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ABSTRACT. We provide a survey of results using Weihrauch problems to find
analogs between set theory and computability theory. In our treatment, we
emphasize the role of morphisms in explaining these coincidences. We end
with a discussion of the use of forcing to prove the nonexistence of morphisms.
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1. INTRODUCTION

In light of the independence of the continuum hypothesis, set theorists searched
for more nuanced ways of measuring the size of the continuum. Perhaps, for ex-
ample, the number of real numbers (singletons) is large, but it doesn’t take many
null sets (or meagre sets) to cover the real line? Perhaps there are many functions
from w to w, but if we’re only interested in growth rates, we can dominate all func-
tions with only a few? Thus are defined cardinal characteristics of the continuum,
such as the dominating number 0, the smallest size of a family of functions domi-
nating all functions, and cov(.#), the smallest size of a collection of meagre sets
whose union is R. Again, the precise values of these cardinals are independent, but
we can say much about the relationship between them. For example, no matter the
size of the continuum, or the particular values of the two cardinals, we always have
cov(.#) < 0; but strict inequality is consistent.

A. Miller (unpublished) and Fremlin [16] have noticed that many cardinal charac-
teristics, including the two mentioned above, can be defined in terms of the smallest
size of a set of “solutions” to “instances” of a problem, namely a binary relation.
Let Capture(.#) be the membership relation between R and .#, the collection of
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meagre sets. Then cov(.#) is the smallest size of a set F' © .# such that every in-
stance (x € R) has a solution (a meagre set A 5 z) in F. The dominating number ?
is similarly obtained from the domination relation Dom between functions in w®.

Further, ZFC proofs of inequalities usually arise from morphisms between the
associated problems. For the example above, we write Capture(.#) — Dom to in-
dicate that there are functions ¥;net : R — w® and tge1: w¥ — 4 such that for all
x € Rand g € w¥, if tinst(x) Domg then z Capture(.#Z ) so1(g) (see definition 2.5
below). This immediately gives cov(.#) < 0, as the 1)s,1-image of a complete solu-
tion set for Dom is a complete solution set for Capture(.#). A thorough treatment
of cardinal characteristics using these concepts was given by Vojt4s [46]. The mor-
phism template gives a clearer presentation of arguments in this area; it also refines
the question, because the existence of definable morphisms can be discussed even
in the context of CH (see for example [6, 13, 39]).

At a similar time, Weihrauch and his school [47, 8, 17] independently developed
similar concepts in their study of computable analysis. Again thinking of binary
relations as “problems” with instances and solutions, in the light of computability
theory, a computable morphism from a problem A to another problem B can be
considered a reduction: B has at least as much information as A, because any
method of solving B can effectively give us a method of solving A. Given an
instance a of A, we effectively translate to an instance 9;ns:(a) of B, solve this
problem, and then translate (via 1)s,1) to an A-solution for a. When the maps
Yinst and Ygo1 are indeed computable, this is called strong Weihrauch reducibility.
This approach for classification of problems has spread beyond computable analysis
to study II3 sentences in the context of reverse mathematics [14].

Rupprecht [41] observed similarities between several arguments in computabil-
ity, especially algorithmic randomness, and set theory. A good example is Terwijn
and Zambella’s [45] proof of the equivalence of computable traceability and lowness
for Schnorr tests, and Bartoszynski’s [2] characterisation of cof(.4") in terms of
slaloms (see section 3.5 below). Rupprecht realised that the binary relations used
for cardinal characteristics can be used to define some familiar notions of strength
of oracles in computability. The class associated with the problem (binary rela-
tion) A, which in this paper we denote by NL(A), is the collection of oracles which
compute an instance for A that has no computable solution. Thus, NL(Dom) is the
collection of hyperimmune degrees (not 0-dominated), whereas NL(Capture(.#)) is
the collection of oracles which compute weakly 1-generic reals. The morphism from
Capture(.#) to Dom, being computable, shows that every degree which computes
a weakly 1-generic real is hyperimmune.

Unfortunately, Rupprechet’s main body of work was confined to his thesis, and
remains otherwise unpublished. Aware of only some of his results, Brendle, Brooke-
Taylor, Ng and Nies [10] extended his work and for the first time in print, exhibited
how to get both cardinal characteristics and highness classes from the same binary
relations (Weihrauch problems). Kihara [24] continued their work, including the
morphism machinery, while Kjos-Hanssen et al. [26] answered some of the questions
left open in [10].

In this paper we survey the subject and provide a unified and simplified treat-
ment. Many arguments in the literature are opaque, and so we show how to frame
them using this template. In many cases a single, simpler argument gives two,
and with the aid of duality usually four, results, in set theory and computability.
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We also provide a way of utilising sequential composition, which has so far eluded
computability theorists. This allows us to give the same unified treatment to re-
sults of Stephan and Yu [44] about lowness for weak 1-genericity and Greenberg
and J. Miller [19], related to [5] about lowness for Kurtz randomness, where, for a
change, the argument found in computability gives cleaner morphisms. Nonethe-
less, we emphasise that most results in this paper are, essentially, not original.

Consistency results in set theory and non-implication results in computability
are usually obtained by related forcing notions, and so we end the paper with a
brief discussion of forcing. We examine a few basic examples to show how they fit
in this framework. Finally we suggest a general research programme that arises
naturally from the template that we discuss in this paper.

2. Basics
2.1. Weihrauch problems and effective morphisms.

Definition 2.1. A Weihrauch problem is a triple A = (Aipst, Aso1, A) where
Ajnst, Asor € w* and A is a binary relation between Ajnge and Age, that is,
A C Aipsr X Asor. An A-instance is an element of Ajpst. A solution for an in-
stance a of A is b such that aAb.!

The sets Ajpst and Agoy are allowed to be complicated. However we will make
one assumption:

e Both Aj,s: and Age contain computable points.

Ezxample 2.2. Dom is the domination problem: an instance is a function f € w*; a
solution is a function g dominating f, denoted g =* f, that is, (V*n) g(n) = f(n).

Definition 2.3. A (total) function F': w¥ — w* is hyperarithmetic piecewise com-
putable if there is a countable partition (A,,) of w* into uniformly Al sets such that
for all n, F'I' A,, is the restriction to A,, of a partial computable function, uniformly
in n.

That is, uniformly in n we get a A} index for A, and a partial computable
index (a c.e. Turing functional) for a partial computable function G,, such that
A, € domG, and FlA, = G,lA,. An important fact to note is that for all
x € w¥, F(zx) <t x, albeit not quite uniformly.

Remark 2.4. Fix an effective list ®. of all partial computable maps from w® to w®.
A map F: w¥ — w¥ is hyperarithmetic piecewise computable if and only if there
is a computable ordinal a and a partial computable map 6: w* — w such that for
all 2 € w?, §(z(™)] and F(z) = @y (z). Here 2(® is the o' iteration of the
Turing jump of x.

Definition 2.5. An effective morphism ¢ from a problem A to a problem B is a
pair Yinst, Pso1 Of hyperarithmetic piecewise computable functions such that:

® QPinst [Ainst] - Binst;
d <psol[Bsol] = Asol; and

IBlass and Rupprecht use “challenges” and “responses”, or “answers”, for instances and so-
lutions. Coskey et al. and Kihara call Weihrauch problems “Vojtas triples”. Blass calls them
“relations”; Rupprecht calls them “debates”. We adopt terminology used in reverse mathematics,
which is more widespread.
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o for all a € Ajpgs, for every B-solution b of pinst(a), @so1(b) is an A-solution
of a.

We write A — B if there is an effective morphism from A to B.

B
(pinst (psol
A

FIGURE 1. A morphism

The idea is that we are reducing A to B; given an A-instance a, we effectively
translate it to a B-instance @jpst(a); from any B-solution b for @inst(a) we get a
solution g1 (b) to the original instance. This is like strong Weihrauch reducibility,
in that b computes @inst(b) on its own, without aid of the original instance a;
however unlike strong Weihrauch reductions, an effective morphism is not required
to be uniform: it is almost uniform, except that we are allowed to define the
reduction “by cases”.’

Observation 2.6. If A —> B and B — C then A — C. Also A — A. We write
A < B when A — B and B — A.

2.2. The associated cardinal and highness class.

Definition 2.7. Let A be a problem. A complete solution set for Aisaset Z € Ago1
such that every A-instance has a solution in Z. We let

Card(A) = min {|Z| : Z is a complete solution set for A}.?

Definition 2.8. For a problem A we let H(A), the highness class associated with A,
be the collection of oracles x € 2* which compute some ¢ € Ag; that solves every
computable A-instance.

Example 2.9. A complete solution set for Dom is a set of functions dominating
all functions f: w — w. Card(Dom), denoted by ? and known as the dominating
number, is the smallest size of a dominating family, that is, the cofinality of the
pre-partial ordering (w*, <*).

H(Dom) is the collection of high degrees (Martin [30]): those that compute func-
tions that dominate all computable ones.

Proposition 2.10 (Vojtas [46]; Rupprecht [41]). Suppose that A — B. Then:
(a) Card(A) < Card(B); and

2Rupprecht uses completely non-uniform maps that only require f(z) <t z for all z, anlogous
to Muchnik reductions. Weihrauch and his school use the language of multi-valued functions rather
than binary relations. Thus instead of the diagram in fig. 1 they draw a composition: @ge1 0 B o
@pinst(a) € A(a). The terminology for morphisms varies; Vojtas called them “generalised Galois-
Tukey connections”; Kihara “Tukey connections”; Rupprecht and Blass simply “morphism”, but
they reverse the direction.

3Blass and Rupprecht use the notation ||A|| and call it the norm of A. Brendle et al. write
0(A) and call it the domination number of A.
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(b) H(B) < H(A).
Proof. Let ¢ = (Yinst, Pso1) be an effective morphism from A to B.

(a): Let Z be a complete solution set for B; let W = pg01[Z]. Then |W| < |Z]
and W is a complete solution set for A.

(b): Let € H(B); let b <1 z be a B-solution for all computable B-instances.
Let a be a computable A-instance. Then ¢;pse(a) is a computable B-instance; so
©inst(a) B b. Tt follows that ¢ge1(b) is an A-solution for a. As g1 (b) <1 b <r =,
it witnesses that « € H(A). O

2.3. Duality.

Definition 2.11. For a problem B we define its dual B+ to be . That is, the
relation on Bgey X Bingt defined by Bty <= —(yBz). We let (B1)inst = Bsol
and (Bl)sol = Binst-

Hence (A1) = A.
Lemma 2.12. If A — B then B+ — AL,

Proof. Suppose that ¢ is an effective morphism from A to B. Define a morphism
by letting ¥inst = Pso1 and Pgo1 = Pinst. Then 1 reduces B+ to AL: if be Bgoy =
(B )inst and @ € Ajpge = (A1)go1 is such that 1ing: (b) At a, that is, a4 pser (D),
then it cannot be that ¢ine:(a) Bb, s0 b Bt g0 (a). ]

Definition 2.13. For a problem A, the non-lowness class associated with A is
NL(A) = H(AY).

So x € NL(A) if and only if  computes an A-instance which has no computable
A-solution.”

Corollary 2.14. If A — B then NL(A) < NL(B).

Ezxample 2.15. The dual of Dom is Esc: a solution for g € w* is a function escaping g,
that is, not dominated by g.

Card(Esc) = b is the unbounding number: the smallest size of an unbounded
family.

H(Esc) = NL(Dom) is the collection of hyperimmune degrees (not 0-dominated):
those that compute escaping functions, functions not dominated by any computable
function. NL(Esc) = H(Dom) is high.

The problem Esc reduces to Dom: map an Esc-instance to itself; map a Dom-
solution g to g + 1. Hence: b < 0; and every high degree is hyperimmune.®

4We used “highness” for H(A) because of the analogy with high degrees and their coincidence
with H(Dom). We defined it first because its definition is more straightforward. However, we will
see in the rest of the paper that the operator NL(A) is better behaved, in particular with respect
to sequential composition, and its relationship with forcing. Rupprecht calls NL(A) the Turing
norm of A and denotes it by (A). Brendle et al. write D(A) for NL(A) and B(A) for H(A), which
they do define first; this is analogous to their notation b(A) for Card(AL). They call both D(A)
and B(A) “highness properties”. Kihara writes [A]A? for NL(A).

5 Our notation NL(A), as is Brendle et al’’s, is motivated by this simplest example, Dom and Esc:
NL(Dom) is a weaker property that H(Dom). However this example is misleading, as usually there
is no reduction from A to AL or vice-versa. Possibly better notation would be H-(A) for NL(A);
however we find this typographically annoying.
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FEzample 2.16. Let Split be the splitting problem: an instance is an infinite subset a
of w (viewed as an element of 2 < w*); a solution is an infinite subset b of w which
splits a, meaning that both a n b and a\b = a n b° are infinite. (Note that in this
example the sets of instances and solutions are not all of w* but a ITJ subset of w*.)

Card(Split), the splitting number, denoted by s, is the smallest size of a set
of subsets of w which split every infinite set. Card(Split’), denoted by t and
sometimes called the reaping number, is the smallest size of a collection of infinite
subsets of w for which no single infinite subset of w splits them all.

H(Split) is the collection of oracles which compute a bi-immune set: a set with
no infinite c.e. subset of it or of its complement. This is because every infinite c.e.
set contains an infinite computable set.

NL(Split) is the collection of oracles which compute r-cohesive sets: infinite

sets ¢ such that for every computable set a, ¢ * a or ¢ C* a’.

Lemma 2.17. Split — Dom.

Proof. We define a morphism 1. On the instance side, map an infinite set a S w
to its principal function p,. On the solution side, the idea is that if ¢ dominates
pa then from g we can get a partition of w into intervals {I,), each of which
contains an element of a; from this we easily build a set that splits a. So formally,
given g € w¥, we define 1501 (g) as follows. Let h(0) = 0 and h(n+1) = g(h(n)+1);
let I,, = (h(n), h(n + 1)]; let ¥so1(9) = U,, L2n- O

As a result, we see that s < 0, b < t, every high degree computes a bi-immune
set, and every r-cohesive set has hyperimmune degree.

3. REPRESENTED SPACES, MEASURE AND CATEGORY

Since we allow the collections Ajsr and Ago1 of instances and solutions of a prob-
lem to be subsets of w*, we can formulate problems whose instances or solutions,
for example, are elements of Cantor space, or collections of bounded functions.
However at times we will want to deal with objects that are not in Baire space, for
example, real numbers, or some definable subsets of Baire space. For this, we use
the terminology of represented spaces.

Definition 3.1. A representation of a set X is a partial function from w* onto X.

If 7 is a representation of X then a € dom is called a 7m-name for w(a). We
then say that y € 2% computes x € X if x has a y-computable name. We choose
representations so that this aligns with our preconceived notions of computation.

Below we will define problems whose instances or solutions are elements of rep-
resented spaces. In all cases this is shorthand for the induced problems on the
names: if 7 is a representation of X, for example, then we will define a problem
A < X x w¥, but really we will mean the problem A < domm x w” defined by
Ainst = 71 Ainse and xAy means 7(z) Ay. We will identify A with A.

3.1. Meagre sets. The first example is the collection of X9 meagre subsets of Baire
space. A name for a closed, nowhere dense subset P of w® is the characteristic
function of a tree T € w=* such that P = [T] (we use a computable bijection
between w and w<). Trees are allowed to have leaves (strings with no extensions
on the tree). By a canonical identification of Baire space with its power (w*)“, we
let {T},) be a name for | J[T},].
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We let .# be the collection of 39 meagre sets. As described above, we identify
a name for a meagre set with the set that it names, so we also think of .#Z as the
collection of names for 39 meagre sets.

Remark 3.2. Since every effectively closed set is the set of paths through a com-
putable tree, and this is uniform and relativises, we see that a 39 meagre set is
x-computable if and only if it is X9(x).

Two problems are typically associated with ideals of small sets, in this case the
meagre ones:

e Capture(.#): an instance is a point y € w*; a solution is a meagre set M
such that y € M.

e Supset(.#): an instance is a meagre set M; a solution is a meagre set M
such that M < M.

Card(Capture(.#)) is known as cov(.#): the smallest number of meagre sets it
takes to cover w*. H(Capture(.#)) is the class of z € 2 which compute a meagre
set that contains all computable reals: the weakly meagre engulfing oracles.®

The dual of Capture(.#) is Pass(.#), the problem of finding a point outside
a given meagre set. Card(Pass(.#)) is non(.#) (also known as the uniformity
number unif (#)), the smallest size of a non-meagre set. H(Pass(.#)) is the class
of x € 2% which compute a weakly 1-generic function.

Card(Supset(.#)) is cof (#), the cofinality of the partial order (.#,<). The
class H(Supset(.#)) consists of the (strongly) meagre englufing oracles: those which
compute a meagre set covering (i.e. a superset of) all computable meagre sets.

The dual of Supset(.#) is Spill(.#), the problem of finding a meagre set which
is not covered by a given meagre set. Card(Spill(.#)) is add(.#), the additivity
number for the meagre sets: the smallest number of meagre sets whose union is not
meagre. H(Spill(.#)) is the class of oracles which are not low for meagre sets.

Proposition 3.3. Capture(.#) — Dom.

Proof. Map the instance f to itself. Map a Dom-solution g € w* to the meagre set
consisting of all functions dominated by g.

More precisely, let T),(g) be the tree of o € w<“ such that for all k = n, if k < |o]
then o(k) < g(k); map g to (T}, (9))- O

As a result we see:
e cov(.#) <0 and b < non(.Z).
e Every high degree is weakly meagre engulfing; every weakly 1-generic degree
is hyperimmune.

Proposition 3.4. Pass(.#) — Supset(.#).

Proof. Uniformly, given (a name of) a meagre set M, we can find a point = ¢ M:
since M is given as a sequence (T},) of nowhere dense trees, we construct z ¢ | J,,[7,]
by initial segments, first finding a string o off Ty, then an extension o; off T3, and
SO on.

The morphism maps an instance M of Pass(.#) to itself, and a solution M 2 M
to a real outside M.

6The terminology originates from [10].
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Note that for the map of solutions to be total, we cannot produce a partial
sequence (o, ) in case we are given a tree which is somewhere dense. However the
collection of names for meagre sets is arithmetic, so we are allowed to define the
map of solutions in an arbitrary way outside .. (]

Remark 3.5. The previous morphism exhibits the importance of allowing functions
on names that do not induce maps on the named objects. Given two names {T},»
and (S, ) of the same meagre set M, the resulting point outside M will very likely
depend on the name.

Proposition 3.6. Dom — Supset(.#).

Proof. On the instance side, map a function f to the meagre set My consisting
of all f-dominated functions. By first replacing f by >, f(i), we may assume
that f is non-decreasing.

On the solution side, we elaborate on the construction of a point outside a given
meagre set M = |J,,[T,] (applying that construction would yield a morphism from
Esc to Supset(.#), which is weaker). Given (T),), for each n and k < w we can
effectively obtain a string o, , such that for all k-bounded strings 7 of length &,
70k ¢ T,. We may assume that Tp € 17 < T < .... By extending o, x, we may
assume that maxrange oy, > k.

We then recursively define g(0) = 0 and g(n + 1) = maxrangeo,, 4(,). So g is
strictly increasing. Let J, = [g(n),g(n) + |0y g []. For all y € w®, if ylg(n) is
g(n)-bounded and yJ, = 0, g(n), then y ¢ [T5,].

We claim that if My < M, that is, if M contains all f-dominated functions, then
f<gn+1).

Suppose not. Then there is an infinite set X such that for alln e X, g(n+1) <
f(n). We may thin out X so that the intervals J,, for n € X are pairwise disjoint
and m > n in X implies m > g(n + 1).

We can then build a function x € w® such that for all n € X, z[J, = 0, g(n)-
Outside these intervals we set the values of z to be 0. If n € X and ¢ € J,, then
z(i) = 0pgm)(i) < g(n +1). If m € X and m > n then as m > g(n + 1), this
shows that z[g(m) is g(m)-bounded. It follows that x ¢ M. On the other hand,
for ne X, g(n +1) < f(n) and as f is non-decreasing, f(n) < f(i) for all i € J,,,
soxr < f. O

Combining propositions 3.3 and 3.6 we see that Capture(.#) — Supset(.#)
(and so also Spill(.#) — Pass(.#)). This actually has a quick direct proof: on
the instance side, map a function f to the singleton {f} (it is easy to effectively
obtain a tree T such that [T] = {f}). On the solution side we use the identity
function.

3.2. Other spaces. We have looked at meagre subsets of Baire space, but we
could equivalently examine either Cantor space or the real line. We show that
the corresponding problems are all morphism-equivalent. For this subsection, for
any one of the spaces X € {w*”,2% R}, denote by .#x the collection of X9 meagre
subsets of X.

Let us first deal with Cantor space. Here .#Z5. is a subset of .., with the names
being infinite sequences of nowhere dense subtrees of 2<“. Define p: w* — 2“ by
letting

p(f) =07 @10/ M10/@ ...
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It is a bijection between Baire space and the collection of (characteristic functions
of the) infinite subsets of w. The map p is induced by a corresponding map from
w=¥ to 2=¥ which we also call p: p((ng,n1,...,nkKy) = 0"010™ 1. .10,

For any meagre set M < 2%, p*(M) = p~1[M] is a meagre subset of w*. Further,
a name for p*(M) can be effectively obtained from a name for M: the sequence
(Ty) (with T,, < 2=%) is sent to {p~![T,,]).

For M < w® we let px(M) = p[M] v {zx €2¥ : z is finite}. M is meagre if and
only if p, (M) is meagre, and a name for p, (M) is effectively obtained from a name
for M: map a sequence (S, ) to {T},) where

T, ={p(0)0" : 0€ S, & k<wju{re2 : rhasupton I's}.
Lemma 3.7. Capture(.#s«) < Capture(.#,) and Supset(.#o.) < Supset ().

Proof. To reduce Capture(.#,.) to Capture(.#5 ), on the instance side use p and
on the solution side use p*. In the other direction, on the instance side map an
infinite set # to p~!(x), and a finite set = to some fixed point, say the constant
function 0. On the solution side use py. In either case this will work, because
p« (M) will always contain all finite sets.

To reduce Supset(.#,) to Supset(.#a), use py on the instance side and p* on
the solution side. We just need to check that if M 2 py(M) then M < p*(M). In
the other direction, use p* on the instance side and p, on the solution side; check
the same thing. (Il

We conclude that cov(.#sw) = cov( ), cof (Maw) = cof (M) (and the
same holds for add(.#) and non(.#)), and that the highness classes coincide. So:
computing a weakly 1-generic function in Baire space is equivalent to computing
a weakly 1-generic sequence in Cantor space, lowness for meagre sets coincides,
and the engulfing properties (weak and strong) coincide for Baire space and Cantor
space.

For the real numbers, we need to choose representations. We use standard ones;
R is represented using Cauchy names (quickly converging Cauchy sequence) —
although since we do not require the morphism maps to be uniform, representation
using binary expansions would be equivalent. Open subsets of R are represented by
sequences of rational intervals (named by their endpoints) whose union is the open
set; closed names are given by taking the complement; names for X subsets of R are
sequences of closed names. As above, we can use Baire category-preserving maps to
obtain morphism equivalence of the problems Capture(.#,.) and Capture(.Zg),
usually passing through the unit interval first. For example, we can use the binary
expansion map from Cantor space onto [0,1], or the homeomorphism of Baire
space with the irrationals in (0,1). We just need to check that these maps are
¥:9-measurable, effectively.

Remark 3.8. The reduction Capture(.#s.) — Capture(.#,~) is an instance of a
morphism ) for which ¥inss [ Ainss i not computable (the restriction of a partial
computable function to Ajnsy). This is because the map depends on whether x is
infinite or not. This, and the reduction for .#g, are the only such reductions in this
paper.

3.3. Null sets. We use similar techniques to name null IT subsets of 2. An open
set is named by (the characteristic function of) a subset U of 2<“; we may assume
it is upwards closed in 2<“. This means that under this naming scheme, x is a name
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for an open set U if and only if the complement z° of x is a name for the closed
set 2“\U under the scheme of naming closed sets by trees used above. We abuse
notation by using U to denote both a set of strings and the open set (sometimes
denoted [U]~) generated by U.

As we are dealing with relatively computable names, rather than relatively c.e.
names, we do not require that [¢] € U implies ¢ € U. This is the analogue of
allowing terminal nodes in our trees naming closed sets.

A name for a null TI$ set is essentially a Schnorr test: it consists of a pair of
sequences (U, y and (A(U,,)), where U, is (a name for) an open set and A(U,,) is (a
name for) the real number which is the fair-coin measure of U,,. We require that
A(U,) < 27". The null set named is (), U,. We do not require the test to be
nested, but this can be obtained by replacing (Uy) by (V;,) where V,, = ,,,~,, Um;
the sequence (A(V,,)) (as well as the sequence of sets of strings (V;,)) is computed
from (U, ) and {A\(U,)).

We note that an alternative naming system would be omitting the sequence of
measures (A(U,)) and simply requiring that A(U,) = 27" (see for example [15,
Prop.7.1.6]). We also remark that unlike the naming scheme for R, when naming
infinite sequences of real numbers we do need to use quickly converging Cauchy
sequences rather than binary expansions, as we cannot pass between them using
piecewise continuous functions: for each coordinate we need to know whether the
real in that coordinate is a binary rational or not, and there are continuum many
possibilities.

For any oracle x, the z-computable null sets are the z-Schnorr null sets. The
associated cardinals and highness classes are:

e Card(Capture(.4)) = cov(.A4) is the smallest number of null sets it takes
to cover the reals; the elements of H(Capture(.4)) are the weakly null
engulfing (or weakly Schnorr engulfing) oracles, those that compute a null
set containing all computable points.

e Card(Supset(A4)) = cof(A) is the cofinality of (A", <); H(Supset(.4))
is the class of (strongly) null engulfing oracles, those that compute a null
set covering all computable Schnorr null sets.

e Card(Pass(./#)) = non(.#) is the smallest size of a non-null set; an oracle
is in H(Pass(.4)) if and only if it computes a Schnorr random real.

e Card(Spill(.#")) = add(./#") is the smallest number of null sets whose
union is not null; H(Spill(.4")) is the class of oracles which are not low for
Schnorr null sets.

The two basic morphisms that apply to most o-ideals apply to null sets as well:
Proposition 3.9. Capture(./') — Supset(.4') and Pass(.4") — Supset(4).

Proof. The same as for meagre, noting that given a name (U,,) for a null set we
can effectively compute a point outside the null set (), U,. Indeed we can build
x ¢ Uy, defining it bit by bit, by ensuring that A([z[n]\U1) > 0. We use the fact
that for all clopen C, A(C' n Uy) is uniformly computable from Uy and A(Uy).
Also, it is easy, given x € 2*, to find a name for {x} as a null set. O

Remark 3.10. By forgetting the sequence (A(U,,)), we could have easily defined the
representation of null sets using Martin-Lof tests, which would make the effective
notions correspond to computing ML-random reals and so on. But the most basic
morphisms (as in proposition 3.9) would not work for such a representation. Schnorr
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is the correct effective analogue to set-theoretic randomness, because in set theory
there is no sense to “not knowing” the exact measure of an open set.

3.4. Category and measure — an easy morphism. We start by observing a
relatively simple connection between category and measure. We use:

Lemma 3.11. There are an effectively null (Schnorr null) set and an effectively
meagre set which form a partition of 2¢.

Proof. This can be done in many ways. For example, use a pairing function to
identify w with w?, and let U,, = U,» Cn.k, where C,, 1 is determined by finitely
many bits on the & column of w; for example

Cor={xe2¥: z(k0) =x(k,1) = =z(k,k+n)=0}. O
Proposition 3.12. Capture(.#) — Pass(.A4).

Dualising we get Capture(.#') — Pass(.#). As a result, cov(.#) < non(A")
and cov(./4") < non(#); and every Schnorr random is weakly meagre engulfing,
whereas every weakly 1-generic is weakly null engulfing.

Proof. By lemma 3.11, we fix a computable null set N and a computable meagre
set M which partition 2¢. We then let, for = € 2%,

Yinst(2) =z AN ={z Ay :ye N}

and for y € 2% we let ¥s01(y) = y A M. The map = — x A y is measure and
category-invariant, so indeed x A N is null and y A M is meagre. Andif y¢ t AN
thenx Ay¢ Nsox Aye Msoxey A M. O

3.5. Tracing. The material in this section was discovered by Bartoszynski [2], by
Raisonnier and Stern [40], and then independently by Terwijn and Zambella [45].

A trace is a function T: w — P, (w) = [w]=¥. An order function is a com-
putable, non-decreasing, unbounded function.” If A is an order function then an
h-trace is a trace T such that for all n, |T'(n)| < h(n). In set theory, traces are
known as slaloms. A trace T traces a function f € w* if (Y*n) f(n) € T(n). By
canonically coding finite sets of natural numbers by natural numbers, we repre-
sent traces by elements of Baire space. The most basic problem involving traces is
h-Trace: an instance is a function f € w*, a solution is an h-trace T" which traces f.

Traces are used extensively in algorithmic randomness and computability. See,
for example, [15, 36, 21].

Lemma 3.13. For any two order functions h and h, h-Trace < h-Trace.
We therefore simply write Trace for the equivalent problems h-Trace.

Proof. Let h, h be order functions; we reduce h-Trace to h-Trace. We say that k
is responsible for n if h(k) < h(n) < h(k + 1). Then for every n with h(n) > h(0),
a unique k is responsible for n, and every k is responsible for finitely many n.

On the instance side, map f € w* to f defined by f(k) = f}(n + 1), where n
is the greatest such that k is responsible for n. If k is responsible for no n (for
example if A(k) = h(k 4 1)) then it doesn’t matter what f(k) is.

On the solution side, we map a h-trace T to the h-trace S defined by

S(n) = {o(n) : 0 € T(k), where k is responsible for n},

"Terminology by Schnorr [43].
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letting S(n) be empty if h(n) < h(0). O

NL(Trace) is the collection of oracles which are not computably traceable. An
oracle = is computably traceable if every z-computable function has a computable
h-trace, for some fixed (or all) order functions h. It is not difficult to see that Dom —
Trace (an instance is mapped to itself, a trace S is mapped to n — max S(n)); the
resulting containment NL(Dom) € NL(Trace) says (in contrapositive) that every
computably traceable degree is O-dominated (hyperimmune-free). The contain-
ment H(Trace) € H(Dom) says that if there is an z-computable h-trace that traces
all computable functions, then x is high. In fact, it is not difficult to see that
H(Trace) = H(Dom), that is, H(Trace) is the collection of high degrees: suppose
that z is high. The set of indices of computable functions is A9(z). Approximating
this set, we let T'(n) be the set of values ¢, 5(s) for all e < s which are believed to
be total at stage s. This is an identity-bounded, x-computable trace that traces all
computable functions. Note how this proof relies on special properties of high de-
grees (and the enumeration of partial computable functions) that go beyond merely
using a dominating function. This proof has no analogue in set theory, and indeed,
the associated cardinals can be distinct.

Our next goal is the following combinatorial characterisation of the cofinality of
the null ideal.

Theorem 3.14. Trace <> Supset(./).

Proof of Supset(.#") — Trace. Define an order function h so that for large enough n,
27203 h(2n,k) - 27% < 27", and that this sum is computable, uniformly in n.

On the instance side: given a null set N = (U, let, for n,k < w, s(n,k) be
a stage s such that AU, s) = A(U,) - (1 —27%), where U, s = U, n {0,1}<°. Let
5(n,—1) = 0. We map N to the function (n,k) — Uy, sty — Up,s(n,e—1)- A value
of this function is a clopen set, so is coded by a finite subset of 2<%, and hence by
a natural number.

On the solution side, given an h-trace T', we may assume that for all n, k, every
element of T'(n,k) is a clopen set of measure at most 27" ~*. We then map T
to a name (V,) for a null set, defined by letting, for sufficiently large n, V,, =
Uk UT(2n,k). The properties of h ensure that A(V,,) < 27". The uniform
computability of the sums above implies that the sequence {(A(V;,)) can be obtained
from T.

For all n, Uy, S Vi, s0 (\Un S () V- O

Proof of Trace — Supset(.4"). We define an array of clopen sets By, x:
By ={zxe€2* : z(k,0) =z(k,1)=--=z(k,m—1) =0}.

For each m, the family of sets (B, ) is independent (in the sense of probability
theory), and A(By, k) = 2~™. Further, for any clopen set C' and m, for some k, the
family {C, By k, Bm k+1, Bm. k+2, - - - } is independent.

We also fix a computable map D — ¢p from clopen sets to positive binary
rational numbers, such that )}, gp < 1/8. For each clopen set D, we let hp(n) =
[1/1og,, (1 —27™)]. This is an order function. The granularity of a clopen set D
is the least k such that D is the union of clopen sets [o] for binary strings o of
length k. We let

h(n) = Z {hp(n) : D is a clopen set of granularity < n}.
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We reduce h-Trace to Supset (/).

On the instance side, the map is relatively simple: we map f € w* to (Up,),
where Uy, = (J,,~, Bm,f(m)- The sequence (A(U,)) is obtained effectively from f.

On the solution side, we work a bit. Given a name (V;,>,{A\(V,,)) of a null set,
we will actually only use V5 and A\(V3). We first define an open set W 2 V, such
that A(W) < 1/2, W and A(W) are computable given V5 and A(V3), and for every
clopen set D, if A\(D\W) < gp then D € W. The idea is to copy V. For each D, we
calculate \(D\W>) sufficiently precisely so that if it is close to gp (say significantly
smaller that 2¢p), then we add all of D to W.

We then let, for every clopen set D such that D & W and n < w,

TD(n) = {k’ : Bn,k NnDc W},
if D€ W then Tp(n) = &. We let
T(n) = U {Tp(n) : D is a clopen set of granularity < n}.

We first observe that T is an h-trace, which amounts to showing, for all clopen D,
that T is an hp-trace. Suppose that D &€ W. For all k € Tp(n), D\W < thk; as
the sets B, ; are independent,

qp < )\(D\W) < (1 _ Q—n)\TD(n)\ 7
SO
[Tp(n)| < log(1,2—n)(qD) = 1/10qu(1 —27") < hp(n).

Our task now is to show that T is computable, given W and A(W). To do this
we show that using W and A(W), the sets Tp(n) are computable, uniformly in D
and n; and that we can, again uniformly in D and n, compute an upper bound for
the elements of Th(n).

For the former, we observe that the collection of clopen subsets of W is com-
putable from W and A(W). For C € W if and only if A(C\W) < ¢¢ if and only if
A(C\W) = 0, and A(C\W) is computable, uniformly in C. So we can tell if D € W,
and if not, then for all k, whether B, , n D < W or not.

For the latter, suppose that D is clopen and D &€ W. So A(W|D) < 1, where
A(X|D) is the conditional probability. Given n, we find some large s so that

AWI|D) = MW,|D) < 27"(1 = A(W[D)).

We also assume that s is greater than the granularity of D. We claim that Tp(n) €
s. Suppose that £ > s. Then B, ; and Wy n D are independent, and also B, ;
and D are independent; this implies that B,  and Wy are independent modulo D,
that is,

A(Ws n By k| D) = M(Ws|D) - X(Bp k| D) = 27" A\(W;|D).
Then

A(Ws U By k| D) = M(Ws|D) + XN(By, 1| D) — A(W|D) - A(Byp x| D) >
AW|D) =271 = A(W|D)) + 27" = 27" AX(W|D) = A\(W|D),
so it is impossible that B, , n D < W. Hence k ¢ Tp(n).

Finally, we need to show that if (| U,, < (| V;, then T traces f (where f is mapped
to (U,) and (V,,» is mapped to T'). We show that there is some D such that Tp
traces f.
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We seek some clopen D such that D &€ W but for all but finitely many m,
D N B, simy) € W; that is, D n U, & W for some n. If there is no such D then
we build some z € (", U,)\W (but (), Un, (), Vo S Vo € W). This is done by
initial segments; given o, such that [o,] € W, by assumption, U, n [¢,] € W, so
we can find an extension 0,41 > 0, such that [0,,41] S U, but [0, 1] € W.5 O

Corollary 3.15 (Bartoszynski [2]). Let h be an order function.

(a) cof(A) is the smallest size of a family of h-traces that trace every function.
(b) add(4") is the smallest size of a family of functions in w* which are not
all traced by a single h-trace.

Corollary 3.16 (Rupprecht [41, 42]). An oracle is (strongly) null engulfing if and
only if it is high.

Corollary 3.17 (Terwijn and Zambella [45]). An oracle is low for Schnorr tests if
and only if it is computably traceable.

Kjos-Hanssen, Nies and Stephan [28] showed that lowness for Schnorr random-
ness is also equivalent to being computably traceable. The framework discussed
here does not appear to give tools for proving this equivalence. This is in contrast
with lowness for genericity or Kurtz randomness, which we will discuss below.

3.6. Reducing category to measure. We prove:
Theorem 3.18. Supset(.#) — Supset(./).

We take a slightly roundabout way because below we will use the concepts that
we introduce now. For a problem A € Ajg¢ X Ago1, we define a problem A“ by let-
ting (A*)inst = (Ainst)”, (A“)so1 = (Aso1)® and (ag, a1, as,...) AY (by,b1,ba,...)
if and only if ag Aby, a1 Abi,.... Note that we can think of Ay, and A%, as
subsets of w* by the natural computable isomorphism between w* and (w*)*.

It would be tempting to think that A — B implies A — B%“; apply the maps
Yinse and g1 coordinate-wise. The problem is that these maps may fail to be
hyperarithmetic piecewise computable; if ©ius¢ [ Ay is computable for a partition
(Ap), then (tins)® is continuous on the sets [ [, Ay, , of which there are uncount-
ably many. In the language of remark 2.4, if we need « jumps to determine which
computable map to apply to z, then ¥*(z) will be z(®)-computable rather than
x-computable.

However, if 9ty and 1501 are (total) computable functions, then this construc-
tion will work. In fact, slightly less is sufficient:

Lemma 3.19. Suppose that 1 is a morphism from A to B, that the sets Aiqs¢ and
Bso1 are hyperarithmetic, and that tipst [ Ainst and 1)g01 [ Bso1 are computable (i.e.,
restrictions of partial computable functions). Then A% — B.

Proof. (Ainst)” and (Bse1)® are hyperarithmetic, and the maps (¥inst)® [ (Ainst)®
and (¥s01)% [ (Bso1)® are computable. Outside (Aingt)” and (Bgoe1)¥, we can use
any constant computable function. (I

Lemma 3.20. For all order functions h and h, (h-Trace)* < (h-Trace)®.

8A quicker way to state this last argument is the following: the space WC = 2¥\W is a Baire
space. Restricted to this space, (U, = &J; so there is some n such that U,\W is not dense in
WE. Thus there is some clopen D such that D n W¢ is nonempty but disjoint from U,. The
initial segment construction above reproves the Baire category theorem in the space WC.
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Proof. The maps in the morphism from h-Trace to h-Trace are computable. [

We therefore write Trace“. However,
Lemma 3.21. Trace < Trace.

Proof. For every problem A, A — A%: map a € Ajust to (a,a,a...); on the solution
side map (bg, by, ...) to by.

Let h(n, k) = max{n, k}. For this proof we choose a computable pairing function
(x,y) — {x,y) which makes h non-decreasing (the value of the pair (n,k) is its
location in a computable ordering of pairs which firsts orders by the maximum).

We reduce (id-Trace)¥ to h-Trace. On the instance side, map {f) to the
function f defined by f(k,n) = fx(n). On the solution side, we map the h-trace T
to the sequence of id-traces (Tp,T1,...), with Tx(n) = & for n < k, and Ty (n) =
T(k,n) for n > k. O

Let €42 denote the collection of closed, nowhere dense subsets of Cantor space,
each named by a nowhere dense binary tree. Supset(€4Y,.#) is the problem of
finding a meagre superset of a given closed, nowhere dense set.

Proposition 3.22. Supset(449,.#) — Trace.

To prove proposition 3.22 we need the following. Call a collection O of clopen
subsets of Cantor space dense if for every dense open set U < 2“ there is some
C € O such that C c U.

Lemma 3.23. There are uniformly computable dense families of clopen sets O,, such
that for all n, the intersection of any n sets in O,, is nonempty.

Proof. For every pair n < m < w, let A, ,, be the collection of functions g whose
domain is 27, the set of binary strings of length n, such that for all o € 27, g(0)
is a binary string of length m extending o. Each such g represents a step toward
defining a dense open set, by mapping strings of length n to extensions in the dense
set we are building. Thus, for such g welet Cy = |J{[7] : 7 € range g}. An open set
U < 2 is dense if and only if for every n there is some m > n and some g € 4, .,
such that C, < U.

We let O,, be the collection of unions Cy, U Cg, U --- U Cy, , where for some
0="Fko<ki <ky<---<k, wehave g; € A;, , ;- That is: the elements of O,, are
obtained by choosing a string [o] of some length k;, and enumerating it into the
clopen set being build; then for each string of length k;, we choose some extension
of length ko, and enumerating all such extensions; and so on, n times.

Suppose that U < 2¢ is dense and open. As described, for all n there is some
m > n and some g € A, , such that Cy € U. Thus, we can define by induction a
sequence k; < kg < --- < k,, and find g; € A, , x, such that C,, < U. Thus, each
O is a dense collection of clopen sets.

Let n < w and let Dy, Ds,...,D, be elements of O,,. For each i < n there
are kj < ky < --- <k, and g; € Ak;,17k§ such that D; = {J;, Cg;-_. We order
these sets so that ki < k% for all i > 1; then k3 < ki for all i > 2, and so on.
Then (), Cyi S (); D; and is nonempty: we define o; € range g! recursively, with

01<02<~'<0n,ask§j< Ly O
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Proof of proposition 3.22. Supset(€AVD,.#) is of course the same as the problem
of finding a dense ITJ subset of a given dense open set; for this reduction it is easier
to think about dense sets. Fix families O,, given by lemma 3.23. We order all finite
binary strings in a computable list (o,,). We reduce Supset(€4P, .#) to id-Trace.

On the instance side, we map a dense open set U to the function f defined as
follows: f(n) is some element C of O,, such that 0,,"C = {o,,"z : x € C} is a subset
of U. Such a clopen set exists because U is dense in [o,].

On the solution side, let T' be an id-bounded trace. We may assume that for
all n, T(n) < O,,. We map T to (), Vi, where for k < w, Vj, is the dense open set
Umer om (T (m). Since |T(m)| < m, (T(m) is nonempty, and so V,, is dense
open. If g(m) € T(m) for all m > k, then V;, € U, and so (), Vx € U. O

The maps given in the proof above are computable on their arithmetic domains,
and so by lemma 3.19, (Supset(€49, #))* — (Trace)”.

Proof of theorem 5.18. By theorem 3.14 and lemma 3.21, and the morphism

(Supset(€NVD, #))* — (Trace)”, it suffices to show that Supset(.#) reduces to
(Supset(€1Y, #))“. But this is not difficult: on the instance side, a meagre set is
given by a sequence {T},) of nowhere dense sets, so we essentially take the identity
map; on the solution side, we are given a sequence (M, ) of meagre sets; we can
combine their presentations and map this sequence to | J,, Mp. ([l

Corollary 3.24 (Bartoszynski [2]; Raisonnier, Stern [40]). cof(.#) < cof(./)
and add(.4") < add(4).

Corollary 3.25. FEvery computably traceable degree is low for meagre sets.

Proof. By corollary 3.16; theorem 3.18 implies that every degree which is low for
Schnorr tests is also low for meagre sets. O

For highness classes, the implication Supset(.#) — Supset(.#") does not add
computable information, as

Dom — Supset(.#) — Supset(A)

and we have already ascertained that H(Supset(.#")) = H(Dom), as the former is
H(Trace).

3.7. The Cichon diagram. The following diagram (fig. 2) displays all the mor-
phisms for the problems associated with measure and category, as well as the dom-
ination problems. The analogous diagram for cardinal characteristics was named
(by Fremlin) after Cichon.

4. TOE REALS AND SEQUENTIAL COMPOSITION

4.1. Sequential composition. A (total) function F': w* — w® is Borel piecewise
continuous if there is a countable partition (A, ) of w* into Borel sets such that for
all n, F'l A,, is continuous. We let F be the collection of these functions.

A name for such a function is an element of Baire space coding:

e The sets A,: for each n, some oracle z,, and a A}l(z,)-definition of A,;
e The functions F'lA,: a name for a partial continuous function 1, which
agrees with F on A,.
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Capture(./') ——— Pass(.#) ——— Supset(.#) ——— Supset ()

Spill(.A4) ——— Spill(.#) —— Capture(.#/) —— Pass(A)
F1cURE 2. The Cichon diagram for Weihrauch problems

Note that the collection of names is quite complicated (d-II}). For z € 2%,
a Borel piecewise continuous function is z-computable if it has an x-computable
name. If F' € F is z-computable then for all a € w¥; F(a) <7 (z,a). The naming
system is chosen so that the Borel piecewise continuous maps with computable
names are precisely the hyperarithmetic piecewise computable ones.

Lemma 4.1. F has effective composition: there is a computable map 0: (w*)? — w®

such that if f, g are names for F,G € F then 0(f, g) is a name for F o G.
Proof. Let (A,), (B, be the partitions. Welet C,, ,, = A,nF~[B,,] = (FA,) ! [Bn];

otherwise, we compose partial continuous functions. ([l

Every constant function is in F; the constant function y — a has an a-computable
name.

For problems A and B we define the problem A  B. The instances are pairs
(a, F) € Ajpsy X F (as usual we mean a name for F' € F) such that F[Age1] € Binst;
the solutions are pairs in Age; X Bsor. The relation is: (¢, d) is an (A * B)-solution
of (a, F) if ¢ is an A-solution for a and d is a B-solution for F(c¢). The idea is to
take a two-step iteration: first solve an A-instance a; use the solution to generate
a new B-instance, and then solve that one.’

The collection of instances of A * B can be quite complicated. However it does
contain computable points: use a constant function that maps to a computable
instance of B.

We now verify that sequential operation induces a well-defined operation on the
morphism equivalence classes of Weihrauch problems.

Lemma 4.2. A, B— AxB

Proof. To reduce A to A x B we use the idea just mentioned: fix a computable
by € Binst; let Fpy be the constant function y — b,. We map an A-instance a to
(a, Fpx) and map an (A = B)-solution (¢, d) to c.

To reduce B to A » B, fix a computable A-instance a,. We map a B-instance
b to the pair (ay, F,) (where again Fy, is the constant function y — b); we map an
(A » B)-solution (¢, d) to d. O

9Blass [7] defines Ax B using the collection of all functions from Age1 to Binst. As this collection
cannot be represented, Rupprecht did not try to find a computable analogue. A similar yet non-
identical sequential composition was discovered by Brattka et al. [9], who only used computable
maps. Our formulation, and choice of functions for morphisms, are designed to obtain lemma 4.3.
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Lemma 4.3. If A — A and B — B then (4« B) — (A B).

Proof. Let 1 be a morphism from A to A and let © be a morphism from B to B.
Let (a, F) be an (A » B)-instance. Let @ = tiqee(a) and let F' be the translation
of F under the relevant morphisms: F= Yinst © F 0 Yg01. As F': Ago1 — Binst, it
follows that F': Ago; — Bins:. We send (a, F) to (a, 15), using lemma 4.1 to see that
this map is hyperarithmetic piecewise computable. Let (&, CZ) be an A » B-solution.

A

We map it to (¢, d) = (Ys01(C), Psor(d)). O
A g Eememees A - B
Yinst Pso1 Pinst Psol
A E r B

FIGURE 3. Reducing A « B to A « B.

Lemma 4.4. (AxB)*C « Ax(Bx(C).

Proof. This goes as expected. Abusing notation, we write XY for the collection of
maps from Y to X that are in F. So (A * B)inst = Ainst X (Binst)=*. The proof
of the lemma relies on the natural identification of

((A * B) * C’)inst = Ainst X (Binst)A501 X (C'inst)ASOIXBscl

with A
(A * (B * C))inst = Ainst X (Binst X (Cinst)BNl) ! . D

When describing a map @inst : Cinst — (A * B)inst, we must send ¢ € Cipge to
some (a, F') € (A*B)inst, where a Borel piecewise continuous name for F' is obtained
in some hyperarithmetic piecewise computable fashion from a. Our description of
F' can thus make use of a. If the Weihrauch problem A is hyperarithmetic, that is, if
{y € Aso1 : ©Ay} is uniformly hyperarithmetic in z, then it suffices to describe F'(y)
under the assumption that aAy; we can then define F' to some computable value for
all other y while still obtaining an a-computable Borel piecewise continuous name.

Proposition 4.5.
(a) If Card(A) and Card(B) are infinite, then
Card(A « B) = max {Card(A), Card(B)}.
(b) NL(A * B) = NL(A) U NL(B).

Proof. (a): Let Z be a complete solution set for A and W be a complete solution
set for B. Then Z x W is a complete solution set for A x B. On the other hand,
since A, B — A » B, max{Card(A), Card(B)} < Card(A » B).

(b): Again by lemma 4.2, NL(A),NL(B) < NL(A » B). Suppose that z €
NL(A » B). Let (a, F) be an z-computable (A » B)-problem with no computable
solution. If a has no computable A-solution then we are done. Otherwise let ¢ be a
computable A-solution for a. Let b = F(c¢). Since F' is z-computable, so is b. And
it has no computable B-solution. O
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Proposition 4.6. Card((A « B)') = min{Card(A*), Card(B")}.
Proof. We know that (A « B)t — AL BL. So it remains to show that
Card((A » B)') = min{Card(A'), Card(B"1)}.

Let R be a complete set of solutions for (A « B)! of size Card((A » B)*). Let
P = m[R] = {c: (3G) (¢,G) € R}. Then |P| < |R|. If P is a complete solution
set for A+ then Card(A+) < Card((A = B)*). Suppose not. Then there is some
a* € Ago1 such that for all ¢ € P, cAa™. We let Q = {G(a*) : (3¢) (¢,G) € R}.
Then |Q| < |R|. We claim that @ is a complete solution set for B+, so Card(B*) <
Card((Ax B)*t). For suppose that b € Bgoy. Then (a*,b) is an instance of (A* B)*,
so there is some (c,G) € R which solves it. This means that either cAa*, or that
G(a*)Bb, that is, bB+G(a*). The former is not true, so G(a*) € Q is a B*-solution
of b. O

For the following lemma, we generalise notation: for z € 2* and a problem A,
H”(A) is the set of y € 2 which compute ¢ € Age which solves every z-computable
A-instance.

Lemma 4.7. y € H(A x B) if and only if y € H*(B) for some x € H(A) such that
T <7 Y.

Proof. The point is that for all z,w € w*, z <p w if and only if there is some
computable F' € F such that F(w) = z. This is because every partial computable
function can be extended to a computable F' € F. O

4.2. A weakening of morphism reduction. For a Weihrauch problem A and
n < w, let
A :é*A*...*é

—
n times

(we implicitly use the associativity of sequential composition, lemma 4.4). For
Weihrauch problems A and B we write

A-->B

if A — B*" for some n < w. We also write A«<-»B if A~->B and B--»>A. Lemma 4.2
and propositions 4.5 and 4.6 imply:

Lemma 4.8.

(a) - is transitive, and <> is an equivalence relation.
(b) If A~ B then Card(A) < Card(B) and Card(A*) > Card(B%1).
(c) If A~ B then NL(A) € NL(B).

4.3. An example: Supset(.#).
Proposition 4.9. Supset(.#) — Pass(.#) x Dom.

Proof. The first step is to replace Pass(.#') with a fractal version: FractalPass(.#)
is the problem of finding, given a meagre set A, a point z € w* such that for
all w =* 2, w ¢ A. Clearly Pass(.#) — FractalPass(.). To show the re-
verse morphism, we map the meagre set A (an instance of FractalPass(.#)) to
U,ew<w (0 A). Here, for x € w®, 07z is the result of replacing the first |o| values
of z by 0, and 07X = {67z : x € X}. On the solution side, we map a real to
itself.
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Now we show Supset(.#) — FractalPass(.#) « Dom. On the instance side, we
map A = J,,[T,] to the pair (A, F'), where F'(z) is defined as follows. Suppose that
w ¢ A for all w =* z. Then F(z) is the function f mapping (7,n) to k > |7| such
that (772) 1k ¢ T,, for all m < n.

On the solution side, we map (z,g) to the meagre set | J B,,, where for each 7,
[(77™2)tg(7,n)] is thrown out of B,. If g(—,n) majorises f(—,n) then [T},,] € B,
for all m < n. O

We already know that Pass(.#),Dom — Supset(.#). It follows that
Pass(.#) » Dom — Supset(.#)  Supset(.#),
whence Pass(.#) x Dom > Supset(.# ), which with proposition 4.9 gives

As a result:

Corollary 4.10.
(a) cof () = max{d,non(.#)} (A. Miller and Truss);
(b) add(.#) = min{b, cov(.#)} (Fremlin);
(¢) A degree is not low for meagre sets if and only if it is either hyperimmune
or weakly meagre engulfing.

Examining the morphisms, we also get that if a degree d is high relative to a
weakly 1-generic below it then it is strongly meagre engulfing. However we already
know that highness suffices, indeed is equivalent.

4.4. Infinitely often equal reals. AEDiff is the problem of finding a function g
which is different from a given f on all but finitely many inputs. Its dual is I0E,
the problem of finding a function f which agrees with a given g on infinitely many
inputs.

H(IOE) = NL(AEDiff) is the class of degrees computing functions f, which agree
with every computable function on infinitely many inputs. Similarly, the dual class
NL(IOE) = H(AEDiff) is that of degrees computing functions which are different
from every computable function on all but finitely many inputs.

Kjos-Hanssen, Merkle and Stephan [27] showed:

Proposition 4.11. NL(IOE) is the class of degrees which are either high or DNR.
We consider other known morphisms and equivalences.
Proposition 4.12. I0E — Pass(.#).

Proof. We prove the equivalent Capture(.#) — AEDiff. On the instance side, we
start with a point f € w“; we map it to itself. On the solution side, we map g € w*
to the meagre set of h € w* which are almost always different from g. (Il

Proposition 4.13. AEDiff — Dom.
Proof. If f <* g then g + 1 is almost always different from f. O

Note how the morphism from Capture(.#) to Dom (proposition 3.3) is close to
the composition of the morphisms from Capture(.#') to AEDiff and AEDiff to Dom
given by propositions 4.12 and 4.13.

Proposition 4.14. Pass(.#) — I0E x I0E.



CARDINAL INVARIANTS, NON-LOWNESS CLASSES, AND WEIHRAUCH REDUCTIONS 21

Proof. We prove that Pass(.#) — Esc x I0E; since Esc — IOE (the dual of propo-
sition 4.13), lemma 4.3 says that Esc x IOE — IOE * I0E.

We work in Cantor space. On the instance side, we are given a meagre set A
with name (T}, ). As usual we may assume that T,, € T),+1. In this proof, a partial
string is a finite function to {0,1}. We say that a partial string 7 witnesses the
meagreness of A if the domain of 7 is an interval [n,m) and for every o € 2<% of
length n, o U T ¢ T,. Effectively from (T;,) we obtain a function h: w — w such
that for all n, there is some partial string 7: [n, h(n)) — {0, 1} which witnesses the
meagreness of A. Note that if x € 2% and for infinitely many n there is some m > n
such that x[[n,m) witnesses the meagreness of A, then z ¢ A.

Given a function g € w*, consider the sequence of intervals (I,,) given by I,, =
[9(™(0), g"*+2)(0)); note that this is not a partition of w: these intervals overlap.
If g escapes h then there are infinitely many n for which there are partial strings 7
such that dom 7 < I,, and 7 witnesses the meagreness of A.

Let 0,7 be two partial strings. We say that o and 7 are strongly compatible
(relative to g) if for some n and m, domo < I,,, dom7 < I,,, and the intervals I,
and I,,, are disjoint. We now define F'(g): assuming g escapes h, F(g) is a function f
such that for all k&, f(k) is a set of 3k + 1 many finite functions 7, pairwise strongly
compatible (relative to g), each of which witnesses the meagreness of A, such that
mindom 7 > k. On the instance side, we map A to the pair (h, F').

On the solution side, we are given a pair (g,p) of functions. Given g we can
compute {(I,,), and so the notion of strong compatibility of partial strings relative
to g.'' We define a sequence {(o}) of pairwise strongly compatible partial strings.
Given oy, ...,0r+1, we examine p(k). We may assume that this is a set of 3k + 1
many pairwise strongly compatible partial strings 7 such that min dom 7 > k (if not,
we pick o to be empty). One of these partial strings is strongly compatible with
each o; for i < k, and so can be chosen as 0. We then map the pair (g, p) to x € 2
defined by extending [ J, ox; we fill the undetermined locations arbitrarily. The
condition min dom o, > k implies that x can be computed from (g, p), uniformly.

If indeed A is mapped to (f, H) and (g,p) solves (f, H), then g escapes f and
for infinitely many k, p(k) = F(g)(k), in which case oy, witnesses the meagreness
of A. It then follows that x ¢ A, as required. (]

Propositions 4.12 and 4.14 give:

which yields some characterisations of cardinals and non-lowness classes, due to
Rupprecht [41] and Bartoszynski [3].

Corollary 4.15.
(a) A degree is weakly meagre engulfing if and only if it is high or DNR.
(b) A degree is not low for meagre sets if and only if it is hyperimmune or
DNR.
(¢) Card(IOE) = non(.#) and Card(AEDiff) = cov(.#).

Proof. (a) follows from NL(IOE) = NL(Pass(.#)), and proposition 4.11.
(b) follows from (a) and corollary 4.10(b). O

10of course, in the absence of A, we do not know which partial strings witness the meagreness
of A.
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As for NL(AEDiff), the string of morphisms
Capture(.#) — AEDiff — Dom

and the equivalence of hyperimmune with computing a weakly 1-generic sandwich
the class in the middle, yielding NL(AEDiff) being hyperimmune as well.

4.5. Lowness for closed nowhere dense sets, and weak 1-genericity. Corol-
lary 4.15(b) is very close to a result of Stephan and Yu’s [44]. Rather than
lowness for meagre sets, they consider the related notion of lowness for closed
nowhere dense sets. That is, NL(Supset(€42)) rather than NL(Supset(.#)).
They show that this class is also equivalent to being hyperimmune or DNR; that
is, NL(Supset(€42)) = NL(Supset(.#)). They further show that this class coin-
cides with non-lowness for weak 1-genericity, a property which doesn’t seem to be
expressed as the highness class of a Weihrauch problem.

We note that we cannot get a morphism equivalence between Supset(.#) and
Supset(€49); the corresponding non-lowness classes coincide, but their highness
classes do not: indeed, H(Supset(€42)) is empty, as the union of all computable
closed, nowhere dense sets is dense. Nonetheless, we have the means to deduce
the Stephan-Yu results. We now work in Cantor space, though the results can be
extended to Baire space as well.

In one direction we do get a morphism:

Proposition 4.16. Supset(.#) — Supset(€49).

Proof. Recall the problems A“ mentioned above. First, we show that Supset(.#) —
(Supset(€492))¥. This is not hard: on both sides, map a sequence (T, ) to itself;
we just consider them differently, as a name for a meagre set or an w-sequence of
names for closed, nowhere dense sets. If {S,) is a (Supset(€+4Z))“-solution for
(T}, that is, if [T;,] < [S,] for all n, then certainly J,,[T%] < UU,,[Sn]-

Next, we show that Supset(€4Y) < (Supset(€42))“. As observed above,
we always have A — A“. We reduce (Supset(€4%))* to Supset(€4Y). On the
instance side, map (T},) to the tree S = J,,({0™} U 0"1°T},). That is, paste T;, on
the n' level of a fishbone. On the solution side undo this operation. O

We now obtain:
Proposition 4.17. NL(Supset(.#)) = NL(Supset(€42)).

Proof. Proposition 4.16 shows that NL(Supset(.#)) < NL(Supset(€492)). In the
other direction, the proof of proposition 4.9 shows that Supset(€4%) — Pass(.# )
Maj, where Maj is the problem of finding a function g that majorises a given func-
tion f, that is, (Vn) f(n) < g(n). While H(Maj) is empty, NL(Maj) = NL(Dom) is
the collection of hyperimmune degrees. It follows that

NL(Supset(€4%)) < NL(Pass(.#)) u NL(Maj) = NL(Supset(.#)). O

What about lowness for weak genericity? Here we can use a technique utilised
by Greenberg and Monin [20]. We dualise and define the Weihrauch problem:

e FractalSpill(€4%9): an instance is a closed, nowhere dense set P; a so-
lution is a closed, nonempty, nowhere dense set () and an infinite set [ € w
such that 0 € I and for all n € I, for all o € 2<% of length n such that
[0] " Q # O, Qo] £ o"P. (Recall that c"P = {¢"z : € P}.)
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Lemma 4.18. Spill(€49) < FractalSpill(€49).

Proof. Spill(€49) — FractalSpill(€A49) is immediate, via identity maps, for-
getting the set I. For the other direction, we use the construction from [20]. On
the instance side we use the identity map. On the solution side, given a nowhere
dense tree T, we define a nowhere dense tree S and an infinite set I. We start with
0 €I and () € S. Suppose that we have declared that n € I and for every string p
of length at most n, whether p € S or not. For each string o € S of length n, the
tree (<)o (01k)"T is nowhere dense, so we can find some 7 > o off that tree. We
declare that 7 ¢ S. We let the next element of I be bigger than all these 7’s.

By construction, for every string o € S such that |o| € I, 0"T < S. Suppose that
lo| eI, o€ S and [0] n[S] € 0"P. Then o"[T] € ¢"P, whence [T] < P. O

Lemma 4.19. Suppose that I' is a countable collection of closed, nowhere dense sets,
which is closed under the shift operator: forallc and PeT', P—o = {z : 0"z € P}
is also in T". Suppose that (Q, I) is a FractalSpill(&492)-solution for every P € I.
Then @ ¢ |JT'. Thus, an oracle computing such @ is not low for I'-genericity.

Proof. The cloure property of I' means that for every P € I' and every o such
that |o] € T and [0] n @ # &, [0] n Q & P. This is because P — o € T and
[c]lnQ E o (P—0)=Pnlo].

We can therefore build a point in Q\ |JT' by finite extension. At stage k we have
a string o, such that [ox] " Q # & and |ox| € I. Let Py be the k' element of I in
some w-enumeration of T'. Since [ox] N Q & Pk, we can find an extension o1 of
oy such that [op411] N Q # &, |ok+1| € I and [ox11] N P = . ]

We now get the full result of Stephan and Yu, which is also another proof of

proposition 4.17.
Corollary 4.20.
NL(Supset(.#)) = NL(Supset(€49)) = {x : = is not low for weak 1-genericity} .
Proof. By proposition 4.16, NL(Supset(.#)) < NL(Supset(€47)). By lemma 4.18
and lemma 4.19, applied to I' = A{NEA4D, we see that every oracle in NL(Supset(€42))
is not low for weak 1-genericity. Finally, suppose that x is not low for weak 1-
genericity; say g is weakly 1-generic, M € .# is xz-computable and g € M; then M
shows that « € NL(Supset(.#)). O
4.6. A non-morphism. The implications

Supset(.#) — Pass(.# ) x Dom
and

TOE — Pass(.#) — I0E * IOE

leave the question open whether we can get morphism reverals, that is, if we really
needed the weakening of morphism equivalence. For computable morphisms, we
can use highness classes.

Lemma 4.21. Pass(.# ) » Dom - Supset(.#).

Proof. There is a high degree which is not high relative to a weakly 1-generic below
it, e.g. a minimal high degree. ]

Lemma 4.22. I0E x I0E - I0E.
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Proof. We show that H(IOE) # H(IOE x IOE). By lemma 4.7, y € H(IOE » I0E) if
and only if there is some z <t y in H(IOE) such that y € H*(IOE). We observed
that H(IOE) = NL(AEDiff) is the collection of oracles of hyperimmune degree.
Relativising, y € H(IOE » I0E) if and only if y has hyperimmune degree relative
to a hyperimmune z <t y. We cannot have x =7 y, in particular, y cannot
have minimal degree. On the other hand, there is a hyperimmune z of minimal
degree. (|

These fine distinctions do not help if we change the question to the existence of
a definable (say, Borel) morphism. We shall get back to this question in section 8.

5. OTHER REDUCIBILITIES

We can modify the definition of the highness class (and thus the non-lowness
class) associated with a Weihrauch problem. The most obvious one is changing
the reducibility from Turing to weaker ones. If <, is any reducibility, implied by
Turing, then for a Weihrauch problem A we define H"(A) to be the collection of
oracles x such that there is some ¢ € Ago1, ¢ <, © which is an A-solution for every
a € Ajnst such that a <, &.

Morphisms give implications for these variants of highness and non-lowness
classes.

Lemma 5.1. Suppose that <, is a transitive relation implied by Turing reducibility.
Let A and B be Weihrauch problems. Then:

(a) If A — B then NL"(A4) < NL"(B).

(b) NL"(A « B) = NL"(A) u NL"(B).
As a result, if A > B then NL"(A4) < NL"(B).

The most commonly used in this area is hyperarithmetic reducibility, equivalent
to relatively Al reducibility. Thus NLAi(A) is the collection of x € 2¥ such that
there is some ¢ € Ajpey N Al(2z) which has no Al A-solution. The relationships
between problems studied above give analogous results in this context:

Theorem 5.2 (Chong, Nies, Yu [12]). An oracle is low for A} null sets if and only
if it is Al-traceable.

Theorem 5.3 (Greenberg, Monin [20]). An oracle z is low for A} genericity if and
only if it is low for Al closed nowhere dense sets if and only if it is Al-dominated
and every f € Al(x) is infinitely often equal to some Al function.

We also obtain results that we believe have not been stated yet, for example:

Proposition 5.4. There is a meagre set in Al(x) containing all Al points if and
only if there is a function f € Al(x) which is eventually different from every Al
function.

In section 8 below we discuss another family of weak reducibilities <,., namely
Turing modulo an ideal.

5.1. Total reductions. In the other direction, we can ask what happens when we
strengthen, rather than weaken, Turing reducibility. This has been investigated,
for example, by Miyabe [32]. We make the following definition.
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Definition 5.5. Let X < w*. We say that a € X is X-tt reducible to x € 2 if
there is a (total) computable function I': 2¥ — X such that a« = I(x). We write
a <x-tt T.

Let A be a Weihrauch problem. We let NL**(A4) be the collection of oracles
x € 2“ such that there is some a <4, _,-++ £ which has no computable A-solution.

Sometimes this notion trivialises, for example NL**(Dom) = . In other cases, we
get something meaningful. Miyabe, in particular, examines what he calles uniform
Schnorr randomness, where a uniform oracle test is an operator which gives a
Schnorr test relative to every oracle. That is, a uniform Schnorr test relative to x
is an element N € A4 which is .4 -tt-reducible to z.

To use reducibilities in this context, we need to maintain totality.

Lemma 5.6. Suppose that A — B by a morphism 1 such that ©;ipet [ Ainst 1S com-
putable. As usual, this means it is the restriction to A;ne: of a partial computable
function. Then NL**(A) € NL**(B).

We observe that all the morphisms we have considered so far except for one
(remark 3.8) are uniform on their instances. We thus get:

Theorem 5.7 (Miyabe [32]). An oracle x is low for uniform Schnorr tests if and
only if for some (all) order function(s) h, every f <. x has a computable h-trace.

Unfortunately, the usefulness of this approach is limited, because it is not the
case that NL**(A* B) = NL**(A4) u NL**(B). For suppose that (a, F) € (A* B)inst
is tt-reducible to z, and has no computable A » B-solution. Suppose further that
x ¢ NL**(A); so a has a computable A-solution c. It is not necessarily the case that
F(c) is tt-reducible to x. That is, we have a total computable function I: 2¥ — F
such that F' = I(z). The function I gives us a name for F. But F itself is not
continuous, only piecewise continuous, and the map taking y € 2¢ to I(y)(c) is not
necessarily computable. When reducing to A x B, we often describe non-continuous
functions F', as they assume that the input is in fact a solution for the computed
A-instance.

It would be interesting to find an extension of our methods that would allow us
to characterise classes such as NL**(Pass(.Z)).

6. ADDITION, MULTIPLICATION, AND THE I' QUESTION

In this section we introduce another weakening of morphism reducibility (defini-
tion 6.9) that still implies cardinal inequality and containment of highness classes
(lemma 6.10). This weakening is based on the dual operations of sum and product
of Weihrauch problems, which have been used in both set theory and computable
analysis.

We then use the new reducibility to present results from [34] in the language of
morphisms (theorem 6.15). This result is closely related to Monin’s resolution [33]
of the I' question which was stated in [1].

6.1. Addition and multiplication.

Definition 6.1. Let A and B be Weihrauch problems.
e The problem A x B is defined by letting (A X B)ipst = Ainst X Binst,
(A X B)so1 = Aso1 X Bso1, and (a,b)(A x B)(a,b) if and only if aAa and
bBb.
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e The problem A + B is defined by letting (A + B)inst = Ainst X Binst,
(A+ B)sor = Aso1 X Bgo1, and (a,b)(A + B)(a,b) if and only if aAa or bBb.

Lemma 6.2. A,B — A x B.

Proof. To reduce A to A x B, fix some computable b* € Bi,s. On the instance
side map a to (a,b*); on the solution side map (a,b) to a. Of course B — A x B
is identical. 0O

Remark 6.3. A x B— Ax B, but not always the other way round.
The following requires only running through the definitions:

Lemma 6.4.
(a) (Ax B)t = A+ + B+
(b) (A+ B)l = Al x B+

As a result:
Lemma 6.5. A+ B— A, B.

It is also clear that the sum and product induce well-defined and nice operations
on morphism classes, namely:

Lemma 6.6.
(a) f A—> Aand B— Bthen Ax B—Ax Band A+ B — A+ B.
(b) (AxB)xC e Ax (Bx(C),and (A+ B)+C < A+ (B +C).
(¢c) Ax B BxAand A+ B« B+ A.

Lemma 6.7. Suppose that Card(A) and Card(B) are infinite. Then:
(a) Card(A x B) = max{Card(A), Card(B)}; and
(b) Card(A + B) = min{Card(A), Card(B)}.

Proof. (a): By lemma 6.2, max{Card(A),Card(B)} < Card(A x B). To show
equality, let Z be a complete solution set for A and let W be a complete solution
set for B; then Z x W is a complete solution set for A x B.

(b): By lemma 6.5, Card(A + B) < min{Card(A), Card(B)}. To show equality,
let R be a complete solution set for A + B; then either the projection m[R] is a
complete solution set for A, or m[R] is a complete solution set for B. (]

Note how the proofs of lemma 6.7 are a simplification of the proofs of propo-
sition 4.5(a) and proposition 4.6. Indeed we could deduce lemma 6.7 from these
propositions, using the reduction A x B — A x B.

Lemma 6.8.
(a) H(A x B) = H(A) n H(B).
(b) H(A+ B) = H(A) u H(B).

Proof. (a): By lemma 6.2, H(A x B) <€ H(A) n H(B). For equality, let x €
H(A) x H(B); let ¢ € Ago1 and d € Bge1 be both a-computable and solve every
computable A-instance and every computable B-instance, respectively. Then (c, d)
is x-computable and solves every computable (A x B)-instance.

(b): By lemma 6.5, H(A) WH(B) < H(A+ B). For equality, let € H(A+ B); let
(¢,d) be z-computable and solve every computable (A + B)-instance. If ¢ doesn’t
solve every computable A-instance, then d solves every computable B-instance. [
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Using duality (lemma 6.4), we get the analogous results for the non-lowness
classes: NL(A x B) = NL(A) u NL(B) and NL(A + B) = NL(A) n NL(B).

These characterisations of cardinals and classes related to sums and products
invite a weakening of morphism reduction. A positive Boolean combination of a
problem A is a problem obtained from copies of A by repeatedly using addition and
multiplication, for example (A + A) x (A + (A x A)). We can use these concepts
to define yet another weakening of morphism implication by declaring all positive
Boolean combinations of a problem to be equivalent:

Definition 6.9. Let R be the set of pairs (A, B) of Weihrauch problems such that
A — B for some positive Boolean combination A of A and B of B. We write
A v~ B if (A, B) lies in the transitive closure of R.

The analysis so far yields the following:

Lemma 6.10. Suppose that A v B. Then:
(a) Card(A) < Card(B).
(b) H(B) < H(A).
(c) B+ v AL

Part (c) uses the fact that the dual of a positive Boolean combination of A is
a positive Boolean combination of A+. Tt follows that if A v B then NL(A) <
NL(B).

6.2. Bounded IOE problems. Bounded IOE problems were investigated in set
theory by Kamo and Osuga [38] (this followed work on other cardinals indexed by
growth rates of functions, for example [18, 23]). The associated highness classes in
computability were introduced by Brendle and Nies [11].

For a function h: w — w we let Bdd(h) = h* = [], h(n) be the collection
of functions f: w — w such that for all n, f(n) < h(n). We let I0E(h) be the
restriction of I0E to instances and solutions in Bdd(h). Throughout this section we
assume that the bounding functions h are computable.

Lemma 6.11. If h < h then I0E(h) — I0E(h).
Proof. Map an instance to itself; map a solution f to An.min{f(n), h(n) —1}. O

For functions hg, h1 we use the usual join operation: (hgo @ h1)(2n + i) = h;(n).
For a function h, the splitting of & into the two standard columns is the pair (hg, h1)
such that h = hg @ h;.

Lemma 6.12. I0E(hg) + I0E(hy) — IOE(ho @ hq).

Proof. Map a problem (fo, f1) to the join fo@® f1; map a solution g = go @ ¢1 to its
splitting (g0, 91). If (fo @ f1)I0Eg then either foI0OEgy or f1I0Eg;. O

As a result, for every h, I0E(h) v~ IOE(h @ h).
For a computable real number a > 1 we let
lo(n) =|a"].

Lemma 6.13. Let j(n) be a non-decreasing function. Then for all computable
a,b>1,
TOE(j 0 £,) <~ I0E(j 0 £,).
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Proof. Let b > 1. Since j is non-decreasing, (j o €y2) @ (j 0 £y2) < j o £, and so by
lemma 6.12 and lemma 6.11,
I0E(j o £p2) v I0E((§ 0 £p2) @ (j 0 £y2)) — IOE(j o ).
Iterating, for all b > 1 and k € N,
I0E(j 0 €,on ) v IOE(j 0 ).

To prove the lemma, let a,b > 1. Without loss of generality b < a. For some k,
»2" > a; by lemma 6.11,

I0E(j o £p) — TOE(j o £q) — IOE(j 0 £yor ) v~ IOE(j 0 £p). g
Corollary 6.14. For all computable a > 1, TOE(22") <~ T0E(2%2).

6.3. Besicovitch distance and the I' question. Recall that for finite binary
strings o, 7 of the same length n, the normalised Hamming distance between o
and 7 is

#{k <n: o(k) #7(k)}
- .
For z,y € 2%, the Besicovitch distance between x and y is

d(d, T) =

d(z,y) = limsupd(z|n,yln).

Brendle and Nies [11], motivated by [22], introduced the following Weihrauch prob-
lems, for each computable p € [0, 1]:

e Close(p): an instance is x € 2¢; a solution is y € 2¥ such that d(z,y) < p.
e The dual of Close(p) is Far(p): an instance is z € 2*; a solution is y € 2%
such that d(z,y) > p.

Thus, H(Close(p)) is the set of oracles that compute a point which has distance
< p to any computable point; this is clearly nonempty only if p > 1/2. On the other
hand, NL(Close(p)) = H(Far(p)) is the set of oracles that compute a point which
has distance at least p from any computable point. See [37] for a formalisation
using Hausdorff distance.

Hirschfeldt et al. [22] showed that for positive p < 1/2, NL(Close(p)) consists of
all of the nonzero degrees, so again we are interested in the case p > 1/2. Brendle
and Nies [11] examined relationships between the associated cardinals and highness
classes, and their relationship with the Cichon diagram. Monin and Nies [35, 34]
then showed that the highness classes and cardinals associated with the problems
Close(p) and I0E(2?") are related. In morphism form, their results give:

Theorem 6.15. For all computable p € (1/2,1),
Far(p) <~ I0E(22").

It follows, of course, that for all computable p,q € (1/2,1), Far(p) <~ Far(q)
(and so also that Close(p) «~> Close(q)). As a result H(Close(p)) = H(Close(q))
and H(Far(p)) = H(Far(q)), and Card(Close(p)) = Card(Close(q)), which is how
the result is stated in [34] (which also investigated the amount of uniformity of
the reductions). Monin and Nies’s work was partly motiveated by the so-called T'
question.

For x € 2%, consider

d(z,R) = inf {d(x,y) : y is computable} .
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Andrews et al. [1] define
I'(d) =1—supd(z,R).
red
So 1-TI'(d) says how far we can get from computable points among the d-computable
points. The values 0,1, and 1/2 are possible; their observation above shows that
values strictly between 1/2 and 1 are not. Andrews et al. [1] asked whether values
between 0 and 1/2 are possible. Monin showed:

Theorem 6.16 (Monin). IfT'(d) < 1/2 then T'(d) = 0.
Theorem 6.15 gives a quick proof of Monin’s result:

Proof. Let y € d and suppose that d(y,R) = p > 1/2. Let ¢ € (1/2,1) be com-
putable; we need to show that there is some x <t y such that d(z,R) > ¢; this
follows from H(Far(p)) = H(Far(q)), where p € (1/2,p) is computable. O

This is a-historical: In [35], Monin and Nies first showed that Close(p) and
I0E(2%") are related; they essentially proved one direction of theorem 6.15 (which
was later stated in morphism form by Kihara [24]). Monin [33] then used the list
decoding theorem, discussed below, to prove theorem 6.16; this technique was then
used by Monin and Nies in [34] to prove the other direction of theorem 6.15. We
now present the proof of theorem 6.15 in morphism form.

collection of functions f: w — 2<% such that for all n, | f(n)| = ¢(n). This collection
is naturally identified with Bdd(2¢).

For a function £: w — w we define a bijection ®;: 2% — StrLth(¢): Let {J%) be
the partition of w into an increasing sequence of intervals, with |J,,| = ¢(n). Then
®y(x)(n) = x1J,. The inverse of ®; is obtained by concatenating the values of a
function in StrLth(£). In this section, all the functions ¢ are computable.

For the following lemma, and below, for z,y € 2¥, we let

d(z,y) = 1imninf d(xzn,yln).

The main map. For a function £: w — w we let StrLth(¢) = [T, {0,1}*™ be the
|

Lemma 6.17. Let a > 1, and let x,y € 2¢; let r € [0, 1].
(a) Suppose that d(®, (x)(n), e, (y)(n)) < r for infinitely many n. Then
d(z,y) <1/a+r(l—1/a).
(b) Suppose that d(®g, (z)(n), @y, (y)(n)) < r for all but finitely many n. Then
d(z,y) <r+(a—1).

Proof. Let (J,,) = {J}*) be the increasing sequence of intervals with |J,,| = £, (n),
and let b, = maxJ, = > _ Ll.(m). For brevity, let z,, = x[J, = ®,(v)(n) and

similarly let y, = y{J,.
Suppose that d(x,,y,) < r. Then

by— 4,
d(wtba,ylb) < 2t 4 ),

For (a), we then use the fact that lim, b,_1/b, = 1/a and lim,, ¢,(n)/b, =1 — 1/a.
For (b), as distance is invariant under finite changes, we may assume that for
all n, d(z,yn) < 7. Let n < w and let m € J,,. Then

d(zm, ytm) < rbp—1 + (m —bn—1) < b1 +la(n) _ - Ea(n)7
m bn,1 bn,1

and note that lim, ¢,(n)/b,—1 = a — 1. O
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Proof of one direction of theorem 6.15: Far(p) v~ I0E(22"). This of course will work
for all p € (0,1). Even though d defined above is not a pseudo-metric, we define,
for ¢ € [0, 1], the analogous Weihrauch problem, Close(g): an instance is z € 2¥; a
solution is y € 2¢ such that d(z,y) < ¢. Note that we use a non-strict inequality.
This is so that

Far(p) « Close(1l — p).

To see this, we observe that for strings o and 7 of the same length, d(c®,7) =
1 —d(o,7) and so for z,y € 2¢, d(z%,y) = 1 — d(x,y). The morphisms take a
complement on the instance side and use the identity for solutions.

It remains, therefore, to show that Close(q) v~ IOE(22") for all computable
€ (0,1). Given such ¢, let a = 1/¢, so a > 1. Using ®,, on the instance side, and
@le on the solution side, we get

Close(q) — IOE(2%).

This follows from lemma 6.17(a), with » = 0. The proof then ends by quoting
corollary 6.14. ([

As discussed above, this direction was proved in [35]; the morphism Close(q) —
I0E(2%/¢) was explicitly stated by Kihara [24, Prop.3.8(1)].

Infinitely often closeness. Toward the other direction, we introduce along the way
a few intermediate problems. Again £: w — w is a function and p € [0,1] is a real
number. We consider the following Weihrauch problem:

e I0Close(4,p): an instance is f € StrLth(¢); a solution is g € StrLth(¢) such
that for infinitely many n, d(f(n),g(n)) < p.

Lemma 6.18. Let r € [0,1], let @ > 1, and let p € [0,1] such that p > r + (a — 1).
Then
I0Close(4,,1 — r) — Far(p).

Proof. We verify the dual: Close(p) — AEFar({,,1 — r), where g € Bdd({) is a
AEFar (¢, g)-solution for f if for all but finitely many n, d(f(n),g(n)) = ¢. By
mapping, on the instance side, a function f € StrLth(¢) to An.f(n), we see that
AEFar(¢,1 — r) is equivalent to AEClose(¥,r), where as expected a solution g now
staisfies, for all but finitely many n, d(f(n),g(n)) < r.

To reduce Close(p) — AEFar({,,r) we use ®y, on the instance side and <I>[al on
the solution side, appealing to lemma 6.17(b).

Bounded traces. Onwards to tracing. We look at bounded traces. Again fix /;
the functions to be traced are still elements of StrLth(¢). As in section 2, we name
traces by effectively coding finite sets by natural numbers. We now deal with traces
that are bounded by a constant function. The Weihrauch problem is:

e I0Trace(?,L): an instance is a function f € StrLth(¢). A solution is an
L-trace T which infinitely often traces f.

The list decoding theorem says: for all g € (0,1/2) there are L = L(q) and ¢ =
£(g) such that for all m, there is a set C,,, < {0,1}" of size 21°™ which is sparse in
the sense that every string o € {0, 1}™ is within distance < ¢ to at most L elements
of C,,.

We now fix ¢ € (0,1/2) and obtain the resulting ¢ and L.
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Lemma 6.19. For all ¢: w — w,
I0Trace(|ef], L) — I0Close(¢,q).

Proof. Fix (C,,) as promised. Since |C,,| = 2™ we identify StrLth(|ef]) with
[ I, Ce(ny, which is a subset of StrLth(¢).

So now on the instance side we can take the identity function. Given a so-
lution g € StrLth(¢), let T(n) = {0 € Cyn) : d(o,g(n)) < q}. The properties
of Cy, mean that |T'(n)] < L. If g is an I0Close(!,q)-solution for f then T is
an I0Trace(|ef], L)-solution for f. O

Lemma 6.20. For all non-decreasing ¢ and L,
I0Trace(?, L) «~ I0Trace({ @Y, L).

Proof. Similar to the proof of lemma 6.12. If / < ¢ then as in lemma 6.11,
I0Trace(/, L) — I0Trace(/,L). On the instance side, map f to the function g
obtained by extending each string f(n) (of length £(n)) to a string of length £(n),
say by adding zeros; map a solution T to An.{c[4(n) : o € T(n)}.

Next we see that I0Trace({y, L) + I0Trace(¢1, L) — I0Trace({y @ ¢1,L). On
the instance side, we map (f,g) to f @ g; on the solution side, we map T to the
pair (Tp, T1), where T;(n) = T'(2n + ). O

Corollary 6.21. Foralla>1,e>0 and L,
I0Trace(L - 2", L) <~ I0Trace(|el,], L).

Proof. This is an elaboration on the proof of lemma 6.13, this time adding multi-
plicative constants. The proof of lemma 6.13, this time using lemma 6.20, shows
that for all computable a,b > 1, I0Trace(¢,, L) <~ I0Trace({, L). For any com-
putable & > 0 and b > 1, af} is dominated by ¢, for all a > b and dominates ¢, for
all @ < b. Since we only need to correctly trace infinitely often, the morphisms can
ignore finitely many “wrong” n’s. ]

The last step is:
Lemma 6.22. For all £ and L, I0E(2%) v~ I0Trace(L -4, L).

Proof. We prove that Y., T0E(2Y) — I0Trace(L - £, L). We think of Bdd(2) as
StrLth(¢). Map f e StrLth(¢) to the function mapping n to the conctenation of
f(n) with itself L times. Now let T be a trace; we may assume each 7'(n) contains
exactly L elements. for i < L let g;(n) be the i block of the i*" element of T'(n).
For some 4, for infinitely many n, f(o)"---"f(c) equals the i** element of T'(n); for
that i, fI0Eg;. O

Proof of theorem 6.15. Let p € (1/2,1); it remains to show that IOE(22") v~
Far(p). Pick some r € (1/2,p); pick some a > 1 such that a — 1 < p—7r. So
p>r+(a—1). Let ¢ =1—r and let ¢ = e(¢q) and L = L(q) be obtained from the
list decoding theorem.

By lemma 6.22, TOE(22") v~ I0Trace(L -2", L). By corollary 6.21, I0Trace(L -
2", L) v~ I0Trace(|el,|, L). By lemma 6.19, I0Trace(|el,], L) — I0Close({,,q).
By lemma 6.18, I0Close({,,q) — Far(p). a
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7. ON KURTZ

The o-ideal & generated by compact null sets was studied by Bartozysnki and
Shelah, who characterised, among others, the cardinals add(&) and cof(&). In
computability, the associated notion of randomness / genericity is that of Kurtz
randomness: avoiding all null, effectively closed subsets of Cantor space. The
relevant Weihrauch problem is Supset(&’): an instance is a null 9 set P; a solution
is a null 9 set @ such that P < Q.

Our goal in this section is:

As a result we get:

Theorem 7.2 (Bartoszynski, Shelah [5]). add(&) = add(.#) and cof(&) =
cof (A).

Together with Corollary 4.15, we obtain:

Theorem 7.3. A degree is low for 3 null sets if and only if it is hyperimmune-free
and not DNR.

7.1. Lowness for Kurtz tests and randomness. As with the analogus problem
Supset(.#), in computability, the notions which have been studied are not lowness
for 9 null sets, but rather, lowness for closed null sets (lowness for Kurtz test),
and lowness for Kurtz randomness: computing a closed, null set () which contains
a Kurtz random point. The method we used above of proving equivalence of all
three notions can be modified to the Kurtz context as well.

Let JZA4 be the collection of closed, null sets. First, we obtain the analogue of
proposition 4.16:

Proposition 7.4. Supset(&) — Supset(ZA).

The proof is identical. We then define the problem FractalSpill(.JZA4) as
above.

Proposition 7.5. Spill(#.4") < FractalSpill(JZ /).

Proof. The construction is identical to that proving lemma 4.18, except that having
determined that n € I, for o € S of length n, we observe that under the assumption
that [T is null, the tree | <, (o 1k)"T is null as well, and so we can find a clopen
set D < [o] disjoint from that tree such that A(D|o) > 1 — 27™; we remove D
from S. The next element of I is bigger than the granularity of all such D’s. [

The rest is identical: if I' is a countable collection of closed, null sets, closed under
the shift operator, and (Q, I) is a FractalSpill(J#4)-solution for all P € T', then
we build a point in @ avoiding all P € I". We thus obtain:

Theorem 7.6 (Greenberg, J. Miller [19]). The following are equivalent for x € 2%

(1) = is low for Kurtz tests.
(2) x is low for Kurtz randomness.
(3) z is hyperimmune-free and not DNR.

We also obtain the analogous result in the Aj context:

Theorem 7.7 (Kjos-Hanssen, Nies, Stephan, Yu [25]). An oracle is low for A}
Kurtz randomness if and only if it is A}-dominated and every f € Al(z) is infinitely
often equal to some Al function.
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7.2. Revising the problem. Our goal, as stated, is theorem 7.1. It turns out,
though, that the bulk of our analysis concerns the following Weihrauch problem:

e Supset(&,.#): an instance is a null X set P; a solution is a null set R
such that P < R.

The identity map in both directions shows that Supset(&’,.#) — Supset(&).
We will show:

Proposition 7.8. Supset(&, .A4") <> I0E.
As a result, we obtain:

Theorem 7.9 (Greenberg, J. Miller [19]). Let x € 2. There is an x-computable
39 null set not contained in any Schnorr null set if and only if x is high or DNR.

Before we prove proposition 7.8, we show how it implies the main theorem. We
use the following two reductions.

Proposition 7.10. Dom — Supset(&).

Proof. On the instance side, given f € w*, we assume that f is strictly increasing,
and map it to

Qf ={xe2¥ : (Yn)z(f(n)) = 0}.

On the solution side, we are given a sequence (T}, ) of closed null sets. Let h(n, k)
be the least s such that every string o of length k has an extension of length s which
is off T),. Let ¢(0) = 0 and g(n + 1) = h(g(n), g(n)); we map {T,,) to n — g(2n).

To show that this works, suppose that f € w*, and that for some (T), the
function n — ¢(2n) does not dominate f. We claim that there are infinitely many n
for which for some m, f(n) < g(m) < g(m+1) < f(n+1). Otherwise, for some k,
for large enough n, f(n) < g(n + k) < g(2n). We use this to construct a point
z e QN\U,[Tn]. As usual, we assume that (7},) is nested, so it suffices to avoid
infinitely many trees T,,. To do this, suppose that we have already determined
some finite ¢ < x such that [o] n Qf # J of length some f(n) such that f(n) <
g(m) < g(m+1) < f(n+ 1). Then for every extension 7 of o of length g(m + 1),
[7] " QF # . On the other hand, we can find such an extension of ¢ which is off
Ty(m)- U
Remark 7.11. The proof actually shows that Dom — Supset(&’, .#).

Proposition 7.12. Supset(&) — Supset(&,.4") « Dom.

Proof. This resembles the proof of proposition 4.9, with a dose of compactness.

On the instance side, map a X9 null set P = | J, P, to the pair (P, F) where
for a null set V' (given as (), Vi) such that P < V, we let F(V) be the function
h € w* defined as follows: h(n,m) is the least s such that P, ¢ € V;,, 5. (The closed
sets P, are given as trees T, and we let P, s be the clopen set determined by the
s'M level of T; we similarly treat each V;,.) By compactness, h is well-defined, and
in fact is uniformly computable given P and V.

On the solution side, we map a pair (V, g) to the £3 null set | J, ,, Vin.g(n,m)-
To show that this works: if g(n,—) majorises h(n,—) (where h = F(V)) then
P, < Vin,g(n,m); as usual we may assume that P, S P,1. O
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Proof of theorem 7.1, assuming proposition 7.8. In one direction, we first observe
that Pass(.#) - Supset(&); this is because

Pass(.#) > I0E - Supset(&, .#) — Supset(&).

Together with proposition 7.10 (and using the fact that A - C, B - C implies
A * B () we get

Supset(.#) — Pass(.#) » Dom - Supset(&).

In the other direction, if Supset(&,.#) — Pass(.#)**, then using proposi-
tion 7.12,

Supset(&) — Pass(.#)*" x Dom — Supset(.#)* 1), O
7.3. Analysis of Supset(&,.+"). We work toward a proof of proposition 7.8.
Proposition 7.13. Supset(&,.4") — IOE.

Proof. On the instance side, we are given a X9 null set P = | JP,. We map it
to a sequence {C,) of (codes of) clopen sets such that for all n, P, < C, and
A(Cp) = 27", (For each n, find a late enough s(n) and let C,, = T}, 5(n).)

On the solution side, we are given a sequence (D, of clopen sets, and we may
assume that for all n, A\(D,,) = 27". We map this sequence to the null set (), Uy
given by Uy = |J,,or Dn- The measure of each Uj is computable from (D,,),
uniformly. If (P,) maps to {C,) and for infinitely many n, D, = C, then for
each n and k, P, < Uy. O

Proposition 7.14. Esc — Supset(&,.4).

Proof. The following argument resembles the proof of [31, Thm.2.2]; the argument
of the corresponding cardinal inequality in [4] (Lemma 2.6.13) is non-constructive.

As above, given f € w®, assuming it is increasing, define
QF = {ze2¥: (Vn)z(f(n)) = 0}.

The map f — @/ is our map on instances.

Toward defining our map on solutions, let, for k < w, g = (3/4)272F. What we

use'! is:

18

Qk:L
k

0]
Z w2k < 2.
k=0

We are given a null set V = (") V,,. As mentioned above, by [15, Prop.7.1.6], we
assume that for each m, A(V,,) = 27™. As above we use the clopen approximations
Qf and V,, 5, determined by sets of strings of length s.

For each m > 1, define a function h,,: [m —1,w) — w by letting, for n = m — 1,

him(n) = (u8) A(Vin,s|Vin) = 2 Qk—(m—1)-

k<n

0

and

1 Also of course we use the fact that {qx) is computable and consists of binary rationals. Below
we will also assume that f(k) is at least the granularity of g, i.e. f(k) = 2k + 2.
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On the solution side, we map V' to the function
h(n) = max h;,(n).

m<n+1

Thus for all m = 1 and n = m — 1, hy,(n) < h(n).

To show that this works, we need to show that if Q/ < V then h escapes f.

The rough idea is that if h is majorised by f beyond m — 1, then V,, is spending
its measure before @/ has thinned itself (by committing to the bit at position f(n)
being 0). Since the later thinnings will happen independently of this preemptively
spent measure, most of this measure is wasted, and so V,, will not have enough
measure to cover Q7.

The following claim is the combinatorial heart of this proof.

Claim 7.14.1. Fix m > 1 and d = m — 1. Suppose that for all n € [m — 1,d],
hm(n) < f(’I’L) Then Qlft(d) < Vm,f(d)-

The claim gives the proposition. To see this, suppose that Q¥ < V. Then

Q' < V,, for every m. By compactness, for every m there is some d such that

f < Vi, ¢a). Because every string of length f(d) on (the tree defining) Q7 is
f(d)

extendible, we in fact have Q; @ S Vi, r(a)- The claim then ensures that for every m
there is some n = m — 1 such that h,,(n) > f(n). So h(n) = hy,(n) > f(n).
It thus remains to prove the claim.

By definition of h,,, and under the assumption of the claim, for all n € [m —1,d]

we have
n—(m—1)

)‘(Vm,f(n)|vm) = Z qk-
k=0
By removing short strings from the set of strings defining V,,, but leaving their
extensions, we may, without decreasing V;,, f(4), assume that we have equality:

n—(m—1)

)‘(Vm,f(n)|V7n) = Z k-
k=0

Define Uy,—1 = Vi f(m—1) and for n € [m, d] let
Un = Vm,f(n) - Vm,f(nfl)-
So for all n < d, A(U,) = qn,(m,l))\(vm) = qn,(mfl)Qim.

Fix n e [m —1,d]. The set U,, can only have “opinions” about the bits f(r) for
r < n, while those bits f(r) with r € [n, d) are independent of U,,. So

f . f —(d—n —(d—n) __ —ma—(d—n
AUn 0 Qfgy) = AMUn 0 Q%) 27 < AUR)- 27 = gy yqy27 ™27 77,
It follows that

d 0
— n—m — 1 —
270 D) Gamen2V T <2700 Y @2t <27
n=m—1 k=0

whereas )\(Qi(d)) = 279 Hence it is impossible that Qj:(d) S Vi r@@)- a
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Proposition 7.15. I0OE — Supset(&,.4") « Esc.

Proof. We use the “Svelte tree” machinery from [19]. Let 0 = ng <n; <nsg... be
a computable increasing sequence such that ny — ny_; = 22*. Fix a computable
bijection I: w<* — w. For f € w* we define

Pr={xe2v : (Yk)z(I(fIny)) = 0}.

Let £ < w. A finite tree T' € w=<% is k-svelte if there are finite sets of sequences
{(Sk+1,Sk+2, Sk+3, ...y such that:

e forallm=k+1, S, €T and every o € S, has length n,,;
o S| <2™
o Every leaf of T' extends a sequence in J,,,~ ;1 Sm-

In fact, we can get |S,,| < 2™+ but we don’t need this. The main combinato-
rial result of [19] is:

Theorem 7.16 (Thm. 3.3 of [19]). Let C' < 2 be clopen, and suppose that A\(C') <
2= (k+1)  Then there is a k-Svelte tree T such that for all f € w*, if P < C then f
extends some leaf of T. The tree T can be obtained computably from C.

The map on instances is as follows. We map f € w® to the pair (Pf, F), where
for a null set V' = (), Vj such that Pf c V, F(V) is the function h mapping k < w
to a stage s such that Psf < Vis-

On the solution side, we map a pair (V, fz) € N x w¥ to a point g € w* defined
as follows. For each k > 1 we compute a (k — 1)-Svelte tree T}, such that for every
few?,if Qf €V, ;. then f extends a leaf of Ty. Let Sf, Sf,,, Sf,5,... witness
that Ty is (k — 1)-svelte. For each m > 1 let Sy = U<, Sk,- So [Spn] < 27
Since I, = [Nm_1,nm) has size 2™ we can pick injectively, for each o € S,,, a
value [ = (o) € I,,. We define g so that g(I) = o(I). So we have arranged that for
every k, for every leaf 7 of Ty, T agrees with g on some value [ > ny_.

Suppose that P/ < V and that h(k) = h(k). Then P/ c Vi 1t follows
that f extends some leaf of T}, and therefore that g agrees with f at some value
l = ng_1. Therefore, if h escapes h, then fIOEg. ([

Proof of proposition 7.8. By proposition 7.13, Supset(&’,.#) — IOE. In the other
direction, we have IOE — Supset (&, .4 )*Esc and Esc — Supset(&,.4"), so I0E —
Supset (&, A4 )*2. O

7.4. A self-contained argument. The drawback of the proof given above of
I0E - Supset(&,.4") is its reliance on the Svelte tree technology of [19], which
takes some work. The original argument is essentially due to Baroszynski and She-
lah. We use their argument (simplified at a few places) to give a self-contained
proof of this implication. This proof uses techniques which may be of independent
interest. We start with a fact which we will use twice. We define the Weihrauch
problem:

e Esc—Dom: an instance is a function f € w* such that f(n) > n; a solution is
a non-decreasing function g € w*, which escapes f but does not dominate
it (and g(n) = n).

Lemma 7.17 (With Harrison-Trainor). Esc <> Esc—Dom.
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Proof. To reduce Esc — Esc—Dom, we map an instance f to n — max{f(n),n+ 1},
and use the identity on the solutions.

We reduce Esc—Dom to Esc. We first define h by h(0) = f(0) and h(n + 1) =
max{f(n + 1),h(n) + 1}; the relevant point is that h is strictly increasing and
dominates f. We map f to f defined by f(0) = h(1) and f(n +1) = h(f(n) + 1).
Note that f is strictly increasing, and that f(n) > f(n + 1).

On the solution side, we map a function g, which we assume is strictly increasing,
to the “step function” § which on the interval (¢(™ (0), g+ (0)] returns g(»+1)(0).
So for k = g1 (0) we have §(k) = k < f(k), and so § does not dominate f.

To show § escapes f, we show that if § is dominated by f, then g is dominated
by f. For typographical clarity, let a, = g™ (0). Suppose that §(k) < f(k) for all
k > am,. In particular, for n = m,

g(an) = any1 = glan +1) < flan +1) < f(an)-

Now suppose that n = m and k € (a,, an+1). Then

9(k) < g(ant1) = ang2 = §lant1 +1) < fansr +1) <
h(an+1 + 1) = h(g(an) + 1) < h(.f(an) + 1) = f(an + 1) < .}F(k),

using the fact that g(a,) < f(a,) and that f and h are increasing. O

Remark 7.18. The proof can be modifed to produce a strictly increasing § which

does not dominate n — n?.

On our way, we define a strong variant of covering by a null set. For a set
A c w and a clopen set C' € 2¥, we say that the support of C is contained in A
(supp(C) € A) if membership in C is determined by examining the locations in A.
Formally, C is the union of clopen sets [p] where p € 24 and [p] = {z € 2¥ : p < x},
where we extend the symbol < to indicate extension of functions, not necessarily
initial segment extension. We define the Weihrauch problem

e IndepCover: an instance is a closed, null set P < 2%; a solution is a
partition (I,,) of w into intervals and a sequence {C,,) of clopen sets such
that AM(C),) < 27", supp(Cy,) € I,, and for infinitely many n, P < C,,.

Lemma 7.19 (Bartozysnki,Shelah [5]). IndepCover — Supset(&,.4") x Esc.

Proof. By lemma 7.17, we reduce IndepCover to Supset(&,.4") » Esc—Dom.

Recall the notation o —~ x and ¢ —~ X (see the proof of proposition 4.9). For
a set P let P* = |J, _g<w 0 — P. If P is closed null then P* is null 9. We map
such a set P to the pair (P*, F), where F': A4 — w* is defined as follows. We are
given a null set V = (V,,, and we assume that P* < V. For n < w let P" =
U,eon 0 — P. Tt is closed and null. First define h(n, m) to be the least s > n such
that P € V,, 5."% Then define inductively f(0) = 0 and f(n + 1) = h(f(n), f(n)).
We define F'(V) = f.

For a null set V =V, and m < s < w we let

Qus = J{Ip) s pe 2™ & [p] € Vi)
This is clopen, AM(Qm.s) < A(Vin) < 27™ and supp(Qum.s) S [m, s).

12Recall that the granularity of P and Vi, s is at most s.
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On the solution side, we are given a null set V = [|V;, and a non-decreasing
function g € w* such that g(n) = n. Define I,, = (g(n),g(n + 1)] and

=
Cn = U Qk,g(n+l)-

kel,
Then supp(C,,) € I, and

AMCn) < D) AM@rg(nsn) < Y, 27F <2790 <07,
k}EIn kEIn

We map (V, g) to (I, Cp).

To show that this works, suppose that P* < V', let f = F(V) (where P maps to
(P*, F)), and suppose that g is non-decreasing, escapes f but does not dominate f.
Then there are infinitely many n for which

gn) < f(n) < fin+1) <gln+1).
Fix such n; we claim that P <€ C,,. Now PJ{((:J)FU S Vi), f(n+1)- We claim that
P c Qf(n),f(n+1)- Indeed, Pf(n+1) c Qf(n),f(n+1)~ For let p € 2/ (n+1) such that
[p] S Prny1)- Let p = pl[f(n), f(n+1)). For all o € 27" [6"p] = [0 —~ p] =
Vi), sty Thus [p] € Vi) g(ni1) and so [p] S Q) fnr1)-
We then observe that as f(n+1) < g(n+1), Q¢m),f(n+1) S Qf(n),g(n+1); this is
because Vi(ny, f(n+1) S Vin),gtn+1)- Since g(n) < f(n), we see that Q) g(nt1) é

n-

Remark 7.20. In lemma 7.17, by increasing values, we could require the range

of g, and hence of §, to be a subset of any given infinite subset X of w. That

is, Esc < Esc—Domgparse, Where Esc—Domgoarse iS the Weihrauch problem whose

instances are pairs (f, X) where f € w*, f > id, and X € w is infinite; a solution is

a non-decreasing function g which escapes f, does not dominate f, and rangeg € X.
Applying this to the proof of the previous proposition, we see that

IndepCoverg,, .. — Supset(&, /) » Esc,

where IndepCover,,, .. is the problem whose instances are pairs (P, X) where
P is closed null and X < w is infinite, and the solutions consist of a partition
{I,,) of w into intervals and a sequence (C,,) of clopen sets such that A\(C,,) < 27",
supp(Cy,) € I, for infinitely many n, P < C,,, and the endpoints of the intervals I,,
are in X.

Another way to say this is that the instances are pairs (P, <fn>) where the latter
is a partition of w into intervals, and for a solution {I,,C.)», {I,) is coarser than
<fn> every I is a union of fn’s.

We need one last Weihrauch problem:

e GapEsc: an instance is a function f € w®; a solution is a non-decreasing
function g € w* such that for infinitely many n, g(n + 1) > f(g(n)).

Lemma 7.21. Esc <> GapEsc.

Proof. To reduce Esc to GapEsc, we map an instance f to itself. We map a solu-
tion g to a function h satisfying h(g(n)) = g(n + 1) for all n.

In the other direction, naively, it would seem that we could only reduce GapEsc +
GapEsc to Esc; there are two cases, depending on whether the escaping function
also dominates or not. We can eliminate the dominating case using lemma 7.17:
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we reduce GapEsc to Esc—Dom. On the instance side, we map a function f, which
we may assume is increasing, to f(n) = £ (0). On the solution side we use the
identity map. Suppose that fEsc—Domg. For infinitely many n, g(n) < f(n) <
f(n+1) < g(n+1). Then

g(n+1) > f(n+1) = f(f(n)) > f(g(n)). U

Lemma 7.22. There is a computable function U: w — w such that for every se-
quence {Ix), . of consecutive (nonempty) intervals, for every clopen set C' such
that A\(C) < 1/2, there are sets Sy € I (computably obtained from {I;) and C)
such that |Sk| < U(min I}) with the property that for every partial choice function
c: [0,m] — I =J,<,, Ix such that c(k) € I} for all k € domc, if

={re2¥ : (Vkedome) x(c(k)) =0} < C,
then there is some k € dom ¢ such that c(k) € Sk.
The point is that |Sg| only depends on min I, while |Ix| may be large.

Proof. Fix a computable decreasing sequence ag > a3 > g > --- > 1 of rational
numbers such that [ [, ax < 2. We then let

U(m) =2™-[=logy(1 — a;,1)].

Suppose that {Ixy and C are given as in the lemma. We may assume that
min [y = 0, as U is increasing. Let k < m; let ny = minI;. Let o € 2™ such that
Cnlo ]7&@. We then let

Sko={lel; : Vqe AL (q(0) =0 — A(C|o"q) > apA(Clo))},

and let
S = J{Sok : 0 €2 & C o] # T}

We first verify that for each o, [Sg | < —logy(1 — a;'). It then follows that
|Sk| < U(ng), as ng = k and so oy, < ai. Fix o such that C n [o] # ; since C is
clopen, A(C|o) > 0. For brevity, in this argument let S = Sy ,. For every £ < w let
Dy ={xe2¥ : z({) = 0}. Note that A\({J,eg D¢) = 1 — 27151, It follows that there
are at least (1 —2719N2l/kl many ¢ € 27 such that A(C|o"q) > axA(C|o), that is,
MC n [g]lo) = 27 +lapA(C|o). Taking the union of C' n [q] for all such ¢, we see
that

MClo) = (1—2" IS\) oMkl o=kl . . AClo)
and since A\(C|o) > 0, we get (1 —27!5)ay, < 1, and so the desired bound on |S].

Now we are given a partial choice function c¢ as in the statement of the lemma.
Suppose that for all k € dome, c¢(k) ¢ Sx. We show that E. & C.
We define recursively a sequence of strings ok € 2" with the property that

AClog) < HOQ

7.<k
We start of course with og = (), with the measure bound given by the assumption
that A(C) < 1/2. Given oy, for some k < m, there are three cases. If k ¢ dom ¢ then
we let gi, be any g € 27+ satisfying A(C|oy) < A(C|oy). Otherwise, if Cn[oy] = &
then we let gi be any g € 2/* such that g(c(k)) = 0. Otherwise, since c(k) ¢ Sk oy
and C n [o] # O, we choose g to be some ¢ € 2/% such that ¢(c(k)) = 0 and
AMClok qr) < agA(Clok). In all three cases we let o1 = 0 qx, and the measure



40 N. GREENBERG, R. KUYPER, AND D. TURETSKY

bound holds. Then A(Clom+1) < (1/2) [ <, @i < 1, 50 [04n11] Witnesses that
FE. & C as required. ([

Finally, the following proposition finishes the proof of IOE - Supset(&, .4);
with our other results, we get

I0E — Esc * IndepCoverg,, .. — Esc * Supset(&, .#) « Esc — Supset (&, 4)*3.
Proposition 7.23. I0E — Esc * IndepCoverg,, .-

Proof. We show that IOE — GapEsc * IndepCoverg,, ... We use the computable
function U given by lemma 7.22. Let h(m) = m +mU(™). Given a function f € w*
define by : w — w by letting bs(m) = maxrange f | (b2 (m)).

Given a non-decreasing function g, we assume that ¢g(0) > 2, and define in-
tervals Jx, = [lg,lk+1) and I = [mg,mgs1) (both partitioning w) as follows:
| k| = U(my); |Ix] = g(k)"]”. That is, mg = €y = 0; lxy1 = L + U(my) and
Mer1 = Mg + g(k)U(m’“). Note that ¢, < my. Now by induction on k& we can
see that my 1 < h**V(g(k)), and so that £, < h*+2)(g(k)). Tt follows that if
g(n+ 1) > br(g(n)) then range f1J,41 < g(n + 1). Thus, if by GapEsc g, then for
infinitely many & we have f1.J, € g(k)’*. Identifying I,, with g(n)’», and writ-
ing f(n) = f|J,, we see that for infinitely many n, f(n) € I,. It follows that
Pf={xe2¥: (¥n) f(n)el, — x(f(n)) =0} is null.

Thus, on the solution side, we map f € w® to the pair (b, F'), where F'(g) =
(P?,{I,)) when by GapEsc g.

Keeping with g and (I,,), suppose that (K, C),» € IndepCover,, and that (k)
is coarser than (I,). Fix m > 0; say K, = I, U I,11 U - - U I,. We define the
sets Sy € Iy for k € [a,b] as given by lemma 7.22 where we take C' = C,,. Again
thinking of Iy as g(k)’*, we think of every element of Sy as a function from Jj
to g(k). As |Sk| < U(min Iy) = U(my) = |Jk|, we see that we can find a function
pi € g(k)7* which agrees with each element of Si on some input.

On the solution side, we map (g, {K,, Cy)) to the concatenation of the py’s, that
is to p € w* defined by plJi = pk-

To see that this works, suppose that indeed b GapEsc g and, using the nota-
tion above, that (K,,, Cy,) solves the problem (P/,(I,)). For infinitely many m,
P! < C,,. Define ¢ to be the partial function which is the restriction of f to
{k : f(k) € It}. For m such that P/ < C,,, if K, = I, u--- U I, let ¢, = c|[a,b].
The set E._ is the collection of ¢ € 25= which are compatible with elements of
P/ since supp(C,,) € K, we see that E. < C,,. It follows that there is some
k € [a,b] such that f(k) € S, and so that f[J; agrees with py on some input. As
this happens for infinitely many m, we see that f IOEp, as required. O

8. FORCING

The most common way to prove the consistency of a strict inequality
Card(A) < Card(B)
is to start with a model of CH, and iterate (w2 many steps) a notion of forcing P
that adds a real in NLY (B) but no real in NL" (A). That is, it adds some b € Binet
which is solved by no b e V; but every a € Ajnse N VT is solved by some G € V. The
standard argument is as follows. Let (P,) be the iteration. In V2, Card(A4) = Ry,
because V N Agor solves all A-instances in Aipse » VF+2: no elements of NLV(A)
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were added during the iteration. On the other hand, in V2, Card(B) = X,. For
suppose that F' © Bge1, F € Vp,,, and |F| < Ny. Then there will be some o < ws
such that ' < VP At step a+ 1, then, we add a B-instance which has no solution
in F.

Remark 8.1. There are several reasons for using represented spaces (definition 3.1).
Here we see another one: the interpretation of a name may change between different
models of set theory. Take for example the collection of names .# for X9 meagre
sets. If V < W are transitive models of set theory, then .# is absolute: .#"V =
MY V. However, likely for most y € .4, the meagre set M" (y) named by y
in W is strictly larger than the meagre set MV (y) named by y in V. When thinking
of a problem such as Pass(.#), we really mean the problem induced on the names
rather than the meagre sets themselves: a Pass(.#) solution (in W) for all instances
in V (a Cohen generic over V) is a y € w* such that for all z € .Z"V, y ¢ MW (x),
rather than y ¢ MV (x) (which trivially holds for all y € W\V). It is also important
that relations such as Pass(.#) and Supset(.#) are absolute.

The relationship between computability and set theory here is imprecise. In
many cases, the notion of forcing P itself is a represented space, and we can force
with the computable elements of P, and hope to get a real in NL(B)\NL(A). In
these cases, the failure of the implication B — A is witnessed at the computable
level as well.

8.1. Basic examples. Cohen forcing is unusual in that it is the unique countable
notion of forcing; all conditions are computable. A Cohen real does not make
the collection of reals in the ground model meagre. And indeed, the argument is
effective.

Lemma 8.2 (Rupprecht [41]). A sufficiently Cohen generic real is not weakly meagre
engulfing.

So a Cohen generic gives an oracle in NL(Capture(.#))\NL(Pass(.#)), showing
that Capture(.#) —» Pass(.#), effectively.

Proof. Suppose that p is a condition that forces that (T},) is a sequence of uniformly
partial computable functions from 2% to 2*, and that for each n, T,,(g) is a nowhere
dense tree. Thus, for each n and o € 2<%, densely below p we can find conditions ¢
and extensions 7 > o such that T,(q) declares that 7 ¢ T,(g). Further, such
pairs (g, 7) can be found effectively. We can thus construct a computable point
x € 2¥ by initial segments; at step (r,n), for some condition r extending p, we find
q extending r and 7 extending the initial segment of = we have so far such that
T ¢ T (r). O

Remark 8.3. The argument above is identical to the argument showing that the
ground model reals in a Cohen extension are not meagre. In that argument we
need to first prove a continuous reading of names, which tells us that every real in
the extension is the image of the generic by a continuous function with code in the
ground model. On the other hand, unlike the computability proof, in set theory we
don’t need to worry about how effective is the search for (g, 7).

Proving that an w-iteration of Cohen over a model of CH gives a model of
non(.#) < cov(.#) requires an iteration theorem, which states that reals in
NLY (Pass(.#)) are not added at limit steps of the iteration. In the Cohen case this
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is not too difficult, but with notions of forcing that are proper rather than c.c.c.,
such an iteration theorem may take some work. As we see, the corresponding
argument in computability theory does not require such a result.

Figure 4 gives the dividing line for Cohen forcing in the Cichon diagram.

Capture(./') ——— Pass(.#) ———— Supset(.#) —— Supset(A)

Spill(A) ———— Spill(.#) —— Capture(.#/) ——— Pass(AN)

FIGURE 4. Cohen forcing and the Cichon diagram. Cohen forcing
adds a real in NL(A) for all problems A on the right of the dividing
line, but not for problems on its left. Similarly, an iteration of
Cohen forcing will make the associated cardinals on the right large,
and keep the cardinals on the left small.

Remark 8.4. In the Cohen extension, the ground model reals are null. This is
an immediate corollary of the morphism Capture(.#) — Pass(./'), as it gives
NLY (Capture(.#)) < NLY (Pass(.4)).

The next simplest notion of forcing is perhaps random real forcing, one ver-
sion of which is forcing with closed sets of positive measure. The conditions with
computable names are the I1Y classes with positive measure. Forcing with these
does not give a generic for full random forcing; a sufficiently generic real will be
weakly 2-random, but not 2-random. We do get a Schnorr random, i.e., an oracle
in NL(Capture(.4")). A generic will also be computably dominated and will not be
weakly null engulfing (Rupprecht [41, VI.35], based on the argument by Kunen [29]
showing that in the random model, the ground model reals are not null.) This gives
the diagram in fig. 5.

8.2. Two step iterations. Before we proceed, we make a side remark on two step
iterations.

Lemma 8.5. Let A and B be absolute Weihrauch problems, and let V€ W < U
be transitive models of set theory. If z € W n HY (A) and y € U n HY(B), then
(z,y) e H' (A= B).

Proof. Let (a,F) be an instance of A * B. Then a Az. Since F is coded in V,
F(z) e W, and so F(x) By. O

So from the morphism Pass(.#) — IOE » I0E we see that if we add an IOE
function g relative to V, and then an IOE function relative to V[g], then in the
second extension there must be a real Cohen over V.
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Capture(./') ——— Pass(.#) ——— Supset(.#) ——— Supset ()

Spill(.A)

Spill(.#) —— Capture(.#) ——— Pass(A)

FicUre 5. Random forcing and the Cichon diagram; the forcing
adds solutions (and increases cardinals) for problems above the
dividing line.

Zapletal [418] showed that the iteration was necessary: he found a notion of forcing
that adds an IOE function without adding a Cohen real. His notion of forcing shows
that Pass(.#) - I0E, even when we consider non-computable definable morphisms,
say Borel morphisms, for which the delicate argument of lemma 4.22 does not apply.

8.3. Working relative to ideals. Sometimes, however, computability does not
reveal the full picture. The most familiar example is the morphism

Capture(.#) — Dom,

which cannot be reversed. However, NL(Capture(.#)) = NL(Dom): in the unusual
direction, every hyperimmune degree computes a weakly 1-generic. This relies on
a “time trick”, special to computability. Indeed, in set theory, it is possible to get
an extension with a real in NL" (Dom) but none in NL" (Capture(.#)), which after
iterating gives the consistency of cov(.#) < 0. One of the most straightforward
notions is Miller forcing, also called rational perfect tree forcing. The conditions
are trees T' € w=<* with no dead ends, no isolated paths, and in which every split is
an infinite split: if o € T' and there is more than one k < w such that ¢"k € T', then
there are infinitely many such k. Extension is as is usual with most tree forcings:
subset.

Denote this notion of forcing by P. On one hand, it is not difficult to see that P
adds an escaping function: for every function f, for every condition T € P, we can
refine the condtion by removing, for every splitting node 7 € T, all extensions 7"k
for k < f(|7|).

On the other hand, Miller forcing has the Laver tracing property, and so does
not add a Cohen generic. Namely, for every order function h, for every function
f € w n V¥ which is bounded by some function in V, there is some h-Trace in V
which traces f. Once one has continuous reading of names, we take a continuous
function ® € V and a condition T and perform a kind of fusion argument. First,
by thinning, we may assume that if 7 is a n*® splitting node (it extends k — 1 many
splitting nodes) then for every immediate extension 7°k of 7 on T, ®(7°k,n) |.
Next, we thin one splitting node at a time to obtain a trace. For example, if 7 is
the shortest splitting node (the stem of the tree) then we can force a single value
for ®(g,0) (g being the generic path): because ®(g) is V-bounded, say by some
function h € V, we may assume that for every extension 7k of 7, the value ®(7°k, 0)
is smaller than iNL(O)7 in particular, only finitely many values appear; so one value
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appears infinitely often. We take one such value ay and remove all extensions 7"k
for which ®(7°k,0) # ag. The 0* element of our trace will be {ag}.

Next, consider the next level. Let 7 be the next splitting extension above 77k.
For each k, some value a; appears as ®(7;,"l,1) for infinitely many . Among the
various k, one value a appears infinitely often. We remove from T all 7"k such that
ay # a, except possibly for the least such k — we will be “protecting” more and more
successors of 7, so that after w-many steps, infinitely many successors will remain.
The next element of the trace is {a, ax}.

We see that the reason that this argument does not work computably is that
even if T is computable, the construction of the thinned tree is not computable:
it requires answers to the requests “give us a value that occurs infinitely often.”
This can be done with the Turing jump of T'. This shows that if we force with all
arithmetic conditions, we will obtain a function escaping all arithmetic functions,
which computes no arithmetically generic real. Indeed, even with the help of any
arithmetic oracle, no such generic can be computed. Recall from section 5 that we
defined NL"(A) for reducibilities <, implied by Turing. If I is an ideal of Turing
degrees then the reducibility <; (Turing modulo I) is defined by x <; y if there
is some z € I such that z <t z@®y. We write NLI(A) for the corresponding
non-lowness class. The argument above sketched the proof of the following:

Proposition 8.6. If I is a jump ideal then NL' (Capture(.#)) # NL’ (Dom).

We remark that in [24], Kihara showed that Miller forcing has a sufficiently
effective continuous reading of names, so that this inequality holds for relative
hyperarithmetic reducibility as well. In contrast with proposition 8.6, the argument
that NL(Capture(.#)) = NL(Dom) applies to any ideal I which has a maximal
degree of lowness for weak genericity reducibility. By relativising lowness for weak
genericity, we see that these are the ideals in which both the DNR principle and the
ESC principle (also named the HI principle) fail. That is, ideals I which contain a
real z relative to which in I there is no DNR function, nor a function escaping all
z-computable functions. On the other hand, proposition 8.6 can be strengthened
to apply to ideals I satisfying the DNR(z’) principle: for every x € I there is
f € I which is DNR relative to ', even if 2’ ¢ I. The reason is that if we are
given a value ®(7°k,n) which does not occur cofinitely often, we can thin to ensure
that the generic does not compute an IOE function, that is, that the generic is
in NL’(Dom)\NL’ (AEDif£); and recall that Capture(.#) — AEDiff — Dom. The
following question though remains open:

Question 8.7. For which Turing ideals I is it the case that NL! (Capture(.#)) +
NL! (Dom) ?

The same kind of question can be asked about the two other “collapses” in the
computable Cichon diagram:

NL(Spill(.4")) = NL(Spill(.#)) = NL(Esc),

namely: the high degrees coincide with the meagre engulfing and null engulfing
degrees. Unlike the previous example, here it is known that the coincidences hold
for relative hyperarithmetic reducibility. This is not the same though as Turing
modulo Al, for which the question is still open. Hechler forcing and Laver forcing
give separations in set theory. The associated constructions can be pushed in ideals
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which are models of arithmetic transfinite recursion (ATRg). Not much is known
otherwise.
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