
PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND
CUPPING

ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

Abstract. We show that the class of c.e. degrees that can be joined to 0′ by

an array computable c.e. degree properly contains the class of promptly simple
degrees.

1. Introduction

The main class examined in this paper is the class of array computable degrees
introduced by Downey, Jockusch and Stob in [11, 12]. We recall from [11] that a c.e.
set A is array noncomputable iff for all g 6wtt 0′ there is a function f 6T A that is
not dominated by g; that is, for infinitely many x we have f(x) > g(x). Whilst the
original definition was in terms of “very strong arrays”, the given characterization
highlights the fact that being array noncomputable is akin to being non-low2, where
A is non-low2 using the same definition, but replacing 6wtt by 6T . Indeed in
[12], the authors showed that the array noncomputable degrees share many of the
properties of the non-low2 degrees with respect to cupping, lattice embeddings and
the like.

The importance of the notion of array noncomputability has been highlighted
by recent work on randomness and domination/tracing properties in computability
theory. (For examples, see Cholak, Coles, Downey and Herrmann [3], Downey,
Hirschfeldt, Nies, Terwijn [10], Downey and Hirschfeldt [8], Kummer [15], Schaeffer
[21], Stephan and Wu [18], Terwijn and Zambella [24].) For instance, Kummer
[15] shows that the c.e. degrees containing containing c.e. sets of high Kolmogorov
complexity are exactly the array noncomputable degrees. Nies [19] shows that the
K-trivial degrees are all array computable. Ng, Stephan and Wu [18] prove the
interesting result that a c.e. degree is array computable if and only if the degree
consists of only reals in the field generated by the left c.e. reals. Ismukhametov
[14] proves the remarkable result that the array computable c.e. degrees are the
only c.e. degrees that have strong minimal covers in the Turing degrees, and hence
the array computable degrees are definable in the Turing degrees if the computably
enumerable degrees are definable.

In this paper we plan to add to our understanding of the lowness concept of
array computability.

Two of the most influential concepts in the computability theory of the com-
putably enumerable sets are the concepts of lowness and prompt simplicity.

The first, second and fourth author’s research was supported by the Marsden Fund of New
Zealand, via postdoctoral fellowships. The second and third author were supported by a grant from
the Singapore Institute for Mathematical Sciences. Most of this research was carried out whilst

the first second and third authors were supported by the Singapore IMS during the Computational
Prospects at Infinity programme, in 2005.

1

2 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

The former concerns the intrinsic information content of a set; to say that a set is
low for some class would indicate that it has little information content and resembles
a computable set relative to the class in question. For instance, the classical notion
of lowness, that A′ ≡T 0′, says that the jump operator cannot distinguish between
a low set and the empty set as oracles using Turing reducibility. There is a huge
literature on low (c.e.) sets and how they resemble computable sets. For example,
Soare [22] proved that if a c.e. set A is low then its lattice of c.e. supersets is
effectively isomorphic to the lattice of all c.e. sets, and Robinson [20] proved that
Sacks’s splitting theorem can be carried out above any low c.e. degree, whereas
Lachlan [16] demonstrated that this fact is not true for a general incomplete c.e.
degree.

Prompt simplicity was introduced by Maass [17] in connection with automor-
phisms of the lattice of c.e. sets. Recall that a co-infinite c.e. set A is called promptly
simple iff there is a computable function p, and an enumeration of A = ∪sAs, such
that for all e < ω, if the c.e. set We (the eth c.e. set in the canonical indexing) is
infinite, then

∃∞x, s [x ∈We, at s & x ∈ Ap(s)].

Thus, prompt simplicity is a dynamic property which expresses how fast elements
can enter a set. It turns out that this concept, and variations, was the key to the
solution of many longstanding questions about the lattice of c.e. sets as discussed
in Harrington and Soare [13].

Roughly speaking, a promptly simple set resembles the halting problem in its
dynamic properties. In a beautiful paper, Ambos-Spies, Jockusch, Shore and Soare
[1] showed that lowness and promptness are intimately related. In particular, they
showed that whilst promptly simple sets might not be Turing complete, they did
indeed resemble complete sets in that they were low cuppable.

Theorem 1.1 ([1]). If A is promptly simple then there is a low set B such that

A⊕B ≡T 0′.

In fact, the main result of [1] says a lot more. The promptly simple degrees
coincide with the low cuppable ones; and the promptly simple degrees and the
cappable degrees (i.e. those a for which there is a b 6= 0 with a ∩ b = 0) form an
algebraic decomposition of the c.e. degrees into a strong filter and an ideal.

In this paper we will re-examine Theorem 1.1 with respect to array computability.
Recent work on concepts like K-triviality (e.g., Nies [19]) and almost deep degrees
(Cholak, Grozsek, Slaman [4]) as well as older work of Bickford and Mills [2], shows
that the low degrees have a deep and poorly understood structure.

We prove the following (everything here is c.e.).

Theorem 1.2. Every promptly simple degree is cuppable to 0′ by an array com-
putable degree.

The proof of this result uses a new technique involving certain priority re-
arrangements which is of independent technical interest. This result might lead
the reader to believe that AC cupping could be used to characterize the promptly
simple degrees, but this hope fails.

Theorem 1.3. There is a degree that is cuppable by array computable degrees but
which is not promptly simple.

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 3

One question we have not been able to answer is Nies’ question of whether every
promptly simple degree is superlow cuppable (recall that A is superlow if A′ ≡tt 0′).
A positive answer would supersede our result because all superlow c.e. degrees are
array computable (Schaeffer [21]).1 We remark that in some sense an affirmative
answer would be the best one could hope for, in terms of the concepts mentioned.
A degree a is almost deep if for all low b, a ∪ b is also low, and hence, since there
are low promptly simple degrees, they certainly cannot all be cupped by an almost
deep degree; moreover, the K-trivial degrees are bounded above by an incomplete
(in fact, a low2) degree, and hence again (using the fact that no upper cone of the
c.e. degrees can avoid the promptly simple degrees, [1]) there are promptly simple
degrees that cannot be cupped to 0′ by a K-trivial degree.

A related question is whether the low c.e. degrees and the super-low c.e. degrees
are elementarily equivalent. In a later paper, Downey, Greenberg and Weber [7]
show that this is not the case by showing that no array noncomputable degree can
bound a 1-3-1, whereas there are low embeddings of 1-3-1. We also remark that
the present paper led the authors to examine other permitting notions relating
to array computability and domination. It turns out that another related notion
(of being totally ω-c.e.) corresponds exactly to embeddability of certain upper
semilattices in the c.e. degrees. These results and further generalizations can be
found in Downey, Greenberg and Weber [7] and Downey and Greenberg [6]. These
notions of permitting arise as a modification of the following characterization of
array computability:

Definition 1.4. Let f : ω → ω. A ∆0
2 function g is f-c.e. if there is an effective

approximation g(x, s) of g (that is, g(·) = lims g(·, s)) such that for all x,

|{s : g(x, s) 6= g(x, s+ 1)}| ≤ f(x).

Lemma 1.5 ([11]). Let f : ω → ω be strictly increasing and computable. Then a
c.e. set A is array computable iff every g 6T A is f-c.e.

In the sequel we use either the identity function or x 7→ x+ 1 for f .

1.1. Notation. Notation is standard and follows Soare [23, XIV, s.4].

2. PS ⊆ AC cuppable

In this section we prove Theorem 1.2.

We are given a computably enumerable set A that permits promptly. In response,
we enumerate a set B that will be array computable and join A up to 0′.

We define moving markers γ(m). At any given time, a marker may be defined
or undefined; when we erase a marker it means that we make it undefined.

Let 〈Ψe〉 be an effective enumeration of all Turing functionals. To ensure that
B is array computable, the requirement Qe will, in the case that Ψe(B) = g is
total, construct an id-c.e. approximation for g. The strategy for Qe will not be to
impose restraint (since we cannot restrain the global join requirement) but rather
to remove potentially dangerous Ψe(B) computations by “disengaging” γ-markers
from computations.

1An intermediate question that we do not know the answer to is whether every promptly simple

degree is cuppable by a low array computable degree.

4 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

The construction is done on a tree of strategies — the strategy for Qe measures
whether or not Ψe′(B) is total, for all e′ < e. The eth level is devoted to Qe, and
each node has two outcomes, the infinite and the finite (the infinite is stronger).
As is customary, if α is a node working for Qe then we let Ψα = Ψe.

By the recursion theorem (and the slowdown lemma), let p be a computable
function that witnesses that A permits promptly with respect to an array of c.e.
sets which are enumerated during the construction (an enumeration occurs when
a number is tested for prompt permission; in a flashback-like narrative, we will
specify the sets we need during the verifications).

General instructions about erasure are: if γ(m) is enumerated into B, then it is
immediately erased; if γ(m) is erased, then all γ(n) for n > m are also immediately
erased.

For any Qe-node α and any input k we determine, at stage s, whether to accept
a Ψα(B, k) computation or not. A computation will not be accepted if there are
too many γ-markers below its use. For each k we will determine a number n (which
decreases with s, until α is initialised) such that Ψα(B, k) is believed only if for
m > n, there are no γ(m)-markers below the use ψα(k). The way this is done
during the construction is to define, at every stage, a (non-decreasing) sequence
〈kα(m)〉 such that kα(m) is the least input k that does not want to disengage m.
So a computation Ψα(B, k) ↓ is α-confirmed if for all m, γ(m) ↓< ψα(k) implies
k > kα(m).

2.1. Construction. At stage 0, we begin by defining, for every node α of level e
on the tree, kα(m) = 0 for m 6 e and kα(m) = m− e otherwise.

At stage s, if m enters 0′, then we put γ(m) [s] into B (and γ(m) remains
undefined for ever).

Next, we construct the path of nodes accessible at stage s. We also describe
which nodes are expansionary at stage s.

Suppose that a node α is accessible at s; let t be the last α-expansionary stage
(0 if there is no such stage). Then s is α-expansionary if dom Ψα(B)[s] > t.

If s is not α-expansionary then the finite outcome of α is accessible at s; α does
not act at s.

The computation Ψα(B) [s] is unconfirmed due to m if for some k < dom Ψα(B)
we have both k < kα(m) and γ(m) < ψα(k) (in particular, γ(m) is defined). Let m
be the smallest number such that Ψα(B) is unconfirmed due to m. (What to do if
Ψα(B) is confirmed? Not likely, but then αa∞ is accessible and α does nothing).

First, α asks for prompt permission from A: it looks for a change in A � γ(m)
between stages s and p(s). If permission is granted, then α erases γ(m), and the
infinite outcome of α is accessible.

If permission is not granted, then α enumerates γ(m) into B (and erases it).
In this case, we end the stage — there are no more accessible nodes. Also, we
update kβ for all nodes β such that βa∞ ⊆ α. We redefine kβ(m) = s (and to keep
things in order, redefine kβ(m + i) = s + i for all i < ω). [This is because Ψβ(B)
computations which may have been confirmed were nonetheless injured by γ(m)
entering B. To avoid a repeated injury (by the same m), the injured computations
need to get less tolerant; from now, they too wish to disengage m.]

At the end of the stage, all nodes β which lie to the right of the path of accessible
nodes are initialised. This means that we redefine kβ(m) = 0 for all m < s.

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 5

Finally, for every m < s which is not yet in 0′ and such that γ(m) is not defined,
we redefine γ(m) with large value (keeping the sequence 〈γ(m)〉 increasing).

2.2. Verifications. Define the true path to be the leftmost path of nodes that are
accessible infinitely often.

Lemma 2.1. The true path is infinite; each node on the true path is eventually
never initialised.

Proof. Let α be a node on the true path. If there are finitely many α-expansionary
stages then the finite outcome of α is on the true path and is eventually never
initialised.

Suppose that there are infinitely many α-expansionary stages. If at infinitely
many of those stages we find Ψα(B) to be confirmed then αa∞ is on the true path.
Otherwise, we enumerate an auxiliary set U = Uα; if at an expansionary stage s,
α asks for permission from A to erase γ(m), then we enumerate γ(m) into U at s.
Then U is infinite. By the properties of p, there are infinitely many stages at which
A gives α permission to erase the marker; at each such stage, αa∞ is accessible;
so αa∞ is on the true path. �

Claim 2.2. Let α be a node and let m < ω. Suppose that at some stage t,
kα(m) = 0. Then at no stage s > t does α erase γ(m).

Proof. Denote by kα(m) [s] the value of kα(m) at the beginning of stage s.

By induction on s < ω, we show that for all α such that kα(m) = 0 [s],
(1) For all β extending α, kβ(m) = 0 [s].
(2) α does not erase γ(m) at s.
(3) kα(m) = 0 [s+ 1].

First note that (1) holds at stage s = 0 by the initial definition of kα and kβ .
(2) and (3) hold at 0 because at stage 0 nobody does anything.

Suppose that (1)-(3) hold for stage s− 1. Suppose that kα(m) = 0 [s].
Let β be any node extending α. If kα(m) = 0 [s − 1] then by (1)(α, s − 1),

kβ(m) = 0 [s− 1]; and then by (3)(β, s− 1), kβ(m) = 0 [s]. Otherwise, kα(m) was
set to be 0 during stage s − 1, which means that α was initialised at stage s − 1.
Then β was also initialised at stage s − 1 and so kβ(m) = 0 [s]. This establishes
(1)(s).

Now at s, α only wants to disengage from m if for some k < kα(m) [s] we have
γ(m) < ψα(k). Since there is no such k, α does not erase m at s and so (2)(s)
holds.
kα(m) is increased at stage s only if some node β extending α erases m at

s. By (1)(s) and (2)(s), no node β extending α erases m at s. It follows that
kα(m) [s+ 1] = kα(m) [s] = 0. �

Claim 2.3. For every m, γ(m) is erased only finitely often.

Proof. We show this by induction on m. Assume the claim holds up to m− 1.

Let α0 ⊂ α1 ⊂ · · · ⊂ αm−1 be the first m nodes on the true path.
Let s∗ = s∗(m) be a stage as follows:
(1) αm−1 is never initialised after s∗;

6 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

(2) αm−1 is accessible at s∗ (so s∗ > m and every node β which lies to the
right of αm−1 is initialised at s∗);

(3) No γ(n) for n < m is ever erased after s∗.

The assumptions on s∗, together with the initial definitions of kβ and with
Claim 2.2, show that after s∗, only nodes among α0, . . . , αm−1 may erase γ(m). By
reverse induction on i < m, we show that after some stage, αi does not erase γ(m).

Suppose that after some stage si > s∗, no node extending αi erases γ(m). Of
course sm−1 exists.

At si, kαi
(m) reaches a fixed value.

Suppose for contradiction that αi erases γ(m) infinitely often. At any stage s at
which αi erases γ(m), we enumerate γ(m) [s] into an auxiliary set U = Uαi,m. By
our assumptions on p, there is some stage s > si at which dom Ψαi

(B) > kαi
(m)

and at which αi receives permission from A to erase γ(m) without enumerating it
into B (there are infinitely many stages at which permission is granted).

The computation Ψαi
(B) � kαi

(m) which we have at stage s is not injured at s
and in fact will never be injured and always be confirmed. Thus after stage s, αi

never erases γ(m). �

Corollary 2.4. 0′ 6T A⊕B.

id-c.e. approximations. Suppose that Ψe(B) is total. Let α be on the eth level of the
true path (so Ψα = Ψe). We know that there are infinitely many α-expansionary
stages and hence αa∞ is on the true path.

Let r∗ be the last stage at which α is initialised. Thus we have kα(m) = 0 from
stage r∗ onwards exactly for m 6 e or m 6 r∗ (and we may assume that r∗ > e).
For m > r∗ we have kα(m) > m− e from stage r∗ onwards.

Let s∗ be a stage after which the marker γ(r∗) is never erased.

Definition 2.5. We believe a computation Ψα(k) [s] if s > s∗, αa∞ is accessible
at s, and if for all β such that βa∞ ⊆ α and for all m such that k > kα(m) [s] we
have dom Ψβ(B) > kβ(m) [s].

We can effectively recognise believable computations.

Claim 2.6. The correct Ψα(k) computation is eventually believable at every stage
at which αa∞ is accessible.

Proof. For all m such that the final value of kα(m) is at most k and each β as
above, kβ(m) eventually stabilizes, and dom Ψβ(B) goes to infinity on the stages
at which αa∞ is accessible. As there are only finitely many such m (m < r∗ or
m 6 e+k), there is a stage at which all such kβ(m) have stabilized and dom Ψβ(B)
has surpassed them. �

Claim 2.7. Suppose that Ψα(k) is believable at s. Then it is confirmed at s (perhaps
after α erased a marker).

Proof. Because αa∞ is accessible at s. �

Claim 2.8. Suppose that Ψα(k) is believable at stage s, and that the computation
is injured at stage t > s, by some γ(m) [t]. Then either m enters 0′ at t, or γ(m) is
enumerated into B by some node extending αa∞ (so k < kα(m) from t onwards).

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 7

This shows that different believable Ψα(k) computations are injured by γ(m), for
any givenm, at most once: no number goes into 0′ more than once; and if k < kα(m)
from t onwards then no computation Ψα(k) [s′] with γ(m) < ψα(k) [s′] is believable.
Also, there are at most k such m’s: suppose that Ψα(k) [s] is believable and that
γ(m) < ψα(k) [s] injures the computation later. Then k > kα(m) [s] > m − e (as
m < r∗ is impossible). Overall we see that the believable computations form an
id-c.e. approximation for Ψe(B).

Proof of claim 2.8: Assume m does not enter 0′ at t. We show that the node that
enumerates γ(m) into B at stage t must extend αa∞.

We have m < γ(m) [t] < ψα(k) [s] < s. Every β which lies to the right of αa∞
is initialised at stage s and so we set kβ(m) = 0 at s. By claim 2.2, β never erases
γ(m) after s.

Of course, α is not initialised after s and so γ(m) cannot be erased at t by some
node β such that α extends the finite outcome of β. It remains to see that no β
such that βa∞ ⊆ α erases γ(m) at t.

If it does, then there is some l such that Ψβ(l) ↓ [t] and γ(m) < ψβ(l) [t] but
l < kβ(m) [t]. Now no-one erased γ(m) between stages s and t so γ(m) [s] = γ(m) [t]
and kβ(m) [s] = kβ(m) [t]. Thus l < kβ(m) [s]. The computation Ψα(k) [s] is
believable so it is confirmed: k > kα(m) [s]. By the definition of believability we
have dom Ψβ(B) [s] > kβ(m) [s] > l.

At s, the computation Ψβ(l) is confirmed. This means that we must have
γ(m) [s] > ψβ(l) [s], for kβ(m) [s] > l. No markers γ(n) for n 6 m were erased be-
tween s and t; so B didn’t change between s and t on numbers below ψβ(l) [s]. Thus
ψβ(l) [s] = ψβ(l) [t] and altogether we get a contradiction to γ(m) [t] < ψβ(l) [t]. �

3. AC cuppable 6= PS

In this section we prove Theorem 1.3.
To do this, we construct a c.e. set A; we construct a c.e. set B such that a and

b form a minimal pair (thus ensuring that a is not promptly simple — see Ambos-
Spies, Jockusch, Shore and Soare [1]); and we construct a c.e. set C that is array
computable, and a Turing functional Γ such that Γ(A⊕ C) = 0′.

We need to meet the following requirements:

Pe : B 6= We

Ne : Φe(A) = Φe(B) = g ⇒ g ≡T 0
Qi : Ψi(C) total ⇒ Ψi(C) is (id + 1)-c.e.

Note that the fact that B is not computable implies that neither A nor C are
complete or computable.

3.1. The strategy. We first discuss the basic strategy for meeting each require-
ment. The first two are familiar: Pe is met by following the Friedberg-Muchnik
strategy of picking a follower x and holding onto it until it enters We, in which case
it is enumerated into B as well. Ne is met by following the Lachlan strategy of
monitoring the length of agreement, and allowing only one side of the computations
Φe(A) and Φe(B) be injured at a time; our construction will be done on a tree of
strategies, and so the restraint will be implicit in the machinery of the tree.

8 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

To meet a Qi requirement, we construct an (id+1)-c.e. approximation for Ψi(C)
by preserving each computation Ψi(C, x). To do this, we prevent most numbers
from entering C.

As mentioned, we make use of a tree of strategies. The tree is used to arrange
the restraints imposed by Ne and Qi requirements, which are of infinitary type.

We order the requirements effectively and let each level of the tree be devoted to
a single requirement. Each Q- or N -node on the tree has two children representing
two possible outcomes. The outcomes are f (finite) and ∞ (infinite), the latter
guessing totality of Ψi(C) or that Φe(A) = Φe(B) are total. The P -nodes do not
impose any restraint and so have a single outcome.

The priority ordering on the tree is the lexicographic ordering generated by the
ordering ∞ < f . We say that a node α lies to the left of node β if α is stronger
than β but they are not ⊂-comparable.

The driving force behind the construction is numbers entering 0′. At stage s
we have an increasing sequence of markers (Γ-uses) γ(0, s), . . . , γ(s, s). When at
some stage s, a number m enters 0′, we must put γ(m) = γ(m, s) into either A
or C. Some nodes will have a preference between A and C: for example, Q-nodes
may want to prevent γ(m) from entering C, and so will favour A. Another possible
scenario is that an N -node, currently during an expansionary stage, allows us to
put number into either A or B but not both. A longer P -node might wish to
enumerate a follower into B; it would thus prefer γ(m) to go into C rather than
A. The third possibility is that an N -node impose finite restraint on A while at a
non-expansionary stage; again it will have an opinion as to where γ(m) should go.

As expected, the final decision lies with the strongest node that has any prefer-
ence.

The first scenario described (a Q-node α wants to protect a computation and so
puts a marker into A) needs more elaboration. As described so far, it is possible
that α acts infinitely many times, each time injuring some N -node β ⊇ α_∞. To
avoid this, α needs to take preventative action. Thus, instead of simply removing
markers when they pose problems, whenever α sees a new computation (on x, say)
that it wants to preserve, it puts all markers that are potentially dangerous in the
future (that is, all markers between x and its Ψi(C)-use) into A straight away.
Injury for β is avoided because at this stage (compared with the stage at which we
really would have needed to put markers into A), the markers are still large.

We note a further delicacy. As in the proof of Theorem 1.2, it is not enough to
verify that the markers are “confirmed”; we need to take care of inputs between
markers by actively confirming larger numbers. For this, a test point d(α) is ap-
pointed for a Q-node α; it is for convergence of Ψi(C) on that test point that we
wait, and this point may be larger than the relevant marker. Näıvely applying this
strategy may result in a single marker being driven to infinity. We need to find
a compromise; thus the test point d(α) may at some stages be mobile, where we
keep lifting its value to the next marker (to make sure that markers are not raised
infinitely often); but when it really needs to act, it becomes stationary.

The rules for test points are as follows. A mobile test point d(α) must always
have the value of some marker. Thus if the marker is enumerated into A or C, we
raise the value of the test point to be the next marker (which will be the least one
chosen at the end of the stage). However, if a marker smaller than the test point is

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 9

enumerated, then the test point becomes stationary and will not point at a marker;
indeed it will not move until α acts to confirm it.

3.2. Construction. At stage s, we define the path of nodes accessible at s; for
each node α, we define how it acts. At stage s, a new number m is enumerated
into 0′. The stage always ends with some accessible node enumerating γ(m) into
either A or C. The usual conventions for working with markers apply; if γ(n) is
enumerated into a set then all of γ(k) for k ∈ (n, s) are also enumerated into the
same set and are redefined with large values at the end of the stage.

For any node β, let r(β)[s] be the last stage before s at which β was initialised.

The first node accessible at any stage is the root. Suppose that α is accessible
at s; the requirement to which α is assigned determines its actions.

α is assigned to Pe. If α does not have a follower (this is the first time we visit α
since it was initialised), we appoint a fresh (large) follower for α.

Let x be α’s follower. If x ∈ B or if x /∈We then α does nothing; its single child
is accessible next.

Otherwise, α enumerates x into B and γ(m) into C. (The stage is now ended).

α is assigned to Ne. If Φe(A)(x)↓= Φe(B)(x)↓, then let

ue(x) = max{ψe(A)(x), ψe(B)(x)}.
Input x is believable at s if there is no Q-node β such that β_∞ ⊆ α and d(β)[s]
is smaller than ue(x)[s].

The modified length of agreement, `(e)[s], is the maximal y such that on every
x < y there is a believable computation on x at stage s.

Let r = r(α_f)[s]. If `(e, s) > `(e, r) then we say that s is expansionary for α
and let ∞ be α’s outcome.

Suppose that s is not expansionary. If γ(m) 6 r then α enumerates γ(m) into
C and halts the stage. Otherwise, the outcome is finite, and α_f is accessible.

α is assigned to Qi. If s is the first stage since r(α)[s] at which α is accessible, then
d(α)[s] is not yet defined; we define it with value equal to the least marker greater
than r(α)[s], and set it to a mobile state.

Let t be the last stage at which α was accessible. There are two cases.
(1) t > r(α)[s] and at t, α acted to confirm d(α)[t] (case 2b(i) below). In

this case we let α_∞ be accessible. [We believe totality as the “length of
confirmation” has increased. We are not worried about any of the mark-
ers entering C because we already protected computations by removing
dangerous markers. We now let weaker nodes act.]

(2) Otherwise. There are two cases.
(a) Ψi(C)(d(α)[s])↑. In this case there is nothing we can do on behalf of

the requirement.
(i) If γ(m) > r(α_f)[s] then we let α_f be accessible.
(ii) If γ(m) 6 r(α_f)[s] then α imposes finite restraint by enumer-

ating γ(m) into C.
(b) Ψi(C)(d(α)[s])↓. In this case we want to make progress.

(i) If γ(m) > d(α)[s] then we confirm d(α): we enumerate all mark-
ers greater than d(α)[s] into A and halt the stage. Note that
d(α)[s] itself (if it is a marker), is not enumerated. As described

10 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

later, we now pick new large markers; we raise the value of d(α)
and redefine d(α)[s + 1] to be the least marker among the new
ones just chosen; we set it to be mobile.
[At the next stage at which α is accessible, we follow case 1.]

(ii) However, if γ(m) 6 d(α)[s] then there is no point in confirming
d(α)[s] as smaller numbers will have to enter a set at this stage.
We let α_∞ be accessible and do nothing else.

At the end of the stage we initialise nodes that lie to the right of the accessible
nodes (and all nodes of length > s), and reassign a large value (greater than s) to
any marker γ(k) (k 6 s) which is not defined (γ(k) was just enumerated into a set
or k = s). [Note we do not initialise extensions of the final accessible node.] Let
γ(k) be the least marker enumerated at stage s. If γ(k) = d(α)[s] for a Q-node α,
define d(α)[s+ 1] to point to a new marker. On the other hand, if γ(k) < d(α)[s],
then d(α) will no longer point to a marker value and hence has become stationary
until α acts to confirm it.

3.3. Verification.

Claim 3.1. Suppose that α is accessible at stage s, and that m enters 0′ at s. Then
r(α) 6 γ(m) [s].

Proof. This is by induction on α. For the root, we know that r(〈〉)[s] = 0 for
all s. Suppose that α is accessible at s. If α is a P -node then r(α) = r(β) [s]
where β is α’s only child. If α is a Q- or N -node, then r(α) = r(α_∞) [s]. If
γ(m) < r(α_f) [s] then α_f cannot be accessible at s: instead of going to α_f ,
α enumerates γ(m) into C and halts the stage. �

Corollary 3.2. If a node β is initialised at some stage r, then after r, β never
enumerates a number smaller than r into any set.

Proof. There are three kinds of enumerations: enumeration of γ(m) (wherem enters
0′); enumeration of a follower into B (by a P -node); and enumeration of markers
into A by a Q-node that is confirming its test point.

By claim 3.1, if at stage s > r, m enters 0′ and β enumerates γ(m), then (as β
is accessible) γ(m) > r(β)[s] > r.

If β is a P -node, then after r it picks new followers, all greater than r.
And if β is a Q-node that is confirming d(β), then by definition, d(β) > r(β) [s]

(it is initially assigned to a larger value and can then only increase), and only
markers greater than d(β) are enumerated. �

Lemma 3.3. For every m, the marker γ(m) is eventually fixed.

Proof. Suppose that after some stage s0, the markers γ(0), . . . , γ(m) do not change.
Also suppose that after s0, m+ 1 does not enter 0′, so the only way γ(m+ 1) can
enter a set after stage s0 is when someQ-node confirms a smaller d(α)[s] (necessarily
d(α)[s] > γ(m)), in which case γ(m+ 1) will be enumerated into A.

Let α be such a node. After confirming at stage s, a new value is set for γ(m+1),
which is also the new value of d(α). At s, d(α) is set to be mobile; and it can never
be reverted to be stationary (only γ(m) enumeration can do that). So after s, we
always have d(α) > γ(m + 1) (even if they increase together). Therefore, after

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 11

stage s0, there is at most one stage s at which α’s action causes γ(m + 1) to be
enumerated into A.

Consider a Q-node of length > s0, γ(m). Any test point it ever appoints is at
least γ(m+1) and as in the previous paragraph, if it does appoint it to be γ(m+1)
it remains mobile until it is lifted to be greater than γ(m + 1). So such a node
never enumerates any γ(m+1) into A. This shows that after s0, only finitely many
nodes enumerate a γ(m+ 1) into A.

[An alternative construction could have been: do not allow nodes of length k to
enumerate γ(k) (i.e., always set d(α) > γ(k)). Then you would need this current
lemma to show finite injury on the true path.] �

Corollary 3.4. 0′ 6T A⊕ C.

Proof. Whenever m goes into 0′, γ(m) enters either A or C, and is redefined with
a large value. �

Lemma 3.5. Suppose that α is a node on the tree that is accessible infinitely often
and that is eventually never initialised. Then there is an immediate successor of α
on the tree that is accessible infinitely often and is eventually never initialised.

Since the root is always accessible and is never initialised, inductively applying
the lemma shows the existence of an infinite true path.

Proof. Let r0 = r(α)[ω] be the last stage at which α is initialised. Of course,
everything depends on the requirement to which α is assigned.

α is assigned to Pe. After stage r0, α is assigned a follower x; that follower is never
cancelled. After r0, α acts at most once; after that, whenever α is accessible, so is
its child. Also, the child is never initialised without α also being initialised.

α is assigned to Ne. Suppose that there is a last α-expansionary stage r > r0. After
r, α_f is never initialised. After r, α only enumerates a marker γ(m) into C if
γ(m) 6 r, which is to say, finitely often. At other stages, whenever α is accessible,
so is α_f .

If there are infinitely many expansionary stages, then α_∞ is accessible infinitely
often; it is not initialised after r0.

α is assigned to Qi. If there are infinitely many stages at which α confirms its test
point, then α_∞ is accessible infinitely often.

Suppose that there is a last stage r1 > r0 at which α confirms d(α). Suppose
that at the end of r1, we set d(α) = γ(k). Let r2 > r1 be a stage after which
the value of γ(k) is fixed. Then after r2, the value of d(α) is also fixed (it may or
may not have become stationary before r2). After r2, case (2b(ii)) only holds if
γ(m) 6 d(α), so finitely many times. So there is a stage r3 > r2 after which α_∞
is never accessible (so α_f is not initialised after stage r3). Later, case (2a(ii))
applies only if γ(m) 6 r3; again, finitely many times. So after some stage r4 > r3,
whenever α is accessible, so is α_f . �

Corollary 3.6. Every P -requirement is met, so B is not computable.

Proof. Standard. �

12 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

Lemma 3.7. Every Qi requirement is met. Hence C is array computable.

Proof. Let α on the true path work for Qi. Suppose that Ψi(C) is total. There are
infinitely many stages at which α confirms its test point. For otherwise, as argued
in the proof above, there would be a final fixed value for d(α), and a stage after
which case (2b(ii)) doesn’t hold; but this contradicts Ψi(C) converging permanently
on that final value.

Definition 3.8. We say that a number x < ω is confirmed at stage s if
Ψi(C)(x)↓ [s] with use smaller than the least marker greater than x.

The point, of course, is that a confirmed computation can only be injured by a
number not greater than the input.

Suppose that α is last initialised at stage r0. At the next stage r1 at which α is ac-
cessible, α sets d(α) = γ(k0) for some k0. Let r2 > r1 be the least stage after which
γ(k0) is always fixed. At the end of r2 we have x0 := d(α)[r2 + 1] 6 γ(k0)[r2 + 1].
We in fact must have equality, because at a later stage α confirms its test point.

We prove three claims that suggest a way to approximate Ψi(C).

Claim 3.9. Let s > r2 be a stage at which α acts (to confirm its test point).
Suppose that x ∈ [x0, d(α)[s]] is confirmed at the end of s. Then it is confirmed at
any later stage at which α acts.

Proof. Suppose that at the end of stage s, γ(m − 1) < x 6 γ(m). We have
γ(m) 6 d(α) [s + 1]. By assumption, ψi(C)(x) < γ(m) [s + 1]. Let t > s be the
next stage at which α acts. If γ(m − 1) is not enumerated between s and t, then
the computation is preserved and so it is of course still confirmed. Otherwise, let
γ(n) be the smallest marker enumerated between t and s, say at stage u. Then at
the end of u we fix d(α) to be stationary and redefine a greater γ(n). At t, d(α) is
confirmed; since there is no marker in (x, d(α)[t]], x is also confirmed. �

Claim 3.10. Let s > r2 be a stage at which α acts and let n ∈ [x0, d(α)[s]] be a
marker. Then n is confirmed at the end of s.

Proof. If d(α)[s] = n, then n is confirmed at stage s. Otherwise, let t < s be the
least stage at the end of which d(α) > n. Then d(α)[t] = n (n is already a marker
at t) and α acts at t and confirms n. �

Claim 3.11. Let s > r2 be a stage at which α acts. Let x ∈ [x0, d(α)[s]]. Suppose
that Ψi(C)(x)[s] is injured at a later stage u by some y > x. Then at the end of
the next stage t at which α acts, x is confirmed.

Proof. Let γ(m − 1)[s] < x 6 γ(m) [s]. We must have γ(m) 6 d(α) [s]; otherwise,
γ(m)[s] is redefined at s to be larger than ψi(C)(x) and then x is confirmed. Then
γ(m) is confirmed at the end of s and so y = γ(m)[s]. Also at the end of s we have
d(α) > y. It follows that at the end of u we have γ(m − 1) < x < d(α) < γ(m)
(since d(α) is stationary). We thus see that at t, the confirmation of d(α) is also a
confirmation of x. �

The following is an approximation for g = Ψi(C): at a stage s > r2 at which α
confirms d(α), guess g(x) = Ψi(C)(x) for all x 6 d(α)[s]. Then the claims ensure
that a guessed computation can be injured by some y > x at most once after s. It
follows that this approximation is id + 1-c.e. �

PROMPT SIMPLICITY, ARRAY COMPUTABILITY AND CUPPING 13

Lemma 3.12. Every Ne requirement is met. As B >T 0, it follows that A and B
form a minimal pair.

Proof. Let α on the true path work for Ne. Suppose that Φe(A) = Φe(B) = g are
total and equal. We first argue that `(e)[s] →∞ (and so α_∞ is on the true path).
This is because for all x, eventually there is a permanent Φe(A)(x) = Φe(B)(x) with
total use u; for Q-nodes β such that β_∞ ⊆ α we know that d(β)[s] → ∞; and
there are are finitely many such β (admissibility rocks).

Assume that after stage r1, α is never initialised and no P -node β ⊂ α enumer-
ates a follower into B.

The familiar argument of Lachlan’s that shows that g is computable follows
through, provided that we can show that:

(1) If s > r1 is an α-expansionary stage, then at s perhaps numbers enter A or
numbers enter B but not both.

(2) If s > r1 is an α-expansionary stage and x < `(e)[s], then numbers below
ue(x)[s] do not enter either A or B until the next α-expansionary stage.

The first is immediate; it holds at every stage of the construction. We verify the
second point. Now suppose that s > r1 is α-expansionary and let x < `(e)[s].

• Nodes that lie to the right of α_∞ are initialised at stage s; they never
enumerate anything smaller than s (which is in turn greater than ue(x)[s])
into any set.

• Nodes that lie to the left of α are not accessible after r1.
• P -nodes β ⊂ α do not enumerate numbers into B after stage r1.
• Nodes extending α_∞ are not accessible between s and the next α-

expansionary stage.

Thus the only possible culprits are Q-nodes β ⊂ α that confirm d(β). If β_f ⊆ α
then β does not confirm d(β) after r1; if it does, then at the next stage at which
it is accessible, α will be initialised. However, if β confirms d(β) at t > s, then it
only enumerates numbers greater than d(β)[t] > d(β)[s]. But x is believable at s,
which means ue(x)[s] 6 d(β)[s]. �

References

[1] K. Ambos-Spies, C. Jockusch Jr., R.A. Shore, and R.I. Soare, An algebraic decomposition of

recursively enumerable degrees and the coincidence of several degree classes with the promptly
simple degrees, Trans. Amer. Math. Soc., Vol. 281 (1984), 109-128.

[2] M. Bickford and C. Mills, Lowness properties of r.e. sets, typewritten unpublished manu-

script.
[3] P. Cholak, R. Coles, R. Downey, and E. Herrmann, Automorphisms of the lattice of Π1

0

classes: perfect thin classes and anr degrees, Trans. Amer. Math. Soc. Vol. 353 (2001), 4899-

4924.
[4] P. Cholak, M. Groszek, and T. Slaman, An almost deep degree, J. Symbolic Logic, Vol. 66(2)

(2001), 881-901.
[5] P. Cholak, R. Downey, and M. Stob, Automorphisms of the lattice of recursively enumerable

sets: promptly simple sets, Trans. American Math. Society, 332 (1992), 555-570.
[6] R. Downey and N. Greenberg, Domination and definiability II : The ωω case, in preparation.
[7] R. Downey, N. Greenberg and R. Weber, Domination and definability I : The ω case, in

preparation.

[8] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer-Verlag to
appear.

14 ROD DOWNEY, NOAM GREENBERG, JOSEPH S. MILLER, AND REBECCA WEBER

[9] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan, Trivial reals, extended abstract in
Computability and Complexity in Analysis Malaga, (Electronic Notes in Theoretical Com-

puter Science, and proceedings, edited by Brattka, Schröder, Weihrauch, FernUniversität,

294-6/2002, 37-55),July, 2002. Final version appears in Proceedings of the 7th and 8th Asian
Logic Conferences, (R. Downey, Ding Decheng, Tung Shi Ping, Qiu Yu Hui, Mariko Yasuugi,

and Guohua Wu (eds)), World Scientific, Singapore (2003) 103-131.
[10] R. Downey, D. Hirschfeldt, A. Nies, and S. Terwijn, Calibrating randomness, to appear,

Bulletin Symbolic Logic.

[11] R. Downey, C. Jockusch, and M. Stob, Array nonrecursive sets and multiple permitting
arguments, in Recursion Theory Week (Ambos-Spies, Muller, Sacks, eds.) Lecture Notes in

Mathematics 1432, Springer-Verlag, Heidelberg, 1990, 141–174.

[12] R. Downey, C. Jockusch, and M. Stob, Array nonrecursive degrees and genericity, in Com-
putability, Enumerability, Unsolvability (Cooper, Slaman, Wainer, eds.), London Mathemat-

ical Society Lecture Notes Series 224, Cambridge University Press (1996), 93–105.

[13] L. Harrington and R. Soare, Post’s Program and incomplete recursively enumerable sets,
Proc. Natl. Acad. of Sci. USA 88 (1991), 10242-10246.

[14] S. Ishmukhametov, Weak recursive degrees and a problem of Spector, in Recursion Theory

and Complexity, (ed. M. Arslanov and S. Lempp), de Gruyter, (Berlin, 1999), 81-88.
[15] M. Kummer, Kolmogorov complexity and instance complexity of recursively enumerable sets,

SIAM Journal of Computing, Vol. 25 (1996), 1123-1143.
[16] A. Lachlan, A recursively enumerable degree which will not split over all lesser ones, Ann.

Math. Logic, Vol. 9, (1975), 307-365.

[17] W. Maass, Characterization of the recursively enumerable sets with supersets effectively iso-
morphic to all recursively enumerable sets, Trans. Amer. Math. Soc., Vol. 279 (1983), 311-

336.

[18] Ng Keng Meng, F. Stephan and G. Wu, The degrees of weakly computable reals, in prepara-
tion.

[19] A. Nies, Lowness properties and randomness, Advances in Mathematics Vol. 197 (2005),

274-305.
[20] R.W. Robinson, Jump restricted interpolation in the recursively enumerable degrees, Annals

of Math., Vol 93 (1971), 586-596.

[21] B. Schaeffer, Dynamic notions of genericity and array noncomputability, Ann. Pure Appl.
Logic, Vol. 95(1-3) (1998), 37-69.

[22] R.I. Soare, Automorphisms of the lattice of recursively enumerable sets Part II: Low sets,
Annals of of Math. Logic, Vol. 22 (1982), 69-107.

[23] R.I. Soare, Recursively enumerable sets and degrees (Springer, Berlin, 1987).

[24] S. Terwijn and D. Zambella, Algorithmic randomness and lowness, Journal of Symbolic Logic,
vol. 66 (2001), 1199-1205.

School of Mathematics, Statistics and Computer Science, Victoria University, P.O.

Box 600, Wellington, New Zealand

E-mail address: Rod.Downey@vuw.ac.nz

School of Mathematics, Statistics and Computer Science, Victoria University, P.O.

Box 600, Wellington, New Zealand
E-mail address: greenberg@mcs.vuw.ac.nz

Department of Mathematics, 196 Auditorium Road, University of Connecticut, Unit
3009, Storrs, CT 06269-3009

E-mail address: joseph.miller@math.uconn.edu

Department of Mathematics, Dartmouth College, 6188 Bradley Hall Hanover, NH
03755-3551

E-mail address: rweber@math.dartmouth.edu

