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Higher randomness and
continuity



Long computations

Let xLeye ω be an effective list of all computable linear orderings.
Recall that

CWO � te   ω : Le is a well-ordering u

is Π1
1-complete. That is, a set A � ω is Π1

1 if and only if it is
m-reducible to CWO.

Informally, this shows that Π1
1 sets are in some sense “generalised

c.e.”. If A is Π1
1 and f is an m-reduction of A to CWO, then we say

that n P A is enumerated into A at stage otppfpnqq.



Long computations

For example, consider the reduction property. If A,B are c.e., and
AY B � ω, then there are c.e. Â � A and B̂ � B which partition ω: for
each n   ω, put n into Â if n enters A before it (perhaps) enters B.

Similarly, suppose that A,B are Π1
1, and AY B � ω; let f ,g be

m-reductions of A,B to CWO. Let Â � tn P A : otppfpnqq ¤ otppgpnqqu
and B̂ � tn P B : otppgpnqq   otppfpnqqu (with the obvious
interpretation of ¤ for ill-founded order-types).



Formalising the intuition

This intuition can be formalised using a set theoretic understanding
of computability. Recall that a set A � ω is c.e. if and only if it is
Σ1-definable (with parameters) in the structure pHω, Pq.

What makes the basic theorems of computability work is that Hω is
admissible: the image of every finite set by a computable function
is bounded below ω.

The structure Lωck
1

is admissible as well (this follows from Spector’s

Σ1
1 bounding principle). Call a subset of Lωck

1
c.e. if it is Σ1-definable

in that structure (with parameters). A set A � ω is c.e. if and only if
it is Π1

1.



Higher randomness

Computable enumerability is the most basic concept in recursion
theory; everything else can be derived from it. For example, a set is
computable if it is c.e. and co-c.e.

Similarly, a set U � 2ω is effectively open if it is generated by a c.e.
set of strings.

Definition (Hjorth,Nies)

A ML test is a sequence xUny of uniformly effectively open sets with
λpUnq ¤ 2�n. The test captures

�
n Un. MLR is the set of reals not

captured by any ML test.



Higher randomness

Theorem (Schnorr,Levin;Hjorth,Nies)

The following are equivalent for X P 2ω:

1. X P MLR.

2. KpXænq ¥� n.

Some work is needed because it is not the case that every
effectively open set is generated by a c.e. antichain. Some
approximation is required.



Randomness and computability

For a Turing operator Φ and a string σ, let

Φ�1rσs � tY P 2ω : ΦpYq ¥ σu.

(This may contain reals on which Φ is not total).

Theorem (Levin,Zvonkin;Miller,Yu)

The following are equivalent for X P 2ω:

1. X P MLR.

2. For any Turing operator Φ, λ
�
Φ�1rXæns

�
¤� 2�n.

3. For every A and Φ, if ΦpAq � X then the use ϕpA,nq ¥� n.

(2) is the continuous analogue of the discrete measure (prefix-free
complexity) characterisation of randomness, and is essentially the
same as the supermartingale characterisation of randomness.



Randomness and computability

The same holds for MLR, but we need to identify what operators we
use. A Turing operator is a c.e. set of pairs pσ, τq (the pair says that
with an oracle extending σ outputs τ ). We write A ¤T B if there is a
Turing functional Φ such that ΦpBq � A.

However, note that λpΦ�1rσsq is a supermartingale if Φ is consistent.
In countable world this is not an issue. In the higher setting, it is.



Interlude: think why we can’t always get consistency.



On consistency

Why would we consider inconsistent functionals?

First reason: “philosophical”. ComputableB should mean c.e.B and
co-c.e.B

If we require continuity, there is only one way to define c.e.B:

Definition
A c.e. operator is a c.e. set of pairs pσ, xq P 2 ω � ω. For B P 2ω and a
c.e. operator Φ, we let

ΦpBq � tx : Dσ   B. pσ, xq P Φu .

Sets of this form are called B-c.e.



More on consistency

Second reason: practical. Consider for example:

Theorem (Hirschfeldt,Miller)

If X P MLRzW2R then there is some noncomputable c.e. set A ¤T X.

The proof does not give a consistent functional. Or:

Theorem (Franklin,Ng;Yu)

The following are equivalent for X P MLR:

� X fails a difference test: there is a sequence xUny of uniformly
effectively open sets and an effectively closed set P such that
λpPX Unq ¤ 2�n and X P PX

�
n Un.

� X ¥T O.

(some more work is needed).



Randomness and continuity

Theorem (van Lambalgen)

A` B P MLR if and only if A P MLR and B P MLRA.

A corollary of Levin-Zvonkin:

Theorem (Miller,Yu)

Suppose that C is a test-based, reasonable randomness notion
stronger than MLR. Then C is downward-closed in the ¤T-degrees of
MLR.

(inconsistency must be dealt with).



Stronger notions of randomness



We mentioned in passing weak 2 randomness.

Theorem (Yu,Chong)

A left-c.e. random real is not weak 2 random.

They used the Lebesgue density theorem.

Simple proof.

Let A � Aωck
1
� lims ωck

1
As, a monotone approximation. The set

D �
 
As : s ¤ ωck

1

(

is closed. Let
Un �

¤

s ωck
1

rAs æns.

Then
�

n Un � D. It is countable, and so null.

Corollary

Every weak 2 random real is difference random.



The converse of Hirschfeldt-Miller is not known.

Theorem (folklore?)

A real X is weak 2 random if and only if it is not captured by a test
xUny with λpUnq ¤ 2�n and Un � rWfpnqs for some f ¤T H

1.

That is, W2R � MLRxH1y. The higher analogue fails, because there
is an O-computable X P W2R (Kleene basis theorem). Again, think of
the time trick required.



A new characterisation of W2R

Theorem
The following are equivalent for X P MLR:

� X R MLRxOy.

� X is captured by a ‘long test’: a test xUα : α   ωck
1 y, uniformly

c.e., with null intersection.

� X computes a noncomputable c.e. subset of ωck
1 .

� There is some O-computable non-c.e. set A � ω which is c.e.X



Π1
1 randomness

Theorem (Kechris)
There is a greatest null Π1

1 set.

Its complement is the collection of Π1
1-random reals. Since Π1

1 is
closed under number quantification, Π1

1 randomness implies weak 2
randomness. Again because of the basis theorem, it does not imply
MLRxOy.

Question (Nies,Yu)

� Is Π1
1-R � W2R?

� What is the Borel rank of Π1
1-R?

Remark (Chong,Nies,Yu)

For X P MLR, X P Π1
1-R if and only if ωX

1 � ωck
1 .

Steel showed that the Borel rank of reals which preserve ωck
1 is

ωck
1 � 2.



The Borel rank of Π1
1-R

Theorem
Π1

1-R is Π�
0
3 (and not Σ�

0
3).

Why? Regularity behaves:

Lemma
Let G be Π1

1. For every ε ¡ 0 there is an effectively closed set P � G

with λpG� Pq   ε.

Lemma
Let X P MLR. Then X P Π1

1-R if and only if for any effectively Gδ set G
there is some effectively closed P � G of positive measure
containing X.



A new inclusion

In fact, O can tell if an effectively closed set is null, and if it is
contained in a given effectively Gδ set. Hence:

Theorem
MLRxOy � Π1

1-R.

We still do not know if Π1
1-R � W2R. A positive answer will be a

strong converse to Hirschfeldt-Miller.



Lowness for randomness



K-triviality

Hjorth and Nies constructed noncomputable, K-trivial sets, but
showed that lowness for Π1

1-MLRand lowness for K are identical with
being computable.

However, they did not use continuous relativisation.

Theorem
The following are equivalent for A P 2ω:

1. A is K-trivial.

2. A is low for K (but we need to say what this means!)

3. A is low for MLR.

4. A is a base for MLR.




