
MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF

α-C.A. DEGREES

KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

Abstract. In [DG18, DG20], Downey and Greenberg define a transfinite hi-

erarchy of low2 c.e. degrees — the totally α-c.a. degrees, for appropriately
small ordinals α. This new hierarchy is of particular interest because it has

already given rise to several natural definability results, and provides a new
definable antichain in the c.e. degrees. Several levels of this hierarchy contain

maximal degrees. We discuss how maximality interacts with upper cones, and

the related notion of hierarchy collapse in upper cones. For example, We show
that there is a totally ω-c.a. degree above which there is no maximal totally

ω-c.a. degree. We resolve several problems left open in [DG20].

1. Introduction

One underlying theme in mathematical logic is calibrating mathematical objects
in various hierarchies. In computability theory this method also seems to give
alignment between syntactical and algorithmic complexity of the objects in ques-
tion. For instance, the arithmetical hierarchy aligns itself with iterations of the
Turing Jump.

In this spirit, building on earlier work of Downey, Greenberg and Weber [DGW07],
Downey and Greenberg [DG18, DG20] introduced a new transfinite hierarchy of
(mainly computably enumerable) degrees based around considerations about the
“mind-change” functions of computable approximations of ∆0

2 functions. In [DG20],
it is argued that the the hierarchy is both natural and significant because the hier-
archy

(i) Unifies the combinatorics of a wide class of constructions, both in the Tur-
ing degrees and in areas of applications of computability theory, such as
effective model theory and algorithmic randomness.

(ii) Gives a number of new examples of natural definability of degree classes in
the c.e. degrees.

(iii) Gives such results within the low2 c.e. degrees; classes to which general
metatheorems do not pertain.

Of course, this “mind change” hierarchy was build on the ideas of many early
studies. These studies began with Ershov [Ers68a, Ers68b, Ers70], and Epstein,
Haass, and Kramer [EHK81], which extended the idea of a d.c.e. set, which is
one with a computable approximation where elements begin outside, can enter,
and then might leave. Indeed, the Limit Lemma says that each set A 6T ∅′ has
an approximation where each element might enter and leave a finite number of
times. The idea of Ershov, and Epstein et al. was to give a fine-grained analysis to

This work is supported by Marsden Grants to Downey and to Greenberg, and a Rutherford
Discovery Fellowship to Greenberg. The results form Arthur’s MSc Thesis [Art].

1

2 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

claibrate such approximations. Further work along these lines can be found in work
of Selivanov [Sel89], and many authors, such as Shore, Lachlan and others, have
studied d.c.e. and ω-c.a. sets and degrees. Some of this work we mention below.
The key insight in the Downey-Greenberg Hierarchy work is the use of canonical
notations (as explained below) to provide a foundation for the classification work.

In [DG20], a number of apparently difficult and natural questions were left open
about the structure of the hierarchy. Several of these questions involved notions of
maximality in this hierarchy. In this paper we solve a number of these questions,
and hence this paper complements the monograph [DG20] in an essential way. The
overarching goal of the present paper is to understand the extent to which the
hierarchy collapses, and to identify unusual or interesting features.

1.1. Background: array computable, and totally ω-c.a. degrees. The Shoen-
field Limit Lemma [Sho59] states that a function f : ω → ω is computable from the
halting problem ∅′ if and only if it has a computable approximation: a uniformly
computable sequence 〈fs〉 such that for all x, lims fs(x) = f(x) (in the sense that
for all but finitely many s, fs(x) = f(x)). The mind-change function of this ap-
proximation is λx.#{s | fs(x) 6= fs+1(x)}, the number of times the approximation
‘changes its mind’ on value x. The intuition is that if a function only has ap-
proximations that require many changes, then it is relatively complicated. Indeed,
a function is weak-truth-table reducible to ∅′ if and only if it has a computable
approximation whose mind-change function is bounded by a computable function.
Such functions are also called ω-computably approximable.

A c.e. Turing degree d is array computable [DJS90] if and only if every function
f ∈ d has a computable approximation whose mind-change function is bounded
by the identity function (any fixed order function, a computable, non-decreasing
and unbounded function, would do). Array computability captures the dynamics
of multiple permitting characterising several constructions in computability. Thus,
for example, a c.e. Turing degree is array computable if and only if it is the degree of
a perfect, thin Π0

1 class, if and only if it contains a c.e. set of maximal Kolmogorov
complexity [Kum96], if and only if it does not have a strong minimal cover in the
Turing degrees [Ish99]. Several other equivalences are listed in [DG20].

Weakening array computability, a c.e. degree is totally ω-computably approx-
imable if every function f ∈ d is ω-computably approximable (c.a. for short), a
notion suggested by Joseph Miller. The difference is that we no longer require a
uniform bound on the mind-change functions. Like array computability, this no-
tion captures the dynamic combinatorics of a number of constructions, involving,
for example, presentations of left-c.e. reals. Further, one such construction gives a
natural definition of the class of totally ω-c.a. degrees within the c.e. degrees: these
are the degrees that do not bound a critical triple, a lattice-theoretic notion useful
in embedding lattices in the c.e. degrees.

1.2. Totally α-c.a. degrees. Considerations of embeddings of the 1-3-1 lattice,
closely related to critical triples, led Downey and Greenberg to define a further
weakening of the notion of totally ω-c.a. degrees, and by generalisation, to a trans-
finite hierarchy of such lowness-like notions. The generalisation utilises the Ershov
hierarchy. Much like complexity related to the mind-change function, Ershov cal-
ibrates the complexity of a computable approximation, and by extension, of the

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 3

function being approximated, by considering well-founded witnesses to the approx-
imation settling down. Namely, for a computable ordinal α, an α-computable ap-
proximation is a computable approximation 〈fs〉 of a ∆0

2 function f , accompanied
by a uniformly computable sequence 〈os〉 of functions os : ω → α such that for all x
and s, os+1(x) 6 os(x) and if fs+1(x) 6= fs(x) then os+1(x) < os(x). Thus 〈os(x)〉s
is a ‘counting down’ in α, which guarantees that 〈fs(x)〉 will stabilise. The longer α
is, the more space for mind-changes the approximation has. A function is α-c.a. (or
∆−1
α) if it has an α-computable approximation, and a c.e. degree is totally α-c.a. if

every f ∈ d is α-c.a.
An important caveat is that care has to be taken in the choice of the computable

presentation of an ordinal α; such a presentation of course is required to make sense
of computability of functions with range α. In general, many presentations are very
much nonequivalent, in that they yield different classes of functions and degrees.
Indeed, every low2 c.e. degree is totally ω2-c.a. for some particular presentation of
the ordinal ω2. The point is that the complexity of an approximation can be coded
into the presentation of ω2; such a presentation can be bad, for example, in that we
cannot effectively tell, for each element, which copy of ω it lies in. When defining
the notion of totally α-c.a. degrees, it is important to choose canonical presentations
of the ordinals α; these yield robust notions that also behave well with respect to
extending or shrinking the ordinals. A choice of canonical representations can be
easily made below the ordinal ε0 by requiring Cantor normal form to be effective.
The details are given in [DG20]. Such canonical copies also allow us to characterise
the lower levels of the hierarchy in terms of mind-change functions: a function
is ωn+1-c.a. if and only if it has a computable approximation whose mind-change
function is bounded by some ωn-c.a. function.

1.3. Hierarchy collapse. One of the first questions to ask is whether the hierarchy
is proper. At what levels is there collapse, in that no new degrees inhabit the level?
This question was settled in [DG20]. For α 6 ε0, call a degree d properly totally
α-c.a. if it is totally α-c.a. but not totally β-c.a. for any β < α. Recall that an
ordinal is closed under ordinal addition if and only if it is an ordinal power of ω.

Theorem 1.1 ([DG20]). Let α 6 ε0. There is a properly totally α-c.a. degree if
and only if α is a power of ω.

Thus, the first proper levels of the hierarchy are the totally ω-c.a., totally ω2-c.a.,
ω3, ω4, . . . , ωω, ωω+1,

Next, it is natural to check what happens to the hierarchy in upper and lower
cones. In this paper we show that the hierarchy does not collapse in lower cones.
Henceforth, all degrees are c.e.

Theorem 1.2. Let α < γ 6 ε0 be powers of ω. Every properly totally γ-c.a. degree
bounds a properly totally α-c.a. degree.

We remark that the degree produced for Theorem 1.2 is proper in a strong way:
it is not uniformly totally α-c.a. See Section 6.

We do not know whether no collapse occurs in upper cones. We prove the
following two results:

Theorem 1.3. Let α < β 6 ε0 be powers of ω, and suppose that β > αω. Then
every totally α-c.a. degree is bounded by a properly totally β-c.a. degree.

4 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

In particular, above every totally ω-c.a. degree there are properly ωω-c.a. degrees,
properly ωω+1-c.a. degrees, and so on.

Theorem 1.4. Let α < ε0 be a power of ω. Above every totally α-c.a. degree there
is a totally (α3 · ω)-c.a. degree which is not totally α-c.a.

That is, above every totally ωδ-c.a. degree there is one which is totally ωδ·3+1-c.a.
but not ωδ-c.a. So for example, above every totally ω-c.a. degree there is a totally
ω4-c.a. degree which is not totally ω-c.a.; we do not know if this degree can always
be made totally ω2-c.a., or totally ω3-c.a., or not. So we ask:

Question 1.5. Is every totally ω-c.a. degree bounded by a properly totally ω2-c.a.
degree?

If the degree we start with is superlow, then the answer is positive; see Section 4.

1.4. Maximal degrees. In [DG20] it is shown that for every α 6 ε0 which is a
power of ω, there are maximal totally α-c.a. degrees: degrees a which are totally
α-c.a., but such that no b > a is totally α-c.a. We remark that since the totally
ω-c.a. degrees are definable in the c.e. degrees, this gives us a naturally definable
antichain in the c.e. degrees. The only other known example of such an antichain
is the collection of maximal contiguous degrees [CDW02].

In [DG20] the following is proved:

Theorem 1.6 ([DG20]). Let α 6 ε0. Every totally ωα-c.a. degree lies strictly below
a totally ωα+1-c.a. degree.

As a corollary we see:

(1) If α < β 6 ε0 are powers of ω, then no totally α-c.a. degree can be maximal
totally β-c.a.; and

(2) Every maximal totally α-c.a. degree is properly totally α-c.a.

Thus maximality is closely related to hierarchy collapse. Indeed, to prove The-
orem 1.3, we show:

Theorem 1.7. Let α, β 6 ε0 be powers of ω, and suppose that β > αω. Then every
totally α-c.a. degree is bounded by a maximal totally β-c.a. degree.

On the other hand we show

Theorem 1.8. Let α 6 ε0 be a power of ω. There is a totally α-c.a. degree which
is not bounded by any maximal totally α-c.a. degree.

Toward proving Theorem 1.8 we examine ‘maximal covers’, see Theorem 5.1.

Similarly to Question 1.5, we ask:

Question 1.9. Is every totally ω-c.a. degree bounded by a maximal totally ω2-c.a.
degree?

A positive solution will necessarily be non-uniform. Again, we get a positive
answer for superlow degrees.

Solving these problems required several new techniques. For instance, the proof
of Theorem 1.7 is the first example of a construction of degrees in one of these
bounded classes where there is infinitary positive activity along the true path of
the strategy tree. We believe that our techniques will have wider applications.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 5

Notation; Enumerating functions. Throughout, we mostly follow the notation from
[DG20]. In particular, we use lower-case Greek letters to denote the use of the
corresponding upper-case functionals. We interpret the use differently, depending
on the situation:

• If a functional Φ is given to us, or the oracle X is given to us, then for any
input x, the use ϕ(x) is the smallest number not queried. So a computation
Φ(X,x)[s] is preserved if Xs � ϕs(x) is preserved. In this case we always
assume that the domain of Φ(X) is an initial segment of ω.
• When a functional Λ that we build applies to a set D that we are enumerat-

ing, then the use is the only number queried. So if we define a computation
Φs(Ds, x) with use λs(x), then the computation is valid until we enumerate
λs(x) into D. When we set the use to be −1 we mean that Φ(D,x)↓ no
matter what D is.
• Sometimes, functionals that we build will take more than one oracle; some

we build, some we don’t. We will usually apply the second convention, but
this will be specified.

For diagonalising against α-c.a. functions, we use enumerations of approxima-
tions. We use the terminology from [DG20, Sec.2.1.2]. An (α + 1)-computable
approximation 〈fs, os〉 is tidy if f0 is the constant function 0, and for all n and s, if
os(n + 1) < α then os(n) < α. Such an approximation is eventually α-computable
if for all n there is some s such that os(n) < α. If the approximation is not even-
tually α-computable then for all but finitely many n, for all s, os(n) = α and so
f = lims fs is eventually constant 0. Thus, the limit of any tidy (α+1)-computable
approximation is α-c.a. We can think of these as partial α-computable approxi-
mations; os(n) = α means that we have not yet given an ordinal bound for the
α-computable approximation. Tidy approximations can be enumerated effectively:

Proposition 1.10 ([DG20]). For every α 6 ε0, a power of ω, there is a sequence〈
fα,0s , oα,0s

〉
,
〈
fα,1s , oα,1s

〉
, . . . of tidy (α + 1)-computable approximations, uniformly

computable (in both their index and in α), such that for every α-c.a. function f
there is some i such that f = fα,i = lims f

α,i
s , and the approximation

〈
fα,is , oα,is

〉
is eventually α-computable.

2. Non-collapsing in upper cones

In this section we prove Theorem 1.4. We prove a slightly more general theorem,
which we believe will make the ordinal combinatorics clearer.

Theorem 2.1. Let α 6 β < ε0 be powers of ω. Above every totally α-c.a. degree
there is a degree which is totally (αβαω)-c.a. but not totally β-c.a.

For Theorem 1.4 let β = α.

To prove the theorem, fix a c.e. set A (with an effective enumeration 〈As〉) whose
degree is totally α-c.a. We enumerate a c.e. set D such that degT(A⊕D) is totally
(αβαω)-c.a. and not totally β-c.a.

Requirements. Let 〈Φd〉d<ω be an enumeration of all Turing functionals. To make
A⊕D totally (αβαω)-c.a., we need to ensure,

for all d < ω, Qd: If Φd(A,D) is total, then it is (αβαω)-c.a.

6 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

To make A ⊕ D not totally β-c.a., we enumerate a functional Λ and ensure
that Λ(D) is not β-c.a. We will of course need to ensure that Λ(D) is total.1 We
diagonalise against the approximations

〈
fβ,is , oβ,is

〉
given by Proposition 1.10. We

need to ensure,

for all i < ω, P i: If
〈
fβ,is , oβ,is

〉
is eventually β-computable, then Λ(D) 6= fβ,i.

Discussion. The proof uses some ideas from the proofs of Theorems 3.6 and 4.12
from [DG20].

We build a tree of strategies. A node σ working for a requirement P i appoints a
follower p with the aim of ensuring that Λ(D, p) 6= fβ,i(p). Thus, whenever σ sees
that Λ(D, p)[s] = fβ,is (p), we enumerate λs(p) into Ds+1 and redefine Λ(D, p)[s+1]
to be large, and so not equal to fβ,is (p). Thus, if t is a future stage at which σ acts

again, we have oβ,is (p) > oβ,it (p); so σ acts only finitely often for the follower p, and
in fact the ordinal β + 1 gives a bound on the “number of times” σ can act for p.

A node τ working for Qd measures the totality of Φd(A,D). Since A is not
under our control, this cannot be done in a Σ2/Π2 fashion. If total, then for every
input x, a computation Φd(A,D, x) will eventually be ‘certified’, and henceforth the
approximation for Φd(A,D, x) will occur on τ -expansionary stages. When certifying
the computation, the node τ needs to provide an ordinal below αβαω, and decrease
this ordinal if a computation seen at an expansionary stage is later destroyed.

Such computations will be destroyed either by an A-change or a D-change. We
soon discuss how to get an ordinal bound, below βαω, over the “number” of D-
changes that can injure a certified computation Φd(A,D, x). Over A-changes how-
ever we have no control. To counter this, we use the fact that A is totally α-c.a.
The node τ builds a “shadow functional” Φ̂τ which keeps track of the A-part of the
computations Φd(A,D). We will need to ensure that if Φd(A,D) is total, then so is

Φ̂τ (A). We will then be able to guess an α-computable approximation
〈
fα,ks , oα,ks

〉
for Φ̂τ (A). Naively, we copy a computation Φd(A,D, x) to Φ̂τ (A, x) with the same

use. If we see an A-change below that use, then we are free to redefine Φ̂τ (A, x) to
be large; the next time we see an agreement with fα,ks (x), the ordinal bound oα,ks (x)
will have decreased. In that way we could hope for an ordinal bound, below α, on
the number of injuries to Φd(A,D, x) because of A-changes.

However, sometimes D-changes destroy Φd(A,D, x) but no corresponding A-

change occurs. We cannot then redefine Φ̂τ (A, x). As we are dealing with Turing
reductions, rather than weak truth-table reductions, the use on a new Φd(A,D, x)-

computation is larger, and so we cannot track subsequent A-changes on Φ̂τ (A, x).
We need to track it on a new input. We thus appoint a tracker c = tr(τ, x), and

keep track of the A-side of Φd(A,D, x) at Φ̂τ (A, c). When D-enumerations occur,
we cancel the tracker c and appoint a new one c′. The new tracker comes with a
new ordinal bound below α, likely larger than c’s bound. Thus between any two D-
changes we need to insert a copy of α, counting A-changes for a given tracker. That
is, the overall bound covering both A- and D-changes is multiplicative: α · βαω.

D-changes are caused by nodes σ for positive requirements P i operating below τ .
For each such node σ, with a follower p, the ordinal ois(p) gives an ordinal bound
6 β on such action by σ; taking into account finitely many such nodes, it would

1Note that we could have added A as an oracle to Λ. However, we will see that this is not
useful.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 7

seem that we can give a bound below βω.2 Where does the extra α-term in the
middle come from?

When a node τ as above certifies a computation Φd(A,D, x), it can observe the
nodes σ below it that already have followers, and take into account their action in
devising the ordinal bound. However, other σ-nodes that appoint followers later
cannot be taken into account, and so we need to make sure that such nodes never
injure a confirmed Φd(A,D, x) computation. Consider however what happens when
such a computation is destroyed by a D-change. A node σ with a follower p that
is not allowed to injure Φd(x), must keep the use λ(p) larger than the use ϕd(x).
But even if we allowed A as an extra oracle for Λ, to keep Λ(A,D) total, we need
to appoint a new use λ(p) immediately when we see this D-change — before we
see the new Φd(x) computation and its very large use. This is why adding A as an
oracle to Λ is not useful. There doesn’t seem to be any other option but for us to
discard p in this situation, and choose a new, large follower for σ. This is a new
ingredient which does not appear in [DG20].

There will be counting difficulties, but first we need to argue that this process
will end: that if σ lies on the true path, that eventually it will get a follower
which is never cancelled. First, to this end, we see that even though we appoint
a new large follower p′ for σ, we cannot allow more computations Φd′(x

′) cause
further cancellations; the priority vis-a-vis computations belongs to σ rather than
its followers individually. Still, we could imagine a loop: Φd(x) sees an A-change and
cancels a follower for σ; later we see a D-change that cancells the tracker for Φd(x);
a new tracker will see more A-changes;. . . However, the magic of the marketplace
priority tree ensures this does not happen; the D-change cancelling the tracker for
Φd(x) must be caused by some other node σ̄ which is stronger than σ, and it would
initialise σ at that point.

Now for the counting difficulties. Suppose that τ̄ is another node working for
some Qd̄, with d̄ possibly different from d; and suppose that σ is allowed to injure
Φd̄(x̄). What is the ordinal count now on the “number of times” that σ will create
a D-change injuring such a computation? When a new follower p′ is assigned to σ,
the ordinal count oβ,i(p′) “resets” back to β. So we need a copy of β for each
follower for σ; and we need an ordinal bound on the number of times we will need
to appoint a new follower for σ. Each such cancellation is caused by an A-change
in a computation such as Φd(A,D, x); and these A-changes are tracked, so we have
a bound below α on them. Since α is closed under addition, we would expect that
adding these bounds for all pairs (d, x) that can cancel followers for σ, we would
get a bound still below α; and then overall we would get a bound below βα on
the number of times σ will ever act. A delicate timing issue means that when τ
first confirms Φd̄(x), it may see that σ has already appointed a follower, and so is
allowed to injure this computation; but the ordinal bound on the number of times σ
will act depends on a computation Φd(x), with τ below τ̄ , which has not yet been

2The ordinal arithmetic here follows ideas that were used in [DG20]. Let σ1, σ2, . . . , σk list,
in decreasing strength, the P -nodes below τ which have chosen their follower before the stage at
which some x was certified by τ . For each j 6 k and stage s, let εj,s 6 β be the ordinal provided

by σj at stage s. If some σj acts, then weaker σi’s are initialised and so can be removed from

the list; and the ordinal εj will decrease. Hence overall, the sum
∑
j6k εj,s, which is smaller

than βω, will decrease each time any of the nodes σj will act. Alternatively, we can forget about
the priority ordering between the nodes, and use commutative ordinal addition, based on Cantor
normal form, which we review below in page 14).

8 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

tracked. Therefore the bound on the number of times σ will replace a follower is
α+ 1 rather than α; adding finitely many σ’s, we get an ordinal below αω.

We now turn to the formal details of the construction.

Strategy Tree. A node τ working for requirement Qd has outcomes∞ and f, ordered
∞ < f, which measure lim sups dom Φd(A,D)[s] (restricted to the τ -stages). The

node τ is responsible for the enumeration of the shadow functional Φ̂τ (A). The
node τˆ∞ has outcomes ∞n, fn for all n < ω, ordered in the manner ∞0 < f0 <
∞1 < f1 < · · · which guess whether or not Φ̂τ (A) is total. Each τˆ∞ˆ∞n node has
outcomes k < ω, ordered 0 < 1 < 2 < · · · , where each node τˆ∞ˆ∞n k̂ guesses that
Φ̂τ (A) = fα,k (recall Proposition 1.10).

The nodes τ f̂, τˆ∞ f̂y for all y, and τˆ∞ˆ∞n k̂ for all n, k all work for the next
requirement in some ω-list of all requirements.

Since A is low2, the set of indices of functionals Ψ such that Ψ(A) is total is Σ0
3.

We can translate the question of membership in a Π0
2 set into whether or not a

given non-decreasing sequence is bounded. By the recursion theorem, the index of
the functional Φ̂τ enumerated by τ is known to us. We thus obtain a computable
list ls(τ, n) of sequences, non-decreasing in s, such that Φ̂τ (A) is total if and only
if the sequence 〈ls(τ, n)〉s<ω is unbounded for some n. It is this list of sequences
that we check against when τˆ∞ is accessible.

A node σ working for requirement P i has a unique outcome, which works for
the next requirement on our list. As mentioned, such a node σ will appoint a
follower p. When action by σ on p’s behalf injures a computation Φd(A,D, x)
monitored by some τ stronger than σ, we need to cancel its tracker. We keep track
of those nodes and computations which are affected by σ. Let prec∞(σ) be the
set of nodes τ which work for some requirement Qd such that τˆ∞ˆ∞n ≺ σ for
some n < ω. For every τ ∈ prec∞(σ) we will define a number mτ

s (σ). We then let
Prs(σ) consist of the collection of pairs (d, x) such that there is some τ ∈ prec∞(σ),
working for requirement Qd, such that x < mτ

s (σ). The computations Φd(A,D, x)
for (d, x) ∈ Prs(σ) are the computations which σ cannot injure. We remark that
between stages at which σ is initialised, the numbers mτ

s (σ) remain constant.

Construction. Let s be a stage. During the stage we define γs, the collection of
nodes accessible at s, by recursion; and describe how to act for each accessible node.
The empty node is always accessible.

Suppose that τ , working for Qd, is accessible at stage s. Let t < s be the last
stage before s at which τˆ∞ was accessible, or t = 0 if there is no such stage. If
dom Φd(A,D)[s] 6 t, we let τ f̂ be next accessible (added to γs); otherwise, we let
τˆ∞ ∈ γs instead.

Suppose that τˆ∞ ∈ γs. Before we determine the next accessible node, we
maintain our shadow functional Φ̂τ . Let x < t be such that c = trs(τ, x) is defined

(recall that this means that at stage s, c is the Φ̂τ -tracker for Φd(A,D, x)). If

Φ̂τ (A, c)↑ [s] then we define Φ̂τ,s+1(As, c) with large value but with use ϕd,s(x).

If any c < s is not currently a tracker for τ and Φ̂τ (A, c) ↑ [s], then we define

Φ̂τ,s+1(As, c) with use 0. And for each x < s for which trs(τ, x) is undefined (either
because x is new, or because the previous tracker was cancelled), we appoint a new,
large tracker trs+1(τ, x).

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 9

Recall that t is the previous stage at which τˆ∞ was accessible. Let y be least
such that either Φd(A,D, y)↑ [t] or the computation Φd(A,D, y)[t] was destroyed
since stage t. That is, if At � u 6= As � u or Dt � u 6= Ds � u where u = ϕd,t(y).

For each n < s, let tn be the last stage before s at which τˆ∞ˆ∞n was accessible,
or tn = 0 if there is no such stage. If there is some n 6 y such that ls(τ, n) > tn,

then we guess that the sequence l(τ, n) is unbounded (and so that Φ̂τ (A) is total),
and we let τˆ∞ˆ∞n be next accessible for the least such n. If there is no such
n 6 y, then we let τˆ∞ f̂y be next accessible.

Suppose now that τˆ∞ˆ∞n is accessible at s for some n. For each k < s, let rk
be the last stage before s at which τˆ∞ˆ∞n k̂ was accessible, or rk = 0 if there was
no such stage. We let τˆ∞ˆ∞n k̂ be next accessible for the least k 6 s such that
for all x < rk, c = trs(τ, x) is defined, oα,ks (c) < α, and Φ̂τ (A, c)[s]↓= fα,ks (c). We
note that rs = 0, so such an k must exist, even if it merely satisfies these conditions
trivially.

Let σ working for P i be accessible at s. One of several cases will apply to σ.

(i) s is the first stage, after the last stage at which σ was initialised, at which σ is
accessible. For all τ ∈ prec∞(σ) we let mτ

s+1(σ) = dom Φd(A,D)[s], where τ
works forQd. We appoint a new, large follower p for σ, and define Λ(D, p)[s+1]
with large value and use. We end the stage.

(ii) σ has a follower p, but for some (d, x) ∈ Prs(σ), ϕd,s(x) > λs(p). We will
observe that for all (d, x) ∈ Prs(σ), Φd(A,D, x)↓ [s]. We cancel the follower p,
and appoint a new, large follower q; we define Λ(D, q)[s+ 1] with large value
and use. We end the stage.

(iii) σ has a follower p, case (ii) fails, and Λ(D, p)[s] 6= fβ,is (p). We let σ’s unique
successor on the tree of strategies be next accessible.

(iv) σ has a follower p, case (ii) fails, and Λ(D, p)[s] = fβ,is (p). We enumerate
λs(p) into Ds+1 and redefine Λ(D, p)[s + 1] with large value and use. For
every τ ∈ prec∞(σ), for every x > mτ

s (σ), we cancel the tracker trs(τ, x).
We then end the stage.

Note that we eventually run into a new long node σ, so each stage has only
finitely many steps. At the conclusion of stage s, we maintain the functional Λ to
ensure its totality: for any q 6 s which is not currently a follower for any node σ and
such that Λ(D, q)↑ [s], we define Λ(D, q)[s + 1] with use −1. Finally, we initialise
all nodes that are (strictly) weaker than the last accessible node. When a node σ
with a follower is initialised, its follower is cancelled. When a node τ is initialised,
all its trackers are cancelled.

Verification. We introduce terminology: for a node µ on the tree, we denote s to
be a µ-stage if µ ∈ γs.

Lemma 2.2. Let σ be a node working for requirement P i. Let s be a σ-stage such
that Prs(σ) is defined. Then for all (d, x) ∈ Prs(σ), Φd(A,D, x)↓ [s]. Further, if
τ ∈ prec∞(σ) works for Qd, and τˆ∞ˆ∞n k̂ 4 σ, then c = trs(τ, x) is defined,

Φ̂τ (A, c)↓ [s] = fα,ks (c), and oα,ks (c) < α.

Proof. Let t < s be the first σ-stage after the last time (prior to s) at which σ was
initialised. So at stage t we define the value mτ

t+1(σ) = mτ
s (σ). Let x < mτ

s (σ).
We define mτ

t+1(σ) = dom Φd(A,D)[t] < t. If s > t then as s is a τˆ∞-stage,

10 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

dom Φd(A,D)[s] > t > mτ
s (σ) > x. Similarly, the rest follows from the fact that

both t and s are τˆ∞ˆ∞n k̂-stages. �

Lemma 2.3. For any node σ, if p is a follower for σ at the beginning of stage s,
then Λ(D, p)↓ [s].

Proof. Formally, by induction on s. When σ appoints p, or enumerates λs(p)
into Ds+1, a new computation Λ(D, p)[s + 1] is defined. We just need to note
that unless σ acts for p at stage s, then λs(p) /∈ Ds+1; the point is that if p′ is a
follower for σ′ at the beginning of stage s then λs(p) 6= λs(p

′), as all uses are chosen
large. �

Lemma 2.4. Let σ be a node working for some P i. Let s be a σ-stage, and suppose
that at the beginning of stage s, σ has a follower p. Let τ be a node working for Qd
such that τˆ∞ f̂y 4 σ, and let x < y. Then Φd(A,D, x)↓ [s] and ϕd,s(x) < λs(p).

Proof. Let t < s be the stage at which the stage s use λs(p) was defined; so t was a
σ-stage and t < λt+1(p) = λs(p) (as new uses are chosen large). Since τˆ∞ f̂y ∈ γt,
y 6 dom Φd(A,D)[t], so Φd(A,D, x)↓ [t]. Let u = ϕd,t(x) < t. So u < λs(p). It
suffices to show that At � u = As � u and Dt � u = Ds � u. If not, then let r > t
be the least τˆ∞-stage at which we see either At � u 6= Ar � u or Dt � u 6= Dr � u.
Then at stage r 6 s, either τˆ∞ˆ∞n ∈ γs or τˆ∞ f̂n ∈ γs for some n 6 x < y.
This outcome lies to the left of the outcome fy, and so r < s and at stage r, σ is
initialised, which is impossible. �

We need to be sure that if a computation is destroyed by a change inD, its tracker
is cancelled immediately to allow us to correctly anticipate further A-changes.

Lemma 2.5. Let τ be a node working for requirement Qd. Let s be a stage; let
x < ω be such that c = trs(τ, x) is defined. Suppose that Φ̂τ (A, c)↓ [s], and let
u = ϕ̂τ,s(c). Then:

(i) Φd(A,D, x)↓ [s] and u = ϕd,s(x).
(ii) If Ds � u 6= Ds+1 � u then the tracker c is cancelled at stage s.

Proof. Suppose that (i) and (ii) hold up to stage s, and that the lemma’s hypotheses

hold at s. Let t < s be the stage at which the computation Φ̂τ (A, c)[s] was defined;
then At � u = As � u. Since trackers are chosen to be large, c = trt(τ, x). At
the τˆ∞-stage t we define u = ϕ̂τ,t+1(c) = ϕd,t(x). Since the tracker c was not
cancelled at any stage prior to s, by induction, Dt � u = Ds � u. The constancy of
both A and D imply that ϕd,s(x) = ϕd,t(x) = u.

For (ii), suppose that Ds � u 6= Ds+1 � u; then at stage s we enumerate a
number λs(p) < u into D, where p is a follower for a node σ, which works for a
requirement P i.

Since λs(p) < u = ϕd,t(x), we know that the use λs(p) was chosen prior to
stage t; so p was chosen as a follower for σ prior to stage t.

Now we ask: how does τ relate to σ?
If σ lies to the right of τˆ∞, then σ is initialised at stage t; this is impossible.

If τ is weaker than σ, then τ is initialised at stage s; in particular, c is cancelled
at s. If not, then τˆ∞ ≺ σ.

Suppose that τˆ∞ f̂y 4 σ. Let s̄ < s be the last τˆ∞-stage prior to stage s.
Since t is a τˆ∞-stage, t 6 s̄. Since the computation Φd(A,D, x)[t] still holds at

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 11

stage s, it is unchanged between stages s̄ and s. Now fy is the outcome chosen
at stage s; so either Φd(A,D, y)↑ [s̄] or the computation Φd(A,D, y)[s̄] does not
persist at t. We assume that the functional Φd is use-monotone, so we conclude
that x < y. By Lemma 2.4, λs(p) > ϕd,s(x), which is not the case.

Hence τ ∈ prec∞(σ). By our instructions for σ, since p is not cancelled at
stage s, (d, x) /∈ Prs(σ), i.e., x > mτ

s (σ). At stage s, σ is instructed to cancel c. �

Corollary 2.6. Let τ be a node working for requirement Qd. Let x < ω, and
suppose that at some point a tracker c = tr(τ, x) is defined and is never cancelled.

Suppose that Φ̂τ (A, c)↓. Then Φd(A,D, x)↓.

Let the true path, γω, consist of the nodes µ such that:

(i) µ ∈ γs for infinitely many s; and
(ii) µ is initialised only finitely often.

If µ lies to the right of some node in γs then µ is initialised at stage s. It follows
that γω is a path: linearly ordered by extension of nodes, and closed under taking
initial segments. Note that we have not yet shown that γω is infinite.

Lemma 2.7. Let σ be a node which works for P i, and let p be a follower for σ.
There are only finitely many stages s at which σ acts on p’s behalf by enumerating
λs(p) into Ds+1.

Proof. Let s0 < s1 < · · · be the stages s at which σ enumerates λs(p) into Ds+1. If
σ acts thus at a stage s, it must be because Λ(D, p)[s] = fβ,is (p). We then redefine
Λ(D, p)[s+ 1] to be large, and so greater than fβ,is (p). So fβ,is0 (p) 6= fβ,is1 (p) 6= · · · ,
and hence oβ,is0 (p) > oβ,is1 (p) > · · · — implying that the sequence s0, s1, . . . must be
finite. �

Lemma 2.8. Let σ be a node working for requirement P i. Let s < t be σ-stages
such that Prs(σ) is defined and σ is not initialised at any stage r ∈ [s, t). Let
(d, x) ∈ Prs(σ); let τ ∈ prec∞(σ) work for Qd. Then trs(τ, x) = trt(τ, x).

Note that trs(τ, x) is defined by Lemma 2.2.

Proof. Suppose not; let r ∈ [s, t) be the stage at which trs(τ, x) = trr(τ, x) is
cancelled. Let σ̄ be the node which causes this cancellation. So τ ∈ prec∞(σ̄) and
x > mτ

r (σ̄). By assumption, x < mτ
s (σ) = mτ

r (σ). Hence σ 6= σ̄. Since σ is not
initialised at stage r, σ̄ is weaker than σ. Let v < s be the stage at which mτ

s (σ) is
defined. Then σ̄ is initialised at stage v. Hence mτ

r (σ̄) is defined at a stage v̄ > v.
As both v and v̄ are τˆ∞-stages,

x > mτ
v̄(σ̄) = dom Φd(A,D)[v̄] > v > mτ

v(σ) = mτ
s (σ) > x,

a contradiction. �

The following lemma fits here but will only be used later.

Lemma 2.9. Let σ be a node working for requirement P i. Let s < t be σ-stages
such that Prs(σ) is defined and σ is not initialised at any stage r ∈ [s, t). Suppose
that a follower for σ is cancelled at stage t. Then there is some (d, x) ∈ Prs(σ)

such that oα,ks (c) > oα,kt (c), where τ ∈ prec∞(σ) works for Qd, τˆ∞ˆ∞n k̂ 4 σ,
and c = trt(τ, x).

12 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

Proof. σ’s follower p is cancelled at stage t because ϕd,t(x) > λt(p) for some (d, x) ∈
Prt(σ) = Prs(σ). Let τ ∈ prec∞(σ) work for Qd, and let n, k < ω such that
τˆ∞ˆ∞n k̂ 4 σ. Let c = trs(τ, x) = trt(τ, x) (Lemma 2.8).

We need to argue that fα,ks (c) 6= fα,kt (c). By Lemma 2.2, Φ̂τ (A, c)↓ [s] = fα,ks (c),

and the same holds at t. So we need to show that Φ̂τ (A, c)[s] 6= Φ̂τ (A, c)[t]. By
increasing s we may assume that s is the σ-stage prior to t, so p is the follower
for σ at stage s + 1. Either we define Λ(D, p)[s + 1] at stage s; then its use
λs+1(p) = λt(p) is large, greater than ϕd,s(x). Or p is already the follower for σ at
the beginning of stage s, in which case λs(p) is already defined; but since p is not
cancelled at stage s, we have λt(p) = λs(p) > ϕd,s(x). In either case we see that
ϕd,s(x) 6 λt(p) < ϕd,t(x). By Lemma 2.5, ϕ̂τ,s(c) = ϕd,s(x) and the same holds

at t. So ϕ̂τ,s(c) < ϕ̂τ,t(c). Hence the computation Φ̂τ (A, c)[s] was destroyed and
redefined before stage t, with a value large relative to stage s. �

Lemma 2.10. Let σ ∈ γω be a node working for some P i. Then σ is eventually
assigned a follower which is never cancelled.

Proof. Let s be the second σ-stage after the last stage at which σ is initialised. By
stage s we have already defined Pr(σ) = Prs(σ) which equals Prt(σ) for all t > s.

Let (d, x) ∈ Pr(σ); let τ ∈ prec∞(σ) work for Qd. By Lemma 2.8, the tracker
c = trs(τ, x) is never cancelled.

Let n < ω such that τˆ∞ˆ∞n ≺ σ. Since the outcome ∞n is guessed infinitely
often, the sequence 〈lt(τ, n)〉t<ω is unbounded. Hence Φ̂τ (A) is total. In particular,

Φ̂τ (A, c)↓.
By Corollary 2.6, Φd(A,D, x)↓. If a follower p is appointed for σ after the correct

computation Φd(A,D, x) has appeared, then the pair (d, x) will not be responsible
for cancelling p. The lemma follows from the fact that Pr(σ) is finite. �

The following will imply that A⊕D is low2.

Lemma 2.11. Suppose that τ works for Qd and that τˆ∞ ∈ γω.

(1) Every x < ω is eventually appointed a tracker which is never cancelled.

(2) If Φd(A,D) is total then so is Φ̂τ (A), and for some n < ω, τˆ∞ˆ∞n ∈ γω.

(3) If Φd(A,D) is partial then so is Φ̂τ (A), and τˆ∞ f̂y ∈ γω, where y =
dom Φd(A,D).

Proof. Let x < ω. At all but finitely many τˆ∞-stages s, if trs(τ, x) in undefined,
then we define a new tracker trs+1(τ, x). Thus, it suffices to show that a tracker
trs(τ, x) is cancelled only finitely many times.

After the last stage at which τ is initialised, such a tracker can be cancelled
only by nodes σ such that τ ∈ prec∞(σ) and mτ

s (σ) 6 x. There are only finitely
many such nodes: dom Φd(A,D)[s] is strictly increasing on the τˆ∞-stages, and so
eventually the values mτ

t (σ) are chosen large. By Lemmas 2.7 and 2.10, each node σ
with mτ

s (σ) 6 x cancels x’s tracker only finitely many times. This establishes (1).

For (2), suppose that Φd(A,D) is total. Let c < ω. If c is chosen as a tracker
for some x and is later cancelled, let t be the stage at which c is cancelled; if c is
never chosen as a tracker, let t = c. Let s be the least stage s > t at which τˆ∞ is
accessible and Φ̂τ (A, c)↑ [s]. We then define Φ̂τ,s+1(As, c) = 0 with use 0, and so

c ∈ dom Φ̂τ (A) .

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 13

Suppose then that c is chosen as a tracker for some x and is never cancelled. At
every sufficiently late τˆ∞-stage s, if c /∈ dom Φ̂τ (A)[s] then we define a new com-

putation Φ̂τ,s+1(As, c) with use ϕd,s(x). The computation which is made when we

first see the correct Φd(A,D, x)-computation is also a correct Φ̂τ (A, c)-computation.

Overall we see that Φ̂τ (A) is total.
Therefore, there is some n < ω such that 〈ls(τ, n)〉s<ω is an unbounded sequence;

let n be least such. Since Φd(A,D) is total, any outcome fy is guessed only finitely
many times. It follows that the outcome ∞n will be guessed infinitely often.

Now we suppose that Φd(A,D) is partial. Let y = dom Φd(A,D); let c be the
tracker that is eventually assigned to y and is never cancelled. Corollary 2.6 implies
that Φ̂τ (A, c)↑, so Φ̂τ (A) is partial. Thus, each sequence 〈ls(τ, n)〉s<ω is bounded,
so each outcome ∞n is guessed only finitely often. Also, each outcome fx for x < y
is guessed only finitely often. On the other hand, the outcome fy will be guessed
infinitely often. �

Lemma 2.12. The true path γω is infinite.

Proof. The empty node lies on the true path. We show that every node on the true
path has a child on the true path.

This is clear for a node τ working for some Qd, as it has only two outcomes. The
case τˆ∞ ∈ γω is dealt with in Lemma 2.11.

Suppose that τˆ∞ˆ∞n ∈ γω. By Lemma 2.11, Φ̂τ (A) is total. Since degT(A)

is totally α-c.a., there is some k such that Φ̂τ (A) = fα,k and
〈
fα,ks , oα,ks

〉
is even-

tually α-computable (recall that this means that for all c there is some s such
that oα,ks (c) < α). Since every input x eventually receives a tracker which is not
cancelled, for the least such k, τˆ∞ˆ∞n k̂ ∈ γω.

Let σ be a node which works for P i; suppose that σ ∈ γω. By Lemmas 2.7
and 2.10, σ acts only finitely many times after the last stage at which it was
initialised. Hence for all but finitely many stages s, if σ ∈ γs then σ’s only child is
also in γs. �

The true path then contains, for every P and Q requirement, a node that works
for it. But first we need to show:

Lemma 2.13. Λ(D) is total.

Proof. Let p < ω. If p is never appointed as a follower, or if p is appointed to a
node working for P i and later cancelled, then p ∈ dom Λ(D); at a sufficiently late
stage t, if Λ(D, p)↑ [t] then we define Λ(D, p)[t+ 1] with use −1.

Suppose then that p is appointed as a follower for a node σ working for P i, and
that p is never cancelled. By Lemma 2.3, p ∈ dom Λs(D) at every stage s after
the stage at which p was chosen as follower. Since σ acts only finitely often for p
(Lemma 2.7), the use λ(p) is raised only finitely often. At the last stage t at which
it is raised, we define Λ(D, p)[t+ 1] with a use λt+1(p) which is never enumerated
into D, and so this computation is D-correct. �

Lemma 2.14. Every requirement P i is met.

Proof. Fix i < ω, and let σ be the node on the true path working for requirement P i.
By Lemma 2.10, σ has a follower p which is never cancelled. Then Λ(D, p) 6=
f i(p): at some sufficiently late σ-stage s we have both Λ(D, p)↓ [s] via a D-correct

14 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

computation, and f is(p) = f i(p); if we had equality, then at stage s, the node σ
would act. �

To show that the Q-requirements are met, for simplicity, we use the commutative
addition operation on ordinals. For ordinals γ, δ, the commutative ordinal sum γ⊕δ
is determined by their Cantor normal form: if γ = ωα1n1 + ωα2n2 + · · · + ωαknk,
with α1 > α2 > · · · > αk and each ni < ω, and δ = ωα1m1 +ωα2m2 + · · ·+ωαkmk,
then γ ⊕ δ = ωα1(n1 +m1) + ωα2(n2 +m2) + · · ·+ ωαk(nk +mk).

The following are well known:

• ⊕ is commutative and associative.
• Any power of ω is closed under ⊕.
• Let β1, β2, . . . , βn and γ1, γ2, . . . , γn be two n-tuples of ordinals. Suppose

that for all i 6 n, βi 6 γi. Then
⊕

i6n βi 6
⊕

i6n γi, and
⊕

i6n βi <⊕
i6n γi if, and only if, there is some i 6 n such that βi < γi.

Lemma 2.15. Every requirement Qd is met.

Proof. Let d < ω, and suppose that Φd(A,D) is total. Let τ be the node on the
true path working for Qd. Then τˆ∞ ∈ γω; by Lemmas 2.11 and 2.12, for some n
and k < ω, ρ = τˆ∞ˆ∞n k̂ lies on the true path. Let s0 < s1 < · · · be the ρ-
stages following the last stage at which ρ is initialised. We proceed to define an
(αβαω)-computable approximation 〈fs, os〉 for Φd(A,D).

From now on, fix x < ω. Let j∗ = j∗(x) be the least j > 0 such that x < sj−1.
For all j > j∗, Φd(A,D, x)↓ [sj]. So for all j > j∗ we let fj(x) = Φd(A,D, x)[sj].
Certainly limj→∞ fj(x) = Φd(A,D, x). Let uj = uj(x) = ϕd,sj (x).

To define the ordinal bound we need to measure both A-changes and D-changes.
For the A-changes, we note that for all j > j∗, since ρ ∈ γsj and x < sj−1,

cj = cj(x) = trsj (τ, x) is defined, oα,ksj (cj) < α, and Φ̂τ (A, cj)↓ [sj] = fα,ksj (cj). By

Lemma 2.5, uj = ϕ̂τ,sj (cj). For brevity, for j > j∗ we let

θj = θj(x) = oα,ksj (cj).

Claim 2.15.1. For all j > j∗, θj < α. Suppose that cj = cj+1. Then θj > θj+1; and
if Asj � uj 6= Asj+1 � uj then θj > θj+1.

Proof. The first part is immediate: oα,ksj (cj) > oα,ksj+1
(cj). The second part is argued

like the end of the proof of Lemma 2.9: if Asj � uj 6= Asj+1 � uj then the computation

Φ̂τ (A, cj)[sj] is destroyed before stage sj+1 and redefined with large use, so

fα,ksj (cj) = Φ̂τ (A, cj)[sj] 6= Φ̂τ (A, cj)[sj+1] = fα,ksj+1
(cj). �

For the D-changes, let a = a(x) be the set of nodes σ < ρ, working for some
requirement P i = P i(σ), such that Prsj∗ (σ) is defined. For all j > j∗ we let
aj = aj(x) be the set of nodes σ ∈ a which were not initialised at any stage in the
interval [sj∗ , sj). So aj+1 ⊆ aj .

For σ ∈ a, let Pr(σ) = Prsj∗ (σ). If σ ∈ aj then Pr(σ) = Prsj (σ). Let sinit(σ) <
sj∗ be the stage at which Pr(σ) was defined. We let

T (σ) = {sinit(σ)} ∪ {sj : j > j∗, σ ∈ aj , sj is a σ-stage and σ ends stage sj} .
For each t ∈ T (σ) let pt(σ) be σ’s follower at the end of stage t. Again for brevity,
for t ∈ T (σ) we let

εt(σ) = oβ,it (pt(σ)),

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 15

where σ works for requirement P i.

Claim 2.15.2. For all t ∈ T (σ), εt(σ) 6 β. If t0 < t1 are stages in T (σ) and
pt0(σ) = pt1(σ) then εt0(σ) > εt1(σ).

Proof. Let t0 < t1 be stages in T (σ) and suppose that pt0(σ) = pt1(σ), call it p.
Since p was appointed as follower before stage t1, and σ acts for p at stage t1,

Λ(D, p)[t1] = fβ,it1 (p), where again σ works for P i. The important fact is that at
the end of stage t0, a new computation Λ(D, p)[t0 + 1] is defined, with large value
(either because p is chosen at stage t0 or λt0(p) is enumerated into Dt0+1 and a

new computation defined). Hence Λ(D, p)[t1] > t0. By convention, fβ,it0 (p) < t0 so

fβ,it0 (p) 6= fβ,it1 (p). �

Fix some σ ∈ a(x), and some (d̄, x̄) ∈ Pr(σ). Let τ̄ ∈ prec∞(σ) be the
node working for Qd̄. For any t ∈ T (σ) with t > sinit(σ), trt(τ̄ , x̄) is defined
(Lemma 2.2), and does not depend on t (Lemma 2.8); we denote this tracker, if
it exists, by c(d̄, x̄, σ). Let k̄ < ω such that τ̄ˆ∞ˆ∞n̄ˆk̄ 4 σ for some n̄ < ω. For
t ∈ T (σ) we let

δt(d̄, x̄, σ) =

{
α, if t = sinit(σ); and

oα,k̄t
(
c(d̄, x̄, σ)

)
, if t > sinit(σ).

Note that if t > sinit(σ) then δt(d̄, x̄, σ) < α (Lemma 2.2). We then let

δt(σ) =
⊕

(d̄,x̄)∈Pr(σ)

δt(d̄, x̄, σ).

Claim 2.15.3. For all t ∈ T (σ), δt(σ) < αω. 3 Let t0 < t1 be stages in T (σ). Then
δt0(σ) > δt1(σ). If pt0(σ) 6= pt1(σ) then δt0(σ) > δt1(σ).

Proof. Let t0 < t1 be stages in T (σ), and suppose that pt0(σ) 6= pt1(σ). If t0 =
sinit(σ) then for all (d̄, x̄) ∈ Pr(σ), δt0(d̄, x̄, σ) = α > δt1(d̄, x̄, σ) and so certainly
δt0(σ) > δt1(σ). If t0 > sinit(σ) then Lemma 2.9 applies. �

For t ∈ T (σ) let
ζt(σ) = β · δt(σ) + εt(σ).

Claims 2.15.2 and 2.15.3 together imply:

Claim 2.15.4. For all t ∈ T (σ), ζt(σ) < βαω. If t0 < t1 are stages in T (σ) then
ζt0(σ) > ζt1(σ).

The last fact we need is the following.

Claim 2.15.5. Let j > j∗. Suppose that Φd(A,D, x)[sj] 6= Φd(A,D, x)[sj+1], and
that sj /∈

⋃
σ∈a T (σ). Then θj > θj+1.

Proof. Recall that uj = ϕd,sj (x). By Claim 2.15.1, it suffices to show that cj = cj+1

and that Asj � uj 6= Asj+1
� uj .

Suppose that cj 6= cj+1. Let σ be the node which cancels cj , at a stage t ∈
[sj , sj+1). Since τ is not initialised after stage sj∗ , it must be that τ ∈ prec∞(σ)
and x > mτ

t (σ). Since dom Φd(A,D)[r] > x at every τˆ∞-stage r > sj∗ , it must

3 Because α is closed under addition, we could have defined δsinit(σ)(σ) = α rather than

α · |Pr(σ)|, and obtain the seemingly better bound δt(σ) 6 α. But after adding these ordinals for
more than one node σ, this does not give us an overall better bound.

16 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

be that mτ
t (σ) was defined prior to stage sj∗ ; so Prsj∗ (σ) is defined and σ is not

initialised at any stage r ∈ [sj∗ , t].
If σ lies to the right of ρ, then σ is initialised at stage sj∗ , which is not the case;

and since ρ is not initialised at stage t, σ cannot be stronger than ρ. Hence σ < ρ.
We conclude that σ ∈ a and in fact that σ ∈ aj . Since σ cannot be accessible
between stages sj and sj+1, we must have t = sj ; it follows that sj ∈ T (σ).

Now suppose that Asj � uj = Asj+1
� uj . Then necessarily Dsj � uj 6= Dsj+1

� uj .
By Lemma 2.5, cj would be cancelled prior to stage sj+1, which we just argued is
not the case. �

We are now ready to define our ordinal bound. For each j > j∗ and σ ∈ a, since
minT (σ) = sinit(σ) < sj∗ , we can let

tj(σ) = max
(
T (σ) ∩ sj

)
,

that is, tj(σ) is the last stage in T (σ) prior to stage sj . For j > j∗ we then let

oj(x) = α ·

(⊕
σ∈a

ζtj(σ)(σ)

)
+ θj .

Since βαω is closed under addition,
⊕

σ∈aj ζtj(σ)(σ) < βαω, and as θj < α, oj(x) <

αβαω.
We need to show that for all j > j∗, oj(x) > oj+1(x), and if Φd(A,D, x)[sj] 6=

Φd(A,D, x)[sj+1] then oj(x) > oj+1(x).
Let j > j∗. If sj ∈ T (σ) for some σ ∈ aj then tj(σ) < tj+1(σ), and so ζtj(σ)(σ) >

ζtj+1(σ)(σ); as θj < α, it follows that oj(x) > oj+1(x).
Suppose that sj /∈

⋃
σ∈a T (σ). For all σ ∈ a, ζtj(σ)(σ) > ζtj+1(σ)(σ); and θj >

θj+1, so together we get oj(x) > oj+1(x). If Φd(A,D, x)[sj] 6= Φd(A,D, x)[sj+1]
then Claim 2.15.5 says that θj > θj+1, which implies that oj(x) > oj+1(x).

This concludes the proof of Lemma 2.15, and so of Theorem 1.4. �

2.1. Powers of α. We could modify the previous construction: instead of diago-
nalising against all β-c.a. functions we can diagonalise against all functions which
are γ-c.a. for some γ < β. Of course if β is a successor power of ω then we get noth-
ing new. Suppose then that β is a limit of powers of ω. We then get degT(A⊕D)
to be not totally (< β)-c.a., which is actually stronger than not totally γ-c.a. for
all γ < α (see [DG20, Sec.3.4]). Further, every f 6T A⊕D has an approximation
where on each input we start with an ordinal bounded below αγαω for some γ < α.
Suppose further that β is a limit of power of α. Then αγαω < β. In this case
we have constructed a properly totally β-c.a. degree. So for example, above every
totally ω-c.a. degree there is one which is properly totally ωω-c.a., ωω·2-c.a., and
so on. This is a special case of Theorem 1.7, and as we discussed, gives a little bit
more in the cases it applies (being not totally (< β)-c.a.). It would be interesting
to find a direct construction proving all cases of Theorem 1.7.

3. Existence of maximal degrees in upper cones

In this section we prove Theorem 1.7. Indeed we prove the slightly more general
theorem:

Theorem 3.1. Let α 6 β < ε0. Above every totally α-c.a. degree there is a degree d
which is totally (αβ)-c.a., but such that no degree strictly above d is totally β-c.a.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 17

Theorem 1.7 follows since if β > αω then αβ = β.

Let α, β be as in the theorem, and let A be a c.e. set of totally α-c.a. degree. We
proceed to enumerate a c.e. set D with the intent that d = degT(A ⊕D) satisfies
the conclusion of the theorem. As well as building on the previous construction,
the proof utilises some ideas of the proof of Theorem 4.1 from [DG20].

Requirements. Let 〈Φd〉d<ω be an enumeration of all functionals. To ensure that
degT(A⊕D) is totally (αβ)-c.a., we must meet the set of requirements given by:

for all d < ω, Qd : If Φd(A,D) is total, then it is (αβ)-c.a.

For the maximality property of degT(A ⊕ D), we need to ensure that for all
e < ω, either We 6T A⊕D or degT(A⊕D⊕We) is not totally β-c.a. To this end,
we enumerate a Turing functional Λe with the intent that either We 6T A⊕D, or
Λe(D,We) is not β-c.a. Again we do not have use for the oracle A. We meet the
following set of requirements:

for all e, i < ω, P ie : If
〈
fβ,is , oβ,is

〉
is eventually β-computable, then

Λe(D,We) 6= fβ,i, or We 6T A⊕D.

Discussion. As usual, we work with a tree of strategies. Nodes τ working for Qd
behave in exactly the same way as in the previous construction. The difference
is the analysis of the ordinal number of D-changes that may injure a certified
computation; we need to get that below β. This analysis is made easier than in the
previous proof, because the extra oracle We allows us to lift uses λe(p) beyond the
use ϕd(x) of a certified computation. On the other hand, in order to compute We,
we will need to appoint a possibly infinite sequence of followers for every σ, and σ
may act positively infinitely often.

Let us discuss this in greater detail. Suppose that σ appoints a follower p with
the aim of making Λe(D,We, p) 6= fβ,i(p). A new restriction is that we are not
allowed any action while oβ,is (p) = β; we need to provide to τ above us an ordinal
strictly smaller than β. This creates a timing difficulty: σ firsts appoints p; then τ
certifies Φd(A,D, x); only later do we see oβ,is (p) < β. We need to protect Φd(x)
from p. To do this, we first wait for a We-change that allows us to lift λe(p). Once
this has happened, we can attack with p. If we never see such a change, then we
made a step toward computing We.

It seems though that we nonetheless run into the same problem as in the previous
construction: after we lift the use we get an A-change below ϕd(x) for a protected
computation. Even if we allowed A as an extra oracle for Λe, we would still need
to immediately redefine the use λe(p), and the new ϕd(x) use which is revealed
only later is greater. Recall however that we are not trying to show that We is
computable, merely computable from A⊕D. Thus, when we get such an A-change,
we again cancel the follower p. In this construction, this allows us to make progress
on computing We from A⊕D.

Now unlike the previous construction, we do not want the α-ordinal count tracked
by some τ̄ to force follower cancellations; we are trying to keep the ordinals tracking
D-changes below β, not below βαω. Thus, which Φd(x) computations are protected
must be determined by follower rather being the same for all followers for σ. That is,
the later a follower is appointed, the more computations Φd(x) it needs to protect.
There will be no last follower appointed; so we could have infinitely many cycles in
which σ starts acting for p, enumerating numbers into D, and then p gets cancelled.

18 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

We will need to argue that τ lying below σ will not by injured infinitely often by σ.
Such a node τ will guess that σ acts infinitely often, and it works in σ’s “wake”: it
waits for a cycle of attack to finish, and then certifies some computations; the next
attack cycle will start with lifting the use to a much larger number.

Strategy tree. A node τ working for requirement Qd is structured exactly as in
the previous construction, with descendants being τ f̂, τˆ∞, τˆ∞ f̂y, τˆ∞ˆ∞n, and
τˆ∞ˆ∞n k̂. As in the previous construction, since A is low2, we have a computable
list ls(τ, n) of sequences, non-decreasing in s, such that Φ̂τ (A) is total if and only
if the sequence 〈ls(τ, n)〉s<ω is unbounded for some n.

A node σ working for requirement P ie has outcomes ∞ and f, with ∞ < f, which
guess whether σ will act infinitely or finitely often (respectively). Both children
of σ work for the next (lower priority) requirement.

The node σ is responsible for the enumeration of an enumeration functional
∆σ, with the aim of having either Λe(D,We) 6= fβ,i, or ∆σ(A,D) = W {

e (the
complement of We).

During the construction, the node σ will likely appoint several followers. Each
follower p is connected with a particular potential element k of We; we write p =
p(σ, k). Unless σ is initialised, at most one follower is appointed for each k, and so
the value p(σ, k) does not depend on the stage. Nor does the index of a particular
follower ever change.

A follower p for σ may become realised at some σ-stage. This will be a σ-stage at
which we see oβ,is (p) < β. At a later stage a realised follower may become permitted.
An unrealised follower, or a permitted follower, can later be cancelled; a realised
but unpermitted follower will only be cancelled if σ is initialised.

A follower p = p(σ, k) will be permitted at a stage s if k ∈ We,s rWe,s−1. This
may not be a σ-stage. To keep Λe(D,We) total, it is important that we redefine the
lifted use λe,s+1(p) immediately. For that reason, the proof of Lemma 2.4 doesn’t
apply in this construction; it relies on the use being lifted only during σ-stages.
We therefore need to actively protect the computations that were covered by that
lemma.

To this end, we let prec(σ) be the set of nodes τ which work for some require-
ment Qd such that τˆ∞ ≺ σ. We let τ ∈ prec∞(σ) if τˆ∞ˆ∞n ≺ σ for some n;
for y < ω, we let τ ∈ precy(σ) if τˆ∞ f̂y 4 σ. When a follower p is realised, we

define numbers mτ (p) for all τ ∈ prec∞(σ) (which are not changed later). We then
let Pr(p) be the set of pairs (d, x) such that for some τ ∈ prec(σ) working for Qd,
either

• τ ∈ prec∞(σ), and x < mτ (p); or
• τ ∈ precy(σ), and x < y.

Again, the idea is that for (d, x) ∈ Pr(p), the computation Φd(A,D, x) should be
protected from actions for p.

The functionals Λe take as oracles both D and We. We will give each oracle
a separate use: each oracle is queried on a single number. We denote the D-use
of a computation Λ(D,We, p)[s] by λe,s(p). If p = p(σ, k) for some σ working
for P ie , then the We-use of the computation is k; that is, such a computation can be
removed if k later enters We. Otherwise, no We-changes can affect the computation
(including when p is not currently a follower for such σ).

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 19

Construction. Let s be a stage. First, at s, we observe the effects of enumerations
into We. Let σ be a node which works for requirement P ie ; and suppose that
k ∈We,s rWe,s−1. Suppose that p = p(σ, k) is currently defined.

(1) If p is currently unrealised, we cancel it.
(2) If p is realised, then we redefine Λe,s+1(Ds+1,We,s, p) with large value

and large D-use λe,s+1(p) (and no We-use); we will ensure below that
Λe(D,We, p)↑ [s]. Henceforth p is permitted.

If such action occurred, we end the stage.

If the stage was not terminated, we proceed to define the collection γs of acces-
sible nodes, and act according to the instructions below. The first accessible node
is the empty node.

Let τ ∈ γs work for requirement Qd. The instructions for τ , and the designation
of the next accessible nodes, are precisely as in the previous construction.

Let σ ∈ γs work for requirement P ie . There are several possible circumstances
for σ which require individual attention.

(i) σ has a permitted follower. There may be more than one permitted follower.
For each permitted follower p = p(σ, k):
(a) If k /∈ ∆σ(A,D)[s], then we cancel the follower p.
(b) If k ∈ ∆σ(A,D)[s] and Λe(D,We, p)[s] = fβ,is (p), then we enumerate

λe,s(p) into Ds+1, and redefine Λe,s+1(Ds+1,We,s, p) to be large, with
large D-use λe,s+1(p) (and no We-use). For all τ ∈ prec∞(σ), for all
x > mτ (p), we cancel the tracker trs(τ, x) if it is defined.

Now we decide which if any child of σ is next accessible:
(1) If λe,s(p) was enumerated into Ds+1 for some follower p, then we initialise

all nodes to the right of σˆ∞, including σ f̂. We do not initialise nodes
extending σˆ∞. We end the stage s.

(2) Otherwise, if all permitted followers were just cancelled, then we let σˆ∞
be next accessible.

(3) Otherwise, we let σ f̂ be next accessible.
(ii) σ has no permitted followers, but does have a yet unrealised follower p =

p(σ, k). There will be at most one such follower.
(a) If oβ,is (p) = β then we let σ f̂ be next accessible.
(b) If oβ,is (p) < β then we let, for all τ ∈ prec∞(σ), mτ (p) = dom Φd(A,D)[s],

where τ works for Qd. The follower p is henceforth realised. We let σ f̂ be
next accessible.

(iii) Suppose that σ has no followers, or that all followers for σ are already realised,
but none are permitted.

We maintain ∆σ. For each k such that p(σ, k) is defined, if k /∈ ∆σ(A,D)[s],
then we let k ∈ ∆σ,s+1(As, Ds) with use

δσ,s+1(k) = max {ϕd,s(x) : (d, x) ∈ Pr(p)} .

We will observe below that indeed for each (d, x) ∈ Pr(p), Φd(A,D, x)↓ [s].

We then let k be the least element of W {
e,s such that p(σ, k) is yet un-

defined. We pick a new, large follower p and let p = p(σ, k). We define
Λe,s+1(Ds,We,s, p) to be large with large D-use and We-use k. We initialise
all nodes to the right of σ (but not nodes extending σ f̂). We end the stage.

20 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

Note that we eventually run into a long node σ with no followers, so each stage
has only finitely many steps.

At the end of every stage, we maintain the functionals Λe as in the previous
construction: for any pair (e, p) 6 s such that p is not currently a follower for any
node σ working for P ie for some i < ω, if p 6∈ dom Λe(D,We)[s] then we define a
permanent computation Λe(D,We, p) with use −1.

Verification. Before we begin our verification, we need to show that the construction
can run smoothly, in that its instructions can be carried out.

Lemma 3.2. Let σ be a node working for requirement P ie .

(1) If p = p(σ, k) is a realised follower for σ at the start of stage s, and k ∈
We,s rWe,s−1, then Λe(D,We, p)↑ [s].

(2) If p is a follower for σ at a σ-stage s, and p is realised by the end of the
stage, then for all (d, x) ∈ Pr(p), Φd(A,D, x)↓ [s].

(3) Between stages at which σ is initialised, for all k, σ appoints at most one
follower p(σ, k).

Proof. For (1), let t < s be the stage at which p is appointed. At that stage we
define a computation Λe(D,We, p) with some D-use λe,t+1(p) and We-use k. We
never act for p before it is permitted, and so this computation is preserved until
stage s, at which k’s entry into We invalidates it.

For (2), Let t 6 s be the σ-stage at which p is first realised (and mτ (p) and
hence Pr(p) defined). Let (d, x) ∈ Pr(p); let τ ∈ prec(σ) work for Qd. Suppose
that τ ∈ precy(σ); so y > x. Since s is a σˆ∞ f̂y-stage, the instructions imply

that y > dom Φd(A,D)[s]. Suppose that τ ∈ prec∞(σ); so x < mτ (p). If t = s
then we define mτ (p) = dom Φd(A,D)[s]. If s > t then as s is a τˆ∞-stage,
dom Φd(A,D)[s] > t > mτ (p).

For (3), suppose that at stage t, a follower p = p(σ, k) is appointed. Before σ is
initialised, p will only be cancelled after k enters We (either because this happens
while p is still unrealised, or after p is permitted.) Later, no new follower p(σ, k)
will ever be appointed. �

Lemma 3.3. For any node σ working for P ie , if p = p(σ, k) is a follower for σ
at the beginning of stage s, and it is not the case that k ∈ We,s r We,s−1, then
Λe(D,We, p)↓ [s].

Proof. A computation is defined with We-use k (where p = p(σ, k)) at the stage t <
s at which p is first appointed. Whenever σ itself destroys the computation by
enumerating its D-use into D, a new computation is immediately set up. If k
enters We, we either immediately cancel p (if it is unrealised), or permit p, at which
stage a new computation with no We-use is defined. �

Our next task is to show that protection works: action for a follower p cannot
injure a computation Φd(A,D, x) for any (d, x) ∈ Pr(p).

Lemma 3.4. Let p be a follower for a node σ working for requirement P ie , and
suppose that λe,s(p) ∈ Ds+1 rDs. Then for all (d, x) ∈ Pr(p), ϕd,s(x) < λe,s(p).

Proof. The stage s is a σ-stage. The follower p = p(σ, k) received permission at
some stage t < s. At stage s, k ∈ ∆σ(A,D)[s], as otherwise we would cancel p rather

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 21

than act for it. Let r < s be the stage at which this enumeration was defined. Then
r < t, as between t and s, no new ∆σ(A,D)-enumerations are defined.

As σ was not initialised between stages r and s, by stage r, p was already chosen
as a follower and realised. At stage r we define δσ,s(k) = δσ,r+1(k) = max{ϕd,r(x) :
(d, x) ∈ Pr(p)}. By our choice of r, we have Ar � δσ,s(k) = As � δσ,s(k), and the
same holds for D. Hence for all (d, x) ∈ Pr(p), ϕd,r(x) = ϕd,s(x) by the same
computation. At stage t we lift λe,t+1(p) to be large, and so λe,s(p) > t > ϕd,r(x)
(recall r < t). �

As in the previous proof, we need to be sure that if a computation is destroyed
by a change in D, its tracker is cancelled immediately, to allow us to correctly
anticipate further A-changes. Note that the following lemma implies that though
we may have infinite positive action by a node on the true path, this action will not
injure weaker nodes on the true path: they simply wait for the action and confirm
only relatively small numbers.

Lemma 3.5. Let τ be a node working for requirement Qd. Let s be a stage; let
x < ω be such that c = trs(τ, x) is defined. Suppose that Φ̂τ (A, c)↓ [s], and let
u = ϕ̂τ,s(c). Then:

(i) Φd(A,D, x)↓ [s] and u = ϕd,s(x).
(ii) If Ds � u 6= Ds+1 � u then the tracker c is cancelled at stage s.

Proof. Suppose that (i) and (ii) hold up to stage s, and that the lemma’s hypotheses
hold at s. The proof of part (i) is identical to the corresponding part of Lemma 2.5.

Again let t < s be the stage at which the computation Φ̂τ (A, c)[s] was defined.
For (ii), suppose that Ds � u 6= Ds+1 � u; then at stage s we enumerate a

number λe,s(p) < u into D, where p is a follower for a node σ, which works for
requirement P ie .

Since λe,s(p) < u = ϕd,t(x), we know that the computation Λe(D,We, p)[s] was
defined prior to stage t; so p was permitted prior to stage t.

As before we ask: how does τ relate to σ?
If σ lies to the right of τˆ∞, then σ is initialised at stage t; this is impossible. If τ

lies to the right of σˆ∞, then τ is initialised at stage s; in particular, c is cancelled
at s.

There are two possibilities left: σˆ∞ 4 τ , and τˆ∞ ≺ σ.
Suppose that σˆ∞ 4 τ . Since t is a τ -stage, it is also a σˆ∞-stage. But at the

end of every σˆ∞-stage, σ has no permitted followers, contradicting p being such a
follower.

Hence τˆ∞ ≺ σ, i.e., τ ∈ prec(σ). By Lemma 3.4, (d, x) /∈ Pr(p).
Suppose that τ ∈ precy(σ). Then x > y. Since s is a τˆ∞ f̂y-stage, the computa-

tion Φd(A,D, x)[t] is destroyed by stage s; this is not the case. Hence τ ∈ prec∞(σ);
and as x > mτ (p), at stage s, σ is instructed to cancel c. �

We obtain the analogue of Corollary 2.6:

Corollary 3.6. Let τ be a node working for requirement Qd. Let x < ω, and
suppose that at some point a tracker c = tr(τ, x) is defined and is never cancelled.

Suppose that Φ̂τ (A, c)↓. Then Φd(A,D, x)↓.

We also obtain the analogue of Lemma 2.7, with the same proof:

22 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

Lemma 3.7. Let σ be a node which works for P ie , and let p be a follower for σ.
There are only finitely many stages s at which σ acts on p’s behalf by enumerating
λe,s(p) into Ds+1.

Let the true path, γω, consist of the nodes µ such that:

(i) µ ∈ γs for infinitely many s; and
(ii) µ is initialised only finitely often.

Note that unlike the previous construction, in this construction nodes sometimes
get initialised even if they don’t lie to the right of γs, namely when a node σ acts
by enumeration into D. This needs to be taken into consideration when proving
some node lies on the true path.

Lemma 3.8. Suppose that τ works for Qd and that τˆ∞ ∈ γω.

(1) Every x < ω is eventually appointed a tracker which is never cancelled.

(2) If Φd(A,D) is total then so is Φ̂τ (A), and for some n < ω, τˆ∞ˆ∞n ∈ γω.

(3) If Φd(A,D) is partial then so is Φ̂τ (A), and τˆ∞ f̂y ∈ γω, where y =
dom Φd(A,D).

Proof. The proof is almost identical to the proof of Lemma 2.11. For (1), we
need to observe that for all x < ω, there are only finitely many followers p ever
appointed such that mτ (p) 6 x; again this happens because dom Φd(A,D)[s] is
strictly increasing on the τˆ∞-stages; now Lemma 3.7 suffices, we have no need for
something like Lemma 2.10.

For (2), we only need to add that if τˆ∞ˆ∞n is initialised at stage s, but this
node does not lie to the right of γs, then τ is initialised at stage s. The same holds
for τˆ∞ f̂y for (3). �

Corollary 3.9. Let σ ∈ γω work for P ie ; let p = p(σ, k) be a realised follower for σ,
appointed after the last stage at which σ is initialised. For every (d, x) ∈ Pr(p),
Φd(A,D, x)↓. Hence, the set {δσ,s(k) : s < ω is such that k ∈ ∆σ(A,D)[s]} is
bounded.

Proof. Let (d, x) ∈ Pr(p); let τ ∈ prec(σ) which works for Qd. If τ ∈ prec∞(σ)
then Φd(A,D) is total. If τ ∈ precy(σ) then x < y = dom Φd(A,D). The second

part follows from the definition of δσ,s+1(k). �

Lemma 3.10. Let σ ∈ γω work for requirement P ie . Then either σˆ∞ ∈ γω or
σ f̂ ∈ γω.

Proof. If σˆ∞ is accessible infinitely often, then it lies on the true path. Suppose,
then, that this doesn’t happen; let s∗ be a stage after which σ is never initialised,
and σˆ∞ never accessible.

There are a couple of possibilities. If there is a stage t > s∗ such that at t,
some follower for p is permitted, then after stage t, no new followers will ever be
appointed. By Lemma 3.7, there will be only finitely many stages after stage t at
which σ is the last accessible stage and σ f̂ is initialised. In all other σ stages after
stage t, σ f̂ is accessible. Hence σ f̂ ∈ γω.

Otherwise, σ f̂ is not initialised after stage s∗. We may or may not appoint
infinitely many followers for σ. However even if we do, if t > s∗ is a σ-stage at
which we appoint a follower and end the stage, then at the next σ-stage, σ f̂ is
accessible. Hence in this case too, σ f̂ ∈ γω. �

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 23

Lemma 3.11. The true path γω is infinite.

Proof. First we need to show that the empty node lies on the true path. This
amounts to showing that it is impossible that at all but finitely many stages, some
realised follower gets permitted or an unrealised follower cancelled. But in that
case, there are only finitely many followers ever appointed, and each such follower
is realised or cancelled at most once.

We the observe that every node on the true path has a child on the true path.
Nodes τ working for Qd and their derivative nodes are dealt with precisely as in
the proof of Lemma 2.12, using Lemma 3.8. Nodes σ working for some P ie are dealt
with in Lemma 3.10. �

Lemma 3.12. For all e, Λe(D,We) is total.

Proof. Like the proof of Lemma 2.13, using Lemmas 3.3 and 3.7. �

Lemma 3.13. Every requirement P ie is met.

Proof. There are three possibilities.

First, suppose that some follower p for σ is permitted and never cancelled. The
argument of Lemma 2.14 shows that Λe(D,We)(p) 6= fβ,i(p), and so the require-
ment is met.

Second, suppose that some follower p for σ is appointed, never cancelled, and
never realised. Then oβ,is (p) = β for all s. In this case the requirement P ie is met
vacuously: the approximation

〈
fβ,is , oβ,is

〉
is not eventually β-computable.

The last possibility is that every follower is eventually cancelled or realised; but
every permitted follower is later cancelled. In this case we show that ∆σ(A,D) =

W {
e .
For one direction, we use:

Claim 3.13.1. Suppose that s is a σ-stage and suppose that at stage s, σ has no
permitted followers. Then ∆σ(A,D)[s] ⊆W {

e,s.

Proof. Let k ∈ ∆σ(A,D)[s]. Let r be the σ-stage at which the enumeration was
defined. At stage r, p = p(σ, k) is defined, realised but not permitted, and so
k /∈ We,r. Suppose that k is enumerated into We,t at some stage t ∈ (r, s]. Then p
becomes permitted at stage t, and so t < s. By assumption, p is cancelled prior to
stage s. It is cancelled (at stage w ∈ (t, s)) because k /∈ ∆σ(A,D)[w], contrary to
our choice of r. �

Now we note that there are infinitely many σ-stages s at which σ has no permit-
ted follower: suppose that t is a σ-stage at which σ has some permitted followers.
While σ has some permitted followers, no new followers are appointed. Each per-
mitted follower is eventually cancelled. Hence, even if more followers are permitted
(while some permitted followers from stage t are still around), eventually there will
be a σˆ∞-stage. The next σ-stage after that is as required. Overall, we conclude
that ∆σ(A,D) ⊆W {

e .

In the other direction, we observe that there are infinitely many σ-stages s at
which option (iii) is taken: ∆σ is maintained and a new follower is appointed. If r is
such a stage (after the last stage at which σ is initialised), then at some the follower p
appointed at stage r is either cancelled or realised at some stage t > r. Either the

24 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

next σ stage after stage t is as required; or some follower for σ is permitted before
that next σ-stage. We then undergo an “attack cycle”; as above, the next σ-stage
after the following σˆ∞-stage is as required.

By induction on k ∈ W {
e , we show that at some stage s we appoint a follower

p = p(σ, k). Since k /∈ We, this follower is never cancelled. Hence it is never
permitted; but by assumption, it is at some point realised. At infinitely many
σ-stages s, if k /∈ ∆σ(A,D)[s], then we define a new enumeration at stage s. By
Corollary 3.9, all of these enumerations’ uses are bounded, and so one must be
(A,D)-correct. Hence k ∈ ∆σ(A,D). �

The following will conclude the proof of Theorem 3.1.

Lemma 3.14. For all d < ω, the requirement Qd is met.

Proof. The proof is similar to the proof of Lemma 2.15, but simpler, because we
do not need to count the (ordinal) number of possible followers for a node σ.

Let d < ω, and suppose that Φd(A,D) is total. Let τ be the node on the true path
working for Qd. Then τˆ∞ ∈ γω; by Lemmas 3.8 and 3.11, for some n and k < ω,
ρ = τˆ∞ˆ∞n k̂ lies on the true path. Let s0 < s1 < · · · be the ρ-stages following
the last stage at which ρ is initialised. We proceed to define an (αβ)-computable
approximation 〈fs, os〉 for Φd(A,D).

From now on, fix x < ω. Let j∗ = j∗(x) be the least j > 0 such that x < sj−1.
For all j > j∗, Φd(A,D, x)↓ [sj]. So for all j > j∗ we let fj(x) = Φd(A,D, x)[sj].
Certainly limj→∞ fj(x) = Φd(A,D, x). Let uj = uj(x) = ϕd,sj (x).

Again we measure A-changes and D-changes. The A-changes are measured ex-
actly as in the previous construction: for j > j∗ we define

θj = θj(x) = oα,ksj (cj),

where cj = cj(x) = trsj (τ, x). We again use the following claim, whose proof is
identical to the proof of Claim 2.15.1.

Claim 3.14.1. For all j > j∗, θj < α. Suppose that cj = cj+1. Then θj > θj+1; and
if Asj � uj 6= Asj+1

� uj then θj > θj+1.

To measure the D-changes, we let a = a(x) be the collection of followers p for
nodes σ < ρ which are already realised by stage sj∗ (and not cancelled before that
stage). We do not need to define aj . For each follower p ∈ a(x) let T (p) be the set
of stages t such that either:

• p is realised at stage t; or
• at stage t, p’s node σ enumerates λe,t(p) into Dt+1 (where σ works for P ie).

So for all p ∈ a(x), minT (p) < sj∗ . As above, for t ∈ T (p) we let

εt(p) = oβ,it (p).

Claim 3.14.2. For all p ∈ a(x), for all t ∈ T (p), εt(p) < β. If t0 < t1 are stages in
T (p) then εt0(p) > εt1(p).

Proof. The first part follows from the fact that p is realised at or before stage t.
The second part is similar to the proof of Claim 2.15.2. Since t1 6= minT (p), we

have Λe(D,We, p)[t1] = fβ,it1 (p), where p’s node σ works for P ie . The follower p was
permitted before stage t1. Again the point is that Λe(D,We, p)[t1] > t0, as the
t1-computation is defined no later than stage t0: either σ acts for p at stage t0 and

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 25

defines a new computation then; or t0 = minT (p) and p is permitted at some stage
between t0 and t1, at which a new computation is defined. �

Finally, we need:

Claim 3.14.3. Let j > j∗. Suppose that Φd(A,D, x)[sj] 6= Φd(A,D, x)[sj+1], and
that sj /∈

⋃
p∈a T (p). Then θj > θj+1.

Proof. Essentially identical to the proof of Claim 2.15.5. We need to show that if
action for a follower p of a node σ destroys the sj-computation then p ∈ a. The
argument is the same: σ must be an extension of ρ, and p must be realised prior
to stage sj∗ , otherwise x < mτ (p). �

The rest is again the same (but simpler). For each j > j∗ and p ∈ a, we let

tj(p) = maxT (p) ∩ sj .

We then let

oj(x) = α ·
⊕
p∈a

εtj(p)(p) + θj .

The claims above show this works. �

4. Above a superlow c.e. degree

Recall that a set A is superlow if A′ ≡wtt ∅′. If A is c.e. then superlowness is
equivalent to a stronger property, namely the approximability of the jump function.
To make sense of approximations, we identify a partial function ϕ with a total
function from ω to ω ∪ {↑}, where the value ↑ denotes that the input is not in the
domain of ϕ. Schaeffer [Sch98] showed that a c.e. set is superlow if and only if every
A-partial computable function ϕ is ω-c.a., considered as a total function. That is,
there is an ω-computable approximation 〈fs〉 of functions from ω to ω ∪ {↑} such
that ϕ = lims fs. It follows that every c.e., superlow degree is totally ω-c.a. In fact,
because there is a universal A-partial computable function, every c.e. superlow set
is array computable.

Theorem 4.1. Let β 6 ε0 be a power of ω. Every c.e. superlow degree is bounded
by a (c.e.) maximal β-c.a. degree (and hence by a properly β-c.a. degree).

Let A be a superlow c.e. set. We enumerate a set D such that degT(A ⊕D) is
maximal β-c.a.

Requirements. The requirements are similar to the ones for the previous construc-
tion (Section 2). Let 〈Φd〉d<ω be an enumeration of all Turing functionals. To make
A⊕D totally β-c.a., we need to ensure,

for all d < ω, Qd: If Φd(A,D) is total, then it is β-c.a.

For the maximality property, we enumerate a Turing functional Λe with the
intent that either We 6T A⊕D, or Λe(D,We) is not β-c.a. We meet the following
set of requirements:

for all e, i < ω, P ie : If
〈
fβ,is , oβ,is

〉
is eventually β-computable, then

Λe(D,We) 6= fβ,i, or We 6T A⊕D.

26 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

Discussion. The construction is similar to the previous one (proving Theorem 3.1).
The extra strength we have is the ability to approximation not only total A-
computable functions but also partial ones. How does this help? Now a node τ ,
working for Qd, is not required to make Φ̂τ (A) total, even if Φd(A,D) is. What
this means is that we are allowed to reserve future trackers for each input x for
Φd(A,D).

Consider first the simpler case, β = ω. In this case, a node τ , upon first cer-
tifying a computation Φd(A,D, x), knows a bound on the number k of times a
D-enumeration can injure a computation it certifies. It can reserve a set of k-many
trackers and immediately find a bound on the number of times any one of them
will record an A-change. Adding these up we get an overall bound and so can give
an ω-computable approximation for Φd(A,D, x). If the number of D-changes does

not reach the bound k then Φ̂τ (c) will remain undefined for some unused trackers.
In the slightly more complicated case β > ω, we present the ordinal bound on D-

changes at a given stage t as δt + mt, where δt is a limit ordinal (smaller than β)
and mt < ω. If t is the first stage at which we see the current value of δt then
we reserve a set of mt-many trackers, and get a bound on the number of A- and
D-changes until the limit ordinal δt is decreased. When we get a new version of δt,
we repeat the process with a new set of trackers.

Strategy Tree. A less important yet convenient advantage in the superlow case is
the existence of a universal A-partial computable function; this gives us a way to
obtain approximations uniformly, so they don’t need to be guessed. A node τ on
the tree working for Qd has two outcomes ∞ < f, with τ f̂ working for the next,
weaker requirement on our ω-list of requirements. The node τˆ∞ has outcomes
∞ < f0 < f1 < f2 <

The node τ enumerates a “shadow” functional Φ̂τ as in the previous construc-
tions. By the fixed-point theorem, we know an index for this functional, that is, a
column of the jump function JA which copies Φ̂τ (A). Using a fixed ω-computable
approximation for JA, we obtain, uniformly in τ , an ω-computable approxima-
tion 〈fτs , oτs 〉 of Φ̂τ (A). We use this not only to track the number of A-changes
of a computation Φd(A,D, x) (between two D-changes), but also to replace the
low2 guessing procedure that indirectly gave us a guess about dom Φd(A,D); low-

ness allows us to directly ask if Φ̂τ (A, c)↓, and as above if c is the last tracker

for y = dom Φd(A,D) then Φ̂τ (A, c)↑.
Nodes σ working for P ie again have two outcomes ∞ < f. We let prec(σ) be the

collection of nodes τ working for some Qd such that τˆ∞ 4 σ. We let prec∞(σ)
be the collection of nodes τ such that τˆ∞ˆ∞ 4 σ; for y < ω, we let precy(σ) be
the collection of nodes τ such that τˆ∞ f̂y 4 σ. As above, when a follower p for σ
is realised we define mτ (p) for all τ ∈ prec∞(σ); this will define Pr(p) in the same
way as in the previous construction.

Construction. The construction is identical to the construction proving Theorem 3.1,
except that the behaviour of the τ -nodes is a bit simpler. Every stage s starts with
an attempt to permit realised followers of nodes σ, or cancel unrealised followers
for such nodes, based on enumerations of numbers into We,s. The instructions are
the same as in the previous construction.

Suppose that a node τ , working for requirement Qd, is accessible at stage s. Let
t < s be the last stage before s at which τˆ∞ was accessible, or t = 0 if there is no

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 27

such stage. If dom Φd(A,D)[s] 6 t, we let τ f̂ be next accessible. Otherwise we let
τˆ∞ be next accessible.

Suppose that τˆ∞ is accessible. We maintain the shadow functional and assign
new trackers. For all x such that c = trs(τ, x) is already defined, if Φ̂τ (A, c)↑ [s]

then we define a new computation Φ̂τ,s+1(As, c) with use ϕd,s(x) (and large value).
For each x < s for which trs(τ, x) is undefined we appoint a new tracker trs+1(τ, x).
Unlike the previous constructions, this new tracker is chosen as the next unused
element of the column ω[x] which is reserved for trackers for x.

Next we determine which outcome is accessible. Let r be the previous τˆ∞ˆ∞-
stage, r = 0 if there is no such stage. If for all x < r, c = trs(τ, x) is already

defined and Φ̂τ (A, c)↓ [s] = fτs (c) then we let τˆ∞ˆ∞ be next accessible.
Otherwise, let y be the least number such that Φd(A,D)↑ [t], or the computation

Φd(A,D, y)[t] was destroyed since stage t. We let τˆ∞ f̂y be next accessible.

The instructions for a node σ working for P ie are identical to those given in the
previous construction.

At the end of every stage we maintain the functionals Λe as above.

Verification. Most of the verification follows that of the previous construction, ex-
cept that in places it is simpler. We list the lemmas we need. Lemma 3.2 and its
proof is copied verbatim, as are the statements and proofs of Lemmas 3.3 to 3.5
and 3.7 and Corollary 3.6.

Lemma 3.8 is different. Indeed, Φ̂τ (A) will be partial. The following is what we
need:

Lemma 4.2. Suppose that τ works for D and that τˆ∞ ∈ γω.

(1) Every x < ω is eventually appointed a tracker which is never cancelled.
(2) If Φd(A,D) is total then τˆ∞ˆ∞ ∈ γω.
(3) If Φd(A,D) is partial then τˆ∞ f̂y ∈ γω, where y = dom Φd(A,D).

Proof. (1) is proved in the same way as the corresponding part of Lemma 3.8.

(2) is not complicated; for every r < ω, eventually each x < r will be appointed
a permanent tracker c, and as Φd(A,D, x)↓, eventually a permanent computation

Φ̂τ (A, c) will be defined, and eventually we will see it is equal to fτ (c).

The interesting part is (3). Suppose that y = dom Φd(A,D) is finite. For every
x < y, the outcome fx is guessed only finitely many times. It remains to show
that the outcome ∞ is chosen only finitely many times. Let c be the tracker which
is appointed for y and is never cancelled. Again by the analogue of Corollary 3.6,
Φ̂τ (A, c)↑. This by itself is not sufficient to prove that the outcome∞ is chosen only
finitely many times, as we may see infinitely many false convergences. However,
since Φ̂τ (A, c)↑, for all but finitely many s, fτs (p) =↑, and this guarantees what we
need. �

Corollary 3.9 and Lemmas 3.10 to 3.13 now follow, with the same proofs. All
that remains is:

Lemma 4.3. For all e < ω, the requirement Qd is met.

Proof. We start as in the proof of Lemma 3.14. Let τ on the true path work
for Qd, and suppose that Φd(A,D) is total. Let ρ = τˆ∞ˆ∞; ρ is on the true
path. Let s0 < s1 < s2 < . . . be the ρ-stages after the last stage at which ρ is

28 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

initialised. Fix x < ω; let j∗ be the least such that x < sj−1. For all j > j∗ we let
fj(x) = Φd(A,D, x)[sj].

Our mechanisms for counting A- and D-changes are the same. We define cj as
in the previous argument; we then let

θj = oτsj (cj);

then θj < ω. We then prove Claim 3.14.1 in the same way, noting that fτsj (cj) =

Φ̂τ (A, cj)[sj] for all j. For the D-changes we define a = a(x) and for p ∈ a, the
set T (p) of stages, as above. Similarly we define εt(p) for t ∈ T (p), and prove
Claims 3.14.2 and 3.14.3. In fact, we require the following, which is part of the
proof of Claim 3.14.3:

Claim 4.3.1. Let j > j∗. If cj 6= cj+1 then:

• sj ∈
⋃
p∈a T (p); and

• cj+1 is the successor of cj in ω[x].

This means: if cj 6= cj+1 then we know that cj is cancelled at stage sj by
some p ∈ a; further, cj+1 is the next tracker for x appointed at the next τˆ∞-stage
after stage sj — that tracker is not cancelled until possibly stage sj+1. The point
again is that nodes accessible between stages sj and sj+1 cannot cancel trackers
for x: only nodes extending ρ may do so.

Now define tj(p) as above; we then write, for each j > j∗,⊕
p∈a

εtj(p)(p) = δj +mj ,

where δj < β is a limit ordinal (or 0), and mj < ω.

We let Cj be the set of consecutive elements of ω[x] starting with cj and having
size mj + 1. That is, Cj consists of the current tracker cj , and the next mj-many
numbers that may be assigned as future trackers. We let

nj =
∑
c∈Cj

oτsj (c).

We then let

oj(x) = δj +mj + nj .

To prove that this works, we first need to show that if δj = δj+1 then nj > nj+1.
This will follow once we show that Cj ⊇ Cj+1. Note that under the assumption
δj = δj+1, we have mj > mj+1. If cj = cj+1 then Cj ⊇ Cj+1 is clear. If cj 6= cj+1

then sj ∈
⋃
p∈a T (p), and so δj + mj > δj+1 + mj+1; it follows that mj > mj+1,

and then cj+1 being cj ’s successor in ω[x] yields Cj ⊇ Cj+1. Hence for all j,
oj(x) > oj+1(x).

Suppose that Φd(A,D, x)[sj] 6= Φd(A,D, x)[sj+1]. If sj ∈
⋃
p∈a T (p) and δj =

δj+1 then mj > mj+1 (and nj > nj+1); so oj(x) > oj+1(x). Otherwise, θj > θj+1,
and as cj ∈ Cj , this implies nj > nj+1; in this case too oj(x) > oj+1(x). �

4.1. Higher levels of superlowness. We can generalise superlowness to higher
ordinals:

Definition 4.4. Let α 6 ε0. A set A is α-superlow if A′ is α-c.a.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 29

If A is c.e. then A is α-superlow if every A-partial computable function is α-c.a.,
equivalently, if a universal A-partial computable function (often denoted by JA) is
α-c.a. Every α-superlow (c.e.) degree is totally α-c.a. This is tight:

Proposition 4.5. Let α 6 ε0 be a power of ω. Then there is an α-superlow degree
which is not totally γ-c.a. for any γ < α.

Sketch of proof. This is a finite injury construction with shifting priorities. We
enumerate a c.e. set C and a functional Λ. The requirements to meet are:

For γ < α and i < ω, P γ,i: Λ(C) 6= fγ,i.

and

For all x < ω, Nx: JC(x) has an α-computable approximation.

A requirement P i,γ appoints a follower p, defines Λ(C, p)[s] and when it observes

that Λ(C, p)[t] = fγ,it (p) then it enumerates λt(p) into Ct+1 and defines a new
computation (with a new large use).

Let 〈Pe〉 be an ω-listing of all positive requirements. We start with the priority
ordering P0 < N0 < P1 < N1 <

A requirement Nx observes the action of positive requirements stronger than it.
When it sees a new JC(x) computation, it will cancel the followers of all weaker
positive requirements. However, when a positive requirement Pe acts, at some
stage t, it not only cancels the followers for all weaker positive requirements, it also
demotes them down the ordering: every requirement Pe′ for e′ > e is now declared
weaker than Nt.

By induction, we see that every positive requirement Pe is eventually never kicked
down the list, and acts only finitely often. Indeed, suppose that stage s is the last
stage at which positive requirements Pē for ē < e ever acts. Then at stage s the
final priority for Pe is determined to be between Ns and Ns+1. After stage s, each
requirement Nx for x 6 s will cancel Pe’s follower at most once. This is because
no positive requirement stronger than Nx will act after stage s. Thus, every JC(x)
computation observed by Nx after stage s is permanent.

What’s left is calculating an ordinal bound on the “number of times” that a
computation JC(x) observed by Nx is injured by the action of a positive require-
ment stronger than Nx. Let Pe be stronger than Nx at some stage s. Then we
know that Pe will not appoint more than x many followers while it is still stronger
than Nx. This is the same argument: while Pe is stronger than Nx, no requirement
Pē for ē < e acts. During that period, for each Ny stronger than Pe, we have
y < x, and Ny will cancel Pe’s follower at most once, as its own JC(y) computation
cannot be injured. Hence we can put an ordinal bound of γ ·x on the total number
of injuries that Pe can cause Nx, where Pe = P γ,i for some i. Since α is closed
under addition, γ · x < α. Adding for x many positive requirements (Pe for e 6 x)
still lands us below α. �

However, trying to generalise the proof of Theorem 4.1 to α-superlow degrees
instead of superlow degrees does not work. Here the fundamental difference is
the one between the number of times and (an ordinal) “number of times”. If A
is α-superlow then the number nj in the proof of the last lemma is replaced by
some ordinal below α; but we need, at each stage, consider cj and only finitely
many other trackers in the set Cj . There is no ordinal way to add up the ordinals
for infinitely many potential trackers. This means that in examining the ordinal

30 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

number of potential D-changes, we cannot replace the presentation δj + mj by
some δj + γj , where γj < α and δj is an ordinal multiple of α: such γj does not
tell us in advance a finite bound on the number of tracker needed before we see a
change in δj . If we stick to the presentation δj + mj , with mj < ω, then defining
oj(x) = δj + mj + ηj where ηj < α (or some other combination of mj and the
ordinals for potential trackers in Cj); but δj is not a multiple of α, and then oj(x)
is not necessarily decreasing. Hence we ask:

Question 4.6. Is every ω2-superlow degree bounded by a maximal totally ω2-c.a.
degree? Maximal ωn-c.a. for some or all n < ω?

5. A maximal interval and a proper ideal

5.1. A maximal interval. In this section we prove:

Theorem 5.1. Let α 6 ε0 be a power of ω. There are totally α-c.a. degrees a < b
such that every totally α-c.a. degree above a is below b.

So not only is b maximal totally α-c.a., it is even maximal over a.

We enumerate c.e. sets A and B with the intention that a = degT(A) and
b = degT(A⊕B) are as promised in the theorem.

Requirements. Some of the requirements are familiar. Let 〈Φd〉d<ω be an enumer-
ation of all Turing functionals. To make A⊕B totally α-c.a., we need to ensure,

for all d < ω, Qd: If Φd(A,B) is total, then it is α-c.a.

For the maximality property, for each e, we enumerate a Turing functional Λe
with the intent that either We 6T A⊕B, or Λe(A,We) is not α-c.a. We meet the
following set of requirements:

for all e, i < ω, P ie : If
〈
fα,is , oα,is

〉
is eventually α-computable, then

Λe(A,We) 6= fα,i, or We 6T A⊕B.

Finally, we add Friedberg-Muchnik requirements:

for all c < ω, Rc : Ψc(A) 6= B.

Here 〈Ψe〉 is an effective list of all Turing functionals; we use different notation to
avoid confusion between requirements.

Discussion. This is a mild elaboration on the construction of a maximal totally
α-c.a. degree from [DG20]. Essentially, we show that that construction is compat-
ible with the introduction of extra Friedberg-Muchnik requirements. Each such
requirement acts at most once, and so it is not difficult to take into account how
many injuries of this kind a certified computation Φd(A,B, x) will sustain.

Compared to previous constructions, this construction is simplified by not having
to work over a given A.

Strategy Tree. The tree is simplified as a result. A node τ working for Qd has two
outcomes ∞ < f. Both outcomes work for the next requirement.

A node σ working for P ie will appoint followers p(σ, k) as in the previous two
constructions. We let prec∞(σ) be the set of nodes τ working for some Qd such
that τˆ∞ 4 σ. Followers will be realised, permitted and cancelled as in previous
constructions; again we define mτ (p) for each τ ∈ prec∞(σ), and let Pr(p) be the
set of pairs (d, x) such that x < mτ (p) for τ ∈ prec∞(σ) working for Qd. And

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 31

as above, the node σ will build an enumeration functional ∆σ. The behaviour
of σ is much simplified; in fact, we barely need the functional ∆σ, and keep it for
consistency of presentation with the previous constructions. Indeed, if we see no
reason to cancel a follower when it is permitted, then we will not need to cancel it
later, and the attack with this follower will succeed.

Nodes σ working for requirements P ie , and nodes ρ working for requirements Rc,
have only one outcome. Their action will be finitary.

Construction. Let s be a stage. Let σ be a node which works for requirement P ie ;
and suppose that k ∈We,srWe,s−1. Suppose that p = p(σ, k) is currently defined.

(1) If k /∈ ∆σ(A,B)[s] then we cancel p.
(2) Otherwise, we redefine Λe,s+1(As+1,We,s, p) with large value and large A-

use λe,s+1(p) (and no We-use). Henceforth p is permitted. We cancel all
other followers for σ, and initialise all nodes weaker than σ (including proper
extensions of σ). We end the stage.

Note that if more than one node σ wishes as in (2), then we act for the strongest
one only, as the others will be immediately initialised.

If the stage was not terminated, we proceed to define the collection γs of acces-
sible nodes, and act according to the instructions below. The first accessible node
is the empty node.

Let τ ∈ γs work for requirement Qd. Let t be the last τˆ∞-stage prior to stage s,
if there was one; t = 0 otherwise. We let τˆ∞ ∈ γs if dom Φd(A,B)[s] > t; otherwise
τ f̂ ∈ γs.

Let σ ∈ γs work for requirement P ie . One of the following will hold:

(i) σ has permitted follower p. If Λe(A,We, p)[s] = fβ,is (p), then we enumerate
λe,s(p) into As+1, and redefine Λe,s+1(As+1,We,s, p) to be large, with large
A-use λe,s+1(p) (and no We-use); we then end the stage. Otherwise, we let σ’s
child be next accessible.

(ii) σ has a yet unrealised follower p. If oα,is (p) < α then we let, for all τ ∈
prec∞(σ), mτ (p) = dom Φd(A,B)[s], where τ works for Qd. The follower p
is henceforth realised. In either case, we let σ’s child be next accessible.

(iii) σ has no followers, or all followers for σ are already realised, but none are
permitted.

We maintain ∆σ. For each k such that p(σ, k) is defined, if k /∈ ∆σ(A,B)[s],
then we let k ∈ ∆σ,s+1(As, Bs) with use

δσ,s+1(k) = max {ϕd,s(x) : (d, x) ∈ Pr(p)} .

We then let k be the least element of W {
e,s such that p(σ, k) is yet unde-

fined. We pick a new, large follower p and let p = p(σ, k). We define
Λe,s+1(As,We,s, p) to be large with large A-use and We-use k. We then let
σ’s child be next accessible.

Suppose that ρ ∈ γs works for requirement Rc.

(i) If ρ has no follower, then we appoint a new, large follower q. We end the
stage.

(ii) If ρ has a follower q, Ψc(A, q)↓ [s] = 0, and q /∈ Bs, then we enumerate q
into Bs+1, and end the stage.

(iii) Otherwise, we let ρ’s child be next accessible.

32 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

At the end of the stage we initialise all nodes weaker than the last accessible node
(including all proper extensions of that node). We also maintain the functionals Λe
as usual to ensure their totality.

Verification. The usual lemma that ensures that the construction goes smoothly
holds. Lemma 3.2 holds (in (1), of course, replace D by A; in (2), by B); the proofs
are simpler. Similarly with Lemmas 3.3, 3.7 and 3.12.

The finitary nature of the construction and the simplicity of the Σ2/Π2 be-
haviour of nodes that work for Qd show that the true path is infinite, and that
every Friedberg-Muchnik requirement Rc is met. Toward showing that the P ie re-
quirements are met, we need to prove that A⊕B is low2.

Lemma 5.2. Let τ be a node working for Qd. Let t̄ < t be τˆ∞-stages; let x < t̄.

(1) Let ρ < τˆ∞ be a node working for Rc. Suppose that at t, ρ has a fol-
lower q; and suppose that q was appointed at some stage r ∈ (t̄, t). Then
Φd(A,B, x)↓ [t] and q > ϕd,t(x).

(2) Let σ < τˆ∞ be a node working for P ie . Suppose that at t, σ has a permitted
follower p; and suppose that p became realised at some stage r ∈ (t̄, t). Then
Φd(A,B, x)↓ [t] and λe,t(p) > ϕd,t(x).

Proof. (1): The stage r is a τˆ∞-stage greater than t̄, so x < dom Φd(A,B)[r]; q is
chosen large, so q > ϕd,r(x). We claim that Ar � ϕd,r(x) = At � ϕd,r(x) and that the
same holds for B; it follows that x < dom Φd(A,B)[t] and that ϕd,t(x) = ϕd,r(x).
For suppose that at some stage s ∈ [r, t), a number u < ϕd,r(x) enters either A
or B. This is done by some node µ. Since ρ is not initialised at stage s, µ must
be weaker than ρ. Certainly µ 6= ρ since q > ϕd,r(x). Hence µ is initialised at
stage r. But this means that any number associated with µ at stage s must be
greater than r, which is impossible.

(2) is similar, with the complication being that the stage w ∈ (r, t) at which p
became permitted is not a τˆ∞-stage. We do note however that r is a τˆ∞-stage
and so that mτ (p) > x. Since p is not cancelled at stage w, we know that k ∈
∆σ(A,B)[w], where p = p(σ, k). Let u be the stage at which this enumeration was
defined; so u is a σ-, hence a τˆ∞-stage, and r 6 u < w < t. At stage u we define
δσ,u(k) > ϕd,u(x), and there is no change in either A or B below δσ,u(x) between
stages u and w. At stage w we define λe,w+1(p) to be large, and initialise nodes
weaker than σ. Now the argument for (1) works: by considering initialisations,
no node µ can enumerate a number smaller than w into either A or B during the
interval of stages (w, t), whence ϕd,t(x) = ϕd,w(x) < λe,t(p). �

Lemma 5.3. Let τ be a node on the true path working for Qd. Then τˆ∞ is on
the true path if and only if Φd(A,B) is total.

Proof. In the non-trivial direction, suppose that τˆ∞ ∈ γω. Let x < ω; let t̄ be
a τˆ∞-stage such that t̄ > x. Lemma 5.2 says that only followers appointed or
realised at or before stage t̄ can ever injure a computation Φd(A,B, x)[t]; there are
finitely many such followers, and by the analogue of Lemma 3.7, each follower acts
finitely many times. �

Lemma 5.4. For every i, e < ω, the requirement P ie is met.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 33

Proof. The argument is like that for Lemma 3.13, but simpler, as permitted follow-
ers cannot be cancelled. Let σ be the node on the true path which works for P ie ;
let s∗ be a stage after which σ is never initialised.

First, suppose that some follower p for σ is permitted after stage s∗. Then the
usual argument shows that Λe(A,We, p) 6= fα,i(p), so the requirement is met.

Otherwise, suppose that some follower p for σ is never cancelled and never re-
alised; then the requirement is met vacuously.

Finally, if no follower is permitted, but all followers are realised, then ∆σ(A,B) =

W {
e , with a similar argument to that of Lemma 3.13. The key ingredient is the

analogue of Corollary 3.9, which in our case follows from Lemma 5.3. Claim 3.13.1 is
easier, since no attacks are cancelled: at every stage s we have ∆σ(A,B)[s] ⊆W {

e,s,
as otherwise, some follower is permitted. �

Lemma 5.5. For all d < ω, the requirement Qd is met.

Proof. We use the same terminology. Let s0 < s1 < . . . be the τˆ∞-stages after
the last stage at which τ is initialised, where τ ∈ γω works for Qd. Fix some x <
ω. Let j∗ be the the least such that x < sj∗−1. To track changes in fj(x) =
Φd(A,B, x)[sj], we define:

• a(x) be the collection of followers p for nodes σ < τˆ∞ working for P ie ,
which have been realised prior to stage sj∗ ;
• b(x) be the collection of followers q for nodes ρ < τˆ∞ working for Rc,

which were appointed prior to stage sj∗ .

Lemma 5.2, together with initialisations at τˆ∞-stages, shows that for all j > j∗,
if Φd(A,B, x)[sj] 6= Φd(A,B, x)[sj+1], then action is taken during stage sj for some
follower in either a(x) or b(x). Each follower in b(x) acts at most once; between any
two actions for some p ∈ a(x), the associated ordinal oα,i(p) drops. Hence again, for
p ∈ a(x) we let T (p) be the collection of stages t at which either p is first realised,
or λe,t(p) is enumerated into At+1; and for j > j∗ we let tj(p) = maxT (p)∩ sj . We
then let

δj(p) = oitj(p)(p),

where p is a follower for a node that works for P ie ; note that δj(p) < α as p is
realised at or after stage tj(p). Finally we let

oj(x) =
⊕
p∈a(x)

δj(p) +
∣∣ {q ∈ b(x) : q /∈ Bsj

} ∣∣.
If p acts at stage sj , then δj+1(p) < δj(p); if some follower in b(x) acts at stage s,
then the second summand shrinks. �

5.2. A maximal ideal. In this subsection we prove Theorem 1.8: for every α
there is some totally α-c.a. which is bounded by no maximal totally α-c.a. degree.
Paradoxically, the proof is yet another elaboration on the construction of a maximal
degree. We expand the construction of the previous subsection to construct a
“maximal (proper) ideal”:

Theorem 5.6. Let α 6 ε0 be a power of ω. There are totally α-c.a. degrees
d0 < d1 < d2 < . . . such that every totally α-c.a. degree above d0 lies below dn for
some n.

34 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

To prove the theorem, we enumerate sets A and B0, B1, B2, . . . with the intention
of letting dn = A⊕B0 ⊕B1 ⊕ · · · ⊕Bn−1.

Requirements. Let 〈Φd〉d<ω be an enumeration of all Turing functionals. To make
each dn totally α-c.a., we need to meet,

for all d, n < ω, Qnd : If Φd(A,B0, . . . , Bn−1) is total, then it is α-c.a.

For the maximality property, for each e, we enumerate a Turing functional Λe
and meet the following set of requirements:

for all e, i < ω, P ie : If
〈
fα,is , oα,is

〉
is eventually α-computable, then

Λe(A,We) 6= fα,i, or We 6T A⊕B0 ⊕ · · · ⊕Bn−1 for some n.

And the Friedberg-Muchnik requirements:

for all n, c < ω, Rnd : Ψc(A,B0, . . . , Bn−1) 6= Bn.

Again 〈Ψe〉 is an effective list of all Turing functionals.

Discussion. The construction is a very mild modification of the previous construc-
tion. The entire thing proceeds rather pleasantly, and without complication. We
just need to explain where n comes from, to meet requirement P ie : if σ on the true
path works for P ie , then there are only finitely many nodes τ ∈ prec∞(σ), and each
such τ works for a requirement that mentions only finitely many Bn’s; we take all
these which are mentioned. Other than that, the construction is identical to the
previous one, so we omit the details.

6. Uniformly Totally α-c.a. Degrees

One of the ideas in [DG20] was to further refine the totally ωα-c.a. hierarchy by
exploring an analogue of the fact that array computability was a uniform version
of being totally ω-c.a. This generalization was done as follows.

Let α 6 ε0. We call h : ω → α an α-order function if h is nondecreasing,
computable, and its range is unbounded in α. Again, for computability, we take
any canonical computable copy of α. An h-computable approximation is an α-
computable approximation 〈fs, os〉 such that for all x, o0(x) < h(x). Just like
for α-computable approximations, we can produce an effective list

〈
fh,is , oh,is

〉
of tidy

(h+1)-computable approximations whose limits fh,i consists of all h-c.a. functions.
Of course every α-c.a. function is h-c.a. for some α-order function h, but when
uniform bounds are required for all functions in a degree, we get a stronger notion.
And just like the ω-case, the bound does not matter:

Proposition 6.1 ([DG20]). The following are equivalent for a c.e. degree d:

(1) For some α-order function h, all functions f ∈ d are h-c.a.
(2) For Every α-order function h, all functions f ∈ d are h-c.a.

A degree d satisfying these conditions is called uniformly totally α-c.a. A c.e.
degree is uniformly totally ω-c.a. if and only if it is array computable. These new
levels refine the hierarchy of totally α-c.a. degrees:

Proposition 6.2 ([DG20]). Let α 6 ε0 be a power of ω.

(1) For every β < α, every totally β-c.a. degree is uniformly totally α-c.a;
(2) There is a degree which is uniformly totally α-c.a. and not totally β-c.a.

for any β < α;
(3) There is a degree which is totally α-c.a. but not uniformly so.

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 35

And again for ordinals which are not powers of ω, we get nothing new: if α is
a power of ω and γ ∈ (α, α · ω), then total uniform γ-c.a.-ness coincides with total
γ-c.a.-ness coincides with total α-c.a.-ness.

The last theorem in this paper examines the cone below a c.e. degree which is
not totally α-c.a.

Theorem 6.3. Let α 6 ε0 be a power of ω. Every degree which is not totally α-c.a.
bounds a degree which is totally α-c.a. but not uniformly so.

This implies Theorem 1.2: indeed, even the refined hierarchy does not collapse
at any level in any lower cone.

To prove the theorem, recall that a modulus function g has a “self-modulating”
computable approximation 〈gs〉:

• for all n and s, gs(n) 6 s;
• if gs(n) 6= gs−1(n) then gs(n) = s, indeed gs(m) = s for all m > n.

So gs−1 6 gs (pointwise), and if gs(n) 6= gs−1(n) then gs(m) 6= gs−1(m) for all
m > n. Such a degree clearly has a c.e. degree, and every c.e. degree contains
such a function. Indeed, given a c.e. degree d which is not totally α-c.a. we can
find a modulus function g ∈ d which is not α-c.a. Fixing this g, we will give a
self-modulating computable approximation 〈fs〉 of a modulus function f such that
f 6T g, and degT(f) is as required.

Requirements. Let 〈Φd〉d<ω be an enumeration of all functionals. To ensure that
degT(f) is totally α-c.a., we must meet the set of requirements given by:

for all d < ω, Qd : If Φd(f) is total, then it is α-c.a.

To ensure that degT(f) is not uniformly totally α-c.a., we fix an α-order func-
tion h and arrange that f itself is not h-c.a. We need to meet the requirements,

for all i < ω, P i : f 6= fh,i,

where
〈
fh,i

〉
is a list of h-c.a. functions equipped with tidy (h+ 1)-c.a. approxima-

tions as described above.

Discussion. We apply the technique of non-total α-c.a. permitting to the construc-
tion from [DG20] that separates between totally α-c.a. and uniformly totally α-c.a.
degrees.

To meet P i, we would like to choose a follower p and change f(p) each time we
see that fs(p) = fh,is (p). This action will be taken at most h(p) + 1 many “times”.
Any change in f necessitates a change in g below a previously specified location.
Permission will not always be given, so a node σ working for Pi will appoint several
followers, and we will argue that eventually it will receive permission; if not, then
it appoints infinitely many followers and we use that to build an α-computable
approximation for g.

Nodes τ working for Qd can observe all ordinals of all followers appoints prior to
the first stage at which a Φd(f)-computation is certified. Since all approximations
are “total”, we do not have to wait for realisations and lift the use: all ordinals
supplied to τ are below α, as they are bounded by h.

When we change f(p) for some follower p for a node σ, we need to cancel all
larger followers for σ. The reason is that this change may have injured a compu-
tation Φd(f, x)[s] that was not protected from p, but protected from p′; when the
computation comes back, its use will be bigger than p′.

36 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

This has implications to the nature of the reduction of f to g. Originally we
would like the use of this reduction to be the identity: say that p is permitted at a
stage s if gs � p 6= gs+1 � p. The idea is that if p will not receive enough permissions,
then we can bound the “number” of changes to g � p. But when p′ is cancelled, in
order for this process to give an approximation for all of g, in the future, we need to
allow g changes below p′ to permit changes in f(p). Hence the use of the reduction
on p has risen beyond p′; the reduction is therefore a Turing reduction, and we will
need to argue that the uses do stabilise.

Strategy tree. A node τ working for Qd has two outcomes,∞ < f; a node σ working
for P i has a unique outcome.

To define the reduction of f to g we will define moveable markers ζs(n). A
change in g below ζs(n) allows us to change f(n), and to redefine the marker ζs(n).
We start with ζ0(n) = n for all n.

Construction. Let s be a stage. Let σ be a node which works for requirement P i.
A follower p for σ is permitted at stage s if gs � ζs(p) 6= gs+1 � ζs(p). The follower
requires attention if fs(p) = fh,is (p). If some node σ has a follower which requires
attention and is permitted at this stage, then we choose the strongest such σ, and
the smallest such p for this σ, and define fs+1(m) = s + 1 for all m > p (and
fs+1 � p = fs � p). We redefine ζs+1(m) = max{s + 1,m} for all m > p, and
ζs+1(m) = ζs(m) for all m < p. We cancel all followers p′ > p for σ, and initialise
all nodes weaker than σ. We then end the stage.

Suppose that the stage did not end. We let fs+1 = fs and ζs+1 = ζs. We
then define the path γs of nodes accessible at stage s. The instructions for a node τ
working for Qd are as in the previous section; choose the outcome∞ if dom Φd(f)[s]
is greater than the previous τˆ∞-stage; otherwise choose f.

Suppose that a node σ working for requirement P i is accessible at stage s. If
for some follower p for σ we have fs(p) 6= fh,is (p) then we let σ’s child be next
accessible. Otherwise (this includes the case that σ has no followers) we appoint a
new, large follower p for σ, end the stage, and initialise all nodes weaker than σ.

Verification.

Lemma 6.4. The sequence 〈fs〉 converges to a limit f , which is computable from g.

Proof. For every p we show that there are finitely many stages s at which fs(p) 6=
fs+1(p) but fs � p = fs+1 � p. Fix p. If there is such a stage, then p is a follower for
some node σ working for a requirement P i. The usual argument shows that σ will

act for p only finitely often: if it acts for p at stages s̄ < s then as fs̄(p) = fh,is̄ (p) and

fs(p) = fh,is (p) and fs(p) > fs̄+1(p) = s+ 1 > fs(p) implies that oh,is̄ (p) > oh,is (p).
The fact that 〈fs〉 stabilises implies that the sequence of use functions 〈ζs〉 reaches

a limit as well. The permitting instructions imply that if gs � ζs(m) = g � ζs(m)
then fs � m = f � m, whence f 6T g. �

Meeting the requirement Qd is done in the usual way, using the following:

Lemma 6.5. Let τ ∈ γω be a node working for Qd; let t̄ < t be τˆ∞-stages, let
σ < τˆ∞ be a node working for P i, and let p be a follower for σ at stage t which is
appointed after stage t̄. Then for all x < t̄, Φd(f, x)↓ [t] and p > ϕd,t(x).

MAXIMALITY AND COLLAPSE IN THE HIERARCHY OF α-C.A. DEGREES 37

Proof. Similar to the previous section, except that we have to deal with more than
one follower for each node. Let u = ϕd,r(x), where r > t̄ is the stage at which p was
appointed; so p > u. Let s ∈ (r, t) be a stage at which fs � u 6= fs+1 � u; suppose
that this is done on behalf of a follower p̄ for a node σ̄. If σ is stronger than σ̄ then
the latter is initialised at stage r, whence p̄ > r > u. If σ̄ is stronger than σ then σ
is initialised at stage s, and p cancelled. If σ̄ = σ then p̄ < u < p, whence p would
be cancelled at stage s. �

The familiar process now gives an α-computable approximation to Φd(f) in case
it is total and a node τ ∈ γω works for Qd. We omit the details. The proof of the
theorem will be complete once we show:

Lemma 6.6. Let σ ∈ γω work for requirement P i. Then σ ends the stage only
finitely many times, and the requirement is met.

Proof. We claim that there is a follower p for σ which is never cancelled and such
that f(p) 6= fh,i(p). If this is so, then the requirement is certainly met, and once
both fs(p) = f(p) and fh,is (p) = fh,i(p) permanently, no further followers will be
appointed by σ, and eventually σ will cease all action.

Suppose then that for every follower p for σ, either p is eventually cancelled, or
f(p) = fh,i(p). Since σ is accessible infinitely often, by considering “non-deficiency
followers” (the smallest follower for σ ever to receive attention after a given stage)
we see that there are infinitely many followers for σ that are never cancelled.

Fix k < ω. Let s∗(k) be the least stage s after which σ is never initialised, and at
which there is a follower p > k for σ. We let p∗(k) be this follower. For all s > s∗(k)
we let Ps(k) be the set of followers p 6 p∗(k) for σ at stage s. Observe that if s̄ < s
then Ps̄(k) ⊇ Ps(k). Some followers in Ps̄(k) may get cancelled, but new followers
are chosen large. On the other hand, Ps(k) is nonempty for all s > s∗(k); minPs(k)
is the first follower appointed for σ since the last stage it was initialised. For each
s > k we let ps(k) = maxPs(k).

We let s0(k) < s1(k) < s2(k) < . . . be an enumeration of the stages s > s∗(k)
at which fs(ps(k)) = fh,is (ps(k)). By assumption, there are infinitely many such
stages (note that 〈ps(k)〉 stabilises). For j > 0 we let

ĝj(k) = gsj(k)(k)

and

oj(k) =
⊕

p∈Psj(k)(k)

oh,isj(k)(p) + |Psj(k)|.

Certainly limj ĝj(k) = g(k). Note that oj(k) < α. Since Ps(k) is decreasing in s,
we see that for all j > 0, oj(k) > oj+1(k).

Claim 6.6.1. For all s > s∗(k), ζs(ps(k)) > k.

Proof. By induction on s. At stage s∗ we have ζs(ps∗(k)) > ps∗(k) > k. Since
ζs(p) 6 ζs+1(p), we are done if ps(k) = ps+1(k). Otherwise, at stage s we act for
p = ps+1(k) and redefine ζs+1(p) = s+ 1 > k. �

Now suppose that ĝj(k) 6= ĝj+1(k). We need to show that oj(k) > oj+1(k). For
brevity let s̄ = sj(k) and s = sj+1(k). If Ps̄(k) 6= Ps(k) then |Ps̄(k)| > |Ps(k)| and

we are done. Otherwise, let p = ps̄(k) = ps(k). We show that oh,is̄ (p) > oh,is (p).

38 KATHERINE ARTHUR, ROD DOWNEY AND NOAM GREENBERG

This is clear if fh,is̄ (p) 6= fh,is (p). Suppose that fh,is̄ (p) = fh,is (p). Since fs̄(p) =

fh,is̄ (p) and fs(p) = fh,is (p) we see that fs̄(p) = fs(p). This implies that for all
r ∈ [s̄, s), fr(p) = fr+1(p). On the other hand there is some stage r ∈ [s̄, s) such
that gr(k) 6= gr+1(k). By Claim 6.6.1, ζr(p) > k. Since p is not cancelled at stage r,
and we do not redefine fr+1(p) = r + 1 > fr(p), it must be that fr(p) 6= fh,ir (p).

Hence fh,ir (p) 6= fh,is (p), so oh,is̄ (p) > oh,ir (p) > oh,is (p) as required.
Overall, we see that 〈ĝj , oj〉 is an α-computable approximation for g, which we

assumed does not exist. �

References

[Art] Katherine Arthur. Maximality in the α-c.a. Degrees. MSc Thesis, Victoria University

of Wellington, 2016.
[CDW02] Peter Cholak, Rod Downey, and Stephen Walk. Maximal contiguous degrees. J. Sym-

bolic Logic, 67(1):409–437, 2002.

[DG18] Rod Downey and Noam Greenberg. A hierarchy of computably enumerable degrees.
Bull. Symb. Log., 24(1):53–89, 2018.

[DG20] Rod G. Downey and Noam Greenberg. A Hierarchy of Turing Degrees: A Transfi-

nite Hierarchy of Lowness Notions in the Computably Enumerable Degrees, Unify-
ing Classes, and Natural Definability, volume 206 of Annals of Mathematics Studies.

Princeton University Press, 2020.

[DGW07] Rod Downey, Noam Greenberg, and Rebecca Weber. Totally ω-computably enumerable
degrees and bounding critical triples. J. Math. Log., 7(2):145–171, 2007.

[DJS90] Rodney G. Downey, Carl G. Jockusch, Jr., and Michael Stob. Array nonrecursive sets
and multiple permitting arguments. In Recursion theory week (Oberwolfach, 1989),

volume 1432 of Lecture Notes in Math., pages 141–173. Springer, Berlin, 1990.

[EHK81] Richard L. Epstein, Richard Haas, and Richard L. Kramer. Hierarchies of sets and
degrees below 0′. In Logic Year 1979–80 (Proc. Seminars and Conf. Math. Logic,

Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes in Math.,

pages 32–48. Springer, Berlin, 1981.
[Ers68a] Yuri L. Ershov. A certain hierarchy of sets. I. Algebra i Logika, 7(1):47–74, 1968.

[Ers68b] Yuri L. Ershov. A certain hierarchy of sets. II. Algebra i Logika, 7(4):15–47, 1968.

[Ers70] Yuri L. Ershov. A certain hierarchy of sets. III. Algebra i Logika, 9:34–51, 1970.
[Ish99] Shamil Ishmukhametov. Weak recursive degrees and a problem of spector. In M Ar-

slanov and S Lempp, editors, Recursion Theory and Complexity, volume 2, pages 81–87.

de Gruyter, Berlin, 1999.
[Kum96] Martin Kummer. Kolmogorov complexity and instance complexity of recursively enu-

merable sets. SIAM J. Comput., 25(6):1123–1143, 1996.

[Sch98] Benjamin Schaeffer. Dynamic notions of genericity and array noncomputability. Annals
of Pure and Applied Logic, 95(1-3):37–69, 1998.

[Sel89] V. L. Selivanov. Fine hierarchies of arithmetic sets, and definable index sets. Trudy
Inst. Mat. (Novosibirsk), 12(Mat. Logika i Algoritm. Probl.):165–185, 190, 1989.

[Sho59] J. R. Shoenfield. On degrees of unsolvability. Ann. of Math. (2), 69:644–653, 1959.

School of Mathematics and Statistics, Victoria University, Wellington

	1. Introduction
	1.1. Background: array computable, and totally -c.a. degrees
	1.2. Totally -c.a. degrees
	1.3. Hierarchy collapse
	1.4. Maximal degrees

	2. Non-collapsing in upper cones
	2.1. Powers of

	3. Existence of maximal degrees in upper cones
	4. Above a superlow c.e. degree
	4.1. Higher levels of superlowness

	5. A maximal interval and a proper ideal
	5.1. A maximal interval
	5.2. A maximal ideal

	6. Uniformly Totally -c.a. Degrees
	References

