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Abstract. Rademacher [Rad22], Steinhaus [Ste30] and Paley and Zygmund
[PZ30a, PZ30b, PZ32] initiated the extensive study of random series. Using
the theory of algorithmic randomness, which is a mix of computability theory
and probability theory, we investigate the effective content of some classical
theorems. We discuss how this is related to an old question of Kahane and
Bollobás. We also discuss how considerations of such algorithmic questions
about random series seems to lead to new notions of algorithmic randomness.

1. Introduction

The concern of this paper is the area of random trigonometric series, an area
going back to seminal papers of Paley and Zygmund in the 1930’s, and subse-
quently having a rich history, with applications to ergodic theory and Brownian
motion (see, for instance, Angst and Poly [AP21], Cohen and Cuny [CC06], Filip
et. al. [FJT19], Hill [Hi12], or Salem and Zygmund [SZ54]). The goal of the present
paper is to use ideas from the theory of algorithmic randomness, or algorithmic
information theory (see Li and Vitanyi [LV19], Downey and Hirschfeldt [DH10], or
Nies [Nie12]), to examine natural questions which grew from the theory of such
series. The area enables us to quantify, or calibrate, the amount of randomness (in
the sense of [DHNT06]) needed to prove classical theorems involving almost every-
where behaviour. In turn, this allows us to address questions about algorithmic
aspects of random series, which so far have been stated informally.

In particular, the original motivation for the present paper was an intriguing
comment by Bollobás in the introduction to his book [Bol01], originally in 1985. In
this introduction, Bollobás motivates the use of probabilistic ideas in graph theory.
He mentioned that earlier probabilistic application had been found in analysis via
three famous papers of Paley and Zygmund [PZ30a, PZ30b, PZ32]:

“Paley and Zygmund (1930a,b,1932) had investigated random se-
ries of functions. One of their results was that if the real numbers
cn satisfy

ř8

n“0 c
2
n “ 8 then

ř8

n“0˘cn cosnx fails to be a Fourier-
Lebesgue series for almost all choices of the signs. To exhibit a
sequence of signs with this property is surprisingly difficult: in-
deed there is no algorithm known which constructs an appropriate
sequence of signs from any sequence cn with

ř8

n“0 c
2
n “ 8.”

An almost identical question can be found even earlier in the 1968 version of Ka-
hane’s book (most recently, [Kah03], page 47), on random trigonometric series:
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“If
ř

c2
n “ 8, there exists a choice of signs˘ such that

ř

˘cn cospnt`
ϕnq is not a Fourier-Stieltjes series. A surprising fact is that no-
body knows how to construct these signs explicitly, but a random
choice works.”

Thus, this natural question is now at least 50 years old.
The first thing we need to do in answering such a question is to understand how

to formulate it mathematicially. Fortunately, we can use computability theory to
do this. The natural tool to use is Turing’s “oracle machine”. A positive solution to
Bollobás’s problem would consist of an algorithm which runs on Turing’s idealised
machine. On an “input tape” of the machine is written the sequence of reals xcny.
The machine runs indefinitely, and on an “output tape” is gradually written a
solution: a sequence xxny P t´1, 1u8 such that

ř

xncn cosnt is not a Fourier-
Lebesgue series. The main point is that there is a single algorithm which given the
input xcny produces a desired output xxny. We say that the outputs are uniformly
computable from the inputs.

Paradoxically, a positive solution to the Bollobás / Kahane question can be given
using the Paley-Zygmund almost everywhere result. Given an instance xcny of the
problem (with

ř

c2
n “ 8), we know that the collection of “untypical” x “ xxny P

t´1, 1u8, those for which
ř

xncn cosnt is a Fourier-Lebesgue series, is null. The
theory of algorithmic randomness allows us to inquire into how effectively null it
is. It turns out that the null set in this case is particularly simple.

Computability theory gives us the notion of an enumerable open set (also called
an effectively open set). Since we allow non-computable inputs, we give a definition
that can be relativised. For the following, a sequence of sets U0, U1, . . . is called
nested if U0 Ě U1 Ě U2 Ě ¨ ¨ ¨ .

Definition 1.1.
(a) A name of an open set U is a list xV0, V1, V2, . . .y of basic open sets such

that U “
Ť

n Vn.1
(b) A name of a sequence of open sets U0, U1, . . . is a sequence consisting of a

name of U0, a name of U1, . . . .
(c) A name of aGδ setG is a name of a nested sequence of open sets U0, U1, U2, . . .

such that G “
Ş

n Un.
(d) A name of an Fσ set is a name of its complement.

Potgieter [Pot18] first studied the complexity of the null sets arising from the
Paley-Zygmund theorem. Implicit in his calculations is the following:

Theorem 1.2. Given xcny and xϕny with
ř

c2
n “ 8, we can compute a name

of a null Fσ set containing all x P t´1, 1u8 for which
ř

xncn cospnt ` ϕnq is a
Fourier-Stieltjes series.

We can then quote a standard result from computability theory:

Fact 1.3. Given a name of a null Fσ set H, we can compute a point x R H.

Theorem 1.2 and Fact 1.3 together give a positive answer to Kahane’s question:

1For a closed interval, we can take the basis consisting of rational open intervals; in Cantor
space, the basis of clopen sets, each determined by finitely many values.
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Theorem 1.4. There is an algorithm which, given xcny and xϕny with
ř

c2
n “ 8,

outputs a sequence x P t´1, 1u8 for which
ř

xncn cospnt ` ϕnq is not a Fourier-
Stieltjes series.

We elaborate on Theorem 1.2 and Fact 1.3 in Section 2.

1.1. Algorithmic randomness. Algorithmic randomness ([DH10, Nie12, LV19])
seeks to give meaning to randomness of individual sequences. We say that a point x
in a computable measure space is random if it passes all “appropriately computable
tests” for randomness. The idea is that if only a specified kind of computable testing
processes are available to us, then we cannot distinguish x from one classically cho-
sen at random. For the reader unfamiliar with these concepts, we refer to Downey
and Hirschfeldt [DH19b, DH19a] for recent surveys, aimed at a lay audience, ex-
positing the ideas of this area. For our purposes, to give this a formal meaning,
a notion of randomness is determined by specifying a countable collection of null
sets; a point is then declared to be random if it belongs to none of these null sets.
Here is an example:

Definition 1.5 (Kurtz [Ku81], Wang [Wa96]).
(a) A set A is Kurtz null if it is contained in a null Fσ set which has a com-

putable name.
(b) A point is Kurtz random if it is not an element of any Kurtz null set.

Since there are only countably many algorithms, there are only countably many
computable names of Fσ sets. It follows that almost every point is Kurtz ran-
dom. Since we allow noncomputable instances xcny of theorems such as Paley and
Zygmund’s, we can use the relativised notion of randomness as well:

Definition 1.6. Let y be an element of Baire space ωω.2

(a) A set A is y-Kurtz null (or Kurtz null relative to y) if it is contained in a
null Fσ set which has a y-computable name.

(b) A point is y-Kurtz random (or Kurtz random relative to y) if it is not an
element of any y-Kurtz null set.

Again, for all y, almost every x is Kurtz random relative to y. With this termi-
nology, a consequence of Theorem 1.2 is:

Theorem 1.7. Let xcny and xϕny be sequences of real numbers with
ř

c2
n “ 8. If

x P t´1, 1u8 is Kurtz random relative to pxcny, xϕnyq, then
ř

xncn cospnt` ϕnq is
not a Fourier-Stieltjes series.

A different selection of naming of null sets results in possibly different notions of
randomness. For example, the most commonly used notion of randomness is named
after Martin-Löf [ML66]:

Definition 1.8. An ML-name of a null Gδ set G is a name of a sequence xUny of
open sets satisfying G “

Ş

n Un and µpUnq ď 2´n.3

2The point y is often referred to as an “oracle” in a computation. For our purposes, y will
usually be a code for a sequence xcny. Instead of Baire space we could take any other 0-dimensional
computable topological space, for example Cantor space.

3Implicit in the definition here is that we are working with a computable measure space pX,µq.
We will only need three examples of these, so do not give a general definition.
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We can then similarly define the notion of an ML-null set (being contained in
a set with a computable ML-name), ML-randomness (not an element of any ML-
null set), and the relativised version when an oracle y is present. This notion of
randomness is strictly stronger than Kurtz’s (Kurtz [Ku81]). Given a name of a
null Fσ set, we can computably produce an ML-name of the same set. Hence, every
Kurtz null set is ML-null, and so, every ML-random point is Kurtz random. The
converse fails. The distance between these notion is so large, that it is reflected in
the non-effective theory: there is a null set which is not contained in a null Fσ set
(whereas every null set is contained in a null Gδ set). This is witnessed computably,
in that there is an ML-null set which is not Kurtz null, and indeed, we can find a
point in an ML-null set which avoids all Kurtz null sets (See Downey and Hirschfeldt
[DH10], Ch.7, for instance).

We remark that Potgieter’s statement of Theorem 1.7 ([Pot18, Thm.4.1]) refers
only to ML-randomness. However, the “computable avoidance” property of Kurtz
null sets (Fact 1.3) fails for ML-null sets. In fact, there is a single ML-null set
which contains all computable points. Thus, ML-null sets do not suffice to answer
Kahane’s question.

1.2. Rademacher series. The Paley-Zygmund theorems were motivated by ques-
tions of Rademacher, who, along with Steinhaus [Ste30], seem to be the original
people to study random series. Quite aside from their intrinsic interest, random
trigonometric series arise quite naturally in, for example, Brownian motion, and
random noise in image processing (see for example [FJT19]). Since the seminal
Paley-Zygmund papers, the area has flowered into a significant area of analysis
(see, for example, [BP95]).

Rademacher [Rad22] studied the series
ř

xncn, for a given sequence of reals
xcny and randomly chosen xn P t´1, 1u. Such a series is called a Rademacher
series. Rademacher’s insight was that the convergence or divergence of the random
Rademacher series depended on the sum

ř8

n“0 c
2
n:

Theorem 1.9 ([Rad22]). Let xcny be a sequence of real numbers.
(a) If

ř

c2
n “ 8 then

ř

xncn diverges for almost all x P t´1, 1u8.
(b) If

ř

c2
n ă 8 then

ř

xncn converges for almost all x P t´1, 1u8.

Clearly, if
ř

c2
n “ 8, then choosing xn so as to make xncn ą 0 will cause

divergence of the Rademacher series. Nevertheless, it seems an interesting project to
understand the level of algorithmic randomness needed for convergence / divergence
of Rademacher series. To give an answer in the convergent case, we use the following
notion of randomness which lies between Kurtz and Martin-Löf randomness:

Definition 1.10. A Schnorr name of a null Gδ set G is a name of a nested
sequence xUny of open sets such that G “

Ş

n Un and µpUnq “ 2´n.

As above, we obtain the notions of Schnorr null sets and Schnorr random points.
From a name of a null Fσ set we can compute a Schnorr name for the set; every
Schnorr name of a null set is also an ML-name. Hence ML randomness implies
Schnorr randomness implies Kurtz randomness. Unlike with Kurtz, the difference
between ML- and Schnorr randomness cannot be expressed clasically: both ML-
null and Schnorr null sets are types of null Gδ sets. Here, the difference is purely
computational. A Schnorr name tells us what µpUnq is, while an ML-name witholds
that information: we only get an upper bound.
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The following holds:

Theorem 1.11. Let xcny be a sequence of real numbers and let x “ xxny P
t´1, 1u8.

(a) If
ř

c2
n “ 8 and x is Kurtz random relative to xcny then

ř

xncn diverges.
(b) If

ř

c2
n ă 8 and x is Schnorr random relative to pxcny,

ř

c2
nq then

ř

xncn
converges.

Part (b) was first shown by Ongay-Valverde and Tveite [OVT21]. Potgieter
[Pot18] showed that ML-randomness suffices for both cases. In Section 3 we give
simplified proofs of both parts.

Note that for part (b), to compute a Schnorr name for the appropriate null set,
the information required is not only the sequence xcny, but also, the value of the
sum

ř

c2
n. In Section 3 we also enquire what happens if this information is not

supplied: there, we show that a notion of randomness stronger than Martin-Löf’s
suffices. We also consider the question of a “reversal” – is it possible that some
level of randomness not only suffices but is actually required?

1.3. Pointwise convergence. Paley and Zygmund also considered pointwise con-
vergence of trigonometric series. They showed:

Theorem 1.12. Let xcny and xϕny be a sequences of real numbers.
(a) If

ř

c2
n ă 8, then for almost all x P t´1, 1u8,

ř

xncn cospnt ` ϕnq con-
verges for almost all t P r0, 2πs.

(b) If
ř

c2
n “ 8, then for almost all x P t´1, 1u8,

ř

xncn cospnt`ϕnq diverges
for almost all t P r0, 2πs.

In Section 4 we study the effective content of these theorems.

1.4. Preliminaries. We follow standard notation and terminology for computabil-
ity and randomness; standard references are [Soa87, DH10, Nie12]. We use λ to
denote Lebesgue measure on r0, 2πs. We use µ to denote the “fair-coin” measure
on Cantor space, or in general, a computable measure on a space. The spaces we
will use are pr0, 2πs, λq; pt´1, 1u8, µq; and their product.

We have not given formal details about the coding of real numbers and sequences
of real numbers into objects that can be manipulated by Turing machines (usually,
elements of Cantor space). The reason is that for our purposes, it makes no differ-
ence what particular coding we use. Turing, for example, used binary expansions
to define computable real numbers [Tur36]. A more modern approach uses fast-
converging Cauchy sequences of rational numbers (see for example [PER17, Wei00]).
It is recognised as a more versatile aproach, for example, because it makes addi-
tion of real numbers computable.4 However, for the purposes of convergence or
divergence of random series, small perturbations are immaterial. For example, if
|cn ´ dn| ď 2´n, then for all x P t´1, 1u8,

ř

xncn converges if and only if
ř

xndn
converges; this is because

ř

2´n converges absolutely. A similar phenomenon holds
for being a Fourier-Stieltjes series. Hence, when manipulating an oracle such as a
sequence xcny of real numbers, we may assume that we are actually working with a

4In the correction to [Tur36], Turing realised that binary expansions were a poor model, and
essentially used Cauchy sequences. However, in this seminal work he only considered functions
acting on the computable reals, whereas the modern “type 2” approach considers realitivised
computations, and so functions defined on all reals.
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rational approximation of the input. For instance, we can consider the input series
tcn | n P Nu to consist of rationals represented by some simple coding.

2. Fourier-Stieltjes series

We give a proof of Theorem 1.2.

Proof of Theorem 1.2: We are given xcny and xϕny. For each finite binary string
τ “ pτ0, τ1, . . . , τmq P t´1, 1um`1, let the corresponding Fejér sum be

στ ptq “
ÿ

nďm

´

1´ n

m

¯

τncn cos pnt` ϕnq .

This is a continuous function on r0, 2πs and the functions στ for τ P t´1, 1uă8
are uniformly computable relative to pxcny, xϕnyq. By [Kah03, Chap.5,Prop.1] (who
refers to [Zyg59]), for all x P t´1, 1u8,

ř

xncn cospnt ` ϕnq is Fourier-Stieltjes if
and only if

sup
m

‖σxæm‖1 ă 8,

where recall that ‖f‖1 “
ş2π
0 |fptq| dt. By [PER17, Ch.0,Thm.5], the values ‖στ‖1

are uniformly computable relative to the data. For each K, let
CK “

 

x P t´1, 1u8 : p@mq ‖σxæm‖1 ď K
(

.

Then each CK is closed, effectively so given the data. The required Fσ set is
thus

Ť

K CK ; this set is null by the classical result that under the assumption,
ř

xncn cospnt`ϕnq is not Fourier-Stieltjes for almost all x (see [Kah03, Ch.5,Prop.6]).5
�

For completeness, we provide a proof of Fact 1.3.

Proof of Fact 1.3: We are given a name of H “
Ť

n Fn, where each Fn is closed
and null. We construct a point x R H by open approximations. For simplicity,
we consider the case that the underlying space is Cantor space t0, 1u8. In that
case we construct x by specifying ever-longer initial segments of x. We define a
sequence xτny, starting with τ´1 being the empty string. Given τn´1, we let τn be
a proper extension of τn´1 such that rτns X Fn “ H. This we can do because the
name of Fn allows us to enumerate the clopen subsets of the complement of Fn;
the fact that this complement is co-null implies that it is dense, i.e., every clopen
set contains a clopen set disjoint from Fn. We let x “

Ť

n τn be the unique point
in the intersection of the clopen sets rτns. �

We remark that a stronger result holds: Schnorr null sets have the same “com-
putable escaping” property. Here the idea is that since we know µpUnq (where
G “

Ş

n Un is the null set named), and since we know that µpU1q ă 1, we can
construct a point x R U1 (and so not in G) by keeping µpU1|pxænqq ă 1 for all
initial segments xæn of x (here µpU |τq denotes the conditional measure). Finding
some i such that µpU1|pxænq̂ iq ă 1 can be done since we know µpU1q.

5We remark that Potgieter [Pot18, Thm.4.1] follows the same argument. However, he skips
the fact that integration of functions is computable, and as a result his sets BK (the intended
complements of our sets CK) may be too large: having some Riemann sum being greater than K
does not ensure that the integral is greater than K; we need to make use of the fact that the
functions are uniformly continuous (as a family of functions) to obtain error bounds for the
Riemann sums, as is done in [PER17].
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3. Rademacher series

3.1. Divergence of Rademacher series. If
ř

c2
n “ 8 then for almost all x P

t´1, 1u8,
ř

xncn diverges. Theorem 1.11(a) says that Kurtz randomnes is suffi-
cient. It follows from the following:

Proposition 3.1. Given xcny for which
ř

c2
n “ 8 we can (uniformly) compute a

name of a null Fσ set containing all x P t´1, 1u8 for which
ř

xncn converges.

Following [Pot18, Thm.3.4], we make use of the following Paley-Zygmund in-
equality (see [Kah03, Ch.3,Thm.3]): for any natural N and sequence of reals
a0, a1, . . . , aN´1, if

ř

năN a
2
n ą 1{4 then

(1) P
"

τ P t´1, 1uN :
ˇ

ˇ

ˇ

ˇ

ÿ

năN

τnan

ˇ

ˇ

ˇ

ˇ

ą
1
2

*

ą
1
6 ,

where P denotes the fair-coin probability measure on t´1, 1uN .

Proof. Given xcny with
ř

c2
n “ 8 we can compute a partition of N into intervals

I0 ă I1 ă ¨ ¨ ¨ (so min Ik`1 “ max Ik ` 1), with each interval Ii sufficiently long so
that

ÿ

nPIi

c2
n ą

1
4 .

For each i let

Ci “

"

x P t´1, 1u8 : p@j ě iq

ˇ

ˇ

ˇ

ˇ

ÿ

nPIj

xncn

ˇ

ˇ

ˇ

ˇ

ď
1
2

*

.

Then each Ci is closed and null (it is the product of infinitely many independent
clopen sets, each with measure at most 1{6). Hence, H “

Ť

i Ci is a null Fσ set
with xcny-computable name, that contains every x for which

ř

xncn converges. �

3.2. Convergence of Rademacher series. For convergence, we use the following
Kolmogorov equality (see for example [Kah03, Ch.3,Thm.1]): for any N , sequence
of real numbers xanynăN and any ε ą 0,

(2) P
"

τ P t´1, 1uN : max
măN

ˇ

ˇ

ˇ

ˇ

ÿ

nďm

τnan

ˇ

ˇ

ˇ

ˇ

ą ε

*

ď
1
ε2

ÿ

năN

a2
n.

The inequality holds for N “ 8 as well, in which case we need of course to re-
place max with sup. With the triangle inequality, we can deduce the following:

(3) P
"

τ P t´1, 1uN : max
kďmăN

ˇ

ˇ

ˇ

ˇ

m
ÿ

n“k

τnan

ˇ

ˇ

ˇ

ˇ

ą ε

*

ď
4
ε2

ÿ

năN

a2
n.

(In fact, the proof of Kolmogorov’s inequality gives the bound
ř

a2
n{ε

2.)
Toward building Schnorr null sets, we use the following:

Fact 3.2. Given both a name of a nested sequence xUny of open sets such that
µpUnq Ñ 0, and the sequence xµpUnqy, we can compute a Schnorr name of

Ş

n Un.

Proof. We enumerate the components xVny of a Schnorr name inductively. Given
the algorithm for Vn´1, we search for m “ mpnq sufficiently large so that µpUmq ă
2´n. We declare that Umpnq Ď Vn. Once we have enumerated Um up to some
small ε of measure, we can add some parts of Vn´1 not currently in Vn so that the
total measure enumerated into Vn is 2´n ´ ε. �
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As with divergence, Theorem 1.11(b) follows from:

Proposition 3.3. Given xcny for which
ř

c2
n ă 8, and the value of that sum, we

can (uniformly) compute a Schnorr name of a null set containing all x P t´1, 1u8
for which

ř

xncn diverges.

Proof. Given xcny and
ř

c2
n, we can compute a partition of N into intervals I0 ă

I1 ă ¨ ¨ ¨ such that for all k ě 1,
ř

nPIk
c2
n ă 2´3k´2, and so by the extended

Kolmogorov inequality (3), µpAkq ď 2´k, where

Ak “

"

x P t´1, 1u8 : max
JĎIk

ˇ

ˇ

ˇ

ˇ

ÿ

nPJ

xncn

ˇ

ˇ

ˇ

ˇ

ą 2´k
*

,

where the quantification is over all sub-intervals J Ď Ik. Let Um “
Ť

kąmAk. A
name of xUmy can be obtained computably given the data, and µpUmq is computable
as well given the data (Um,s “

Ťs
k“m`1 Ak is a clopen set approximating Um to

within 2´s). If x P t´1, 1u8 and
ř

xncn diverges then x P Ak for infinitely many k,
so x P

Ş

m Um. �

Remark 3.4. Potgieter [Pot18, Thm.3.2] uses, for each ε ą 0, the intersection of
the sets Vm “ tx : supkěm |

řk
n“m xncn| ą εu. Using Kolmogorov’s inequality,

we can compute a bound on the measure of each Vm, and so Potgieter shows that
every ML-random x makes

ř

xncn converge. It is not clear how to compute the
measure of Vm though, so the proof does not give Schnorr randomness. Further,
note that this argument does not give a single ML-null (relative to xcny) set which
captures all “deviant” x’s making

ř

xncn diverge; rather, for each ε ą 0, we have
an ML-null set Gε, and their union captures all such x’s. In the Schnorr context
also, this reminds us that Proposition 3.3 is stronger than Theorem 1.11(b); to
prove the latter, we could use infinitely many null sets rather than just one. The
union of infinitely many Schnorr null sets may fail to be Schnorr null because it
has worse descriptive complexity: it is Gδσ (or Σ0

3 in the notation of computability
/ set theory). In terms of convergence, this emphasises that the null set given by
Proposition 3.3 captures some x for which

ř

xncn converges (the set of diverging x
is again Σ0

3, not Gδ). The proof shows that if x is Schnorr random relative to xcny,
then not only does

ř

xncn converge, but we can put an effective upper bound on
how quickly this convergence happens.

We also remark that Ongay-Valverde and Tveite [OVT21, Lem.6.7] claim to
prove Theorem 1.11(b). They use sophisticated machinery developped by Rute
in an unpublished manuscript, rather than directly producing Schnorr null sets.
However, it appears that they only prove convegrence of a subsequence of the
partial sums

ř

nďk xncn.

What if we are given a sequence xcny with
ř

c2
n ă 8, but we are not told

what the sum is? It appears that Schnorr randomness will not suffices in this
case. For an upper bound, we use a notion of randomness slightly stronger than
ML-randomness. The following definition uses the notion of a left-c.e. (or lower
semicomputable) real number: one which is approximable from below, as a limit of
an increasing computable sequence of rational numbers; but which may fail to be
computable itself. We use the notion of OW-randomess, first defined in [BGK`16].

Definition 3.5. An OW-null set is a set contained in an intersection
Ş

n Un, where
xUny is a nested sequence of uniformly enumerable open sets such that for some
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left-c.e. real α and some increasing computable rational approximation xαny of α,
we have µpUnq ď α´ αn for all n.

The idea again is that the intersection is a Gδ set with a computable name, but
in this case we cannot compute µpUnq, and may not even have any computable
upper bound on that measure. Rather, the fact that µpUnq Ñ 0 is witnessed by the
fact that the approximation αn Ñ α converges. Computably, at very late stages s,
we discover that the sets Un for n ă s are “allowed to grow” by a large amount
(much larger than 2´s). This “amount of growing” eventually goes to 0, but we
cannot tell computably how quickly.

Proposition 3.6. Let xcny be such that
ř

c2
n ă 8. If x P t´1, 1u8 is OW-random

relative to xcny, then
ř

xncn converges.

Proof. The simpler proof by Potgieter works. For each ε ą 0 and m, let

Uεm “

#

x P t´1, 1u8 : sup
kěm

ˇ

ˇ

ˇ

ˇ

k
ÿ

n“m

xncn

ˇ

ˇ

ˇ

ˇ

ą ε

+

.

These sets are uniformly effectively open given xcny. Let αε “
1
ε2

ř

n c
2
n and

αε,m “ 1
ε2

ř

năm c
2
n. Then xαε,my is an increasing approximation of αε, and by

Kolmogorov’s inequality (2), µpUεmq ď αε´αε,m, hence
Ş

m U
ε
m is OW-null relative

to xcny. If x is OW-random relative to xcny, then x R
Ť

εą0
Ş

m U
ε
m; this shows that

ř

xncn converges. �

3.3. Lower bounds. The upper bounds proved in this section raise the natural
question: is randomness necessary for typical behavious for Rademacher series?
Here we have in mind results in the literature which characterise notions of ran-
domness using almost-everywhere theorems of analysis, for example:

Theorem 3.7 (Bratkka, Miller, Nies [BMN16]). A point x P r0, 1s is ML-random
if and only if every computable function f : r0, 1s Ñ R of bounded variation is
differentiable at x.

This is the effective version of Lebesgue’s theorem that every function of bounded
variation is differentiable almost everywhere. Similarly, the following is the effective
version of Birkhoff’s ergodic theorem:

Theorem 3.8 (Gács, Hoyrup, Rojas [GHR11]). Let pX,µq be a computable measure
space, and let T : X Ñ X be computable and ergodic. A point x P X is Schnorr
random if and only if for every computable function f : X Ñ R,

lim
nÑ8

1
n

ÿ

iăn

fpT ixq “

ż

f dµ.

Is it possible, for example, that Theorem 1.11(a) characterises Kurtz random-
ness? To show that, a natural approach would be to take a Kurtz null set A and
somehow produce a computable sequence xcny with

ř

c2
n “ 8 and

ř

xncn conver-
gent for all x P A. Currently, such a “reversal” is not known, and it is suspected
that typicality with respect to convergence and divergence of Rademacher series is
in fact a new phenomenon in computability theory, not equivalent to any known
randomness notion. We have the following partial converse.
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Proposition 3.9. Suppose that P Ă t´1, 1u8 is effectively closed, and that there
is a computable tree T Ă t´1, 1uă8 such that P “ rT s and for all n, T contains
fewer than log2 n many strings of length n. Then there is a computable sequence
xcny such that

ř

c2
n “ 8, but

ř

xncn converges for all x P P .

Such an effectively closed set must be null, as log2 n{2n Ñ 0, and so (as is
necessary) no x P P is Kurtz random. We note that very small effectively closed
sets of [Bin05] have this property.

Proof. Let Ik “ r2k, 2k`1q. For each k, since there are at most k strings of length
2k`1 in T , there is some nk P Ik such that τnk is a constant value ik for all τ P T
of length 2k`1. We let cnk “ p´1qkik{

?
k and cn “ 0 if n ‰ nk for all k. �

The following lower bound is also weaker than randomness. A sequence x P
t´1, 1u8 is bi-immune if neither tn : xn “ 1u nor its complement tn : xn “ ´1u
contain an infinite computable set (equivalently, an infinite computably enumerable
set). All Kurtz random sequences are bi-immune.

Proposition 3.10. If x is not bi-immune then there is a computable sequence xcny
with

ř

c2
n “ 8 but

ř

xncn converges.

Proof. Let A be an infinite computable set such that either xn “ 1 for all n P A, or
xn “ ´1 for all n P A. Let n1, n2, . . . be the increasing enumeration of the elements
of A. Let cnk “ p´1qk{

?
k; if n ‰ nk for any k let cn “ 0. �

A similar approach in both cases (say setting cnk “ 1{k) also shows atypicality
with respect to convergence: for all x in P as in Proposition 3.9, and all x which
are not bi-immune, we can find a computable xcny with

ř

c2
n ă 8 and computable,

but
ř

xncn divergent.

4. Pointwise convergence and divergence of trigonometric series

Paley and Zygmund studied the pointwise convergence and divergence of random
trigonometric series. As mentioned, they showed, for example, that if

ř

c2
n “

8 then for almost all x P t´1, 1u8,
ř

xncn cospnt ` ϕnq diverges for almost all
t P r0, 2πs. The first natural question in the effective realm is to ask, how much
randomness of x ensures that

ř

xncn cospnt`ϕnq diverges almost everywhere. This
was addressed by Potgieter [Pot18, Lem.4.1], stating that ML-randomness suffices.
While being a little opaque, his proof seems to extend to Kurtz randomness.

We can refine the question by asking not only for almost everywhere divergence,
but also, what level of randomness of t ensures this divergence. This leads us to
consider randomness in the product space t´1, 1u8 ˆ r0, 2πs, which is defined as
expected, using the product measure µˆ λ.

Theorem 4.1. Let xcny and xϕny be sequences of real numbers, and suppose that
ř

c2
n “ 8. If px, tq P t´1, 1u8 ˆ r0, 2πs is Schnorr random relative to pxcny, xϕnyq

then
ř

xncn cospnt` ϕnq diverges.

We do not know as yet whether Kurtz randomness suffices. We note that this
theorem implies that if x is Schnorr random then

ř

xncn cospnt ` ϕnq diverges
almost everywhere.
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Proof. For brevity, let ξnptq “ cn cospnt`ϕnq. By [Kah03, Ch.5,Prop.4], for almost
all t P r0, 2πs,

ř

ξ2
nptq “ 8. The set R of t for which this fails is Fσ, with a name

computable in the data pxcny, xϕnyq, and so, if t P r0, 2πs is Kurtz random relative
to the data then t R R.

Let Φ: t0, 1uω Ñ r0, 2πs be the stretching by a factor of 2π of the usual binary
representation of reals in the unit interval: formally, Φpyq “ 2π

ř

ně0 yn2´pn`1q.
For each finite binary string σ P t0, 1uă8, we let vσw “ Φrσs be the image under Φ
of the clopen set rσs; it is a closed interval of length 2π2´|σ|, where |σ| denotes the
length of σ.

For each σ and m ď |σ| we can compute mintPvσw ξ2
mptq: these functions are

uniformly computable (given the data pxcny, xϕnyq), and as continuous functions
on these closed intervals obtain minima; these minima are uniformly computable,
see [PER17, Ch.0,Thm.7]. Based on these minima, we can inductively (on σ)
compute intervals I0,σ ă I1,σ ă ¨ ¨ ¨ ă Ikpσq,σ which for each σ partition an initial
segment of N, and have the following properties:

(a) For all σ, all k ď kpσq and all t P vσw,
ř

nPIk,σ
ξ2
nptq ą 1{4;

(b) If σ ď τ (τ extends σ) then kpσq ď kpτq and for all k ď kpσq, Ik,σ “ Ik,τ ;
(c) If t “ Φpyq and t R R (so

ř

ξ2
nptq “ 8) then limn kpyænq “ 8.

Now, for each pair m ď N , let

Crm,Ns “
$

&

%

px,Φpyqq : pDσ ă yq kpσq ě N & p@k P rm,N sq

ˇ

ˇ

ˇ

ˇ

ÿ

nPIk,σ

xnξnptq

ˇ

ˇ

ˇ

ˇ

ď
1
2

,

.

-

.

Each Crm,Ns is open (with name uniformly computable in the data), the pµ ˆ
λq-measure of Crm,Ns is bounded by p1{6qN´m (using (1)), and this measure is
uniformly computable from the data. Hence, for each m,

Ş

N Crm,Ns is Schnorr
null relative to the data.

Suppose that px, tq is Schnorr random relative to the data. Then t is Schnorr
random, hence Kurtz random, so t R R, and t is not a “binary rational” 2πk2´n
of the interval r0, 2πs, i.e., y “ Φ´1ptq is well-defined, and kpyænq Ñ 8. This,
together with px, tq R

Ť

m

Ş

N Crm,Ns implies the divergence of
ř

xnξnptq. �

For convergence, the situation is much simpler.

Theorem 4.2. Let xcny and xϕny be sequences of real numbers, and suppose
that

ř

c2
n ă 8. If px, tq P t´1, 1u8 ˆ r0, 2πs is Schnorr random relative to

pxcny, xϕny,
ř

c2
nq then

ř

xncn cospnt` ϕnq converges.

Proof. Define ξn as above. The main point is that since | cospnt ` ϕnq| ď 1, for
all t P r0, 2πs we have

ř

ξ2
nptq ă 8, indeed these are uniformly bounded by

ř

c2
n.

Hence, we can apply the proof of Proposition 3.3. We define the intervals I0 ă I1 ă
¨ ¨ ¨ in the same way, and unlike the previous proof, they do not depend on t. The
sets

Ak “

"

px, tq : max
JĎIk

ˇ

ˇ

ˇ

ˇ

ÿ

nPJ

xnξnptq

ˇ

ˇ

ˇ

ˇ

ą 2´k
*

are open and have pµˆλq-measue bounded by 2´k (by Fubini’s theorem). The rest
of the proof follows that of Proposition 3.3. �
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5. Further lines of investigation

It seems to us that there are many opportunities for further research in this
area. To begin, one can follow the rich literature on random series. One can discuss
convergence in Lp, or convergence to continuous functions (Billard’s theorem, see
[Kah03, Ch.5]).

There are other aspects of computability theory which pertain to this topic. One
can, for example, ask about the complexity of the collection of x P t´1, 1u8 which
display typical behaviour with respect to convergence or divergence of Rademacher
series or trigonometric series. This complexity could be measured by the Medvedev
or Muchnik lattice of sets of reals (see for example [Sim05, Sor96]); here we would
consider typical behaviour with respect to computable series.

A more nuanced approach involves the Weihrauch lattice [BG11, GM09]. Here
we formulate “problems”, which are binary relations between “instances” and “so-
lutions”. For example, one such problem could be that of Rademacher convergence:
an instance is a sequence xcny (not necessarily computable) such that

ř

c2
n ă 8; a

solution is any x P t´1, 1u8 which makes
ř

xncn converge. Weihrauch reducibility
(along with its strong form) is a tool for comparing the complexity of such problems.

Framing the study in terms of Weihrauch problems is related to that of the
Medvedev lattice: every Weihrauch problem is associated with both a “highness
class” and a “nonlowness class” in the Medvedev lattice. For example, for the
Rademacher convergence problem, the highness class is the collection of oracles
computing x P t´1, 1u8 which make every computable instance xcny converge.
The non-lowness class is the collection of oracles computing a series xcny with no
computable solution x.

The same view is related to the study of cardinal characteristics of the continuum
in set theory. Indeed, this was the motivation in [OVT21]: Theorem 1.11(b) is used
there to build a strong Weihrauch reduction from the “Schnorr capturing” problem
to the “rearrangement problem”. This immediately implies two theorems, one in
set theory and one in computability: the null covering number covpN q is bounded
by the “rearrangement number” rr (see [BBB`20]); every Schnorr random degree is
“imperturable”. In the case of Rademacher convergence, for example, the associated
cardinal is the smallest size of a subset A Ď t´1, 1u8 such that whenever

ř

c2
n,

there is some x P A which makes
ř

xncn converge. For a detailed discussion of the
connection between (strong) Weihrauch reducibility, cardinal characteristics, and
non-lowness notions, see [GKT19].
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