
MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS

NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Abstract. Martin-Löf (ML)-reducibility compares the complexity ofK-trivial
sets of natural numbers by examining the Martin-Löf random sequences that
compute them. One says that a K-trivial set A is ML-reducible to a K-trivial
set B if every ML-random computing B also computes A. We show that every
K-trivial set is computable from a c.e. set of the same ML-degree. We investi-
gate the interplay between ML-reducibility and cost functions, which are used
to both measure the number of changes in a computable approximation, and
the type of null sets intended to capture ML-random sequences. We show that
for every cost function there is a c.e. set that is ML-complete among the sets
obeying it. We characterise the K-trivial sets computable from a fragment of
the left-c.e. random real Ω given by a computable set of bit positions. This
leads to a new characterisation of strong jump-traceability.

Contents

1. Introduction 1
2. Some formal definitions and facts 6
3. Inherent enumerability of the K-trivials up to ”ML 8
4. For each cost function there is an ML-complete set 10
5. Each K-trivial set is ML-complete for a cost function 12
6. K-trivial sets Turing below fragments of Ω 15
7. Feeble sets for cost functions, and the structure of ML-degrees 19
8. Proof of Lemma 6.9 22
9. Fragments of Ω and strong jump-traceability 25
References 27

1. Introduction

Martin-Löf (ML) randomness and K-triviality are antipodal properties of sets
of natural numbers. Nonetheless, sets of the two kinds interact in interesting ways
via Turing reducibility. For instance, combining the results of [3, 6], a c.e. set is
K-trivial if and only if it is computable from a Turing incomplete ML-random set;
see [2].

Our purpose is to study the relative complexity of the K-trivial sets via a pre-
ordering coarser than Turing reducibility that is given by this interaction: A ďML B

Date: February 9, 2022.
2010 Mathematics Subject Classification. Primary 03D32; Secondary 03D30, 68Q30.
Greenberg and Nies were supported by the Marsden Fund of New Zealand. Greenberg was also

supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand. This
research was started during a retreat at the Research Centre Coromandel.

1

2 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

if every ML-random computing B also computes A. This preordering, called ML-
reducibility, was introduced in [3] by Bienvenu, Kučera, and three of the authors of
the present paper. They showed that there is an ML-completeK-trivial (which they
called “smart”). While the K-trivials appear somewhat amorphous under Turing re-
ducibility, we will show that an interesting structure emerges when they are viewed
through the lens of this preordering. Research in this direction was carried out first
by three of the authors of the present paper in [14]. They described a dense linear
hierarchy of natural principal ideals in the ML-degrees of the K-trivials. Our first
result, Theorem 3.1, shows that each K-trivial is ML-equivalent to a c.e. K-trivial,
so the structure we find on the K-trivials is fully given by c.e. witnesses.

Some background on ML-randomness and K-triviality. Sets of natural numbers
(often simply referred to as sets) will be identified with infinite bit sequences. ML-
randomness is central among the notions of randomness given by algorithmic tests.
A set Z Ď ω is ML-random (sometimes just called “random” in this paper) if
Z R

Ş

mGm for any sequence of uniformly Σ0
1 sets in Cantor space such that the

Lebesgue measure of Gm is at most 2´m. A sequence xGmy of this kind is called
an ML-test.

Chaitin’s Ω, the halting probability of a universal prefix-free machine, is an
example of an ML-random sequence. Note that Ω is Turing equivalent to the
halting problem. There are various ways to build a low ML-random sequence. One
way is to use the low basis theorem together with the fact that there is a universal
ML-test. Another is to take ΩR, the bits of Ω with location in an infinite, co-infinite
computable set R; to see that ΩR is low one can e.g. combine [25, Prop. 3.4.10],
due to [23], with van Lambalgen’s Theorem [29].

Let Kpxq denote the prefix-free descriptive complexity of a string x. One says
that a set A is K-trivial if there is a constant b such that KpA ænq ď Kpnq ` b
for each n. (Here the “n” in Kpnq is interpreted as a string, for instance the string
obtained by writing n in binary.) Note thatKpnq is, up to a constant not depending
on n, the lowest complexity possible for a string of length n. So K-trivial sets have
minimal initial segment complexity, again up to a constant. The Levin–Schnorr
theorem states that a sequence Z is ML-random iff KpZ ænq ě n ´ d for some d
only depending on Z. As Kpnq ď 2 log n`Op1q, the notion of K-triviality is indeed
antipodal to ML-randomness: K-trivial by definition means far from random.

Eighteen or so characterisations of the K-trivials are known presently, most of
them saying that the set is in some sense close to computable. For instance, A
is K-trivial iff A is low for ML-randomness, in the sense that each ML-random is
ML-random relative to A [24]. For more recent ones, A is K-trivial iff for each
ML-random Y , the symmetric difference Y4A is ML-random [22]; A is K-trivial
iff for all Y such that Ω is Y -random, Ω is Y ‘A-random [13].

Despite these characterisations, and the detailed knowledge of the class of K-
trivials they appeared to convey, paradoxically, not much progress had been made
on the internal structure of the class since the early papers, such as [18, 24]. It
was known that the K-trivials are downward closed under Turing reducibility, and
that they determine an ideal in the Turing degrees that is contained in the super-
low degrees, generated by its c.e. members, and has no greatest degree (i.e., it is
nonprincipal). In hindsight it appears that Turing reducibility was the wrong pre-
ordering to analyse the internal structure. We will use the coarser ML-reducibility
to amend this lack of information.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 3

We briefly review some results that led to the formulation of ML-reducibility.
The Kučera–Gacs Theorem [11, 19] states that every set A is Turing below some
ML-random set Z. If A is ∆0

2 then one can take Ω as Z. What can a Turing incom-
plete ML-random set compute? Kučera [20] showed that each ∆0

2 ML-random Z is
Turing above a noncomputable c.e. set. Hirschfeldt, Nies, and Stephan [18] proved
that if Z is Turing incomplete, then Z is necessarily ML-random relative to any
such c.e. set A it computes. By definition, this means that A is a basis for ML-
randomness, which implies that it isK-trivial [18]. Since beingK-trivial also means
close to computable [24], this shows that an incomplete ML-random can only com-
pute c.e. sets that are close to computable. In the other direction, the works [2, 3, 6]
mentioned in the first paragraph show that there is, in fact, a single incomplete ∆0

2

ML-random Turing above all the K-trivials.

Complexity classes of K-trivials. The K-trivials are closed downward under ďML
by Day and Miller [6]. By an ML-complexity class in the K-trivials we mean a
subclass that determines an ML-ideal, namely, it is closed downward under ďML,
and closed under the join operator ‘. Several works from 2012 on can be viewed
as studies of such classes. For example, a set is strongly jump-traceable (see the
beginning of Section 9 for the definition) if and only if it is computable from all
ML-random sequences that are ω-c.a., that is, weak truth table below the halting
problem [12]. This implies that the strongly jump-traceables form an ML-ideal.

Given an ML-complexity class C of K-trivials, one can ask the following two
general questions:

(a) Can one describe the class only referring to properties of its members, rather
than to randoms that compute them?

(b) Is some set ML-complete for the class? In other words, is the ML-ideal
principal?

As an example of a description in (a) consider the original definition [9] of strong
jump traceability of a set A, which (as the name indicates) refers to a way to tightly
approximate the values of JA, the Turing jump function of A.

A general way to formulate a condition of lowness among the K-trivials is by
restricting the changes of computable approximations. Recall that each K-trivial A
is ∆0

2 and hence has a computable approximation xAsy. A cost function is a com-
putable function

c : Nˆ NÑ tr P R : r ě 0u,
which is typically chosen to be nondecreasing in s, nonincreasing in x, and to satisfy
the limit condition, namely, the asymptotic cost cpxq “ sups cpx, sq approaches 0 as
x increases. The idea is that at stage s, the least x such that Aspxq changes incurs
the cost cpx, sq, which subsumes the cost of changes at larger numbers at the same
stage; a set A obeys a cost function c if it has a computable approximation that is
sufficiently “inert” in that it incurs a finite total cost. (This means more than that
there are few changes; it also means that changes need to be carried out in “blocks”,
which saves costs because only the change at the least number is counted.) It is a
basic fact that each cost function that satisfies the limit condition is obeyed by a
noncomputable c.e. set. Building on previous results, Nies [27, Thm. 4.3] showed
that obedience to the cost function cΩpx, sq “ Ωs´Ωx characterizes the K-trivials.

We will show that an affirmative answer to (a) via obedience to a cost function
implies an affirmative answer to (b). Given a cost function c that is at least as

4 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

strong as cΩ, we show as an easy corollary to our second main result, Theorem 4.3,
that some c.e. set A obeys c and is ML-complete among the sets obeying c. So if
a cost function c describes a complexity class, then that class has an ML-complete
member. In particular, this holds for the class of all K-trivials, which therefore
determines a principal ML-ideal, a result that was first obtained in [3] using similar
methods. (At present this appears to be essentially the only known way to show a
complexity class in theK-trivials has an ML-complete member.) Given a low c.e. set
B, some c.e. set A ďT B obeys c by [25, Thm. 5.3.22]. So the sets obeying c (being
K-trivial, and hence low) never form a Turing principal ideal. This lends support to
our thesis that, compared to Turing reducibility, the coarser ML-reducibility leads
to a more satisfying complexity theory of the K-trivials.

The class of half-bases is a further example of a complexity class that can be
described by a cost function. It yields one level of the dense hierarchy of ML-ideals
described in [14] which we alluded to earlier on. One says that a set A is a half-base
if there is an ML-random Y such that A ďT Y0, Y1, where Y0 consists of the bits
in the even, and Y1 of the bits in the odd positions. Note that each half-base is a
basis for ML-randomness by van Lambalgen’s theorem, and hence K-trivial by [18].
By [14, Thm. 1.1.], one can require that Y “ Ω; furthermore, by [14, Thm. 1.3.] the
class of half-bases can be described by the cost function cΩ,1{2px, sq “

a

cΩpx, sq.
Larger cost functions are harder to obey, in a sense made precise in [27, Thm.
3.4]. So cΩ,1{2 describes a proper subclass of the K-trivials. The properness of the
inclusion of the class of half bases in the K-trivials is a result first obtained in [3,
Thm. 1.3]. By our method, there is an ML-complete half-base.

By definition, a set A is ML-complete for a class C of K-trivials if it has the least
class of ML-randoms computing it among the members of C. We build a c.e. set A
that is ML-complete for the sets obeying c by showing that ML-randoms computing
A cannot be very random, in the sense that they fail a generalised type of ML test
called a c-test, where the convergence of the measure of Gm to 0 is bounded by
Opcpmqq, rather than 2´m (recall here that cpmq “ sups cpm, sq). We then use the
important, if easy Proposition 2.6 below: any set B obeying c is Turing below any
ML-random failing such a test.

Our Theorem 4.3 extends the basic fact that every cost function c is obeyed
by a noncomputable c.e. set. The c.e. set A we build obeys c, but “only just”, in
the sense that the collection of ML-randoms computing A is as small as possible.
We call such a set A smart for c, continuing the terminology of [3] for cΩ; the
theorem states that each cost function has a smart set. Then we verify, as an easy
consequence of this existence of a smart set, that smartness for c coincides with
ML-completeness for c.

The previous works [3, 14] and, in particular, the present paper show that far
from being an obstacle, the fact that K-trivials are close to computable can be
advantageous for the study of their relative computational complexity. Tools can
be applied that would not work for computationally more complex ∆0

2 sets. The
main idea described above is to differentiate between K-trivials via the incomplete
randoms that compute them. In contrast, a c.e. set that is not K-trivial only allows
randoms above the halting problem to compute it by [18]; such c.e. sets all have
the same ML-degree.

The K-trivials Turing below a fragment ΩR of Ω. Bit sequences derived in some way
from Chaitin’s Ω often play a special role in the algorithmic theory of randomness.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 5

For an infinite computable set R, we have defined above the sequences ΩR of bits of
Ω with a location in R. Section 6 introduces a cost function cΩ,R that describes the
class of K-trivials computable from ΩR. As a main result of this paper, we show
in Theorem 6.6 that this cost function essentially only depends on the function
n Ñ |R X n| that gives the number of elements of R less than n, taken up to an
additive constant. For instance, if R is the set of even numbers and S the odd
numbers, then the cost functions corresponding to R and S are equivalent as far
as obedience goes, and hence the K-trivials below ΩR coincide with the K-trivials
below ΩS . This can be extended to k{n bases, for 1 ď k ă n, in the sense of [14],
where one takes as R any union of k sets of the form nN` r, 0 ď r ă n. Let Bk{n
be a smart set for the corresponding cost function. Via the results in [14] these sets
determine a chain in the ML-degrees of K-trivials that is isomorphic to p0, 1qQ. For
detail see the discussion around Theorem 6.1.

As an application of Theorem 6.6, in Theorem 7.1 we show that the K-trivials
computable from ΩR are exactly those that obey cΩ,R, as promised. Given a cost
function c, an ML-random set Y failing a c-test will be called feeble for c if the only
K-trivials it computes are the ones that obey c. This notion is dual to smartness
for K-trivials. In this language, we show that ΩR is feeble for cΩ,R.
Structure of the ďML-degrees of K-trivials. By its definition, ML-reducibility is a
weakening of Turing reducibility. The least degree consists of the computable sets.
The usual join operation ‘ induces a least upper bound in the ML-degrees.

Dual to Theorem 4.3, we will show in Proposition 5.1 that each K-trivial A is
smart for some cost function cpAq that can be obtained uniformly from A. This
yields further degree theoretical information in Corollary 5.3. Firstly, there are
no minimal pairs in the ML-degrees of K-trivials. Secondly, no ML-degree of a
noncomputable K-trivial contains a maximal Turing degree; in particular, it con-
tains an infinitely ascending chain of Turing degrees. We do not know whether the
ML-degree of a noncomputable K-trivial can contain a minimal Turing degree.

As a further, more powerful application of Theorem 6.6 we will show in Theo-
rem 7.4 that every countable partial ordering is embeddable into the ML-degrees
of K-trivial sets. Also, based on a method of Kučera [20], we obtain a pair of
incomparable degrees below each non-zero K-trivial ML-degree. In fact, we show
that for each noncomputable c.e. K-trivial D, there are c.e. sets A,B ďT D such
that A |ML B.

Only basic facts are known on ML-reducibility outside the K-trivials. Since
each Turing degree above H1 contains a ML-random, for sets above H1 the two
reducibilities coincide. More generally, for PA-complete sets A,B, we have

A ďML B ô A‘H1 ďT B ‘H
1.

(We thank the referee for pointing this out.) For the direction from left to right,
one uses the result of Stephan [28] that the only PA-complete ML-randoms are the
ones above H1.

In the final section, Section 9, we connect obedience of the cost functions cΩ,R

to strong jump traceability, the aforementioned very strong lowness notion. While
the original definition [9] was combinatorial, Hirschfeldt et al. [12] showed that a
set is strongly jump traceable iff it is Turing below each ω-c.a. ML-random Y . We
prove that A is strongly jump traceable iff it obeys all the cost functions cΩ,R for
infinite computable R. In particular, it suffices to let the ω-c.a. sets Y as above
range over the fragments ΩR.

6 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Remark 1.1. The correspondence between cost functions and ML-degrees is incom-
plete. Firstly, a cost function c determines an ML-degree, that of the sets which
are smart (equivalently, ML-complete) for c. However, not every set in that de-
gree obeys c. Secondly, every K-trivial set A is smart for some cost function cpAq.
However, this cost function is not determined by the ML-degree of A; in fact, in
Theorem 5.4 we construct an example of a set A such that even the set that results
from A by removing the first bit does not obey cpAq.

Ideally, we could characterise ML-reducibility onK-trivials in terms of which cost
functions they obey. This would give a satisfying positive answer to the following
question, which remains open:
Question 1.2. Is the relation ďML on the K-trivial sets arithmetical?

In fact, a weaker question remains open: whether ML-completeness among the
K-trivals is arithmetical. Another question that remains unsettled is whether the
ML-degrees of K-trivials are dense. Given that Question 1.2 remains open, it is
hard to envisage a requirement-based construction showing density, as this would
need some sort of effective listing of “ML-reduction procedures”. Cost function-
based methods appear to be insufficient here.

2. Some formal definitions and facts

In this section, for easy reference, we provide formal definitions of some of the
notions discussed above. We discuss some technical detail and basic connections
that will be important for the rest of the paper.
Definition 2.1 ([3]). For sets A and B, we write A ďML B if B ďT Y implies
A ďT Y for every ML-random sequence Y .

Cost functions were introduced in [25, Section 5.3] and developed further in
[15, 27].
Definition 2.2. A cost function is a computable function

c : Nˆ NÑ tr P R : r ě 0u.

We only consider monotonic cost functions (satisfying cpx, sq ď cpx, s ` 1q and
cpx, sq ě cpx ` 1, sq) that have the limit condition: for all x, cpxq “ lims cpx, sq
exists, and limx cpxq “ 0. Further, we assume that cpx, sq “ 0 when x ě s.

The original purpose of cost functions was to quantify the number of changes
required in a computable approximation of a ∆0

2 set A: cpx, sq is the cost of changing
at stage s our guess about the value of Apxq. Monotonicity means that the cost of
a change increases with time, and that changing the value at a smaller number is
more costly. Formally:
Definition 2.3 ([25]). Let xAsy be a computable approximation of a ∆0

2 set A,
and let c be a cost function. The total c-cost of the approximation is

cxAsy “
ÿ

sPω

tcpx, sq : x is least such that As´1pxq ‰ Aspxqu .

We say that a ∆0
2 set A obeys c if the total c-cost of some computable approximation

of A is finite. We write A |ù c. For cost functions c and d, we write cÑ d if A |ù c
implies A |ù d for each ∆0

2 set A. By [27, Thm. 3.4], this is equivalent to d ďˆ c.
The basic existence theorem for cost functions, e.g., described in [27, Thm. 2.7(i)],

says that if a cost function c has the limit condition, then some non-computable

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 7

c.e. set obeys A. As mentioned, an important example of a cost function is
cΩpx, sq “ Ωs ´ Ωx, where xΩsy is an increasing sequence of rational numbers
converging to a left-c.e., ML-random real Ω. A set obeys this cost function if and
only if it is K-trivial ([27, Thm. 4.3], which modified a result for a related cost
function in [24]).
Definition 2.4. Let c be a cost function and let A be a ∆0

2 set. We say that A is
ML-complete for c if A |ù c, and @B rB |ù cñ B ďML As.

Note that the implication arrow only goes from left to right; it is not true in gen-
eral that the class of sets obeying a cost function is well behaved (see Remark 1.1).

We next add some formal detail to our discussion of Theorem 4.3 above, that each
cost function has a smart c.e. set. As mentioned, cost functions can also be used to
introduce randomness notions between weak 2-randomness and ML-randomness.
Definition 2.5 ([3], Def. 2.13). Let c be a cost function. A sequence xVny of
uniformly c.e. open sets such that Vn Ě Vn`1 for each n is a c-bounded test (or
c-test for short) if µpVnq ďˆ cpnq for all n.

We say that such a test captures a set Y if Y P
Ş

n Vn. We also say that such
a Y fails the test. A sequence is c-random if it fails no c-test.

The fundamental connection between our two uses of a cost function is the
following:
Proposition 2.6 ([3], Prop. 4.2). If A |ù c and Y is an ML-random sequence
captured by a c-bounded test, then A ďT Y .

To sketch the proof, say Y is covered by the c-test xVny. define a functional Γ
by letting ΓXpnq “ Aspnq if X goes into Vn at stage s. An A-change threatens to
invalidate these definitions, so we build a Solovay test; if Apnq is the least change
at stage s, put Vn,s into the test. Being ML-random, Y is only in finitely many
components of the Solovay test, so ΓY pnq “ Apnq for sufficiently large n.

As mentioned, Kučera showed that every ∆0
2 ML-random sequence is Turing

above a non-computable c.e. set. Hirschfeldt and Miller in unpublished work dating
from 2006 strengthened this: below any Σ0

3 null class of randoms there is a non-
computable c.e. set. Relying on Proposition 2.6, these proofs can be framed in the
language of cost functions; see [15] and [25, 5.3.15], respectively.

The existence of an ML-complete K-trivial was shown in [3]. Given that K-
trivials are the sets obeying cΩ, and the ML-randoms computing all K-trivials
are the ones that fail some cΩ-test, ML–completeness for K-trivials coincides with
being smart for cΩ in the sense of the next definition:
Definition 2.7. Let c be a cost function and A be a K-trivial set. We say that A
is smart for c if A obeys c and for each ML-random set Y ,

Y is captured by a c-bounded test ô A ďT Y .
Informally, A is as complex as possible for obeying c, in the sense that the only

random sets Y above A are the ones that have to be there because of Proposition 2.6.
To summarise the discussion in the introduction, in Theorem 4.3, we show that there
is a smart set for any cost function c such that obedience to c implies K-triviality.
In Corollary 4.4, we use this to show that if c Ñ cΩ then A is smart for c iff A is
ML-complete for c. Dual to Theorem 4.3, in Proposition 5.1, we prove that any
K-trivial set is smart for some cost function cpAq; when A is c.e., this will be the
strongest cost function obeyed by A.

8 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

3. Inherent enumerability of the K-trivials up to ”ML

In this section, we considerably strengthen the result [24] that every K-trivial
is computable from a c.e. K-trivial: we show that the c.e. K-trivial can be taken
to have the same ML-degree. This is a powerful tool. It is usually easier to prove
results for the c.e. K-trivials; extra work is needed to lift results to the general
case. Theorem 3.1 simplifies this process in many cases. Indeed, we use it in both
Section 5 and Section 8 for this purpose.
Theorem 3.1. For every K-trivial set A, there is a (K-trivial) c.e. set D such
that D ěT A and D ”ML A.

Note that the K-triviality of D is free: every K-trivial is Turing below an incom-
plete ML-random sequence [2, 6], and every c.e. set below an incomplete random
is K-trivial. So by virtue of being ML-equivalent to A, the c.e. set D must be
K-trivial.

Theorem 3.1 follows from a fact of independent interest. Intuitively, the fact
states that each K-trivial A has a computable approximation that converges faster
than any computation of A from a random.
Lemma 3.2. For every K-trivial set A, there is a computable approximation xAsy
of A such that for every ML-random X and Turing functional Φ with A “ ΦX the
following holds. For sufficiently large n, if A æn ď ΦXs , then At æn “ A æn for
every t ě s.

Proof of Theorem 3.1. Assuming that the lemma holds, we argue that a random
computing A must also compute a modulus for A; this modulus will have a c.e.
degree. Let xAsy be the approximation from the lemma. Let D be the change-
set for this approximation: pn, kq P D if and only if there is a sequence of stages
s0 ă ¨ ¨ ¨ ă sk with Asipnq ‰ Asi`1pnq for all i ă k. D is clearly c.e., and it can
compute Apnq by searching for the least k with pn, kq R D and considering the
parity of k and the value of A0pnq.

Suppose that A “ ΦX for some random X. By the lemma, there is N such that
for all n ě N , the approximation converges to A æn faster than ΦX does. Thus
X can compute Dpn, kq by waiting until a stage t with A æn ď ΦXt and then only
searching for sequences of stages s0 ă ¨ ¨ ¨ ă sk such that sk ď t. For n ă N , we
can arrange that our computation knows Dpn, kq by table lookup. �

For the rest of the paper, we fix a Turing functional Υ that is universal in the
sense that Υ0e1̂ X “ ΦXe for each X and e. We assume that for every e, for all
sufficiently large n, for all s and X, Φe,spX;nqÓñ Υsp0

e1̂ X;nqÓ.

Proof of Lemma 3.2. It suffices to prove the lemma for the functional Υ. Let us first
give a brief explanation of the proof. We will use the “Main Lemma” derived from
the golden run construction [25, 5.5.1]. The Main Lemma says that if we design
a left-c.e. oracle discrete measure on ω, (equivalently, an adaptive additive cost
function, or a prefix-free oracle machine), then there is a computable approximation
xAsy of A such that the total of all weights that are believed at some stage of the
construction and later are shown to be false is finite. Roughly, we would like, at
stage s, to put the weight µpΥ´1

s rAs ænsq on the string As æn, where µ is Lebesgue
measure on Cantor space, and

Υ´1
s rσs “

X P 2ω : ΥX
s ě σ

(

.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 9

Such an approximation for A will be as required: we can put a Solovay test on the
reals that compute A too early, and thus random oracles will only converge and
agree with As æn after it has settled.

The problem is that this definition does not give a discrete measure: there is no
reason to believe that

ř

n µpΥ
´1rA ænsq is finite. What we notice, though, is that if

an oracle X gives us a correct version of A too early, then this version As æn “ A æn
will later change to At æn ‰ A æn, but after that will need to change back. We can
thus put the weight not on A æn but on an incorrect version At æn. And this is
guaranteed to give a measure: the collection of strings of the form pA ænq̂ p1´Apnqq
that disagree with A only on the last bit is pairwise incomparable, and so the
preimages under Υ of these strings are pairwise disjoint.

We provide the formal details. For σ P 2ăω with σ ‰ xy, define σ̂ to be the
binary string of the same length which disagrees with σ on the final bit, but agrees
on all other bits. For example, if σ “ 001011, then σ̂ “ 001010. For σ P 2ăω with
σ ‰ xy, for brevity, define

Uσ “

X : ΥX ě σ̂
(

.

To avoid the need of repeatedly dealing with xy separately, define Uxy “ H. Note
that pUσqσP2ăω are uniformly Σ0

1-classes. Also, for σ ň ρ, Uσ and Uρ are disjoint.
For our argument, we will require a computable approximation to A that obeys

an adaptive cost function—a cost function where the cost at a given stage depends
on the approximation up to that stage. For xAty, a computable approximation
of A, define

cxAtypn, sq “ µpUA æn`1rssq.

Claim 3.2.1. There is a computable approximation xAty to A that obeys c. That
is, if ns is least with Aspnsq ‰ As`1pnsq, then

ř

s c
xAtypns, sq ă 8.

Proof. Uniformly in σ and s, let Cσ,s Ă 2ăω be a finite anti-chain that generates
Uσ,s, with Cσ,s Ď Cσ,s`1. Define an oracle machine M with Mσ

s pπqÓ for π P Cσ,s.
Since Uσ and Uρ are disjoint for σ ň ρ, M is prefix-free.

Note that for s ą n and any computable approximation xAty,
ÿ

π

2´|π|
0

MApπqrssÓ & useMApπqrss “ n` 1
8

ě cxAtypn, sq.

Fix a computable approximation 9xAqy to A. By the Main Lemma [25, 5.5.1] derived
from the golden run construction, there is a computable sequence qp0q ă qp1q ă ¨ ¨ ¨

with qp0q ě 1, such that if we define ms to be least with 9Aqpsq ‰ 9Aqps`1q, then
ÿ

s

ÿ

π

2´|π|
1

M
9ApπqrqpsqsÓ & ms ă useM 9Apπqrqpsqs ď qps´ 1q

9

ă 8.

Now let At “ 9Aqptq, so ns “ ms. Since s ď qps ´ 1q, if ns ă s then the inner
summation above is at least cxAtypns, sq. So

ř

s c
xAtypns, sq ă 8, as desired. 3.2.1

Now, let xBsy be a uniformly computable sequence of finite anti-chains with
ď

τPBs

rτ s “ UA æns`1rss,

10 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

and define S “
Ť

sBs. Note that
ÿ

τPS

2´|τ | ď
ÿ

s

ÿ

τPBs

2´|τ |

“
ÿ

s

µpUA æns`1rssq

“
ÿ

s

cxAtypns, sq ă 8.

Thus S is a Solovay test.
Let X be random and suppose that A “ ΦXe . Then Y “ 0e1̂ X is random and

A “ ΥY . Since Y is not captured by S, we can fix an s0 such that no Bs with s ě s0

contains an initial segment of Y . Fix N such that for all n ě N , if A æn ď ΥY
s ,

then s ě s0.
Claim 3.2.2. For all n ě N , if A æn ď ΥY

s , then At æn “ A æn for every t ě s.

Proof. Suppose n ě N were a counterexample. Let s be such that A æn ď ΥY
s and

t ě s be such that At æn ‰ A æn and At`1 æn “ A æn. Note that definitionally,
nt ă n. Since At ænt “ At`1 ænt, we know that At ænt “ A ænt ă ΥY

s and
At ænt ` 1 ‰ A ænt ` 1. So {pAt ænt ` 1q “ At`1 ænt ` 1, and Y P UAt ænt`1. By
assumption, Y has already entered this Σ0

1-class by stage s. Since t ě s, Bt contains
an initial segment of Y , contrary to our choice of N and s0. 3.2.2

Since for sufficiently large n, convergence of ΦXe,s up to n implies convergence of
ΥY
s up to n, the lemma follows. 3.2

4. For each cost function there is an ML-complete set

In this section, we prove the existence of a smart set as in Definition 2.7 for each
cost function c that impliesK-triviality. This yields in Corollary 4.4 the equivalence
of smartness for c, and ML-completeness for the class of sets obeying c, and thereby
the existence of an ML-complete for the class.

For cost functions c and d, one writes c Ñ d if A |ù c implies A |ù d for every
∆0

2 set A. By [27, Thm. 3.4], this is equivalent to c ěˆ d, that is, c multiplicatively
dominates d (we may assume cpxq ą 0 for every x). Recall that a set obeys cΩ if
and only if it is K-trivial. So all sets obeying a cost function c are K-trivial if and
only if cÑ cΩ.

We start with two simple lemmas.
Lemma 4.1. Suppose that aY fails a c-bounded test

Ş

n Vn, where a P t0, 1u. Then
Y fails a c-bounded test.

Proof. We may suppose a “ 0 and X P Vn implies Xp0q “ 0. Then µpT rVnsq “
2µpVnq, where T is the usual shift operator on Cantor space, and so xT rVnsy is also
a c-bounded test. Clearly Y fails it. �

We recall [27] that an additive cost function is a cost function of the form cαpn, sq “
αs ´ αn, where xαsy is an increasing approximation of a left-c.e. real α. So
cαpnq “ α ´ αn. Since Ω is Solovay complete among the left-c.e. reals, every
time we see an increase in α, we can cause a proportional and later increase in Ω.
Thus:
Lemma 4.2. If cα is an additive cost function, then cΩ Ñ cα.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 11

In particular, 2´n ďˆ cΩpnq.
Theorem 4.3.
Given a cost function c such that c Ñ cΩ, one can uniformly obtain a c.e. set A
which is smart for c.

Proof. Recall that Υ is a “universal” Turing functional in the sense that Υ0e1̂ X “

ΦXe for all X and e. We build A and a c-test xUky capturing any ML-random Y
such that A “ ΥY . This suffices for the theorem by Lemma 4.1. The tension in
this construction is between trying to capture all reals computing A, and keeping
the measure of Un bounded by (a multiple of) cpnq. The idea is for us to move A
in case we see that too many oracles compute it. This needs to be done judiciously;
we must ensure that A obeys c. The basic idea, as in [3], is to charge the cost of
changing A to the increase in the measure of the error set, the set of oracles that
have already been proven to be incorrect about A. Since c Ñ cΩ, the increase in
the error set is bounded by c, and so we can catch our tail.

We proceed to the details. It will be clear from the proof that the construction
is uniform in c.

We apply the usual language for strings: if σ ăL τ we say that σ lies to the left
of τ , and τ to the right of σ. By delaying computations from appearing in Υ during
the construction, we may assume that for all Y and s, ΥY

s does not lie to the right
of As. We build a global “error set”:

Es “

Y : ΥY
s lies to the left of As

(

.

An enumeration of a number into A causes A to move to the right, and so potentially
adds elements E ; no elements can ever leave E . The basic idea, again, is that we
enumerate a number x into A only when the cost cpx, sq is smaller than the amount
by which the measure of E will be increased.

We will ensure that at every stage s,

(˛) µpUk,sq ď cpk, sq ` µpEs`1 ´ Ekq.

By Lemma 4.2, µpE ´ Ekq “ cµpEqpkq ď
ˆ cΩpkq, so as cΩpkq ď

ˆ cpkq, the test xUky
is indeed a c-test. We reserve the interval Ik “ r2k, 2k`1q for ensuring (˛).

The construction of the c-test xUky and the c.e. set A is as follows. At stage
s ą k we let

Vk,s “

Y : ΥY
s ă As & ΥY

s æ 2k`1 is defined
(

;

and
Uk,s “

ď

tPrk,ss

Vk,t.

As Vk,s Ě Vk`1,s, we have Uk,s Ě Uk`1,s so xUky is nested. Note that Vk,s is disjoint
from Ek, for every s, hence Uk,s is disjoint from Ek.

Let s ą k. We let xs “ xspkq “ minpIk ´ Asq. If (˛) threatens to fail at s,
namely µpUk,sq ą cpk, sq ` µpEs ´ Ekq, we enumerate xspkq into As`1. This causes
Uk,s to go into Es`1. Since Uk,s is disjoint from Ek, it follows in this case that
µpUk,sq ď µpEs`1 ´ Ekq, and so (˛) holds at stage s. (Now the cycle can repeat:
during stages t ě s “ 1, the class Uk is allowed to add measure up to cpk, tq without
any action necessary. If the measure added exceeds cpk, tq another enumeration into
A will be needed.)

12 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

First we verify that xs always exists, that is, we enumerate at most 2k times
for Uk. By Lemma 4.2, we may assume that cpx, sq ě 2´x for x ă s. (To be clear,
here we are using the fact that if c “ˆ d, then the same sets obey c and d.) If we
enumerate xspkq into As`1, then µpUk,sq ą 2´k ` µpEs´ Ekq. Since Uk,sX Ek “ H,
and Uk,s Ď Es`1, it follows that µpEs`1 ´ Esq ą 2´k. Since µpEq ď 1, this can
happen at most 2k times.

Recall that for all Y and s, ΥY
s does not lie to the right of As. Hence, if A “ ΥZ

then Z P
Ş

k Uk. It remains to verify that A |ù c. If we enumerate xspkq into As`1,
then

µpUk,s ´ Esq “ µpUk,s ´ pEs ´ Ekqq ě µpUk,sq ´ µpEs ´ Ekq ą cpk, sq ě cpx, sq.

Since Uk,s ´ Es Ď Es`1 ´ Es, we see that cpx, sq ă µpEs`1 ´ Esq. This implies that
the total cost of the enumeration of A is at most µpEq ď 1. �

ML-completeness for a cost function was defined in 2.4.
Corollary 4.4. Suppose that c is a cost function such that c Ñ cΩ. Let A be a
∆0

2 set. Then A is smart for c ô A is ML-complete for c.

Proof. (ñ) Suppose that A ďT Y for ML-random Y . Then some c-bounded test
captures Y . If B |ù c, then B ďT Y by the basic fact, Proposition 2.6.
(ð) Let rA be smart for c. If A ďT Y for ML-random Y , then rA ďT Y , so Y is
captured by a c-bounded test. �

In particular, the ML-degree of a smart set A for c is uniquely determined by c.
In contrast, for each low c.e. set A, there is a c.e. set B ďT A such that B |ù c [25,
5.3.22]. If A is smart for c, then A ‘ B is also smart for c. As every K-trivial is
low, the Turing degree of a set A that is smart for c is never uniquely determined
by c.

5. Each K-trivial set is ML-complete for a cost function

Given a K-trivial set A, we will define a cost function cpAq with A |ù cpAq such
that every random computing A is captured by a cpAq test. In other words, we build
cpAq in such a way that A is smart for cpAq. Furthermore, in case that A is c.e.,
cpAq is the strongest cost function that A obeys, in the sense that if A |ù c, then
cpAq Ñ c. In the introduction we mentioned applications of this to the structure of
ML-degree of K-trivials, such as showing that there is no minimal pair.

We will provide an example showing that cpAq may not behave in an overly nice
way. We build a c.e. K-trivial A such that the class of sets obeying cpAq is not
closed downward under ďT. In fact, in our example T pAq * cpAq, where T pAq is
the shift of A, obtained by deleting the first bit.

As before, Υ denotes a universal Turing functional. Let A be K-trivial. The
idea for defining cpAq is as follows. Suppose first that A is c.e., and let xAsy be an
effective enumeration of A that obeys cΩ [27]. We want to define cpAq so that we
can capture by a cpAq-bounded test all the reals Z such that ΥZ “ A. The natural
test is Uk “

Ť

sěk Υ´1
s rAs æ ks. So we define cApkq “ µpUkq. Why does A obey this

cost function? Since the approximation is left-c.e., A does not have to pay for the
measure of the oracles that compute A æ k correctly: these only appear after A æ k
has settled, and after that, all changes to A are beyond k. So A only needs to pay
for the measure of those reals Z that compute an incorrect version As æ k. This

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 13

price is bounded by the increase of the measure of the error set: those oracles that
compute some string to the left of A. Thus the total A-cost is the same as the total
A-cost of an additive cost function, and hence bounded by the total cΩ-cost of this
enumeration; but this was chosen to be finite.

When A is not c.e., we use a c.e. intermediary. Let us give the details of the
definition. By Theorem 3.1, fix a c.e. set C ”ML A that computes A; let Ψ be
a Turing functional such that A “ ΨC . Fix an enumeration xCsy of C and an
approximation xAsy of A that witnesses A |ù cΩ. By speeding up both Ψ and
our approximations, we may assume that As æ s ď ΨCs

s for every s. To unify our
construction with the earlier discussion, we assume that if A is c.e., then C “ A
and Ψ is the natural reduction with identity bounded use.

Similarly to what we did above, we let

Es “

Y : ΥY
s lies to the left of Cs

(

and
Vx,s “

!

Y : ΥY
s ă Cs & As æx` 1 ď Ψ

ΥY
s

s

)

;

we then let

cpAqpx, sq “ µ

˜

ď

xătďs

Vx,t

¸

.

Note that cpAq is monotonic, as Vx,t Ě Vx`1,t. It satisfies the limit condition if A is
non-computable: certainly for all x, cApxq ď 1. If A æ k has stabilised by stage s,
then cApsq ď µ

!

Y : A æ k ď ΨΥY
)

. Hence limx cApxq ď µ
!

Y : A “ ΨΥY
)

; if A
is non-computable, this is 0.
Proposition 5.1. A is smart for cpAq.

Proof. First we show that A obeys cpAq. In fact, the fixed approximation xAsy
witnesses this. Define an increasing approximation of the left-c.e. “error real” by

εs “ µ pEs`1q .

Suppose that Aspxq ‰ As`1pxq. For each t P px, ss and every Y P Vx,t, ΥY
t lies to

the left of Cs`1, and so Y P Es`1; on the other hand Y R Et and so Y R Ex`1. It
follows that

cpAqpx, sq ď µ pEs`1 r Ex`1q “ cεpx, sq.

By Lemma 4.2, cΩ Ñ cε, and so

cpAqxAsy ď cεxAsy ď
ˆ cΩxAsy,

and we assumed that the latter is finite.
Next we show that every random real that computes A is captured by some

cpAq-bounded test. Since C ďML A, every such real computes C. By Lemma 4.1,
it suffices to build a cpAq-test capturing any random Y such that C “ ΥY . The
desired test is the test Uk “

Ť

sąk Vk,s defined above. (Again, we assume that we
delay computations, so for all Y and s, ΥY

s does not lie to the right of Cs.) �

As promised, in the case that A is c.e., cpAq is the strongest cost function that
A obeys. In particular, cpAq Ñ cΩ.
Proposition 5.2. Suppose that A is c.e. For any cost function c such that A |ù c,
we have cpAq Ñ c.

14 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Proof. After multiplying c by a constant, we may assume that cp0q ă 1{2. Fix a
computable speed-up f such that c

@

Afpsq
D

ă 1{2 (again, see [27]). Define a Turing
functional Γ such that at every stage t,

µ
`

tY : Afptq æx` 1 ă ΓYt u ´ EΓ,t

˘

“ cpx, tq,

where EΓ,t “ tY : ΓYt lies to the left of Afptqu. By a simple argument µpEΓ,tq ď

c
@

Afpsq
D

ă 1{2 for every t, so this construction may proceed.
Fix e with Φe “ Γ. Then

cApxq “ µ

˜

ď

xăt

Vx,t

¸

“ µ

˜

ď

xăt

Y : At æx` 1 ď ΥY
t

(

¸

ě µ

Y : A æx` 1 ď ΥY
(

ě 2´pe`1q ¨ µ
!

Y : A æx` 1 ď Υ0e1̂ Y
)

ě 2´pe`1qcpxq. �

We provide the promised applications to the ML-degrees.
Corollary 5.3. (a) There is no minimal pair in the ML-degrees of K-trivials.
(b) The ML-degree of a noncomputable K-trivial never contains a maximal Turing
degree.

Proof. (a) Given noncomputable K-trivials A,B, let D be a noncomputable set
obeying the cost function cpAq ` cpBq. Then D ďML A,B by Proposition 2.6.

(b) Suppose A is in the ML-degree. By Theorem 3.1 we may assume that A is
c.e. Some c.e. K-trivial B ďT A obeys cpAq by [25, 5.3.22]; then A‘B ”ML A. �

Recall that T pAq is the shift of A, which is obtained by deleting the first bit.
Theorem 5.4. For every cost function d there is a cost function c ě d and a c.e.
set A such that A |ù c and T pAq * c.

Since cpAq Ñ c, this shows that T pAq * cpAq. Thus cpT pAqq Ñ cpAq. In contrast,
for each ML-random Y ,

Y fails some cpAq test ô Y ěT A ô Y ěT T pAq ô Y fails some cpT pAqq-test

(see Definition 2.5 for c-tests). So we have a pair of inequivalent cost functions that
determine the same randomness notion.

Proof. The main idea is to enumerate the set A and the cost function c so that it
has “sudden drops”: numbers x with cpxq much smaller than cpx´ 1q.

Let
@

B0
t

D

,
@

B1
t

D

, . . . be a listing of all (possibly partial) computable enumer-
ations. In particular, let xDny be an effective listing of the finite sets, and let
Bet`1 “ Bet YDϕept`1q, where defined.

At a stage s, we may declare cps ´ 1, sq ě α for some dyadic rational α, which
by monotonicity entails that cpy, tq ě α for each y ă s and t ě s. At the end of
stage s, we will define cpx, sq for every x ă s to be the least value consistent with
all of our declarations and also with cpx, sq ě dpx, sq.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 15

We must meet the global requirements that c has the limit condition and that
A |ù c. We must also meet the requirements

Re : T pAq “
ď

t

Bet ñ cxBet y ě 1.

The strategy for Re seeks to find an x and an s where cpx ´ 1, sq is large and
x ´ 1 R Bes . Then it enumerates x into A and waits until it sees a t ą s with
x´1 P Bet . This will increase cxBet y by at least cpx´1, sq. Then the strategy seeks
to repeat the process with a new x, continuing until cxBet y ě 1.

To ensure that c has the limit condition, we will give Re a bound αe beyond
which it is not allowed to increase c. This bound will also ensure that Re does not
interfere with Re1 for e1 ă e. To ensure that A |ù c, we will not allow Re to cause
enumerations with total cost exceeding 2´e. Other than a discussion of αe, our full
strategy for Re is:

(1) Let s be the current stage. Declare cps´ 1, sq ě αe.
(2) At stage s` 1, declare cps, s` 1q ě 2´e ¨ αe.
(3) Wait for a stage u ą s when one of the following happens:

(a) If cps, uq ą 2´e ¨ αe, return to Step (1).
(b) If s is enumerated into A, return to Step (1).
(c) If Bes converges with s ´ 1 R Bes , enumerate s into A and proceed to

Step (4).
(4) Wait until Ber converges for some r ą s with s´ 1 P Ber .
(5) If cxBet y

r
t“0 ě 1, terminate the strategy. Otherwise, return to Step (1).

Note that case (3a) might occur because of the actions of some other strategy, or
might instead occur because of cps, uq ě dps, uq. The latter can occur only finitely
many times, because d satisfies the limit condition.

Note also that if we reach Step (5), then s´1 R Bes , s´1 P Ber , and cps´1, sq ě αe,
so cxBet y

r
t“0´cxBet y

s
t“0 ě αe. Thus we will reach Step (5) at most 1{αe times before

meeting the requirement and terminating the strategy. Each enumeration has a cost
of 2´e ¨ αe by construction, and so the total cost of enumerations by this strategy
is at most 2´e.

If the strategy waits forever at Step (3), then either xBet y is partial, or s R A but
s´ 1 P

Ť

tB
e
t , meaning we satisfy Re by negating the hypothesis. It thus remains

only to show that we do not return to Step (1) via case (3a) or (3b) infinitely many
times.

We wish to ensure that no Re1 -strategy for e1 ą e can increase cps, uq beyond
2´e ¨ αe. So we define α0 “ 1, αe`1 “ 2´e ¨ αe. Now case (3a) cannot be caused by
the action of any Re1 -strategy for e1 ą e. Nor can case (3b), because of our action
at Step (2). It is then a simple induction that no strategy returns to Step (1) more
than finitely many times. �

6. K-trivial sets Turing below fragments of Ω

Previous research. We begin by discussing in some detail a theorem that motivated
the present results. For a set Z Ď N thought of as a bit sequence and an infinite
set R Ď N, we denote by ZR the sequence obtained by erasing the bits of Z in
locations outside of R. If 1 ď j ď n, then the jth n-column of Z is Zpj´1`nNq. A
set A is a k{n-base if it is computable from the join of any k of the n-columns of
some random sequence X, in all possible ways.

16 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

For a computable real p such that 0 ă p ď 1, let cΩ,ppx, sq “ pΩs ´ Ωxq
p. As

mentioned in the introduction, three of the authors of the present paper proved:
Theorem 6.1 ([14]). The following are equivalent for a set A and 1 ď k ă n:

(1) A is a k{n-base.
(2) A is a k{n-base witnessed by Ω, i.e., it is computable from the join of any k

of the n-columns of Ω.
(3) A obeys cΩ,k{n.
Hence the p-bases are characterised by cost functions. Theorem 4.3 implies that,

for every rational p P p0, 1q, there is a smart p-base: a greatest ML-degree of p-
bases. If p ă q, then every p-base is also a q-base, as cΩ,p ě

ˆ cΩ,q. However there
also is a q-base that is not a p-base. Thus, the smart p-bases form a dense chain of
ML-degrees.

Using Theorem 6.6 below, we can add fourth equivalence to Theorem 6.1, one
that appears to be significantly weaker than (2):

(4) A is K-trivial and is computable from the join of some choice of k of the
n-columns of Ω.

In other words: if a K-trivial is computable from some k{n-fragment of Ω, then
it is computable from any k{n-fragment of Ω. Recall that any c.e. set computable
from a Turing incomplete random set is K-trivial [18]. Since every k{n-fragment
of Ω is incomplete, we obtain:
Corollary 6.2. If X and Y are both k{n-fragments of Ω for k ă n, then X and Y
compute the same c.e. sets.
In particular, if a c.e. set is computable from one half of Ω, it is also computable
from the other half.

The cost functions cR. We now turn to the general analysis of the question which
K-trivials are computed by fragments of Ω. For n ě 1 and T Ď t1, 2, . . . , nu, let
RpT, nq “

Ť

jPT j ´ 1 ` nN. So ΩRpT,nq is the join of the n-columns of Ω indexed
by T (up to a simple computable permutation, depending on how we take the join).

Let R be an infinite computable set. The first question is how to generalise the
cost function cΩ,k{n to a cost function cΩ,R. A basic step in the analysis of k{n-bases
was the observation that if T Ď t1, 2, . . . , nu has size k, then ΩRpT,nq is captured by
a cΩ,k{n-test; this gave the implication (3)Ñ(2) of Theorem 6.1. We would like to
capture the bits of ΩR that are given by Ω æn by the nth component of a cΩ,R-test.
So perhaps the first guess would be to define cΩ,Rpnq “ pΩ´Ωnq

|RXn|{n. It turns out
that this is not quite right; it works if R “ RpT, nq, but that is misleading because
in that case the density of initial segments of R is more or less constant k{n. What
would work is cΩ,Rpnq “ pΩ´ Ωnq

|RXkpnq|{kpnq, where Ω´ Ωn P p2
´kpnq´1, 2´kpnqs.

However, it is not clear that this cost function will be monotonic if the density of R
varies. We get around this technical complication by using a “discrete” version.

For n ă ω, let
kpnq “ t´ log2pΩ´ Ωnqu ,

so 2´kpnq´1 ă Ω ´ Ωn ď 2´kpnq. Define kspnq similarly, replacing Ω by Ωs. Note
that kpnq ď n for all but finitely many n (otherwise, Ω would not be random).
Definition 6.3. For an infinite computable R Ď ω, define

cΩ,Rpn, sq “ 2´|RXkspnq|.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 17

The cost function cΩ,R is monotonic: ks`1pnq ď kspnq and kspn`1q ě kspnq. It also
satisfies the limit condition: cΩ,Rpnq “ 2´|RXkpnq| is finite and, since limn kpnq “ 8
and R is infinite, limn cΩ,Rpnq “ 0. Finally, we note that cΩ,Rpn, sq ¨ cΩ,RApn, sq “

2´kspnq “ˆ Ωs ´ Ωn, where RA is the complement of R.
Remark 6.4. For any infinite R, note that cΩ,Rpnq “

ˆ pΩ´ Ωnq
|RXkpnq|{kpnq. For,

´

2´kpnq´1
¯|RXkpnq|{kpnq

ă pΩ´ Ωnq
|RXkpnq|{kpnq ď

´

2´kpnq
¯|RXkpnq|{kpnq

2´|RXkpnq| ¨ 2´|RXkpnq|{kpnq ă pΩ´ Ωnq
|RXkpnq|{kpnq ď 2´|RXkpnq|

1

2
¨ cΩ,Rpnq ă pΩ´ Ωnq

|RXkpnq|{kpnq ď cΩ,Rpnq.

In particular, if T Ď t1, 2, . . . , nu has size k, then cΩ,RpT,nq “
ˆ cΩ,k{n.

Proposition 6.5. ΩR is captured by a cΩ,R-test.

Proof. We use the idea from the proof of [14, Prop. 2.9] that each p-Oberwolfach
test is covered by a cΩ,p-tests.

For a string σ P 2ăω of length t, let σR denote the string of length |R X t|
given by the bits of σ with location in R. Let Gσ “ tX P 2ω : σR ă Xu. Clearly
µpGσq “ 2´|RXt|.

Let Un “
Ť

sěnGΩs æn. Then ΩR P
Ş

n Un. Note also that Un`1 Ď Un. Since
Ω ´ Ωn ď 2´kpnq, the set tΩs æ kpnq : s ě nu contains at most two strings. But
Un Ď

Ť

sěnGΩs æ kpnq, so

µpUnq ď 2 ¨ 2´|RXkpnq| “ 2 ¨ cΩ,Rpnq. �

We proceed to the main theorem of this section. The equivalence (i)Ø(iii) pro-
vides a simple combinatorial description of when a fragment ΩS computes no more
K-trivials than another fragment ΩR: for each number m, the size of S below m
exceeds the size of R below m by at most a constant.
Theorem 6.6. The following are equivalent for infinite computable sets R and S:

(i) Each K-trivial computed by ΩS is also computed by ΩR.
(ii) ΩR is captured by a cΩ,S-test.
(iii) |S Xm| ď` |RXm|.
(iv) cΩ,S Ñ cΩ,R.

The promised application (from the beginning of the section) of the main result
follows easily: if T, T 1 Ď t1, 2, . . . , nu have size k, then |RpT, nqXm| “` |RpT 1, nqX
m|. Therefore, any k-trivial computable from ΩRpT,nq is computable from every
k{n-fragment of Ω, hence is a k{n-base.
Remark 6.7 (The dual of ML-reducibility). The relative complexity of fragments
of Ω can be understood in terms of the dual of ML-reducibility. For general ML-
random sequences Y and Z, we write Y ďML˚ Z if for every K-trivial set A, if
A ďT Y then A ďT Z.

Again Turing reducibility implies ML˚-reducibility. The top degree consists of
those randoms that compute all K-trivial sets; these are the randoms that fail
some cΩ-test (i.e., the non-Oberwolfach randoms [3]). Of course, these include all
the Turing complete randoms. The bottom degree consists of the weakly 2-random
sequences, the randoms that compute no K-trivial sets.

18 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Using this language, (i) in Theorem 6.6 states that ΩS ďML˚ ΩR. The equiv-
alence (i)Ø(iii) in 6.6 provides a complete characterisation of ML˚-reducibility
between fragments of Ω by a simple combinatorial condition on the underlying
computable sets. The intuition is that as R gets thinner, ΩR gets computationally
weaker (in the coarse sense of ML˚). The randomness enhancement principle says
that among ML-random sets, being computationally weaker is equivalent to being
more random (see [26] and the discussion there). By this principle, ΩR also gets
more random as R gets thinner.

Due to the relative length of the proof, we state and prove the implication
(ii)Ñ(iii) of Theorem 6.6 separately.
Proposition 6.8.
Let R and S be infinite computable sets such that |S X m| ę` |R X m|, i.e., the
function mÑ |S Xm| ´ |RXm| is unbounded. Then ΩR is cΩ,S-random.

Proof. Suppose for a contradiction that ΩR can be captured by a cΩ,S-test. Then
using Proposition 6.5 there is a nested test xUny capturing the sequence Z “ ΩR ‘
ΩRA with µpUnq ď pcΩ,Spnqq ¨ pcΩ,RApnqq. We show that this implies that Z is not
ML-random. To do this, we show how to uniformly enumerate an open set V of
small measure that contains Z.

Note that |S Xm| ´ |RXm| “ |S Xm| ` |RA Xm| ´m. Given a rational ε ą 0,
we can thus effectively find a k with |S X k| ` |RA X k| ´ k ą 1´ log ε.

Define a location ns ą k recursively at stages s ě k. Recall that kspnq “
t´ log2pΩs ´ Ωnqu. For s “ k, or if ks`1pnsq ă k, we let ns`1 be the least n ě k
such that ks`1pnq ą k. Otherwise, we let ns`1 “ ns.

There are at most 2k`1 stages s at which ns ‰ ns´1. For let s ă t be two such
stages, then Ωs ´ Ωns

ď 2´pk`1q. But Ωt ´ Ωns
ą 2´k, so Ωt ´ Ωs ą 2´pk`1q.

Let V “
Ť

sąk Uns,s. For each stage s ě k, we have kspnsq ě k, so

µpUns,sq ď pcΩ,Spns, sqq ¨ pcΩ,RApns, sqq “

2´|SXkspnsq| ¨ 2´|R
A
Xkspnsq| ď 2´|SXk| ¨ 2´|R

A
Xk| “

2´p|SXk|`|R
A
Xk|q ă 2log ε´k´1 “ 2´k´1 ¨ ε.

Therefore,
µpVq ď 2k`1 ¨ 2´k´1 ¨ ε “ ε. �

The hardest implication is (iv)Ñ(i). To prove it, we rely on a lemma of interest
on its own. Informally, the lemma says that if X ‘ Y is ML-random, but X is not
too random in the sense that X fails a cΩ,RA -test for a co-infinite computable set
R, then any K-trivial Turing below the “other side” Y obeys the complementary
cost function cΩ,R. For example, let X “ ΩRA and Y “ ΩR, so that in addition
Y fails a cΩ,R-test. In this case, any K-trivial set A obeying cΩ,R is below Y ; the
lemma says that these are the only K-trivials below Y . (See Theorem 7.1.)
Lemma 6.9. Let R Ď ω be computable and co-infinite. Suppose that X ‘ Y is
ML-random, and that X is captured by a cΩ,RA-test. Suppose that A is K-trivial,
and that A ďT Y . Then A obeys cΩ,R.

The proof will be the content of Section 8.
Remark 6.10. While cΩ,R was only defined for infinite R, the definition can be
interpreted for finite R, in which case the cost function does not satisfy the limit

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 19

condition, and the sets obeying it will be the computable ones. Lemma 6.9 holds
for R finite or co-finite as well. The case |RA| ă 8 tells us nothing: the hypothesis
that X fails a cΩ,RA-test is trivial, since there is such a test that captures the
entire interval; meanwhile, cΩ,R “

ˆ cΩ, so the conclusion A |ù cΩ,R is simply a
restatement of the fact that A is K-trivial.

The case |R| ă 8 is a weaker version of a known result: the assumption that X
fails a cΩ,RA -test tells us that X is not cΩ-random, and thus that X is LR-hard [3].
Since Y is X-random, Y is 2-random, and so the only K-trivials that Y computes
are the computable sets.

Proof of Theorem 6.6, assuming Lemma 6.9. (i)Ñ(ii) Let A be smart for cΩ,S by
Theorem 4.3. Thus A |ù cΩ,S . Note that ΩS is captured by a cΩ,S-test by Propo-
sition 6.5. By Proposition 2.6, A ďT ΩS , and so A ďT ΩR. By the definition of
smartness for cost functions, ΩR is captured by a cΩ,S-test.

(ii)Ñ(iii) This is the contrapositive of Proposition 6.8.
(iii)Ñ(iv) Fix b such that |S Xm| ď |R Xm| ` b for all m. Then |S X kpnq| ď

|RX kpnq| ` b for all n, meaning that cΩ,R ď 2bcΩ,S , and so cΩ,S Ñ cΩ,R.
(iv)Ñ(i) Suppose cΩ,S Ñ cΩ,R, or equivalently cΩ,R ď

ˆ cΩ,S . Since

cΩ,R ¨ cΩ,RA “
ˆ cΩ “

ˆ cΩ,S ¨ cΩ,SA ,

it follows that cΩ,SA ď
ˆ cΩ,RA . By Proposition 6.5, X :“ ΩSA is captured by a cΩ,SA-

test, which hence is a cΩ,RA -test. By Lemma 6.9, for any K-trivial A ďT ΩS :“ Y ,
A |ù cΩ,R. Thus A ďT ΩR by Proposition 2.6. 6.6

7. Feeble sets for cost functions, and the structure of ML-degrees

We discuss some ramifications of Theorem 6.6, and also Lemma 6.9, which is a
main technical ingredient to the proof of the theorem.
A notion that is dual to smartness for a cost function. We will call an ML-random
failing a c-test feeble for c if the only K-trivials it computes are the ones that
obey c. Recall that a K-trivial set obeying a cost function c is smart for c if only
the ML-random sets that fail a c-test compute it (Def. 2.7). Feebleness for c is
dual to smartness for c: in each case, by Proposition 2.6 the definition says that
the collection of sets of the “opposite” type that are Turing comparable to the given
set is as small as possible.

As a consequence of Lemma 6.9, we obtain a natural characterisation of the
K-trivial sets that are Turing below ΩR for some infinite computable set R.
Theorem 7.1. If R is an infinite computable set, then ΩR is feeble for cΩ,R.
(So the K-trivials computable from ΩR are exactly those that obey cΩ,R.)

Proof. By Proposition 6.5, ΩR fails a cΩ,R-test.
Suppose A ďT ΩR :“ Y and A is K-trivial. The sequence ΩR ‘ ΩRA is ML-

random and X :“ ΩRA fails a cΩ,RA-test, so A |ù cΩ,R by Lemma 6.9. �

We make two observations that follow from the definitions of smartness and
feebleness via Proposition 2.6. They tell us that cost functions that admit feeble
sequences are special. The first observation implies that if c has a feeble random
sequence, then the collection of sets that obey c determines a principal ideal of
ML-degrees.

20 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Proposition 7.2.
Let c be a cost function such that cÑ cΩ. Suppose that Z is feeble for c and that B
is smart for c. Then the following are equivalent for a K-trivial set A:

(1) A |ù c;
(2) A ďT Z;
(3) A ďML B.
Thus, for example, no random can be feeble for the cost function cpAq for the

set A built in the proof of Theorem 5.4.
The next observation says informally that for cost functions admitting feeble se-

quences, the following are all equivalent: cost function implication, ML-reducibility
between corresponding smart sets, and ML˚ reducibility between corresponding
feeble sets in the sense of Remark 6.7.
Proposition 7.3. Let c and d be cost functions such that c Ñ cΩ and d Ñ cΩ.
Suppose that Zc and Zd are feeble for c and d (respectively), and that Bc and Bd

are smart for c and d (respectively). The following are equivalent:
(1) cÑ d;
(2) Bc ďML Bd;
(3) Each K-trivial Turing below Zc is Turing below Zd, i.e. Zc ďML˚ Zd.

Proof. We obtain from Proposition 7.2 that (2) is equivalent to (3):

Bc ďML Bd iff @K-triv.A rA ďML Bc Ñ A ďML Bds iff Zc ďML˚ Zd.

For (1)Ñ(2), recall from Section 2 that (1) is equivalent to d ďˆ c, and hence
implies that every d-test is a c-test. If Bd ďT Y for ML-random Y then Y fails a
c-test, and hence Bc ďT Y .

For (2)Ñ(1), recall that Bc is ML-complete for c. So if A obeys c then A ďML
Bd. By Proposition 7.2 applied to d, this implies that A obeys d. �

The structure of the ML-degrees of K-trivials. In Corollary 5.3, we provided two
facts on the ML-degrees. Both were based on Proposition 5.1 that each K-trivial A
is ML-complete for a cost functions cpAq. Here we obtain a further structural result
using the tools developed above (in this section and the preceding section). In
contrast to what the results in [14] suggested, our result shows that the partial
order of ML-degrees is far from linear.
Theorem 7.4.
There is an infinite antichain of ML-degrees of uniformly c.e. K-trivial sets. Fur-
thermore, every countable partial ordering is embeddable into the ML-degrees of
K-trivial sets, and via a computable embedding if the given ordering is computable.

Proof. We fix a uniformly computable partition of N into countably many sets Rn
such that the upper density of each Rn is 1 (greater than 1{2 would do). For a
computable set F Ď N, let RpF q “

Ť

nPF Rn. By Theorem 4.3 let BF be the c.e.
K-trivial set, uniformly obtained from the cost function, that is smart for cΩ,RpF q.
The required uniformly c.e. antichain is

@

Btnu
D

. The map F ÞÑ BF is an embedding
of the partial ordering of computable sets under inclusion into the ML-degrees. This
suffices, because one can embed the countable atomless Boolean algebra into the
algebra of computable sets under inclusion using its representation as the interval
algebra of the countable dense linear order r0, 1qQ.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 21

To see that the map is a partial order embedding, first suppose that F Ď G.
Then RpF q Ď RpGq, and so cΩ,RpF q ě cΩ,RpGq; by Proposition 7.3, BF ďML BG.

On the other hand, if F Ę G, take some n P F r G; so Rn Ď RpF q but
Rn XRpGq “ H. The fact that the upper density of Rn is 1 implies that |RpF q X
m| ę` |RpGq Xm|. By Theorem 6.6, this implies that cΩ,RpF q Ñ cΩ,RpGq. Hence
BF ęML BG by Theorem 7.1 and Proposition 7.3. �

We obtain a related structural result about the ML-degrees without using the
tools developed above. We give an alternative construction of incomparable ML-
degrees, and use it to prove downward density.

Theorem 7.5. For every non-computable c.e. set D, there are c.e. sets A,B ďT D
such that A |ML B.

Proof. We extend Kučera’s injury-free proof [20] of the Friedberg–Muchnik theo-
rem, as presented in [25, Section 4.2]. The theorem states that there are Turing
incomparable c.e. sets A,B. Two versions of Kučera’s proof are given there; the
first relies on t0, 1u-valued d.n.c. functions as in [25, Cor. 4.2.3], the second on ML-
randomness as in [25, Cor. 4.2.5]. The second version actually shows that there
are ML-random ∆0

2 sets Y, Z such that A ďT Y , B ďT Z, A ďT Z, and B ďT Y .
Therefore A |ML B as witnessed by Y, Z.

To ensure that A,B ďT D, all we need to do is modify [25, Cor. 4.2.5]:

Lemma 7.6. There is a computable function r such that for each e, if Y “ ΦH
1

e is
total and ML-random, then A “Wrpeq ďwtt Y , A ďT D, and A is non-computable.

To see this, we use the cost function version of Kucera’s result as presented
in [15] and [25, 5.3.13]. Given an ML-random ∆0

2 set Y , one defines a cost function
cY such that if A |ù cY , then A ďwtt Y . The cost function cY emulates a given
computable approximation of Y , and is therefore obtained uniformly from an e such
that Y “ ΦH

1

e . The construction of a non-computable c.e. set A obeying a given
cost function with the limit condition [27, Thm. 2.7(i)] is compatible with simple
permitting, so we can ensure that A ďT D. It is also uniform in the cost function
(when D is fixed). So we obtain the c.e. set A uniformly in e, as required. �

Remark 7.7. The following may be relevant towards Question 1.2 above. We distin-
guish ďML from certain variants that are clearly arithmetical. Fix a notation η for
an infinite computable ordinal. Intuitively, a ∆0

2 set is η-c.a. if it has a computable
approximation where the number of changes is bounded by counting downward in
the canonical computable well-order given by η. See e.g. [12, Def. 7.1] for the formal
definition of η-c.a. sets and more background.

Restricting the ML-randoms in the definition 2.1 of ďML to the η-c.a. sets yields
a reducibility strictly weaker than ďML. For, the η-c.a. sets form a Σ0

3 class, so
there is a noncomputable c.e. set D below all the η-c.a. ML-randoms. Now by
Theorem 7.5, let A,B ďT D be c.e. sets such that A |ML B. Then A and B are
equivalent in the sense of the reducibility based on η-c.a. sets. Note that by the
proof of Theorem 7.5, in fact A and B are incomparable for the weaker variant of
ML-reducibility based on ML-random ∆0

2 sets.

22 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

8. Proof of Lemma 6.9

Recall that for A Ď 2ω and Z P 2ω, the Lebesgue (binary) lower density %2pA|Zq
ofA at Z is lim infn µpA|Z ænq, where µpA|σq “ µpAXrσsq{µprσsq is the conditional
probability of A given rσs. Notice that %2p2

ω ˆ A|X ‘ Zq “ %2pA|Zq for any bit
sequence X.

A difference test is one of the form xUn X Py, where the open sets Un are uni-
formly Σ0

1 and nested, P is Π0
1, and µpUnXPq ď 2´n. Franklin and Ng [10] proved

that an ML-random sequence Z is difference random (i.e., passes all difference tests)
if and only if Z is Turing incomplete.

A bit sequence Z is a positive density point if the lower density %2pP|Zq is positive
for any Π0

1 class P that contains Z (If Z is ML-random, then it makes no difference
whether one takes the binary, or the full density defined in the setting of the unit
interval.)

We also require a result from [4] due to Bienvenu, Hölzl and two of the authors
of the present paper. It implies that an ML-random is difference random if and
only if it is a positive density point. Furthermore, the failure of these properties
will be witnessed on the same Π0

1 classes, an observation we will use below.
Fact 8.1 ([4], Lemma 3.3). Suppose that Q is a Π0

1-class that contains an ML-
random sequence Z. Then Z fails a difference test of the form xVn XQy iff Q has
lower density 0 at Z.

The purpose of this section is to prove Lemma 6.9, which we recall here. We will
first give a proof in the case that A is c.e.
Lemma 6.9. Let R Ď ω be computable and co-infinite. Suppose that X ‘ Y is
ML-random, and that X is captured by a cΩ,RA-test. Suppose that A is K-trivial,
and that A ďT Y . Then A obeys cΩ,R.

Proof when A is c.e. Fix a computable enumeration xAsy of A. Fix a cΩ,RA-test
xUny that X fails, and fix a functional Φ with A “ ΦY . Let E be the error set for
Φ with respect to A: as before, Es is the set of oracles Z such that ΦZs lies to the
left of As. Let Q “ 2ω ˆ p2ω ´ Eq (and Qs “ 2ω ˆ p2ω ´ Esq).

We carry out a “ravenous sets” construction onQ; for background see [14, Section
3.1]. Uniformly in k, n P ω, we enumerate Σ0

1 open sets Vkn Ă 2ω ˆ 2ω. The goal
for Vkn XQ is 2´kpΩn`1 ´ Ωnq; we will ensure that no set ever exceeds its goal. In
[18] a set playing a role similar to the one of Vkn was called “hungry” if it has not
reached its goal. The sets Vkn are called “ravenous” here, rather than just “hungry”,
because we may feed them with oracle strings that later leave Q, in which case they
get hungry again.

We will also ensure that Vkn is disjoint from Vkm for n ‰ m. The parameter k de-
termines the goal for these ravenous sets; otherwise, the constructions for distinct k
are independent. The other property that we ensure is that

Vkn XQ Ď Un ˆΨ´1rA æn` 1s.

Construction of the sets Vkn, for parameter k. At stage 0, we begin with Vkn empty
for every n P ω. At every stage s, we call one of the sets Vkn “awake”, and the others
“asleep”. We start with Vk0 awake.

At stage s, if Vkn is awake at this stage, then it has not reached its goal, i.e.,
µpVkn,s X Qsq ă 2´kpΩn`1 ´ Ωnq, and so we try to feed it. We call a product
rσs ˆ rτ s of basic clopen sets palatable (at stage s) if: it is disjoint from Vkm,s for

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 23

all m; rσs Ď Un,s; and As æn ` 1 ď Φτs (in particular, rσs ˆ rτ s is covered by Qs).
Note that if rσ1s ˆ rτ 1s is contained in a palatable set, it is itself palatable. By
standard assumptions on the enumerations of Φ and U , we can effectively obtain a
finite antichain of palatable sets covering all palatable sets, and so determine the
total measure covered by palatable sets. If this measure is less than the appetite of
Vkn, i.e. less than 2´kpΩn`1 ´ Ωnq ´ µpVkn,s XQsq, we enumerate all the palatable
sets into Vkn,s`1 and declare that Vkn to be awake at stage s` 1.

If instead the measure covered by palatable sets at stage s exceeds the appetite
of Vkn, then we choose a finite anti-chain of palatable sets covering measure exactly
2´kpΩn`1´Ωnq´µpVkn,sXQsq in some effective fashion and enumerate this antichain
into Vkn,s`1. We then put Vkn to sleep and declare Vkm to be awake at stage s ` 1,
where m is least such that Vkm,s has not reached half its goal: µpVkm,s X Qsq ă

2´pk`1qpΩn`1 ´ Ωnq. (Such m will always exist, of course, because all but finitely
many Vkm,s will be empty. It is important to note, though, that as we enumerate
measure into Vkn, measure leaves Q, and so a set Vkn could be put to sleep but
re-awakened later.)

Verification. Since X fails a cΩ,RA test, it is not 2-random. Since X is ML-random
relative to Y , this implies that Y is Turing incomplete. So by the result of Franklin
and Ng, Y is difference random. Since Y R E , by Fact 8.1 2ω ´ E has positive
density at Y . Hence Q has positive density at X ‘ Y by the fact mentioned at
the beginning of this section. Let Vk “

Ť

n Vkn. Since
ř

npΩn`1 ´ Ωnq “ Ω, the
sequence of sets

@

Vk XQ
D

is a difference test. By a second application of Fact 8.1,
X ‘ Y R

Ş

k Vk XQ.
Since X ‘ Y P Q, we can fix some k with X ‘ Y R Vkn for any n P ω. In the

remainder of the proof, we omit the superscript k. We first show that every set Vn
eventually reaches half its goal.
Claim 6.9.1. For every n, there is a stage t such that for all s ě t,

µpVn,s XQsq ě 2´pk`1qpΩn`1 ´ Ωnq.

Proof. Fix n. There is a σ ă X with rσs Ď Un, and there is a τ ă Y with A æn`1 ď

Φτ . Fix t0 such that rσs Ď Un,t0 , At0 æn ` 1 “ A æn ` 1 and A æn ` 1 ď Φτt0 . As
each Vm,s is the union of a finite antichain and does not contain pX,Y q, at every
s ě t0 at which Vn is awake, there is some palatable rσ1s ˆ rτ 1s with σ ď σ1 ă X
and τ ď τ 1 ă Y . We do not enumerate some neighborhood covering rσ1s ˆ rτ 1s into
Vn,s`1, so by construction, Vn is asleep at stage s` 1.

If s0 is a stage when Vn goes to sleep and s1 ą s0 is a stage at which Vn wakes
back up, then µpQs0 ´Qs1q ą 2´pk`1qpΩn`1 ´ Ωnq. Thus Vn can go to sleep only
finitely often. It follows that for every n, there are only finitely many stages at
which Vn is awake. Let t be the last stage at which any Vm for m ď n went to
sleep. Then µpVn,s X Qsq ě 2´pk`1qpΩn`1 ´ Ωnq for every s ě t. For otherwise,
when the current Vj goes to sleep, either Vn or Vm for m ă n would wake, contrary
to the choice of t. 6.9.1

We now define a pair of computable functions f and g by simultaneous recursion.
We begin by setting fp´1q “ ´1. Given fps ´ 1q, we define fpsq ą fps ´ 1q and
gpsq to be sufficiently large so that for every n ă s,

Ωfpsq ´ Ωn ď 2pΩgpsq ´ Ωnq,

24 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

and for every n ă gpsq,

µpVn,fpsq XQfpsqq ě 2´pk`1qpΩn`1 ´ Ωnq.

Note such values always exist: if gpsq is such that Ω´Ωs ď 2pΩgpsq´Ωsq, then the
first requirement is satisfied for every fpsq; then given any gpsq, a sufficiently large
choice of fpsq will satisfy the second requirement. Thus we can find such a pair of
values by exhaustive search, and f and g are total.

Recall the following notation from Section 6:

kspnq “ t´ log2pΩs ´ Ωnqu .

Observe that kfpsqpnq ě kgpsqpnq ´ 1 for all n ă s, and so

cΩ,RApn, fpsqq ď 2 ¨ cΩ,RApn, gpsqq.

The following claim will complete the proof that A obeys cΩ,R.

Claim 6.9.2. The total cost cΩ,R

@

Afps`1q

D

is bounded by 2k`3.

Proof. Fix a stage s, and suppose that n be least such that n P Afps`1q´Afpsq. We
may assume n ă s. Then for all m ě n, π2rVm,fpsqs Ď Efps`1q, where π2 : 2ωˆ2ω Ñ
2ω is the projection onto the second coordinate. Let

S “
ď

měn

Vm,fpsq XQfpsq.

Note that by definition of the Qt

(6.1) µ
`

Efps`1q ´ Efpsq
˘

ě µpπ2rSsq.

The sets Vm are disjoint by construction, and

µpVm,fpsq XQfpsqq ě 2´pk`1qpΩm`1 ´ Ωmq

for m ă gpsq by choice of fpsq, so

µpSq ě 2´pk`1qpΩgpsq ´ Ωnq ą 2´pk`1q2´pkgpsqpnq`1q ě 2´pk`2qcΩpn, gpsqq.

On the other hand, π1rSs Ď Un,fpsq, where π1 is projection onto the first coordinate,
and µpUn,fpsqq ď cΩ,RApn, fpsqq ď 2 ¨ cΩ,RApn, gpsqq. Since S Ď π1rSs ˆ π2rSs,

µpSq ď µpπ1rSsq ¨ µpπ2rSsq ď 2 ¨ cΩ,RApn, gpsqq ¨ µpπ2rSsq,

whence, as cΩ ď cΩ,R ¨ cΩ,RA ,

2´pk`3qcΩ,Rpn, gpsqq ď µpπ2rSsq.

Therefore, by (6.1), µpEfps`1q ´ Efpsqq ě 2´k´3 ¨ cΩ,Rpn, gpsqq ě 2´k´3 ¨ cΩ,Rpn, sq.
By definition the total cost is the sum over all stages s of the costs of the

least change at that stage. We conclude that cΩ,R

@

Afps`1q

D

ď 2k`3µpEq.
6.9.2, Lem. 6.9 for A c.e.

We lift the c.e. case to the general case. Thanks to Theorem 3.1, this is relatively
easy, say compared to the approach taken in [14].
Lemma 8.2. For any infinite computable set R, obedience to cΩ,R is downward
closed under Turing reducibility.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 25

Proof. This is similar to [14, Prop. 2.3]. For brevity, let fpkq “ |R X k|. We
only use the facts that f is non-decreasing, and that there is d P N such that
fpk ` 1q ď fpkq ` d for each k. As in Section 6 let kpnq “ t´ log2pΩ´ Ωnqu and
kspnq “ t´ log2pΩs ´ Ωnqu, so that lims kspnq “ kpnq in a nonincreasing fashion.

Let B be a ∆0
2 set that obeys cΩ,R. Let xBty be a computable approximation

of B witnessing that B |ù cΩ,R. Let A ďT B, say A “ ΨB for some functional Ψ.
Since cΩ,R Ñ cΩ, B is K-trivial. Let ψ be the use function for the computation

ΨB “ A. By Barmpalias and Downey [1, Lem. 2.5], as B is K-trivial and ψ is
B-computable, one has Ω´ Ωn ď

ˆ Ω´ Ωψpnq and hence kpnq ě` kpψpnqq.
Hence there is b P Z such that kpnq ě b ` kpψpnqq for each n. We define an

increasing sequence of stages spiq, starting with sp0q “ 0; spiq is the least stage
s ą spi´ 1q such that |ΨBs

s | ą i and for all n ď i, ki`1pnq ě b` kspψspnqq, where
ψspnq is the use of the computation ΨBs

s pnq. We then let Ai “ Ψ
Bspiq

spiq .
We claim that the approximation xAiy witnesses that A obeys cΩ,R. The reason

is that if Aipnq ‰ Ai`1pnq and n ď i, then the A-cost paid is 2´fpki`1pnqq, whereas
at some stage t P pspiq, spi` 1qs we see a change in B below v “ ψspiqpnq, showing
that the total cost paid by B along this interval of stages is at least 2´fpktpvqq ě
2´fpkspiqpvqq. This allows us to bound the A-cost by the assumed property of f , as
ki`1pnq ě b` kspiqpvq. �

Note that in fact obedience to cΩ,R is downward closed under ML-reducibility
(by Theorem 7.1), but this used Lemma 6.9.

Proof of Lemma 6.9 in the general case. Let A be K-trivial and suppose that the
hypotheses of the lemma hold. By Theorem 3.1, let C ěT A be c.e. such that
C ”ML A. The ML-equivalence implies that C ďT Y ; the c.e. case shows that
C |ù cΩ,R. By Lemma 8.2, A obeys cΩ,R as well. �

9. Fragments of Ω and strong jump-traceability

A cost function c is benign [15] if from a rational ε ą 0, we can compute a
bound on the length of any sequence n1 ă s1 ď n2 ă s2 ď ¨ ¨ ¨ ď n` ă s` such that
cpni, siq ě ε for all i ď `. For example, cΩ is benign, with the bound being 1{ε.

By an order function we mean a computable, non-decreasing, and unbounded
function. A set A is strongly jump-traceable if for every order function h, for every
ψ partial computable in A, there is an h-bounded c.e. trace for ψ; that is, there is a
sequence xT pnqy such that |T pnq| ď hpnq, T pnq is uniformly c.e., and ψpnq P T pnq
for all n P domψ. Figueira et al. [9] introduced this notion, and built a non-
computable c.e. of this kind.

Plain (rather than strong) jump traceability is the notion where one existentially
quantifies over order functions h. For c.e. sets this is equivalent to superlowness.
Universally quantifying over order functions indeed places a very strong restriction
on the computational power of the set. For instance, the strongly jump-traceable
sets form an ideal in the Turing degrees [5, 7] which is a proper sub-ideal of the
K-trivials [8]. A characterisation that will concern us here is that a set is strongly
jump-traceable if and only if it obeys all benign cost functions [15, 7]. For more on
strong jump-traceability, see the survey article [16].

One can characterise strong jump-traceability using computability from ML-
random sequences. There is more than one such characterisation. For example,
a set is strongly jump-traceable if and only if it is computable from all superlow

26 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

ML-random sequences [12], also if and only if it is computable from all superhigh
random sequences [12, 16]. Alternatively, a c.e. set is strongly jump-traceable if
and only if it is computable from a Demuth random sequence by combining [17]
and [21]; this extends to all K-trivials by Theorem 3.1. As a consequence one has:
Proposition 9.1. The strongly jump-traceable sets form an ideal in the ML-degrees.

In [14, 5.3.1], it is observed that every strongly jump-traceable set is a p-base
for all p ą 0. However, this is not a characterisation. The sets that are p-bases for
all p ą 0 are the 1{ω-bases, those which are computable from each column from
an infinite partition of some random sequence. Equivalently, they are computable
from ΩR for all computable sets R such that lim infn |R X n|{n is positive. Some
such sets are not strongly jump-traceable as pointed out in [14, 5.3.1]. Here we see
that we obtain a characterisation of strong jump-traceability if we drop the density
condition.
Proposition 9.2. For any infinite computable set R, cΩ,R is benign.

Proof. Given a rational ε ą 0, first, we compute an m with 2´|RXm| ă ε. Let
n1 ă s1 ď n2 ă s2 ă ¨ ¨ ¨ ď n` ă s` be a sequence such that for all i ď `,
cΩ,Rpni, siq ą ε. This means that ksipniq ă m, and so Ωsi ´ Ωni

ě 2´m. So

1 ą Ω ą
ÿ

iď`

Ωsi ´ Ωni ě ` ¨ 2´m,

and thus ` ă 2m. �

Proposition 9.3. For any benign cost function c, there is an infinite computable
set R with cΩ,R Ñ c.

Proof. Suppose gpεq is a computable bound witnessing that c is benign. We will
construct a left-c.e. real β ă 1. Since Ω is Solovay complete, by the recursion
theorem, we may assume that we already know a constant δ ą 0 and a computable
approximation to Ω with δpβs´βnq ă Ωs´Ωn for all n and s. Choose a computable
sequence m0 ă m1 ă ¨ ¨ ¨ such that

ÿ

i

2´mi ¨ g
`

2´pi`1q
˘

δ
ă 1.

Let R “ tm0 ă m1 ă ¨ ¨ ¨ u.
Define β0 “ 0. At stage s ` 1, if cpn, s ` 1q ď cΩ,Rpn, sq for all n, then let

βs`1 “ βs. Otherwise, let n be least with cpn, s ` 1q ą cΩ,Rpn, sq. Let i “
t´ log cpn, s` 1qu. Define βs`1 “ βs ` 2´mi{δ. The point of this is to increase Ω:
in this case, we have

Ωs`1 ´ Ωs ą δ ¨ pβs`1 ´ βsq “ 2´mi ,

and so ks`1psq ď mi. In turn, this implies that cΩ,Rps, s` 1q ě 2´i.

Claim 9.3.1. For all n, cΩ,Rpnq ě cpnq.

Proof. We show that cpn, sq ď cΩ,Rpn, sq for and s and all n ă s. Suppose this
holds for s; we verify it for s ` 1. Suppose there is n̂ ď s, chosen least, such that
cpn̂, s` 1q ą cΩ,Rpn̂, sq (otherwise there is nothing to do for s` 1). For all n ă n̂,

cpn, s` 1q ď cΩ,Rpn, sq ď cΩ,Rpn, s` 1q.

MARTIN-LÖF REDUCIBILITY AND COST FUNCTIONS 27

Let i “ t´ log cpn̂, s` 1qu. For all n ě n̂ such that n ď s,

cpn, s` 1q ď cpn̂, s` 1q ď 2´i ď cΩ,Rps, s` 1q ď cΩ,Rpn, s` 1q,

as required. 9.3.1

The proof of the proposition will be complete once we show:

Claim 9.3.2. β ă 1.

Proof. Fix i and let s0 ă s1 ă s2 ă ¨ ¨ ¨ be the stages s with βs`1´βs “ 2´mi{δ. By
construction, for every n ď sj , cΩ,Rpn, sj ` 1q ě 2´i. Also by construction, there
is some nj ď sj with 2´pi`1q ă cpnj , sj ` 1q ď 2´i and cΩ,Rpnj , sjq ă cpnj , sj ` 1q.
Thus n0 ă s0` 1 ď n1 ă s1` 1 ď ¨ ¨ ¨ . It follows that there are at most g

`

2´pi`1q
˘

such stages. So

β “
ÿ

s

βs`1 ´ βs ď
ÿ

i

g
´

2´pi`1q
¯ 2´mi

δ
ă 1,

by the choice of mi. 9.3.2, 9.3

It follows that the sets which obey cΩ,R for all computable R are precisely the
strongly jump-traceable sets. Theorem 7.1 implies the following, which extends the
result from [12] that a set is strongly jump-traceable if and only if it is computable
from all ω-computably approximable random sequences.
Corollary 9.4. A (K-trivial) set A is strongly jump-traceable if and only if A ďT
ΩR for every infinite computable set R.
Note that K-triviality is for free here, as such a set is a 1{2-base.

Similarly, we see that a K-trivial set A is strongly jump-traceable if and only if
for every infinite computable R, we have A ďML BR, where BR is ML-complete for
cΩ,R. That is, the ML-ideal of strongly jump-traceable sets is the intersection of
the infinitely many principal ideals given by the sets BR. We conjecture that this
ideal is not principal.

References

[1] George Barmpalias and Rod G. Downey. Exact pairs for the ideal of the K-trivial sequences
in the Turing degrees. J. Symb. Log., 79(3):676–692, 2014.

[2] Laurent Bienvenu, Adam R. Day, Noam Greenberg, Antonín Kučera, Joseph S. Miller, André
Nies, and Dan Turetsky. Computing K-trivial sets by incomplete random sets. Bull. Symb.
Log., 20(1):80–90, 2014.

[3] Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, and Dan Turetsky. Co-
herent randomness tests and computing the K-trivial sets. J. Eur. Math. Soc. (JEMS),
18(4):773–812, 2016.

[4] Laurent Bienvenu, Rupert Hölzl, Joseph S. Miller, and André Nies. Denjoy, Demuth and
density. J. Math. Log., 14(1):1450004, 35, 2014.

[5] Peter Cholak, Rodney G. Downey, and Noam Greenberg. Strong jump-traceabilty I: The
computably enumerable case. Adv. Math., 217(5):2045–2074, 2008.

[6] Adam R. Day and Joseph S. Miller. Density, forcing, and the covering problem. Math. Res.
Lett., 22(3):719–727, 2015.

[7] David Diamondstone, Noam Greenberg, and Daniel D. Turetsky. Inherent enumerability of
strong jump-traceability. Trans. Amer. Math. Soc., 367(3):1771–1796, 2015.

[8] Rod Downey and Noam Greenberg. Strong jump-traceability II: K-triviality. Israel J. Math.,
191(2):647–665, 2012.

[9] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and approximations
of the jump. Ann. Pure Appl. Logic, 152(1-3):51–66, 2008.

28 NOAM GREENBERG, JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

[10] Johanna N. Y. Franklin and Keng Meng Ng. Difference randomness. Proc. Amer. Math. Soc.,
139(1):345–360, 2011.

[11] Péter Gács. Every sequence is reducible to a random one. Inform. and Control, 70(2-3):186–
192, 1986.

[12] Noam Greenberg, Denis R. Hirschfeldt, and André Nies. Characterizing the strongly jump-
traceable sets via randomness. Adv. Math., 231(3-4):2252–2293, 2012.

[13] Noam Greenberg, Joseph S. Miller, Benoit Monin, and Daniel Turetsky. Two more charac-
terizations of K-triviality. Notre Dame J. Form. Log., 59(2):189–195, 2018.

[14] Noam Greenberg, Joseph S Miller, and André Nies. Computing from projections of random
points. Journal of Mathematical Logic, page 1950014, 2019.

[15] Noam Greenberg and André Nies. Benign cost functions and lowness properties. J. Symbolic
Logic, 76(1):289–312, 2011.

[16] Noam Greenberg and Dan Turetsky. Strong jump-traceability. Bull. Symb. Log., 24(2):147–
164, 2018.

[17] Noam Greenberg and Daniel D. Turetsky. Strong jump-traceability and Demuth randomness.
Proc. Lond. Math. Soc. (3), 108(3):738–779, 2014.

[18] Denis R. Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles. J. Lond.
Math. Soc. (2), 75(3):610–622, 2007.

[19] Antonín Kučera. Measure, Π0
1-classes and complete extensions of PA. In Recursion theory

week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages 245–259. Springer,
Berlin, 1985.

[20] Antonin Kučera. An alternative, priority-free, solution to Post’s problem. In Mathematical
foundations of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in
Comput. Sci., pages 493–500. Springer, Berlin, 1986.

[21] Antonin Kučera and André Nies. Demuth randomness and computational complexity. Annals
of Pure and Applied Logic, 162:504–513, 2011.

[22] Rutger Kuyper and Joseph S. Miller. Nullifying randomness and genericity using symmetric
difference. Ann. Pure Appl. Logic, 168(9):1692–1699, 2017.

[23] A. Nies, F. Stephan, and S. Terwijn. Randomness, relativization and Turing degrees. J.
Symbolic Logic, 70(2):515–535, 2005.

[24] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.
[25] André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford Uni-

versity Press, Oxford, 2009.
[26] André Nies. Interactions of computability and randomness. In Proceedings of the International

Congress of Mathematicians, pages 30–57. World Scientific, 2010.
[27] André Nies. Calculus of cost functions. In S. Barry Cooper and Mariya I Soskova, editors,

The Incomputable: Journeys Beyond the Turing Barrier, Theory and Applications of Com-
putability, pages 183–216. Springer, 2017.

[28] Frank Stephan. Marin-Löf random and PA-complete sets. In Logic Colloquium ’02, volume 27
of Lect. Notes Log., pages 342–348. Assoc. Symbol. Logic, La Jolla, CA, 2006.

[29] Michiel van Lambalgen. The axiomatization of randomness. J. Symbolic Logic, 55(3):1143–
1167, 1990.

School of Mathematics and Statistics, Victoria University of Wellington, Welling-
ton, New Zealand

E-mail address: greenberg@msor.vuw.az.nz

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
E-mail address: jmiller@math.wisc.edu

Department of Computer Science, University of Auckland, Private Bag 92019,
Auckland, New Zealand

E-mail address: andre@cs.auckland.ac.nz

School of Mathematics and Statistics, Victoria University of Wellington, Welling-
ton, New Zealand

E-mail address: dan@msor.vuw.ac.nz

	1. Introduction
	2. Some formal definitions and facts
	3. Inherent enumerability of the K-trivials up to ML-equivalence
	4. For each cost function there is an ML-complete set
	5. Each K-trivial set is ML-complete for a cost function
	6. K-trivial sets Turing below fragments of Omega
	7. Feeble sets for cost functions, and the structure of ML-degrees
	8. Proof of Lemma 6.9
	9. Fragments of Omega and strong jump-traceability
	References

