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Abstract. ATR0 is the natural subsystem of second order arithmetic in which

one can develop a decent theory of ordinals ([Sim99]). We investigate classes
of structures which are in a sense the “well-founded part” of a larger, sim-

pler class, for example, superatomic Boolean algebras (within the class of all

Boolean algebras). The other classes we study are: well-founded trees, reduced
Abelian p-groups, and countable, compact topological spaces. Using com-

putable reductions between these classes, we show that Arithmetic Transfinite
Recursion is the natural system for working with them: natural statements

(such as comparability of structures in the class) are equivalent to ATR0. The

reductions themselves are also objects of interest.

1. Introduction

Classification of mathematical objects is often achieved by finding invariants for
a class of objects - a method of representing the equivalence classes of some notion
of sameness (such as isomorphism, elementary equivalence, bi-embeddability) by
simple objects (such as natural numbers or ordinals). A related logical issue is the
question of complexity: if the invariants exist, how complicated must they be; when
does complexity of the class make the existence of invariants impossible; and how
much information is implied by the statement that invariants of certain type exist.
To mention a far from exhaustive list of examples: in descriptive set theory, Hjorth
and Kechris ([HK95]) investigated the complexity of the existence of Ulm-type
classification (and of the invariants themselves) in terms of the Borel and projective
hierarchy; see also Camerlo and Gao ([CG01]) and Gao ([Gao04]). In computability
theory, complexity of index-sets of isomorphism relations on structures have been
studied, among others, by Goncharov and Knight ([GK02]) and Calvert ([Cal04]);
index-sets for elementary equivalence are considered as well (Selivanov [Sel91]); and
in reverse mathematics, the proof-theoretic strength of the statement of existence
of invariants was studied by Shore ([Sho]).

For some classes, closely connected to invariants is the notion of rank. For exam-
ple, the Cantor-Bendixon rank of a countable compact metric space is obtained by
an iterated process of weeding out isolated points. This rank, then, together with
the number of points left at the last step, constitutes an invariant for the home-
omorphism relation. Similar processes of iterating some derivative can be used
to classify well-founded trees, superatomic Boolean algebras, and reduced Abelian
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p-groups. In this paper we investigate the proof-theoretic strength of various state-
ments directly relating to the existence of invariants and ranks on these classes. We
do it from the viewpoint of Reverse Mathematics; we refer the reader to [Sim99]
for more information about the program of Reverse Mathematics. We assume that
the reader is familiar with at least the introductory chapter of [Sim99].

It turns out that in some sense, the structures under consideration effectively
code the ordinals which are their ranks. Thus, the study of these structures is closely
related to two issues: the translation processes between these classes, which reduce
statements about one class to another (and in particular, to ordinals); and the
strength of related questions for the class of ordinals. The corresponding subsystem
of second-order arithmetic is ATR0, the system which allows us to iterate arithmetic
comprehension along ordinals. To quote Simpson ([Sim99, Page 176]):

... ATR0 is the weakest set of axioms which permits the development
of a decent theory of countable ordinals.

Our general aim is to demonstrate that a similar statement can be made for well-
founded trees, superatomic Boolean algebras, etc.; general statements about these
classes will be shown to be equivalent to ATR0, thereby implying the necessary use of
ordinal ranks in the investigation of these classes. Our work continues investigations
of ordinals (Friedman and Hirst [FH90], see [Hir] for a survey), of reduced Abelian
p-groups (see Simpson [Sim99] and Friedman, Simpson and Smith [FSS83]), of
countable compact metric spaces (see Friedman [Fria] and Frideman and Hirst
[FH91]), and of well-founded directed graphs (Hirst [Hir00]).

As we mentioned, key tools for establishing our results are reductions between
various classes of objects. These reductions are an interesting object of study in
their own right. Indeed we have two points of view: classical - we investigate when
there are continuous (or even computable) reductions of one class to another; and
proof-theoretic - we ask in what system can one show that these reductions indeed
preserve notions such as isomorphism and embeddability.

1.1. Reverse mathematics. In this paper we only use common subsystems of
second-order arithmetic. The base theory we use will usually be RCA0 - the system
that consists of the semi-ring axioms, ∆0

1 comprehension and Σ0
1 induction. We

often use the stronger system ACA0 which adds comprehension for arithmetic for-
mulas. We note that over RCA0, ACA0 is equivalent to the existence of the range
of any one-to-one function f : N → N.

The focus, though, is Friedman’s even stronger system ATR0 which enables us to
iterate arithmetical comprehension along any well-ordering. As mentioned above,
this is the system which is both sufficient and necessary for a theory of ordinals in
second-order arithmetic. For example, comparability of well-orderings is equivalent
to ATR0 over RCA0.

For recursion-theoretic intuition, we mention that ATR0 is equivalent to the
statement that for every X ⊂ N and every ordinal α, X(α), the αth iterate of the
Turing jump of X, exists.

1.2. The classes. We discuss the various classes of objects with which we deal only
briefly in this introduction, as greater detail will be given at the beginning of each
section. The common feature of these classes is that they form the “well-founded
part” of a larger class which is simply (arithmetically) definable (whereas the classes
themselves are usually Π1

1). [All structures are naturally coded as subsets of N and
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so the classes can be considered as sets of reals.] The fact that the larger class has
both well-founded and ill-founded elements will usually imply large complexity: the
isomorphism relation will be Σ1

1-complete, and natural statements about the class
will require Π1

1-comprehension. On the other hand, when we focus our attention
on the well-founded part, the hyperarithmetic hierarchy (and ATR0) suffice.

When we discuss each class in detail, we specify a notion of isomorphism ∼= and
a notion of embedding 4; we also define the notion of rank and describe which
structures are ranked.

• The class of ordinals, that is, well-orderings of natural numbers (which we
denote by On), is of course a sub-class of the class of linear orderings. For
embedding we use weak embeddings (one-to-one, order preserving maps).

• We let WFT denote the class of well-founded trees, a sub-class of the class
of trees of height 6 ω. As the tree structure we take not only the partial
ordering but also the predecessor relation; we thus may assume that all
trees are trees of finite sequences of natural numbers (with the extension
relation). The notion of embedding only requires preservation of strict
order, so an embedding isn’t necessarily one-to-one.

• SABA denotes the class of superatomic Boolean algebras (a sub-class of
the class of Boolean algebras). As far as we know, this class has not been
discussed in the setting of reverse mathematics, and so we give a detailed
treatment of various definitions and their proof-theoretic content.

• Fixing a prime number p, we let R-p-G denote the class of reduced Abelian
p-groups, a sub-class of the class of all p-groups.

• On the analytic side, we let CCS denote the class of compact, very countable
topological spaces. Very countable means Hausdorff, countable and second
countable. It turns out that each countable, compact Hausdorff space is
second countable, but in the setting of second-order arithmetic, we can
only treat very countable spaces as reals (so this last statement is not
expressible in this setting). In fact, we show that the compact spaces are
all metrizable, and so the class coincides with countable, compact metric
spaces. However, all properties we discuss are purely topological and so we
pick the topological presentation. To be strict, the class of compact spaces
does not consist of all “well-founded” very countable spaces; the latter
class (the class of scattered spaces) is larger, but ill behaved, so we restrict
ourselves to the compact case. As isomorphisms we take homeomorphisms,
and as embeddings we take one-to-one, continuous and open maps.

1.3. The statements. We now discuss the various statements we analyze. Let
X be a class of structures as above, equipped with a notion of isomorphism ∼=, a
notion of embeddability 4, and a subclass of ranked structures.

1.3.1. Rank. For each of the classes we study, there is a notion of derivative which
is analogous to the Cantor-Bendixon operation of removing isolated points (such as
removing leaves from trees or eliminating atoms in Boolean algebras by means of
a quotient). Iterating the derivative yields a rank and an invariant, which has the
expected properties (for example, it characterizes the isomorphism relation and is
well-behaved with regards to the embeddability relation). When dealing with the
class X , we define this rank formally and thus the class of structures in X which
are ranked. We thus define the following statement:
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RK(X ): Every structure in X is ranked.

We remark that we often show directly that RK(X ) implies other statements
ϕ(X ) (without appealing to ATR0).

1.3.2. Implications of invariants. Suppose that an invariant for isomorphism for the
class X exists. Now as this is a third-order statement, we follow Shore ([Sho]) and
discuss a statement which is immediately implied by this existence. Suppose that
a sequence {An}n∈N of structures in X is given; if each An is uniformly assigned a
simple object which characterized its isomorphism type, then we could uniformly
decide which pairs (An, Am) are isomorphic. We thus define:

∃-ISO(X ): If 〈An〉n∈N is a sequence of structures in X , then the set {(n,m) :
An

∼= Am} exists.

Suppose that the invariant is even stronger; that the simpler objects assigned are
quasi-ordered and that the invariant preserves the notion of embeddability. Then,
as above, we could decide the embeddability relation. Thus we define:

∃-EMB(X ): If 〈An〉n∈N is a sequence of structures in X , then the set {(n,m) :
An 4 Am} exists.

1.3.3. Natural statements. We define simple statements which are elementary in the
analysis of the class X . Relating to Simpson’s words, we consider these statements
(when true) necessary for the study of X .

COMP(X ): For every A and B in X , either A 4 B or B 4 A.

EQU=ISO(X ): For every A and B in X , if A 4 B and B 4 A then A ∼= B.

1.3.4. The structure of the embeddability relation. It turns out that for the classes
that we study, the embeddability relation is well-founded; moreover, it forms a
well-quasi ordering : whenever 〈An〉n∈N is a sequence of structures in X , there are
some n < m such that An 4 Am. This fact can be added to our list.

[Another familiar definition for the notion of well-quasi-orderings is a quasi-
ordering which has no infinite descending sequences and no infinite antichains.
However, this equivalence uses Ramsey’s theorem for pairs, and so cannot be carried
out in our base theory RCA0. In fact, the equivalence uses the existence of the
embeddability relation (to which Ramsey’s theorem is applied) and so by our results
the standard proof uses ATR0. (See [CMS04] for a comparison of the different
definitions of well-quasi-orderings from the viewpoint of reverse mathematics.)]

WQO(X ): The class X , quasi-ordered by 4, forms a well-quasi ordering.
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1.4. Reductions. As we mentioned, reductions between classes of structures pro-
vide means of proving equivalences to ATR0 be means of reducing statements from
class to class. However, these reductions are interesting in their own right. It turns
out many of the classes in question are as equivalent as they can be.

We consider two kinds of reductions. One should perhaps be called “effective
Wadge” reducibility. The classes we consider are complicated in the sense that
membership is often Π1

1-complete. Recall that each class X we consider is the
well-founded part of a simpler class Y which is arithmetic. “Effective Wadge”
reducibility is the analogue of many-one reducibility in the context of sets of reals.

Definition 1.1. For a pair of classes X1,X2 which are subclasses of simpler classes
Y1 and Y2, we say that X1 is EW-reducible to X2 within Y1 and Y2 (and write
X1 6EW X2) if there is some computable functional Φ: Y1 → Y2 such that Φ−1X2 =
X1.

The idea is that the question of membership in X1 is effectively reduced to an
oracle which gives us membership for X2.

Another notion of reducibility is closer to the notion of Borel reducibility for
Borel equivalence relations, which is extensively investigated by descriptive set-
theorists (see, for instance, [HK01]). Here we consider not the elements of classes
X1 and X2 but rather the collection of isomorphism types of these classes, and we
look for an embedding of one class into the other which is induced by a computable
transformation. The structures we work with may have domain which is a proper
subset of ω. If we would like to factor out the influence of the complexity of the
domain, we arrive at the following definition made by Calvert, Cummins, Knight
and S. Miller ([CCKM]), which is in fact stronger than a mere embedding induced
by a computable function:

Definition 1.2. A computable transformation of a class of structures X1 to another
class X2 is a function f : X1 → X2 for which there is some recursively enumerable
collection Φ such that for all A ∈ X1, for every finite collection of statements b in
the language of X2, b ⊂ D(f(A)) (the atomic diagram of f(A)) iff there is some
finite collection a ⊂ D(A) such that (a, b) ∈ Φ. A computable transformation f is
an embedding if f preserves ∼= and 6∼=. We write X1 6c X2 if there is a computable
embedding of X1 into X2.

Another way to think of computable transformations is as functionals which from
any enumeration of D(A) produce, uniformly, an enumeration of D(f(A)).

Computable embeddings (unlike Turing embeddings) preserve the substructure
relation, hence preserve embeddability.

In some cases, we cannot have computable reductions: for example, from well-
founded trees to ordinals - simply because EQU=ISO(WFT ) fails. If instead of
isomorphism classes we consider equimorphism (bi-embeddability) classes, we get
a slightly different notion of reduction. This reduction is not just a one-to-one map
of X1-equimorphism types into X2-equimorphism types; it preserves the partial
ordering on these equivalence classes induced by embeddability.

Definition 1.3. For classes of structures X1 and X2, X1 is equicomputably reducible
to X2 (we write X1 6ec X2) if there is a computable transformation f : X1 → X2

which preserves both 4 and 64.
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We introduce notation which indicates that two reductions are induced by the
same function. For example, X1 6EW,c X2 if there is some computable transforma-
tion f which is both an EW - and a c-reduction of X1 to X2.

1.5. Results. We first consider the proof-theoretic strength of the various state-
ments we discussed earlier.

Theorem 1.4.

RK ∃-ISO ∃-EMB COMP EQU=ISO WQO

On N/A X X X X X
WFT X X X X F X
SABA X X X X X X
R-p-G X X X F F X
CCS X X X X X X

For a statement ϕ and class X , a X indicates that ϕ(X ) is equivalent to ATR0 over
RCA0. A square labelled by “F” indicates that ϕ(X ) is false. A square labelled by
“N/A” indicates that ϕ(X ) is meaningless.

Of course, not all of these results are new. Friedman and Hirst ([FH90]) showed
that both COMP(On) and EQU=ISO(On) are equivalent to ATR0 over RCA0. Shore
([Sho93]) showed that WQO(On) is equivalent to ATR0 over RCA0. Hirst ([Hir00])
showed that ATR0 implies RK(WFT ) (actually he proved that every well-founded
directed graph is ranked, which implies the result for trees.) Friedman, Simpson and
Smith showed that ATR0 is equivalent to RK(R-p-G) over RCA0 (see [Sim99, Theo-
rem V.7.3]). In [Frib], Friedman shows that over ACA0, WQO(R-p-G) is equivalent
to ATR0, and leaves open the question of whether the equivalence can be proved
over RCA0. Shore and Solomon (unpublished) proved that ∃-ISO(R-p-G) is equiva-
lent to ATR0 over RCA0. That COMP(CCS) is equivalent to ATR0 (over ACA0) can
be deduced from results in either [FH91] or [Fria].

Next, we turn to reducibilities. The classes we deal with are all highly equivalent.
In second order arithmetic we often find that ATR0 shows the existence of reductions
between the classes; in fact, usually what we really use is the fact that structures are
ranked. As this comes for free when the original class is the class of ordinals we can
usually show reductions from ordinals to other classes in weaker systems. However,
we do not have reversals to ATR0 from the statements asserting the existence of
computable reductions starting from other classes. In particular it is interesting
to know if for a class X , the existence of a computable reduction from X to the
ordinals is as strong as ATR0, as we can think of that statement as another way to
say that invariants for X exist.

Theorem 1.5.

(1) Let X ∈ {WFT ,SABA,R-p-G, CCS}. Then in RCA0 we can show that
On 6EW,c X . In ACA0 we can show that On 6EW,c,ec X .

(2) ATR0 implies the following: WFT 6EW,ec On, SABA 6EW,c,ec On and
R-p-G 6EW On.

We remark that EW -equivalence of all of our classes follows immediately from
the fact that On is EW -reducible to every other class. For On is Π1

1-complete,
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and these reductions show that each of our classes is Π1
1-complete, hence all EW -

equivalent. The extra information here is that these reductions can be made by
computable transformations (rather than merely Turing reductions), and further-
more these transformations often preserve isomorphism, non-isomorphism, etc.

Note that we don’t have reductions from CCS to other classes. Turing reductions
can be found, but computable transformations have not been found yet.

We also note that R-p-G 66ec On. This is because 4 is not a total relation on
R-p-G.

Proofs of the various parts of the theorems appear in the relevant sections.

1.6. More Results. The last section of this paper is not about Reverse Mathe-
matics as are the previous ones. Rather, it is about a property shared by all the
classes of structures we study.

Clifford Spector proved the following well known classical theorem in Com-
putable Mathematics.

Theorem 1.6. [Spe55] Every hyperarithmetic well ordering is isomorphic to a
recursive one.

This result was later extended in [Mon05b] as follows.

Theorem 1.7. Every hyperarithmetic linear ordering is equimorphic to a recursive
one.

Note that Theorem 1.7 extends Spector’s theorem because if a linear ordering is
equimorphic to an ordinal, it is actually isomorphic to it.

As for the connection to ATR0, this result can be extended to classes of structures
studied in this paper. For example, Ash and Knight mention the following:

Theorem 1.8. [AK00] Every hyperarithmetic superatomic Boolean algebra is iso-
morphic to a recursive one.

The two following theorems are straightforward, the third less so. We give proofs
for all in section 7.

Theorem 1.9.
(1) Every hyperarithmetic tree is equimorphic with a recursive one.
(2) Every hyperarithmetic Boolean algebra is equimorphic with a recursive one.

Theorem 1.10. Every hyperarithmetic compact metric space is isomorphic to a
computable one.

Theorem 1.11. Every hyperarithmetic Abelian p-group is equimorphic with a re-
cursive one.

We refer the reader to [AK00, Chapter 5] or to [Sac90] for background on hy-
perarithmetic theory.

2. Ordinals

A survey of the theory of ordinals in reverse mathematics can be found in [Hir].
We follow his notation and definitions. As our notion of embedding we take 6w,
an order-preserving injection.
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We first show below (proposition 2.1) that the statement ∃-ISO(On) is equivalent
to ATR0 over ACA0; we then mention some facts about the Kleene-Brouwer ordering
of a tree - these will be useful also in later sections). Using this results we show
(2.6) that ∃-EMB(On) is equivalent to ATR0 over ACA0. Finally (2.7) we reduce
the base to RCA0 for both statements.

Equivalences of other statements about ordinals to ATR0 are not new; references
were made in the introduction.

2.1. Equivalence over ACA0.

Proposition 2.1 (ACA0). ∃-ISO(On) is equivalent to ATR0.

Proof. First assume ATR0 and let {αn : n ∈ N} be a sequence of ordinals. For
all i < j, there is a unique comparison map between αi and αj . This shows that
{(i, j) : αi ≡ αj} is ∆1

1-definable. By ∆1
1-comprehension, which holds in ATR0

([Sim99, Lemma VIII.4.1]), this set exists. Thus ∃-ISO(On) holds.
Suppose now that ∃-ISO(On) holds. We will prove COMP(On), which implies

ATR0. Let α and β be ordinals. Let

F = {(x, y) ∈ α× β : α �x ∼= β � y}

(where α � x is the induced ordering from α on the collection of α-predecessors
of x). This set exists by ∃-ISO(On). We claim that F itself is a comparison map
between α and β.

Recall that no ordinal can be isomorphic to any of its proper initial segments.
It follows that F is a one-to-one function on its domain. Further, we observe that
if (x, y), (x′, y′) ∈ F then x < x′ (in α) if and only if y < y′ (in β). For if not, say
x < x′ and y > y′, we compose the isomorphisms α � x′ → β � y′ and β � y → α � x
to get an isomorphism between α � x′ and an initial segment of α � x. Also not
hard to prove is that dom F and rangeF are initial segments of α and β (this is
where we use ACA0).
F is an isomorphism between dom F and rangeF . If they are both proper initial

segments of α and β respectively, let α � x = dom F , β � y = rangeF . Then F
witnesses that (x, y) ∈ F for a contradiction. �

We could prove that ∃-EMB(On) is equivalent to ATR0 over ACA0 using a similar
argument. Instead we give a different proof.

Remark 2.2. In the following, we use effective (∆0
1)-transfinite recursion in RCA0.

The proof that it works is the classical one (using the recursion (fixed-point) the-
orem). Also, we may perform the recursion along any well-founded relation (not
necessarily linear).

Remark 2.3. Recall that in RCA0, for every ordinal α one can construct the linear
ordering ωα. In fact, for any linear ordering L, one can construct ωL in an analogous
fashion. However, one needs ACA0 to show that if α is an ordinal then so is ωα.
See Hirst [Hir94].

Recall the following: a tree is a downwards closed subset of N<N; a tree is well-
founded if it does not have an infinite path (all common definitions coincide in
RCA0). For linear orderings X and Y , T (X,Y ) denotes the tree of double descent
for X which consists of the descending sequences in the partial ordering X×Y . For
a tree T , KB(T ) denotes the Kleene-Brouwer ordering on T ([Sim99, Section V.1]);
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X ∗ Y = KB(T (X,Y )). In RCA0 we know that if either X or Y are well-founded
then so is T (X,Y ). In ACA0 we know that T is well-founded iff KB(T ) is.

Lemma 2.4 (RCA0). Let α be an ordinal and L be a linear ordering. Then there
is an embedding of α ∗ L into ωα + 1.

Proof. Let T = T (α,L); we know that T is well-founded. By effective transfinite
recursion on T we construct, for every σ ∈ T with last element (β, l), a recursive
function iσ : Tσ → ωβ + 1 (if σ = 〈〉 then β = α), where Tσ = {τ ∈ T : σ ⊆ τ}.
Given iσax for every x < ω (such that σax ∈ T ), we construct iσ by pasting these
iσaxs linearly and placing σ at the end. In detail: Let S = {x ∈ N : σax ∈ T}.
For x ∈ S, let βx = (x)0. We have iσ : Tσax → ωβx . For x ∈ S let

γx =
∑

y<Nx,y∈S

(ωβy + 1)

which is smaller than ωβ ; for τ ∈ Tσax let iσ(τ) = γx + iσax(τ). Finally let
iσ(σ) = ωβ .

Now by Π0
1-transfinite induction on T , which holds in RCA0 ([Hir]), we can show

that for all σ ∈ T , for all τ0, τ1 ∈ Tσ, iσ(τ0) < iσ(τ1) iff τ0 <KB τ1. �

Remark 2.5 (ACA0). For the next proof, we need the fact that if α is an ordinal and
L is a non-well-founded linear ordering, then α embeds into α ∗L ([Sim99, Lemma
V.6.5]). The embedding is obtained by considering T (α), the tree of (single) descent
of elements of α. We first embed α into KB(T (α)) by taking β < α to the KB-least
σ ∈ T (α) whose last element is β. Next we embed T (α) into T (α,L) by fixing a
descending sequence 〈xi〉i∈N of L and taking 〈β1, . . . , βn〉 to 〈(β1, x1), . . . , (βn, xn)〉.
To see that this embedding induces an embedding of KB(T (α)) into KB(T (α,L))
we note that if a <N b then for all x, (a, x) <N (b, x).

Proposition 2.6 (ACA0). ∃-EMB(On) is equivalent to ATR0.

Proof. We show ATR0 by showing the equivalent principle of Σ1
1-separation ([Sim99,

Theorem V.5.1]). Suppose that ϕ,ψ are Σ1
1 formulas which define disjoint classes

of natural numbers. From ϕ and ψ we can manufacture sequences 〈Xn〉 and 〈Yn〉
of linear orderings such that for all n, Xn is a well-ordering iff ¬ϕ(n) and Yn is a
well-ordering iff ¬ψ(n). Let

αn = (ωXn + 2) ∗ Yn

and
βn = Xn ∗ (ωYn + 2).

Note that at least one of Xn and Yn are well-founded (and Xn is well-founded
implies ωXn well-founded) thus both αn and βn are indeed ordinals.

Suppose that Xn is well-founded and that Yn is not. We claim that βn embeds
into αn but αn does not embed into βn. By Lemma 2.4, βn 4 ωXn + 1 and by
Remark 2.5, ωXn + 2 4 αn. So βn 4 αn, but we cannot have αn 4 βn or we would
have ωXn + 2 4 ωXn + 1 which is impossible.

We can thus let A = {n : βn 4 αn}. By ∃-EMB(On), A exists. If ψ(n) holds
then Xn is an ordinal and Yn is not, and so n ∈ A. If ϕ(n) holds then by a similar
argument we get βn 64 αn so n /∈ A, as required. �



10 NOAM GREENBERG AND ANTONIO MONTALBÁN

2.2. Proofs of arithmetic comprehension.

Proposition 2.7 (RCA0). Both ∃-ISO(On) and ∃-EMB(On) imply ACA0.

Proof. Let ϕ be a Σ0
1 formula. For each n, construct an ordinal αn by letting αn

∼= 3
if ¬ϕ(n) and αn

∼= 17 if ϕ(n).
Now

{n : ϕ(n)} = {n : αn
∼= 17} = {n : αn 64 5}.

∃-ISO(On) implies the second set exists; ∃-EMB(On) implies that the third set
exists. �

3. Well-founded trees

We denote the class of well-founded trees by WFT . If T, S are trees then T 4 S
if there is some f : T → S which preserves strict inclusion. Note that f does not
need to preserve non-inclusion, in fact f may be not injective.

The layout of this section is fairly straightforward. The standard rank of a
well-founded tree is defined in the language of second-order arithmetic; we mention
that Hirst showed that ATR0 implies that every well-founded tree is ranked. We
then show how to get the other (true) statements from RK(WFT ), except for
∃-ISO(WFT ), which follows directly from ATR0.

We then define the reduction L 7→ T (L) which maps ordinals to well-founded
trees, and use this reduction to get reversals. To get the reduction from trees to
ordinals, we need the notion of a fat tree which we discuss in subsection 3.2.2. In
the last subsection we derive ACA0 from the statements for which the previous
reversals required this comprehension.

Notation. Let T be a tree and σ ∈ T . Then T [σ] = {τ ∈ T : τ 6⊥ σ}, T − σ = {τ :
σaτ ∈ T} and σaT = {σaτ : τ ∈ T}.

3.1. Ranked Trees.

Definition 3.1. Let T be a tree. A node τ ∈ T is an immediate successor of
a node σ if σ ⊂ τ and |τ | = |σ| + 1. A function rk: T → α for some or-
dinal α is a rank function for T if for every σ ∈ T , rk(σ) = sup{rk(τ) + 1 :
τ is an immediate successor of σ on T}, and further α = rk(〈〉) + 1. We say that a
tree T is ranked if a rank function of T exists.

Lemma 3.2 (RCA0). Let f : T → α be a rank function on a tree T . Then
range f = α.

Proof. Let T be a well-founded tree and rk: T → α a rank function on it. Suppose,
toward a contradiction, that there is a γ < α not in the range of rk. We prove by
Π0

1-transfinite induction that every β such that γ < β < α is not in the range of rk.
This will contradict that α = rk(〈〉) + 1.

Suppose that every β′ between γ and β is not in the range of rk. Then for no node
σ can we have rk(σ) = sup{rk(τ) + 1 : τ is an immediate successor of σ on T}. �

Let T be a tree and rk be a rank function on T . Let σ ∈ T . By Π0
1-induction on

|τ | we can show in RCA0 that if σ ( τ then rk(τ) < rk(σ). It follows that

rk(σ) = sup{rk(τ) + 1 : τ ∈ T, σ ( τ}.
Another immediate corollary is:
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Lemma 3.3 (RCA0). Every ranked tree is well-founded.

(As an infinite path through T would give rise to a descending sequence in T ’s
rank.)

The following two propositions are proved in [Hir00] for well-founded directed
graphs, a class which essentially contains the class of trees.

Proposition 3.4 (RCA0). Let T be a tree and let f1 : T → α1 and f2 : T → α2 be
rank functions. Then there is a bijection g : α1 → α2 such that f2 = g ◦ f1.

Thus ranks are unique up to isomorphism; if T is ranked by a function f : T → α
then we let rk(T ) = α − 1 = f(〈〉). (Note though that most set theory texts let
rk(T ) = α).

Proposition 3.5 (ATR0). Every well founded tree is ranked.

3.1.1. Implications of rank.

Lemma 3.6 (RCA0). Suppose that S and T are ranked trees and that rk(S) 4
rk(T ). Then S 4 T .

Proof. Let g : rk(S) → rk(T ) be an embedding of ordinals. For each σ ∈ S, we
define f(σ) ∈ T by induction on |σ|. Along the construction we make sure at every
step that for every σ ∈ S, g(rkS(σ)) 6 rkT (f(σ)). Let f(〈〉) = 〈〉. Suppose we
have defined f(σ) and we want to define f(τ) where τ is an immediate successor
of σ on S. Since g(rkS(τ)) < g(rkS(σ)) 6 rkT (f(σ)), there exists π ) f(σ) with
rkT (π) > g(rkS(τ)). Let f(τ) be the <N-least such π. �

Lemma 3.7 (ACA0). Let S and T be ranked trees and assume that S 4 T . Then
rk(S) 4 rk(T ).

Proof. Suppose first that there is an embedding f : S → T ; we want to construct
an embedding g : rk(S) → rk(T ). Given α < rk(S), let g(α) = min(rkT (f(σ)) : σ ∈
S & rkS(σ) = α). We claim that g is an embedding of rk(S) into rk(T ). Consider
α0 < α1 < rk(S). Let σ ∈ S be such that rkS(σ) = α1 and g(α1) = rkT (f(σ)). Let
τ ) σ be such that rkS(τ) = α0. Such τ exists by Lemma 3.2 applied to Sσ. Since
f(τ) ) f(σ), g(α1) = rkT (f(σ)) > rkT (f(τ)) > g(α0). �

Corollary 3.8 (ACA0). If every well-founded tree is ranked then ∃-EMB(WFT )
holds.

Proof. Let 〈Tn〉 be a sequence of well-founded trees. Let T =
⊕
Tn; this is the tree

obtained by placing a common root below all of the Tns: T = {〈〉} ∪
⋃

n 〈n〉
a
Tn.

The tree T is well-founded and so has a rank function rkT .
For n,m ∈ N, rk(Tn) 4 rk(Tm) iff rkT (〈n〉) 6 rkT (〈m〉). This is because rkT � Tn

is a rank function for Tn (of course we mean 〈n〉aTn); and because for β, γ < rk(T ),
β 4 γ iff β 6 γ. It follows that Tn 4 Tm iff rkT (〈m〉) 6 rkT (〈n〉) so the set
{(n,m) : Tn 4 Tm} exists. �

Corollary 3.9 (RCA0). If every well-founded tree is ranked then COMP(WFT )
holds.

Proof. Let T, S be well-founded trees; let rk∗ be a rank function on T ⊕ S (as
before this is {〈〉} ∪ 0aT ∪ 1aS). Let α = rk∗(〈0〉) and β = rk∗(〈1〉). Now, since
α, β < rk(T ⊕S), either α 6 β or β 6 α; suppose the former. Then rk(T ) 4 rk(S).
It follows that T 4 S. �
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Corollary 3.10 (RCA0). If every well-founded tree is ranked then WQO(WFT )
holds.

Proof. Let 〈Tn〉 be a sequence of well-founded trees. Let T =
⊕
Tn and let rkT

be a rank function on T . Now 〈rkT (〈n〉)〉n∈N cannot be strictly decreasing. It
follows that for some n 6 m we have rkT 〈n〉 6 rkT 〈m〉 so rk(Tn) 4 rk(Tm) so
Tn 4 Tm. �

We have no direct argument to get ∃-ISO(WFT ) from RK(WFT ). Rather, we
give an argument from ATR0.

Proposition 3.11 (ATR0). ∃-ISO(WFT ) holds.

Proof. We prove that given two recursive trees T and S, both of rank α, we can
decide whether T ∼= S recursively uniformly in 0(3α+3), which exists by ATR0. We
do it by effective transfinite induction. For each i let Ti = T − 〈i〉, Si = S − 〈i〉.
Observe that T ∼= S if and only if for every i, the number of trees Tj such that
Tj

∼= Ti is equal to the number of trees Sj such that Sj
∼= Ti (this number is

possibly infinite). We can check whether Ti
∼= Tj and whether Ti

∼= Sj recursively
uniformly in 0(3α), so we can check whether the sentence above holds recursively in
0(3α+3). �

3.1.2. A reversal. We will later get all reversals by translating ordinals into trees.
However, we also have one direct reversal akin to the proof for ordinals (proposition
2.6); it is simpler. For any tree T , temporarily let 1 + T = {〈〉} ∪ 〈0〉aT . As for
ordinals, if T is well-founded then we cannot have 1 + T 4 T ; for iterating the
embedding on 〈〉 would yield a path in T .

Proposition 3.12 (ACA0). ∃-EMB(WFT ) implies ATR0.

Proof. We show Σ1
1-separation. Suppose that ϕ,ψ are Σ1

1 formulas which define
disjoint classes. From ϕ and ψ we can manufacture sequences 〈Tn〉 and 〈Sn〉 of
trees such that for all n, Tn is a well-founded iff ¬ϕ(n) and Sn is well-founded iff
¬ψ(n).

Consider An = Tn × (1 + Sn) and Bn = (1 + Tn) × Sn. Both An and Bn are
well-founded for all n. Suppose that Tn is well founded and that Sn is not. We
always have Tn 4 1 + Tn; since Sn is not well-founded we have 1 + Sn 4 Sn (map
everything onto an infinite path). Thus An 4 Bn.

On the other hand, again since Sn is not well-founded, there is an embedding
of 1 + Tn into Bn (again use an infinite path for the second coordinate). By
omitting the second coordinate, we have An 4 Tn. It follows that we cannot have
Bn 4 An, or we would have 1 + Tn 4 Tn. We can thus again let the separator be
{n : Bn 64 An}. �

3.2. Reductions.

3.2.1. From Ordinals to Trees.

Definition 3.13 (RCA0). Given a linear ordering L, let T (L) be the tree of L-
decreasing sequences of elements of L.

It is easy to show in RCA0 that for a linear ordering L, T (L) is well-founded
iff L is, so we get an EW-reduction. In RCA0 we can show that L 7→ T (L) is a
computable transformation.
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Lemma 3.14 (RCA0). For every α, T (α) is ranked and has rank α.

Proof. For every nonzero σ ∈ T (α) let rk(σ) be the last element of σ, and let
rk(〈〉) = α. rk is indeed a rank function because for all σ ∈ T of rank β, the set of
ranks of immediate successors of σ is exactly all γ < β. �

The next corollary follows from 3.4; the one after it follows from 3.6 and 3.7.

Corollary 3.15 (RCA0). For all ordinals α and β, α ∼= β iff T (α) ∼= T (β).

Corollary 3.16 (ACA0). Let α and β be ordinals. Then α 4 β iff T (α) 4 T (β).

Proposition 3.17 (RCA0). ∃-ISO(WFT ) implies ATR0.

Proof. Corollary 3.15 shows that ∃-ISO(WFT ) implies ∃-ISO(On). �

Proposition 3.18 (RCA0). RK(WFT ) implies ATR0.

Proof. We show that ∃-ISO(On) holds. Let 〈αn〉 be a sequence of ordinals; consider
T =

⊕
T (αn). Let rk be a rank function on T . Then αn

∼= αm iff T (αn) ∼= T (αm)
iff rk(〈n〉) = rk(〈m〉). �

Proposition 3.19 (ACA0). ∃-EMB(WFT ), COMP(WFT ) and WQO(WFT ) im-
ply ATR0.

Proof. It follows from the previous lemma that each of these three statements imply
the corresponding ones for ordinals, and hence ATR0. �

3.2.2. From trees to ordinals. We describe fat trees.

Definition 3.20. Given a tree T , let T∞ be the tree consisting of sequences of the
form 〈(σ0, n0), . . . , (σk, nk)〉 where 〈〉 6= σ0 ( σ1 ( · · · ( σk ∈ T and ni ∈ N.

Of course, in RCA0, T is well-founded iff T∞ is.
Let T be a tree; for p ∈ T∞ ending with the pair (τ, n) we let i(p) = τ . We also

let i(〈〉) = 〈〉.

Lemma 3.21 (RCA0). Let T be a tree. Then (T∞)∞ ∼= T∞.

Proof. We define a map f from T∞ to (T∞)∞ by induction. At every step we make
sure that i(p) = i(i(f(p))). Let f(〈〉) = 〈〉. Suppose we have defined f(q) = σ̄ ∈
(T∞)∞ and we want to define f(q_〈σ, n〉) for some q_〈σ, n〉 ∈ T∞. Let Bq,σ =
{〈σ,m〉 ∈ T × N : q_〈σ,m〉 ∈ T∞}. Let Aσ̄,σ = {〈p,m〉 ∈ T∞ × N : i(p) = σ &
σ̄_〈p,m〉 ∈ (T∞)∞}. Both Bq,σ and Aσ̄,σ are infinite because σ ⊃ i(p) = i(i(σ̄)) ,
so we can find a bijection gq,σ between them. Let f(q_〈σ, n〉) = σ̄_gq,σ(〈σ, n〉). �

Definition 3.22. A tree T is called fat if T∞ ∼= T .

Of course, a tree is fat iff it is isomorphic to T∞ for some tree T . Note that for
all T and p ∈ T∞ we have (T � i(p))∞ ∼= T∞ � p. It follows that if T is fat and
σ ∈ T then T � σ is fat.

Also, if T is fat, then for all σ ∈ T and for all successors τ of σ in T , there are
infinitely many τ ′ which are immediate successors of σ and such that T � τ ∼= T � τ ′.
(Work in T∞; consider all τ ′ such that i(τ ′) = i(τ).)

Lemma 3.23 (RCA0). Let T be a tree. T is ranked iff T∞ is ranked and in that
case, rk(T ) = rk(T∞).
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Proof. Suppose that T is ranked. For all p ∈ T∞, let rk∞(p) = rkT (i(p)). It is
immediate that rk∞ is a rank function on T∞ and that rk(T ) = rk(T∞).

Suppose that T∞ is ranked by a rank function rkT∞ . We note that for all
p, q ∈ T∞, if i(p) = i(q) then rkT∞(p) = rkT∞(q). This is because T∞ � p ∼= T∞ � q
as they are both isomorphic to (T � i(p))∞. It follows that we can define rkT on T
by letting rkT (σ) = rkT∞(p) where p is any such that i(p) = σ. It is clear that rkT

is order-inversing. If i(p) = σ then the collection of i(q)s of immediate successors
q of p is exactly the collection of all extensions of σ in T . It follows that rkT is
indeed a rank function on T . �

Together with lemmas 3.6 and 3.7, we get:

Corollary 3.24 (ACA0). Let S and T be ranked trees. Then S 4 T iff S∞ 4 T∞.

In fact, EQU=ISO holds for fat trees:

Lemma 3.25 (RCA0). Let T be a ranked fat tree. Then for every σ ∈ T and
every γ < rkT (σ) there are infinitely many immediate successors τ of σ such that
rk(τ) = γ.

(So a ranked fat tree is saturated within its rank.)

Proof. Work with T∞. Let p ∈ T∞ have rank β; we know that rkT (i(p)) = rkT∞(p).
Let γ < β. As the rank function on T � i(p) is onto β + 1, there is some extension
τ of σ such that rkT (τ) = γ. Then for every n ∈ N, the immediate extension q of
p which is determined by adding (τ, n) as last pair has rank γ. �

Corollary 3.26 (RCA0). Suppose that T and S are ranked fat trees. If rk(T ) ∼=
rk(S) then T ∼= S.

Proof. We define f : T → S by induction on the levels of T . Suppose that f(σ) is
defined. For each γ < rk(σ), consider the set Aσ,γ which consists of those immediate
extensions of σ of rank γ; similarly Bσ,γ consists of those immediate extension of
f(σ) of rank γ. For all γ < rk(σ), Aσ,γ and Bσ,γ are infinite; we can thus build
bijections between them and thus extend f . �

Next we go from fat trees to ordinals. We need the following because T → rk(T )
is far from computable.

Lemma 3.27 (RCA0). Let T be a ranked fat tree. Then KB(T ) is isomorphic to
ωrk(T ) + 1.

Proof. We can mimic the construction in the proof of Lemma 2.4: by effective
transfinite recursion we construct maps from T � σ to ωrk(σ) + 1 which preserve
<KB. We then use Π0

1-transfinite induction on T to show that each such map is
onto its range. In fact, we can directly compute the final embedding: For any
σ ∈ T , let Pσ be the collection of those τ ∈ T which lie lexicographically to the
left of σ but such that τ � |τ | − 1 ⊂ σ. This is in fact finite. Order Pσ by <KB

(which is the same as the lexicographic ordering on Pσ) as 〈τ0, . . . , τk〉. We let
f(σ) = ωrk(τ0) + 1 + ωrk(τ1) + 1 + · · ·+ ωrk(τk) + 1 + ωrk(σ). �
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3.3. Proofs of arithmetic comprehension.

Proposition 3.28 (RCA0). ∃-EMB(WFT ) implies ACA0.

Proof. Let f : N → N be a function. We construct a sequence of trees 〈Tn〉n∈N. We
have 〈〉 ∈ Tn for all n; further, we put 〈x〉 in Tn if f(x) = n. Let T = {〈〉}. Let
A = {n ∈ N : Tn 4 T}. We observe that N rA = range f . �

Proposition 3.29 (RCA0). COMP(WFT ) implies ACA0.

Proof. This is similar to ideas of Friedman’s [Frib] for p-groups. Let f : N → N be
a function. We construct two trees by defining their leaves. Let the leaves of T be
{〈0〉a〈n〉n : n ∈ N}; let the leaves of S be {〈nn〉a〈m〉m : n = f(m)}∪{〈nn〉 : n /∈
range f}.
T does not embed in S: say g : T → S is an embedding. Let σ = g(〈0〉). There

is some n such that 〈n〉 ⊂ σ. If n /∈ range f then g(〈022〉) cannot be defined. If
n = f(m) then g(〈0〉a〈m+ 2〉m+2) cannot be defined.

Thus let g : S → T be an embedding. If f(m) = n then g(〈nn〉) must extend
〈0k〉 for some k, and in fact we must have k > m because in this case g(〈nn〉a〈m〉m)
must be defined. Thus n ∈ range f iff for the unique k such that 〈0k〉 ⊂ g(〈nn〉),
n ∈ range f � k. �

3.3.1. WQO. We will first prove that WQO(WFT ) implies ACA0 using RCA2, and
then show that over RCA0, WQO(WFT ) implies RCA2 (recall that RCA2 is RCA0

together with Σ0
2-induction.) Our proofs of WQO(X ) → ACA0 in this and later

sections are motivated by Shore’s technique of proving WQO(On) → ACA0 [Sho93,
??].

Proposition 3.30 (RCA2). WQO(WFT ) implies ACA0.

Proof. Let 〈ks〉 be an effective enumeration of 0′. s ∈ N is a true stage of this
enumeration if for all t > s, kt > ks. s ∈ N appears to be a true stage at stage t > s
if for all r ∈ (s, t] we have kr > ks.

Let T consist of all sequences σa〈t〉 where t ∈ N and σ is an increasing enumera-
tion of the stages which appear to be true at t. T is indeed a tree because if t1 < t2
and t1 appears to be true at t2, then for all s < t1, s appears to be true at t1 iff it
appears to be true at t2. We let maxσ denote the last element of a sequence σ ∈ T .

Assume for contradiction that 0′ does not exist. Then T is well-founded: If f is
an infinite path in T then every s ∈ range f is a true stage, since it appears to be
true at unboundedly many later stages.

For n ∈ N, let Tn = {τ − τ � n : τ ∈ T} (i.e. the elements of Tn are the final
segments of sequences in T , the first n elements removed.) Each Tn is a well-founded
tree because T is.

For σ ∈ Tn, we say that σ is true if maxσ is a true stage.
By assumption, there are some n < m and an embedding g : Tn → Tm. We claim

that the image, under g, of a true sequence, is also true. This is because if τ ∈ Tm

is not true, then Tn[τ ] is finite. On the other hand, for any number r, there is a
true string σ ∈ Tn of length > r (this requires Σ0

2-induction). And of course, the
true strings on Tn are linearly ordered. Thus if σ is true then g(σ) can never be off
a true string, for in that case g would be “stuck”.

The second point is that if σ ∈ Tn is true, then max g(σ) > maxσ; this is because
|g(σ)| > |σ| and the fact that in Tm we “chopped off” more of the beginning of each
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string. This shows that given any true stage, we can manufacture a bigger true
stage; iterating, we compute 0′. �

To derive IΣ2, we use ideas of Shore ([Sho93, Theorem 3.1]). Let ψ(x) =
∃u∀vφ(x, u, v) be a Σ0

2 formula, and fix n ∈ N. We let Z = {x < n : ψ(x)}
and for p ∈ N, we let Zp = {x < n : ∃u 6 p ∀vφ(x, u, v)}. Obviously if p < q
then Zp ⊂ Zq ⊂ Z. Each Zp exists (by bounded Σ0

1-comprehension, which holds in
RCA0. See [Sim99, Definition II.3.8 and Theorem II.3.9]), so if for some p we have
Zp = Z then Z exists. This is enough to get induction on ψ up to n.

Lemma 3.31 (RCA0). There is a sequence 〈αp〉p∈N of ordinals such that for all p,
if Zp 6= Z then for all q > p, αq + 1 4 αp.

Proof. In Shore’s construction, each αi (Mi for Shore), is defined as a sum
∑

j<nNi,j ,
where Ni,n−j is isomorphic to ω3j+1 if ¬ψ(n−j), and ω3j ·uj − i+ω3j−1 if ψ(n−j)
and uj is the least witness, i.e, the least number u such that ∀vφ(n − j, u, v). (If
there is a witness, a least one exists by Σ0

1-induction.) Of course, if uj < i we
let uj − i = 0. Now, if Zp ( Z, there exists 0 < j 6 n such that ψ(n − j) but
¬∃u 6 p∀vφ(n−j, u, v), or in other words, uj > p. Then,

∑
k=n−j,...,n−1Nq,k +1 4

ω3j · uj − q + ω3j−1 · 2 4 ω3j · uj − p 4 Np,n−j 4
∑

k=n−j,...,n−1Np,k. Then, since
for all k < n− j, Nq,k 4 Np,k, we have that αq + 1 4 αp. �

Proposition 3.32 (RCA0). WQO(WFT ) implies Σ0
2 induction.

Proof. Let ψ, Z and Zp be as above, and let 〈αp〉 be the sequence given by Lemma
3.31

By WQO(WFT ), there exist p < q such that T (αp) 4 T (αq). In RCA0 we
cannot deduce that αp 4 αq, but we can deduce that αq + 1 64 αp. This is because
otherwise, we would have 1 + T (αq) 4 T (αq + 1) 4 T (αq), contradicting the well-
foundedness of T (αq). Thus Zp = Z and we’re done. �

4. Superatomic Boolean algebras

Superatomic Boolean algebras have not, as far as we can tell, been studied in
the context of reverse mathematics. This is why we first discuss various possible
definitions for this class and see how they relate (for some of the equivalences we
seem to require ACA0). We then follow the plan that was executed in the last
section.

4.1. Definitions.

4.1.1. Boolean Algebras. In this subsection, unless we mention otherwise, we work
in RCA0.

Definition 4.1. A Boolean algebra is a set A endowed with two binary operations
∧ and ∨, a unary operation ¬ and a distinguished element 0A, which satisfies the
familiar axioms of Boolean algebras. (For basic properties, see [Kop89].)

The partial ordering on A given by x∨y = y (equivalently x∧y = x) also exists;
∨ and ∧ are indeed the least upper bound and greatest lower bound, and so a
Boolean algebra is indeed a complemented distributive lattice. We use 4 to denote
the symmetric difference operation: x4y = (x− y)∪ (y−x), where x− y = x∩¬y.

The notions of an ideal of a Boolean algebra, a homomorphism of Boolean al-
gebras, products (and infinite sums) of Boolean algebras and subalgebras can be
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copied from the algebra textbooks and carried out in RCA0. We can also formalize
the notion of the quotient algebra:

Definition 4.2. Let I be an ideal of a Boolean algebra A. For a, b ∈ A, let a =I b if
a4b ∈ I. Let B be the collection of a ∈ A which are the <N-least elements of their
=I -equivalence class. B exists as it is ∆0

0. For a, b ∈ B, let a∨B b = c if a∨A b =I c,
and similarly for ∧,¬, 0. Again these operations exist, and the resulting structure
is a Boolean algebra; this is the quotient algebra A/I.

A particular example is the free Boolean algebra. Let V be a set. We let Prop(V )
be the collection of all propositional formulas with variables in V (this can be
effectively coded). We let ⇔ denote logical equivalence on propositional formulas
(it exists as it is computable by using truth tables). We let B(V ) = Prop(V )/ ⇔;
this is a Boolean algebra which we call the free Boolean algebra over V .

In particular, we fix some infinite set of variables V ∗ and let Prop = Prop(V ∗).
For ϕ(x̄) ∈ Prop, a Boolean algebra A and ā ∈ A, ϕA(ā) is well-defined (by induc-
tion on ϕ). If A is a Boolean algebra and X ⊂ A then we let

〈X〉A = {ϕA(ā) : ϕ ∈ Prop, ā ∈ X}.
In ACA0 we can show that 〈X〉A (which we call the subalgebra of A generated by
X) indeed exists, and we can also show that 〈X〉A is the inclusion-wise smallest
subalgebra of A containing X. In fact the existence of subalgebras generated by
sets is equivalent to ACA0. However, we note that if X is finite, then in RCA0 we
can show that 〈X〉A exists, as there are only 2|X| many propositional formulas with
variables in X.

4.1.2. Superatomicity in RCA0. We turn to describe superatomic algebras. We need
some definitions.

Definition 4.3. Let A be a Boolean algebra. An element x ∈ A is an atom if
x > 0 but there is no y ∈ A, 0 < y < x. A Boolean algebra is atomless if it has no
atoms.

For example, if V is infinite then B(V ) is atomless.

If A is a Boolean algebra then we let A+ = A \ {0A}.

Definition 4.4. An embedding of the full binary tree into a Boolean algebra A is
a map f : 2<N → A+ such that for all σ, τ ∈ 2<N, σ ⊂ τ implies f(τ) 6 f(σ) and
σ ⊥ τ implies f(σ) ∧ f(τ) = 0.

Lemma 4.5 (RCA0). If A is atomless then there is an embedding of the full binary
tree into A.

Proof. For σ ∈ 2<N, we define f(σ) by induction on |σ|. Let s(〈〉) = 1A. Say that
f(σ) is defined. It is not an atom; so we can let f(σa0) be the <N-least y ∈ A such
that 0 < y < f(σ), and let f(σa1) = f(σ)− f(σa0). �

Definition 4.6. Let A be a Boolean algebra. A set X ⊂ A is free if for all ā ∈ X
and ϕ(x̄) ∈ Prop, if ϕA(ā) = 0 then ϕ is logically false.

For example, for any set V , V is free in B(V ).

Lemma 4.7 (RCA0). Let A be a Boolean algebra. Then there is an embedding of
the full binary tree into A iff there is some infinite free set X ⊂ A.
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Proof. In one direction, suppose that X ⊂ A is infinite and free; let g : N → X be
a one-to-one enumeration of X. For any a ∈ A, let a0 = a and a1 = ¬a. We define
f : 2<N → A+ by letting f(σ) =

∧
n<|σ| g(n)σ(n). That f preserves extension and

incompatibility is immediate; the point is that for all σ, f(σ) > 0. This follows
from freeness; f(σ) 6= 0 because

∧
n<σ x

σ(n)
n is not logically false.

In the other direction, let f : 2<N → A+ be an embedding of the full binary
tree into A. Let g(n) =

∨
σ∈2n f(σa0) (so g(0) = f(0)). We first show that

g has “free range”: for all distinct n0, . . . , nk ∈ N and for all ϕ(x0, . . . , xk) ∈
Prop, if ϕA(f(n0), . . . , f(nk)) = 0A then ϕ is logically false. Let n > 1 and let
ϕ(x0, . . . , xn−1) be a propositional sentence. For σ ∈ 2n, let ϕσ =

∧
k<n x

σ(k)
k .

We have ϕA
σ (g(0), . . . , g(n− 1)) = f(σ). For some F ⊂ 2n, ϕ is equivalent to∨

σ∈F ϕσ. If ϕ is not logically false then F 6= 0; take some σ ∈ F . We have
ϕA(g(0), . . . , g(n− 1)) > ϕA

σ (g(0), . . . , g(n− 1)) > 0.
Now g is one-to-one; it follows that its range contains an infinite set X; X must

be free. �

It is clear that if A has an atomless subalgebra then there is an embedding of
the full binary tree into A. In fact these notions are equivalent.

Lemma 4.8 (RCA0). Suppose that a Boolean algebra A contains an infinite free
set. Then A has an atomless subalgebra.

Proof. Let X ⊂ A be an infinite free set. We construct B ⊂ A as an increasing
union of finite subalgebras 〈Bn〉 which we construct by induction. Suppose that we
have Bn = 〈x0, . . . , xn−1〉A where xi ∈ X. Let mn be the <N-least natural number
which is <N-greater than all y ∈ Bn. Let xn be the <N-least element of X such that
〈x0, . . . , xn〉A ∩ {0, . . . ,mn − 1} = Bn; one exists by freeness: if y, z ∈ X, and y, z
and the xi’s are distinct then 〈Bn ∪ {y}〉A ∩ 〈Bn ∪ {z}〉A = Bn, so the possibilities
below mn soon exhaust themselves.

Now B = ∪Bn is isomorphic to the free Boolean algebra on infinitely many
elements, and so is atomless. �

We thus make the following definition:

Definition 4.9. A Boolean algebra is superatomic if it has no atomless subalgebra.

Let SABA denote the class of superatomic Boolean algebras.

4.1.3. Superatomicity in ACA0.

Lemma 4.10 (RCA0). A superatomic Boolean algebra has no atomless quotient.

Proof. Suppose that a Boolean algebra A has an atomless quotient B = A/I. Let
X ⊂ B be infinite and free. Recall that we designed our subalgebras such that as
sets, B ⊂ A. So we have X ⊂ A and X is free in A. �

We work toward the converse. Recall that a set X ⊂ A is dense if for all nonzero
a ∈ A there is some nonzero b ∈ X such that b 6 a. If I is an ideal of A, B is a
subalgebra of A and I ∩B = {0} then the quotient map π : A→ A/I is one-to-one
on B, and we identify B with its image π“B (which exists under ACA0).

Lemma 4.11 (ACA0). If B is a subalgebra of a Boolean algebra A then there is an
ideal I of A such that I ∩B = {0} and B is dense in A/I.
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Proof. Let B be a subalgebra of A. Let 〈an〉n∈N be an enumeration of the elements
of A. We define a sequence of ideals In of A such that for all n, In ∩ B = {0}.
We let I0 = {0A}. At stage n, given In, we ask if an bounds some element of B+

modulo In. If so, we let In+1 = In; Otherwise, we let In+1 be the ideal generated
by In together with an.

Now the sequence 〈In〉n∈N exists because each In is finitely generated and we
can keep track of the finite sets of generators. Thus we can let I = ∪nIn. By the
construction, I ∩ B = {0}. Also, B is dense in A/I, because each element at its
turn is either discovered to bound some element of B+ modulo an ideal contained
in I, or is thrown into I. �

Corollary 4.12 (ACA0). A Boolean algebra is superatomic iff it has no atomless
quotient.

Proof. Suppose that A is not superatomic; it has some atomless subalgebra B. Let
I be given by Lemma 4.11. Then A/I is atomless, because B is a dense, atomless
subalgebra of A/I. �

Question 4.13. Does the statement of corollary 4.12 imply ACA0?

Remark 4.14. Lemma 4.11 is equivalent to ACA0 over RCA0.

4.2. Ranked Boolean algebras. In this section we define rank functions on su-
peratomic Boolean algebras; this follows Simpson [Sim99, Section V.7], where re-
duced Abelian p-groups and their Ulm resolutions are discussed.

Let B be a Boolean algebra. The Cantor-Bendixon derivative of B is the quotient
B/I, where I is the ideal generated by the atoms of B. I is called the Cantor-
Bendixon ideal of B.

Let α be an ordinal. A partial resolution of B along α is a sequence of ideals
〈Iβ〉β<α such that I0 = {0B}, if β + 1 < α then Iβ+1 is the (pullback to B) of
the CB-ideal of B/Iβ and for limit β < α, Iβ = ∪γ<βIγ . A resolution of B is a
partial resolution of B along some ordinal α+1 such that Iα = B and for all β < α
Iβ 6= B.

Suppose that 〈Iβ〉β6α is a resolution of a Boolean algebra B. We define as-
sociated rank and degree functions. For x ∈ B, rk(x) is the unique β < α such
that x ∈ Iβ+1 \ Iβ ; and deg(x) = n if in B/Irk(x), x is the join of n many atoms.
We let inv(x) = (rk(x),deg(x)); we let rk(B) = rk(1B), deg(B) = deg(1B) and
inv(B) = inv(1B).

Definition 4.15. A Boolean algebra is ranked if it has some resolution such that
the associated invariant function exists.

Lemma 4.16 (RCA0). Let B be a superatomic Boolean algebra. Let α, α′ be or-
dinals and suppose that 〈Iβ〉β6α and 〈I ′β〉β6α′

are two resolutions of B. Further
assume that the associated invariant functions inv and inv′ exist. Then α ∼= α′,
and the isomorphism commutes with rk, rk′ (i.e. if f : α → α′ is the isomorphism
then f ◦ rk = rk′).

Proof. We remark that for all β < α, β′ < α′, if Iβ ⊂ I ′β′ then Iβ+1 ⊂ I ′β′+1. For
take some atom x of B/Iβ . For all z 6 x, either z ∈ Iβ or z =Iβ

x. It follows that
for all z 6 x, either z ∈ I ′β′ or z =I′

β′
x. It follows that x ∈ I ′β′ or x is an atom of
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B/I ′β′ . Thus every finite join of atoms of B/Iβ is in I ′β′ or is a finite join of atoms
of B/I ′β′ .

Of course, rk and rk′ are symmetric here. Thus, if Iβ = I ′β′ then Iβ+1 = I ′β′+1.

Using Π0
1-transfinite induction on β < α we show that for all x ∈ B, if rk(x) = β

then Iβ = I ′rk′(x).
Suppose that the claim is verified up to β; let x ∈ B be such that rk(x) = β.

Let β′ = rk′(x). We need to see that Iβ = I ′β′ .
Let y ∈ Iβ ; let γ = rk(y). Now γ < β so x /∈ Iγ+1. Let γ′ = rk′(y). By induction,

Iγ = I ′γ′ and so Iγ+1 = I ′γ′+1 and so x /∈ I ′γ′+1; as x ∈ Iβ′+1 it follows that γ′ < β′.
Thus Iβ ⊂ I ′β′ .

Next, we note that for no γ′ < β′ can we have Iβ ⊂ I ′γ′ ; for then we would have
Iβ+1 ⊂ I ′γ′+1 ⊂ I ′β′ , contrary to rk′(x) = β′.

Let γ′ < β′. Then Iβ 6⊂ I ′γ′ ; so there is some y ∈ Iβ such that rk′(y) > γ′.
Let δ = rk(y); δ < β so by induction, Iδ+1 = Irk′(y)+1. Thus Iγ′+1 ⊂ Iβ . As
I ′β′ = ∪γ′<β′I

′
γ′+1, we have I ′β′ ⊂ Iβ as required.

Now we can define a function f : α→ α′ by letting f(β) = β′ if for some (all) x
such that rk(x) = β we have rk′(x) = β′. The function f exists as it is ∆0

1-definable.
We show that f is an isomorphism. Of course, dom f = α as the sequence of ideals
〈Iβ〉β6α is strictly increasing. By the same argument, range f = α′. f is order
preserving: say γ < β < α. Then Iβ = I ′f(β) and Iγ = I ′f(γ). Also, Iγ ( Iβ . It
follows that I ′f(γ) ( I ′f(β) and so f(γ) < f(β). �

Corollary 4.17 (RCA0). Suppose that A,B are ranked Boolean algebras and that
f : A → B is an isomorphism. Let rkA : A → α and rkB : B → α′ be the rank
functions. Then α ∼= α′ and the isomorphism g commutes with rkA, rkB , f (i.e.
rkB ◦f = g ◦ rkA).

Lemma 4.18 (RCA0). A ranked Boolean algebra is superatomic.

Proof. Let B be a ranked Boolean algebra of rank α. Suppose toward a contradic-
tion that B is not superatomic. Then, there is an embedding f of the full binary
tree into B. By recursion we construct a decreasing sequence 〈σn〉n∈N ⊂ 2<ω such
that 〈inv(f(σn))〉n∈N is a descending sequence in α×ω, getting a contradiction. Let
σ0 = 〈〉. Given σn, either inv(f(σa

n 0)) < inv(f(σn)) or inv(f(σa
n 1)) < inv(f(σn));

for if inv(f(σn)) = inv(f(σa
n 0)) = inv(f(σa

n 1)) = (β, n), then necessarily f(σn) =
f(σa

n 0) = f(σa
n 1) in B/Iβ , contradicting f(σa

n 0) ∧ f(σa
n 1) = 0B . Let σn+1 one of

σa
n 0 or σa

n 1 which has smaller invariant. �

Lemma 4.19 (ATR0). Every superatomic Boolean algebra is ranked.

Proof. Let B be a Boolean algebra, and assume that there is no ordinal α such that
a full iteration of the derivative of B along α+ 1 exists.

Let ϕ(L, 〈Ia〉a∈L) say that L is a linear ordering, that for all a ∈ L, Ia is a proper
ideal of B, and that if a <L b then the (pullback to B of) the CB-ideal of B/Ia is
contained in Ib.

For every ordinal α, by arithmetic transfinite recursion we can construct an
iteration 〈Iβ〉β<α of the derivative of B along α. Then ϕ(α, 〈Iβ〉β<α) holds.
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Since the collection of ordinals is not Σ1
1-definable (this is provable in ACA0; see

[Sim99, V.1.9]), there is some linear ordering L which is not well-founded and such
that there is a sequence 〈Ia〉a∈L such that ϕ(L, 〈Ia〉a∈L) holds.

Let a0 >L a1 >L a2 >L . . . be an infinite descending sequence in L. Let
I = ∩n∈NIan

. Then B/I is atomless (showing that B is not superatomic). For if
y ∈ B \ I then for some n, y /∈ Ian

. If in B/I, y is an atom, then y is an atom in
B/Ian+1 , in which case we would have y ∈ Ian .

Thus if B is superatomic then there is a full iteration 〈Iβ〉β6α along some ordinal
α+ 1. For every β < α, The collection of atoms of B/Iα exists. Given any b ∈ B,
we can find the unique β < α such that b ∈ Iβ+1 \ Iβ ; and then find the finite set
F of atoms of B/Iβ such that b = ∨F . Then the invariant of b in B is (β, |F |). �

4.2.1. Implications of rank. The following is a converse to corollary 4.17.

Lemma 4.20 (RCA0). Suppose that A,B are ranked Boolean algebras which have
the same CB invariant. Then A ∼= B.

Proof. This is a back-and-forth construction; we define f : A→ B. Let f(0A) = 0B

and f(1A) = 1B .
Let a0 ∈ A. We look for b0 ∈ B such that invA(a0) = invB(b0) and invA(¬a0) =

invB(¬b0). Why does such exist? We first note that invA(a0) 6lex inv(A) and that
for all pairs (γ, n) 6lex inv(B) there is some c ∈ B such that invB(c) = (γ, n). Next
we note that for all (γ, n) <lex inv(A) there is a unique (β,m) 6lex inv(A) such that
for all a ∈ A such that invA(a) = (γ, n) we have invA(¬a) = (β,m). By replacing
a0 by its complement, if necessary, we can assume that invA(a0) <lex inv(A). Thus
we can pick any b0 ∈ B such that invB(b0) = invA(a0). We let f(a0) = b0 and
f(¬a0) = ¬b0.

We now repeat the process backward, in the other direction, in the Boolean
algebras B(6 b0) and B(6 ¬b0); we pick new elements, find their equivalents in
A(6 a0) and A(6 ¬a0) as above, and extend f to be defined on the subalgebra of
A generated by all the elements picked so far. We then repeat inside the four new
smaller algebras we got, and so forth. �

Lemma 4.21 (RCA0). A (finite or infinite) direct sum of superatomic Boolean
algebras is superatomic.

Proof. Let A and B be Boolean algebras, and suppose that f : 2<N → A × B is
an embedding of the full binary tree into A× B; write f(σ) = (aσ, bσ). There are
two possibilities. Suppose that there is some σ such that aσ = 0A. Then we can
define g : 2<N → B by letting g(τ) = bσaτ . For all τ , g(τ) > 0, as f(σaτ) > 0. If
τ1 ⊥ τ2 then σaτ1 ⊥ σaτ2 so f(σaτ0) ⊥ f(σaτ1) so g(τ0) ⊥ g(τ1). Thus B is not
superatomic. Similarly, if for some σ we have bσ = 0 then A is not superatomic.

Otherwise, we can let g(σ) = aσ. By assumption, g(σ) > 0 for all σ; and is
τ0 ⊥ τ1 then f(τ0) ⊥ f(τ1) which implies g(τ0) ⊥ g(τ1). Then A (and B) are not
superatomic.

Let 〈Bn〉n∈N be a sequence of Boolean algebras, and let B =
⊕

n∈N Bn. Recall
that the elements of B are those sequences of

∏
nBn which have either almost all

elements 1 or almost all elements 0. Suppose that f : 2<N → B is an embedding of
the full binary tree into B. Then for either f(0) or f(1), almost all elements are
0, which essentially means that either f(0) or f(1) (and all extensions) lie in some
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finite product. Thus some finite product of the Bns is not superatomic, so some
Bn is not superatomic. �

Corollary 4.22 (RCA0). Suppose that every superatomic Boolean algebra is ranked.
Then ∃-ISO(SABA) holds.

Proof. Let 〈Bn〉 be a sequence of superatomic Boolean algebras. Let B =
⊕

nBn.
Then B is superatomic; let invB be the invariant function for B. We claim that
invB � Bn is the invariant function for Bn (where we identify b ∈ Bn with the
sequence containing b and otherwise only 0s): by Π0

1-transfinite induction on β <
rk(B) we can see that Iβ(Bn) = Iβ(B) ∩ Bn. For the successor step note that Bn

is an initial segment of B; at limit stages take unions.
By corollary 4.17 and Lemma 4.20, Bn

∼= Bm iff invB(Bn) = invB(Bm). This
is equality of elements of inv(B) rather than merely isomorphism of ordinals; we
use the fact that if β, γ < α then β ∼= γ iff β = γ. Thus {(n,m) : Bn

∼= Bm}
exists. �

If we care for only one direction, we have the following.

Lemma 4.23 (RCA0). Suppose that A,B are ranked Boolean algebras and that
inv(A) 6lex inv(B). Then there is an embedding of A into B.

The proof is similar to the proof of Lemma 4.20, without going back; f , instead
of preserving the invariant, simply does not decrease it (lexicographically).

Corollary 4.24 (RCA0). Assume that every superatomic Boolean algebra is ranked.
Then COMP(SABA) holds.

Proof. Let A,B be superatomic Boolean algebras; get an invariant inv on A × B.
We know that either inv(1A) 6lex inv(1B) or vice-versa; thus A 4 B or B 4 A. �

Corollary 4.25 (RCA0). Assume that every superatomic Boolean algebra is ranked.
Then WQO(SABA) holds.

Proof. Let 〈Bn〉 be a sequence of superatomic Boolean algebras. Let B =
⊕

nBn

and let inv be an invariant on B. Since 〈inv(1Bn)〉 cannot be a strictly <lex-
decreasing sequence, we must have some n < m such that inv(1Bn) 6lex inv(1Bm).
It follows that Bn 4 Bm. �

The analog of corollary 4.17 (i.e. the converse of Lemma 4.23) seems to require
ACA0.

Lemma 4.26 (ACA0). Let A,B be ranked Boolean algebras such that A embeds
into B. Then rk(A) 4 rk(B).

Proof. Let 〈Iβ〉β6α be the CB resolution for A and let 〈Jβ〉β6α′ be the CB resolution
for B. Let f : A → B be an embedding. Define g(β) = β′ if β′ is the least ordinal
below α′ such that there is some x ∈ A such that rk(x) = β and rk(f(x)) = β′.

Now we prove that g is order preserving. Let β < γ < α. Take x ∈ A such
that rk(x) = γ and g(γ) = rk(f(x)). x /∈ Iβ+1 so in A/Iβ there are infinitely many
atoms below x. By induction we can pick an infinite collection X ⊂ A such that
for all y ∈ X, y 6 x and in A/Iβ , y is an atom (so rk(y) = β); and further, for
distinct y, y′ ∈ X we have y ∧ y′ = 0. For all y ∈ X, f(y) /∈ Jg(β), f(y) 6 f(x), and
the f(y)’s are pairwise disjoint. Also, f is one-to-one so f“X is infinite. It follows
that f(x) /∈ Jg(β)+1, and hence that g(β) < g(γ). �
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Remark 4.27 (ACA0). Suppose that A,B are ranked Boolean algebras and that
rk(A) = rk(B). Then A 4 B iff deg(A) 6 deg(B). For if deg(A) 6 deg(B)
then inv(A) 6lex inv(B) so A 4 B (Lemma 4.23). Suppose that f : A → B is an
embedding; let α = rk(A) and n = deg(A). Let X ⊂ A be a set of size n of pairwise
disjoint elements of rank α. By Lemma 4.26, for each x ∈ X, rkB(f(x)) = rk(B(6
f(x))) > rk(A(6 x)) = rkA(x) = α, so in B there are n pairwise disjoint elements
of rank α; it follows that deg(B) > n.

Corollary 4.28 (ACA0). Assume that every superatomic Boolean algebra is ranked.
Then ∃-EMB(SABA) holds.

Proof. The proof is similar to that of corollary 4.22. We are given a sequence
〈Bn〉 of superatomic Boolean algebras and get a rank on B =

⊕
nBn. Now if

inv(Bn) 6lex inv(Bm) then Bn embeds into Bm. On the other hand, if Bn embeds
into Bm then rk(Bn) 4 rk(Bm) and if they are equal then deg(Bn) 6 deg(Bm).
However, as all of these ordinals are initial segments of rk(B), 4 and 6 coincide,
so if Bn embeds into Bm then inv(Bn) 6lex inv(Bm). The conclusion follows. �

Corollary 4.29 (ACA0). Assume that every superatomic Boolean algebra is ranked.
Then EQU=ISO(SABA) holds.

Proof. Let A,B be superatomic Boolean algebras such that A 4 B and B 4 A.
Again let inv be an invariant on A×B. By Lemma 4.26 and Remark 4.27, we have
that inv(1A) = inv(1B). It follows that A ∼= B. �

4.3. Reductions.

4.3.1. Ordinals to superatomic Boolean algebras. Let L be a linear ordering. We
let Int(L) be the Boolean algebra consisting of finite unions of half open intervals
of L of the form [a, b) (where we allow b = ∞). [In RCA0, the elements of this
Boolean algebra are coded by the finite sequences of the pairs of endpoints of these
intervals; all Boolean operations exist.]

For any linear ordering ordinal L, let B(L) = Int(ωL).

Lemma 4.30 (RCA0). For all α, B(α) is ranked, and its invariant is (α, 1).

Proof. The important thing to recall is that the operations of ordinal addition and
subtraction (α−β = γ if β+γ = α) below ωα exist; also, taking the logarithm of base
ω exists. That is, given γ = ωβ1n1 +ωβ2n2 + · · ·+ωβknk where β1 > β2 > · · · > βk

are elements of α and ni ∈ ω, we know that β1 is the greatest element β of α
such that ωβ 6 γ; we in fact let inv(γ) = (β1, n1) and for every interval [β, γ)
(where β < γ 6 ωα) we let inv([β, γ)) = inv(γ − β). Note that for the special case
γ = ∞(= ωα) we always have ωα − β = ωα and inv(ωα) = (α, 1). When faced by
a finite disjoint union of intervals, we take the natural “sum” of invariants, namely
the invariant is (β, n) where β is the maximal rank of the intervals and n is the
sum of the degrees of those intervals which have rank β.

The fact that inv is indeed the correct invariant for B(α) follows from three facts
(all of which are properties of ordinal addition up to ωα): one, that finite unions
do not increase rank; second, that the inclusion relation respects the lexicographic
ordering of invariants (so in particular, Iγ , the collection of all elements of B(α)
which have rank below γ, forms an ideal); and third, that an interval of length ωγ

cannot include two disjoint subintervals of length ωγ ; this implies that the intervals
of invariant (γ, 1) (which modulo Iγ have length ωγ) are the atoms of B(α)/Iγ . �
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Lemma 4.31 (RCA0). For all linear orderings L, L is well-founded iff B(L) is
superatomic.

Proof. The direction from left to right follows from the previous lemma and from
Lemma 4.18. For the other direction suppose that L is not well-founded and that
{an}n∈N is a descending sequence in L. We define an embedding f of the full binary
tree into B(L). Given σ ∈ 2<N, we let xσ =

∑
i:σ(i)=1 ω

ai+1 and we let

f(σ) = [xσ, xσ + ωa|σ|).

Is not hard to check that f is as wanted. �

We get (aided by 4.17 and 4.20):

Corollary 4.32 (RCA0). Let α, β be ordinals. Then α ∼= β iff B(α) ∼= B(β).

The following is immediate;

Lemma 4.33 (RCA0). Let α, β be ordinals and suppose that α 4 β. Then B(α) 4
B(β).

By 4.26, we get

Corollary 4.34 (ACA0). Let α, β be ordinals. Then α 4 β iff B(α) 4 B(β).

As a corollary we have:

Corollary 4.35 (RCA0). The statement ∃-ISO(SABA) implies ∃-ISO(On), and
EQU=ISO(SABA) implies EQU=ISO(On). Therefore, both ∃-ISO(SABA) and EQU=ISO(SABA)
are equivalent to ATR0.

Corollary 4.36 (ACA0). The statement ∃-EMB(SABA) implies ∃-EMB(On), the
statement COMP(SABA) implies COMP(On) and the statement WQO(SABA) im-
plies WQO(On). Therefore, ∃-EMB(SABA), COMP(SABA) and WQO(SABA)
are equivalent to ATR0 over ACA0.

4.3.2. Well-founded trees to superatomic Boolean algebras. We do not need the fol-
lowing for the proof of Theorem 1.5, but we thought to include a natural operation
which takes us directly from trees to Boolean algebras.

Let T be a tree. We let B(T ) be the tree algebra of T , as described in [Kop89,
Section 16]. There, it is defined as the subalgebra of P(T ) generated by the cones
{σ ∈ T : τ ⊆ σ} (for all τ ∈ T ). Of course, this definition only makes sense
in ACA0, but in fact we can get the tree algebra in RCA0. We let B0(T ) be a
Boolean algebra generated freely over a basis {bσ : σ ∈ T}; We let I be the ideal
generated by the equations bσ 6 bτ if τ ⊂ σ and bσ ∧ bτ = 0 if σ ⊥ τ . The ideal
I exists: by reducing to disjunctive normal form, it is sufficient to decide whether
an element of the form a = bσ1 ∧ · · · ∧ bσn

∧−bτ1 ∧ · · · ∧ −bτm
is in I. If the σi are

not linearly ordered then a ∈ I. Otherwise, we let σ be the greatest σi; modulo
I, a = bσ ∧ −bτ1 ∧ · · · ∧ −bτm

. If for some i we have σ ⊃ τi then a ∈ I; otherwise
a /∈ I. Finally we let B(T ) = B0(T )/I.

Remark 4.37. The argument showing that I exists and some more work yield a
normal form for elements of B(T ); all the elements can be written as disjoint sums
of elements of the form bσ −

∑
τ∈S bτ , where S is a finite antichain in T and for all

τ ∈ S, σ ⊂ τ . Again, see [Kop89].

Recall that for a tree T and τ ∈ T , T − τ = {σ : τaσ ∈ T}.
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Fact. Let T be a tree. For all τ ∈ T , B(T − τ) ∼= B(T )(6 bτ ).

In fact, we can break up the tree algebra into pieces. Let τ ∈ T let S(τ) be the
collection of immediate successors of τ on T . If S(τ) is infinite, then

B(T − τ) ∼= ⊕{B(T − σ) : σ ∈ S(τ)}.

However, if S(τ) is finite (for example, if τ is a leaf), then bτ −
∑

σ∈S(τ) is an atom
of B(T − τ) and so we have

B(T − τ) ∼= {0, 1} ⊕ {B(T − σ) : σ ∈ S(τ)}

(So if τ is a leaf then bτ is an atom of B(T ) and B(T − τ) ∼= {0, 1}.
If T is well-founded then we can build B(T ) from the leaves up.

Lemma 4.38 (ACA0). If T is well-founded then B(T ) is superatomic.

Proof. Suppose that f is an embedding of the full binary tree into B(T ). By
induction, we find some σn ∈ T and some embedding fn of the full binary tree
into B(T � σn). Given fn(〈〉) = bσn

= 1B(T−σn), for some i < 2, there is some
finite S ⊂ S(σn) such that fn(i) 6

∑
τ∈S bτ . We can thus view ρ 7→ fn(iaρ) as

an embedding of the full binary tree into ⊕{B(T − τ) : τ ∈ S}. By asking finitely
many questions, as in the proof of Lemma 4.21, we find some coordinate from which
we can pick a σn+1 and let fn+1 be the adequate restriction. �

It is clear that if T ∼= T ′ then B(T ) ∼= B(T ′).

4.3.3. Superatomic Boolean algebras to well-founded trees.

Definition 4.39. A uniformly splitting tree is a tree of the form {σ ∈ ω<α : ∀i <
|σ|(σ(i) < mi)} where α ∈ N ∪ {N} and for all i, mi ∈ N and mi > 2. A finite tree
embedding into a Boolean algebra B is a partial function g : T → B+ where T is a
finite uniformly splitting tree and g preserves 6, ⊥ and 1 (i.e. g(〈〉) = 1B).

Fix a sequence of constants 〈qn〉n>2 which grows sufficiently quickly so that for

all l, k < n, ql + qk 6 qn (for example, let qk = 22k

). Also, fix an infinite recursive
set C = {cn : n > 2} (say cn = 〈0, n〉) and fix a coding of all finite sequences and
functions such that the collection of code numbers is disjoint from C. For m ∈ N,
n > 2 we let %(n;m) = 〈cn〉m and let %n = %(n; qn − 1).

Given a Boolean algebra B we will code all finite tree embeddings into B using
a tree. Let T ⊂ m1×· · ·×mk be a finite uniformly splitting tree and let g : T → B
be a finite tree embedding. For l 6 k let Tl = T ∩ ωl. We let the code for g, be the
string

$(g) = %m1
a〈g � T1〉a%m2

a〈g � T2〉a · · ·a %mk

a〈g � Tk〉.
Note that we also allow g to be defined on T0 = {〈〉}; there is a unique such g

(we must have g(〈〉) = 1B) and in this case $(g) = 〈〉. The function g 7→ $(g) is
one-to-one and its range is computable from B, so it exists (in RCA0).

The tree T (B) consists of all of the strings $(g)a
%(n;m) where n > 2 and

m < qn, and g is a finite tree embedding into B. In RCA0 we can show that T (B)
exists. Also, T (B) is closed under initial segments so it is indeed a tree.

Lemma 4.40 (RCA0). B is superatomic iff T (B) is well-founded.
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Proof. Suppose that B is not superatomic. Then there is an embedding of the full
binary tree into B, and by shifting elements around we may assume that the top
of the embedding is 1B . This embedding would yield a path in T (B).

On the other hand, from a path in T (B) we can recover an embedding of an
infinite uniformly splitting tree into B. The reason is that on an infinite path,
codes for functions must occur infinitely often: if f is an infinite path and f(n) is a
code for a function then if cm = f(n+ 1) we know that f(n+ qm) must be a code
for a function. Restricting the embedding we get to 2<ω we get an embedding of
the full binary tree into B. �

For the purpose of the following computation, we let q1 = 0. Also recall that
I0 = {0} so that rk(0B) = −1 but for every finite join of atoms x, rk(x) = 0.

Lemma 4.41 (RCA0). Suppose that B is a ranked Boolean algebra and inv(B) =
(α, n). Then T (B) is ranked and has rank ω(2α+ 1) + qn.

(Recall that if γ is limit and α = γ + k then 2α = γ + 2k.)

Proof. For a finite tree embedding g into B we let inv(g) = min{inv(x) : x ∈
range g}, where the ordering is of course the lexicographic one. For each such g, if
inv(g) = (β, k) then we let f($(g)) = ω(2β + 1) + qk.

Now we claim that f extends to a rank function on T (B). We first discuss
how we should define f on nodes of the form $(g)a

%n for n > 2 and finite tree
embeddings g into B. Let g be such and let (β, k) = inv(g); let x ∈ range g such
that inv(x) = (β, k). Let n > 2. If n > k then we cannot split x into n many
disjoint elements of rank β; on the other hand, we can split x into n many disjoint
elements, each of which have invariant below (β, 0) but as large as we like below
(β, 0). It follows that the immediate extensions of $(g)a

%n in T (B) are of the
form $(g′) where inv(g′) < (β, 0) (so if β = 0 there are no such g′ and $(g)a

%n

is terminal), and all invariants below (β, 0) occur; then the supremum of f on the
immediate extensions of $(g)a

%n is sup{ω(2γ + 1) + l : γ < β, l ∈ N} = ω(2β).
We thus let f($(g)a

%n) = ω(2β) for such n.
If, however, n 6 k, then x can be split into n disjoint elements of rank β. In

fact, there is then an immediate successor $(g′) of $(g)a
%n in T (B) of maximal

invariant (β, l) (where l is the largest possible size of a smallest set in a partition
of k into n nonempty sets). We can thus let f($(g)a

%n) = ω(2β + 1) + ql + 1. We
note that l = bk/nc.

Having defined f on the nodes $(g)a
%n we can extend it to nodes $(g)a

%(n;m)
because from $(g)a

%(n; 1) to $(g)a
%n there is no splitting on T (B). We thus have

f($(g)a
%(n; 1)) = ω(2β) + qn − 2 if n > k, ω(2β + 1) + ql + qn − 1 if n 6 k where

bk/n <c. Since we chose the qks to rise quickly we have ql + qn 6 qk for n < k.
Thus if k > 2 then we indeed have that $(g)a

%(k; 1) has maximal rank among the
immediate successors of $(g), and indeed we assigned it rank f($(g))− 1, so f is
continuous at $(g). If k = 1 then for all n, f($(g)a

%(n; 1)) = ω(2β) + qn − 2 and
qn →∞, so again f is continuous at $(g) as required. �

Corollary 4.42 (ACA0). Suppose that A,B are ranked Boolean algebras. Then
A ∼= B iff T (A)∞ ∼= T (B)∞ and A 4 B iff T (A)∞ 4 T (B)∞.
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Note that this yields another proof that ATR0 implies the various statements
for superatomic Boolean algebras; we deduce them from RK(SABA) and the cor-
responding statements for fat trees.

4.4. Proofs of arithmetic comprehension.

Proposition 4.43 (RCA0). ∃-EMB(SABA) implies ACA0.

Proof. This is immediate (same as Proposition 3.28). �

Proposition 4.44 (RCA0). COMP(SABA) implies ACA0.

Proof. Let f : N → N be a one-to-one function. For each n ∈ N let Bn be a finite
boolean algebra such that if n is not in the range of f , it has only one atom, and if
n = f(m), it has m many atoms. Let B =

⊕
n∈N Bn and let B′ be a ranked boolean

algebra of invariant (ω, 2). First we observe that B′ 64 B: B′ has two elements with
meet 0B′ and infinitely many atoms below, but B does not. So, COMP(SABA)
implies B 4 B′. Let g be such an embedding. For at most two (actually one) values
of n we may have rk(g(1Bn

)) = 1. For every other n we have inv(g(1Bn
)) = (0, kn).

As in the proof for trees, we observe that n is in the range of f iff it is in the range
of f � kn. �

4.4.1. WQO. As in subsection 3.3.1, we go via RCA2. As mentioned in that sub-
section, we make use of some ideas of Shore’s proof that WQO(On) implies ACA0

[Sho93, Theorems 2.17 and 3.1].

Proposition 4.45 (RCA2). WQO(SABA) implies ACA0.

Proof. Again fix an enumeration of 0′. Let βn
t = ω + 1 if t is the kth true stage of

the enumeration for some k > n, and finite otherwise. [Set 1 <∗ 2 <∗ 3 <∗ · · · <∗ 0.
At stage s > t, determine that s ∈ βn

t if at s, t appears to be a true stage and there
are n other stages before t which also appear to be true at s. If t is not true then
eventually this will be found out. If t is true then already at t we know all the true
stages < t, so if there are fewer than n true stages < t, then no s > t is in βn

t .]
Let αn =

∑
t∈N β

n
t and let Bn = Int(αn). Each Bn is superatomic (to see this

quickly, note that Bn = ⊕t Int(βn
t ), and see Lemma 4.21). Suppose that n < m

and that f : Bn → Bm is an embedding.
By Σ0

2-induction, there are more than n many true stages. Suppose then that
t is the (n + k)th true stage for some k > 0. Thus the interval I = ∪s6tβ

n
s has

exactly k limit points, which in Bn means that it is the join of k many elements
below each of which there are infinitely many atoms. This has to be true of f(I)
in Bm. Suppose that sup f(I) ∈ βm

r . Then r bounds a true stage larger than t
(for example, the (m+ k)th true stage). The stage u between t and r at which the
smallest number ever to be enumerated between t and r was actually enumerated,
is a true stage > t. This process can be iterated to get infinitely many true stages
and thus 0′. �

Now we observe that in light of Lemma 3.31 and the proof of proposition 3.32,
in order to show

Proposition 4.46 (RCA0). WQO(SABA) implies IΣ2.

it is enough to show two things in RCA0: first, that if α, β are ordinals and α 4 β
then B(α) 4 B(β) (this is Lemma 4.33), and that if α is an ordinal, then B(α+ 1)
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does not embed into B(α). Armed with these facts, the proof follows exactly as it
did for trees. The second statement can be shown using:

Fact (RCA0). Suppose that A and B are ranked Boolean algebras with resolutions
〈Iβ〉β<α and 〈Jβ〉β<α along the same ordinal α (we allow for a final segment of
Iβ = A or Jβ = B). Suppose that f : A → B is an embedding. Then for all
β < α and x ∈ A, if rk(x) > β then rk(f(x)) > β. This is shown by Π0

1-transfinite
induction on α.

5. Reduced p-groups

Fix a prime number p. A p-group is a group in which every element has order a
power of p.

Convention. From now on, all groups are Abelian.

A group G is divisible if for every a ∈ G and every n ∈ N, there exists b ∈ G
such that nb = a.

Definition 5.1. A group is reduced if it has no divisible subgroup.

Fact (ACA0). A p-group G is reduced iff there is no sequence 〈gn〉n∈N of elements
of G such that for all n, pgn+1 = gn. This is because the subgroup generated by
the gns is the direct limit of Zpn , and in each Zpn one can divide by numbers not
divisible by p.

Again, reduced groups are the “well-founded part” of the collection of groups,
and it takes Π1

1-comprehension to weed out this part. A classic result is the following
theorem of Friedman, Simpson and Smith:

Theorem 5.2 ([FSS83]). The statement “every group is the direct product of a
reduced group and a divisible groups” is equivalent to Π1

1-CA0 over RCA0.

As our notion of embedding 4 we take the usual notion of group embedding
(one-to-one homomorphism).

5.1. Ranked p-groups. We define rank functions for reduced p-groups. Let α be
an ordinal and G a p-group. A partial Ulm resolution of G along α is a sequence
of subgroups 〈Gβ〉β<α such that G0 = G, if β + 1 < α then Gβ+1 = {pg : g ∈ Gβ},
and for limit λ < α, Gλ =

⋂
β<λGβ (we sometimes write pβG for Gβ). An Ulm

resolution of G is a partial Ulm resolution of G along some ordinal α+ 1 such that
Gα = {0} and for all β < α, Gβ 6= {0}. We call such an α the length of G.

Notation (RCA0). If G is a p-group then G[p], its socle, is the subgroup consisting
of elements of G of order p.

Suppose that 〈Gβ〉β6α is a resolution of a p-group G; we define an associated
Ulm sequence. For each β < α, Gβ [p]/Gβ+1[p] is a vector space over Zp; we let
UG(α) be its dimension. The sequence 〈UG(β) : β < α〉 is called the Ulm sequence
of G, and it characterizes G up to isomorphism. We also define an associated rank
function: for x ∈ G, let rkG(x) be the unique β < α such that x ∈ Gβ rGβ+1. (In
ACA0, if a resolution exists then so does the sequence and the rank function; but
not in RCA0.)
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Definition 5.3. A p-group G is weakly ranked if it has an Ulm resolution and the
associated rank function exists. It is ranked if further, the associated Ulm sequence
exists.

RCA0 is enough to prove that reduced p-groups with the same Ulm sequence are
isomorphic [Sim99, Theorem V.7.1]. Simpson [Sim99, Lemma V.7.2] uses ACA0 to
prove that Ulm sequences are unique up to isomorphisms of ordinals.

Lemma 5.4 (RCA0). Let G be a reduced p-group. Let α and α′ be ordinals and
suppose that 〈Gβ〉β<α and 〈G′

β〉β<α′ are two resolutions of G. Further, assume that
the associated rank function rk and rk′ exist. Then α ∼= α′, and the isomorphism
commutes with rk, rk′.

Proof. This is similar (but not identical) to the proof of Lemma 4.16. By Π0
1-

transfinite induction on β < α we show that for all x of rank β, Grk(x) = G′
rk(x′)

(in particular it follows that if rk(x) = rk(y) = β then rk′(x) = rk′(y)). Suppose
that the claim is verified up to β. There are two options.

First, suppose that β is a limit ordinal. Then Gβ = ∩γ<βGγ . Let x have rank
β and let β′ = rk′(x). So far, we have a map f : β → α′ which is defined by taking
γ < β to the unique γ′ such that for some (all) y ∈ G of rk γ, rk′(y) = γ′ (so
Gγ = G′

γ′). For all γ < β we thus have x ∈ G′
f(γ) so range f ⊂ β′. Of course, f is

order-preserving, and since β is limit, range f has no last element. Suppose that f
is not cofinal in β′: that there is some δ′ < β′ such that for all γ′ ∈ range f , γ′ 6 δ′.
But then we have Gβ = ∩γ′∈range fG

′
γ′ ⊃ G′

δ′ ; on the other hand, β′ > δ′ implies
that there is some y ∈ G′

δ′ such that py = x. But there is no such y in Gβ . Thus
β′ = sup range f is limit and G′

β′ = Gβ as required.
Next, suppose that β = γ + 1. Take x ∈ G of rank β; let β′ = rk′(x). Since

x ∈ Gγ+1, p|x in Gγ so we can find y ∈ Gγ such that py = x. We cannot have
y ∈ Gβ (or x ∈ Gβ+1); so rk(y) = γ. Let γ′ = rk′(y). By induction, Gγ = G′

γ′ ,
so Gβ = G′

γ′+1. But β′ = rk′(x) = γ′ + 1. Why is that? Otherwise, we have
rk′(x) > γ′+1 so x ∈ G′

γ′+2; thus there is some y ∈ G′
γ′+1 such that py = x; and so

there is some z ∈ G′
γ′ such that pz = y. But then z ∈ Gγ and so x ∈ Gγ+2 which

is false. Thus Gβ = G′
β′ as required.

When we are done with the induction we define f : α → α′ as we did in limit
stages and get the desired isomorphism. �

Lemma 5.5 (RCA0). Every ranked p-group is reduced.

Proof. Suppose G is a p-group which is not reduced. Let H be a divisible subgroup
of G and let x0 ∈ H. By primitive recursion construct a sequence 〈xi : i ∈ N〉 such
that for each i, pxi+1 = xi. Note now that for each i, rk(xi+1) < rk(xi), because if
xi+1 ∈ Gβ , then xi ∈ Gβ+1. So, we have a contradiction because the length of G is
well-founded. �

The statement that every reduced p-group is weakly ranked is equivalent to ATR0

over RCA0 [Sim99, Theorem V.7.3]. It follows that the statement that every reduced
p-group is ranked is also equivalent to ATR0 over RCA0, because as mentioned
earlier, ACA0 is enough to compute the Ulm sequence.

Given a group G, a set A ⊆ Gr {0} is independent if for any a1, . . . , ak ∈ A, if
n1a1 + · · · + nkak = 0, then n1a1 = · · · = nkak = 0. Let G be a p-group. Then if
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a1, . . . , ak ∈ G are independent and the order of ai is pni then pn1−1a1, . . . , p
nk−1ak

is an independent subset of G[p], which is a vector space. Hence all maximal
independent sets in G have the same cardinality which we denote by r(G), the (for
our purposes unfortunately named) rank of G; r(G) = r(G[p]).

Lemma 5.6 (ACA0). Suppose that G,G′ are ranked p-groups (with resolutions
〈Gβ〉β6α, 〈G′

β′〉β′6α′
). Suppose that f : G → G′ is an embedding. Then there is

some embedding h : α→ α′ such that for all β < α, r(Gβ) 6 r(G′
h(β)).

(This extends the discussion about embeddings in [Frib].)

Proof. For β < α, we let h(β) be the maximal β′ < α such that f“Gβ ⊂ G′
β′ . h

is strictly order-preserving because for all β < α, Gβ+1 = pGβ ⊂ G′
h(β)+1. Now

h � Gβ [p] is a vector space embedding of Gβ [p] into G′
h(β′)[p] so the rank cannot

decrease. �

Remark 5.7. Suppose that 〈Gβ〉β6α is the Ulm resolution of a p-group G. Then
for β < γ 6 α we have r(Gβ)− r(Gγ) =

∑
δ∈[β,γ) UG(δ). Thus, if α = ε+ n where

ε is limit, then for all k < n, r(Gε+k) = UG(ε+ k) + · · ·+ UG(ε+ n− 1). If β < ε
then there are infinitely many δ ∈ [β, ε) such that UG(δ) > 0 and so r(Gβ) = ω.
(See Barwise and Eklof [BE71].)

We, in fact, have a converse for Lemma 5.6.

Lemma 5.8 (ACA0). Suppose that G,G′ are ranked p-groups (with resolutions
〈Gβ〉β6α, 〈G′

β′〉β′6α′
). Suppose that there is an embedding h : α→ α′ such that for

all β < α, r(Gβ) 6 r(G′
h(β)). Then G 4 G′.

Proof. See [BE71, Corollary 5.4] and [Frib]. �

As before, we need to see how ranks correspond to direct sums.

Lemma 5.9 (RCA0). Suppose that 〈Hn〉 is a sequence of reduced p-groups. Then
G =

⊕
nHn is reduced. If 〈Gβ〉β6α is the Ulm resolution for G, then for all n ∈ N,

〈Gβ ∩Hn〉β6α is an Ulm resolution of Hn (we may need to trim the end of the
sequence though). �

Proposition 5.10 (ACA0). RK(R-p-G) implies ∃-EMB(R-p-G).

Proof. This is similar to what we did before. Let 〈Hn〉 be a sequence of reduced
p-groups. Let G =

⊕
nHn and get a resolution of G; we get the induced resolutions

of the Hns uniformly. Again comparability of the ordinals in question is equivalent
to their position in the length of G; we can check ranks of tail-ends to see if the
condition in lemmas 5.6, 5.8 holds. �

Similarly,

Proposition 5.11 (ACA0). RK(R-p-G) implies ∃-ISO(R-p-G).

Proof. Note that we need ACA0 to check not only equality of lengths but also of
the Ulm function along the length. �

5.2. Reductions.
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5.2.1. Ordinals to groups.

Definition 5.12. Given a tree T we let G(T ) be the (Abelian) group generated
freely by the elements of T , modulo the relations 〈〉 = 0 and pτ = σ whenever τ is
an immediate successor of σ on T . Given an ordinal α we let G(α) = G(T (α)).

Despite the presentation as generators / relations, the group G(T ) is computable
from T . For more information on the reduction G(T ), as for example how to
compute its Ulm Sequence, see [Bar95].

The following is proved in [Frib]:

Lemma 5.13 (RCA0). For any tree T , T is well-founded iff G(T ) is reduced.

Also,

Lemma 5.14 (RCA0). For any ordinal α, G(α) is a weakly ranked p-group of length
α.

As usual, in ACA0 we can also prove that G(α) is ranked.

Proof, following [Frib]. Given β < α, let Gβ be the set of elements of G(α) of the
form n0σ0 + · · · + nkσk such that for all i ≤ k, the last element of σi is at least
β. We claim that 〈Gβ : β < α〉 is an Ulm resolution for G(α). Clearly for λ
limit Gλ = ∩β<λGβ . Now consider x = n0σ0 + · · · + nkσk. If x ∈ Gβ+1, then
y = n0σ0

_β + · · · + nkσk
_β ∈ Gβ and py = x. Conversely, if x 6∈ Gβ+1, then

for some σi, the last element of σi is at most β. So, there is no y ∈ Gβ such that
py = x. Thus 〈Gβ〉β6α is indeed an Ulm resolution of G(α). It is also easy to find
the rank of any element. �

Lemma 5.15 (RCA0). Given ordinals α and β we have that α ∼= β ↔ G(α) ∼= G(β).

Proof. Clearly if α ∼= β then G(α) ∼= G(β). Suppose now that G(α) ∼= G(β). By
the previous lemma G(α) and G(β) are both weakly ranked and have lengths α and
β. By Lemma 5.4, we have that α ∼= β. �

Corollary 5.16 (RCA0). ∃-ISO(R-p-G) implies ATR0. Therefore, RK(R-p-G) and
∃-ISO(R-p-G) are equivalent to ATR0.

Lemma 5.17 (ACA0). Given ordinals α and β we have that α 4 β ↔ G(α) 4 G(β).

Proof. If G(α) 4 G(β) then by Lemma 5.8, α 4 β. If α 4 β then we can directly
construct an embedding of G(α) into G(β). �

Corollary 5.18 (ACA0). ∃-EMB(R-p-G) implies ATR0.

5.2.2. Groups to trees. Given a p-group G, we let T (G) (essentially) consist of the
elements of G: we declare that 0G corresponds to 〈〉, and x ∈ G of order pn is
identified with the sequence 〈pn−1x, . . . , px, x〉. It is immediate that G is reduced
iff T (G) is well-founded; if G is ranked then so is T (G) (the rank of every nonzero
x on T (G) is its rank in G, the rank of the tree is the length of G). As we noticed,
however, because of the intricate structure of the equimorphism classes of reduced
p-groups, this operation can preserve neither non-isomorphism nor non-embedding.
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5.3. Proofs of arithmetic comprehension.

Proposition 5.19 (RCA0). ∃-EMB(R-p-G) implies ACA0, and hence it is equivalent
to ATR0.

Proof. Let ϕ be a Σ0
1 formula. For each n, construct a p-group Gn by letting

Gn = Zp if ¬ϕ(n) and Gn = Zp2 if ϕ(n). Then {n : ϕ(n)} = {n : Zp2 4 Gn}. �

We next show that WQO(R-p-G) implies ACA0. As before we go through Σ0
2-

induction. Let T and the sequence 〈Tn〉 be as in subsection 3.3.1, and let Gn =
G(Tn). Again assuming that 0′ does not exist, by the results of Friedman quoted
earlier (Lemma 5.13), each Gn is reduced.

Suppose n < m and that g : Gn → Gm is an embedding. Suppose that σ ∈ Tn

is a true string. Considered as an element of Gn, we write g(σ) in normal form as∑
i<k miσi, where σi ∈ Tm and mi ∈ Zp. We claim that every σi is true. Suppose

that some σj is not true; let r be the height of the (finite) tree Tm[σj ]. By Σ0
2-

induction, there is some true τ ⊃ σ on Tn which is sufficiently long so that psτ = σ,
where s > r−|σj |. Then psg(τ) = g(σ). Writing g(τ) in normal form as

∑
i<k′ niτi

and multiplying by ps, we get

g(σ) =
∑
i<k

mi σi =
∑
i<k′

ni τ
′
i ,

where τ ′i is τi with the last s bits chopped off. Thus the set of the τ ′is equals the
set of the σis, which shows that some τi is an extension of σj of length > r. This
is impossible.

By the same kind of calculation, we see that if σ0 ( σ1 ∈ Tn are true, then each
τ appearing in the normal form of g(σ0) is properly extended by some τ ′ which
appears in g(σ1). This shows that if σ ∈ Tn is true then via g we can obtain some
true τ ∈ Tm of length at least |σ|. This allows us to iterate and get 0′.

Next, we see that Σ0
2-induction follows from WQO(R-p-G). This follows the

proof of Lemma 3.32. As for Boolean algebras, all we really need is that in RCA0:
(1) If α, β are ordinals and α 4 β then G(α) 4 G(β).
(2) For any ordinal α, G(α+ 1) does not embed into G(α).

As for Boolean algebras (subsection 4.4.1), the first follows from a direct construc-
tion, and the second follows from an analogue of fact 4.4.1 (with the same proof).
Thus:

Proposition 5.20 (RCA0). WQO(R-p-G) implies ACA0.

6. Scattered and compact spaces

In this section we introduce the class of very countable topological spaces. Un-
fortunately, the well founded part (the collection of scattered spaces) of our class
is not very-well behaved. We thus leave open the analysis of the class of scattered
spaces and concentrate on compact spaces, which turn out to be metrizable. This
allows us to refer to a rich body of research on metric spaces in reverse mathematics.

Remark 6.1. We do not give a reduction from topological spaces to other classes.
In fact, we do not know whether such computable embeddings exist. There are
Turing reductions from compact spaces to well-founded trees and ordinals which
preserve embedding, non-embedding, isomorphism and non-isomorphism; however,
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they make use of a particular listing of the points of the space or of its basic open
sets.

The most natural reduction from compact spaces is to the class of superatomic
Boolean algebras - Stone duality. All facts about Stone duality can, in fact, be
proved in ATR0 (including the fact that the corresponding Boolean algebra is count-
able); however, this is not a continuous operation, so we do not consider it in this
paper.

6.1. Definitions.

Definition 6.2. A very countable topological space is a set X ⊂ N, equipped with
a (countable) collection of subsets OX which are a basis for a topology on X (i.e.,
for every finite subset F of OX and every x ∈

⋂
F , there exists U ∈ OX such that

x ∈ U ⊆
⋂
F ).

We assume all usual topological notions (see, for example, [Mun00]). So, for
instance, V ⊆ X is an open set (or anOX-open set) if ∀x ∈ V ∃U ∈ OX(x ∈ V ⊆ U).
Two topologies OX and O′

X on a same set X are equivalent if the OX -opens sets are
exactly the O′

X -open sets. Note that, up to equivalence, we can assume that OX is
always closed under finite intersections, since closing up under finite intersections
is a computable operation.

As isomorphism we use homeomorphisms. A one-to-one map f : X → Y is bi-
continuous if it is continuous, and its inverse is continuous as well (for formalization
in RCA0, we do not assume that a map necessarily has a range; the notion of
continuity still makes sense, because the range is definable.) An embedding of a
space X into a space Y is a one-to-one, bi-continuous function. An embedding
f : X → Y is a homeomorphism of X onto its perhaps non-existent range. We note
that the standard definition of the subspace topology makes sense in this setting.

All spaces we deal with are very countable, and so we drop this prefix. Also,
unless otherwise stated, all spaces are Hausdorff. (That is, for every x, y ∈ X, there
exists disjoint U, V ∈ OX such that x ∈ U , y ∈ V .) In Hausdorff spaces we can use
familiar notions such as converging sequences and limit points. So, when we say
space we mean very countable Hausdorff topological space.

We note that very countable topological spaces are just countable, second count-
able spaces. The reader familiar with these concepts should note that when a space
is countable, the notions of first countable (N1) and second countable (N2) coincide.
We deal with very countable topological spaces because they are the ones that can
be easily encoded in Second Order Arithmetic as a set of natural numbers (rather
than a class of reals).

Example (RCA0). Let L be a linear ordering. There is a natural topology on L,
the order topology , which makes L a very countable space: OL is the set of open
intervals of L, defined by endpoints in A ∪ {−∞,∞}.

We observe that if B is a sub-ordering of A, then the order topology on B is
equivalent to the subspace topology.

A “well-founded” topological space is called scattered.

Definition 6.3. Let X be a space. We say that y ∈ Y is isolated if {y} ∈ OY . A
set Y ⊂ X is dense in itself if as a subspace, Y has no isolated points. A space is
scattered if it contains no subset which is dense in itself.
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6.2. Metrizable spaces. A metric space consists of a set M ⊂ N and a sequence
〈r(a, b)〉a,b∈M of real numbers (real numbers in the sense of [Sim99, Chapter II],
quickly converging Cauchy sequences of rationals,) satisfying the classical properties
of a metric.

Recall that a metric on a set M , induces a topology on it: OM = {Bx,r :
x ∈ M, r ∈ Q}. (Of course, we can then close OM under finite intersections.) A
topological space is metrizable if there is a metric on X consistent with its topology.
That is, a metric such that the topology it induces is equivalent to the topology on
X.

Example (RCA0). If α is an ordinal, then there is a canonical embedding of α into
the interval (0, 1) - see [FH91]. This embedding is bi-continuous with respect to
the order topology on α, which shows that α, as a topological space, is metrizable.

A topological space X is normal if it is Hausdorff, and for every disjoint closed
sets C,D ⊂ X, there exists disjoint open sets U and V such that C ⊆ U and
D ⊆ V . X is regular if the condition above holds when C is a singleton.

Lemma 6.4. A space X is regular iff for all x ∈ X and all open neighborhoods U
of x, there is some neighborhood V of X such that V̄ ⊂ U .

The proof in [Mun00, Theorem 31.1] goes through in ACA0.
We note that being an open subset of X is an arithmetic property. Similarly,

the relation x ∈ Ā is arithmetic, as the closure of A ⊂ X is the collection of points
which do not have basic open neighborhoods disjoint from A. As a corollary of the
previous lemma, we notice that regularity is arithmetically definable, as a space X
is regular iff for all x ∈ X and all basic open neighborhoods U of x there is some
basic neighborhood V of x such that V̄ ⊂ U . Further, we note that if X is regular,
then the function taking some x ∈ X and a basic neighborhood U of x to the least
(according to some fixed enumeration) basic neighborhood V of x such that V̄ ⊂ U
is arithmetically definable. It is not “topological” as it depends on the enumeration
of OX - so does not respect homeomorphism. Of course, we view the structure X
as equipped with some enumeration of OX , so the function is indeed definable from
X.

Similarly, the function taking some closed A ⊂ X and x ∈ X \ A to the least
basic neighborhood of x disjoint from B is arithmetically definable.

Lemma 6.5 (ACA0). Every regular space is normal.

Proof. Essentially, the proof is the standard one, given for example in [Mun00,
Theorem 32.1]. All we need is to note that when, for each x ∈ A, we choose a
basic open neighborhood of x whose closure is disjoint from B, we can do that
arithmetically, and so the resulting cover exists. �

The proof in fact yields more: if X is regular, then there is an arithmetically
definable function which takes disjoint, closed A,B ⊂ X to a pair of open subsets
of X which separate A and B. Or, equivalently, given some closed A and open
B ⊃ A we can get in an arithmetical way some open C ⊃ A such that C̄ ⊂ B.

We need to refine even further. Let X be a normal space. Fix some enumeration
〈Un〉n∈N of OX . Suppose that A ⊂ X is open. An open presentation of A is a set
N ⊂ N such that A = ∪n∈NUn. A closed presentation of a closed set B ⊂ X is an
open presentation of X \ B. Among all open presentations of some open A ⊂ X
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there is one maximal; it is of course {n : Un ⊂ A}. Given some open set A ⊂ X,
ACA0 ensures that some presentation of A, in fact its maximal one, exists.

ACA0 ensures the existence of sets such as {(x, n) : x ∈ Ūn}, {(n,m) : Ūn ⊂
Um} and functions such as the one taking n to the maximal closed presentation
of Ūn and (n,m) to the maximal closed presentation of Un ∩ Um. When we fix
these sets and functions as oracle, we can, by the proof of Lemma 6.5, effectively
construct, given some closed presentations of disjoint A,B ⊂ X, open sets U, V
separating A and B; further, we can effectively construct open presentations of U
and V . This allows us to iterate the process of finding separators, which shows that
the proof of Urysohn’s Lemma goes through in ACA0:

Lemma 6.6 (ACA0). (Urysohn’s Lemma [Mun00, Theorem 33.1]) If X is a normal
space and A,B are disjoint closed subsets of X, then there is some continuous
f : X → [0, 1] such that A ⊂ f−1{0} and B ⊂ f−1{1}.
Remark 6.7. We may assume that range f ⊂ Q. For given f , we can use the stan-
dard “forth” argument to get an order-preserving, hence continuous, g : range f →
Q; ACA0 ensures that <� range f exists.

We also remark that f is obtained effectively given the discussed oracle, uniformly
in (closed presentations of) A and B. This uniformity allows us to see that if X is
regular then there is a countable collection of functions f : X → [0, 1] such that for
any x ∈ X and any neighborhood U of x, some f in the collection is positive at x
and vanishes outside U . The rest of the proof of the Urysohn metrization theorem
goes through in ACA0:

Theorem 6.8 (ACA0). (Urysohn metrization theorem [Mun00, Theorem 34.1]) Let
X be a space. The following are equivalent.

(1) X is regular.
(2) X is normal.
(3) X is metrizable.

Moreover, given a sequence of regular topological spaces, there is a sequence of
metrics for them.

Example (ACA0). The order topology of every linear ordering is regular and hence
metrizable.

6.3. Compact spaces.

Definition 6.9. A space X is compact if every open covering of X which consists
of basic open sets, contains a finite sub-covering. That is, if for every sequence of
basic open sets 〈Un〉n∈N such that X ⊆

⋃
n∈N Un, there exists a finite F ⊂ N such

that X ⊆
⋃

n∈F Un.

We note that when working in ZFC, the definition of compactness requires con-
sideration of uncountable open coverings. But if a space is countable, then every
open covering has a countable sub-covering. Further, if a space is very countable,
then from an arbitrary countable open covering, we can find a refinement which is
both countable and consists of basic open sets. So, when dealing with very count-
able spaces, the definition of compactness given above is equivalent to the usual
one.

Definition 6.10. A space X is sequentially compact if every infinite sequence of
elements of X has a converging subsequence.
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The trick of having every infinite Σ0
1 class containing an infinite set yields the

following.

Lemma 6.11 (RCA0). A space X is sequentially compact iff every infinite subset
of X has a limit point in X.

The standard proofs of equivalence, formalized, yield the following:

Lemma 6.12 (RCA0). Every sequentially compact space is compact.

Lemma 6.13 (ACA0). Every compact space is sequentially compact.

We observe that when working in ZFC with countable, compact, Hausdorff
spaces, the condition of very countability comes for free.

Observation. (ZFC) Every countable, compact, Hausdroff topological space is sec-
ond countable, and hence very countable.

Proof. Suppose that X is not second countable. Then, it is not first countable
either. That means that there exists an x ∈ X which has no countable basis of
open neighborhoods, i.e., such that for every decreasing sequence 〈Un〉n∈N of open
neighborhoods of x, there exists an open neighborhood V of x such that for no n,
Un ⊆ V .

Let 〈xn〉n∈ω be an enumeration of X r {x}. We will construct a subsequence
〈xnk

〉k∈ω with no converging subsequence, contradicting the compactness of X.
First, using the fact that X is Hausdorff construct two sequences of open sets
〈Un〉n∈ω and 〈Vn〉n∈ω such that for every n, Un and Vn are disjoint neighborhoods
of x and xn respectively, Un+1 ( Un. Now there is an open set W containing x such
that for no n, Un ⊆ W . Define 〈xnk

〉k∈ω as follows: Let xn0 ∈ U0 \W ; given xnk
,

let m > nk be such that xnk
6∈ Um and let xnk+1 ∈ Um rW . Now, x is not a limit

of any subsequence of 〈xnk
〉k∈ω because W is a neighborhood of x which contains

no point in that sequence. Also, any point xn is not a limit of any subsequence
of 〈xnk

〉k∈ω because Vn is a neighborhood of xn which contains no point xnk
for

nk > n. �

Observation. The above proof can be carried through in a subsystem of second
order arithmetic with sufficiently much choice, provided that it is meaningful: that
is, when the given space is a definable class.

We now see that compact spaces are nice and well-founded. For the first, the
standard proof will do.

Lemma 6.14 (ACA0). Every compact space is normal.

Lemma 6.15 (ACA0). Every compact space is scattered.

Proof. Suppose that X is a topological space and suppose that Y ⊂ X is dense in
itself. We will construct a sequence 〈yn〉n∈ω ⊆ Y with no convergent subsequence.
Let 〈xn〉n∈ω be an enumeration of X. Let y0 be such that there exits disjoint
basic open sets U0 and V0 around y0 and x0 respectively. Suppose we have already
defined yn and Un, and yn ∈ Un. Let yn+1 ∈ Un be any point different from xn+1,
which exists because Y is dense in itself. Let Un+1 ⊆ Un and Vn+1 be basic open
neighborhoods of yn+1 and xn+1 respectively. Now, since for every n, xn ∈ Vn and
∀m ≥ n (ym 6∈ Vn), 〈yn〉 has no convergent subsequence. �

We shall need to following basic facts:
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(1) If X is compact and Y ⊂ X is closed, then Y is compact (in the subspace
topology).

(2) If Y ⊂ X is compact and X is Hausdorff then Y is closed in X.
Standard proof go through in ACA0, so we get (remembering that all spaces are

Hausdorff):

Fact (ACA0). If X is compact and f : X → Y is one-to-one and continuous, then f
is closed (so f is an embedding).

6.3.1. Spaces of well-orderings. In the following, by complete spaces we of course
mean perhaps uncountable, definable spaces.

Lemma 6.16 (ATR0). [FH91] Every countable, closed, totally bounded subset of a
complete separable metric space is homeomorphic to the canonical metric space of
some well-ordered set.

Lemma 6.17 (ACA0). Let X be a topological space. The following are equivalent.
(1) X is compact.
(2) X is homeomorphic to a countable, closed, totally bounded subset of a com-

plete, separable metric space.

Proof. If X is compact, then we can consider it as a metric space. We let X̄ be the
completion of X (see [Sim99, Section II.5]). This is a complete, separable metric
space. Since X is compact, it is a closed in X̄ and is also totally bounded.

For the other direction see [Mun00, Theorem 45.1]. �

Thus every compact space is homeomorphic to the order topology of some ordi-
nal.

Lemma 6.18 (RCA0). Let α be an ordinal. Then α+ 1 is a compact space.

This can be derived in ACA0 from theorems 2.2 and 2.3 of [FH91].

Proof. Let 〈Un〉 be a sequence of basic open sets which cover α + 1. The point
is that from n we can get the pair (an, bn) defining Un. Thus, if 〈Un〉 does not
have a finite sub-cover, we can inductively choose a descending sequence 〈ck〉 in
α as follows: together with 〈ck〉, we find a sequence 〈Unk

〉 such that for each k,
(ck,∞) ⊂ ∪l6kUnl

. Given ck, we let Unk+1 be some open set on the list which
contains ck; and we let ck+1 = ank+1 . �

We can now define the reduction from ordinals to compact spaces:

Definition 6.19. Let α be an ordinal and n ∈ N. The space C(α, n) is the
topological space given by the order topology on ωα ·n+1. We let C(α) = C(α, 1).

6.4. Ranked spaces. The Cantor-Bendixon derivative X ′ of a space X is the
collection of limit points of X (i.e., X with its isolated points removed.) Let α
be an ordinal; a partial Cantor-Bendixon resolution of X along α is a sequence
of subspaces 〈Xβ〉β<α such that X0 = X, if β + 1 < α then Xβ+1 = X ′

β , and
for limit λ < α, Xλ =

⋂
β<λXβ . A Cantor-Bendixon resolution of X is a partial

Cantor-Bendixon resolution of X along some ordinal α + 1 such that Xα = ∅ but
for β < α, Xβ 6= ∅. If there is a resolution of X along α+ 1 then we let rk(X) = α
(which is also called the length of X). If α is a successor ordinal, then the degree of
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X is the number of points in Xα−1; if α is a limit ordinal we let deg(X) = 0. We
define inv(X) = (rk(X),deg(X)). We also define an associated rank function; for
x ∈ X, we let rk(x) be the unique β < α such that x ∈ Xβ rXβ+1.

Definition 6.20. A space X is ranked if it has a Cantor-Bendixon resolution and
the associated rank function exists.

As usual, in RCA0 we can show that any two rankings of a ranked space X are
isomorphic. See, for example, 4.16.

Lemma 6.21 (ATR0). Every scattered space is ranked.

Proof. Friedman [Fria] proved this result for countable metric spaces. The same
proof works for topological spaces. �

Lemma 6.22 (RCA0). Every ranked space is scattered.

Proof. Suppose that Y ⊂ X is dense in itself. Let 〈Xβ〉β<α be any partial resolution
of X. Then by Π0

1-transfinite induction on β < α we can show that Y ⊂ Xβ for
every β < α. Thus 〈Xβ〉 cannot be a full resolution of X. �

Lemma 6.23 (RCA0). Let α be and ordinal and n ∈ N. Then C(α, n) is scattered,
indeed it is ranked, and its invariant is (α+ 1, n).

Of course, in RCA0, C(α, n) is compact.

Proof. Let X = C(α, n). Given x =
∑

i<k ω
βi · ni ∈ X, we let rk(x) = min{βi : i <

k}. For β 6 α+1, let Xβ = {x ∈ X : rk(x) > β}. We claim that 〈Xβ : β 6 α+1〉 is
a Cantor-Bendixon resolution of X and rk is a rank function for X. It is clear that
when γ is a limit ordinal, Xγ =

⋂
δ<γ Xδ. We then have to prove that for every

γ 6 α, Xγ+1 = X ′
γ . This follows from the fact that Xγ = {ωγ · δ : δ 6 ωα′ · n},

and Xγ+1 = {ωγ · δ : δ 6 ωα′ · n and δ is a limit ordinal}, where α′ is such that
γ+α′ = α (note that we do not assume that we can regard α′ as an initial segment
of α).

It follows that rk(X) = α+1 and sinceXα = {ωα·i : 0 < i ≤ n}, deg(X) = n. �

The importance of the Cantor-Bendixon invariant is that it classifies compact
spaces up to isomorphism, and is also compatible with the embedding relation.
For the case of countable metric spaces, Friedman essentially proved the following
lemma.

Lemma 6.24 (ACA0). ([Fria]) Let X and Y be ranked countable metric spaces with
invariants 〈α, n〉 and 〈β,m〉 respectively. Then, there is an one-to-one, continuous
function f : X → Y if and only if 〈α, n〉 6lex 〈β,m〉.

Recalling fact 6.3, we get:

Corollary 6.25 (ACA0). Let X and Y be ranked compact spaces. Then X 4 Y iff
inv(X) 6lex inv(Y ).

As in earlier sections, we will want to get uniform rankings of a sequence of
spaces.

Lemma 6.26 (ACA0). Assume that every compact space is ranked. Let 〈Xn〉 be a
sequence of compact spaces. Then there is an ordinal α and a sequence of functions
fn : Xn → α such that each fn is a rank function for Xn.
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Proof. Let Y be the disjoint union of the Xns and let X be a simple version of
the 1-point compactification of Y : The basic open subsets of X are the basic open
subsets of Y , together with the sets X \Xn for n ∈ N. It is straightforward to check
that X is compact and that each Xn is an open subset of X. Thus, a ranking of X
gives uniform rankings of all the Xns (see Friedman, [Fria], to see that if A ⊂ B is
open in B and 〈Bγ〉 is a resolution of B, then 〈A ∩Bγ〉 is a resolution of A.) �

Corollary 6.27 (ACA0). RK(CCS) implies ∃-EMB(CCS), COMP(CCS) and WQO(CCS).

Corollary 6.28 (ATR0). Every compact space X is homeomorphic to C(α, n),
where (α+ 1, n) = inv(X).

Proof. By lemmas 6.16 and 6.17, X is homeomorphic to the canonical metric space
of some ordinal β. (Note that β has to be a successor ordinal, because otherwise
X would not be compact.) Using the Cantor normal form, write β as:

β = ωα0 · n0 + ωα1 · n1 + ...+ ωαk · nk,

where α0 > α1 > ... > αk. We can write β as

(ωα0 · n0 + 1) + (ωα1 · n1 + 1) + ...+ (ωαk′ · n′k′ + 1).

It is not hard to prove that β is homeomorphic to

(ωαk′ · n′k′ + 1) + ...+ (ωα1 · n1 + 1) + (ωα0 · n0 + 1),

which, as an ordinal, is isomorphic to ωα0 · n0 + 1. Finally, (α+ 1, n) = inv(X) =
inv(ωα0 · n0 + 1) = (α0 + 1, n0), so α0 = α and n0 = n. �

Corollary 6.29 (ATR0). Let X an Y be compact spaces with invariants 〈α, n〉
and 〈β,m〉 respectively. Then, X and Y are homeomorphic if and only if 〈α, n〉 =
〈β,m〉.

Corollary 6.30. ATR0 implies the statements ∃-ISO(CCS) and EQU=ISO(CCS).

6.5. Reversals. To get reversals, we need to apply some of the aforementioned
results in weaker systems. The next lemma follows from Lemma 6.23.

Lemma 6.31 (RCA0). Let α and β be ordinals. Then α ∼= β iff C(α) and C(β)
are homeomorphic.

Corollary 6.32 (RCA0). ∃-ISO(CCS) is equivalent to ATR0.

The next lemma follows from Lemma 6.23 and corollary 6.25.

Lemma 6.33 (ACA0). Let α and β be ordinals. Then, C(α) embeds in C(β) if and
only if α 4 β.

Corollary 6.34 (ACA0). Each of ∃-EMB(CCS), COMP(CCS), EQU=ISO(CCS),
and WQO(CCS), is equivalent to ATR0.

To get the EW -reduction, we first observe the following. Suppose that L is an
ill-founded linear ordering; let 〈an〉 be an infinite descending sequence in L. We
can construct a copy of 1 + Q inside ωL by considering all elements of the form
ωa1n1 +ωa2n2 + . . . ωaknk for k, nl ∈ N. Thus ωL is not scattered. As a conclusion,
we see that for all linear orderings L, if L is a well-ordering then C(L) is compact,
and if L is ill-founded, then C(L) is not scattered, and so not compact. All this
can be done in RCA0.
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6.6. Proofs of arithmetic comprehension.

Proposition 6.35 (RCA0). ∃-EMB(CCS) implies ACA0.

Proof. See Proposition 3.28 or 5.19. �

Proposition 6.36 (RCA0). RK(CCS) implies ACA0.

Proof. This is immediate, given Lemma 6.26. We construct a sequence 〈Xn〉 of
compact spaces and points xn ∈ Xn, such that if n ∈ 0′ then xn is a limit point in
Xn, and if n /∈ 0′ then Xn = {xn}. Then from a uniform ranking of the Xns we
can uniformly get the rank of each xn (in Xn) and thus get 0′. �

Proposition 6.37 (RCA0). COMP(CCS) implies ACA0.

Proof. We again show that 0′ exists by showing how to enumerate infinitely many
true stages.

As in the proof of proposition 4.45, we construct a sequence of ordinals 〈αs〉s∈N
such that if s is a true stage, then αs is a canonical copy of ω + 1, and otherwise
αs is a copy of some n < ω (where we can tell which is the last element and what
is the place of the other elements). We let α =

∑
s∈N αs.

It is easy to see that α is an ordinal (from a decreasing sequence in α we can
construct either a decreasing sequence of s ∈ N or a decreasing sequence in some
αs). The limit points of α are exactly those last elements of αs where s is a true
stage.

Let X = α · 2 + 1, with the order topology. Let Y be a canonical copy of ω2 + 1.
There cannot be an embedding of X into Y . This is because for any embedding,
the image of a limit point is a limit point and the image of a limit of limit points
is also a limit of limit points; of which X has two but Y only one.

By COMP(CCS), there is an embedding g of Y into X. Write X = α0 + α1 + 1
(αi is a copy of α), and let A be the class of limit points of X. For some i < 2,
Bi = A∩g−1αi is infinite. For such i, g � Bi allows us to enumerate infinitely many
limit points of α, and so infinitely many true stages. �

Proposition 6.38 (RCA0). EQU=ISO(CCS) implies ATR0.

Proof. Let α and β be ordinals; we will prove that they are comparable. Note that
δ = α + β + α + ... and γ = β + α + β + α + ... are equimorphic via continuous
embeddings. So, ωδ +1 and ωγ +1 are also equimorphic by continuous embeddings,
and hence equimorphic as compact spaces. By EQU=ISO(CCS) we have that they
are homeomorphic. Then, by Lemma 6.31, δ and γ are isomorphic. It follows that
α and β are comparable. �

Proposition 6.39 (RCA0). WQO(CCS) implies ACA0.

Proof. As usual, we first work over RCA2.
We define βn

t and αn in a similar way to what is done in the proof of proposition
4.45; in this case, βn

t = ω+ 1 exactly when t is the kth true stage for some k > 2n;
αn =

∑
t β

n
t . Let Xn = αn + 1 with the order topology; every Xn is compact.

Suppose that n < m and that f is an embedding of Xn into Xm.
Let tk be the (2n+k)th true stage. For all t, let at = maxβn

t and let bt = maxβm
t .

For all k > 0, atk
is a limit point of Xn. Consider f(at1) and f(at2). At least one of

them is in αm (that is, it is not the last limit point we added to make Xm compact),
and in fact, it has to be btk

for some k > 2, say, for example, k = 7. From t7 we
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can find t3, t4, . . . , t6. From f(at1), f(at2), . . . , f(at7), at least six are in αm and are
btk

s for distinct k > 2; thus at least one must be btk
for k > 7. Now the process

repeats to get all tk.
The rest (getting IΣ2 from WQO(CCS)) is identical to the proof in all the pre-

vious sections. That is, we verify in RCA0 that if α 4 β then C(α) 4 C(β), and
that the analog of fact 4.4.1 holds for compact spaces, and so that C(α + 1) does
not embed into C(α). �

7. Up to equimorphism, hyperarithmetic is recursive

In this section we prove the theorems in subsection 1.6. As we mentioned, the
first two are not difficult. They rely on the fact, already mentioned in [AK00]
for Boolean algebras and groups, that if X is a hyperarithmetic structure in the
well-founded part of any of the classes we considered, its rank is computable. This
is simple; we give a general proof: for each class X we considered, we showed
that ATR0 suffices to prove that each well-founded structure is ranked. By [Sim99,
Corollary VII.2.12], we know that there is a β-model M of ATR0 which consists
of hyper-low sets. Each hyperarithmetic structure X in X is in M ; a rank for X,
in the sense of M , exists in M ; and since M is Σ1

1-correct, this rank is really an
ordinal.

Since the invariant of a compact space determines its isomorphism type, we get
Theorem 1.10 immediately. This also yields the result 1.8 for superatomic Boolean
algebras mentioned in [AK00]. We also know that the rank of a well-founded
tree determines its equimorphism type, so we get that every hyperarithmetic well-
founded tree is equimorphic with a recursive one.

Theorem 1.9 follows, because we know that if B is a Boolean algebra which is not
superatomic, then it contains a copy of the atomless Boolean algebra, into which
every countable Boolean algebra can be embedded. And if T is an ill-founded tree,
then every countable tree can be embedded into T .

We turn to the third theorem.

Proof of Theorem 1.11: Let G be a hyperarithmetic p-group. If G is reduced, then
(see [AK00, Theorem 8.17]) it has some length α + n < ωCK

1 , where α is a limit
ordinal and n < ω. By [Bar95, Proposition 4.3] and [BE71, Theorem 4.1], there is
a recursive group H of length α + n such that for all β < α, UH(β) = ∞ and for
all m 6 n, UH(α+m) = UG(α+m). From Lemma 5.8 and Remark 5.7 we obtain
that H and G are equimorphic.

Suppose now that G is not reduced. It can be written as a sum Gd + Gr,
where Gd is divisible and Gr is reduced (see [Kap69, Theorem 3]). Every countable
divisible p-group is of the form Z(p∞)m, for some m 6 ω (see [Kap69, Theorem
4]), and hence has a recursive copy. Again by [AK00, Theorem 8.17], Gr has some
length α 6 ωCK

1 . If Gr has length α < ωCK
1 , by the previous argument it is

equimorphic to a recursive group, and hence G = Gd + Gr is too. Suppose now
that α = ωCK

1 . We claim that then, Gd
∼= Z(p∞)ω, and hence G is equimorphic to

Z(p∞)ω. (Note that any countable p-group embeds in Z(p∞)ω.) Suppose instead,
toward a contradiction, that Gd

∼= Z(p∞)n for some n < ω. Note that from
Remark 5.7 we get that for all β < ωCK

1 , r(pβG) = ∞. Consider the partial
ordering P whose elements are n+1 tuples of independent elements of G, and such
that 〈x0, . . . , xn〉 6 〈x′0, . . . , x′n〉 iff there exists some k ∈ N such that for every
i 6 n pkxi = x′i. We claim that P is well founded and has rank 6 ωCK

1 . This
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will be a contradiction because P is hyperarithmetic. We prove this by defining a
rank function on P . Given 〈x0, . . . , xn〉 ∈ T , first write each xi as yi + zi where
yi ∈ Gr and zi ∈ Gd, and then let g(〈x0, . . . , xn〉) = min{rkGr (yi) : i 6 n},
where rkGr

(0) = ∞. We claim that g : P → ωCK
1 is a rank function. First, we

observe that for no x̄ ∈ P , g(x̄) = ∞: If g(〈x0, . . . , xn〉) = 0 then for all i 6 n,
yi = 0, and hence xi = zi ∈ Gd. but this cannot be the case because, since
r(Gd) = n, {x0, . . . , xn} cannot be an independent set. Second, we observe that if
〈x0, . . . , xn〉 < 〈x′0, . . . , x′n〉, then g(〈x0, . . . , xn〉) < g(〈x′0, . . . , x′n〉): This is because
if g(〈x0, . . . , xn〉) = rkGr

(xi0), then g(〈x′0, . . . , x′n〉) 6 rkGr
(x′i0) < rkGr

(xi0). Last,
we show that if β < g(〈x0, . . . , xn〉), there exists some 〈x′0, . . . , x′n〉 < 〈x0, . . . , xn〉
such that g(〈x′0, . . . , x′n〉) > β. By definition of rkGr , for each i 6 n there exists
x′i such that x′ip = xi and rkGr (x

′
i) > β. Clearly 〈x′0, . . . , x′n〉 < 〈x0, . . . , xn〉 and

g(〈x′0, . . . , x′n〉) > β. We still have to prove that 〈x′0, . . . , x′n〉 ∈ P . Suppose that∑
i6nmix

′
i = 0. Then

∑
i6nmixi = p

∑
i6nmix

′
i = 0, and hence mixi = 0 for

every i. This implies that p|mi for every i. Then
∑

i6n(mi/p)xi =
∑

i6nmix
′
i = 0,

and hence mix
′
i = (mi/p)xi = 0 for every i. We have proved that 〈x′0, . . . , x′n〉 is

an independent set and hence belongs to P . The fact that P has rank ωCK
1 follows

from the fact that for all β < ωCK
1 , r(pβG) = ∞. �
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[Kap69] Irving Kaplansky. Infinite abelian groups. Revised edition. The University of Michigan

Press, Ann Arbor, Mich., 1969.
[Kop89] Sabine Koppelberg. Handbook of Boolean algebras. Vol. 1. North-Holland Publishing

Co., Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet.

[Mon05a] Antonio Montalbán. Beyond the arithmetic. PhD thesis, Cornell University, Ithaca,

New York, 2005.
[Mon05b] Antonio Montalbán. Up to equimorphism, hyperarithmetic is recursive. Journal of Sym-

bolic Logic, 2005. To appear.
[Mun00] James R. Munkres. Topology. Prentice-Hall Inc., Englewood Cliffs, N.J., second edition,

2000.
[Sac90] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Springer-

Verlag, Berlin, 1990.
[Sel91] V. L. Selivanov. The fine hierarchy and definable index sets. Algebra i Logika, 30(6):705–

725, 771, 1991.
[Sho] Richard A. Shore. Invariants, boolean algebras and ACA+

0 . To appear in Trans. Amer.

Math. Soc.
[Sho93] Richard A. Shore. On the strength of Fräıssé’s conjecture. In Logical methods (Ithaca,
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