We give a proof that there are incomparable Turing degrees.
Lemma 1. $\neg \mathrm{CH}$ implies the existence of incomparable Turing degrees.
Proof. We know that there are only countably many Turing machines, so for every Turing degree \mathbf{d}, there are only countably many degrees $\mathbf{a} \leqslant \mathbf{d}$. Suppose that the Turing degrees are linearly ordered; then their cofinality is at most ω_{1}, which now implies that there are \aleph_{1} Turing degrees. We know that there are continuum many Turing degrees so if the degrees are linearly ordered then CH holds.

Now let \mathbb{P} be any notion of forcing such that $\Vdash_{\mathbb{P}} \neg \mathrm{CH}$. Let ψ be the sentence which states that there are two incomparable Turing degrees. The lemma implies that $\Vdash_{\mathbb{P}} \psi$. However, stated in second order arithmetic we see that ψ is Σ_{1}^{1} (as Turing reducibility is arithmetically definable). Thus ψ is absolute between models of set theory. It follows that ψ holds.

