VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

Metaphor and Metonymy in
Object-Oriented Design Patterns

James Noble and Robert Biddle and Ewan Tempero

Technical Report CS-TR-01/7
August 2001

School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: +64 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

Metaphor and Metonymy in
Object-Oriented Design Patterns

James Noble and Robert Biddle and Ewan Tempero

Technical Report CS-TR-01/7
August 2001

Abstract

The key principle of object-oriented design is that each program object should
correspond to an object in the real world, that is to say, a program is a metaphor
for the world. More advanced object-oriented designs, such as many of Gamma,
et. al.’s Design Patterns, are not directly metaphorical: State objects, Strat-
egy objects and Visitor objects, for example, do not correspond to objects in
the real world. We show how these patterns, and other similar designs, can be
understood as metonymy, rather than metaphor, that is, they are based on an
attribute, cause, or effect, rather than being based on something in the world, in
terms of Jakobson and Lodge’s typology. Understanding how both metaphor and
metonymy can be used in design can illustrate how design patterns work alongside
more traditional object-oriented modelling to produce designs that are accurate,
flexible, and better understood.

Publishing Information

Author Information

James Noble, Robert Biddle, and Ewan Tempero lecture in Computer Science at Victoria
Universtiy of Wellington.

Metaphor and Metonymy in Object-Oriented Design Patterns

James Noble

Robert Biddle

Ewan Tempero

Computer Science
Victoria University of Wellington
New Zealand
{kjx,robert,ewan}@mcs.vuw.ac.nz

Abstract

The key principle of object-oriented design is that each pro-
gram object should correspond to an object in the real world,
that is to say, a program is a metaphor for the world. More
advanced object-oriented designs, such as many of Gamma et.
al.’s Design Patterns, are not directly metaphorical: State ob-
jects, Strategy objects and Visitor objects, for example, do
not correspond to objects in the real world. We show how
these patterns, and other similar designs, can be understood
as metonymy, rather than metaphor, that is, they are based on
an attribute, cause, or effect, rather than being based on some-
thing in the world, in terms of Jakobson and Lodge’s typol-
ogy. Understanding how both metaphor and metonymy can be
used in design can illustrate how design patterns work alongside
more traditional object-oriented modelling to produce designs
that are accurate, flexible, and better understood.

Keywords:
Metonymy.

Object-Orientation, Design, Metaphor,

1 Introduction

Underlying most writing on object-oriented analysis
and design is a single, simple idea: that objects in
a program can model objects in the real world. To
model a farm, for example, a program could have
a Bovine class, where one object represented every
cow; an Ovine class where every object represented
a sheep; a Porcine class where every object repre-
sented a pig, and so on. Because, in the real world,
pigs, sheep, and cattle are all kinds of farm ani-
mals, the Bovine, Ovine, and Porcine classes could all
inherit from an abstract DomesticatedAnimal class.
Because, again, “in the real world” (or down on the
farm) the pigs, sheep, and cattle live in fields, you
could have a GrazingArea class, one instance per
field, and associate each DomesticatedAnimal with
one GrazingArea, and so on. Comparing Figure la
and Figure 1b, we can see that a UML instance dia-
gram shows how a farm system can be seen as a model
for the real world.

In this paper, we analyse the underlying rationale
of object-oriented design. We begin by considering
briefly the notion of the real world — the idea of
a reality outside the program that it can model —
and then go on to consider how the program is con-
nected to this external reality. In Sections 3 and 4
we argue that most object-oriented design, and some
of the most common design patterns, are metaphori-
cal, that is, objects in the program are in some way
like the objects in the real world to which they cor-
respond. Then, in section 5 we investigate designs,
particularly the advanced designs produced by de-
sign patterns, that are not metaphor; rather they are
metonymy, that is, based on some cause, effect, or at-
tribute of objects rather than the objects themselves
— this distinction between metaphor and metonymy

is based on Roman Jakobson and David Lodge’s ty-
pology of literature [22, 17]. Finally, in section 6 we
take a small detour to consider a few design patterns
that are neither metaphor or metonymy, section 7 dis-
cusses related work, and then section 8 concludes the

paper.

2 The Real World

A program execution is regarded as a
physical model, simulating the behaviour of
either a real or imaginary part of the world.

Object-Oriented Programming in the BETA
Programming Language.

Ole Lehrmann Madsen, Birger Mgller-Pedersen and
Kristen Nygaard [21]

This quote from Lehrmann Madsen et. al. outlines
the core principle underlying object-oriented design,
that an object-oriented program simulates (or mod-
els) the world. This principle is often elevated to the
a stronger claim that object-oriented is the “natu-
ral” way to program or to design: objects, like exotic
fruit, are just there for the plucking [37, 20, 3]. More
fundamentally, this quotation assumes that there is
some kind of external “reality” (one of the few words
that means nothing without quotes) [27] to which the
program can refer. This is problematic for a num-
ber of reasons: not least that many programs (such
as computer games with dragons and demons) have
no reference to objective reality — according to this
definition, at least, we can conceive of such programs
modelling an “imagined reality” that does not exist,
but still constitutes an external referent for the pro-
gram.

Alternatively, rather than modelling an imaginary
world, perhaps we create that world in the process
of modelling it. There are no dragons, demons, or
SMS Messages, even imaginary ones, until they are
modelled in the process of systems development, and
the process of systems development calls them into
being. Furthermore, if this is the case for imaginary
worlds, or technologies that do not exist prior to our
software, perhaps this is true (at least to some ex-
tent) even when we implement software to comput-
erise an existing manual business process or replace
an existing software. As a mundane example, the
software that runs the university where we work has
pages of codes that describe students’ enrolment sta-
tus. These codes did not exist before the construction
of the system: but neither did the precise distinctions
of students statues that the codes represent. In other
words, even if we model reality, we may not model a
reality that preexists our software development effort.

Even where some preexisting reality is evident (say
for a library system) defining that reality can be very
difficult — what is a “book”? does this include an
encyclopedia? How about a DVD? Even if reality can

@

g
Gl =

(b)

T

*’
J‘\})< ——————— ==
(e & <<-—-----= ~

Figure 1: A Picture of farm animals, and the corresponding UML model

be well defined, the program’s simulation of it may be
tenuous at best [16] — for example, how can a library
system know about untraced books that have been
stolen from the library: the very idea of an “untraced
stolen book” is something that does not and cannot
be simulated in a computer system.

Also implicit in this quotation is the idea that the
real world could be composed of objects, for other-
wise, how could a program made of objects model re-
ality? [20] The idea of a world made of objects under-
lies Western philosophy: Newtonian mechanics, for
example, can be understood as describing a universe
of abstract, encapsulated objects (abstract and en-
capsulated because an object’s mass is modelled only
by its centre of gravity) with internal states (veloci-
ties) that can be changed. A common fallacy expects
the “objects” in the world to be the same kind of ob-
jects as the objects used in object-oriented program-
ming, or even in a particular programming language
(see for example [20, 3]) . This raises many questions:
Do all objects in the real world have encapsulation?
Do they have interfaces? Polymorphism? Construc-
tors? What about “objects” in the real world such as
“sunshine”, “credit ratings”, or “gravity” which do
not seem to be the same kinds of objects as “cows”
or “sheep”.

To avoid these problems, in this paper we will fol-
low the logical positivist tradition behind much com-
puter science and information systems analysis, and
assume that there is an external reality to which the
program must relate, and that this “reality” can be
analysed in terms of classes describing individual ob-
jects. We make these assumptions without making
any claims that the external reality actually exists
(it could be imaginary or contradictory) or that it is
actually “object-oriented”.

The question addressed by this paper is: how
can we characterise the relationship between
the classes and objects in the program and the
classes and objects in the (real or imaginary)
external world?

3 Metaphoric Design

In the introduction, we have already presented an ex-
ample of the most basic kind of object-oriented de-
sign: modelling a farm with a number of objects that
represent what we choose to see as objects in the real
farm. Thus, the cows, sheep, pigs, and so on of the
real farm are modelled by the Bovine, Ovine, and
Porcine classes in the object-oriented program. It is
important to realise what “modelled by” here means:
clearly it does not mean the the Bovine objects in the
program physically eat grass, produce cowpats into
which one can step, and contribute large volumes of
methane and other gases to warming the biosphere.

signifier referent | signified
“lion” person brave person
“lamb” person docile person

Bovine object | cow
Ovine object | sheep

cow-object
sheep-object

Figure 2: Metaphor

The traditional way to describe this relationship is
to say that the objects in the program are “abstrac-
tions” of the real objects. As computer scientists, we
are familiar with abstractions: for example, a stack
is an abstraction that might be implemented by an
array, a pointer, and some executable code; the stack
is an abstraction because it elides many of the details
of actual implementation. Unfortunately, it doesn’t
seem to make sense to say that a Bovine object in
the program is an “abstraction” of a real cow in this
way: it doesn’t make sense to say that the object in
the program is “implemented” by a cow in reality, or
that the objects in the program are special kinds of
cows which do not eat, excrete, or expire. Alterna-
tively, following Plato, we could have an abstraction
of a cow as the “ideal, immutable, eternal form” of
a cow, perhaps corresponding to a Cow class, but,
again, this kind of abstraction is not a good descrip-
tion of the relationship between the cow object and
the real cow [33].

In this paper, we propose a different description
of the relationship between programmatic object and
external object: that this kind of relationship can
be seen as metaphor. Metaphor is a figure of speech
where one thing is described using terms that do not
really apply to it. The word “metaphor” is derived
from a Greek word for “transfer”, so the effect of a
metaphor is to transfer meaning from one thing to
another. Cultural criticism has found metaphor an
effective term for analysing many types of creative
endeavour, including cinema, televising, advertising,
multimedia, and popular music; Jakobson (and Lodge
after him) has argued Metaphor is one the underlying
structures of literature [22, 17, 8].

The first rows in Figure 2 shows how metaphor
functions in speech. In phrases such as “he’s a lion!” or
“she’s a lamb!” we use words (signifiers) “lion” or
“lamb” as metaphors for a person to signify that that
person is brave or docile.

This kind of relationship is precisely what we find
in object-oriented modelling: an object in the pro-
gram is a metaphor for an object in reality, and part
of the meaning of the object in reality is transferred to
the object in the program. The later rows of Figure 2
show how an object in a program can be a signifier

e

Client Component

COparation{’
AddiCompanant)
HemovaiComponant)
GelChild(int)

A

Leaf Composite

childran

Cperation()

Oparation{} S--=-==-F=—=-=-=-==-
Add{Componant)
Femove[Componant)
GetChild(int)

=

forall g in childran
n.Operation();

Figure 3: The structure of the Composite pattern [12]

for some referent in the world, signifying the object in
the program models the object in the world . Thus,
while our Bovine objects do not eat grass, they may
have identity number, age, and weight attributes that
model some features of the corresponding real cow.

We call this kind of design Direct Metaphorical De-
sign: metaphorical because it is based on metaphor,
and direct because the metaphors are being rep-
resented directly, using the constructs from most
object-oriented programming languages or modelling
notations. Direct metaphorical design is the most
common and most basic kind of object-oriented de-
sign: for example, an accounting system may have
one object per account; a game one object per de-
mon and one per dragon, a university administration
system one object per course and one per student.

Where direct metaphorical designs work, they are
easy to produce, implement, understand, and modify:
one simply identities the objects of interest in the real
world, and creates corresponding objects in the design
model.

4 Design Patterns and Indirect Metaphorical
Design

Not all metaphorical designs can be produced di-
rectly. In other words, there are several kinds of
objects (or, more typically, structures of objects)
that are common in the worlds we wish to model,
but that cannot be translated directly into object-
oriented designs — perhaps due to weaknesses or non-
([)rtho]gona,lity in programming or modelling languages
7, 11].

To give a couple of simple examples: modelling
languages such as UML support multi-directional,
multi-place relationships between objects that can
can be used metaphorically (and directly) to model
relationships in the real world. In a university course
database, for example, the relationship between stu-
dents and courses is a many-to-many bidirectional
relationship: multiple students can study multiple
courses, students need lists of the the courses they
are studying, and lecturers need lists of all students
enrolled in their courses. Few (if any) object-oriented
programming languages support bidirectional multi-
way relationships, so this relationship needs to be en-
coded somehow into the program, typically by split-
ting the relationship between multiple objects, intro-
ducing extra objects to model the relationship, or

both [28].

To consider another example, objects in the real
world are often made up recursively from parts and
wholes. Large organisations are made up of smaller
organisational units; these units are composed of
smaller units, in turn composed of still smaller ones.
Quotations, bills of sale, insurance policies, and doc-
ument contents all have a similar structure: a whole
quotation is made up of a number of subquotations,
each of which may have its own subquotations and
so on. While some programming languages (such as
Garnet, Amulet, and Keykit [26, 34]) support this
kind of composite object, most programming lan-
guages and modelling notations do not, so once again,
these structures need to be encoded using the features
of the available languages and notations. Generally,
these kind of recursive structures are modelling using
the Composite [12] or Part-Whole [4] patterns (see
Figure 3).

A design pattern is a “description of communicat-
ing objects and classes that are customised to solve a
general design problem in a particular context” [12,
p.3]. Designers can incorporate patterns into their
program to address general problems in the structure
of their programs’ designs, in a similar way that algo-
rithms or data structures are incorporated into pro-
grams to solve particular computational or storage
problems. A growing body of literature catalogues
patterns for object-oriented design, including refer-
ence texts such as Design Patterns book [12] or Pat-
terns of Software Architecture [4], and patterns com-
pendia such as the Pattern Languages of Program De-
sign series [6, 36, 23].

These patterns are often counterintuitive to novice
designers and programmers — although experienced
programmers may find them quite obvious. Fig-
ure 3 shows the composite pattern from Design Pat-
terns; this design exhibits a few rather strange fea-
tures. First, classes representing the whole compo-
sition (“Composite” for example) are subclasses of
classes representing the part (“Component”). That
is, the most important class in this structure is the
class representing the part, not the whole. Second,
the crucial recursive relationship appears as a many-
to-one aggregation from a subclass “Composite” to a
superclass “Composite”. To novices, this link appears
backwards, going “up” the tree rather than down,
from whole to parts, and the aggregation within an
inheritance hierarchy appears completely arbitrary.

In spite of these caveats, the result of applying
the Composite pattern (or a pattern for relation-
ship, or whatever) is ultimately straightforward. Al-
though the class diagram (Figure 3) for composite
looks strange, Figure 4 shows the structure of the ob-
jects that the class diagram generates: the recursive
structure in the real world we hoped to model.

aComposite

[aLeaf] (alLeat] (aLeaf]

Figure 4: The objects created by the Composite pat-
tern [12]

We call these kind of designs indirect metaphori-
cal designs — they are metaphorical because the rela-
tionship between the resulting objects in the program
and the objects in the world is metaphorical for ob-
jects in the world, and they are indirect because the
program or modelling language (class) structures may
not be obvious.

Other common examples of indirect metaphori-
cal designs can be found in the Singleton pattern —
where a class has only one instance; the Prototype
pattern — where new objects are created by copy-
ing existing objects; and double dispatch — where
the method that is selected depends upon the class of
more than one of its arguments [12].

The difference between direct and indirect
metaphorical designs lies in the features of the lan-
guages used to express them: some languages lack
sufficient features to express required metaphors di-
rectly, so they must be encoded indirectly, such as
by a design pattern. Translating between languages
can change an indirect metaphoric design into a di-
rect metaphoric design, and vice versa. For example,
Java programs often require Prototype, Singleton and
double dispatch to represent real-world features that
could be encoded directly in languages such as CLOS
or Cecil [19, 5].

5 Metonymic Design

Some — indeed many — design patterns don’t make
sense considered as metaphors. Consider State, one
of the simpler patterns (see Figure 5). The state pat-
tern allows an object (the Context) to alter its be-
haviour when its internal state changes, causing the
Context object to appear to change its class. As the
figure shows, the State pattern introduces an inter-
nal state object aggregated inside the context, and
delegates some requests to it. The internal state ob-
ject is an instance of a ConcreteState class (where
the ConcreteState classes all inherit from a common
abstract State class). The behaviour the context ob-
ject receives when delegating requests to the state ob-
ject will change according to the ConcreteState ob-
ject that is installed at any time, so by changing
state objects dynamically the whole context object
can provide different behaviour. The State pattern
is typically used to manage input modes (reflecting
the global state of a user interface) and communica-
tion protocols (reflecting the state of a network con-

nection). In a farm system, we could use the State
pattern to record the changing state of a sheep from
newborn lamb, dipping, crutching, dagging, hogget,
breeding ram, and finally to mutton.

state

Context ko State
Request) 9 Handle()
I
:)\
L A S,
state—=Handle()
ConcreteStateA ConcreteStateB

Handle() Handle{)

Figure 5: The structure of the State pattern [12]

Now, the implementation of the State pattern is
quite straightforward, indeed, it is very direct: you
add an extra object and class hierarchy to your de-
sign, and then change internal state objects to change
context objects’ behaviour. The State pattern does
not depend on programming language features: while
some languages with dynamic classification or inher-
itance will reduce the amount of delegation code re-
quired in the context object, the overall geometry of
the solution remains the same [35, 32, 10].

The State pattern raises an important question re-
garding the design or analysis of the program, how-
ever: What object in reality does the state object repre-
sent? In the farm example, the state object certainly
doesn’t model a subordinate physical object that is
attached to a sheep and that changes throughout a
sheep’s lifecycle. In fact, there may be no physical
change at all between a sheep considered a newborn
lamb one day, a yearling the next, and a prime export
candidate the day after.

Consider briefly another common pattern, the It-
erator pattern (see Figure 6). The Iterator pattern is
used to traverse through an collection object such as
a list: the Iterator acts as a traversal cursor, keeping
track of a position in the list, and is able to pro-
vide the Currentltem at that position and advance to
the Next item in the collection. Iterators are very
straightforward to implement, and form part of the
design of the fundamental library for most object-
oriented languages, including Smalltalk, C++, and
Java. The Iterator pattern raises the same question
for object-oriented design and analysis as the State
pattern, however: What object in reality does the iter-
ator represent? Unlike the State pattern, the Iterator
must be part of the collection’s public interface, and
cannot be dismissed as a mere implementation detail.

list

List Listiterator

Court() Firs)

Append{Element) Mext{)

ReamoveElement) IsDane()
Currentitem()
index

Figure 6: The structure of the Iterator pattern [12]

Our answer to this questions that that State and
Iterator objects, and the similar objects introduced by
many other patterns, do not represent objects from
the real world: that is, they are not metaphorical, ei-
ther directly or indirectly. Rather, these objects and
these design patterns are exemplars of metonymic de-

signifier referent signified
“crown” person king

“Taw” person police officer
SheepState sheep state of the sheep
Sheeplterator | flock of sleep | iteration cursor

Figure 7: Metonymy

signs, rather than metaphorical designs. According
to Roman Jakobson and David Lodge, metaphor and
metonymy are fundamental structures of language
that transfer meaning, however they make different
kinds of transfers.

To quote Robin Penrose:

Metaphor is a figure of speech based
on similarly, whereas metonymy is based
on contiguity. In metaphor you substitute
something like the thing you mean for the
thing itself, whereas in metonymy you sub-
stitute some attribute or cause or effect of
the thing for the thing itself.

Nice Work, David Lodge, Martin Secker & Warburg,
London 1989.

Thus, calling King Richard the “lion-heart” is a
metaphor — he is a king, not a lion — but calling
him the “crown” is metonymy — wearing a crown is
one attribute of being a king.

Figure 7 shows that metonymy in object-oriented
software design functions in the same way as in
language generally: comparing this with Figure 2
illustrates the differences and similarities between
metonymy and metaphor. Again, the first two rows of
Figure 7 are figures of speech: the signifiers “crown”
or “law” applied to a person signify “king” and “po-
lice officer” respectively. The later rows of the table
show examples from software.

The states of the sheep, for example, are
metaphors for “real” objects own right, rather, they
signify attributes of sheep. Similarly, the position of
an iteration is not part of reality, rather it is a conse-
quent effect of iterating through the collection.

Thus, the majority of the design patterns are
metonymy, rather than metaphor. The Abstract Fac-
tory, Builder, and Factory Method patterns, for ex-
ample, are about causing other objects to be created;
while the Command, Decorator, Strategy, Mediator,
Memento, and Visitor patterns model requests, re-
sponsibilities, algorithms, interactions, snapshots of
internal states, and traversal operations, respectively.

One intuitive way to determine whether a pattern
(or a design) is metaphor or metonymy is to ask how
hard the pattern is to explain: easy patterns that in-
volve just one object tend to be metaphor (this is a
composite object; this is a prototype which can be
cloned) while the complex patterns involving multi-
ple objects tend to be metonymy (this is part of the
internal state of another object; this is a traversal
position in a collection).

6 Programmatic Patterns

There are some patterns that are neither metaphor or
metonymy. Consider the Facade pattern, for example
(see 8). The Facade pattern inserts an extra interface
into a program to encapsulate a set of objects forming
a subsystem. This extra interface is typically nothing
to do with any external reality, rather, it is purely
about the internal structure of the software.
Flyweight is another pattern in this category. The
intent of the Flyweight pattern is to support large

Facade

N -

Figure 8: The Facade pattern [12]

numbers of fine-grained objects efficiently: it achieves
this goal by sharing some (so-called extrinsic) at-
tributes between many objects. Again, this pattern
is not about any kind of modelling or analysis of any
kind of reality: rather is it purely about the internal
structure of system.

We call these kind of patterns programmatic, be-
cause they are about programs’ internal structure
rather than their relation to an external reality. Many
of the patterns in the book Patterns of Software Ar-
chitecture are programmatic patterns, including the
Layers, Blackboard, Pipes and Filters, and Counted
Pointer patterns.

Note that however designs or patterns actually
function, the names of patterns are almost always
metaphorical. For example, the name of the Bridge
pattern is a metaphor for the class diagram of the
pattern — the diagram (see Figure 9) is supposed to
look like a bridge between the “Abstraction” on the
left and the “Implementation” on the right. In spite
of this metaphoric name, the bridge pattern, focus-
ing on separating abstractions and implementations,
is strictly programmatic.

imp

Abstraction

Operation(} 9 Operafionimp()

=]
imp-=Operationimp(J;

Ci A Ci B

RefinedAbstraction

Operationtmp() Operationtmp()

Figure 9: The structure of the Bridge pattern [12]

The final pattern we will consider in depth is the
Strategy pattern. The structure of the pattern is basi-
cally the same as the State pattern we have discussed
above: a context object delegates requests to an in-
ternal, replacable strategy object implements an al-
gorithm, so that changing the strategy object changes
the algorithm executed by the context (see Figure 10).

strategy

Context Strategy

Contextinterface() Algorithmintertace()

}

C A Caoner C

Algorthiminterface() Algorithmimearface() Algorithminterface()

Figure 10: The structure of the Strategy pattern [12]

We consider the strategy pattern to be metonymy:
the strategy object reifies an effect of its context. In
some applications, however, the pattern can be used

Creational Patterns

Abstract Factory creates related objects metonymy
Builder creates complex objects metonymy
Factory Method creates subclasses metonymy
Prototype exemplary object metaphor
Singleton single instance metaphor
Structural Patterns

Adapter converts interfaces metaphor
Bridge decouple abstraction and implementation | programmatic
Composite model recursive tree structure metaphor
Decorator add responsibilities to objects metonymy
Facade interface for a subsystem programmatic
Flyweight save memory of similar objects programmatic
Proxy surrogate for access control metaphor
Behavioural Patterns

Chain of Responsibility | handle requests metonymy
Command request as an object metonymy
Interpreter interpret a language programmatic
Tterator iteration cursor metonymy
Mediator encapsulate interactions metonymy
Memento snapshot of objects’ state metaphor
Observer update dependents metonymy
State change behaviour metonymy
Strategy vary algorithms metonymy
Template Method subclasses change algorithms programmatic
Visitor represent traversal operations metonymy

Figure 11: Classification of Patterns

in other ways. Design Patterns describes how cur-
rency trading pricing algorithms can be implemented
as strategy objects. In such an application, the algo-
rithm is part of the domain, so the design is metaphor-
ical. Furthermore the pattern can even be used pro-
grammatically, as Strategies can be used to avoid mul-
tiple inheritance, reducing the number of classes in
the program. Ultimately, as shown in Figure 11, al-
though patterns fall mostly in to one of the three cat-
egories — metaphor, metonymy, programmatic; and
Strategy is primarily metonymy — a particular ap-
plication of a pattern can fall into any category.

7 Related Work

Many texts present object-orientation design as fun-
damentally metaphorical, ranging for books aimed at
novices [20], practitioners [30, 14, 15, 21] to theorists
such as Abadi and Cardelli [1]. Responsibility Driven
Design, for example, advises developers to model
physical objects and conceptual entities (metaphor)
but not attributes of objects (metonymy) [38]. These
answers have often become more sophisticated over
time. In the first edition (1988) of Object Oriented
Software Construction Meyer gives the (admittedly
premature) advice that “objects are just there for the
picking”; the second edition is rather more circum-
spect [24, 25].

Given their wide practical acceptance, there has
been surprisingly little published on the underlying
dynamics of design patterns, rather than accounts
of patterns themselves. Design Patterns itself cat-
egorises patterns into three types, creational patterns
are about creating objects, structural patterns about
program structure, and behavioural patterns about
program behaviour. This categorisation seems or-
thogonal to our classification of patterns according
to metaphor and metonymy (see Figure 11 for the
full classification). Egerbo and Cornils’ have classi-
fied of patterns into those adequately described by
other patterns; those described by existing language
features; and those that are truly “fundamental” pat-

terns [2]. The distinction between language depen-
dent and fundamental patterns is similar to our dis-
tinction between direct and indirect patterns. Gill
and Lorenz have similarly analysed patterns based
on their degree of support in programming languages

[13].
Metaphors are, of course, very common in user
interface design — so much so we hardly perceive

a Windows or Macintosh “desktop” as a metaphor.
While metaphors are have been the subject of much
study in human-computer interaction, this topic is
only tangentially related to their user in the internal
design of a software system [18, 29, 9]. Probably the
most relevant work is Randy Smith’s analysis of the
tension between “literalism” and “magic” in the Al-
ternate Reality Kit: literal objects represent, physical
objects (metaphor) while magical objects represent
physical forces, causes and effects (metonymy) acting
upon those objects [31].

8 Conclusion

In this paper, we have shown how features of
object-oriented design patterns can be illuminated
by Jakobson and Lodge’s theory of metaphor and
metonymy — the full classification is shown in Fig-
ure 11. Object-oriented design is primarily metaphor-
ical, however, metaphorical designs that cannot be
implemented directly in a programming or design
language give rise to patterns (such as Composite
and Prototype) corresponding to indirect implemen-
tations of these metaphorical designs. Modelling at-
tributes, causes, and effects (rather than real world
objects) produces metonymic designs and more ad-
vanced patterns. Finally, designs that improve the
internal structure of the program without reference
to an external reality give rise to programmatic pat-
terns.

References

[1]
[2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Abadi and L. Cardelli. A Theory of Objects.
Springer-Verlag, New York, 1996.

Ellen Agerbo and Aino Cornils. How to preserve
the benefits of design patterns. In OOPSLA Pro-
ceedings, pages 134-143. ACM, 1998.

David William Brown. An Introduction to
OBJECT-ORIENTED ANALYSIS: Objects and
UML in Plain English. John Wiley & Sons, 2002.

Frank Buschmann, Regine Meunier, Hans Rohn-
ert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture. John
Wiley & Sons, 1996.

Craig Chambers. The Cecil language: Specifi-
caion and rationale. Technical report, Depart-
ment of Computer Science and Engineering, The
University of Washington, 1997.

James O. Coplien and Douglas C. Schmidt, ed-
itors. Pattern Languages of Program Design.
Addison-Wesley, 1996.

James O. Coplien and Liping Zhao. Symmetry
and symmetry breaking in software patterns. In
Proceedings Second International Symposium on
Generative and Component Based Software En-
gineering (GCSE2000), pages 373-398, 2000.

Umberto Eco. A Theory of Semiotics. Indiana
University Press, 1976.

Thomas D. Erickson. Working with interface
metaphors. In Ronald M. Baecker, Jonathan
Grudin, William A. S. Buxton, and Saul Green-
berg, editors, Readings in Human-Computer In-
teraction, chapter 2, pages 147-151. Morgan-
Kaufmann, second edition, 1995.

Michael D. Ernst, Craig Kaplan, and Craig
Chambers. Predicate dispatching: A unified the-
ory of dispatch. In ECOOP Proceedings, pages
186211, Brussels, July 1998. Springer-Verlag.

Richard P. Gabriel. Patterns of Software: Tales
from the Software Community. Oxford Univer-
sity Press, 1996.

Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design Patterns. Addison-
Wesley, 1994.

Joseph (Yossi) Gil and David H. Lorenz. Ob-
ject technology: Design patterns and language
design. IEEE Computer, 31(3):118-120, March
1998.

Brian Henderson-Sellers. A BOOK of Object-
Oriented Knowledge. Prentice-Hall, 1994.

Brian Henderson-Sellers and Julian M. Edwards.
BOOKTWO of Object-Oriented Knowledge: The
Working Object. Prentice-Hall, 1994.

Michael Jackson. Problem Frames: Analyz-
ing and Structuring Software Development Prob-
lems. Addison-Wesley, 2001.

Roman Jakobson. Two aspects of language and
two types of linguistic disturbance. In Roman
Jakobson and Morris Halle, editors, Fundamen-
tals of Language, page 58. Mouton, Den Haag,
1956.

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[34]

[35]

J. Johnson, T. L. Roberts, W. Verplank, D. C.
Smith, C. Irby, M. Beard, and K. Mackey. The
Xerox Star: A retrospective. IEEE Computer,
22(9), 1989.

Sonya E. Keene. Object-Oriented Programming
in Common Lisp. Addison-Wesley, 1989.

Gene Korienek and Tom Wrensch. A Quick Trip
To Objectland. Prentice-Hall, 1991.

Ole Lehrmann Madsen, Birger Mgller-Pedersen,
and Kristen Nygaard. Object-Oriented Pro-
gramming in the BETA Programming Language.
Addison-Wesley, 1993.

David Lodge. The Modes of Modern Writing.
Edward Arnold, 1977.

Robert C. Martin, Dirk Riehle, and Frank
Buschmann, editors. Pattern Languages of Pro-
gram Design, volume 3. Addison-Wesley, 1998.

Bertrand Meyer. Object-oriented Software Con-
struction. Prentice Hall, 1988.

Bertrand Meyer. Object-Oriented Software Con-
struction. Prentice Hall PTR, second edition,
1997.

Brad A. Myers, Rich McDaniel, Rob Miller, Brad
Vander Zanden, Dario Guise, David Kosbie, and
Andrew Mickish. The prototype-instance object
systems in Amulet and Garnet. In James No-
ble, Antero Taivalsaari, and Ivan Moore, edi-
tors, Prototype-Based Programming: Concepts,
Languages and Applications, chapter 7. Springer-
Verlag, 1999.

Vladimir Nabokov. Lolita. Putnam, New York,
1958.

James Noble. Basic relationship patterns. In
Neil Harrison, Brian Foote, and Hans Rohnert,
editors, Pattern Languages of Program Design 4,
chapter 6, pages 73-94. Addison-Wesley, 2000.

Jenny Preece, editor. Human Computer Interac-
tion. Addison-Wesley, 1994.

James Rumbaugh, Michael Blaha, William Pre-
merlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice
Hall, New Jersey, 1991.

Randall B. Smith. The alternate reality kit: an
example of the tension between literalism and

magic. Computer Graphics and Applications,
7(9), 1987.

Antero Taivalsaari. Object-oriented program-
ming with modes. Journal of Object-Oriented
Programming, 6(3):25-32, June 1993.

Antero Taivalsaari. Classes vs. prototypes:
Some philosophical and historical observations.
In James Noble, Antero Taivalsaari, and Ivan
Moore, editors, Prototype-Based Programming:
Concepts, Languages and Applications, chap-
ter 1. Springer-Verlag, 1999.

Tim Thompson. Keynote — a language and ex-
tensible graphics editor for music. Computing
Systems, 3(2):331-357, 1990.

David Ungar and Randall B. Smith. SELF: the
Power of Simplicity. Lisp And Symbolic Compu-
tation, 4(3), June 1991.

[36] John M. Vlissides, James O. Coplien, and Nor-

[37]

[38]

man L. Kerth, editors. Pattern Languages of
Program Design, volume 2. Addison-Wesley,
1996.

Oscar Wilde. The Importance of being Earnest:
a trivial comedy for serious people. Leonard
Smithers, 1988.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lau-
ren Wiener. Designing Object-Oriented Software.
Prentice-Hall, 1990.

