< thirst()
< inebriation()
T]drink(ali,100) > I
< thirst()
< inebriation()

] |

Figure 5: Context passes itself

Consequences

This pattern is quite easy for the context: it simply must pass itself everytime
it delegates a message to the component; the protocol must be extended to
include this argument, but this is not generally a major complication. This
pattern also has the advantage that the component can access any information
it may need from the context, without the context having to make any special
arrangments to pass that information to the component. The component doesn’t
have to store any information between calls, so that it doesn’t have to allocate
memory to store information, and, if there is no context-specific information in
a component, it can be shared dynamically between several different contexts.

However: This makes protocols easy to design, but components and con-
texts harder to design: in particular, the context’s interface must make available
any information the component may need. The component now needs to know
the interface of the context object, or at least a subset of that interface that
allows it to collect the information it needs: this information is not provided on
a platter, directly as parameters to the methods that need it. The component
can retrieve essentially any information from the context, making the program
harder to understand and debug. The two-way messages sends (from context to
component and back again) don’t make things any easier, either, nor does the

fact that the control flow (from component to context during the callback. can
be in the opposite direction to the data flow (from context to component)

Known Uses

Observers often also use this pattern (as well as other patterns we have described
here). In Smalltalk, for example, the object that raised a change notification
is always passed to its observer: this allows one observer to distiguish between
multiple subjects. Sharable State objects are also often passed their context, so
that they can change the state of the correct context object.

Related Patterns

If the same object is always passed as the context to a given conponent, consider
COMPONENT KNOWS CONTEXT (4) as an alternative. If the component doesn’t
need much information from the context, consider just passing those parameters
rather than the whole context.

4 Component knows context

Also Known As: Backpointer
How can the component and context interact without restriction?

e You have split an object into a context and a component.
e The context delegates operations to the component.

e The context needs to pass information to the component with these oper-
ations.

e You're considering Passing Context as a Parameter, but a large number
of delegated operations need to access the context.

e The component needs to contact the context asychronously.

e The component needs to initiate interactions with its context.

Therefore:
Initialise a unique component object with a pointer to its context.

Make an instance variable in the component that can store its context, and
extend the component’s creation protocol to accept the context as ta parameter
that you can use to initialise the variable. Of course, every context that uses
this component will have to pass this parameter correctly, but only whenever it
creates the component, not every time it delegates operations.

The component’s reference to its context is often called a backpointer because
it points “backwards” up the composition hierarchy.

Example

Consider modelling a waiter who will ask drinkers if they want a refill, and
refill them if necessary. The waiter needs to be able to query drinkers whenever
necessary, rather than waiting until the drinker asks for a refill (although that
should also be possible).

Drink largeVodka = new Vodka();
Drinker james = new Drinker();
Waiter bill = new Waiter();

bill.waitUpon(james) ;
bill.order(largeVodka) ;

The waiter object knowning about its context (the drinker) allows it to
interrogate its context whenever it is appropriate (see Figure 6).

james bill

waitUpon(james) > J-

order(largeVodka) > :[

< wouldYouLikeAnother()

wouldYouLikeAnother()

(|

]

I

Figure 6: Component knows context

Consequences

If a component knows about its context, the context is always available to the
component, which can get whatever it needs, whenever it needs it. This pattern
is quite easy for the context, as it simply has to pass itself when initialising
the component; after that, the component can look after itself. The protocols
between context and component can be very simple, sending only the extra
information needed to describe the instantaneous delegated operations, as the
other information can be fetched from the context as needed.

However: As when passing contexts as parameters, the context’s interface
must be designed carefully to make available any information the component
may need. The component can now send callbacks to the context at any time.
This can make the program more complex and harder to debug that the other

approaches we have discussed, and can cause serious problems in concurrent
programs (such as deadlock) if the context is protected by a separate lock etc
[6].

Finally, because the component object needs to know it’s context, is is much
harder to share components between contexts: each context will need its own
unique component, increasing the number of objects and memory requirements
of the system.

Known Uses

The usual suspects: Observers typically know their subjects. The VisualWorks
framework [8] had separate view classes for those views that knew their model
and those that did not. Complex strategies (such as complex layout managers)
that need lots of information about their contexts also often use this pattern:
these are then not sharable.

Related Patterns

If the component doesn’t need much information from the context, consider just
storing those parameters (COMPONENT KNOWS PARAMETERS (2)) rather than
the whole context.

5 Patterns and the Topology of Design Space

In describing these patterns, we had an interesting choice: whether to describe
the patterns themselves, as we have do, or to describe the underlying options (or
forces) on which the patterns are based: to pass parameters versus passing the
whole component object; and to pass parameters or contexts dynamically rather
than storing them statically in the component object (see Figure 7). Each of
these options could certainly have been written up as a pattern itself.

Parameters Context

Dynamic | Pass Parameters | Pass Context

Static Know Parameters | Know Context

Figure 7: The 22 Design Space covered by these patterns

In this paper, we chose to focus on the more concrete solution generated by
the combination of options, rather than each option individually. This let each
pattern be more concrete: describing a particular point in the design space,
rather than a partial solution that had to be completed by applying another
pattern. The complemantary disadvantage is that each pattern is more concrete
than it needs to be: the choice between storing and passing arguments, say, is
a very general one that must be faced in many more situations than simply
desinging context-component protocols. On the other hand, the more general
a technique or pattern, the less useful it is in any given situation [5], and it is
becasue we consider the design of these internal protocols to be important in the

10

practical application of many other patterns that we have made our descriptions
concrete.

There is another, more pragmatic, reason we have for writing the concrete
descriptions: simply that there are so few options that it is practical to treat
each concrete point in the design space individually: with a binary planar space
(i.e. two axes of choice and only two options on each axis) there are just four
discrete points in the space (see table 7): enumerating each point on the each
axis would still mean describing four patterns. With a further axis, or three
or more options on even one of the axes, the number of concrete spatial points
would far exceed the number of axial points, so describing each axial point
wouild be the only option.

Acknowledgements

Many thanks to Ali Arsanjani who gamely shepherded this paper through
KoalaPLoP 2001. Cheers!

References
[1] Christopher Alexander. The Timeless Way of Building. Oxford University Press,
1979.

[2] Robert Biddle and Ewan Tempero. Understanding the impact of language features
on reusability. In Murali Sitaraman, editor, Proceedings of the Fourth International
Conference on Software Reus e, pages 52—61. IEEE Computer Society, April 1996.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[4] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1994.

[5] Michael Jackson. Software Requirements & Specifications. ACM, 1995.

[6] Doug Lea. Concurrent Programming in Java. Addison-Wesley, second edition,
December 1998.

[7] James Noble. Arguments and results. Object Oriented Systems, 2000. Accepted
May 1998.

[8] ParcPlace Systems. VisualWorks Smalltalk User’s Guide, 2.0 edition, 1994.
[9] Dirk Riehle. Composite design patterns. In ECOOP Proceedings, 1997.

11

