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Abstract. We provide a survey of results using Weihrauch problems to find
analogs between set theory and computability theory. In our treatment, we
emphasize the role of morphisms in explaining these coincidences. We end
with a discussion of the use of forcing to prove the nonexistence of morphisms.
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1. Introduction

In light of the independence of the continuum hypothesis, set theorists searched
for more nuanced ways of measuring the size of the continuum. Perhaps, for ex-
ample, the number of real numbers (singletons) is large, but it doesn’t take many
null sets (or meagre sets) to cover the real line? Perhaps there are many functions
from ω to ω, but if we’re only interested in growth rates, we can dominate all func-
tions with only a few? Thus are defined cardinal characteristics of the continuum,
such as the dominating number d, the smallest size of a family of functions domi-
nating all functions, and covpM q, the smallest size of a collection of meagre sets
whose union is R. Again, the precise values of these cardinals are independent, but
we can say much about the relationship between them. For example, no matter the
size of the continuum, or the particular values of the two cardinals, we always have
covpM q ď d; but strict inequality is consistent.

A. Miller (unpublished) and Fremlin [16] have noticed that many cardinal charac-
teristics, including the two mentioned above, can be defined in terms of the smallest
size of a set of “solutions” to “instances” of a problem, namely a binary relation.
Let CapturepM q be the membership relation between R and M , the collection of

1



2 N. GREENBERG, R. KUYPER, AND D. TURETSKY

meagre sets. Then covpM q is the smallest size of a set F Ď M such that every in-
stance (x P R) has a solution (a meagre set A Q x) in F . The dominating number d
is similarly obtained from the domination relation Dom between functions in ωω.

Further, ZFC proofs of inequalities usually arise from morphisms between the
associated problems. For the example above, we write CapturepM q Ñ Dom to in-
dicate that there are functions ψinst : RÑ ωω and ψsol : ωω Ñ M such that for all
x P R and g P ωω, if ψinstpxq Dom g then x CapturepM qψsolpgq (see definition 2.5
below). This immediately gives covpM q ď d, as the ψsol-image of a complete solu-
tion set for Dom is a complete solution set for CapturepM q. A thorough treatment
of cardinal characteristics using these concepts was given by Vojtáš [46]. The mor-
phism template gives a clearer presentation of arguments in this area; it also refines
the question, because the existence of definable morphisms can be discussed even
in the context of CH (see for example [6, 13, 39]).

At a similar time, Weihrauch and his school [47, 8, 17] independently developed
similar concepts in their study of computable analysis. Again thinking of binary
relations as “problems” with instances and solutions, in the light of computability
theory, a computable morphism from a problem A to another problem B can be
considered a reduction: B has at least as much information as A, because any
method of solving B can effectively give us a method of solving A. Given an
instance a of A, we effectively translate to an instance ψinstpaq of B, solve this
problem, and then translate (via ψsol) to an A-solution for a. When the maps
ψinst and ψsol are indeed computable, this is called strong Weihrauch reducibility.
This approach for classification of problems has spread beyond computable analysis
to study Π1

2 sentences in the context of reverse mathematics [14].
Rupprecht [41] observed similarities between several arguments in computabil-

ity, especially algorithmic randomness, and set theory. A good example is Terwijn
and Zambella’s [45] proof of the equivalence of computable traceability and lowness
for Schnorr tests, and Bartoszynski’s [2] characterisation of cofpN q in terms of
slaloms (see section 3.5 below). Rupprecht realised that the binary relations used
for cardinal characteristics can be used to define some familiar notions of strength
of oracles in computability. The class associated with the problem (binary rela-
tion) A, which in this paper we denote by NLpAq, is the collection of oracles which
compute an instance for A that has no computable solution. Thus, NLpDomq is the
collection of hyperimmune degrees (not 0-dominated), whereas NLpCapturepM qq is
the collection of oracles which compute weakly 1-generic reals. The morphism from
CapturepM q to Dom, being computable, shows that every degree which computes
a weakly 1-generic real is hyperimmune.

Unfortunately, Rupprechet’s main body of work was confined to his thesis, and
remains otherwise unpublished. Aware of only some of his results, Brendle, Brooke-
Taylor, Ng and Nies [10] extended his work and for the first time in print, exhibited
how to get both cardinal characteristics and highness classes from the same binary
relations (Weihrauch problems). Kihara [24] continued their work, including the
morphism machinery, while Kjos-Hanssen et al. [26] answered some of the questions
left open in [10].

In this paper we survey the subject and provide a unified and simplified treat-
ment. Many arguments in the literature are opaque, and so we show how to frame
them using this template. In many cases a single, simpler argument gives two,
and with the aid of duality usually four, results, in set theory and computability.
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We also provide a way of utilising sequential composition, which has so far eluded
computability theorists. This allows us to give the same unified treatment to re-
sults of Stephan and Yu [44] about lowness for weak 1-genericity and Greenberg
and J. Miller [19], related to [5] about lowness for Kurtz randomness, where, for a
change, the argument found in computability gives cleaner morphisms. Nonethe-
less, we emphasise that most results in this paper are, essentially, not original.

Consistency results in set theory and non-implication results in computability
are usually obtained by related forcing notions, and so we end the paper with a
brief discussion of forcing. We examine a few basic examples to show how they fit
in this framework. Finally we suggest a general research programme that arises
naturally from the template that we discuss in this paper.

2. Basics

2.1. Weihrauch problems and effective morphisms.

Definition 2.1. A Weihrauch problem is a triple A “ pAinst, Asol, Aq where
Ainst, Asol Ď ωω and A is a binary relation between Ainst and Asol, that is,
A Ď Ainst ˆ Asol. An A-instance is an element of Ainst. A solution for an in-
stance a of A is b such that aAb.1

The sets Ainst and Asol are allowed to be complicated. However we will make
one assumption:

‚ Both Ainst and Asol contain computable points.

Example 2.2. Dom is the domination problem: an instance is a function f P ωω; a
solution is a function g dominating f , denoted g ě˚ f , that is, p@8nq gpnq ě fpnq.

Definition 2.3. A (total) function F : ωω Ñ ωω is hyperarithmetic piecewise com-
putable if there is a countable partition xAny of ωω into uniformly ∆1

1 sets such that
for all n, FæAn is the restriction to An of a partial computable function, uniformly
in n.

That is, uniformly in n we get a ∆1
1 index for An and a partial computable

index (a c.e. Turing functional) for a partial computable function Gn such that
An Ď domGn and FæAn “ GnæAn. An important fact to note is that for all
x P ωω, F pxq ďT x, albeit not quite uniformly.

Remark 2.4. Fix an effective list Φe of all partial computable maps from ωω to ωω.
A map F : ωω Ñ ωω is hyperarithmetic piecewise computable if and only if there
is a computable ordinal α and a partial computable map θ : ωω Ñ ω such that for
all x P ωω, θpxpαqqÓ and F pxq “ Φθpxpαqqpxq. Here xpαq is the αth iteration of the
Turing jump of x.

Definition 2.5. An effective morphism ϕ from a problem A to a problem B is a
pair ϕinst, ϕsol of hyperarithmetic piecewise computable functions such that:

‚ ϕinstrAinsts Ď Binst;
‚ ϕsolrBsols Ď Asol; and

1Blass and Rupprecht use “challenges” and “responses”, or “answers”, for instances and so-
lutions. Coskey et al. and Kihara call Weihrauch problems “Vojtáš triples”. Blass calls them
“relations”; Rupprecht calls them “debates”. We adopt terminology used in reverse mathematics,
which is more widespread.
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‚ for all a P Ainst, for every B-solution b of ϕinstpaq, ϕsolpbq is an A-solution
of a.

We write AÑ B if there is an effective morphism from A to B.

A

B

ϕinst ϕsol

Figure 1. A morphism

The idea is that we are reducing A to B; given an A-instance a, we effectively
translate it to a B-instance ϕinstpaq; from any B-solution b for ϕinstpaq we get a
solution ϕsolpbq to the original instance. This is like strong Weihrauch reducibility,
in that b computes ϕinstpbq on its own, without aid of the original instance a;
however unlike strong Weihrauch reductions, an effective morphism is not required
to be uniform: it is almost uniform, except that we are allowed to define the
reduction “by cases”.2

Observation 2.6. If A Ñ B and B Ñ C then A Ñ C. Also A Ñ A. We write
AØ B when AÑ B and B Ñ A.

2.2. The associated cardinal and highness class.

Definition 2.7. Let A be a problem. A complete solution set for A is a set Z Ď Asol
such that every A-instance has a solution in Z. We let

CardpAq “ min t|Z| : Z is a complete solution set for Au . 3

Definition 2.8. For a problem A we let HpAq, the highness class associated with A,
be the collection of oracles x P 2ω which compute some c P Asol that solves every
computable A-instance.

Example 2.9. A complete solution set for Dom is a set of functions dominating
all functions f : ω Ñ ω. CardpDomq, denoted by d and known as the dominating
number, is the smallest size of a dominating family, that is, the cofinality of the
pre-partial ordering pωω,ď˚q.

HpDomq is the collection of high degrees (Martin [30]): those that compute func-
tions that dominate all computable ones.

Proposition 2.10 (Vojtáš [46]; Rupprecht [41]). Suppose that AÑ B. Then:
(a) CardpAq ď CardpBq; and

2Rupprecht uses completely non-uniform maps that only require fpxq ďT x for all x, anlogous
to Muchnik reductions. Weihrauch and his school use the language of multi-valued functions rather
than binary relations. Thus instead of the diagram in fig. 1 they draw a composition: ϕsol ˝ B ˝

ϕinstpaq Ď Apaq. The terminology for morphisms varies; Vojtáš called them “generalised Galois-
Tukey connections”; Kihara “Tukey connections”; Rupprecht and Blass simply “morphism”, but
they reverse the direction.

3Blass and Rupprecht use the notation ||A|| and call it the norm of A. Brendle et al. write
dpAq and call it the domination number of A.
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(b) HpBq Ď HpAq.

Proof. Let ϕ “ pϕinst, ϕsolq be an effective morphism from A to B.

(a): Let Z be a complete solution set for B; let W “ ϕsolrZs. Then |W | ď |Z|
and W is a complete solution set for A.

(b): Let x P HpBq; let b ďT x be a B-solution for all computable B-instances.
Let a be a computable A-instance. Then ϕinstpaq is a computable B-instance; so
ϕinstpaq B b. It follows that ϕsolpbq is an A-solution for a. As ϕsolpbq ďT b ďT x,
it witnesses that x P HpAq. �

2.3. Duality.

Definition 2.11. For a problem B we define its dual BK to be ��B. That is, the
relation on Bsol ˆ Binst defined by xBKy ðñ  pyBxq. We let pBKqinst “ Bsol
and pBKqsol “ Binst.

Hence pAKqK “ A.

Lemma 2.12. If AÑ B then BK Ñ AK.

Proof. Suppose that ϕ is an effective morphism from A to B. Define a morphism ψ
by letting ψinst “ ϕsol and ψsol “ ϕinst. Then ψ reduces BK to AK: if b P Bsol “

pBKqinst and a P Ainst “ pA
Kqsol is such that ψinstpbqA

K a, that is, a�Aϕsolpbq,
then it cannot be that ϕinstpaqB b, so bBK ψsolpaq. �

Definition 2.13. For a problem A, the non-lowness class associated with A is
NLpAq “ HpAKq.

So x P NLpAq if and only if x computes an A-instance which has no computable
A-solution.4

Corollary 2.14. If AÑ B then NLpAq Ď NLpBq.

Example 2.15. The dual of Dom is Esc: a solution for g P ωω is a function escaping g,
that is, not dominated by g.

CardpEscq “ b is the unbounding number : the smallest size of an unbounded
family.

HpEscq “ NLpDomq is the collection of hyperimmune degrees (not 0-dominated):
those that compute escaping functions, functions not dominated by any computable
function. NLpEscq “ HpDomq is high.

The problem Esc reduces to Dom: map an Esc-instance to itself; map a Dom-
solution g to g ` 1. Hence: b ď d; and every high degree is hyperimmune.5

4We used “highness” for HpAq because of the analogy with high degrees and their coincidence
with HpDomq. We defined it first because its definition is more straightforward. However, we will
see in the rest of the paper that the operator NLpAq is better behaved, in particular with respect
to sequential composition, and its relationship with forcing. Rupprecht calls NLpAq the Turing
norm of A and denotes it by xAy. Brendle et al. write DpAq for NLpAq and BpAq for HpAq, which
they do define first; this is analogous to their notation bpAq for CardpAKq. They call both DpAq
and BpAq “highness properties”. Kihara writes rAs∆0

1
for NLpAq.

5 Our notation NLpAq, as is Brendle et al.’s, is motivated by this simplest example, Dom and Esc:
NLpDomq is a weaker property that HpDomq. However this example is misleading, as usually there
is no reduction from A to AK or vice-versa. Possibly better notation would be HKpAq for NLpAq;
however we find this typographically annoying.
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Example 2.16. Let Split be the splitting problem: an instance is an infinite subset a
of ω (viewed as an element of 2ω Ă ωω); a solution is an infinite subset b of ω which
splits a, meaning that both a X b and azb “ a X bA are infinite. (Note that in this
example the sets of instances and solutions are not all of ωω but a Π0

2 subset of ωω.)
CardpSplitq, the splitting number, denoted by s, is the smallest size of a set

of subsets of ω which split every infinite set. CardpSplitKq, denoted by r and
sometimes called the reaping number, is the smallest size of a collection of infinite
subsets of ω for which no single infinite subset of ω splits them all.

HpSplitq is the collection of oracles which compute a bi-immune set: a set with
no infinite c.e. subset of it or of its complement. This is because every infinite c.e.
set contains an infinite computable set.

NLpSplitq is the collection of oracles which compute r-cohesive sets: infinite
sets c such that for every computable set a, c Ď˚ a or c Ď˚ aA.

Lemma 2.17. Split Ñ Dom.

Proof. We define a morphism ψ. On the instance side, map an infinite set a Ď ω
to its principal function pa. On the solution side, the idea is that if g dominates
pa then from g we can get a partition of ω into intervals xIny, each of which
contains an element of a; from this we easily build a set that splits a. So formally,
given g P ωω, we define ψsolpgq as follows. Let hp0q “ 0 and hpn`1q “ gphpnq`1q;
let In “ phpnq, hpn` 1qs; let ψsolpgq “

Ť

n I2n. �

As a result, we see that s ď d, b ď r, every high degree computes a bi-immune
set, and every r-cohesive set has hyperimmune degree.

3. Represented spaces, measure and category

Since we allow the collections Ainst and Asol of instances and solutions of a prob-
lem to be subsets of ωω, we can formulate problems whose instances or solutions,
for example, are elements of Cantor space, or collections of bounded functions.
However at times we will want to deal with objects that are not in Baire space, for
example, real numbers, or some definable subsets of Baire space. For this, we use
the terminology of represented spaces.

Definition 3.1. A representation of a set X is a partial function from ωω onto X.

If π is a representation of X then a P dom π is called a π-name for πpaq. We
then say that y P 2ω computes x P X if x has a y-computable name. We choose
representations so that this aligns with our preconceived notions of computation.

Below we will define problems whose instances or solutions are elements of rep-
resented spaces. In all cases this is shorthand for the induced problems on the
names: if π is a representation of X, for example, then we will define a problem
A Ď X ˆ ωω, but really we will mean the problem Â Ď dom π ˆ ωω defined by
Âinst “ π´1Ainst and x Â y means πpxqAy. We will identify A with Â.

3.1. Meagre sets. The first example is the collection of Σ0
2 meagre subsets of Baire

space. A name for a closed, nowhere dense subset P of ωω is the characteristic
function of a tree T Ď ωăω such that P “ rT s (we use a computable bijection
between ω and ωăω). Trees are allowed to have leaves (strings with no extensions
on the tree). By a canonical identification of Baire space with its power pωωqω, we
let xTny be a name for

Ť

rTns.
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We let M be the collection of Σ0
2 meagre sets. As described above, we identify

a name for a meagre set with the set that it names, so we also think of M as the
collection of names for Σ0

2 meagre sets.

Remark 3.2. Since every effectively closed set is the set of paths through a com-
putable tree, and this is uniform and relativises, we see that a Σ0

2 meagre set is
x-computable if and only if it is Σ0

2pxq.

Two problems are typically associated with ideals of small sets, in this case the
meagre ones:

‚ CapturepM q: an instance is a point y P ωω; a solution is a meagre set M
such that y PM .

‚ SupsetpM q: an instance is a meagre set M ; a solution is a meagre set M̃
such that M Ď M̃ .

CardpCapturepM qq is known as covpM q: the smallest number of meagre sets it
takes to cover ωω. HpCapturepM qq is the class of x P 2ω which compute a meagre
set that contains all computable reals: the weakly meagre engulfing oracles.6

The dual of CapturepM q is PasspM q, the problem of finding a point outside
a given meagre set. CardpPasspM qq is nonpM q (also known as the uniformity
number unifpM q), the smallest size of a non-meagre set. HpPasspM qq is the class
of x P 2ω which compute a weakly 1-generic function.

CardpSupsetpM qq is cofpM q, the cofinality of the partial order pM ,Ďq. The
class HpSupsetpM qq consists of the (strongly) meagre englufing oracles: those which
compute a meagre set covering (i.e. a superset of) all computable meagre sets.

The dual of SupsetpM q is SpillpM q, the problem of finding a meagre set which
is not covered by a given meagre set. CardpSpillpM qq is addpM q, the additivity
number for the meagre sets: the smallest number of meagre sets whose union is not
meagre. HpSpillpM qq is the class of oracles which are not low for meagre sets.

Proposition 3.3. CapturepM q Ñ Dom.

Proof. Map the instance f to itself. Map a Dom-solution g P ωω to the meagre set
consisting of all functions dominated by g.

More precisely, let Tnpgq be the tree of σ P ωăω such that for all k ě n, if k ă |σ|
then σpkq ď gpkq; map g to xTnpgqy. �

As a result we see:
‚ covpM q ď d and b ď nonpM q.
‚ Every high degree is weakly meagre engulfing; every weakly 1-generic degree

is hyperimmune.

Proposition 3.4. PasspM q Ñ SupsetpM q.

Proof. Uniformly, given (a name of) a meagre set M , we can find a point x R M :
since M is given as a sequence xTny of nowhere dense trees, we construct x R

Ť

nrTns
by initial segments, first finding a string σ0 off T0, then an extension σ1 off T1, and
so on.

The morphism maps an instance M of PasspM q to itself, and a solution M̃ ĚM
to a real outside M̃ .

6The terminology originates from [10].
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Note that for the map of solutions to be total, we cannot produce a partial
sequence xσny in case we are given a tree which is somewhere dense. However the
collection of names for meagre sets is arithmetic, so we are allowed to define the
map of solutions in an arbitrary way outside M . �

Remark 3.5. The previous morphism exhibits the importance of allowing functions
on names that do not induce maps on the named objects. Given two names xTny
and xSny of the same meagre set M , the resulting point outside M will very likely
depend on the name.

Proposition 3.6. Dom Ñ SupsetpM q.

Proof. On the instance side, map a function f to the meagre set Mf consisting
of all f -dominated functions. By first replacing f by

ř

iďn fpiq, we may assume
that f is non-decreasing.

On the solution side, we elaborate on the construction of a point outside a given
meagre set M “

Ť

nrTns (applying that construction would yield a morphism from
Esc to SupsetpM q, which is weaker). Given xTny, for each n and k ă ω we can
effectively obtain a string σn,k such that for all k-bounded strings τ of length k,
τˆσn,k R Tn. We may assume that T0 Ď T1 Ď T2 Ď . . . . By extending σn,k, we may
assume that max rangeσn,k ą k.

We then recursively define gp0q “ 0 and gpn ` 1q “ max rangeσn,gpnq. So g is
strictly increasing. Let Jn “ rgpnq, gpnq ` |σn,gpnq|s. For all y P ωω, if yægpnq is
gpnq-bounded and yæJn “ σn,gpnq, then y R rTns.

We claim that if Mf ĎM , that is, if M contains all f -dominated functions, then
f ď gpn` 1q.

Suppose not. Then there is an infinite set X such that for all n P X, gpn` 1q ď
fpnq. We may thin out X so that the intervals Jn for n P X are pairwise disjoint
and m ą n in X implies m ą gpn` 1q.

We can then build a function x P ωω such that for all n P X, xæJn “ σn,gpnq.
Outside these intervals we set the values of x to be 0. If n P X and i P Jn then
xpiq “ σn,gpnqpiq ď gpn ` 1q. If m P X and m ą n then as m ą gpn ` 1q, this
shows that xægpmq is gpmq-bounded. It follows that x R M . On the other hand,
for n P X, gpn ` 1q ď fpnq and as f is non-decreasing, fpnq ď fpiq for all i P Jn,
so x ď f . �

Combining propositions 3.3 and 3.6 we see that CapturepM q Ñ SupsetpM q

(and so also SpillpM q Ñ PasspM q). This actually has a quick direct proof: on
the instance side, map a function f to the singleton tfu (it is easy to effectively
obtain a tree T such that rT s “ tfu). On the solution side we use the identity
function.

3.2. Other spaces. We have looked at meagre subsets of Baire space, but we
could equivalently examine either Cantor space or the real line. We show that
the corresponding problems are all morphism-equivalent. For this subsection, for
any one of the spaces X P tωω, 2ω,Ru, denote by MX the collection of Σ0

2 meagre
subsets of X.

Let us first deal with Cantor space. Here M2ω is a subset of Mωω , with the names
being infinite sequences of nowhere dense subtrees of 2ăω. Define ρ : ωω Ñ 2ω by
letting

ρpfq “ 0fp0q10fp1q10fp2q1 ¨ ¨ ¨ ;
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It is a bijection between Baire space and the collection of (characteristic functions
of the) infinite subsets of ω. The map ρ is induced by a corresponding map from
ωăω to 2ăω, which we also call ρ: ρpxn0, n1, . . . , nkyq “ 0n010n11 ¨ ¨ ¨ 10nk .

For any meagre set M Ă 2ω, ρ˚pMq “ ρ´1rM s is a meagre subset of ωω. Further,
a name for ρ˚pMq can be effectively obtained from a name for M : the sequence
xTny (with Tn Ă 2ăω) is sent to

@

ρ´1rTns
D

.
For M Ď ωω we let ρ˚pMq “ ρrM s Y tx P 2ω : x is finiteu. M is meagre if and

only if ρ˚pMq is meagre, and a name for ρ˚pMq is effectively obtained from a name
for M : map a sequence xSny to xTny where

Tn “
 

ρpσq̂ 0k : σ P Sn & k ă ω
(

Y tτ P 2ăω : τ has up to n 1’su .
Lemma 3.7. CapturepM2ω q Ø CapturepMωω q and SupsetpM2ω q Ø SupsetpMωω q.
Proof. To reduce CapturepMωω q to CapturepM2ω q, on the instance side use ρ and
on the solution side use ρ˚. In the other direction, on the instance side map an
infinite set x to ρ´1pxq, and a finite set x to some fixed point, say the constant
function 0. On the solution side use ρ˚. In either case this will work, because
ρ˚pMq will always contain all finite sets.

To reduce SupsetpMωω q to SupsetpM2ω q, use ρ˚ on the instance side and ρ˚ on
the solution side. We just need to check that if M̃ Ě ρ˚pMq then M Ď ρ˚pM̃q. In
the other direction, use ρ˚ on the instance side and ρ˚ on the solution side; check
the same thing. �

We conclude that covpM2ω q “ covpMωω q, cofpM2ω q “ cofpMωω q (and the
same holds for addpM q and nonpM q), and that the highness classes coincide. So:
computing a weakly 1-generic function in Baire space is equivalent to computing
a weakly 1-generic sequence in Cantor space, lowness for meagre sets coincides,
and the engulfing properties (weak and strong) coincide for Baire space and Cantor
space.

For the real numbers, we need to choose representations. We use standard ones;
R is represented using Cauchy names (quickly converging Cauchy sequence) —
although since we do not require the morphism maps to be uniform, representation
using binary expansions would be equivalent. Open subsets of R are represented by
sequences of rational intervals (named by their endpoints) whose union is the open
set; closed names are given by taking the complement; names for Σ0

2 subsets of R are
sequences of closed names. As above, we can use Baire category-preserving maps to
obtain morphism equivalence of the problems CapturepMωω q and CapturepMRq,
usually passing through the unit interval first. For example, we can use the binary
expansion map from Cantor space onto r0, 1s, or the homeomorphism of Baire
space with the irrationals in p0, 1q. We just need to check that these maps are
Σ0

2-measurable, effectively.
Remark 3.8. The reduction CapturepM2ω q Ñ CapturepMωω q is an instance of a
morphism ψ for which ψinstæAinst is not computable (the restriction of a partial
computable function to Ainst). This is because the map depends on whether x is
infinite or not. This, and the reduction for MR, are the only such reductions in this
paper.
3.3. Null sets. We use similar techniques to name null Π0

2 subsets of 2ω. An open
set is named by (the characteristic function of) a subset U of 2ăω; we may assume
it is upwards closed in 2ăω. This means that under this naming scheme, x is a name
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for an open set U if and only if the complement xA of x is a name for the closed
set 2ωzU under the scheme of naming closed sets by trees used above. We abuse
notation by using U to denote both a set of strings and the open set (sometimes
denoted rU să) generated by U .

As we are dealing with relatively computable names, rather than relatively c.e.
names, we do not require that rσs Ď U implies σ P U . This is the analogue of
allowing terminal nodes in our trees naming closed sets.

A name for a null Π0
2 set is essentially a Schnorr test: it consists of a pair of

sequences xUny and xλpUnqy, where Un is (a name for) an open set and λpUnq is (a
name for) the real number which is the fair-coin measure of Un. We require that
λpUnq ď 2´n. The null set named is

Ş

n Un. We do not require the test to be
nested, but this can be obtained by replacing xUny by xVny where Vn “

Ť

mąn Um;
the sequence xλpVnqy (as well as the sequence of sets of strings xVnyq is computed
from xUny and xλpUnqy.

We note that an alternative naming system would be omitting the sequence of
measures xλpUnqy and simply requiring that λpUnq “ 2´n (see for example [15,
Prop.7.1.6]). We also remark that unlike the naming scheme for R, when naming
infinite sequences of real numbers we do need to use quickly converging Cauchy
sequences rather than binary expansions, as we cannot pass between them using
piecewise continuous functions: for each coordinate we need to know whether the
real in that coordinate is a binary rational or not, and there are continuum many
possibilities.

For any oracle x, the x-computable null sets are the x-Schnorr null sets. The
associated cardinals and highness classes are:

‚ CardpCapturepN qq “ covpN q is the smallest number of null sets it takes
to cover the reals; the elements of HpCapturepN qq are the weakly null
engulfing (or weakly Schnorr engulfing) oracles, those that compute a null
set containing all computable points.

‚ CardpSupsetpN qq “ cofpN q is the cofinality of pN ,Ďq; HpSupsetpN qq

is the class of (strongly) null engulfing oracles, those that compute a null
set covering all computable Schnorr null sets.

‚ CardpPasspN qq “ nonpN q is the smallest size of a non-null set; an oracle
is in HpPasspN qq if and only if it computes a Schnorr random real.

‚ CardpSpillpN qq “ addpN q is the smallest number of null sets whose
union is not null; HpSpillpN qq is the class of oracles which are not low for
Schnorr null sets.

The two basic morphisms that apply to most σ-ideals apply to null sets as well:
Proposition 3.9. CapturepN q Ñ SupsetpN q and PasspN q Ñ SupsetpN q.
Proof. The same as for meagre, noting that given a name xUny for a null set we
can effectively compute a point outside the null set

Ş

n Un. Indeed we can build
x R U1, defining it bit by bit, by ensuring that λprxænszU1q ą 0. We use the fact
that for all clopen C, λpC X U1q is uniformly computable from U1 and λpU1q.

Also, it is easy, given x P 2ω, to find a name for txu as a null set. �

Remark 3.10. By forgetting the sequence xλpUnqy, we could have easily defined the
representation of null sets using Martin-Löf tests, which would make the effective
notions correspond to computing ML-random reals and so on. But the most basic
morphisms (as in proposition 3.9) would not work for such a representation. Schnorr
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is the correct effective analogue to set-theoretic randomness, because in set theory
there is no sense to “not knowing” the exact measure of an open set.
3.4. Category and measure – an easy morphism. We start by observing a
relatively simple connection between category and measure. We use:
Lemma 3.11. There are an effectively null (Schnorr null) set and an effectively
meagre set which form a partition of 2ω.
Proof. This can be done in many ways. For example, use a pairing function to
identify ω with ω2, and let Un “

Ť

m Cn,k, where Cn,k is determined by finitely
many bits on the kth column of ω; for example

Cn,k “ tx P 2ω : xpk, 0q “ xpk, 1q “ ¨ ¨ ¨ “ xpk, k ` nq “ 0u . �

Proposition 3.12. CapturepM q Ñ PasspN q.
Dualising we get CapturepN q Ñ PasspM q. As a result, covpM q ď nonpN q

and covpN q ď nonpM q; and every Schnorr random is weakly meagre engulfing,
whereas every weakly 1-generic is weakly null engulfing.

Proof. By lemma 3.11, we fix a computable null set N and a computable meagre
set M which partition 2ω. We then let, for x P 2ω,

ψinstpxq “ x4N “ tx4 y : y P Nu
and for y P 2ω we let ψsolpyq “ y 4 M . The map x ÞÑ x 4 y is measure and
category-invariant, so indeed x4N is null and y4M is meagre. And if y R x4N
then x4 y R N so x4 y PM so x P y 4M . �

3.5. Tracing. The material in this section was discovered by Bartoszynski [2], by
Raisonnier and Stern [40], and then independently by Terwijn and Zambella [45].

A trace is a function T : ω Ñ Pωpωq “ rωsăω. An order function is a com-
putable, non-decreasing, unbounded function.7 If h is an order function then an
h-trace is a trace T such that for all n, |T pnq| ď hpnq. In set theory, traces are
known as slaloms. A trace T traces a function f P ωω if p@8nq fpnq P T pnq. By
canonically coding finite sets of natural numbers by natural numbers, we repre-
sent traces by elements of Baire space. The most basic problem involving traces is
h-Trace: an instance is a function f P ωω, a solution is an h-trace T which traces f .

Traces are used extensively in algorithmic randomness and computability. See,
for example, [15, 36, 21].

Lemma 3.13. For any two order functions h and h̃, h-Trace Ø h̃-Trace.
We therefore simply write Trace for the equivalent problems h-Trace.

Proof. Let h, h̃ be order functions; we reduce h-Trace to h̃-Trace. We say that k
is responsible for n if h̃pkq ď hpnq ă h̃pk ` 1q. Then for every n with hpnq ě h̃p0q,
a unique k is responsible for n, and every k is responsible for finitely many n.

On the instance side, map f P ωω to f̃ defined by f̃pkq “ fæpn` 1q, where n
is the greatest such that k is responsible for n. If k is responsible for no n (for
example if h̃pkq “ h̃pk ` 1q) then it doesn’t matter what f̃pkq is.

On the solution side, we map a h̃-trace T to the h-trace S defined by
Spnq “ tσpnq : σ P T pkq, where k is responsible for nu ,

7Terminology by Schnorr [43].
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letting Spnq be empty if hpnq ă h̃p0q. �

NLpTraceq is the collection of oracles which are not computably traceable. An
oracle x is computably traceable if every x-computable function has a computable
h-trace, for some fixed (or all) order functions h. It is not difficult to see that Dom Ñ
Trace (an instance is mapped to itself, a trace S is mapped to n ÞÑ maxSpnq); the
resulting containment NLpDomq Ď NLpTraceq says (in contrapositive) that every
computably traceable degree is 0-dominated (hyperimmune-free). The contain-
ment HpTraceq Ď HpDomq says that if there is an x-computable h-trace that traces
all computable functions, then x is high. In fact, it is not difficult to see that
HpTraceq “ HpDomq, that is, HpTraceq is the collection of high degrees: suppose
that x is high. The set of indices of computable functions is ∆0

2pxq. Approximating
this set, we let T pnq be the set of values ϕe,spsq for all e ă s which are believed to
be total at stage s. This is an identity-bounded, x-computable trace that traces all
computable functions. Note how this proof relies on special properties of high de-
grees (and the enumeration of partial computable functions) that go beyond merely
using a dominating function. This proof has no analogue in set theory, and indeed,
the associated cardinals can be distinct.

Our next goal is the following combinatorial characterisation of the cofinality of
the null ideal.

Theorem 3.14. Trace Ø SupsetpN q.

Proof of SupsetpN q Ñ Trace. Define an order function h so that for large enough n,
2´2nř

kăω hp2n, kq ¨ 2´k ď 2´n, and that this sum is computable, uniformly in n.
On the instance side: given a null set N “

Ş

Un, let, for n, k ă ω, spn, kq be
a stage s such that λpUn,sq ě λpUnq ¨ p1 ´ 2´kq, where Un,s “ Un X t0, 1uďs. Let
spn,´1q “ 0. We map N to the function pn, kq ÞÑ Un,spn,kq ´ Un,spn,k´1q. A value
of this function is a clopen set, so is coded by a finite subset of 2ăω, and hence by
a natural number.

On the solution side, given an h-trace T , we may assume that for all n, k, every
element of T pn, kq is a clopen set of measure at most 2´n´k. We then map T
to a name xVny for a null set, defined by letting, for sufficiently large n, Vn “
Ť

kăω

Ť

T p2n, kq. The properties of h ensure that λpVnq ď 2´n. The uniform
computability of the sums above implies that the sequence xλpVnqy can be obtained
from T .

For all n, U2n Ď Vn, so
Ş

Un Ď
Ş

Vn. �

Proof of Trace Ñ SupsetpN q. We define an array of clopen sets Bm,k:
Bm,k “ tx P 2ω : xpk, 0q “ xpk, 1q “ ¨ ¨ ¨ “ xpk,m´ 1q “ 0u .

For each m, the family of sets xBm,ky is independent (in the sense of probability
theory), and λpBm,kq “ 2´m. Further, for any clopen set C and m, for some k, the
family tC,Bm,k, Bm,k`1, Bm,k`2, . . . u is independent.

We also fix a computable map D ÞÑ qD from clopen sets to positive binary
rational numbers, such that

ř

D qD ď 1{8. For each clopen set D, we let hDpnq “
P

1{ logqD p1´ 2´nq
T

. This is an order function. The granularity of a clopen set D
is the least k such that D is the union of clopen sets rσs for binary strings σ of
length k. We let

hpnq “
ÿ

thDpnq : D is a clopen set of granularity ď nu .
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We reduce h-Trace to SupsetpN q.
On the instance side, the map is relatively simple: we map f P ωω to xUny,

where Un “
Ť

mąnBm,fpmq. The sequence xλpUnqy is obtained effectively from f .
On the solution side, we work a bit. Given a name xVny, xλpVnqy of a null set,

we will actually only use V2 and λpV2q. We first define an open set W Ě V2 such
that λpW q ď 1{2, W and λpW q are computable given V2 and λpV2q, and for every
clopen set D, if λpDzW q ă qD then D ĎW . The idea is to copy V2. For each D, we
calculate λpDzW2q sufficiently precisely so that if it is close to qD (say significantly
smaller that 2qD), then we add all of D to W .

We then let, for every clopen set D such that D ĘW and n ă ω,
TDpnq “ tk : Bn,k XD ĎW u ;

if D ĎW then TDpnq “ H. We let

T pnq “
ď

tTDpnq : D is a clopen set of granularity ď nu .

We first observe that T is an h-trace, which amounts to showing, for all clopen D,
that TD is an hD-trace. Suppose that D ĘW . For all k P TDpnq, DzW Ď BAn,k; as
the sets Bn,k are independent,

qD ď λpDzW q ď
`

1´ 2´n
˘|TDpnq|

,

so
|TDpnq| ď logp1´2´nqpqDq “ 1{ logqD p1´ 2´nq ď hDpnq.

Our task now is to show that T is computable, given W and λpW q. To do this
we show that using W and λpW q, the sets TDpnq are computable, uniformly in D
and n; and that we can, again uniformly in D and n, compute an upper bound for
the elements of TDpnq.

For the former, we observe that the collection of clopen subsets of W is com-
putable from W and λpW q. For C Ď W if and only if λpCzW q ă qC if and only if
λpCzW q “ 0, and λpCzW q is computable, uniformly in C. So we can tell if D ĎW ,
and if not, then for all k, whether Bn,k XD ĎW or not.

For the latter, suppose that D is clopen and D Ę W . So λpW |Dq ă 1, where
λpX|Dq is the conditional probability. Given n, we find some large s so that

λpW |Dq ´ λpWs|Dq ă 2´np1´ λpW |Dqq.
We also assume that s is greater than the granularity of D. We claim that TDpnq Ď
s. Suppose that k ě s. Then Bn,k and Ws X D are independent, and also Bn,k
and D are independent; this implies that Bn,k and Ws are independent modulo D,
that is,

λpWs XBn,k|Dq “ λpWs|Dq ¨ λpBn,k|Dq “ 2´nλpWs|Dq.

Then

λpWs YBn,k|Dq “ λpWs|Dq ` λpBn,k|Dq ´ λpWs|Dq ¨ λpBn,k|Dq ą

λpW |Dq ´ 2´np1´ λpW |Dqq ` 2´n ´ 2´nλpW |Dq ě λpW |Dq,

so it is impossible that Bn,k XD ĎW . Hence k R TDpnq.
Finally, we need to show that if

Ş

Un Ď
Ş

Vn then T traces f (where f is mapped
to xUny and xVny is mapped to T ). We show that there is some D such that TD
traces f .
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We seek some clopen D such that D Ę W but for all but finitely many m,
D X Bm,fpmq Ď W ; that is, D X Un Ď W for some n. If there is no such D then
we build some x P p

Ş

n UnqzW (but
Ş

n Un Ď
Ş

n Vn Ď V2 Ď W ). This is done by
initial segments; given σn such that rσns Ę W , by assumption, Un X rσns Ę W , so
we can find an extension σn`1 ě σn such that rσn`1s Ď Un but rσn`1s ĘW .8 �

Corollary 3.15 (Bartoszynski [2]). Let h be an order function.
(a) cofpN q is the smallest size of a family of h-traces that trace every function.
(b) addpN q is the smallest size of a family of functions in ωω which are not

all traced by a single h-trace.

Corollary 3.16 (Rupprecht [41, 42]). An oracle is (strongly) null engulfing if and
only if it is high.

Corollary 3.17 (Terwijn and Zambella [45]). An oracle is low for Schnorr tests if
and only if it is computably traceable.

Kjos-Hanssen, Nies and Stephan [28] showed that lowness for Schnorr random-
ness is also equivalent to being computably traceable. The framework discussed
here does not appear to give tools for proving this equivalence. This is in contrast
with lowness for genericity or Kurtz randomness, which we will discuss below.

3.6. Reducing category to measure. We prove:

Theorem 3.18. SupsetpM q Ñ SupsetpN q.

We take a slightly roundabout way because below we will use the concepts that
we introduce now. For a problem A Ď AinstˆAsol, we define a problem Aω by let-
ting pAωqinst “ pAinstq

ω, pAωqsol “ pAsolq
ω and pa0, a1, a2, . . . q A

ω pb0, b1, b2, . . . q
if and only if a0Ab0, a1Ab1, . . . . Note that we can think of Aωinst and Aωsol as
subsets of ωω by the natural computable isomorphism between ωω and pωωqω.

It would be tempting to think that A Ñ B implies Aω Ñ Bω; apply the maps
ψinst and ψsol coordinate-wise. The problem is that these maps may fail to be
hyperarithmetic piecewise computable; if ψinstæAn is computable for a partition
xAny, then pψinstq

ω is continuous on the sets
ś

k Ank , of which there are uncount-
ably many. In the language of remark 2.4, if we need α jumps to determine which
computable map to apply to x, then ψωpxq will be xpαq-computable rather than
x-computable.

However, if ψinst and ψsol are (total) computable functions, then this construc-
tion will work. In fact, slightly less is sufficient:

Lemma 3.19. Suppose that ψ is a morphism from A to B, that the sets Ainst and
Bsol are hyperarithmetic, and that ψinstæAinst and ψsolæBsol are computable (i.e.,
restrictions of partial computable functions). Then Aω Ñ Bω.

Proof. pAinstq
ω and pBsolq

ω are hyperarithmetic, and the maps pψinstq
ωæpAinstq

ω

and pψsolq
ωæpBsolq

ω are computable. Outside pAinstq
ω and pBsolq

ω, we can use
any constant computable function. �

Lemma 3.20. For all order functions h and h̃, ph-Traceqω Ø ph̃-Traceqω.
8A quicker way to state this last argument is the following: the space W A “ 2ωzW is a Baire

space. Restricted to this space,
Ş

Un “ H; so there is some n such that UnzW is not dense in
W A. Thus there is some clopen D such that D X W A is nonempty but disjoint from Un. The
initial segment construction above reproves the Baire category theorem in the space W A.
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Proof. The maps in the morphism from h-Trace to h̃-Trace are computable. �

We therefore write Traceω. However,

Lemma 3.21. Trace Ø Traceω.

Proof. For every problem A, AÑ Aω: map a P Ainst to pa, a, a . . . q; on the solution
side map pb0, b1, . . . q to b0.

Let hpn, kq “ maxtn, ku. For this proof we choose a computable pairing function
px, yq ÞÑ xx, yy which makes h non-decreasing (the value of the pair xn, ky is its
location in a computable ordering of pairs which firsts orders by the maximum).

We reduce pid -Traceqω to h-Trace. On the instance side, map xfky to the
function f defined by fpk, nq “ fkpnq. On the solution side, we map the h-trace T
to the sequence of id-traces pT0, T1, . . . q, with Tkpnq “ H for n ă k, and Tkpnq “
T pk, nq for n ě k. �

Let CND denote the collection of closed, nowhere dense subsets of Cantor space,
each named by a nowhere dense binary tree. SupsetpCND ,M q is the problem of
finding a meagre superset of a given closed, nowhere dense set.

Proposition 3.22. SupsetpCND ,M q Ñ Trace.

To prove proposition 3.22 we need the following. Call a collection O of clopen
subsets of Cantor space dense if for every dense open set U Ď 2ω there is some
C P O such that C Ď U .

Lemma 3.23. There are uniformly computable dense families of clopen sets On such
that for all n, the intersection of any n sets in On is nonempty.

Proof. For every pair n ă m ă ω, let An,m be the collection of functions g whose
domain is 2n, the set of binary strings of length n, such that for all σ P 2n, gpσq
is a binary string of length m extending σ. Each such g represents a step toward
defining a dense open set, by mapping strings of length n to extensions in the dense
set we are building. Thus, for such g we let Cg “

Ť

trτ s : τ P range gu. An open set
U Ď 2ω is dense if and only if for every n there is some m ą n and some g P An,m
such that Cg Ď U .

We let On be the collection of unions Cg1 Y Cg2 Y ¨ ¨ ¨ Y Cgn , where for some
0 “ k0 ă k1 ă k2 ă ¨ ¨ ¨ ă kn we have gi P Aki´1,ki . That is: the elements of On are
obtained by choosing a string rσs of some length k1, and enumerating it into the
clopen set being build; then for each string of length k1, we choose some extension
of length k2, and enumerating all such extensions; and so on, n times.

Suppose that U Ď 2ω is dense and open. As described, for all n there is some
m ą n and some g P Am,n such that Cg Ď U . Thus, we can define by induction a
sequence k1 ă k2 ă ¨ ¨ ¨ ă kn and find gi P Aki´1,ki such that Cgi Ď U . Thus, each
O is a dense collection of clopen sets.

Let n ă ω and let D1, D2, . . . , Dn be elements of On. For each i ď n there
are ki1 ă ki2 ă ¨ ¨ ¨ ă kin and gij P Akij´1,k

i
j

such that Di “
Ť

jďn Cgij . We order
these sets so that k1

1 ď ki1 for all i ě 1; then k2
2 ď ki2 for all i ě 2, and so on.

Then
Ş

i Cgii Ď
Ş

iDi and is nonempty: we define σi P range gii recursively, with
σ1 ă σ2 ă ¨ ¨ ¨ ă σn, as ki´1

i´1 ď kii´1. �
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Proof of proposition 3.22. SupsetpCND ,M q is of course the same as the problem
of finding a dense Π0

2 subset of a given dense open set; for this reduction it is easier
to think about dense sets. Fix families On given by lemma 3.23. We order all finite
binary strings in a computable list xσny. We reduce SupsetpCND ,M q to id -Trace.

On the instance side, we map a dense open set U to the function f defined as
follows: fpnq is some element C of On such that σnˆC “ tσnˆx : x P Cu is a subset
of U . Such a clopen set exists because U is dense in rσns.

On the solution side, let T be an id-bounded trace. We may assume that for
all n, T pnq Ď On. We map T to

Ş

k Vk, where for k ă ω, Vk is the dense open set
Ť

mąk σmˆ
Ş

T pmq. Since |T pmq| ď m,
Ş

T pmq is nonempty, and so Vn is dense
open. If gpmq P T pmq for all m ą k, then Vk Ď U , and so

Ş

k Vk Ď U . �

The maps given in the proof above are computable on their arithmetic domains,
and so by lemma 3.19, pSupsetpCND ,M qqω Ñ pTraceqω.

Proof of theorem 3.18. By theorem 3.14 and lemma 3.21, and the morphism
pSupsetpCND ,M qqω Ñ pTraceqω, it suffices to show that SupsetpM q reduces to
pSupsetpCND ,M qqω. But this is not difficult: on the instance side, a meagre set is
given by a sequence xTny of nowhere dense sets, so we essentially take the identity
map; on the solution side, we are given a sequence xMny of meagre sets; we can
combine their presentations and map this sequence to

Ť

nMn. �

Corollary 3.24 (Bartoszynski [2]; Raisonnier, Stern [40]). cofpM q ď cofpN q

and addpN q ď addpM q.

Corollary 3.25. Every computably traceable degree is low for meagre sets.

Proof. By corollary 3.16; theorem 3.18 implies that every degree which is low for
Schnorr tests is also low for meagre sets. �

For highness classes, the implication SupsetpM q Ñ SupsetpN q does not add
computable information, as

Dom Ñ SupsetpM q Ñ SupsetpN q

and we have already ascertained that HpSupsetpN qq “ HpDomq, as the former is
HpTraceq.

3.7. The Cichoń diagram. The following diagram (fig. 2) displays all the mor-
phisms for the problems associated with measure and category, as well as the dom-
ination problems. The analogous diagram for cardinal characteristics was named
(by Fremlin) after Cichoń.

4. IOE reals and sequential composition

4.1. Sequential composition. A (total) function F : ωω Ñ ωω is Borel piecewise
continuous if there is a countable partition xAny of ωω into Borel sets such that for
all n, FæAn is continuous. We let F be the collection of these functions.

A name for such a function is an element of Baire space coding:
‚ The sets An: for each n, some oracle zn and a ∆1

1pznq-definition of An;
‚ The functions FæAn: a name for a partial continuous function ψn which

agrees with F on An.
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SpillpN q SpillpM q

CapturepN q PasspM q

Esc Dom

CapturepM q PasspN q

SupsetpN qSupsetpM q

Figure 2. The Cichoń diagram for Weihrauch problems

Note that the collection of names is quite complicated (d-Π1
1). For x P 2ω,

a Borel piecewise continuous function is x-computable if it has an x-computable
name. If F P F is x-computable then for all a P ωω, F paq ďT px, aq. The naming
system is chosen so that the Borel piecewise continuous maps with computable
names are precisely the hyperarithmetic piecewise computable ones.

Lemma 4.1. F has effective composition: there is a computable map θ : pωωq2 Ñ ωω

such that if f, g are names for F,G P F then θpf, gq is a name for F ˝G.

Proof. Let xAny, xBny be the partitions. We let Cn,m “ AnXF
´1rBms “ pFæAnq

´1rBms;
otherwise, we compose partial continuous functions. �

Every constant function is in F ; the constant function y ÞÑ a has an a-computable
name.

For problems A and B we define the problem A ‹ B. The instances are pairs
pa, F q P AinstˆF (as usual we mean a name for F P F) such that F rAsols Ď Binst;
the solutions are pairs in Asol ˆBsol. The relation is: pc, dq is an pA ‹Bq-solution
of pa, F q if c is an A-solution for a and d is a B-solution for F pcq. The idea is to
take a two-step iteration: first solve an A-instance a; use the solution to generate
a new B-instance, and then solve that one.9

The collection of instances of A ‹ B can be quite complicated. However it does
contain computable points: use a constant function that maps to a computable
instance of B.

We now verify that sequential operation induces a well-defined operation on the
morphism equivalence classes of Weihrauch problems.

Lemma 4.2. A,B Ñ A ‹B

Proof. To reduce A to A ‹ B we use the idea just mentioned: fix a computable
b˚ P Binst; let Fb˚ be the constant function y ÞÑ b˚. We map an A-instance a to
pa, Fb˚q and map an pA ‹Bq-solution pc, dq to c.

To reduce B to A ‹ B, fix a computable A-instance a˚. We map a B-instance
b to the pair pa˚, Fbq (where again Fb is the constant function y ÞÑ b); we map an
pA ‹Bq-solution pc, dq to d. �

9Blass [7] defines A‹B using the collection of all functions from Asol to Binst. As this collection
cannot be represented, Rupprecht did not try to find a computable analogue. A similar yet non-
identical sequential composition was discovered by Brattka et al. [9], who only used computable
maps. Our formulation, and choice of functions for morphisms, are designed to obtain lemma 4.3.



18 N. GREENBERG, R. KUYPER, AND D. TURETSKY

Lemma 4.3. If AÑ Â and B Ñ B̂ then pA ‹Bq Ñ pÂ ‹ B̂q.

Proof. Let ψ be a morphism from A to Â and let ϕ be a morphism from B to B̂.
Let pa, F q be an pA ‹ Bq-instance. Let â “ ψinstpaq and let F̂ be the translation
of F under the relevant morphisms: F̂ “ ϕinst ˝ F ˝ ψsol. As F : Asol Ñ Binst, it
follows that F̂ : Âsol Ñ B̂inst. We send pa, F q to pâ, F̂ q, using lemma 4.1 to see that
this map is hyperarithmetic piecewise computable. Let pĉ, d̂q be an Â ‹ B̂-solution.
We map it to pc, dq “ pψsolpĉq, ϕsolpd̂qq. �

A B

Â B̂

ψinst ϕinstψsol ϕsol

F

F̂

Figure 3. Reducing A ‹B to Â ‹ B̂.

Lemma 4.4. pA ‹Bq ‹ C Ø A ‹ pB ‹ Cq.
Proof. This goes as expected. Abusing notation, we write XY for the collection of
maps from Y to X that are in F . So pA ‹ Bqinst “ Ainst ˆ pBinstq

Asol . The proof
of the lemma relies on the natural identification of

ppA ‹Bq ‹ Cqinst “ Ainst ˆ pBinstq
Asol ˆ pCinstq

AsolˆBsol

with
pA ‹ pB ‹ Cqqinst “ Ainst ˆ

`

Binst ˆ pCinstq
Bsol

˘Asol
. �

When describing a map ϕinst : Cinst Ñ pA ‹ Bqinst, we must send c P Cinst to
some pa, F q P pA‹Bqinst, where a Borel piecewise continuous name for F is obtained
in some hyperarithmetic piecewise computable fashion from a. Our description of
F can thus make use of a. If the Weihrauch problem A is hyperarithmetic, that is, if
ty P Asol : xAyu is uniformly hyperarithmetic in x, then it suffices to describe F pyq
under the assumption that aAy; we can then define F to some computable value for
all other y while still obtaining an a-computable Borel piecewise continuous name.
Proposition 4.5.

(a) If CardpAq and CardpBq are infinite, then
CardpA ‹Bq “ max tCardpAq,CardpBqu.

(b) NLpA ‹Bq “ NLpAq YNLpBq.
Proof. (a): Let Z be a complete solution set for A and W be a complete solution
set for B. Then Z ˆW is a complete solution set for A ‹ B. On the other hand,
since A,B Ñ A ‹B, maxtCardpAq,CardpBqu ď CardpA ‹Bq.

(b): Again by lemma 4.2, NLpAq,NLpBq Ď NLpA ‹ Bq. Suppose that x P
NLpA ‹ Bq. Let pa, F q be an x-computable pA ‹ Bq-problem with no computable
solution. If a has no computable A-solution then we are done. Otherwise let c be a
computable A-solution for a. Let b “ F pcq. Since F is x-computable, so is b. And
it has no computable B-solution. �
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Proposition 4.6. CardppA ‹BqKq “ mintCardpAKq,CardpBKqu.

Proof. We know that pA ‹BqK Ñ AK, BK. So it remains to show that

CardppA ‹BqKq ě mintCardpAKq,CardpBKqu.
Let R be a complete set of solutions for pA ‹ BqK of size CardppA ‹ BqKq. Let
P “ π0rRs “ tc : pDGq pc,Gq P Ru. Then |P | ď |R|. If P is a complete solution
set for AK then CardpAKq ď CardppA ‹ BqKq. Suppose not. Then there is some
a˚ P Asol such that for all c P P , cAa˚. We let Q “ tGpa˚q : pDcq pc,Gq P Ru.
Then |Q| ď |R|. We claim that Q is a complete solution set for BK, so CardpBKq ď
CardppA‹BqKq. For suppose that b P Bsol. Then pa˚, bq is an instance of pA‹BqK,
so there is some pc,Gq P R which solves it. This means that either c�Aa˚, or that
Gpa˚q��Bb, that is, bBKGpa˚q. The former is not true, so Gpa˚q P Q is a BK-solution
of b. �

For the following lemma, we generalise notation: for x P 2ω and a problem A,
Hx
pAq is the set of y P 2ω which compute c P Asol which solves every x-computable

A-instance.

Lemma 4.7. y P HpA ‹ Bq if and only if y P Hx
pBq for some x P HpAq such that

x ďT y.

Proof. The point is that for all z, w P ωω, z ďT w if and only if there is some
computable F P F such that F pwq “ z. This is because every partial computable
function can be extended to a computable F P F . �

4.2. A weakening of morphism reduction. For a Weihrauch problem A and
n ă ω, let

A‹n “ A ‹A ‹ ¨ ¨ ¨ ‹A
looooooomooooooon

n times

(we implicitly use the associativity of sequential composition, lemma 4.4). For
Weihrauch problems A and B we write

A B

if AÑ B‹n for some n ă ω. We also write A B if A B and B A. Lemma 4.2
and propositions 4.5 and 4.6 imply:

Lemma 4.8.
(a) is transitive, and is an equivalence relation.
(b) If A B then CardpAq ď CardpBq and CardpAKq ě CardpBKq.
(c) If A B then NLpAq Ď NLpBq.

4.3. An example: SupsetpM q.

Proposition 4.9. SupsetpM q Ñ PasspM q ‹ Dom.

Proof. The first step is to replace PasspM q with a fractal version: FractalPasspM q

is the problem of finding, given a meagre set A, a point z P ωω such that for
all w “˚ z, w R A. Clearly PasspM q Ñ FractalPasspM q. To show the re-
verse morphism, we map the meagre set A (an instance of FractalPasspM q) to
Ť

σPωăω pσ
ñAq. Here, for x P ωω, σñx is the result of replacing the first |σ| values

of x by σ, and σñX “ tσñx : x P Xu. On the solution side, we map a real to
itself.
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Now we show SupsetpM q Ñ FractalPasspM q ‹ Dom. On the instance side, we
map A “

Ť

nrTns to the pair pA,F q, where F pzq is defined as follows. Suppose that
w R A for all w “˚ z. Then F pzq is the function f mapping pτ, nq to k ě |τ | such
that pτñzqæk R Tm for all m ď n.

On the solution side, we map pz, gq to the meagre set
Ť

Bn, where for each τ ,
rpτñzqægpτ, nqs is thrown out of Bn. If gp´, nq majorises fp´, nq then rTms Ď Bn
for all m ď n. �

We already know that PasspM q, Dom Ñ SupsetpM q. It follows that
PasspM q ‹ Dom Ñ SupsetpM q ‹ SupsetpM q,

whence PasspM q ‹ Dom SupsetpM q, which with proposition 4.9 gives
SupsetpM q PasspM q ‹ Dom.

As a result:

Corollary 4.10.
(a) cofpM q “ maxtd,nonpM qu (A. Miller and Truss);
(b) addpM q “ mintb, covpM qu (Fremlin);
(c) A degree is not low for meagre sets if and only if it is either hyperimmune

or weakly meagre engulfing.

Examining the morphisms, we also get that if a degree d is high relative to a
weakly 1-generic below it then it is strongly meagre engulfing. However we already
know that highness suffices, indeed is equivalent.

4.4. Infinitely often equal reals. AEDiff is the problem of finding a function g
which is different from a given f on all but finitely many inputs. Its dual is IOE,
the problem of finding a function f which agrees with a given g on infinitely many
inputs.

HpIOEq “ NLpAEDiffq is the class of degrees computing functions f , which agree
with every computable function on infinitely many inputs. Similarly, the dual class
NLpIOEq “ HpAEDiffq is that of degrees computing functions which are different
from every computable function on all but finitely many inputs.

Kjos-Hanssen, Merkle and Stephan [27] showed:

Proposition 4.11. NLpIOEq is the class of degrees which are either high or DNR.

We consider other known morphisms and equivalences.

Proposition 4.12. IOE Ñ PasspM q.

Proof. We prove the equivalent CapturepM q Ñ AEDiff. On the instance side, we
start with a point f P ωω; we map it to itself. On the solution side, we map g P ωω
to the meagre set of h P ωω which are almost always different from g. �

Proposition 4.13. AEDiff Ñ Dom.

Proof. If f ď˚ g then g ` 1 is almost always different from f . �

Note how the morphism from CapturepM q to Dom (proposition 3.3) is close to
the composition of the morphisms from CapturepM q to AEDiff and AEDiff to Dom
given by propositions 4.12 and 4.13.

Proposition 4.14. PasspM q Ñ IOE ‹ IOE.
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Proof. We prove that PasspM q Ñ Esc ‹ IOE; since Esc Ñ IOE (the dual of propo-
sition 4.13), lemma 4.3 says that Esc ‹ IOE Ñ IOE ‹ IOE.

We work in Cantor space. On the instance side, we are given a meagre set A
with name xTny. As usual we may assume that Tn Ď Tn`1. In this proof, a partial
string is a finite function to t0, 1u. We say that a partial string τ witnesses the
meagreness of A if the domain of τ is an interval rn,mq and for every σ P 2ăω of
length n, σ Y τ R Tn. Effectively from xTny we obtain a function h : ω Ñ ω such
that for all n, there is some partial string τ : rn, hpnqq Ñ t0, 1u which witnesses the
meagreness of A. Note that if x P 2ω and for infinitely many n there is some m ě n
such that xærn,mq witnesses the meagreness of A, then x R A.

Given a function g P ωω, consider the sequence of intervals xIny given by In “
rgpnqp0q, gpn`2qp0qq; note that this is not a partition of ω: these intervals overlap.
If g escapes h then there are infinitely many n for which there are partial strings τ
such that dom τ Ď In and τ witnesses the meagreness of A.

Let σ, τ be two partial strings. We say that σ and τ are strongly compatible
(relative to g) if for some n and m, dom σ Ď In, dom τ Ď Im and the intervals In
and Im are disjoint. We now define F pgq: assuming g escapes h, F pgq is a function f
such that for all k, fpkq is a set of 3k` 1 many finite functions τ , pairwise strongly
compatible (relative to g), each of which witnesses the meagreness of A, such that
min dom τ ě k. On the instance side, we map A to the pair ph, F q.

On the solution side, we are given a pair pg, pq of functions. Given g we can
compute xIny, and so the notion of strong compatibility of partial strings relative
to g.10 We define a sequence xσky of pairwise strongly compatible partial strings.
Given σ0, . . . , σk`1, we examine ppkq. We may assume that this is a set of 3k ` 1
many pairwise strongly compatible partial strings τ such that min dom τ ě k (if not,
we pick σk to be empty). One of these partial strings is strongly compatible with
each σi for i ă k, and so can be chosen as σk. We then map the pair pg, pq to x P 2ω
defined by extending

Ť

k σk; we fill the undetermined locations arbitrarily. The
condition min dom σk ě k implies that x can be computed from pg, pq, uniformly.

If indeed A is mapped to pf,Hq and pg, pq solves pf,Hq, then g escapes f and
for infinitely many k, ppkq “ F pgqpkq, in which case σk witnesses the meagreness
of A. It then follows that x R A, as required. �

Propositions 4.12 and 4.14 give:
IOE PasspM q,

which yields some characterisations of cardinals and non-lowness classes, due to
Rupprecht [41] and Bartoszynski [3].

Corollary 4.15.
(a) A degree is weakly meagre engulfing if and only if it is high or DNR.
(b) A degree is not low for meagre sets if and only if it is hyperimmune or

DNR.
(c) CardpIOEq “ nonpM q and CardpAEDiffq “ covpM q.

Proof. (a) follows from NLpIOEq “ NLpPasspM qq, and proposition 4.11.
(b) follows from (a) and corollary 4.10(b). �

10Of course, in the absence of A, we do not know which partial strings witness the meagreness
of A.
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As for NLpAEDiffq, the string of morphisms

CapturepM q Ñ AEDiff Ñ Dom

and the equivalence of hyperimmune with computing a weakly 1-generic sandwich
the class in the middle, yielding NLpAEDiffq being hyperimmune as well.

4.5. Lowness for closed nowhere dense sets, and weak 1-genericity. Corol-
lary 4.15(b) is very close to a result of Stephan and Yu’s [44]. Rather than
lowness for meagre sets, they consider the related notion of lowness for closed
nowhere dense sets. That is, NLpSupsetpCNDqq rather than NLpSupsetpM qq.
They show that this class is also equivalent to being hyperimmune or DNR; that
is, NLpSupsetpCNDqq “ NLpSupsetpM qq. They further show that this class coin-
cides with non-lowness for weak 1-genericity, a property which doesn’t seem to be
expressed as the highness class of a Weihrauch problem.

We note that we cannot get a morphism equivalence between SupsetpM q and
SupsetpCNDq; the corresponding non-lowness classes coincide, but their highness
classes do not: indeed, HpSupsetpCNDqq is empty, as the union of all computable
closed, nowhere dense sets is dense. Nonetheless, we have the means to deduce
the Stephan-Yu results. We now work in Cantor space, though the results can be
extended to Baire space as well.

In one direction we do get a morphism:

Proposition 4.16. SupsetpM q Ñ SupsetpCNDq.

Proof. Recall the problemsAω mentioned above. First, we show that SupsetpM q Ñ

pSupsetpCNDqqω. This is not hard: on both sides, map a sequence xTny to itself;
we just consider them differently, as a name for a meagre set or an ω-sequence of
names for closed, nowhere dense sets. If xSny is a pSupsetpCNDqqω-solution for
xTny, that is, if rTns Ď rSns for all n, then certainly

Ť

nrTns Ď
Ť

nrSns.
Next, we show that SupsetpCNDq Ø pSupsetpCNDqqω. As observed above,

we always have A ÞÑ Aω. We reduce pSupsetpCNDqqω to SupsetpCNDq. On the
instance side, map xTny to the tree S “

Ť

npt0nu Y 0n1̂ Tnq. That is, paste Tn on
the nth level of a fishbone. On the solution side undo this operation. �

We now obtain:

Proposition 4.17. NLpSupsetpM qq “ NLpSupsetpCNDqq.

Proof. Proposition 4.16 shows that NLpSupsetpM qq Ď NLpSupsetpCNDqq. In the
other direction, the proof of proposition 4.9 shows that SupsetpCNDq Ñ PasspM q‹

Maj, where Maj is the problem of finding a function g that majorises a given func-
tion f , that is, p@nq fpnq ď gpnq. While HpMajq is empty, NLpMajq “ NLpDomq is
the collection of hyperimmune degrees. It follows that

NLpSupsetpCNDqq Ď NLpPasspM qq YNLpMajq “ NLpSupsetpM qq. �

What about lowness for weak genericity? Here we can use a technique utilised
by Greenberg and Monin [20]. We dualise and define the Weihrauch problem:

‚ FractalSpillpCNDq: an instance is a closed, nowhere dense set P ; a so-
lution is a closed, nonempty, nowhere dense set Q and an infinite set I Ď ω
such that 0 P I and for all n P I, for all σ P 2ăω of length n such that
rσs XQ ‰ H, QX rσs Ę σˆP . (Recall that σˆP “ tσˆx : x P P u.)
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Lemma 4.18. SpillpCNDq Ø FractalSpillpCNDq.

Proof. SpillpCNDq Ñ FractalSpillpCNDq is immediate, via identity maps, for-
getting the set I. For the other direction, we use the construction from [20]. On
the instance side we use the identity map. On the solution side, given a nowhere
dense tree T , we define a nowhere dense tree S and an infinite set I. We start with
0 P I and xy P S. Suppose that we have declared that n P I and for every string ρ
of length at most n, whether ρ P S or not. For each string σ P S of length n, the
tree

Ť

kď|σ|pσækq̂ T is nowhere dense, so we can find some τ ě σ off that tree. We
declare that τ R S. We let the next element of I be bigger than all these τ ’s.

By construction, for every string σ P S such that |σ| P I, σˆT Ď S. Suppose that
|σ| P I, σ P S and rσs X rSs Ď σˆP . Then σ r̂T s Ď σˆP , whence rT s Ď P . �

Lemma 4.19. Suppose that Γ is a countable collection of closed, nowhere dense sets,
which is closed under the shift operator: for all σ and P P Γ, P ´σ “ tx : σˆx P P u
is also in Γ. Suppose that pQ, Iq is a FractalSpillpCNDq-solution for every P P Γ.
Then Q Ę

Ť

Γ. Thus, an oracle computing such Q is not low for Γ-genericity.

Proof. The cloure property of Γ means that for every P P Γ and every σ such
that |σ| P I and rσs X Q ‰ H, rσs X Q Ę P . This is because P ´ σ P Γ and
rσs XQ Ę σ p̂P ´ σq “ P X rσs.

We can therefore build a point in Qz
Ť

Γ by finite extension. At stage k we have
a string σk such that rσks XQ ‰ H and |σk| P I. Let Pk be the kth element of Γ in
some ω-enumeration of Γ. Since rσks X Q Ę Pk, we can find an extension σk`1 of
σk such that rσk`1s XQ ‰ H, |σk`1| P I and rσk`1s X Pk “ H. �

We now get the full result of Stephan and Yu, which is also another proof of
proposition 4.17.

Corollary 4.20.
NLpSupsetpM qq “ NLpSupsetpCNDqq “ tx : x is not low for weak 1-genericityu .

Proof. By proposition 4.16, NLpSupsetpM qq Ď NLpSupsetpCNDqq. By lemma 4.18
and lemma 4.19, applied to Γ “ ∆0

1XCND , we see that every oracle in NLpSupsetpCNDqq
is not low for weak 1-genericity. Finally, suppose that x is not low for weak 1-
genericity; say g is weakly 1-generic, M P M is x-computable and g PM ; then M
shows that x P NLpSupsetpM qq. �

4.6. A non-morphism. The implications
SupsetpM q Ñ PasspM q ‹ Dom

and
IOE Ñ PasspM q Ñ IOE ‹ IOE

leave the question open whether we can get morphism reverals, that is, if we really
needed the weakening of morphism equivalence. For computable morphisms, we
can use highness classes.

Lemma 4.21. PasspM q ‹ Dom Û SupsetpM q.

Proof. There is a high degree which is not high relative to a weakly 1-generic below
it, e.g. a minimal high degree. �

Lemma 4.22. IOE ‹ IOE Û IOE.
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Proof. We show that HpIOEq ‰ HpIOE ‹ IOEq. By lemma 4.7, y P HpIOE ‹ IOEq if
and only if there is some x ďT y in HpIOEq such that y P Hx

pIOEq. We observed
that HpIOEq “ NLpAEDiffq is the collection of oracles of hyperimmune degree.
Relativising, y P HpIOE ‹ IOEq if and only if y has hyperimmune degree relative
to a hyperimmune x ďT y. We cannot have x ”T y, in particular, y cannot
have minimal degree. On the other hand, there is a hyperimmune x of minimal
degree. �

These fine distinctions do not help if we change the question to the existence of
a definable (say, Borel) morphism. We shall get back to this question in section 8.

5. Other reducibilities

We can modify the definition of the highness class (and thus the non-lowness
class) associated with a Weihrauch problem. The most obvious one is changing
the reducibility from Turing to weaker ones. If ďr is any reducibility, implied by
Turing, then for a Weihrauch problem A we define Hr

pAq to be the collection of
oracles x such that there is some c P Asol, c ďr x which is an A-solution for every
a P Ainst such that a ďr H.

Morphisms give implications for these variants of highness and non-lowness
classes.

Lemma 5.1. Suppose that ďr is a transitive relation implied by Turing reducibility.
Let A and B be Weihrauch problems. Then:

(a) If AÑ B then NLrpAq Ď NLrpBq.
(b) NLrpA ‹Bq “ NLrpAq YNLrpBq.

As a result, if A B then NLrpAq Ď NLrpBq.

The most commonly used in this area is hyperarithmetic reducibility, equivalent
to relatively ∆1

1 reducibility. Thus NL∆1
1pAq is the collection of x P 2ω such that

there is some c P Ainst X ∆1
1pxq which has no ∆1

1 A-solution. The relationships
between problems studied above give analogous results in this context:

Theorem 5.2 (Chong, Nies, Yu [12]). An oracle is low for ∆1
1 null sets if and only

if it is ∆1
1-traceable.

Theorem 5.3 (Greenberg, Monin [20]). An oracle x is low for ∆1
1 genericity if and

only if it is low for ∆1
1 closed nowhere dense sets if and only if it is ∆1

1-dominated
and every f P ∆1

1pxq is infinitely often equal to some ∆1
1 function.

We also obtain results that we believe have not been stated yet, for example:

Proposition 5.4. There is a meagre set in ∆1
1pxq containing all ∆1

1 points if and
only if there is a function f P ∆1

1pxq which is eventually different from every ∆1
1

function.

In section 8 below we discuss another family of weak reducibilities ďr, namely
Turing modulo an ideal.

5.1. Total reductions. In the other direction, we can ask what happens when we
strengthen, rather than weaken, Turing reducibility. This has been investigated,
for example, by Miyabe [32]. We make the following definition.
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Definition 5.5. Let X Ď ωω. We say that a P X is X-tt reducible to x P 2ω if
there is a (total) computable function I : 2ω Ñ X such that a “ Ipxq. We write
a ďX-tt x.

Let A be a Weihrauch problem. We let NLtt
pAq be the collection of oracles

x P 2ω such that there is some a ďAinst-tt x which has no computable A-solution.
Sometimes this notion trivialises, for example NLtt

pDomq “ H. In other cases, we
get something meaningful. Miyabe, in particular, examines what he calles uniform
Schnorr randomness, where a uniform oracle test is an operator which gives a
Schnorr test relative to every oracle. That is, a uniform Schnorr test relative to x
is an element N P N which is N -tt-reducible to x.

To use reducibilities in this context, we need to maintain totality.
Lemma 5.6. Suppose that AÑ B by a morphism ψ such that ψinstæAinst is com-
putable. As usual, this means it is the restriction to Ainst of a partial computable
function. Then NLtt

pAq Ď NLtt
pBq.

We observe that all the morphisms we have considered so far except for one
(remark 3.8) are uniform on their instances. We thus get:
Theorem 5.7 (Miyabe [32]). An oracle x is low for uniform Schnorr tests if and
only if for some (all) order function(s) h, every f ďtt x has a computable h-trace.

Unfortunately, the usefulness of this approach is limited, because it is not the
case that NLtt

pA ‹Bq “ NLtt
pAqYNLtt

pBq. For suppose that pa, F q P pA ‹Bqinst
is tt-reducible to x, and has no computable A ‹ B-solution. Suppose further that
x R NLtt

pAq; so a has a computable A-solution c. It is not necessarily the case that
F pcq is tt-reducible to x. That is, we have a total computable function I : 2ω Ñ F
such that F “ Ipxq. The function I gives us a name for F . But F itself is not
continuous, only piecewise continuous, and the map taking y P 2ω to Ipyqpcq is not
necessarily computable. When reducing to A‹B, we often describe non-continuous
functions F , as they assume that the input is in fact a solution for the computed
A-instance.

It would be interesting to find an extension of our methods that would allow us
to characterise classes such as NLtt

pPasspM qq.

6. Addition, multiplication, and the Γ question

In this section we introduce another weakening of morphism reducibility (defini-
tion 6.9) that still implies cardinal inequality and containment of highness classes
(lemma 6.10). This weakening is based on the dual operations of sum and product
of Weihrauch problems, which have been used in both set theory and computable
analysis.

We then use the new reducibility to present results from [34] in the language of
morphisms (theorem 6.15). This result is closely related to Monin’s resolution [33]
of the Γ question which was stated in [1].

6.1. Addition and multiplication.

Definition 6.1. Let A and B be Weihrauch problems.
‚ The problem A ˆ B is defined by letting pA ˆ Bqinst “ Ainst ˆ Binst,
pA ˆ Bqsol “ Asol ˆ Bsol, and pa, bqpA ˆ Bqpâ, b̂q if and only if aAâ and
bBb̂.
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‚ The problem A ` B is defined by letting pA ` Bqinst “ Ainst ˆ Binst,
pA`Bqsol “ AsolˆBsol, and pa, bqpA`Bqpâ, b̂q if and only if aAâ or bBb̂.

Lemma 6.2. A,B Ñ AˆB.

Proof. To reduce A to A ˆ B, fix some computable b˚ P Binst. On the instance
side map a to pa, b˚q; on the solution side map pâ, b̂q to â. Of course B Ñ A ˆ B
is identical. �

Remark 6.3. AˆB Ñ A ‹B, but not always the other way round.

The following requires only running through the definitions:

Lemma 6.4.
(a) pAˆBqK “ AK `BK.
(b) pA`BqK “ AK ˆBK.

As a result:

Lemma 6.5. A`B Ñ A,B.

It is also clear that the sum and product induce well-defined and nice operations
on morphism classes, namely:

Lemma 6.6.
(a) If AÑ Â and B Ñ B̂ then AˆB Ñ Âˆ B̂ and A`B Ñ Â` B̂.
(b) pAˆBq ˆ C Ø Aˆ pB ˆ Cq, and pA`Bq ` C Ø A` pB ` Cq.
(c) AˆB Ø B ˆA and A`B Ø B `A.

Lemma 6.7. Suppose that CardpAq and CardpBq are infinite. Then:
(a) CardpAˆBq “ maxtCardpAq,CardpBqu; and
(b) CardpA`Bq “ mintCardpAq,CardpBqu.

Proof. (a): By lemma 6.2, maxtCardpAq,CardpBqu ď CardpA ˆ Bq. To show
equality, let Z be a complete solution set for A and let W be a complete solution
set for B; then Z ˆW is a complete solution set for AˆB.

(b): By lemma 6.5, CardpA` Bq ď mintCardpAq,CardpBqu. To show equality,
let R be a complete solution set for A ` B; then either the projection π0rRs is a
complete solution set for A, or π1rRs is a complete solution set for B. �

Note how the proofs of lemma 6.7 are a simplification of the proofs of propo-
sition 4.5(a) and proposition 4.6. Indeed we could deduce lemma 6.7 from these
propositions, using the reduction AˆB Ñ A ‹B.

Lemma 6.8.
(a) HpAˆBq “ HpAq XHpBq.
(b) HpA`Bq “ HpAq YHpBq.

Proof. (a): By lemma 6.2, HpA ˆ Bq Ď HpAq X HpBq. For equality, let x P

HpAq ˆ HpBq; let c P Asol and d P Bsol be both x-computable and solve every
computable A-instance and every computable B-instance, respectively. Then pc, dq
is x-computable and solves every computable pAˆBq-instance.

(b): By lemma 6.5, HpAqYHpBq Ď HpA`Bq. For equality, let x P HpA`Bq; let
pc, dq be x-computable and solve every computable pA ` Bq-instance. If c doesn’t
solve every computable A-instance, then d solves every computable B-instance. �



CARDINAL INVARIANTS, NON-LOWNESS CLASSES, AND WEIHRAUCH REDUCTIONS 27

Using duality (lemma 6.4), we get the analogous results for the non-lowness
classes: NLpAˆBq “ NLpAq YNLpBq and NLpA`Bq “ NLpAq XNLpBq.

These characterisations of cardinals and classes related to sums and products
invite a weakening of morphism reduction. A positive Boolean combination of a
problem A is a problem obtained from copies of A by repeatedly using addition and
multiplication, for example pA ` Aq ˆ pA ` pA ˆ Aqq. We can use these concepts
to define yet another weakening of morphism implication by declaring all positive
Boolean combinations of a problem to be equivalent:

Definition 6.9. Let R be the set of pairs pA,Bq of Weihrauch problems such that
Â Ñ B̂ for some positive Boolean combination Â of A and B̂ of B. We write
A ù B if pA,Bq lies in the transitive closure of R.

The analysis so far yields the following:

Lemma 6.10. Suppose that A ù B. Then:
(a) CardpAq ď CardpBq.
(b) HpBq Ď HpAq.
(c) BK ù AK.

Part (c) uses the fact that the dual of a positive Boolean combination of A is
a positive Boolean combination of AK. It follows that if A ù B then NLpAq Ď
NLpBq.

6.2. Bounded IOE problems. Bounded IOE problems were investigated in set
theory by Kamo and Osuga [38] (this followed work on other cardinals indexed by
growth rates of functions, for example [18, 23]). The associated highness classes in
computability were introduced by Brendle and Nies [11].

For a function h : ω Ñ ω we let Bddphq “ hω “
ś

n hpnq be the collection
of functions f : ω Ñ ω such that for all n, fpnq ă hpnq. We let IOEphq be the
restriction of IOE to instances and solutions in Bddphq. Throughout this section we
assume that the bounding functions h are computable.

Lemma 6.11. If h̃ ď h then IOEph̃q Ñ IOEphq.

Proof. Map an instance to itself; map a solution f to λn.mintfpnq, h̃pnq ´ 1u. �

For functions h0, h1 we use the usual join operation: ph0 ‘ h1qp2n` iq “ hipnq.
For a function h, the splitting of h into the two standard columns is the pair ph0, h1q
such that h “ h0 ‘ h1.

Lemma 6.12. IOEph0q ` IOEph1q Ñ IOEph0 ‘ h1q.

Proof. Map a problem pf0, f1q to the join f0‘ f1; map a solution g “ g0‘ g1 to its
splitting pg0, g1q. If pf0 ‘ f1qIOEg then either f0IOEg0 or f1IOEg1. �

As a result, for every h, IOEphq ù IOEph‘ hq.
For a computable real number a ą 1 we let

`apnq “ tanu.

Lemma 6.13. Let jpnq be a non-decreasing function. Then for all computable
a, b ą 1,

IOEpj ˝ `bq ú IOEpj ˝ `aq.
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Proof. Let b ą 1. Since j is non-decreasing, pj ˝ `b2q ‘ pj ˝ `b2q ď j ˝ `b, and so by
lemma 6.12 and lemma 6.11,

IOEpj ˝ `b2q ù IOEppj ˝ `b2q ‘ pj ˝ `b2qq Ñ IOEpj ˝ `bq.

Iterating, for all b ą 1 and k P N,
IOEpj ˝ `

b2k q ù IOEpj ˝ `bq.

To prove the lemma, let a, b ą 1. Without loss of generality b ă a. For some k,
b2
k

ą a; by lemma 6.11,
IOEpj ˝ `bq Ñ IOEpj ˝ `aq Ñ IOEpj ˝ `

b2k q ù IOEpj ˝ `bq. �

Corollary 6.14. For all computable a ą 1, IOEp22nq ú IOEp2`aq.

6.3. Besicovitch distance and the Γ question. Recall that for finite binary
strings σ, τ of the same length n, the normalised Hamming distance between σ
and τ is

dpσ, τq “
#tk ă n : σpkq ‰ τpkqu

n
.

For x, y P 2ω, the Besicovitch distance between x and y is
dpx, yq “ lim sup

n
dpxæn, yænq.

Brendle and Nies [11], motivated by [22], introduced the following Weihrauch prob-
lems, for each computable p P r0, 1s:

‚ Closeppq: an instance is x P 2ω; a solution is y P 2ω such that dpx, yq ă p.
‚ The dual of Closeppq is Farppq: an instance is x P 2ω; a solution is y P 2ω

such that dpx, yq ě p.
Thus, HpCloseppqq is the set of oracles that compute a point which has distance

ă p to any computable point; this is clearly nonempty only if p ą 1{2. On the other
hand, NLpCloseppqq “ HpFarppqq is the set of oracles that compute a point which
has distance at least p from any computable point. See [37] for a formalisation
using Hausdorff distance.

Hirschfeldt et al. [22] showed that for positive p ď 1{2, NLpCloseppqq consists of
all of the nonzero degrees, so again we are interested in the case p ą 1{2. Brendle
and Nies [11] examined relationships between the associated cardinals and highness
classes, and their relationship with the Cichoń diagram. Monin and Nies [35, 34]
then showed that the highness classes and cardinals associated with the problems
Closeppq and IOEp22nq are related. In morphism form, their results give:

Theorem 6.15. For all computable p P p1{2, 1q,

Farppq ú IOEp22nq.

It follows, of course, that for all computable p, q P p1{2, 1q, Farppq ú Farpqq
(and so also that Closeppq ú Closepqq). As a result HpCloseppqq “ HpClosepqqq
and HpFarppqq “ HpFarpqqq, and CardpCloseppqq “ CardpClosepqqq, which is how
the result is stated in [34] (which also investigated the amount of uniformity of
the reductions). Monin and Nies’s work was partly motiveated by the so-called Γ
question.

For x P 2ω, consider
dpx,Rq “ inf tdpx, yq : y is computableu .
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Andrews et al. [1] define
Γpdq “ 1´ sup

xPd
dpx,Rq.

So 1´Γpdq says how far we can get from computable points among the d-computable
points. The values 0, 1, and 1{2 are possible; their observation above shows that
values strictly between 1{2 and 1 are not. Andrews et al. [1] asked whether values
between 0 and 1{2 are possible. Monin showed:
Theorem 6.16 (Monin). If Γpdq ă 1{2 then Γpdq “ 0.

Theorem 6.15 gives a quick proof of Monin’s result:

Proof. Let y P d and suppose that dpy,Rq “ p ą 1{2. Let q P p1{2, 1q be com-
putable; we need to show that there is some x ďT y such that dpx,Rq ě q; this
follows from HpFarpp̃qq “ HpFarpqqq, where p̃ P p1{2, pq is computable. �

This is a-historical: In [35], Monin and Nies first showed that Closeppq and
IOEp22nq are related; they essentially proved one direction of theorem 6.15 (which
was later stated in morphism form by Kihara [24]). Monin [33] then used the list
decoding theorem, discussed below, to prove theorem 6.16; this technique was then
used by Monin and Nies in [34] to prove the other direction of theorem 6.15. We
now present the proof of theorem 6.15 in morphism form.

The main map. For a function ` : ω Ñ ω we let StrLthp`q “
ś

nt0, 1u`pnq be the
collection of functions f : ω Ñ 2ăω such that for all n, |fpnq| “ `pnq. This collection
is naturally identified with Bddp2`q.

For a function ` : ω Ñ ω we define a bijection Φ` : 2ω Ñ StrLthp`q: Let
@

J`n
D

be
the partition of ω into an increasing sequence of intervals, with |Jn| “ `pnq. Then
Φ`pxqpnq “ xæJn. The inverse of Φ` is obtained by concatenating the values of a
function in StrLthp`q. In this section, all the functions ` are computable.

For the following lemma, and below, for x, y P 2ω, we let
dpx, yq “ lim inf

n
dpxæn, yænq.

Lemma 6.17. Let a ą 1, and let x, y P 2ω; let r P r0, 1s.
(a) Suppose that dpΦ`apxqpnq,Φ`apyqpnqq ď r for infinitely many n. Then

dpx, yq ď 1{a` rp1´ 1{aq.
(b) Suppose that dpΦ`apxqpnq,Φ`apyqpnqq ď r for all but finitely many n. Then

dpx, yq ď r ` pa´ 1q.
Proof. Let xJny “

@

J`an
D

be the increasing sequence of intervals with |Jn| “ `apnq,
and let bn “ max Jn “

ř

mďn `apmq. For brevity, let xn “ xæJn “ Φ`apxqpnq and
similarly let yn “ yæJn.

Suppose that dpxn, ynq ď r. Then

dpxæbn, yæbnq ď
bn´1

bn
` r

`apnq

bn
.

For (a), we then use the fact that limn bn´1{bn “ 1{a and limn `apnq{bn “ 1´ 1{a.
For (b), as distance is invariant under finite changes, we may assume that for

all n, dpxn, ynq ď r. Let n ă ω and let m P Jn. Then

dpxæm, yæmq ď
rbn´1 ` pm´ bn´1q

m
ď
rbn´1 ` `apnq

bn´1
“ r `

`apnq

bn´1
,

and note that limn `apnq{bn´1 “ a´ 1. �
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Proof of one direction of theorem 6.15: Farppq ù IOEp22nq. This of course will work
for all p P p0, 1q. Even though d defined above is not a pseudo-metric, we define,
for q P r0, 1s, the analogous Weihrauch problem, Closepqq: an instance is x P 2ω; a
solution is y P 2ω such that dpx, yq ď q. Note that we use a non-strict inequality.
This is so that

Farppq Ø Closep1´ pq.
To see this, we observe that for strings σ and τ of the same length, dpσA, τq “
1 ´ dpσ, τq and so for x, y P 2ω, dpxA, yq “ 1 ´ dpx, yq. The morphisms take a
complement on the instance side and use the identity for solutions.

It remains, therefore, to show that Closepqq ù IOEp22nq for all computable
q P p0, 1q. Given such q, let a “ 1{q, so a ą 1. Using Φ`a on the instance side, and
Φ´1
`a

on the solution side, we get

Closepqq Ñ IOEp2`aq.

This follows from lemma 6.17(a), with r “ 0. The proof then ends by quoting
corollary 6.14. �

As discussed above, this direction was proved in [35]; the morphism Closepqq Ñ
IOEp2`1{q q was explicitly stated by Kihara [24, Prop.3.8(1)].

Infinitely often closeness. Toward the other direction, we introduce along the way
a few intermediate problems. Again ` : ω Ñ ω is a function and p P r0, 1s is a real
number. We consider the following Weihrauch problem:

‚ IOClosep`, pq: an instance is f P StrLthp`q; a solution is g P StrLthp`q such
that for infinitely many n, dpfpnq, gpnqq ď p.

Lemma 6.18. Let r P r0, 1s, let a ą 1, and let p P r0, 1s such that p ą r ` pa ´ 1q.
Then

IOClosep`a, 1´ rq Ñ Farppq.

Proof. We verify the dual: Closeppq Ñ AEFarp`a, 1 ´ rq, where g P Bddp`q is a
AEFarp`, qq-solution for f if for all but finitely many n, dpfpnq, gpnqq ě q. By
mapping, on the instance side, a function f P StrLthp`q to λn.fpnqA, we see that
AEFarp`, 1 ´ rq is equivalent to AEClosep`, rq, where as expected a solution g now
staisfies, for all but finitely many n, dpfpnq, gpnqq ă r.

To reduce Closeppq Ñ AEFarp`a, rq we use Φ`a on the instance side and Φ´1
`a

on
the solution side, appealing to lemma 6.17(b). �

Bounded traces. Onwards to tracing. We look at bounded traces. Again fix `;
the functions to be traced are still elements of StrLthp`q. As in section 2, we name
traces by effectively coding finite sets by natural numbers. We now deal with traces
that are bounded by a constant function. The Weihrauch problem is:

‚ IOTracep`, Lq: an instance is a function f P StrLthp`q. A solution is an
L-trace T which infinitely often traces f .

The list decoding theorem says: for all q P p0, 1{2q there are L “ Lpqq and ε “
εpqq such that for all m, there is a set Cm Ď t0, 1um of size 2tεmu which is sparse in
the sense that every string σ P t0, 1um is within distance ă q to at most L elements
of Cm.

We now fix q P p0, 1{2q and obtain the resulting ε and L.
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Lemma 6.19. For all ` : ω Ñ ω,

IOTraceptε`u, Lq Ñ IOClosep`, qq.

Proof. Fix xCmy as promised. Since |Cm| “ 2tεmu, we identify StrLthptε`uq with
ś

n C`pnq, which is a subset of StrLthp`q.
So now on the instance side we can take the identity function. Given a so-

lution g P StrLthp`q, let T pnq “
 

σ P C`pnq : dpσ, gpnqq ă q
(

. The properties
of Cm mean that |T pnq| ď L. If g is an IOClosep`, qq-solution for f then T is
an IOTraceptε`u, Lq-solution for f . �

Lemma 6.20. For all non-decreasing ` and L,

IOTracep`, Lq ú IOTracep`‘ `, Lq.

Proof. Similar to the proof of lemma 6.12. If ˜̀ ď ` then as in lemma 6.11,
IOTracep˜̀, Lq Ñ IOTracep`, Lq. On the instance side, map f to the function g
obtained by extending each string fpnq (of length ˜̀pnq) to a string of length `pnq,
say by adding zeros; map a solution T to λn.tσæ˜̀pnq : σ P T pnqu.

Next we see that IOTracep`0, Lq ` IOTracep`1, Lq Ñ IOTracep`0 ‘ `1, Lq. On
the instance side, we map pf, gq to f ‘ g; on the solution side, we map T to the
pair pT0, T1q, where Tipnq “ T p2n` iq. �

Corollary 6.21. For all a ą 1, ε ą 0 and L,

IOTracepL ¨ 2n, Lq ú IOTraceptε`au, Lq.

Proof. This is an elaboration on the proof of lemma 6.13, this time adding multi-
plicative constants. The proof of lemma 6.13, this time using lemma 6.20, shows
that for all computable a, b ą 1, IOTracep`a, Lq ú IOTracep`b, Lq. For any com-
putable α ą 0 and b ą 1, α`b is dominated by `a for all a ą b and dominates `a for
all a ă b. Since we only need to correctly trace infinitely often, the morphisms can
ignore finitely many “wrong” n’s. �

The last step is:

Lemma 6.22. For all ` and L, IOEp2`q ù IOTracepL ¨ `, Lq.

Proof. We prove that
ř

L IOEp2`q Ñ IOTracepL ¨ `, Lq. We think of Bddp2`q as
StrLthp`q. Map f P StrLthp`q to the function mapping n to the conctenation of
fpnq with itself L times. Now let T be a trace; we may assume each T pnq contains
exactly L elements. for i ă L let gipnq be the ith block of the ith element of T pnq.
For some i, for infinitely many n, fpσq̂ ¨ ¨ ¨ f̂pσq equals the ith element of T pnq; for
that i, fIOEgi. �

Proof of theorem 6.15. Let p P p1{2, 1q; it remains to show that IOEp22nq ù

Farppq. Pick some r P p1{2, pq; pick some a ą 1 such that a ´ 1 ă p ´ r. So
p ą r ` pa´ 1q. Let q “ 1´ r and let ε “ εpqq and L “ Lpqq be obtained from the
list decoding theorem.

By lemma 6.22, IOEp22nq ù IOTracepL ¨ 2n, Lq. By corollary 6.21, IOTracepL ¨
2n, Lq ù IOTraceptε`au, Lq. By lemma 6.19, IOTraceptε`au, Lq Ñ IOClosep`a, qq.
By lemma 6.18, IOClosep`a, qq Ñ Farppq. �
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7. On Kurtz

The σ-ideal E generated by compact null sets was studied by Bartozysnki and
Shelah, who characterised, among others, the cardinals addpE q and cofpE q. In
computability, the associated notion of randomness / genericity is that of Kurtz
randomness: avoiding all null, effectively closed subsets of Cantor space. The
relevant Weihrauch problem is SupsetpE q: an instance is a null Σ0

2 set P ; a solution
is a null Σ0

2 set Q such that P Ď Q.
Our goal in this section is:

Theorem 7.1. SupsetpE q SupsetpM q.
As a result we get:

Theorem 7.2 (Bartoszynski, Shelah [5]). addpE q “ addpM q and cofpE q “
cofpM q.

Together with Corollary 4.15, we obtain:
Theorem 7.3. A degree is low for Σ0

2 null sets if and only if it is hyperimmune-free
and not DNR.
7.1. Lowness for Kurtz tests and randomness. As with the analogus problem
SupsetpM q, in computability, the notions which have been studied are not lowness
for Σ0

2 null sets, but rather, lowness for closed null sets (lowness for Kurtz test),
and lowness for Kurtz randomness: computing a closed, null set Q which contains
a Kurtz random point. The method we used above of proving equivalence of all
three notions can be modified to the Kurtz context as well.

Let KN be the collection of closed, null sets. First, we obtain the analogue of
proposition 4.16:
Proposition 7.4. SupsetpE q Ñ SupsetpKN q.

The proof is identical. We then define the problem FractalSpillpKN q as
above.
Proposition 7.5. SpillpKN q Ø FractalSpillpKN q.
Proof. The construction is identical to that proving lemma 4.18, except that having
determined that n P I, for σ P S of length n, we observe that under the assumption
that rT s is null, the tree

Ť

kď|σ|pσækq̂ T is null as well, and so we can find a clopen
set D Ď rσs disjoint from that tree such that λpD|σq ě 1 ´ 2´n; we remove D
from S. The next element of I is bigger than the granularity of all such D’s. �

The rest is identical: if Γ is a countable collection of closed, null sets, closed under
the shift operator, and pQ, Iq is a FractalSpillpKN q-solution for all P P Γ, then
we build a point in Q avoiding all P P Γ. We thus obtain:
Theorem 7.6 (Greenberg, J. Miller [19]). The following are equivalent for x P 2ω:

(1) x is low for Kurtz tests.
(2) x is low for Kurtz randomness.
(3) x is hyperimmune-free and not DNR.

We also obtain the analogous result in the ∆1
1 context:

Theorem 7.7 (Kjos-Hanssen, Nies, Stephan, Yu [25]). An oracle is low for ∆1
1

Kurtz randomness if and only if it is ∆1
1-dominated and every f P ∆1

1pxq is infinitely
often equal to some ∆1

1 function.
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7.2. Revising the problem. Our goal, as stated, is theorem 7.1. It turns out,
though, that the bulk of our analysis concerns the following Weihrauch problem:

‚ SupsetpE ,N q: an instance is a null Σ0
2 set P ; a solution is a null set R

such that P Ď R.
The identity map in both directions shows that SupsetpE ,N q Ñ SupsetpE q.

We will show:

Proposition 7.8. SupsetpE ,N q IOE.

As a result, we obtain:

Theorem 7.9 (Greenberg, J. Miller [19]). Let x P 2ω. There is an x-computable
Σ0

2 null set not contained in any Schnorr null set if and only if x is high or DNR.

Before we prove proposition 7.8, we show how it implies the main theorem. We
use the following two reductions.

Proposition 7.10. Dom Ñ SupsetpE q.

Proof. On the instance side, given f P ωω, we assume that f is strictly increasing,
and map it to

Qf “ tx P 2ω : p@nqxpfpnqq “ 0u .

On the solution side, we are given a sequence xTny of closed null sets. Let hpn, kq
be the least s such that every string σ of length k has an extension of length s which
is off Tn. Let gp0q “ 0 and gpn` 1q “ hpgpnq, gpnqq; we map xTny to n ÞÑ gp2nq.

To show that this works, suppose that f P ωω, and that for some xTny, the
function n ÞÑ gp2nq does not dominate f . We claim that there are infinitely many n
for which for some m, fpnq ď gpmq ď gpm` 1q ă fpn` 1q. Otherwise, for some k,
for large enough n, fpnq ď gpn ` kq ď gp2nq. We use this to construct a point
x P Qf z

Ť

nrTns. As usual, we assume that xTny is nested, so it suffices to avoid
infinitely many trees Tn. To do this, suppose that we have already determined
some finite σ ă x such that rσs X Qf ‰ H of length some fpnq such that fpnq ď
gpmq ď gpm` 1q ă fpn` 1q. Then for every extension τ of σ of length gpm` 1q,
rτ s XQf ‰ H. On the other hand, we can find such an extension of σ which is off
Tgpmq. �

Remark 7.11. The proof actually shows that Dom Ñ SupsetpE ,M q.

Proposition 7.12. SupsetpE q Ñ SupsetpE ,N q ‹ Dom.

Proof. This resembles the proof of proposition 4.9, with a dose of compactness.
On the instance side, map a Σ0

2 null set P “
Ť

n Pn to the pair pP, F q where
for a null set V (given as

Ş

m Vm) such that P Ď V , we let F pV q be the function
h P ωω defined as follows: hpn,mq is the least s such that Pn,s Ď Vm,s. (The closed
sets Pn are given as trees Tn, and we let Pn,s be the clopen set determined by the
sth level of T ; we similarly treat each Vm.) By compactness, h is well-defined, and
in fact is uniformly computable given P and V .

On the solution side, we map a pair pV, gq to the Σ0
2 null set

Ť

n

Ş

m Vm,gpn,mq.
To show that this works: if gpn,´q majorises hpn,´q (where h “ F pV q) then
Pn Ď

Ş

m Vm,gpn,mq; as usual we may assume that Pn Ď Pn`1. �
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Proof of theorem 7.1, assuming proposition 7.8. In one direction, we first observe
that PasspM q SupsetpE q; this is because

PasspM q IOE SupsetpE ,M q Ñ SupsetpE q.

Together with proposition 7.10 (and using the fact that A C,B C implies
A ‹B C) we get

SupsetpM q Ñ PasspM q ‹ Dom SupsetpE q.

In the other direction, if SupsetpE ,N q Ñ PasspM q‹k, then using proposi-
tion 7.12,

SupsetpE q Ñ PasspM q‹k ‹ Dom Ñ SupsetpM q‹pk`1q. �

7.3. Analysis of SupsetpE ,N q. We work toward a proof of proposition 7.8.

Proposition 7.13. SupsetpE ,N q Ñ IOE.

Proof. On the instance side, we are given a Σ0
2 null set P “

Ť

Pn. We map it
to a sequence xCny of (codes of) clopen sets such that for all n, Pn Ď Cn and
λpCnq “ 2´n. (For each n, find a late enough spnq and let Cn “ Tn,spnq.)

On the solution side, we are given a sequence xDny of clopen sets, and we may
assume that for all n, λpDnq “ 2´n. We map this sequence to the null set

Ş

k Uk
given by Uk “

Ť

nąkDn. The measure of each Uk is computable from xDny,
uniformly. If xPny maps to xCny and for infinitely many n, Dn “ Cn then for
each n and k, Pn Ď Uk. �

Proposition 7.14. Esc Ñ SupsetpE ,N q.

Proof. The following argument resembles the proof of [31, Thm.2.2]; the argument
of the corresponding cardinal inequality in [4] (Lemma 2.6.13) is non-constructive.

As above, given f P ωω, assuming it is increasing, define

Qf “ tx P 2ω : p@nqxpfpnqq “ 0u.

The map f ÞÑ Qf is our map on instances.
Toward defining our map on solutions, let, for k ă ω, qk “ p3{4q2´2k. What we

use11 is:
8
ÿ

k“0
qk “ 1,

and
8
ÿ

k“0
qk2k ă 2.

We are given a null set V “
Ş

m Vm. As mentioned above, by [15, Prop.7.1.6], we
assume that for each m, λpVmq “ 2´m. As above we use the clopen approximations
Qfs and Vm,s, determined by sets of strings of length s.

For each m ě 1, define a function hm : rm´ 1, ωq Ñ ω by letting, for n ě m´ 1,

hmpnq “ pµsqλpVm,s|Vmq ě
ÿ

kďn

qk´pm´1q.

11Also of course we use the fact that xqky is computable and consists of binary rationals. Below
we will also assume that fpkq is at least the granularity of qk, i.e. fpkq ě 2k ` 2.
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On the solution side, we map V to the function
hpnq “ max

mďn`1
hmpnq.

Thus for all m ě 1 and n ě m´ 1, hmpnq ď hpnq.
To show that this works, we need to show that if Qf Ď V then h escapes f .
The rough idea is that if h is majorised by f beyond m´ 1, then Vm is spending

its measure before Qf has thinned itself (by committing to the bit at position fpnq
being 0). Since the later thinnings will happen independently of this preemptively
spent measure, most of this measure is wasted, and so Vm will not have enough
measure to cover Qf .

The following claim is the combinatorial heart of this proof.

Claim 7.14.1. Fix m ě 1 and d ě m ´ 1. Suppose that for all n P rm ´ 1, ds,
hmpnq ď fpnq. Then Qffpdq Ę Vm,fpdq.

The claim gives the proposition. To see this, suppose that Qf Ď V . Then
Qf Ă Vm for every m. By compactness, for every m there is some d such that
Qf Ă Vm,fpdq. Because every string of length fpdq on (the tree defining) Qf is
extendible, we in fact have Qffpdq Ď Vm,fpdq. The claim then ensures that for everym
there is some n ě m´ 1 such that hmpnq ą fpnq. So hpnq ě hmpnq ą fpnq.

It thus remains to prove the claim.
By definition of hm, and under the assumption of the claim, for all n P rm´1, ds

we have

λpVm,fpnq|Vmq ě

n´pm´1q
ÿ

k“0
qk.

By removing short strings from the set of strings defining Vm, but leaving their
extensions, we may, without decreasing Vm,fpdq, assume that we have equality:

λpVm,fpnq|Vmq “

n´pm´1q
ÿ

k“0
qk.

Define Um´1 “ Vm,fpm´1q and for n P rm, ds let
Un “ Vm,fpnq ´ Vm,fpn´1q.

So for all n ď d, λpUnq “ qn´pm´1qλpVmq “ qn´pm´1q2´m.
Fix n P rm´ 1, ds. The set Un can only have “opinions” about the bits fprq for

r ă n, while those bits fprq with r P rn, dq are independent of Un. So

λ
`

UnXQ
f
fpdq

˘

“ λ
`

UnXQ
f
fpnq

˘

¨2´pd´nq ď λpUnq ¨2´pd´nq “ qn´pm´1q2´m2´pd´nq.

It follows that

λ
`

Vm,fpdq XQ
f
fpdq

˘

“

d
ÿ

n“m´1
λ
`

Un XQ
f
fpdq

˘

ď

2´d
d
ÿ

n“m´1
qn´pm´1q2n´m ă 2´d ¨ 1

2

8
ÿ

k“0
qk2k ă 2´d,

whereas λpQffpdqq “ 2´d. Hence it is impossible that Qffpdq Ď Vm,fpdq. �
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Proposition 7.15. IOE Ñ SupsetpE ,N q ‹ Esc.

Proof. We use the “Svelte tree” machinery from [19]. Let 0 “ n0 ă n1 ă n2 . . . be
a computable increasing sequence such that nk ´ nk´1 “ 22k. Fix a computable
bijection I : ωăω Ñ ω. For f P ωω we define

P f “ tx P 2ω : p@kqxpIpfænkqq “ 0u .

Let k ă ω. A finite tree T Ă ωăω is k-svelte if there are finite sets of sequences
xSk`1, Sk`2, Sk`3, . . .y such that:

‚ for all m ě k ` 1, Sm Ď T and every σ P Sm has length nm;
‚ |Sm| ď 2m;
‚ Every leaf of T extends a sequence in

Ť

měk`1 Sm.
In fact, we can get |Sm| ď 2m´pk`1q, but we don’t need this. The main combinato-
rial result of [19] is:

Theorem 7.16 (Thm. 3.3 of [19]). Let C Ă 2ω be clopen, and suppose that λpCq ď
2´pk`1q. Then there is a k-Svelte tree T such that for all f P ωω, if P f Ă C then f
extends some leaf of T . The tree T can be obtained computably from C.

The map on instances is as follows. We map f P ωω to the pair pP f , F q, where
for a null set V “

Ş

k Vk such that P f Ď V , F pV q is the function h mapping k ă ω
to a stage s such that P fs Ď Vk,s.

On the solution side, we map a pair pV, ĥq P N ˆ ωω to a point g P ωω defined
as follows. For each k ě 1 we compute a pk ´ 1q-Svelte tree Tk such that for every
f̃ P ωω, if Qf̃ Ă Vk,ĥpkq then f̃ extends a leaf of Tk. Let Skk , Skk`1, S

k
k`2, . . . witness

that Tk is pk ´ 1q-svelte. For each m ě 1 let Sm “
Ť

kďm S
k
m. So |Sm| ď 22m.

Since Im “ rnm´1, nmq has size 22m, we can pick injectively, for each σ P Sm, a
value l “ lpσq P Im. We define g so that gplq “ σplq. So we have arranged that for
every k, for every leaf τ of Tk, τ agrees with g on some value l ě nk´1.

Suppose that P f Ď V and that ĥpkq ě hpkq. Then P f Ă Vk,ĥpkq. It follows
that f extends some leaf of Tk, and therefore that g agrees with f at some value
l ě nk´1. Therefore, if ĥ escapes h, then fIOEg. �

Proof of proposition 7.8. By proposition 7.13, SupsetpE ,N q Ñ IOE. In the other
direction, we have IOE Ñ SupsetpE ,N q‹Esc and Esc Ñ SupsetpE ,N q, so IOE Ñ
SupsetpE ,N q‹2. �

7.4. A self-contained argument. The drawback of the proof given above of
IOE SupsetpE ,N q is its reliance on the Svelte tree technology of [19], which
takes some work. The original argument is essentially due to Baroszynski and She-
lah. We use their argument (simplified at a few places) to give a self-contained
proof of this implication. This proof uses techniques which may be of independent
interest. We start with a fact which we will use twice. We define the Weihrauch
problem:

‚ Esc Dom: an instance is a function f P ωω such that fpnq ą n; a solution is
a non-decreasing function g P ωω, which escapes f but does not dominate
it (and gpnq ě n).

Lemma 7.17 (With Harrison-Trainor). Esc Ø Esc Dom.
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Proof. To reduce Esc Ñ Esc Dom, we map an instance f to n ÞÑ maxtfpnq, n`1u,
and use the identity on the solutions.

We reduce Esc Dom to Esc. We first define h by hp0q “ fp0q and hpn ` 1q “
maxtfpn ` 1q, hpnq ` 1u; the relevant point is that h is strictly increasing and
dominates f . We map f to f̃ defined by f̃p0q “ hp1q and f̃pn` 1q “ hpf̃pnq ` 1q.
Note that f̃ is strictly increasing, and that f̃pnq ě fpn` 1q.

On the solution side, we map a function g, which we assume is strictly increasing,
to the “step function” g̃ which on the interval pgpnqp0q, gpn`1qp0qs returns gpn`1qp0q.
So for k “ gpn`1qp0q we have g̃pkq “ k ă fpkq, and so g̃ does not dominate f .

To show g̃ escapes f , we show that if g̃ is dominated by f , then g is dominated
by f̃ . For typographical clarity, let an “ gpnqp0q. Suppose that g̃pkq ď fpkq for all
k ą am. In particular, for n ě m,

gpanq “ an`1 “ g̃pan ` 1q ď fpan ` 1q ď f̃panq.

Now suppose that n ě m and k P pan, an`1q. Then

gpkq ď gpan`1q “ an`2 “ g̃pan`1 ` 1q ď fpan`1 ` 1q ď
hpan`1 ` 1q “ hpgpanq ` 1q ď hpf̃panq ` 1q “ f̃pan ` 1q ď f̃pkq,

using the fact that gpanq ď f̃panq and that f̃ and h are increasing. �

Remark 7.18. The proof can be modifed to produce a strictly increasing g̃ which
does not dominate n ÞÑ n2.

On our way, we define a strong variant of covering by a null set. For a set
A Ă ω and a clopen set C Ď 2ω, we say that the support of C is contained in A
(supppCq Ď A) if membership in C is determined by examining the locations in A.
Formally, C is the union of clopen sets rps where p P 2A and rps “ tx P 2ω : p ă xu,
where we extend the symbol ă to indicate extension of functions, not necessarily
initial segment extension. We define the Weihrauch problem

‚ IndepCover: an instance is a closed, null set P Ă 2ω; a solution is a
partition xIny of ω into intervals and a sequence xCny of clopen sets such
that λpCnq ď 2´n, supppCnq Ď In and for infinitely many n, P Ď Cn.

Lemma 7.19 (Bartozysnki,Shelah [5]). IndepCover Ñ SupsetpE ,N q ‹ Esc.

Proof. By lemma 7.17, we reduce IndepCover to SupsetpE ,N q ‹ Esc Dom.
Recall the notation σ ñ x and σ ñ X (see the proof of proposition 4.9). For

a set P let P˚ “
Ť

σP2ăω σ ñ P . If P is closed null then P˚ is null Σ0
2. We map

such a set P to the pair pP˚, F q, where F : N Ñ ωω is defined as follows. We are
given a null set V “

Ş

Vm, and we assume that P˚ Ď V . For n ă ω let Pn “
Ť

σP2n σ ñ P . It is closed and null. First define hpn,mq to be the least s ą n such
that Pns Ď Vm,s.12 Then define inductively fp0q “ 0 and fpn` 1q “ hpfpnq, fpnqq.
We define F pV q “ f .

For a null set V “
Ş

Vm, and m ă s ă ω we let

Qm,s “
ď

!

rps : p P 2rm,sq & rps Ď Vm,s

)

.

This is clopen, λpQm,sq ď λpVmq ď 2´m and supppQm,sq Ď rm, sq.

12Recall that the granularity of P n
s and Vm,s is at most s.
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On the solution side, we are given a null set V “
Ş

Vm and a non-decreasing
function g P ωω such that gpnq ě n. Define In “ pgpnq, gpn` 1qs and

Cn “
ď

kPIn

Qk,gpn`1q.

Then supppCnq Ď In and

λpCnq ď
ÿ

kPIn

λpQk,gpn`1qq ď
ÿ

kPIn

2´k ă 2´gpnq ď 2´n.

We map pV, gq to xIn, Cny.
To show that this works, suppose that P˚ Ď V , let f “ F pV q (where P maps to

pP˚, F q), and suppose that g is non-decreasing, escapes f but does not dominate f .
Then there are infinitely many n for which

gpnq ă fpnq ă fpn` 1q ď gpn` 1q.

Fix such n; we claim that P Ď Cn. Now P
fpnq
fpn`1q Ď Vfpnq,fpn`1q. We claim that

P Ď Qfpnq,fpn`1q. Indeed, Pfpn`1q Ď Qfpnq,fpn`1q. For let ρ P 2fpn`1q such that
rρs Ď Pfpn`1q. Let p “ ρærfpnq, fpn` 1qq. For all σ P 2fpnq, rσ p̂s “ rσ ñ ρs Ď
Vfpnq,fpn`1q. Thus rps Ď Vfpnq,fpn`1q and so rps Ď Qfpnq,fpn`1q.

We then observe that as fpn` 1q ď gpn` 1q, Qfpnq,fpn`1q Ď Qfpnq,gpn`1q; this is
because Vfpnq,fpn`1q Ď Vfpnq,gpn`1q. Since gpnq ă fpnq, we see that Qfpnq,gpn`1q Ď
Cn. �

Remark 7.20. In lemma 7.17, by increasing values, we could require the range
of g, and hence of g̃, to be a subset of any given infinite subset X of ω. That
is, Esc Ø Esc DomCoarse, where Esc DomCoarse is the Weihrauch problem whose
instances are pairs pf,Xq where f P ωω, f ą id, and X Ď ω is infinite; a solution is
a non-decreasing function g which escapes f , does not dominate f , and range g Ď X.

Applying this to the proof of the previous proposition, we see that
IndepCoverCoarse Ñ SupsetpE ,N q ‹ Esc,

where IndepCoverCoarse is the problem whose instances are pairs pP,Xq where
P is closed null and X Ď ω is infinite, and the solutions consist of a partition
xIny of ω into intervals and a sequence xCny of clopen sets such that λpCnq ď 2´n,
supppCnq Ď In, for infinitely many n, P Ď Cn, and the endpoints of the intervals In
are in X.

Another way to say this is that the instances are pairs pP,
@

Ĩn
D

q where the latter
is a partition of ω into intervals, and for a solution xIn, Cny, xIny is coarser than
@

Ĩn
D

: every Ik is a union of Ĩn’s.

We need one last Weihrauch problem:
‚ GapEsc: an instance is a function f P ωω; a solution is a non-decreasing

function g P ωω such that for infinitely many n, gpn` 1q ą fpgpnqq.

Lemma 7.21. Esc Ø GapEsc.

Proof. To reduce Esc to GapEsc, we map an instance f to itself. We map a solu-
tion g to a function h satisfying hpgpnqq ě gpn` 1q for all n.

In the other direction, naively, it would seem that we could only reduce GapEsc`
GapEsc to Esc; there are two cases, depending on whether the escaping function
also dominates or not. We can eliminate the dominating case using lemma 7.17:
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we reduce GapEsc to Esc Dom. On the instance side, we map a function f , which
we may assume is increasing, to f̃pnq “ f pnqp0q. On the solution side we use the
identity map. Suppose that f̃ Esc Dom g. For infinitely many n, gpnq ă f̃pnq ă
f̃pn` 1q ă gpn` 1q. Then

gpn` 1q ą f̃pn` 1q “ fpf̃pnqq ą fpgpnqq. �

Lemma 7.22. There is a computable function U : ω Ñ ω such that for every se-
quence xIkykďm of consecutive (nonempty) intervals, for every clopen set C such
that λpCq ď 1{2, there are sets Sk Ď Ik (computably obtained from xIky and C)
such that |Sk| ď Upmin Ikq with the property that for every partial choice function
c : r0,ms Ñ I “

Ť

kďm Ik such that cpkq P Ik for all k P dom c, if
Ec “ tx P 2ω : p@k P dom cq xpcpkqq “ 0u Ď C,

then there is some k P dom c such that cpkq P Sk.

The point is that |Sk| only depends on min Ik, while |Ik| may be large.

Proof. Fix a computable decreasing sequence α0 ą α1 ą α2 ą ¨ ¨ ¨ ą 1 of rational
numbers such that

ś

k αk ă 2. We then let
Upmq “ 2m ¨

P

´ log2p1´ α´1
m q

T

.

Suppose that xIky and C are given as in the lemma. We may assume that
min I0 “ 0, as U is increasing. Let k ď m; let nk “ min Ik. Let σ P 2nk such that
C X rσs ‰ H. We then let

Sk,σ “
 

` P Ik : @q P 2Ik
`

qp`q “ 0 Ñ λpC|σ q̂q ą αkλpC|σq
˘(

,

and let
Sk “

ď

tSσ,k : σ P 2nk & C X rσs ‰ Hu .

We first verify that for each σ, |Sk,σ| ď ´ log2p1 ´ α´1
k q. It then follows that

|Sk| ď Upnkq, as nk ě k and so αnk ď αk. Fix σ such that C X rσs ‰ H; since C is
clopen, λpC|σq ą 0. For brevity, in this argument let S “ Sk,σ. For every ` ă ω let
D` “ tx P 2ω : xp`q “ 0u. Note that λp

Ť

`PS D`q “ 1´ 2´|S|. It follows that there
are at least p1 ´ 2´|S|q2|Ik| many q P 2Ik such that λpC|σ q̂q ą αkλpC|σq, that is,
λpC X rqs|σq ě 2´|Ik|αkλpC|σq. Taking the union of C X rqs for all such q, we see
that

λpC|σq ě p1´ 2´|S|q ¨ 2|Ik| ¨ 2´|Ik| ¨ αk ¨ λpC|σq
and since λpC|σq ą 0, we get p1´ 2´|S|qαk ď 1, and so the desired bound on |S|.

Now we are given a partial choice function c as in the statement of the lemma.
Suppose that for all k P dom c, cpkq R Sk. We show that Ec Ę C.

We define recursively a sequence of strings σk P 2nk , with the property that

λpC|σkq ď
1
2
ź

iăk

αi.

We start of course with σ0 “ xy, with the measure bound given by the assumption
that λpCq ď 1{2. Given σk for some k ď m, there are three cases. If k R dom c then
we let qk be any q P 2Ik satisfying λpC|σk q̂q ď λpC|σkq. Otherwise, if CXrσks “ H
then we let qk be any q P 2Ik such that qpcpkqq “ 0. Otherwise, since cpkq R Sk,σk ,
and C X rσks ‰ H, we choose qk to be some q P 2Ik such that qpcpkqq “ 0 and
λpC|σk q̂kq ď αkλpC|σkq. In all three cases we let σk`1 “ σk q̂k, and the measure
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bound holds. Then λpC|σm`1q ď p1{2q
ś

iďm αi ă 1, so rσm`1s witnesses that
Ec Ę C as required. �

Finally, the following proposition finishes the proof of IOE SupsetpE ,N q;
with our other results, we get
IOE Ñ Esc ‹ IndepCoverCoarse Ñ Esc ‹ SupsetpE ,N q ‹ Esc Ñ SupsetpE ,N q‹3.

Proposition 7.23. IOE Ñ Esc ‹ IndepCoverCoarse.

Proof. We show that IOE Ñ GapEsc ‹ IndepCoverCoarse. We use the computable
function U given by lemma 7.22. Let hpmq “ m`mUpmq. Given a function f P ωω
define bf : ω Ñ ω by letting bf pmq “ max range fæphpm`2qpmqq.

Given a non-decreasing function g, we assume that gp0q ě 2, and define in-
tervals Jk “ r`k, `k`1q and Ik “ rmk,mk`1q (both partitioning ω) as follows:
|Jk| “ Upmkq; |Ik| “ gpkq|Jk|. That is, m0 “ `0 “ 0; `k`1 “ `k ` Upmkq and
mk`1 “ mk ` gpkqUpmkq. Note that `k ď mk. Now by induction on k we can
see that mk`1 ď hpk`1qpgpkqq, and so that `k`2 ď hpk`2qpgpkqq. It follows that if
gpn ` 1q ą bf pgpnqq then range fæJn`1 Ď gpn ` 1q. Thus, if bf GapEsc g, then for
infinitely many k we have fæJk P gpkqJk . Identifying In with gpnqJn , and writ-
ing fpnq “ fæJn, we see that for infinitely many n, fpnq P In. It follows that
P f “ tx P 2ω : p@nq fpnq P In Ñ xpfpnqq “ 0u is null.

Thus, on the solution side, we map f P ωω to the pair pbf , F q, where F pgq “
pP f , xInyq when bf GapEsc g.

Keeping with g and xIny, suppose that xKn, Cny P IndepCoversol and that xKny

is coarser than xIny. Fix m ą 0; say Km “ Ia Y Ia`1 Y ¨ ¨ ¨ Y Ib. We define the
sets Sk Ď Ik for k P ra, bs as given by lemma 7.22 where we take C “ Cm. Again
thinking of Ik as gpkqJk , we think of every element of Sk as a function from Jk
to gpkq. As |Sk| ď Upmin Ikq “ Upmkq “ |Jk|, we see that we can find a function
pk P gpkq

Jk which agrees with each element of Sk on some input.
On the solution side, we map pg, xKn, Cnyq to the concatenation of the pk’s, that

is to p P ωω defined by pæJk “ pk.
To see that this works, suppose that indeed bf GapEsc g and, using the nota-

tion above, that xKm, Cmy solves the problem pP f , xInyq. For infinitely many m,
P f Ă Cm. Define c to be the partial function which is the restriction of f to
tk : fpkq P Iku. For m such that P f Ă Cm, if Km “ IaY ¨ ¨ ¨ Y Ib, let cm “ cæra, bs.
The set Ecm is the collection of q P 2Km which are compatible with elements of
P f ; since supppCmq Ď Km, we see that Ecm Ď Cm. It follows that there is some
k P ra, bs such that fpkq P Sk, and so that fæJk agrees with pk on some input. As
this happens for infinitely many m, we see that f IOE p, as required. �

8. Forcing

The most common way to prove the consistency of a strict inequality
CardpAq ă CardpBq

is to start with a model of CH, and iterate (ω2 many steps) a notion of forcing P
that adds a real in NLV pBq but no real in NLV pAq. That is, it adds some b P Binst

which is solved by no b̂ P V ; but every a P AinstXV
P is solved by some â P V . The

standard argument is as follows. Let xPαy be the iteration. In V Pω2 , CardpAq “ ℵ1,
because V X Asol solves all A-instances in Ainst X V Pω2 ; no elements of NLV pAq
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were added during the iteration. On the other hand, in V Pω2 , CardpBq “ ℵ2. For
suppose that F Ă Bsol, F P VPω2

, and |F | ă ℵ2. Then there will be some α ă ω2
such that F Ď V Pα . At step α`1, then, we add a B-instance which has no solution
in F .

Remark 8.1. There are several reasons for using represented spaces (definition 3.1).
Here we see another one: the interpretation of a name may change between different
models of set theory. Take for example the collection of names M for Σ0

2 meagre
sets. If V Ă W are transitive models of set theory, then M is absolute: M V “

MW X V . However, likely for most y P M , the meagre set MW pyq named by y
in W is strictly larger than the meagre set MV pyq named by y in V . When thinking
of a problem such as PasspM q, we really mean the problem induced on the names
rather than the meagre sets themselves: a PasspM q solution (in W ) for all instances
in V (a Cohen generic over V ) is a y P ωω such that for all x P M V , y R MW pxq,
rather than y RMV pxq (which trivially holds for all y PW zV ). It is also important
that relations such as PasspM q and SupsetpM q are absolute.

The relationship between computability and set theory here is imprecise. In
many cases, the notion of forcing P itself is a represented space, and we can force
with the computable elements of P, and hope to get a real in NLpBqzNLpAq. In
these cases, the failure of the implication B Ñ A is witnessed at the computable
level as well.

8.1. Basic examples. Cohen forcing is unusual in that it is the unique countable
notion of forcing; all conditions are computable. A Cohen real does not make
the collection of reals in the ground model meagre. And indeed, the argument is
effective.

Lemma 8.2 (Rupprecht [41]). A sufficiently Cohen generic real is not weakly meagre
engulfing.

So a Cohen generic gives an oracle in NLpCapturepM qqzNLpPasspM qq, showing
that CapturepM q Û PasspM q, effectively.

Proof. Suppose that p is a condition that forces that xTny is a sequence of uniformly
partial computable functions from 2ω to 2ω, and that for each n, Tnpgq is a nowhere
dense tree. Thus, for each n and σ P 2ăω, densely below p we can find conditions q
and extensions τ ě σ such that Tnpqq declares that τ R Tnpgq. Further, such
pairs pq, τq can be found effectively. We can thus construct a computable point
x P 2ω by initial segments; at step pr, nq, for some condition r extending p, we find
q extending r and τ extending the initial segment of x we have so far such that
τ R Tnprq. �

Remark 8.3. The argument above is identical to the argument showing that the
ground model reals in a Cohen extension are not meagre. In that argument we
need to first prove a continuous reading of names, which tells us that every real in
the extension is the image of the generic by a continuous function with code in the
ground model. On the other hand, unlike the computability proof, in set theory we
don’t need to worry about how effective is the search for pq, τq.

Proving that an ω2-iteration of Cohen over a model of CH gives a model of
nonpM q ă covpM q requires an iteration theorem, which states that reals in
NLV pPasspM qq are not added at limit steps of the iteration. In the Cohen case this
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is not too difficult, but with notions of forcing that are proper rather than c.c.c.,
such an iteration theorem may take some work. As we see, the corresponding
argument in computability theory does not require such a result.

Figure 4 gives the dividing line for Cohen forcing in the Cichoń diagram.

SpillpN q SpillpM q

CapturepN q PasspM q

Esc Dom

CapturepM q PasspN q

SupsetpN qSupsetpM q

Figure 4. Cohen forcing and the Cichoń diagram. Cohen forcing
adds a real in NLpAq for all problems A on the right of the dividing
line, but not for problems on its left. Similarly, an iteration of
Cohen forcing will make the associated cardinals on the right large,
and keep the cardinals on the left small.

Remark 8.4. In the Cohen extension, the ground model reals are null. This is
an immediate corollary of the morphism CapturepM q Ñ PasspN q, as it gives
NLV pCapturepM qq Ď NLV pPasspN qq.

The next simplest notion of forcing is perhaps random real forcing, one ver-
sion of which is forcing with closed sets of positive measure. The conditions with
computable names are the Π0

1 classes with positive measure. Forcing with these
does not give a generic for full random forcing; a sufficiently generic real will be
weakly 2-random, but not 2-random. We do get a Schnorr random, i.e., an oracle
in NLpCapturepN qq. A generic will also be computably dominated and will not be
weakly null engulfing (Rupprecht [41, VI.35], based on the argument by Kunen [29]
showing that in the random model, the ground model reals are not null.) This gives
the diagram in fig. 5.

8.2. Two step iterations. Before we proceed, we make a side remark on two step
iterations.

Lemma 8.5. Let A and B be absolute Weihrauch problems, and let V Ď W Ď U
be transitive models of set theory. If x P W X HV

pAq and y P U X HW
pBq, then

px, yq P HV
pA ‹Bq.

Proof. Let pa, F q be an instance of A ‹ B. Then aAx. Since F is coded in V ,
F pxq PW , and so F pxqB y. �

So from the morphism PasspM q Ñ IOE ‹ IOE we see that if we add an IOE
function g relative to V , and then an IOE function relative to V rgs, then in the
second extension there must be a real Cohen over V .
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SpillpN q SpillpM q

CapturepN q PasspM q

Esc Dom

CapturepM q PasspN q

SupsetpN qSupsetpM q

Figure 5. Random forcing and the Cichoń diagram; the forcing
adds solutions (and increases cardinals) for problems above the
dividing line.

Zapletal [48] showed that the iteration was necessary: he found a notion of forcing
that adds an IOE function without adding a Cohen real. His notion of forcing shows
that PasspM q Û IOE, even when we consider non-computable definable morphisms,
say Borel morphisms, for which the delicate argument of lemma 4.22 does not apply.

8.3. Working relative to ideals. Sometimes, however, computability does not
reveal the full picture. The most familiar example is the morphism

CapturepM q Ñ Dom,

which cannot be reversed. However, NLpCapturepM qq “ NLpDomq: in the unusual
direction, every hyperimmune degree computes a weakly 1-generic. This relies on
a “time trick”, special to computability. Indeed, in set theory, it is possible to get
an extension with a real in NLV pDomq but none in NLV pCapturepM qq, which after
iterating gives the consistency of covpM q ă d. One of the most straightforward
notions is Miller forcing, also called rational perfect tree forcing. The conditions
are trees T Ď ωăω with no dead ends, no isolated paths, and in which every split is
an infinite split: if σ P T and there is more than one k ă ω such that σ k̂ P T , then
there are infinitely many such k. Extension is as is usual with most tree forcings:
subset.

Denote this notion of forcing by P. On one hand, it is not difficult to see that P
adds an escaping function: for every function f , for every condition T P P, we can
refine the condtion by removing, for every splitting node τ P T , all extensions τ k̂
for k ď fp|τ |q.

On the other hand, Miller forcing has the Laver tracing property, and so does
not add a Cohen generic. Namely, for every order function h, for every function
f P ωω X V P which is bounded by some function in V , there is some h-Trace in V
which traces f . Once one has continuous reading of names, we take a continuous
function Φ P V and a condition T and perform a kind of fusion argument. First,
by thinning, we may assume that if τ is a nth splitting node (it extends k´ 1 many
splitting nodes) then for every immediate extension τ k̂ of τ on T , Φpτ k̂, nq Ó.
Next, we thin one splitting node at a time to obtain a trace. For example, if τ is
the shortest splitting node (the stem of the tree) then we can force a single value
for Φpg, 0q (g being the generic path): because Φpgq is V -bounded, say by some
function h̃ P V , we may assume that for every extension τ k̂ of τ , the value Φpτ k̂, 0q
is smaller than h̃p0q, in particular, only finitely many values appear; so one value
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appears infinitely often. We take one such value a0 and remove all extensions τ k̂
for which Φpτ k̂, 0q ‰ a0. The 0th element of our trace will be ta0u.

Next, consider the next level. Let τk be the next splitting extension above τ k̂.
For each k, some value ak appears as Φpτk l̂, 1q for infinitely many l. Among the
various k, one value a appears infinitely often. We remove from T all τ k̂ such that
ak ‰ a, except possibly for the least such k – we will be “protecting” more and more
successors of τ , so that after ω-many steps, infinitely many successors will remain.
The next element of the trace is ta, aku.

We see that the reason that this argument does not work computably is that
even if T is computable, the construction of the thinned tree is not computable:
it requires answers to the requests “give us a value that occurs infinitely often.”
This can be done with the Turing jump of T . This shows that if we force with all
arithmetic conditions, we will obtain a function escaping all arithmetic functions,
which computes no arithmetically generic real. Indeed, even with the help of any
arithmetic oracle, no such generic can be computed. Recall from section 5 that we
defined NLrpAq for reducibilities ďr implied by Turing. If I is an ideal of Turing
degrees then the reducibility ďI (Turing modulo I) is defined by x ďI y if there
is some z P I such that x ďT z ‘ y. We write NLIpAq for the corresponding
non-lowness class. The argument above sketched the proof of the following:

Proposition 8.6. If I is a jump ideal then NLIpCapturepM qq ‰ NLIpDomq.

We remark that in [24], Kihara showed that Miller forcing has a sufficiently
effective continuous reading of names, so that this inequality holds for relative
hyperarithmetic reducibility as well. In contrast with proposition 8.6, the argument
that NLpCapturepM qq “ NLpDomq applies to any ideal I which has a maximal
degree of lowness for weak genericity reducibility. By relativising lowness for weak
genericity, we see that these are the ideals in which both the DNR principle and the
ESC principle (also named the HI principle) fail. That is, ideals I which contain a
real z relative to which in I there is no DNR function, nor a function escaping all
z-computable functions. On the other hand, proposition 8.6 can be strengthened
to apply to ideals I satisfying the DNRpx1q principle: for every x P I there is
f P I which is DNR relative to x1, even if x1 R I. The reason is that if we are
given a value Φpτ k̂, nq which does not occur cofinitely often, we can thin to ensure
that the generic does not compute an IOE function, that is, that the generic is
in NLIpDomqzNLIpAEDiffq; and recall that CapturepM q Ñ AEDiff Ñ Dom. The
following question though remains open:

Question 8.7. For which Turing ideals I is it the case that NLIpCapturepM qq ‰

NLIpDomq?

The same kind of question can be asked about the two other “collapses” in the
computable Cichoń diagram:

NLpSpillpN qq “ NLpSpillpM qq “ NLpEscq,

namely: the high degrees coincide with the meagre engulfing and null engulfing
degrees. Unlike the previous example, here it is known that the coincidences hold
for relative hyperarithmetic reducibility. This is not the same though as Turing
modulo ∆1

1, for which the question is still open. Hechler forcing and Laver forcing
give separations in set theory. The associated constructions can be pushed in ideals
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which are models of arithmetic transfinite recursion (ATR0). Not much is known
otherwise.
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