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CHAPTER 1

Introduction

What does it take to perform a certain construction? In computability theory,
this question is the basis of a long-term programme which seeks to understand the
relationship between dynamic properties of sets and their algorithmic complexity.
Our main thesis in this monograph is that where the computably enumerable (c.e.)
Turing degrees are concerned, a degree can compute complicated objects if and only
if some functions in the degree are difficult to approximate. Computability-theoretic
tools allow us to quantify precisely what we mean by “difficult to approximate”.
More specifically, we use a classification of AY functions defined by Ershov in [39,

, 41]. While Ershov’s hierarchy of complexity is orthogonal to complexity as
measured by Turing reducibility, we show that combining these two notions of
complexity yields a new, transfinite hierarchy inside the lowy c.e. degrees, and
that two levels of this hierarchy capture the dynamics of a number of seemingly
unrelated constructions in different areas of computability. Further, some of these
constructions show that these two levels are naturally definable in the c.e. degrees.

1. Historical context

The roots of computability theory go back to the work of Borel [8], Dedekind
[18], Hermann [50], Dehn [19], and others in the late 19" and early 20" century.
From a modern point of view, these authors were highly interested in algorithmic
procedures in algebra. Around the same time, Hilbert famously posed the Entschei-
dungsproblem, which asked whether there was an algorithmic procedure to decide
the validity of statements in first-order logic. To show that the answer is yes, we
would need to give such an algorithm, as we do with truth tables in propositional
logic. However, to demonstrate that there is no such algorithm, we would first need
to mathematically specify what an algorithm is. Culminating in the work of Tur-
ing [97], several authors gave proofs that first-order logic is undecidable; there is
no such algorithm. Turing’s work built on Gédel’s First Incompleteness Theorem,
and gave a beautiful conceptual analysis which convincingly laid the foundations
of computability theory. Turing machines gave a universal model of computation.

Following these early results, many problems, such as Hilbert’s 10" problem,
the word problem for groups, or DNA self-assembly, have been shown to be unde-
cidable. These proofs mostly followed a familiar pattern. They used Turing’s notion
of a reduction [98], and typically showed that the halting problem is reducible to
the algorithmic decision problem at hand by some effective coding process.

A major impetus for the development of computability theory was Post’s [78]
which gave an analysis of the fine structure of reductions, and set a research
agenda in the “structure theory” of computation. This paper was also famous as
it “stripped away the formalism associated with the development of recursive func-
tions in the 1930’s and revealed in a clear informal style the essential properties
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6 CHAPTER I. INTRODUCTION

of recursively enumerable sets and their role in Godel’s incompleteness theorem”
(Soare [91]). Following Post’s paper, three major developments were:

e The Kleene-Post development of the finite extension method. This and
related techniques demonstrated the richness of the structure of the Turing
degrees, and were arguably a precursor to Cohen’s method of forcing.

e The Friedberg-Muchnick Theorem showing that there were intermediate
computably enumerable Turing degrees. This result introduced the prior-
ity method to computability theory and is a hallmark of the area to this
day.

e Sacks’s work [81, 82] which culminated in his book [80] which proved
a number of penetrating results on the structure of degrees, and devel-
oped the infinite injury priority method, first introduced by Shoenfield
[85]. Sacks’s book famously proposed a research agenda with a number
of difficult questions still open.

There were subsequent books by, for example, Rogers [79], Lerman [66] and
Soare [91] exploring the universe of the degrees of unsolvability. But conceptual
clarification provided by this early work has seen a flowering of applications of
computability theory to many areas of mathematics. These include computable
analysis [102] (a subject going back to Turing’s [97]), computable algebra and
model theory (see for example e.g. [38]), algorithmic randomness ([27, 74, 69]),
algorithmic learning theory ([45]), and reverse mathematics [89], to name but a few.
(See [22] for a general historical discussion of this development, mainly focussing
on randomness.) Each of these areas has its own subareas, and hence the area of
computability has become remarkably diverse.

This monograph has several goals. Some are in the spirit of Sacks’s book. That
is, we wish to introduce new techniques and classification tools for understanding
the complexity of computation. These include some new nonuniform methods and
certain symmetric games in the sense of Lachlan [60], in which obstacles in con-
structions turn out to reflect the boundary between what is and what is not possible.
These games allow us to prove new definability results in the computably enumer-
able degrees. Another goal is in the spirit of Soare’s book; we carefully guide the
graduate student through complex techniques involving modern arguments. Our fi-
nal goal is to formalize the persistent intuition that many of the constructions in the
diverse areas of computability theory seems to have common combinatorics. How
should we explain that? We will draw several areas back together by showing that
the hierarchy we introduce can be used to explain, classify, and unify combinatorics
in these areas.

2. Background: unifying constructions and natural definability

2.1. Unifying constructions and levels of permitting. Computability
theory has a small number of classes of degrees which capture the underlying dy-
namics of a number of apparently similar constructions. A good example is the
class of high degrees, the degrees d satisfying d’ = 0”. Martin [70] showed that a
c.e. degree is high if and only if. ..

(1) it contains a function dominating all computable functions;
(2) it contains a maximal set;
(3) it contains a hyperhypersimple set.
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Another example would be the class of the promptly simple degrees (Ambos-
Spies, Jockusch, Shore and Soare [2]), which coincide with the low-cuppable degrees
and the non-cappable degrees. A more recent example of current interest is the class
of K-trivial degrees (see for example [28, 72, 73]), which have several characteri-
sations arising from lowness constructions.

The example most relevant to this monograph is the class of array computable
degrees, defined by Downey, Jockusch and Stob [30, 31]. Recall that by Shoenfield’s
Limit Lemma [84], a function g: w — w is AY if and only if it has a computable
approzimation: a uniformly computable sequence {gs» of functions which converge
to g in the discrete topology, that is, for which for all n, gs(n) = g(n) for all but
finitely many s. We think of each g, as a stage s approximation for g. Associated
to every computable approximation {gsy is its mind-change function, which maps
each n to the number of stages s such that gs+1(n) # gs(n).

A c.e. Turing degree a is array computable if every function g € a has a com-
putable approximation (g5 such that for all n there are at most n many stages s
such that gs11(n) # gs(n), that is, whose mind-change function is bounded by
the identity function. The array computable degrees capture the combinatorics
of a wide class of constructions. To wit, we observe that a c.e. degree is array
noncomputable if and only if. ..

(1) it is the degree of a perfect thin II9 class (Cholak, Coles, Downey and
Herrmann [12]);

(2) it bounds a disjoint pair of c.e. sets which have no separator computing
&' (Downey, Jockusch, Stob [30]);

(3) it contains a c.e. set with maximal Kolmogorov complexity (Kum-
mer [57]);

(4) it does not have a strong minimal cover in the Turing degrees (Ish-
mukhametov [51]);

(5) it has effective packing dimension 1 (Downey and Greenberg [24]);

(6) it contains two left-c.e. reals with no common upper bound in the cl-
degrees of left-c.e. reals (Barmpalias, Downey and Greenberg [7]);

(7) it contains a set which is not reducible to the halting problem with tiny
use (Franklin, Greenberg, Stephan and Wu [43]).

The dynamics captured by classes of degrees are often phrased in terms of
permitting. We perform some computable construction, often using the priority
method. To make the construction succeed, we need to satisfy infinitely many
requirements, and to meet each requirement, we need to enumerate some numbers
into a c.e. set A that we are building. The question is whether we can perform the
construction “below” a given c.e. degree d, which means, can we make A < d? In
the standard framework, we choose a c.e. set D € d, and along with the construction
we define a Turing reduction ® of A to D. Then, when we want to enumerate a
number n into D, we seek permission from D to do so, which means, that we want
to see some number enter D below the use p(n) that we declared for computing
A(n) from D using ®. Naturally, we will not always receive such permission, and
so we need to make several attempts at meeting the requirement, using different
potential numbers n to enumerate into A.

The “amount” of permitting that is required to carry out the construction (that
is, to meet every requirement) corresponds to the class of degrees d below which
we can perform the construction. The most common notion is simple permitting,
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which is given by any nonzero c.e. degree d. Here it suffices for at least one of the
attempts made by a given requirement to receive permission. This argument then
shows, for example, that every c.e. degree bounds two incomparable c.e. degrees
(the Fridberg-Muchnik construction can be performed using simple permitting), or
that every c.e. degree bounds a 1-generic sequence.

Prompt permission, given by any promptly simple degree, also needs just one
attempt to receive permission, but this permission must be given quickly: the re-
quired change in D needs to happen within some computable bound given the stage
number. In the other extreme from simple permitting is high permitting, in which
every requirement makes infinitely many attempts, and to meet the requirement,
all but finitely many of these attempts need to be permitted.

Array noncomputable permitting, originally called “multiple permitting”, is an
intermediate version, in which for each attempt at meeting a requirement, a number
of required permissions is stated in advance. The connection with the complexity
of approximations of functions in the degree is direct: mind-changes essentially
correspond to instances of permission; the computable bound on the number of
mind-changes is the same bound on the number of permissions required to meet a
requirement. The remarkable fact is that in many cases it is shown that the level of
permitting is not only sufficient but also necessary for the construction to succeed.

As we shall see, in this monograph we introduce a transfinite hierarchy of
classes, each of which has its own level of permitting; these classes generalise the
array noncomputable degrees.

2.2. Natural definability and lattice embeddings. Ever since Lachlan
and Yates’s [59, ] construction of a minimal pair refuted Shoenfield’s conjecture
[86] that the c.e. degrees are homogeneous, research in the c.e. degrees tended
toward showing that they are as complicated as can be. For example, their theory
(as a partial ordering) is computationally equivalent to full first-order arithmetic
(see [49, 75]). This paradigm leads us to study definability in the partial ordering
of the c.e. degrees, with the expectation that full bi-interpretability with arithmetic
would hold. That would entail that a relation in the c.e. degrees is definable if and
only if it is induced by a degree-invariant, arithmetic relation on indices of c.e. sets.
Currently, this has almost been achieved, up to double jump classes:

THEOREM 2.1 (Nies, Shore, Slaman [75]). Any relation on the c.e. degrees
which is invariant under the double jump is definable in the c.e. degrees if and only
if it is definable in first-order arithmetic.

The proof of Theorem 2.1 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and obtaining a definable
map from degrees to indices (in the model) which preserves the double jump. The
result gives a definition of a large collection of classes of degrees (for example all
jump classes high,, and low,,, the latter for n > 2).

Theorem 2.1 has two shortcomings. One is the reliance on the invariance of the
relation under the double jump. It follows that no collection of c.e. degrees that
contains some, but not all, lows degrees, can be defined using the theorem; these
are the kinds of collections that we investigate in this monograph.

Another issue is that the definitions provided by the theorem are not natural,
as discussed by Shore [88]. The definitions given by Theorem 2.1 are not structural;
they do not give insights into the role of the relations being defined in the structure
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of the c.e. degrees. To date, there are not many examples of natural definitions in
the c.e. degrees. Among them are:

e The promptly simple degrees are defined as the non-cappable ones
(Ambos-Spies, Jockusch, Shore, and Soare [2]);
e The contiguous degrees are defined as the locally distributive ones
(Downey and Lempp [33]) and also as the ones which are not the top of
a copy of the pentagon lattice (the non-modular, 5-element lattice N5) in
the c.e. degrees (Ambos-Spies and Fejer [1]).
e A third example takes place in the truth-table c.e. degrees rather than the
Turing c.e. degrees: a c.e. truth table degree is lows if and only if it has
no minimal cover in the c.e. truth table degrees (Downey and Shore [34]).
The example of the contiguous degrees (Turing c.e. degrees all of whose c.e.
elements are weak truth-table equivalent) shows that natural definability results
can be found when considering lattice embeddings into the c.e. degrees (see for
example [63, 64, 67]). The question of which finite lattices can be embedded into
the c.e. degrees (preserving join and meet) is also closely related to the problem of
determining how much of the theory of the c.e. degrees is decidable. For example,
Kleene and Post [55] showed that every finite partial ordering is embeddable into
the c.e. degrees, and so that the 1-quantifier theory of the c.e. degrees is decid-
able. Deciding 2-quantifier questions involves lattice embeddings and extensions of
embeddings.
All distributive finite lattices are embeddable into the c.e. degrees (Thoma-
son [96], and independently Lerman, unpublished). All non-distributive lattices
contain copies of one of the two following lattices:

Ms N

FIGURE 1. The two basic non-distributive lattices

As mentioned, the lattice N5 is non-modular (the relation av (x Ab) = (avz)Ab
fails for some a < b), and every non-modular lattice contains a copy of N5. The
lattice M5, also known as the 1-3-1 lattice, is modular, and every non-distributive,
modular lattice contains a copy of the 1-3-1 lattice. Both lattices are embeddable
into the c.e. degrees (Lachlan [61]).

The general question of which finite lattices are embeddable into the c.e. degrees
remains open. The 1-3-1 is a significant obstacle, in that a slightly more complicated
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formation, known as the lattice Sg (fig. 2), is not embeddable into the c.e. degrees
(Lachlan and Soare [62]).

FIGURE 2. The lattice Ss.

Thus, the 1-3-1 lattice is “just barely embeddable” in the c.e. degrees. Re-
calling our discussion above about permitting, the next natural question is how
much computational power is required to embed this lattice. The point is that the
embedding of the 1-3-1 lattice is quite complicated. Such an embedding, which is
often done preserving the bottom element, involves the enumeration of three c.e.
sets, Ag, A1 and As, which pairwise form a minimal pair, and pairwise join above
the third. The join and meet requirements interact very badly, and to overcome
the difficulties, Lachlan used what became known as “continuous tracing”. These
difficulties were exploited by Downey [21], who showed that not every c.e. degree
bounds a copy of the 1-3-1 lattice. In that paper, Downey noted that the embedding
of the 1-3-1 lattice seemed to be tied up with multiple permitting in a way that was
similar to non-lows-ness. This intuition was verified by Downey and Shore [35],
who showed that every non-lows c.e. degree bounds a copy of the 1-3-1 lattice in
the c.e. degrees.

In attempting to synthesize the exact lattice structure which creates the embed-
ding problems, Downey [21] and Weinstein [103] isolated the notion of a critical
triple. A critical triple in a lattice consists of elements ag,a; and b such that
ag vb=aj vbbutay A a; <b (fig. 3)

More generally, in an upper semilattice (which may fail to be a lattice), the
meet requirement is replaced by ¢ < ag,a; — ¢ < b. Weinstein also introduced the
notion of a weak critical triple (which we will not use in this manuscript); there
the meet requirement is replaced by ¢ < ag,a1 — ag € b v ¢. In the 1-3-1 lattice,
the middle three elements, in any order, form a critical triple. Downey actually
constructed an initial segment of the c.e. degrees in which there are no critical
triples, and Weinstein did the same for weak critical triples.
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FIGURE 3. A critical triple.

The notion of non-lows-ness seemed too strong to capture the class of degrees
which bound a copy of the 1-3-1 lattice, but it was felt that something like that
should suffice. On the other hand, Walk [101] constructed an array noncomputable
c.e. degree bounding no weak critical triples, and hence it was already known that
array noncomputability was not enough for such embeddings. In any case it was
presumed that bounding the 1-3-1 lattice is equivalent to bounding a critical triple
(or a weak critical triple). Our main result in this monograph implies that this pre-
sumption is false, and completely characterises the amount of permitting required
to embed the 1-3-1 lattice.

3. Toward the hierarchy of totally a-c.a. degrees

We now turn to discussing two levels of the new hierarchy that we introduce.
Some preliminary ideas and results appear in the companion papers [25, 23], and
some related results appeared after our work was discussed with colleagues. Now
we will discuss these ideas and results together in a mathematically, rather than
historically, coherent way. Later we will discuss in detail the content of this mono-
graph.

3.1. Totally w-c.a. degrees. In 2005, J. Miller (unpublished) defined a non-
uniform version of the class of array computable degrees. We call a function w-
computably approximable (w-c.a.) if it has a computable approximation whose
mind-change function is bounded by some computable function. This is equivalent
to the function being weak truth-table reducible to @’. The notion is widely used
in computability, with applications in algorithmic randomness as well (for example
in [44, 48, 47, 42]).!

This first step toward our new hierarchy is inspired by the above characterisa-
tion of array computable c.e. degrees as those which only contain functions with
computable approximations with mind-change functions bounded by the identity.
This is in some sense a “forced marriage” between two notions of complexity: com-
plexity in terms of Turing degree; and complexity in terms of simplicity of approx-
imations. w-c.a. functions are in some sense relatively simple, in that we can guess
them with few mistakes; on the other hand, they can be Turing equivalent to 0/,
making them as complicated as possible among all A9 functions when we consider

IThe terminology “w-c.a.” is new. In the literature one usually finds “w-c.e.”, although
“w-computable” is also used. In Chapter II below we justify the new terminology.
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Turing reducibility. When we consider approximations of all functions in a Turing
degree, we get a new, useful concept. Thus Miller defined:

Definition 3.1. A c.e. degree is totally w-c.a. if every function in it is w-c.a.

Array computability is in a uniform version of this notion: it requires the same
bound on the mind-change function for all functions in the degree.

As discussed, this notion naturally aligns itself with a level of permitting. Recall
that in array noncomputable permitting (previously named “multiple permitting”),
each requirement plans infinitely many attempts at meeting it. Roughly, for the n'®
attempt to succeed, it needs n many permissions on numbers associated with this
attempt. This corresponds to the identity bound on the number of mind changes.
In non-totally w-c.a. permitting, we again set up infinitely many attempts, but
we are allowed to wait to declare how many permissions each attempt requires.
Thus, for example, if the n'? attempt is set up at stage s, then we could require s
many permissions; and s could be much larger than n. For each requirement, the
function mapping n to the number of permissions required to meet the n** attempt,
is computable, but different requirements will define different computable functions,
likely with no uniform computable bound on these functions when all requirements
are considered.

Using this notion of permitting, the class of totally w-c.a. degrees captures the
dynamics of a number of constructions. The first result appeared in [25], in which
the authors, together with R. Weber, proved:

THEOREM 3.2. The following are equivalent for a c.e. degree d:

(a) d bounds a critical triple in the c.e. degrees;
(b) d bounds a weak critical triple in the c.e. degrees;
(¢) d is not totally w-c.a.

Note that this theorem shows that the totally w-c.a. degrees are naturally de-
finable in the c.e. degrees.

In this book we show another equivalence, characterising the dynamics of an
existing construction. It considers presentations of left-c.e. reals in the unit inter-
val [0,1]. A real is left-c.e. if the left cut it defines in the rationals is c.e. These
reals are the measures of effectively open subsets of Cantor space; equivalently, each
such real equals the sum > _, 2719l for some prefix-free c.e. set A < 2<¢. Such a
set A is called a presentation of the sum, and is always computable from the sum.
However, presentations can be simpler than the sum; in fact, every left-c.e. real
has a computable presentation, even though the left-c.e. real itself may be noncom-
putable. The question is, whether we can always code the complexity of a left-c.e.
real into one of its presentations. In [32], Downey and LaForte answered this ques-
tion negatively in a strong way: they constructed a noncomputable left-c.e. real, all
of whose presentations are computable. The dynamics of coding complexity into
presentations is captured by the totally w-c.a. degrees:

THEOREM 3.3.

(1) If a c.e. degree d is not totally w-c.a. then there is a left-c.e. real o <r d
and a c.e. set B <1 o such that every presentation of o is B-computable.

(2) If a left-c.e. real o has a totally w-c.a. degree then there is a presentation
of 0 which is Turing equivalent to o.
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For more background and details see Chapter V, where we prove Theorem 3.3.

After our results were announced, Barmpalias and the authors [7] obtained
yet another construction whose dynamics are captured by this class. Their results
concern the interaction of Turing and weak truth-table reducibility. They showed
that a c.e. degree is totally w-c.a. if and only if every set in that degree is weak
truth-table reducible to a ranked set (equivalently, to a hyperimmune set, or to a
proper initial segment of a computable, scattered linear ordering.) In further work,
Brodhead, Downey and Ng [9] showed that the totally w-c.a. degrees capture a
finite form of randomness.

Also, Adam Day [17] proved that a c.e. degree bounding a generic set which
could compute an indifferent subset for itself cannot be totally w-c.a. In his Ph.D.
thesis, McInerney [71] has established similar results relating “multiple genericity”
and “integer valued martingales” to being totally w-c.a.

In the same way that array computability has become a central area of com-
putability theory and its applications, we are confident that once researchers be-
come sensitized to the combinatorics involving the notion of total w-c.a.-ness, many
further applications will be found.

3.2. Totally < w“-c.a. degrees. As mentioned, contrary to expectation, we
show in this monograph that in the c.e. degrees, bounding critical triples is not
equivalent to bounding the 1-3-1 lattice. Very roughly speaking, the “continuous
tracing” used in the embedding of the 1-3-1 lattice requires layers over layers of
permitting. We now describe the dynamics of the construction, without connecting
them to the requirements; more details will be given in Chapter VII.

The basic cycle in the construction of a critical triple goes as follows. A re-
quirement starts defining a sequence xg, 1, 2, ... of numbers which it may want
to enumerate into a c.e. sets that we are building. At each stage s, we choose an-
other number x, and add it to the list. Then, possibly, at some stage ¢, a primary
31 event happens (the realisation of a follower), and we want to enumerate these
numbers into the sets, starting with x; and working backwards. For each such
number we need to wait for a secondary ¥; event (a new length of agreement of
a minimal pair requirement). The requirement is met when the first number xq is
enumerated. In a permitting argument, each such enumeration needs permission,
so to meet the requirement we need ¢ many permissions. This kind of permitting
is precisely the kind given by non-totally w-c.a. degrees.

In the 1-3-1 embedding, though, the number of minimal pair requirements
stronger that the one we are looking at makes the process more complicated. If
there is just one such requirement to contend with, the behaviour is just like the
critical triple embedding. If there are two, though, the process is as follows:

(a) Define a sequence g, x1, Z2, . . ., adding a new number at each stage.
(b) When the primary ¥; event happens, start with z;, and repeat the fol-
lowing ¢ times:
(i) If we are currently dealing with z; (for j < t), start appointing a
sequence yg, y{, y%, ..., adding a new number at each stage.
(ii) When a secondary ¥; event happens at some stage s = s7, say, we
start enumerating the numbers yg,yz_l, ..., each time waiting for
some tertiary ¥, event.
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(iii) When all numbers ? for i < s7 have been enumerated, we also enu-
merate x;, and repeat the cycle with x;_;. If j = 0, the requirement
is met.

When dealing with three minimal pair requirements, we add a layer:

(a) Define a sequence 1, z9, ..., adding a new number at each stage.
(b) When the primary ¥; event happens, start with z;, and repeat the fol-
lowing ¢ times:
(i) If we are currently dealing with x;, start appointing a sequence
yg, y{, y§7 ..., adding a new number at each stage.
(ii) When a secondary ¥; event happens at some stage s = s7, start with
yJ, and repeat the following s times:

(1) If we are currently dealing with yf (for i < s7), we appoint a
Jot 5t gt

sequence 2y, 27,25 ..., adding a new number at each stage.
(2) When a tertiary 3, event happens, at some stage r = r*, we

start enumerating the numbers 27%, 22* | /... each time waiting
for a quaternary 3; event.

(3) When all numbers z;"" have been enumerated, we also enumer-
ate yf , and repeat the cycle with yf-;l. If 4 = 0 then we exit
this cycle.

(iii) We enumerate x;; we repeat the outer cycle with z;_. If j = 0, the

requirement is met.

How many permissions are needed to meet the requirement? With two minimal
pair requirements constraining us, we need t + s° + s* + - - - + s* many permissions;
with three, we need

t+
0
sO+ 00 40l 402 g Oy

1
st pb0 g pbdl o p b2 4oy 08

t
st b0 gt b2 g s

We come now to the key insight. The real question is not how many permissions
are required, but what is the reason that the process of meeting a requirement
requires only finitely many steps. And the answer to the latter question is that
we can attach a transfinite ordinal number to the process, and count down the
ordinal along with the steps. With two minimal pair requirements, we start with
the ordinal w?. When stage ¢ is discovered, we go down to w(t + 1). When s’ is
discovered, we descend to wt + s?, and then decrease by 1 each time we enumerate
another y!. When y} is enumerated, we are at wt; when s'~! is discovered, we do
down to w(t — 1) + s*~!, and repeat. When three minimal pair requirements are
present, we need to start at w?; then we go down to w?(t + 1), then w?t + w(s’ + 1),

t

t . t .
then w?t + ws’ + r®* , then decrease by 1 each time some z;* is enumerated, and
so on. Each time an inner cycle is finished (we enumerate some y;) we go past some
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multiple of w; each time an outer cycle is finished (we enumerate some x;) we go
past some multiple of w?.

In terms of permitting, the corresponding notion comes from Ershov’s hierarchy
of AY functions. We give exact details in Chapter II, but informally, for a com-
putable ordinal «, an a-computable approximation is a computable approximation
{gs) of a AY function g equipped with a counting down a which witnesses the fact
that gs(n) changes only finitely many times: it is a uniformly computable sequence
{osy of functions from N to a such that for all n, o5(n) < «, 0s4+1(n) < 0s(n), and
if gs+1(n) # gs(n) then os11(n) < os(n). The function g is called a-computably
approzimable, or a-c.a. Note that for a = w the notion coincides with the defi-
nition above. We thus see that in the 1-3-1 embedding, very roughly, to meet a
requirement which has to contend with n stronger minimal pair requirements, we
need permission from a function which is not w™-c.a. Thus we define:

Definition 3.4. A c.e. degree is totally < w®-c.a. if every function in it is w™-c.a.
for some n.

And the main theorem in this monograph, which realises the intuitive descrip-
tion above, is:

THEOREM 3.5. A c.e. degree bounds a copy of the 1-3-1 lattice if and only if it
is not totally < w*-c.a.

Note that as above, Theorem 3.5 shows that the class of totally < w®-c.a.
degrees is naturally definable in the c.e. degrees.

Non-uniform anti-permitting arguments. When we show that a class of degrees
captures the dynamics of a construction (such as we do in Theorems 3.2 and 3.5) the
argument has two parts: a permitting argument, which shows that the construction
can be performed below a degree which permits accordingly; and an anti-permitting
argument, which shows the converse. The latter is not a priority argument; we
usually have different attempts at constructing objects which give that direction
of the theorem, but these have very little interaction with each other. On the
other hand, there is a certain non-uniformity to the construction, in that one of the
attempts will succeed, but we cannot computably tell which. In the case of totally
< w¥-c.a. degrees, we have w levels of non-uniformity, which means that even
though no injury occurs, only the oracle &) can tell which of the constructions
we performed actually succeeds. This kind of argument, which we hinted at in [23],
is presented in this monograph (in Chapters VI and VII) in full for the first time.
We believe that it will have wider applications.

3.3. The hierarchy of totally a-c.a. degrees. We have characterised the
degrees which bound critical triples and degrees which bound a copy of the 1-3-1
lattice; but we have not yet argued that these classes are distinct, that is, that
there is a degree which bounds a critical triple but not a copy of the 1-3-1. This
will come out of a general investigation into a hierarchy of classes of degrees. The
two classes under discussion are two levels of this hierarchy.

Armed with the definition of a-c.a. functions (which as discussed, will require
clarification, which we give in Chapter II), we can extend the definitions above
and define a degree to be totally a-c.a. if every function in it is a-c.a.; and more
generally, to be totally < a-c.a. if every function in it is S-c.a. for some 8 < a.
All such degrees are lows. In the first part of this monograph, we give a detailed
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investigation of these classes, and in particular we find which are the proper levels
of the hierarchy. For example, we show:

e There is a totally a-c.a. degree which is not totally S-c.a. for any 8 < «
if and only if « is a power of w.

e There is a totally < a-c.a. degree which is not totally < p-c.a. for any
8 < « if and only if « is a limit of powers of w.

This, in particular, shows that there are w many distinct levels between the totally
w-c.a. degrees and the totally < w“-c.a. degrees.

4. The contents of this monograph

In the first part of the monograph, we introduce and investigate our new hier-
archy.

In chapter II, we give a rigorous treatment of the notion of a-c.a. functions.
The main issue is to properly define what we mean by a computable function o
from N to «, which is required for the definition of a-computable approximations.
Naturally, to deal with an ordinal o computably, we need a notation for this ordinal,
or more generally, a computable well-ordering of order-type a. To form the basis
of a solid hierarchy, the notion of a-c.a. should not depend on which well-ordering
we take, rather it should only depend on its order-type. Thus we cannot consider
all computable copies of a. Rather, we restrict ourselves to a class of particularly
well-behaved well-orderings, in a way that ensures that they are all computably
isomorphic. For example, when considering copies of w?, we must compute not
only the collection of limit points and the successor function, but we also need to
know which copy of w inside w? is which. In general, we need the Cantor normal
form to be computable. This turns out to be sufficient for small enough ordinals;
we develop the theory for ordinals o < g9. The theory can be pushed further, but
not all the way up to w{'¥; we do not pursue such extensions here.

Having defined a-c.a. functions, we also (in Section I1.3) relate these functions
to iterations of the bounded jump (the jump inside the weak truth-table degrees).
This extends and solidifies work by Coles, Downey and LaForte [15], and inde-
pendently Anderson and Csima [3]. Extending the familiar result for w, we show
(Theorem I1.3.11) that a function is w®-c.a. if and only if it is weak truth-table
reducible to the a! iteration of the bounded function jump; an analogous result
holds for sets.

Having defined a-c.a. functions, in chapter III we investigate the hierarchy of
totally a-c.a. degrees. As mentioned above, we show precisely when this hierarchy
collapses (Theorem I11.2.1), and refine this hierarchy when we consider totally < a-
c.a. degrees (Theorem II1.4.2). We further consider uniform versions of our classes.
Recall that the array computable degrees were a uniform version of the totally w-c.a.
degrees, in that we took a single computable bound on the mind-change function of
approximations of functions in the degree. We find the right formulation that gen-
eralises this to define uniformly totally a-c.a. degrees, and show (Theorem II1.3.5)
how they fit in our hierarchy. For a general picture, see fig. I11.3.

4.1. Maximality. It is not common to find maximal elements of classes in
the c.e. degrees; usually, density prevails. However, in Chapter IV we show that
at every level of our main hierarchy there are maximal degrees (Theorem IV.1.1).
Thus, for example, there are maximal degrees with respect to not bounding a critical
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triple, namely, maximal totally w-c.a. degrees. Since the totally w-c.a. degrees are
naturally definable, we obtain a naturally definable antichain in the c.e. degrees; the
only previously known such antichain consisted of the maximal contiguous degrees
(Cholak, Downey and Walk [14]).

On the other hand, we show (Theorem IV.2.1) that maximality cannot go too
far, that is, to the next level. For example, no totally w-c.a. degree can be maximal
totally w?-c.a. A corollary of the argument shows that there are no maximal totally
< w¥-c.a. degrees, that is, no degrees maximal with respect to not bounding a 1-3-1.

We remark that in further work with Katherine Arthur [5] we investigate
bounding by maximal degrees. For example, there are totally w-c.a. degrees
bounded by no such maximal degrees. The general picture is interesting. We
suspect that in general, the following holds:

e Let a < B < g¢ be powers of w. Then every totally a-c.a. degree is
bounded by a maximal totally $-c.a. degree if and only if 8 = o¥.

Further questions consider collapse of our hierarchy in upper cones. Theorem IV.2.1
implies that every totally w-c.a. degree is bounded by a strictly greater degree which
is totally w?-c.a. However we do not know if we can always make that degree not
totally w-c.a. The best result so far, which appears in [5], implies that every totally
w-c.a. degree is bounded by a totally w?-c.a. degree which is not totally w-c.a. Is it
w?, or w3? We cannot yet tell.

4.2. Calibrating dynamics of constructions. The second part of the
monograph consists of Chapters V, VI and VII, in which we discuss and calibrate
the dynamics of three different constructions. In Chapter V we prove Theorem 3.3
about presentations of left-c.e. reals. In Chapter VII we prove our main Theo-
rem 3.5. In Chapter VI we consider m-topped degrees, continuing [23]. The notion
of m-topped degrees comes from a general study of the interaction between Turing
reducibility and stronger reducibilities among c.e. sets. For example, this study
includes the contiguous degrees. A c.e. Turing degree d is m-topped if it contains a
greatest degree among the many-one degrees of c.e. sets in d. Such degrees (other
than 0') were constructed Downey and Jockusch [29]. They are all lows. In [23]
we showed that there are totally w®-c.a. m-topped degrees. Here we show that this
is the best possible: no m-topped degree is totally < w“-c.a. (Theorem VI.0.1).
We remark though that in this case we cannot hope to get full equivalence: we
cannot prove that every degree which is not totally < w“-c.a. bounds an m-topped
degree. This is because m-topped degrees cannot be low, whereas every level of
our hierarchy contains both low degrees and degrees which are lows but not low.

4.3. Promptness. One can ask, regarding the embedding of the 1-3-1 lattice,
what it would take to get an embedding preserving the bottom, that is, an embed-
ding whose bottom degree is 0 (as is obtained in Lachlan’s original construction).
We discuss this in Chapter VIII, where we introduce prompt versions of all levels
in our hierarchy. This generalises the already familiar notion of prompt permitting,
which is the prompt version of simple permitting. Prompt array noncomputable
permission, for example, allows us to construct a pair of separating classes whose
elements form minimal pairs (Theorem VIII.2.1); whereas traditional (non-prompt)
array noncomputable permission only gives Turing incomparability [30]. Similarly,
a degree which is promptly not totally < w“-c.a. bounds a copy of the 1-3-1 lattice
with bottom 0.
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This however cannot be reversed: every high degree bounds a copy of the 1-3-1
lattice with bottom 0, and there are high degrees which are not promptly simple
(let alone promptly non totally < w®-c.a.) Informally what this says is that there
are at least two ways to get such an embedding: either by quickly getting the precise
number of permissions required; or by getting many permissions (cofinitely many),
in which case we can wait for the permissions and don’t need them promptly.

It would be interesting to find a common generalisation.

5. An application to admissible computability

Combined with results of the second author, our work has an application to
admissible computability. This is a generalisation of traditional computability to
ordinals beyond w. In [46] it is shown that for any admissible ordinal «, the a-
c.e. degrees are not elementarily equivalent to the c.e. degrees. This was done in
cases, depending on the proximity of o to w. In one case the separation between
the theories is not natural but relies on coding models of arithmetic. However one
result is:

THEOREM 5.1 ([46]). Let o > w be an admissible ordinal, and let a be an
incomplete a-c.e. degree. The following are equivalent:

(1) a computes a cofinal w-sequence in «.
(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result. The
basic idea is the following. Consider again the dynamic aspect of the embedding
of a critical triple which we discussed above. We start by appointing elements
g, %1, %2, ..., adding one at each stage. When the primary ¥; event happens
(the follower is realised), it is important (because of use considerations) that we
attempt to enumerate the elements x; starting with the last number x; and working
backwards.

Trying to do this when time goes beyond w presents a completely new problem:
after w many stages, we will have elements z; for all j < w, that is, we will not
have a last element. We cannot then peel it back, each step removing only the last
element. It turns out that this blockage is fundamental. The only case it might
be possible for a degree a to bound a critical triple is if it itself can see that « is
far from being a regular cardinal — if it can essentially re-order time and space to
order-type w, so that the construction can be (at least after the fact) seen to have
taken w steps, avoiding infinite sequences of numbers. In one direction, effectively
closed and unbounded sets are used to show that this is necessary. In the other
direction, a fine-structural result of Shore’s [87] says that an incomplete degree
of computable cofinality w must be high, and can compute a bijection between «
and w. Working below such a degree, we can translate back to w-computability,
and use non-lowy permitting to embed the 1-3-1 lattice (for a technical reason, we
cannot quite use high permitting).

To sum, what this says is that once we go beyond w, the fine distinctions
between totally w-c.a. degrees and totally < w*-c.a. degrees completely disappear.
Combined with the current work, this gives us a single, natural sentence which
separates the elementary theory of the c.e. degrees from the theory of the a-c.a.
degrees for any admissible o > w.
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THEOREM 5.2. Let o = w be admissible. The following are equivalent:

(1) There is an incomplete a-c.e. degree which bounds a critical triple but not
the 1-3-1 lattice.
(2) a=w.

6. Notation and general definitions

We recap some notions that we discussed above, and introduce terminology
and conventions that will be used throughout the monograph. First, though, we
comment on the expected mathematical background a reader will need. We assume
that the reader has mastered the basics of computability theory, up to an including
basic finite-injury priority arguments, in particular the Friedberg-Muchnik theo-
rem, and basic infinite-injury priority constructions, mainly the construction of a
minimal pair of c.e. degrees, as performed on a priority tree. For years, the stan-
dard reference in this area has been Soare’s [91]. Other possible sources are the
second chapter of [27], the first chapter of [74], Cooper’s [16], Odifreddi’s [77], or
Steffen Lempp’s unpublished notes on priority arguments in computability theory,
available on his website. We also assume some basic information on ordinals and
ordinal arithmetic; any standard set theory text would be more than sufficient.

6.1. Computable approximations and enumerations. A computable ap-
prozimation for a function f: w — w is a uniformly computable sequence {fs),_,
of functions such that for all z, for almost all s, fs(x) = f(z). In other words,
f = limg f; when we equip w with the discrete topology. Shoenfield’s limit lemma
[84] states that a function f is AY-definable if and only it is computable from
the halting set @' if and only if it has a computable approximation. If A is a
set (a subset of w, identified with an element of Cantor space) then a computable
approximation of A is a sequence of sets.

A computable enumeration of a c.e. set A is a computable, C-increasing se-
quence of finite sets (A;) such that A = | J, As. We can also think of a computable
enumeration as a computable approximation of A, again by taking characteristic
functions. We say that a number z is enumerated into As if x € A\As_1.

6.2. Turing functionals. A (Turing) functional is a c.e. set of triples (o, x, y)
consisting of a finite sequence ¢ of natural numbers and a pair of natural numbers z
and y. We consider such triples as azioms, and sometimes write them as o — (z,y).
If f: w— wand ® is a functional, then we define the multi-valued function (i.e.,
relation) ®(f) € w x w by letting ®(f, ) = y if there is some finite o < f such that
the axiom o — (x,y) is in ®. We write ®(f,x)| for x € dom ®(f) and ®(f,z)? for
x ¢ dom D(f).

In general we allow functionals, especially the ones that we build, to be incon-
sistent. That is, we allow them to contain contradictory axioms: a pair of axioms
o +— (x,y) and 7 — (z,w) such that o and 7 are comparable (that means that
oc<XTorT<0),x=2zbuty# w. A functional ® is called consistent relative to
an oracle f if ®(f) is a partial function, i.e., is not multi-valued. A functional is
consistent if and only if it is consistent relative to every oracle.

The following are equivalent for f,g: w — w:

(1) there is a consistent functional ® such that ®(f) = g;
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(2) there is a functional ®, consistent relative to f, such that ®(f) = g;
(3) g<t f.

If (®;) is a computable enumeration of a functional ®, then each ®; is also a
functional. If {fs) is a computable approximation of a function f: w — w, then the
finite multi-valued function ®4(fs) can be effectively obtained from s. If for all s,
d, is consistent relative to fs, then ® is consistent relative to f. Note that if further,
®(f) is a total function, then we can extend (®,(fs)) to a computable approximation of ®(f), since
{dom ®4(fs)) is uniformly computable. When the notation q)é(fb) becomes unwieldy, we
sometimes write ®(f)[s], and in general may use Lachlan’s square bracket notation.

Suppose that & is a functional which is consistent relative to an oracle f. If
x € dom ®(f), we also refer to ®(f,2) = y as a “computation”. Let o be the
shortest initial segment of f for which o — (z,y) is an axiom in ®. Often in fact
there will be a unique such initial segment. The string ¢ determines the use of the
computation, denoted by ¢(f,x) (and when f is clear from the context, by ¢(z)).
We will use two conflicting notions:

o If either f or ® are given, then the use is the length of o.

e If both f and ® are built by us then we let the use be |o|—1, the “greatest
number queried during the computation”. In this case f is usually a
c.e. set A. The idea is that we may want to void the computation by
enumerating the use ¢(x) into A.

If (®s) is a computable enumeration of a Turing functional @, and {f,) is a
computable approximation of a function f (and again we assume that for all s,
®, is consistent relative to fs), s < w and x € dom @4(f,), then we say that the
computation ®(fs,x) is destroyed (or injured) at stage s + 1 if o € fsy1, where o
as above is the shortest axiom applying to f giving the computation at stage s.
That is, if fsi1 [w% fs [« where u = @;(fs,2) is the use of the computation, in the
case in which either f or ® are given; if both are built by us, then the computation
is destroyed if fs 14117 fs+1 [us1, and as described above, this will often happen
because we enumerate u into fgi1.

In contrast, we say that a computation ®(fs,z) = y is f-correct if o < f.
The fundamental fact about Turing computations, used without mention through-
out computability theory, is that € dom ®(f) if and only if there is a stage s
(equivalently, for almost all stages s) such that x € dom ®4(fs) by an f-correct
computation. When working with c.e. sets we often use the fact that correct com-
putations never go away: if (A,) is a computable enumeration of a c.e. set A, and
®,(As, x) is an A-correct computation, then for all ¢ > s, z € dom ®,(A;) by the
same computation.

The following lemma is used when we build functionals which apply to c.e. sets
that we enumerate.

Lemma 6.1. Let {®;) be a computable enumeration of a functional ®, and let (As)
be a computable enumeration of a c.e. set A. Suppose that for all s,

(1) if an aziom o — (x,y) is enumerated into Py, then o < Ag;
(2) for each x, at most one axiom o — (x,y) is enumerated into Ds.

Let s < w, and suppose that @ is consistent for As. Suppose that for all v < w,

(3) If an axiom o — (x,y) is enumerated into P11, and x € dom P4(Ay),
then some number u < @4(As, ) is enumerated into Agsyq.

Then @41 is consistent for Asyq.
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Hence if conditions (1)—(3) hold at every stage s, then ® is consistent for A.
Note that usually @ will not be consistent for all oracles: we could void a compu-
tation ®4(Ag, ) by enumerating u = ¢s(As, x) into Agy1, and then define a new
computation ®41(As11,x) with smaller use, so 441 may be inconsistent for A;.

Convention 6.2. We often assume that for a given consistent functional @, for any
oracle f, dom ®(f) is an initial segment of w. That is, we require that if o — (z,y)
is in @, then for all 2’ < z there is some ¢’ < ¢ and some y’ such that ¢’ — (2/,y")
is also in ®. We simply prevent o — (x,y) from entering ® until we see the other
necessary axioms.

In this situation we also assume that if (@) is a computable enumeration of a
Turing functional @, then for all s and f, dom ®4(f) is an initial segment of w.

The point is that if we are only interested in fotal functions computable from
an oracle f, then we can restrict ourselves to functionals of the type described.

We let {(®.) be some enumeration of all consistent functionals; associated with
which we are given uniformly computable enumerations (®. ;) of ®..

Convention 6.3. We sometimes identify natural numbers with the von Neumann
ordinals isomorphic to them; that is, we identify the natural number n with the set
{0,1,2,...,n — 1}. In particular, if for some functional ® and oracle f, dom ®(f)
is an initial segment of w (per Convention 6.2), then we write x < dom ®(f) for
x € dom ®(f), and z < dom ®(f) for {0,1,...,2 — 1} < dom ®(f).

Functionals which take more than one oracle are treated in a similar fashion.
For example, when taking two oracles, axioms will be of the form (o,7) — (z,y).
Usually, for a pair of oracles f, g in which we are interested, for each x there will
be at most one pair of strings o < f and 7 < ¢ such that (o,7) — (x,y) is in the
functional ® we are building or examining. These determine the f-use and the g-
use of the computation ®(f, g, x), according to the notational convention discussed
above. When @ is not built by us we often assume that the f-use and the g-use are
the same, and that common value is referred to simply as the use ¢(f,g,x) of the
computation.

6.3. Priority arguments and tree constructions. In our constructions we
keep the convention of small numbers.

Convention 6.4. At stage s of a construction, all numbers played by the “oppo-
nent” are bounded by s. These are the values of functions that are not defined by
us during the construction.

On the other hand, the constructions would often call on us to define new
values for functions that are large. This means that the new values are picked to
be numbers that are larger than any other number previously used or observed in
the construction, including the stage number.

Most terminology we will use in priority constructions is common. We will
attempt to meet requirements. Positive requirements are those which can be met
by enumerating numbers into c.e. sets we are enumerating. Negative requirements
are met by imposing restraint on other actors. The numbers enumerated into
the c.e. sets are sometimes called followers. In the standard Friedberg-Muchnik
construction, for example, a requirement attempting to ensure that ®(A) # B will
appoint a follower z, which means choose some number z (that will not be used by
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any other requirement), wait until we see that ®(A,x)|= 0, and then enumerate it
into B. The prototypical negative requirements, on the other hand, are met in the
Lachlan-Yates minimal pair construction. In most of our constructions, restraint
will be imposed by initialising other requirements. Typically, initialising a positive
requirement means that any follower x it appointed is cancelled: this means that
the number x will not be involved in the construction any longer. Any new follower
will be chosen to be large.

Tree constructions, namely priority constructions done with the aid of a tree
of strategies, are now standard; a reference is Chapter XIV of [91]. Elements of
the tree are called strategies, or nodes; these are finite sequences of symbols. To
describe the tree of strategies, we give two pieces of information:

(a) An association of requirements for nodes; we say that a node works for
the requirement associated with it. Often, but not always, all nodes of a
given level of the tree work for the same requirement.

(b) For nodes working for some requirement, the list of outcomes of these
nodes.

The tree is then defined recursively. The empty node is always on the tree of
strategies; if a node ¢ has already been determined to lie on the tree of strategies,
and a requirement R has been associated with it, then the immediate successors of
o on the tree are the nodes of the form o"o, where o is a possible outcome for nodes
working for R.

The collection of possible outcomes of any node will be linearly ordered; we say
that an outcome o is stronger than an outcome o’ if o < o/. This ordering induces
a linear ordering of the tree of strategies, by taking a lexicographic amalgamation
of the orderings of outcomes: o < 7 if o < 7, or if there are 1, 0 and o’ such that
oc>n0,7>n0,and o < o/. We say that a node o is stronger than a node 7
if o0 < 7, and that a node o lies to the left of a node 7 if 0 < 7 but 0 € 7. We
sometimes write o <, 7; this has nothing to do with the constructible universe.

At any stage s, the construction describes the (finite) collection s of nodes
that are accessible at stage s. In our constructions this will always be an initial
segment of the tree of strategies, linearly ordered by extension of nodes. We will
not use constructions with links. Usually, the empty node () is accessible at every
stage.

We then say that a node o lies on the true path ¢, if there are infinitely many
stages s of the construction such that o € §, (that is, such that o is accessible at
stage s), but the same is not true for any node 7 that lies to the left of o. The true
path 4, will be a linearly ordered initial segment of the tree of strategies. We will
need to prove that the true path is infinite.

As with simpler constructions, tree constructions will involve initialisations, this
time of nodes rather than of requirements. Again, when a node is initialised, all
parameters associated with the node (such as followers) are removed (or cancelled),
and new ones will have to be defined, either immediately, or more often, at the next
stage at which the node is accessible. When a stage ends, every node which lies to
the right of an accessible node (a node in d;) is initialised. Often, but not always,
nodes extending the longest node in &4 are also initialised at the end of stage s. We
ensure that whenever a node o is initialised, and 7 is a node weaker than o, then
T is also initialised at the same time.
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We say that the construction is fair to a node o if o is initialised only finitely
many times (i.e., at only finitely many stages of the construction). The main
fairness lemma for each construction will state that the construction is fair to every
node on the true path §,. If o is a node on the true path and the construction is
not fair to o then there will be some node 7 < ¢ on the true path which initialises o
at infinitely many stages. This is because initialisation has to respect the priority
ordering; no node weaker than ¢ can initialise o.

Other standard conventions of priority constructions are employed without
mention. For example, we use “stickiness” or “persistence” of parameters: if, for
example, a requirement R or strategy o has a follower at some stage s, and the
requirement or node is not tampered with (e.g., initialised) at stage s + 1, say, then
that follower is still considered to be a follower for the requirement or strategy at
stage s + 1.

A remark on referencing. We number theorems, propositions etc. within
sections. Inside a chapter, for simplicity, we omit the chapter number when refer-
ring to the theorem, thus: Theorem 3.5. In other chapters, we will refer to it as
Theorem 1.3.5.






CHAPTER II

a-c.a. functions

Ershov ([40], see also [4]) extended the hierarchy of differences of c.e. sets into
the transfinite, based on Kleene’s notations for computable ordinals. Unfortunately,
the levels of this hierarchy depend heavily on the choice of notation. To get around
this problem, based on ideas from [15], we focus on lower levels of the hierarchy,
using canonical well-orderings. We then, extending [3], relate these lower, canonical
levels, to iterations of a jump in the weak truth-table degrees.

We remark that Kleene’s notations suffice for the purposes they were designed
for. For example, Spector’s theorem states that the iteration of the Turing jump
along a computable ordinal does not depend on the choice of notation for that
ordinal. But as soon as we have finer distinctions such as those of the present
monograph, we need more sensitive notions of notations. The fact that ours robustly
and invariantly capture the combinatorics of many constructions shows that they
seem to be good choices.

1. R-c.a. functions

Let R = (R, <r) be a computable well-ordering of a computable set R. An
R-computable approximation of a function f is a computable approximation {fsy
of f, equipped with a uniformly computable sequence {o,),_,, of functions from w
to R such that for all x and s:

o 0:11(2) <g 0s(x); and

o if foi1(x) # fs(x), then osy1(x) <g o0s(x).
The sequence {0s),_,,, together with the well-foundedness of R, witnesses the fact
that the approximation {fs) indeed reaches a limit.

Definition 1.1. A function f: w — w is R-computabdly approximable (or R-c.a.)
if it has an R-computable approximation.

The following equivalent formulation is sometimes taken as a definition:

Proposition 1.2. A function f: w — w is R-c.a. if and only if there is a partial
computable function v such that for all x, f(x) = ¥(x,z) for the R-least z such
that (x,z) € dom1.

(In particular, the totality of f implies that for all # < w there is some z € R

such that (x,z) € dom1).)

PROOF. Let {fs,0sy be an R-computable approximation of f. For z < w and
z € R, let ¥(x,2) = fs(x) for any s < w such that os(x) = z; if there is no
such s, we let ¥(x, 2)1. The fact that fs(x)-changes have to be accompanied by an
0s(x)-change implies that ¢ is well-defined. Then ¢ witnesses that f is R-c.a.

25
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Suppose that v is a partial computable function as in the proposition. Define
a uniformly computable sequence {os)y as follows. Let A = dom. Since A is c.e.,
let (As) be some effective enumeration of A. Since f is total, for all x < w there is
some t, < w such that (x,z) € A;, for some z € R. For any 2 < w and s < w we
let 0s(x) be the R-least z such that (z,2) € Apax(s,t,}-

Since A; © A whenever ¢ < s, we have ogy1(x) < os(x) for all z and s. Let
fs(x) = ¥(x,05(x)). Then (fs,05) is an R-computable approximation of f. O

1.1. R-c.e. sets. For sets, Ershov refined the hierarchy of R-c.a. functions to
levels resembling the arithmetic hierarchy. For z € R, let R|,={we R : w <g z},
which is a computable R-initial segment of R; and let R [, be the restriction of
<gr to R [,. Recall that an ordinal is even if it is of the form « + 2n for some
limit ordinal a (or o = 0), where n < w; and odd otherwise. We say that R
is even if the order-type otp(R) is even, and odd otherwise; and we say that an
element z € R is R-even if R [, is even, and R-odd otherwise. If R is even, we
write parity(R) = 0; otherwise we write parity(R) = 1. Similarly, we write
parityg(z) = parity(R1.).

Definition 1.3. Suppose that the collection of R-even elements of R is computable.
A set A < wis R-c.e. if there is a uniformly c.e. sequence (A.), _p such that:
o If 2 < w then A, € A,; and
e forallz <w, ze Aif and only if x € | J,. 5 A., and for the R-least z such
that € A, we have parityg(z) # parity(R).

We let 27_5 denote the collection of all R-c.e. sets.

The definition should be understood dynamically. Indexed by some late ele-
ment z of R we see a number x enter the “playground” |J, A,. We then move
backwards in R, so to speak, and at each step we change our mind about whether
x is in the target set or not. Thus, this notion extends the finite difference hierar-
chy. For n > 1, let n also denote a computable linear ordering which has exactly n
elements. Then a set is 1-c.e. if it is c.e., is 2-c.e. if it is the (set theoretic) difference
of two c.e. sets (also known as d.c.e.), and in general, is (n + 1)-c.e. if it is of the
form A\B, where A is c.e. and B is n-c.e.

Ershov lets H;zl be the collection of complements of R-c.e. sets, and lets
A;zl = 27_21 N H;zl be the collection of sets which are both R-c.e. and co-R-c.e.

Proposition 1.4. Suppose again that the parity function parityy is computable.
Then every set in A;al is R-c.a. If further the order-type of R is a limit ordinal,
then A;zl coincides with the collection of R-c.a. sets.

PROOF. Suppose that A € Af,_zl. Suppose, for simplicity of notation, that R is
even; the odd case is identical. Let (A.) _, witness that A € 5", and (B.),
witness that A € H;zl. Define a partial computable function ¢ as follows. Let x < w
and z€e R. If x ¢ A, U B,, we let ¢(x,2)1. Otherwise,  shows up first in either
A, or B,.

o If x shows up first in A, then we let ¢(x, 2) = parityy(2).
e If x shows up first in B,, then we let ¢(x,2) = 1 — parityx ().

Fix < w. Then z € | J,.z(A. U B.) because A < | J, A, and w\A < |, B..
Hence there is some z € R such that (z,z) € dom. Let z be the R-least element
of R such that (z,2) € dom. If x € A,, then z is the R-least such that = € A,; so
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x € Aif and only if parityg(z) # parity(R) = 0. So if x shows up first in A, then
we let ¥(x,z) = 1if and only if parityy(z) = 1 if and only if A(z) = 1. If z € B;,
then z is R-least such that « € B;, and so « ¢ A if and only if parityz(z) = 1; so
if x shows up first in B,, then we let ¢(x,2) = 0 if and only if parityg(z) = 1 if
and only if A(z) = 0. Overall, we see that for all z, A(z) = ¢(x, z) for the R-least
z such that (z,2) € dom. By Proposition 1.2, A is R-c.a.

For the other direction, it is sufficient to show that every R-c.a. set is in 27_21; the
result would follow from the fact that the complement of an R-c.a. set is also R-c.a.
Let A be an R-c.a. set; by Proposition 1.2, let 1 be a partial computable function
such that for all z, A(z) = ¢(x, 2z) for the R-least z such that (x,z) € domy. We
assume now that R has no greatest element. In particular, R is even.

We define the sequence (A.)._p which will show that A € ¥3'. Let
(z,z) € dom1.

o If ¢)(z,2z) = parityy(2) then we let x € A,, for all w >x z.
o If ¢(z, z) # parityy(z) then we let z € A, for all w >x z.

It is clear that if z < w then A, € A,. Let x < w. We know that there is
some z € R such that (z,2) € domt. Since R has no greatest element, no matter
what the parity of z is, we enumerate 2 into some A,,; so z € | J,, Aw. Let w be the
R-least element of R such that x € A,,. We want to show that z € A if and only if
w is odd in R, in other words, that A(x) = parityz(w).

Let z be the R-least element of R such that (z,z) € dom. Either
¥(z,z) = parityg(z), in which case z = w; or ¥(x,z) # paritygz(z), in which
case w is the R-successor of z. In the first case,

A(x) = Y(x,z) = parityy(z) = parityg(w)

as required. In the second case,

Ax) = ¢(z,z) = 1 — parityg(z) = parityy (w),

again as required. O

Ash and Knight [6] refer to the sets in Az as “R-computable”. However, in
common yet misleading terminology, many authors refer to R-c.a. sets as “R-c.e.”
We prefer to be careful and not confuse the two notions. On a fundamental level, we
believe that “c.e.” denotes the Y-side of a hierarchy, in this case 27721, rather than the “ambiguous”
class A;zl. Note that for n < w, the standard terminology “n-c.e.” is correct, and indeed refers
to the class £, rather than the class Ay . It is therefore regrettable that many (but not all!)

authors use “w-c.e.” to denote A;l rather than Z;l.

1.2. Listing R-c.a. functions. For any computable well-ordering R, we can
effectively list all R-c.a. functions. To do this we need to consider a nice class of
(R + 1)-computable approximations. We of course let R + 1 denote a computable
well-ordering extending R by one element at the end.

Definition 1.5. Let R be a computable well-ordering. An (R + 1)-computable
approximation {fs, 05y is tidy if:

e For all n, fo(n) = 0; and

e For all n and s, if o5(n + 1) € R then o4(n) € R.
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The idea is that we have a “partial” R-computable approximation, in that (fs)
is total but we may wait a while to declare the elements of R that we use; while
we wait we let o5(n) be the new element beyond R. And further, at every stage
we will have declared our “true ordinals” (elements of R) for an initial segment of
inputs.

Lemma 1.6. If f has a tidy (R + 1)-computable approximation then f is R-c.a.

PROOF. Let {(gs,ms),_, be a tidy (R + 1)-computable approximation of f.
There are two cases. In the first, for all « there is some s such that mgs(z) € R. We
say that the approximation is eventually R-computable. We then modify the approximation
{gs,msy by waiting until we see this happen. Formally, for each = we let t(x) be
the least ¢ such that my(z) € R; we then let, for all x and s, 05(2) = Mmax(s,¢(2)} (T)
and f(T) = Gmax{s,t(2)} (7); {fs,0s) is an R-computable approximation of f.

In the second case, for all but finitely many x, os(z) is constant and equals the
extra element of R+ 1. In that case f(z) = 0 for all such z, so f is computable. [J

It is clear from the proof of Lemma 1.6 that passing from a tidy (R + 1)-
computable approximation for a function f to an R-computable approximation
for f cannot be done uniformly. Indeed a diagonalisation argument shows that
there cannot be an effective list of R-computable approximations listing all R-c.a.
functions. However we can make a list of tidy (R + 1)-computable approximations
that yields all R-c.a. functions.

€

Proposition 1.7. There is a computable list {{f$,05), ... of tidy (R + 1)-
computable approxzimations such that letting f¢ = lim, f¢, the sequence (f¢)
lists the R-c.a. functions.

e<w

PROOF. There is an effective list of all pairs (hs, ms) of uniformly computable
sequences of partial functions. We show how to convert any such pair, uniformly,
to a tidy (R + 1)-computable approximation {fs,0s), such that if (hs,ms) is an
R-computable approximation, then lim hy; = lim f;.

Fix such {hs) and {m). The idea is to define {f;) by copying (hs) with delays,
until we see evidence that a change is allowed. Let oo denote the extra element
of R+ 1. Let < w. We start with fo(z) = 0 and og(x) = 0. Let s > 0. To define
fs(z) and o4(x), we enumerate the graphs of (hs) and (ms) for s many steps. We
let ¢5(x) be the greatest ¢ < s such that for all » < ¢ and all y < z,

e at stage s we see that h,.(y)| and m,(y)!;

e m,.(y) € R, and if r > 0, m,(y) <g m,—1(y);

e if > 0 and h,(y) # hr—1(y) then m,(y) <g m.—1(y).
If there is no such t, then we leave ts(x) undefined. If ¢5(z) is defined then we
let fo(x) = h (o)(x) and os(x) = my (z)(z). If ts(x) is not defined then we let
fs(z) =0 and o4(z) = 0. O

Note that restricting our approximations to sets, we also get a listing of all
R-c.a. sets.

Corollary 1.8. The collection of R-c.a. functions is uniformly computable from 0’.

That is, there is a uniformly 0'-computable sequence (f¢),_ . of all R-c.a. functions.

Remark 1.9. The reader may wonder why, in the case that otp(R) is a successor
ordinal, we cannot list all R-c.a. functions, each with an R-computable approxima-
tion. After all, now we do not need to guess which ordinal to start with, we always



II.1. R-C.A. FUNCTIONS 29

start with maxR. However we still need to guess what the initial value of our
approximation is; we allowed fy to be any computable function. If we require that
fo is the constant function 0 then we know the initial value but when attempting
to diagonalise are restricted to keep our initial value 0 as well, and so may never
be allowed to diagonalise.

1.3. Effective embeddings and isomorphisms.

Proposition 1.10. Let R and S be computable well-orderings. If there is a com-
putable embedding of R into S, then every R-c.a. function is S-c.a.

PROOF. Let j: R — S be an embedding of R into S. Let (fs,05) be an R-
computable approximation. Then {f,,j o 05y is an S-computable approximation.
([

Corollary 1.11. Let R and S be computable well-orderings. If there is a com-
putable isomorphism between R and S, then a function is R-c.a. if and only if it
is S-c.a.

1.4. Bounds on mind-change functions. Let (f;),_  be a computable ap-
proximation of a function f. The associated mind-change function is

mepy(x) = #1{s ¢ for1(x) # fo(2)}.

For any function g: w — w, we say that the approximation {fs) is a g-bounded
approximation if for all z, ms y(7) < g(x), that is, if g majorises m¢y, .

Recall that if A = (4,<4) and B = (B, <pg) are linear orderings, then the
product linear ordering A - B is the right-lexicographic ordering on A x B. Its
order-type is obtained by replacing every point in B by a copy of A.

Proposition 1.12. Let R be a computable well-ordering. A function is w - R-c.a.
if and only it has a computable approximation which is g-bounded for some R-c.a.
function g.

PRrROOF. Let (fs) be a computable approximation of a function f.

Suppose that {fs, 05 is an w - R-computable approximation. For any z and s,
let os(x) = (ns(x),ls(x)) € w x R. For any x and s, we let t5(x) be the least stage
t < s such that I;(x) = l;(x). We then let

9s(2) = ny, @) (@) + #{r < ts(2) : fra(2) # fr(2)}

Then {gs, l5) is an R-computable approximation of a bound on my,y.
Suppose that we are given an R-computable approximation {gs, I5» for a bound
g on myyy. We may assume that for all z and s,

gs(w) = #A{r <s: foy1(zx) # fr(v)},

since otherwise we can just wait until ¢g;(z) changes at some ¢ > s. We can therefore
let

ns(z) = gs(x) —#{r <s: frr1(z) # fr(2)},

and os(x) = (ns(x),ls(x)). It < s and Is(z) = l;(z) then gs(x) = g;(x) which
shows that if fsi1(z) # fo(x) then osy1(z) <ur 0s(x), so {fs,0sy is an w - R-
computable approximation. O
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Since the computable functions are characterised as those functions which are
R-c.a. for R of order-type 1, and since for any such R, w - R is computably iso-
morphic to w, we see that Proposition 1.12 generalises the well-known fact that a
function is w-c.a. if and only if it has a computable approximation whose mind-
change function is bounded by a computable function.

2. Canonical well-orderings and strong notations
Ershov proved the following:

THEOREM 2.1. Every A§ function is R-c.a. for some computable well-ordering
R of order-type w.

PROOF. Let f be a AY function. By Shoenfield’s limit lemma, let {f) be a
computable approximation for f. Let

R={(z,s)ewxw:s=0or fs(x) # fe_1(x)}.

For (z,s) and (y,t) € R, let (x,s) <r (y,t) if x <y orif x =y and s > ¢t. For any
x < w let Ry be the collection of pairs (z,s) in R; so R is the disjoint union of the
R.’s, each R, is finite (as {fs(z)) reaches a limit), and the ordering R = (R, <g)
orders Ry < Ry < Ry < --- So otp(R) = w.

For z,s < w, let t(z,s) be the least ¢ < s such that for all u € [t,s],
fu(x) = fs(z). Forallz and s, (z,t(x,s)) € R,, and so we can let o5(z) = (z,t(z, s)).
It is clear that (fs, 05y is an R-computable approximation for f. (]

Ershov’s theorem is displeasing as we try to define a hierarchy of complexity
inside the AJ functions. Its meaning is that calibrating the complexity of a func-
tion f by the length of a computable well-ordering R such that f is R-c.a. is not
very informative: the hierarchy collapses at level w. The reason for this collapse
is not that all AY functions have simple approximations, but that the complexity
of these approximations can be coded into the isomorphism between R and w. In
other words, if R is complicated then R-c.a. functions may be complicated as well,
even if R is short. In terms of the algebraic complexity of R itself, we notice that
key functions associated with R, such as the predecessor and successor function,
may be far from computable.

One possible solution is to restrict the computable well-orderings to those given
by notations on some IT1 path through Kleene’s O. This is less than satisfying on
two accounts. The first is that even though the path may be cofinal in O (so have
notations for every computable ordinal), this does not exhaust all A functions [41].
The other is that there is no canonical way to choose a path through Kleene’s O,
and so any such choice is arbitrary, and different choices give different hierarchies
of functions.

Another way forward is to give up any claim to exhausting all A9 functions,
but restrict our attention to a particularly well-behaved class of computable well-
orderings. We will require that all orderings in the class that have the same length
are computably isomorphic, so Corollary 1.11 will ensure that we will have a good
notion of a-c.a. functions for some class of computable ordinals a. The criterion
for canonicity of these orderings is the computability of all reasonable associated
functions, such as the predecessor, successor and so on. It turns out that up to ¢,
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the function which encapsulates all the required information is Cantor’s normal
form.

2.1. Cantor normal form. Recall that every ordinal o has a unique expres-
sion as the sum
(%58 a2 Qg
w Ny t+w ng + -+ W Ng
where n; < w are nonzero and a7 > a9 > - -+ > g are ordinals. Recall also that

W W WY
go = sup{w,w’,w* ,w¥ ...

is the least ordinal « such that w? = =, so for all & < g¢, every ordinal appearing
as an exponent in the Cantor normal form of « is strictly smaller than «.

Let R = (R,<gr) be a computable well-ordering of order-type < ey, and let
|- |: R — otp(R) be the unique isomorphism between R and its order-type. The
pullback to R of the Cantor normal form function is the function nfz whose domain
is R and is defined by letting

IlfR(Z) = <(Zlv nl)y (ZQa n?)a ) (Zka nk)>
where n; < w are nonzero, z; € R, 21 >r 29 >r -+ >R 2k, and

[21] 22|

2] = wtlng + wlelng + .- 4 wl*ln,,
||

Definition 2.2. A computable well-ordering R is canonical if its associated Cantor
normal form function nfx is also computable.

Remark 2.3. Suppose that otp(R) < 9. Then R is canonical if and only if the

relations
{(x,y) eR?: |z| = wly‘}

and

{(z,y,2) € R® : 2] = [y| + |2]}
are computable. That is, if the possibly partial operations of ordinal addition and
exponentiation with base w are partial computable. In the second direction, it is
clear that if addition and exponentiation with base w are partial computable, then
identifying nfr (z) is computable. In the first direction, |z| = w!¥! if and only if
nfgr(x) = {(y,1)). For addition, we note that we can compute addition from the
Cantor normal form, using the fact that ordinal addition is associative, and the fact
that if 3 < ~ then for all m, wPm + w? = w?.

Note that if the relations of ordinal addition and exponentiation by w in R are
computable, then R is canonical.

Proposition 2.4. Let R and S be canonical computable well-orderings, with
otp(R) < otp(S) < g9. Then the unique embedding of R as an initial segment of
S is computable.

PROOF. For every ordinal o < g let J(«) be the S-least set of ordinals J such
that o € J and for every § € J, every exponent appearing in 3’s Cantor normal
form is also in J. The set J(a) is finite. To see this, consider the tree T}, of finite sequences
of ordinals defined recursively as follows. We declare that (&) € Ty. Then, if 0" € Tw, 5 > 0 and
B = w'ng +...wY%ng is B’s Cantor normal form, then for all ¢ < k, 0"8™y; € To. The tree is
finitely branching and each sequence on the tree is a decreasing sequence of ordinals, and so Ty
does not have a path. By Konig’s Lemma, Ty, is finite; and J(«) is the set of ordinals appearing
in a sequence in To. For a computable well-ordering R with otp(R) < o, for each
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z € R, let Jr(z) = {we R : |w| € J(|z])} be the pull-back of J(|z|) to elements
of R. If R is canonical then the function Jg is computable. This means that from 2z
we effectively obtain a “strong index” for Jg(z).

Let j: R — S be the embedding of R into S as an initial segment. Then
j(z) = w if and only if there is a bijection i: Jg(z) — Js(w) such that i(z) = w
and which preserves Cantor normal form: for all x € Jg(z), if

nfr(x) = {(y1,n1), (Y2,12), - - - (Y, M)

(where necessarily y1, 4o, - .., yx € Jr(2)) then
nfs(i(z)) = (i(y1), n1), (i(y2), n2), - -, (i(yk), nk))-
This shows that j is computable. O

Beyond ¢p, we need to strengthen canonicity to obtain an extension of Propo-
sition 2.4. We do not develop this further here, as g is well beyond the ordinals
that come up in the constructions we examine.

2.2. Existence of canonical well-orderings. For a computable well-
ordering R, The computable well-ordering w”™, whose order-type is w°®P(R),
is defined using Cantor normal form. The field of w”® is the collection of all
sequences of pairs {(z1,n1), (22,n2),..., (2K, nk)y from R x (w\{0}) such that

21 >R 2o >R >R 2k We let

<(Zlvn1)v (227n2)7 sy (Zkvnk)> <wR <(w17m1)7 (wQ’mQ)a B (wlaml)>

if k <l and for all i < k, (z;,n;) = (w;,m;); or if for the least ¢ < k such
that (z;,m;) # (w;,m;) we have w; <g z; or w; = z; and n; < m; (that is, if
(ni,zi) <w-R (mz,wz))

Lemma 2.5. Let R be a canonical computable well-ordering. Then the embedding
of R into w™ as an initial segment is computable.

PrROOF. In fact, this embedding is exactly nfx. O

Lemma 2.6. If R is a canonical computable well-ordering, then so is w™.
Indeed, a computable index for nf = can be effectively obtained from a com-
putable index for nfz.

PROOF. Let j = nfr be the canonical embedding of R into w™. For any
{(z1,m1), (22,m2), ..., (2, nx)) in the field of w™, we have

nf, r (<(217n1)’ (22777‘2)7 ) (Zkvnk)>) = <(j(z1),n1), (j(ZQ)’nQ)’ IR (.](Zk)’nk)>|:|

Lemma 2.7. Let (R, be a sequence of uniformly computable, uniformly canonical
well-orderings (that is, the functions nfg, are uniformly computable). Suppose
that for all n, otp(R,) < otp(Rn+1); let in: Ry — Rpi1 be the embedding of Ry,
into Rp+1 as an initial segment, and suppose that the sequence (in) is uniformly
computable.

Then the direct limit of the system (R, in) has a canonical copy.

n<w
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PrROOF. For m < n, let @', = ip_1 04p_2 0+ 0 iy be the initial segment
embedding of R,, into R,, (and i =idg, ).

Let
I = R, x {n}.

For (w,m), (z,n) € I" where m < n, we let (w,m) ~ (z,n) if i7", (w) = z. Then ~ is
an equivalence relation on I', and the universe of the direct limit of (R, i,y is T/ ~,
the collection of ~-equivalence classes. To get a computable copy, we pick out repre-
sentatives to be the ones that appear earliest in an effective enumeration (I's) of T,
using the fact that {~[r,) is uniformly computable. We let R be this computable
set of representatives. The ordering <z is defined by letting, for (w,m), (z,n) € R
such that m < n, (w,m) <g (z,n) if %, (w) <g, z. Certainly R = (R,<gr) is
computable, and isomorphic to the direct limit of the system (R,,i,). Note also
that the representation function ¢: I' — R defined by requiring that ¢(z,n) ~ (z,n)
is also computable.
Let (z,n) € R, and let nfg  (2) ={(z1,m1),..., (2K, my)). Then

nfr(z,n) = {(c(z1,n), m1), (c(z2,n),ma), ..., (c(zk,n), mg))

and so nfg is computable. ([
Corollary 2.8. There is a canonical computable well-ordering of order-type €q.

PROOF. Let Ry = (w, <) and R, 11 = w™", and apply Lemmas 2.5, 2.6 and 2.7.
(I

If R is a canonical computable well-ordering, then for all z € R, the restric-
tion of R to the initial segment of R defined by z is also a canonical computable
well-ordering. Hence the collection of ordinals « for which there is a canonical com-
putable well-ordering of length o forms an initial segment of the ordinals. Corol-
lary 2.8 implies the following:

Proposition 2.9. For every a < ¢, there is a canonical computable well-ordering
of order-type «.

In view of Propositions 2.4 and 2.9, we identify ordinals a < g with canonical
well-orderings of order-type a.

Definition 2.10. Let o < gg. A function f is a-c.a. if it is R-c.a. for some (all)
canonical well-ordering R of order-type «.

This notion is well-defined by Corollary 1.11 and Propositions 2.4 and 2.9. By
Propositions 1.10 and 2.4, if a < 8 < ¢, every a-c.a. function is $-c.a.

We go further and fix a canonical well-ordering R., of order-type 5. We
identify o < g9 with the element 2 € R, such that [z|z,, = a. As from z we can
effectively obtain the initial segment R, [, of R, determined by z, we say that
effectively from o < g9 we can get a canonical well-ordering R,, of order-type a.
The identification of o with both R, and with R, ’s least upper bound in R., is
true to von Neumann’s definition of ordinals: an ordinal here is identified with the
collection of its predecessors.

Note that the listing of tidy (R+1)-computable approximations provided by the
proof of Proposition 1.7 is uniform in an index for R. Hence, uniformly in o < g,
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we can fix an effective list (f&%, 02} of tidy (« + 1)-computable approximations,
where, letting f©* = lim, f&%, the sequence (f*%) __ is a listing of all a-c.a.
functions.

Proposition 1.12 allows us to define some levels of the hierarchy of a-c.a. func-
tions:

Proposition 2.11.

(1) Let n < w. A function is w"*-c.a. if and only if it has a computable

approzimation which is bounded by an w™-c.a. function.
(2) Leta > w, a <eg. A function is w*-c.a. if and only if it has a computable
approximation which is bounded by an w®-c.a. function.

2.3. On ordinal notations. One of the main uses of Kleene’s system of or-
dinal notations [54] is to define effective transfinite iterations of the Turing jump,
giving rise to the hyperarithmetic hierarchy. Roughly speaking, a notation for an
ordinal corresponds to a computable well-ordering on which the successor func-
tion is computable, and which associates with every limit element a computable
cofinal sequence. We briefly recall the definition. The set O and the partial order-
ing <o are defined by (very much non-effective) recursion. We start with 1 € O.
If a € O then 2* € O and w <p 2% < w <o a. If g, is total and for all n,
Ye(n) <o we(n +1) then 3-5¢€ @ and w <p 3-5° < (In)w <o Ye(n). Why 3-5¢
and not 3¢? because if e = 0 then 3° = 1, and 1 was already used. The relation <¢ is in
fact a transfinite tree, and each a € O is considered a notation for the order-type of
the well-ordered initial segment I(a) = {b€ O : b <o a}. The ordinal |a|p is com-
putable, and every computable ordinal has a notation. Note that |2%|p = |a]o + 1
and |3 - 5%|p = sup,, |pe(n)|o.

For a notation o € O, the set of predecessors I(0) of o according to <¢ is c.e.,
uniformly in o, but not necessarily computable; and the restriction of <o to I(0)
is also c.e., again uniformly in 0. The uniformity allows us to pull back <ol ()
by an effective enumeration of I(0) to give a computable well-ordering R, (with
computable domain) isomorphic to <ol ()

Spector’s theorem [93] is in some sense a version of Proposition 2.4: if a,b € O
and |alo < |blo then H,, the iteration of the jump along R,, is Turing reducible
to Hy, the iteration of the jump along R;. This suffices to give a precise definition
of an increasing sequence of degrees 0(%) for all computable ordinals «.

For the purposes of defining a-c.a. functions and later, totally a-c.a. degrees,
general notations are not sufficient, as the well-orderings R, are not necessarily
canonical. For example, Ershov [40], and later, Epstein, Haas and Kramer [37],
define a function to be a-c.a. if it is R,-c.a. for some notation o € O for a. Under
this definition, every A9 function is w?-c.a., and as we shall see below, every A9,
lows degree is totally w?-c.a. For the small ordinals we are interested in, there
is a natural choice for a system of notations: we say that a notation o € O is a
strong notation if R, is canonical. This method was also chosen by Coles, Downey
and LaForte [15] in unpublished work looking at hierarchies based on truth table
reductions below 0’, and by Diamondstone, Hirschfeldt and Nies (unpublished) for
variations on Demuth randomness. Note that every notation for an ordinal below
w? is strong, but as we shall see, there are notations for w? which are not strong.

Let us say that a computable well-ordering R of successor order-type is
notation-like if:
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e the successor function on R is computable; and
e the collection L(R) of limit points of R is computable.

Lemma 2.12. Let R be notation-like. Then there is an effective map giving, for
every z € L(R), an index for a computable <g-increasing sequence (of order-type w)
cofinal in R 1,.

PRrooF. For each n consider in turn the R-greatest element of R |, n{0,...,n}.
O

The reason that we only consider successor order-types is that if otp(R) is
a limit then we would need to add the requirement that there is a computable
increasing sequence cofinal in R.

Lemma 2.13. A computable well-ordering of successor order-type is computably
isomorphic to R, for some o € O if and only if R is notation-like.

ProOF. Of course, R is computably isomorphic to R, if and only if the order-
preserving bijection between R and (I(0), <ol(s)) is computable.

If j: R — I(o) is order-preserving, then for all z € R except for the top element
of R, the successor of z in R is w where j(w) = 27*); the collection L(R) of limit
points of R is the collection of z € R such that j(z) = 3-5¢ for some e. This shows
that if R is isomorphic to R, for some o € O then R is notation-like.

Suppose now that R is notation-like. By Lemma 2.12, let f be a computable
function such that for z € L(R), @y, is an <g-increasing and cofinal sequence in
R

By effective transfinite recursion (as in [83]) we define a computable injection
j: R — O by letting:

(1) j(2) =1, where z is the R-least element of R;
(2) If z is the successor of w in R, then we let j(z) = 27(*);
(3) If z € L(R) then j(z) = 3-5° where . = j o @y(z).
Specifically, we define a partial computable function F': w x R — w as follows:

o If z is the R-least element of R, then for all e we let F'(e,z) = 1.

o If z is the R-successor of w, then we let F(e,z) = 2¢<(®),

e Let g be a computable function such that for all a and b, ¥y(a,5) = ¥a © Po-

If z € L(R), then we let F(e,z) = 3-59(:f(2)),

By the recursion theorem, there is an index e such that for all z € R, F(e, z) = ¢.(z).
Then j = @, |r satisfies the conditions (1)—(3) above. The main point is that
R < dom p,: otherwise, since R is well-founded, there is an R-least z € R for
which ¢.(z)?1, which by definition of F', must be an R-successor element of some
w € R; but then ¢, (w)] implies that F(e, z)| for a contradiction.

Now the fact that R < dom ¢, implies that for all z € L(R), ¢.(z) = 3 - 54
where g4 is indeed an increasing and cofinal sequence in I(¢.(z)), so by transfinite
induction on the elements of R we can show that j is an order-preserving bijection
between R and I(0), where o = 2/(2) for z being the R-maximal element of R. [J

Lemma 2.14. FEvery canonical well-ordering of successor order-type [ < g¢ is
notation-like.

PROOF. Let a < gp, and let a = w™*'nq+- - -+w* ny be the Cantor normal form
of a. Then « is a limit ordinal if and only if g, # 0. If v is a limit, then the successor
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of « is the ordinal 8 whose Cantor normal form is w®n; + - + w®%ny + wO01;
otherwise, it is the ordinal 5 whose Cantor normal form is w®'ng +- - - +w®* (ng +1).
O

Corollary 2.15 (Coles, Downey, LaForte). For every a < eg, there is a strong
notation o € O for a.

PROOF. Suppose that a < gq is a successor ordinal. By Proposition 2.9, let R
be a canonical computable well-ordering of order-type «. By Lemmas 2.14 and
2.13, there is some 0 € O with R, computably isomorphic to R. Then R, is also
canonical, whence o is a strong notation for a.

If v is a limit ordinal, let o be a strong notation for av+1; then log, o is a strong
notation for a. O

We show that some notations are not strong.

Lemma 2.16. Let R be a computable well-ordering of order-type w. Then w-R+1
is notation-like.

PROOF. The successor of (n,2) Ew x Rinw-Ris (n+1,z). Let 2o be the R-
least element of R. Then the collection of limit points of w-R is (w\{0}) x {z0}. O

Let R be a computable well-ordering of order-type w. Certainly z — (0, 2) is a
computable embedding of R into w-R. By Proposition 1.10, every R-c.a. function
is w - R-c.a. By Lemmas 2.13 and 2.16, every R-c.a. function is R,-c.a. for some
notation o € O for w?. Ershov’s Theorem 2.1 now implies:

Corollary 2.17 (Ershov). For every AY function f there is a notation o € O for
w? such that f is R,-c.a.

Most AY functions are not w?-c.a., and so there are many notations for w?
which are not strong.

3. Weak truth-table jumps and w®-c.a. sets and functions

Coles, Downey and LaForte [15], and independently Anderson and Csima [3],
examined the analogue of the Turing jump in the weak truth-table degrees. An-
derson and Csima went on to tie levels of sets in the Ershov hierarchy to finite
iterations of this bounded jump, generalising the well-known fact that a set is w-
c.a. if and only if it is weak-truth table reducible to @’. If @™ is the result of
iterating the bounded jump operation n times, starting with ¢§ (we give a precise
definition below), then Anderson and Csima showed that a set A € 2 is w”-c.a. if
and only if it is weak truth-table reducible to @<,

Coles, Downey and LaForte defined strong notations in order to define an ana-
logue of the H-sets in the AY weak truth-table degrees, namely to find a way
to define transfinite iterations of the bounded jump operator which are invariant
in the weak truth-table degrees. We carry out their programme for ordinals be-
low €g, and extend Anderson’s and Csima’s result to all such ordinals (Theorem
3.11(1)). We further discuss what happens when we pass from sets to functions
(Theorem 3.11(2)).
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3.1. Bounded g-c.e. sets and the bounded jump. Recall that a function f
is weak truth-table reducible to a function g if there is a Turing functional ® such
that ®(g) = f, and the use function of this reduction is bounded by a computable
function. We can extend this to partial functions: for any function ¢g: w — w, we
say that a partial function v¥: w — w is bounded g-computable if there is a Turing
functional ® and a partial computable function ¢ such that for all z and y, ¢ (z) = y
if and only if ¢(x)| and ®(g [, (), 7) = y; and x ¢ dom ¥ if p(z)1 or if there is no
such y. A total function f is bounded g-computable if and only if f <ut; g. Note
that in this section, we abandon the convention that for a Turing functional ® and
an oracle X, dom ®(X) is an initial segment of w.

A weak truth-table functional is a pair (®, ) consisting of a Turing functional
and a partial computable function. If (®, ¢) is a weak truth-table functional, * < w
and g: w — w, then we write @(g,z) =y if p(z)| and @(g ,(z),2) = y. We
write @(g,x)i if é(g,m) = y for some y. The notation ® assumes that the partial
function ¢ is clear from context.

We say that a set A € 2% is bounded g-c.e. if it is the domain of a partial
bounded g-computable function.

We can enumerate all partial bounded X-computable functions, and all
bounded X-c.e. sets, by giving an effective enumeration (®.,p.),_  of all weak
truth-table functionals. We fix such an enumeration which is moreover acceptable:
if (We,ve),_, is any effective list of weak truth-table functionals, then there is an
(injective) computable function g such that for all e, (®yc), 9g(e)) = (Ye,e). For

all g: w — w, <<i>e (g)> is a g-effective list of all partial bounded g-computable
e<w
functions, and letting W9 = dom ®.(g), <W£> is a list of all bounded g-c.e.

e<w
sets.

Some of the basic properties of partial computable functions and c.e. sets do
not carry over to the bounded realm. The following proposition is meant as a
cautionary tale.

Proposition 3.1. Let g: w — w.

(1) Every nonempty bounded g-c.e. set is the range of some function f <yt g;
but there is a function f <y &' whose range is not bounded 7S’ -c.e.

(2) The graph of any partial bounded g-computable function is bounded g-c.e.;
but there is a (total) function f which is not bounded &'-computable, but
whose graph is bounded 7f'-c.e.

(3) If A <wtt g, then A is bounded g-c.e. (and so is its complement). How-
ever, there is a c.e. set C and a set A such that both A and its complement
w\A are bounded C-c.e., but A £yt C. For the set C we cannot choose
&' if both A and W\A are bounded &f'-c.e., then A <yt &'

Note, however, that with a computable oracle the distinctions disappear: a
partial function is bounded F-computable if and only if it is partial computable,
and a set is c.e. if and only if it is bounded F-c.e.

SKETCH OF PROOF. For (1), we note that for any g, if A is g-c.e. and nonempty,
then there is some f <yt; g such that A = range f. In fact, the use function for
reducing f to g can grow as slowly as we like; we simply wait with enumerating
some x € A into the range of f until the input of f is large enough for A to see
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that z is in A. Hence, every nonempty X9 set is the range of some w-c.a. function.
On the other hand, below we see that every bounded (J'-c.e. set is AY (in fact,
the Anderson-Csima result implies that a set is bounded @¥'-c.e. if and only if it is
w?-c.a.) The result follows from the fact that there are X9 sets that are not A.

For (2), note that if f is a AY function which has an increasing approximation,
that is , a computable approximation {fs such that for all x and s, fs(z) < fs+1(x),
then the graph of f is d.c.e., and so w-c.a., and so weak truth-table reducible to &',
and so certainly bounded ¢f'-c.e. For any a < gq it is easy to define an increasing
approximation for a function f which is not a-c.a. by diagonalising against all
partial a-computable approximations (Proposition 1.7), always increasing the value
of f if we want to change it. If we choose o = w, then we get a function which is
not w-c.a., and so not weak truth-table reducible to @', and so, since it is total,
not bounded @f'-computable.

We sketch the proofs of (3). First, we enumerate a c.e. set C' and define a set A
such that both A and w\A are bounded C-c.e. For e < w, the requirement R, seeks
a witness = such that A(z) # ®,(C,z) if the latter converges. After picking a new
witness x, we state that x ¢ A with fresh C-use 950 (), and freeze C' [, (). If later
d.(Cy,z)|= 0 (ie. “no”), then we enumerate ¥yo(z) — 1 into C' and declare that
xz € A with A use ¢yes() > @e(2), no(x). Of course this enumeration into C' may
free the opponent to change their mind and later still let &, (Cs,x) =1 (Le. “yes”).
In that case we enumerate t)yes(2) — 1 into C' but freeze C' below that number, and
declare that = ¢ A with the old use tno(x). The point is that thyes(x) > @e(x),
so our freezing C' means that the opponent cannot change their mind again and is
stuck with declaring that x € A, whereas we leave x ¢ A for ever after that. Each
time a requirement acts, all weaker requirements are initialised and are forced to
pick new witnesses; so this is a finite injury construction.

The difference between C and ¢, is that unlike an arbitrary c.e. set C, the
opponent in the previous construction, that is us in the current construction, con-
trols a portion of @’. That is, we enumerate an auxiliary c.e. set E, and by the
recursion theorem we know an index e such that E = W, which is the e*" column of
@', Suppose that we are given that A = dom & (') and w\A = dom &¢('). To
reduce A to ¢, given x, we wait for some i and s such that <i>l( L)), ie, pi(z)]
at stage s and @,;(J%, x) converges with use below ¢;(z). We then set ¢(z) to be
some number large enough so that the agent which is responsible for computing
A(z) can control ¢, (z) many elements of ¥’ (via E) with no interference from other
agents which have already staked their claims for portions of E. We show that this
control is sufficient to compute A(z) from ' ;). As long as &,(", )|, we keep
stating that A(z) = i, with use & (s If &’ changes below ¢;(z), and we then

4

see that ®_; (., x)|, then we declare that A(x) = 1 — i with use the new version
of &' Iy (as ¥(x) > i(x)). If the computation d1_;(¢, ) fizzles, we wait to
see if we next get a new computation fi)i(@’s,x)l. If not, then we will later get a
new <i>1,i(®’, x)| computation, and we didn’t need to do anything. Otherwise, we
enumerate one of our agitators into F so that we can redefine A(x) = i with the
new version of ' (). The point is that no matter how large 1 _;(x) (it may be
much larger than ¢ (z)), every enumeration into E on behalf of computing A(x) is

tied to a failed ®;(J}, r) computation, and so to some historic version of &' [, (z)-
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Thus we never run out of agitators and we can keep up with the changes in A and
record them into ' ;) correctly. ([

With the perils of bounded oracle computations in mind, we turn to define the
bounded jump and a universal “jump function”. For an oracle g: w — w, we let

g —@Wg—{ex :ereg}.
e<w
In analogy with the jump function .J, we define a function 19 as follows:

19(e.2) = 0, if ¢ W9,
’ d.(g,2) + 1, otherwise.

Elementary properties of these jump operations are analogous to those of the
Turing jump.
Lemma 3.2. Let g: w — w.
(1) g' is 1-complete for the class of bounded g-c.e. sets.
(2) g' is computably isomorphic to the set {e te€ Wé"}

PROOF. (1) — the fact that g' is bounded g-c.e. — follows from the fact that the
enumeration (P, p. ), _, is effective: (®.) is uniformly c.e., and {¢.) are uniformly
partial computable.

e<w

Let g* = {e P e€ Weg} Since g* is bounded g-c.e., to show (2) it is sufficient
to show that ¢g* is also 1-complete for the class of bounded g-c.e. sets. Let (P, ¢)
be a weak truth-table functional. To reduce <i>(g) to ¢g*, given any z < w we
define a partial computable function v, such that for all w, ¢, (w)| if and only if
©(x)], in which case, ¥, (w) = p(z) for all w; and also define a Turing functional
U, such that if ¢(z)1, then ¥, (h,w)1 for all w < w and all oracles h, and if
o(xz) ], then U, (h,w) = ®(h,w) for all oracles h and all w < w, with the same
use. Since the numbering (P, @) is acceptable, there is an injective computable
function f such that for all ¥ < w, (Ws,%s) = (Pf(s), Pf(z)). Then f witnesses

that dom ®(g) <; g*. O

For functions f, g: w — w, we say that f <., g if there is a computable function
h such that f = goh. Note that this definition extends the familiar one for sets. If
J <m g then f < g

Lemma 3.3. Let g: w — w. A set A is bounded g-c.e. if and only if A <y, g'.

PROOF. Let A <., ¢'; so there is a computable function h such that A = h=1gt.
Let x < w; let (e,y) = h(x). Then we let ¢¥(z) = p.(y) and U (h,z) = D (h,y) for
every oracle h, with the same use. Then A = dom ¥(g).

In the other direction, let (®,¢) be a weak truth-table functional, and let
A = dom i)(g) There is some e such that & = <i>@, and so for all x, x € A if and
only if (e,z) € g7, so the map z — (e, ) shows that A <, g'. O

Lemma 3.4. Forall g: w — w,

(1) g <wte I9.
(2) I9 is many-one equivalent to the “diagonal function” e — I9(e,e).
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PROOF. For (1), we have (e,z) € g' if and only if I9(e,x) # 0. For (2), the
reduction f of the proof of Lemma 3.2 satisfies I9(e,z) = I9(f (e, z), f(e,z)) for all
e and x. ]

Lemma 3.5. Let g: w — w.

(1) g <th Ig.
(2) For any set A, A <y AT

PROOF. Let ¥ = id be the identity function, and let ¥ be a Turing functional
which maps any sequence o to itself. So for all g: w — w, \i!(g) = g. Hence there
is some e such that g(x) = I9(e, ), s0 g <wit 19.

Every set A is bounded A-c.e., and so by Lemma 3.3, A <,, AT. It follows that
A <y AT

The proof of (1) and (2) will be complete with the aid of Lemma 3.4(1), once
we show that for any function ¢, g' €y g. This is Cantor’s argument, as the set

{e ted Wé’}
is weak truth-table reducible to ¢', and is not bounded g-c.e., so cannot be weak
truth-table reducible to g (Proposition 3.1(3)). O

Lemma 3.6. Let f,g: w — w.
(1) f <wie g if and only if IT <, I9.
(2) If f <wtt g then fT <u g. The converse fails, even when restricting to
sets rather than functions.

If f,g: w > w and f <wtt g, then from an index e such that ée(g) = f we can
effectively obtain indices ¢ and d such that ®.(I19) = I and ®4(¢") = fT.

It follows that the operations g — I9 and ¢ — g' induce well-defined, strictly
increasing functions on the partial ordering of the weak truth-table degrees.

PROOF. It is easy to show that if f <y ¢, then I7 <, I9 and fT <., gf. One
simply composes the reduction of f to g with any weak truth-table functional; this
composition is uniform in an index for a reduction of f to g.

Let f,g: w — w, and suppose that h is computable and I/ = I90 f. Fix e such
that f = ®.(f). Let < w, and let (d,y) = h(e,z). Since

I9(d,y) = I'(e,z) = f(z) + 1> 0,

we have Cf)d(g7y)l: f(x), which shows that f <yt g.

The failure of the converse to (2) is exhibited by an argument similar to the one
proving the first part of Proposition 3.1(3), and so we only sketch it. We enumerate
a c.e. set B and approximate a d.c.e. set B such that A € B but AT <, BT.
Instances R. . of a global requirement for coding AT into BT define the value at
(e,x) of a partial computable function ¢ and enumerate axioms with use Bj [y (e )
into a functional ¥; we then can find a computable function A such that for all
e and z, (h(e,z),h(e,x)) € Bt if and only if U(B,e,z)|; we need to ensure that
this happens if and only if (e,z) € AT. Requirements P; diagonalise A(z) against
éi(B,z) for some appointed follower z. The priorities of the R, , requirements
are interspersed between the P; requirements. In a typical scenario, R, , observes
that CTDE(AS, x)| for the first time; it sets (e, z) to be some large number, and lets

V(Bs, e, x)|. The size of ¢(e, x) allows the requirement R, , to enumerate a number
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into B once for each follower z < ¢, (z) for a requirement P; stronger than R, ,. Of
course followers for weaker requirements are cancelled and new ones are chosen to
be larger than ¢.(x). Whenever a strong P; enumerates its follower z into A, the
opponent may change whether \ife(As,x) converges or not. If the change is from
convergence to divergence, then we need to enumerate some number below (e, x)
into B. This, in turn, may cause ®;(B, z) to change, making P; want to extract z
from A. It does so, this time freezing B [, (.). The fact that ¢;(z) may be larger
than (e, z) does not disturb us: the extraction of z from A gives our opponent
an opportunity to make ®.(A, ) converge again, but we can then make U (B, e, z)
converge without changing B [ (c,.), simply by enumerating a new axiom into W. If
later an even stronger requirement P; acts, the process repeats, injuring P;, but any
new P; follower will be greater than ¢, (z), and so never disturb R, , again. Hence
we can fix ¢(e, z) based on the priority of R, , whenever we see ¢.(z) converge. U

Lemma 3.7. For all AY functions g, I9 is also AY.
And so ¢' is also AY.

PROOF. Let {gs) be a computable approximation for g. For e,z,s < w, let
hs(e, ) = 0if pe ()1, or if ¢ 5(gs 4, (2))1- Otherwise let hs(e,x) = Pe 5(gs o, (a))-
Then (hs) is a computable approximation of I9. The point, of course, is that if
@e(x)], then g, [, (2) eventually stabilizes. O

Since bounded @J-c.e. sets are simply c.e. sets, 7 and @’ are computably
isomorphic. Both sets are weak truth-table equivalent to I9, since if we know that
ée(@ , ), then finding the value i’e(@ ,x) can be done effectively. Hence, for any
AY function g we have gf =1 19 =1 &'

3.2. Transfinite iterations of the bounded jump. Let g: w — w. We
define, for a computable well-ordering R = (R, <g), the iteration of the bounded
jump set and function along R, by induction on the order-type of R.

o If R is empty, then we let g% = I% = g.
Suppose that R is nonempty, and that by recursion, for all z € R, both ¢¢®'=> and
1%, have already been defined.
e If the order-type of R is a successor ordinal, let z be the R-greatest element
of R; we then let ¢¢R = (g<RTZ>)Jr and I}, = &,
o If the order-type of R is a limit ordinal, we let ¢{™ = D.cr gR=> and
1% = @,cp 1%, By this we mean that for all z and =, (2,7) € g™ if

and only if z € R and z € ¢RI (so we consider g as an element of 2¢);
and if z € R, then I% (2, 7) = I, (v), whereas if 2 ¢ R then I%(2,7) = 0;
so we can consider I3 as a function from w to w.

Proposition 3.8. Let R and § be computable well-orderings. Suppose that
otp(R) < otp(S). Also suppose that the embedding of R as an initial segment of
S is computable. Suppose further that R is notation-like. Then for all g: w — w,
IR <o ¢ and I, <wie IZ.

PrROOF. Let j: R — S be the initial segment embedding of R into §. We
show that there are computable functions f and h such that for all z € R, for all
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g:w—ow
GBI = (i)f(z)(g<srj<z>>)
and R
I%Tz - (I)h(Z)(Igmz))'
Replacing R and S by one element extensions R + 1 and & + 1 then yields the
desired conclusion.
The definitions of f and h is done by effective transfinite recursion along R.
Directly, we define:
(1) If z is the R-least element of R, then we let f(z) = h(z) = e where
d.(g) =g forall g: w— w.
(2) If z is the R-successor of w, then by Lemma 3.6, from f(w) we can effec-
tively find a number f(z) such that for all g,

Dy (6857) = By ((9<Sr“w>>)T) B (9<Rr”>)T = gR1=,

and from h(w) we can effectively find a number h(z) such that for all g,

g

. . ; ,
Phcz) (Igmz)) = Pn(z) (I Srj““) = [TRtw = I;qm.
(3) If z is a limit point of R, then from g<srj(z)> and Igh’(z) we can obtain,

uniformly in g and in w <g z, g<3“(w>> and Igr , respectively, in a weak

J(w)
truth-table fashion. Thus from f | gy, and h |z, we can compute indices

f(2) and h(z) such that for all w <g z, for all x < w, for all g,

(i)f(z) (g<$rj(2)>7 (’LU’ .’L‘)) = (i)f(w) (g<SM(w)>7 .’If)
= g<72rw>(x) — g<er>(w,z)
and
(i)h(z) (Igrj(z)v (w,x)) = (i)h(w) (Igrj(,wyx) = I%rw(x) = [%rz(w,x)v

and so <i>f(z) (g<5rj<z>>) = ¢{R1=) and th(z) (Igrj(z)) = I, as required.

The details of the effective transfinite recursion, using the recursion theorem, are
as in the proof of Lemma 2.13. O

It follows that if R and & are computably isomorphic, then for all g,
R =y ¢¢5 and I, =y IZ. Hence, using canonical well-orderings, for o < o,
we can unambiguously define ¢¢* and T 9 for all g — these are unique up to weak
truth-table degree, and in fact many-one degree if a > 0, and induce well-defined
operations on the weak truth-table degrees. If a < 3 then ¢{* <y ¢¢% and
Ig <wtt Ig

Proposition 3.9. Let g: w — w and let a < g9. Then g<o‘> <wit 13.

PROOF. By effective transfinite recursion on g + 1 we build a computable
function R such that for all @ < &g and all g, P, (1) = ¢, This is done by
cases:

(1) Since 19 = ¢’ = g, we let R(0) be a number such that for all g,
‘I’R(o) (9) =9
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(2) The proofs of Lemma 3.4(1) and Lemma 3.6(2) show that there is a com-
putable function S such that for all & < ¢p and all ¢ < w, if i)a(g) =f
then @S(ma) (I9) = f1. We then let, for all a < g9, R(a+1) = S(a, R(a)).

(3) For limit «, we string together the reductions for 5 < «. The construction
for part (3) of the proof of Proposition 3.8 shows that there is a computable
function 7" such that for all limit ordinals o < g¢ and all a < w, for all
sequences (gs),_,, of functions,

ci)T(oz,a) (@ gB) = @ (i)a (95) .

B<a B<a
We then let R(a) = T'(«,a), where a is an index such that ¢, [o= R | 4.
Again to make things concrete, we show how to perform this recursion: we
define a function F. For all a < w, we let F(0,a) = R(0), F(a + 1,a) = S(a,a)
and for limit «, F(a,a) = T(a,a). By the recursion theorem, there is an index a
such that F'(—,a) = ¢(a). Since F'(a,0) is defined for all a, and since S and T' are
total, we have ¢g + 1 < dom¢,. The function R = ¢, [¢,+1 is as required. ]

Proposition 3.10. For any AY function g and any o < &g, 19 is A.

ProoF. Fix a AJ function g. By effective transfinite recursion we build a
computable function R such that for all a < €0, Yr@,) = (95) is a computable
approximation of I¢.

(1) We let R(0) be an index for a computable approximation of g.

(2) The proof of Lemma 3.7 shows that there is a computable function S such
that for all @ < w, if ¢, is a computable approximation of a function h,
then ¢g(4) is a computable approximation of I h. For any a < g9, we let
R(a+1) = S(R(a)).

(3) An argument similar to previous ones shows that there is a computable
function T such that for all ¢ < w and all limit « < g, if for all 8 < «,
©p.(8) is a computable approximation of a function hg, then pr(q q) is a
computable approximation of P f<a hg. Then we let, for limit ordinals
a, R(a) = T(a,a), where a is an index for R [,. O

The following theorem, a refinement of Proposition 3.10, is the goal of this
section:

THEOREM 3.11. Let a < gg.
(1) A set A is w*-c.a. if and only if A <y T,
(2) A function g is w*-c.a. if and only if g <wit I2.

This theorem generalises the fact that a function or a set is w-c.a. if and only
if it is weak truth-table reducible to ¥’. Anderson and Csima [3] proved part (1)
of the theorem for a@ < w.

We note that for o > 2, we really do need to use the function jump 79 rather
than the set jump g¢':

Proposition 3.12. There is an (w + 1)-c.a. function which is not weak truth-table
reducible to any set.

PROOF. We define an (w + 1)-computable approximation {fs, os) for a function
f. For each e < w, we want to ensure that for any set A, f(e) # ®.(A,e). Let e < w.
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We let V, be the collection of all values ®. (o, ¢), as o ranges over all binary strings
of length o, (e). For any set A, if ®.(A, e)|, then ®.(A, e) € V.. The sequence (V,)
is c.e., uniformly in e; if @.(e)?, then V.| = 0, and otherwise |V,| < 2%(¢). Let
(Ve,sy be a uniformly computable enumeration of the sets V..

For all s < w, if ¢e s(e)?, then we let fs(e) = 0 and os(e) = w. Otherwise,
we let fs(e) be the least element of w\V, s, and let os(e) = 2#<(¢) — |V, ;|. Then
f(e) ¢ V., which gives the desired diagonalisation. O

3.3. Commutative addition and powers of w. We focus on ordinal powers
of w because these consist precisely of the ordinals which are closed under addition.

Proposition 3.13. An ordinal a > 0 is closed under addition if and only if o = wP
for some .

PROOF. Let 8 be any ordinal, and let 7,0 < w?®. Let v = wni +...wny and
§ = w’my +- - -+w’m; be the Cantor normal forms of v and 6. Since w” <y < w?,
we have v < (§; similarly, 6; < 5. Hence

Y+ <wt(ng +1) + W (my +1) < w0 () 4+my) < WP,

so w? is closed under addition.

Let o be an ordinal which is not a power of w. Let @ = w*'ny + -+ + wq, Nk
be the Cantor normal form of a. Since o # w®!, we have W™ < a < w* (ng + 1).
This shows that « is not closed under addition. [l

While addition of ordinals is a natural and useful operation, it has a few short-
comings, in particular its lack of commutativity. Less well-used is the operation of
“commutative addition” (as termed for instance in [6]), based on Cantor normal
form.

Let ¢y > ag > -+ > ai. Let f = w™ny + w*ng + -+ + w%ny, and
v = wmy + w*mg + -+ + w**my, where of course n;,m; < w, but we allow
some n;, m; = 0. We let

BBy =w(n1+m1) +w*?(ng +ma) + -+ w*(ng + my).

Cantor normal form allows us to define 5 @ ~ for all ordinals 8 and v: we extend
their Cantor normal form to a presentation as above with a common sequence of
decreasing exponents by adding zero coefficients; for any sequence of exponents,
this presentation is unique.

Moreover, canonicity of our fixed computable well-orderings implies that the
operation @ for pairs of ordinals below ¢ is computable.

Lemma 3.14. Let «, 8 and 7 be ordinals.

(1) Bey=7®p.
(2) a®(B@®Y) = (a®P)DY.

PROOF. Quite straightforward, based on the commutativity and associa-
tivity of addition of natural numbers. For associativity, the point is that if
a1 > ag > ...qp mentions all exponents of w in the Cantor normal forms of «, 3
and -y, and

a=wng + -+ wny,
B =wmy + - +wmy,

y =W+ +waklk,
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then
(a@®B8)By=a@®(BBy)=w(n1+mi+11)+  +w(ng + m +1g). O

The associativity and commutativity of @ allows us to unambiguously define
@ A for finite multisets of ordinals A.

Lemma 3.15. Any power of w is closed under @.

PROOF. Let = w™ni+---+w*ny, and v = w*mq + - - - + w**my, be smaller
than w?. Then for all i < k, w®n;,w®m; < w®. Since w? is closed under addition,
it follows that 8 @~y < w®. O

Lemma 3.16. Let 81,82, ..., 8, andy1, Y2, - - -,V be two n-tuples of ordinals. Sup-

pose that for alli < n, B; < 7. Then D,,, Bi < Dic, Vir and D, Bi < Dy Vi
if and only if there is some i < n such that 5; < ;.

PROOF. Again, this is known and quite straightforward, but we give details
for completeness of our presentation. Let a; > as > .-+ > ap be the expo-
nents of w appearing in the Cantor normal form of any of the §;’s and ~;’s; let
,B,' = Zjékw%nm and Yi = Z‘jgkwo‘fmi,j. So ®i<n ﬂi = ngk (wa-j Zisn ni,j),
and @isn Vi = ngk (‘*’aj Zisn mi,j)’

If @<, Bi = D;<,, Vi then by the uniqueness of Cantor normal form, for all
J <k DicnMij = i<y, Mij- By induction on j < k, we show that for all 4,
n;; = m;j; it would follow that for all 4, 8; = ;. Fix j, and suppose that for all
j' < g, for all i <n, n;jr =m, ;. Since B; <, the induction assumption implies
that n; ; < m; ;. Now >, nij =D, m;; implies that for all i <n, n;; =m, ;.

Suppose that @, 8i # @;<,7%- Let j be the least index such that
Zién ngj # Zién m; j. An induction as in the previous paragraph shows that for
all j/ < j, for all ¢ < n, n; jy = m; ;. This information, together with the fact that
Bi < v for all 4, shows that for all 4, n; ; < m; ;, and so that Y, n; < X, M j-
Since Y., Mij # Dii<pn Miyj, We must have >, n;; < >, m; ;. The choice of
J now shows that ®,.,, 8i < D,<,, Vi O

The operation of commutative addition allows us to show that if a < ¢¢ is
closed under addition, then the a-c.a. functions induce an initial segment of the
weak truth-table degrees.

Proposition 3.17. Let o < eg. If f: w — w is w*-c.a. and g <wt f, then g is
w*-c.a.

PROOF. Let {fs,05),_,
(P, ) be a weak truth-table functional such that é)(f) = g. For any z,5 < w,
we recursively define a strictly increasing sequence (ts(x)),_,, of stages such that
for all s, @(fts(x),x)i. Let gs(z) = @(fts(w),x), and let m,(2) = @, (s) Ot (2)(¥)-
Then {gs, msy is an w®-computable approximation of g: by Lemma 3.15, for all x
and s, ms(z) < w®, and by Lemma 3.16, for all  and s, ms11(z) < ms(z) and if
gs1(x) # gs(x) then myy () < my(x), because fi () lo@)# fro(@) o(@)- O

be an w®-computable approximation of f, and let

3.4. The complexity of the iterated bounded jump. We wish to estab-
lish the following:

Proposition 3.18. For all a < gy, I is w*-c.a.
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As a result, by Proposition 3.9 and Proposition 3.17, @® is also w®-c.a.

Proposition 3.18 is proved by effective transfinite recursion, which means that
the w®-computable approximation for I, (¢f) will be given uniformly in «. That is,
by effective transfinite recursion on €, we will show that there is a computable func-

tion R: g9 — w such that for all o < &g, <st(a),w”,0§(a),w(’> is a w®-computable

approximation of IZ; recall that ({f&<, 0%%) <w)ev,, I8 an effective list, uniform in
«a, of all tidy (« + 1)-computable approximations (Proposition 1.7).
The following two lemmas correspond to two of the three cases in the definition

of R.

Lemma 3.19. Let a < gg. If g is an w*-c.a. function, then I9 is an (w® + 1)-c.a.
function. From «, and an index of an w*-computable approrimation of a function
g, we can effectively obtain an index of an (w* + 1)-computable approximation of
19.

PROOF. Let {(gs, 05y be an w*-computable approximation of g. For e,z,s < w,
if ®.(gs,2) converges in s many steps, we let hy(e, z) = 14 ®(gs, x); otherwise, we
let hs(e,z) = 0. Then (hs) is a computable approximation of 9. We may assume
that for all e and z, ho(e,x) = 0.

Fix e,z < w. For all s < w, let rs(e,z) be the least r < s such that for all
t e [r,s], hi(e,x) = hs(z). We define a function ms(e, z):

o If ry(e,x) =0, let ms(e, z) = w™.
o If r5(e,x) > 0 then we know that ¢.(x)]. There are two sub-cases:
— If hs(e,x) > 0, then we let

ms(e.z) = D (0s(y) Dos(y)).

y<we(x)
— If hs(e,x) = 0, then we let

ms(ea l‘) = @ (Os(y) @ Ors(e,x)—l(y)) :
y<we(z)

By Lemma 3.15, for all e,z and s, ms(e, z) < w®. We show that (hs,ms) is an
(w* + 1)-computable approximation. Fix e, z,s < w.

If hsy1(e,x) = hs(e,x), then ry(e,x) = rs11(e, z). In the three cases for defin-
ing ms(e,z) and msi1(e, ), Lemma 3.16, and the fact that os11(y) < 0s(y) for
all y, implies that ms.1(e, z) < mg(e, x).

Now suppose that hs.1(e, z) # hs(e, x); we want to show that msq(e, ) < mg(e, x).
Note that 7541(e,z) = s+ 1; let = r5(e, z). There are four cases.

(1) If r = 0, then mg(e, ) = w* and msi1(e, ) < w®.

(2) Suppose that » > 0 and that hgyi(e,2) = 0. Then hy(e,z) > 0. This
means that ‘i)e(gs,x) converges in s steps, but that i’e(gsﬂ,x) does not
converge in s + 1 steps; so necessarily gs+1 o, (2)7 gs [p.(x)- SO there is
some y < @.(x) such that 0s11(y) < 05(y). We have

ms(e,x) = @ (0s(y) Dos(y)),
y<epe(x)

and

msii(e,z) = @ (0s1(y) Dos(y)) -

y<@e(x)
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The desired inequality then follows from Lemma 3.16.

(3) Suppose that r > 0, that hsyi(e,x) > 0, and that hs(e,z) > 0. Then
hsy1(e, ) # hs(e, x) implies that gsy1 1, (2)7 s 4. (2)» SO again, there is
some y < @¢(x) such that 0,11(y) < 0s(y). We have

ms(e,x) = @B (0:(y) @os(y)),

y<epe(z)
and
msp1(e,z) = P (0s41(y) D os1(y))
y<wpe(x)
so again mgy1(e, ) < mg(e, x).
(4) The last case is that r > 0, hst1(e,z) > 0 and hg(e,z) = 0. Now the

point is that h,_1(e, ) > 0, so the argument in case (2) show that there
is some y < () such that o,(y) < 0,_1(y), whence 0,41(y) < 0r—1(y).

We have
msri(e,r) = P (0s+1(y) D oss1(y))
y<we(z)
and
ms(e,z) = @D (os(y) Dor-1(y)),
y<we(z)
so we get the required inequality in this case too. O

Lemma 3.20. There is a computable function T such that for any limit ordinal

5 5
a < g9 and a < w, if for some g, for all B < «, <ff"(’6)’w ,ofaPw > is
s<w

« 8
a total wP-computable approzimation of Ig, then <f§° ’T(a’a), 0% ’T(a’a)> s an
s<w

w*-computable approzimation of I15.

ROOF. Given « and a, define (hg, ms) by letting hg(8,x) = f&° ’Bx and
P G d a, define (h by 1 hs(B pa(B)w

ms(B,z) = ofe (D)’ (), if v (B)] and ofe (D)’ (x)], otherwise we let hs(3,z) and
ms(B, z) diverge. For z # (8 for any 5 < «a, we of course let hs(z,x) = ms(z,x) = 0.
By the acceptability of the list of tidy (w® + 1)-computable approximations, we can

B
define T'(a, a) such that if ¢, is total, and for all 8 < «, <0f“(5)’w > is total, then
<0:)Q’T(a’a)> is total, and lim, f‘?’a’T(a’a) = lim, hs. O

Proposition 3.18 now follows by effective transfinite recursion.

3.5. Reducing w®-c.a. sets and functions to iterations of the wtt-
jump. Let a < gy. An instance of an w®-computable approximation is a pair
(f,0) of computable functions f: w — w and 0: w — w® such that for all s < w,
o(s+1) <o(s) and if f(s+ 1) # f(s) then o(s + 1) < o(s).

As is done in the proof of Proposition 1.7, we can list, uniformly in «, tidy
instances of (w® + 1)-computable approximations. In other words, there is an
effective list (f&, 0%) of pairs of computable functions with the following properties:

(1) For every o < g and every e < w, (f&,0%) is an instance of an (w® + 1)-
computable approximation with f&(0) = 0 and 0%(0) = w®;
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(2) The listing is acceptable: there is a (total) computable function ¢(«, d, e)
such that for all @ < ¢p and d,e < w, if (¢q, ) is an instance of an
w®-computable approximation, then limg ¢q4(s) = lim, chZa de)-

Again the idea is to convert any pair (g,m) of partial computable functions into a
pair functions (f,0) as in (1). We enumerate the graphs of m and g until we see
that both m(0) and g(0) converge. As long as we don’t see convergence, both f
and o are constant; otherwise we slowly copy the values that we see.

Given the lists {f&, 0%), we define the following for o < g:

(1) Cq ={e : Is (02(s) <w®)}. The sets C,, are c.e., uniformly in a.
(2) Partial functions F,: C, — w by letting, for e € Cy, Fy(e) = limg f(s).

Lemma 3.21. For every a < gy, F,, is partial bounded 12 -computable.

Lemma 3.21 is proved by effective transfinite recursion on gy + 1, so again it
has to be uniform: we construct a computable function R such that for all a < &g,

D) (I2) = F,.

The following three lemmas explain how to define R(a) for the three kinds of
ordinals a: « = 0, successor «, and limit a.

Lemma 3.22. Fj is a partial computable function, and so is partial bounded -
computable.

PROOF. For each e € Cy, Fy(e) = f2(n) for n such that o%(n) = 0. O

Lemma 3.23. There is a computable function S such that for all a < g9 and all
a < w, for any function g: w — w, if ®a(g) = Fa, then Pg(q,q)(19) = Foq1.

PrROOF. We show how to define, effectively from « and a, a weak truth-table
functional (¥, ) such that for any function g, if ®,(g) = F, then W(19) = F, 1.
The acceptability of the enumeration of weak truth-table functionals then allows
us to effectively find an index S(a,a) such that (V1) = (®g(a,q4), Pa,a)-

Let e <w. If e ¢ Cyi1, then we leave ¥(e)1, and for any oracle g, ¥(g,e)?.

Suppose that e € C,y1. For abbreviation, let (f,0) = (f*1,02%1). The idea
now is to break up the instance (f, o) into a finite sequence of instances, each within
a copy of w® sitting inside w**!l. Let s* witness that e € Cyy1: o(s*) < wtl.
Since w®! = w® - w, we can write, for s = s*, o(s) = w¥n(s) + B(s) for unique
n(s) <w and B(s) < a.

Let M = n(s*). For m < M we define an instance (f™,0™) of an w®-
computable approximation by copying 8(s) on stages on which n(s) = m. Namely
let J,, = {s = s* : n(s) = m}. Then Jy < Jy—1 < -+ < Ji is a partition
of [s*,w) for some k < M; let us assume that J,, for m > k is nonempty (i.e.
the approximation (f,0) does not skip over the m'" copy of w®); this is easily ar-
ranged. For m > k we define f™(s) = f(s) and o™(s) = B(s) for s € J,,, and
extend in a constant way otherwise (i.e., for s < J,,, f™(s) = f(minJ,,) and
0™(s) = B(min J,,); and if m > k and s > J,,,, we define similarly but with max J,,
replacing min J,,). For m < k we leave f™(s) and 0™(s) undefined for all s. The
point is of course that lim, f*(s) = F,11(e).

By the acceptability of the list {f¢, 0% ), we can effectively get numbers d,, for
m < M such that for all m < M,

e d,, € C, if and only if m > k; and
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o If m >k, then F,(d,,) = lims f™(s).

Now the procedure ¥ queries the oracle on each pair (a,d,,). The use is
bounded by max{(a,d,) : m < M}; this is revealed to us once we see that
e € Cyy1, so this use is partial computable (uniformly in a, @ and e). If indeed
®,(g) = F, then I9(a,d,,) = 0 if and only if m < k and I9(a,dy) = 1 + Fay1(e),
so this is what ¥ outputs. [

Lemma 3.24. There is a recursive function T such that for any limit ordinal «,
a < w and sequence <g[3>ﬁ<(JK of functions, if for all B < a, @y, (5)(98) = Fp, then

‘fT(a,a) ((—ng 95) =Fy.

PROOF. Of course now the point is that w® is the limit of the ordinals w? for
B < a. So given e € C, we can effectively find some 8 < « and some s* such that
0%(s*) < wf, and so can translate (f<,0%) to an instance of an w?-computable
approximation; so we can find some d € Cg such that lim, f&(s) = lim, fg(s)
We can then find some number ¢ (e), effectively computed from e, such that from

(G—)ﬁ<a gﬂ) ly(e) We can compute gg [, (1), and so using ®, can output

ba(gs,d) = Fp(d) = Fale)
as required. Again, all this can be coded by a functional ¥, and by acceptability
we can effectively find an index T'(a, a) such that (®r(q,a), ¥7(a,q) = (¥,¢). O

Now effective transfinite recursion on ¢+ 1, using Lemmas 3.22, 3.23, and 3.24,
builds a computable function R such that for all a < o, ®gq) ([, 2) = F,, and so
proves Lemma 3.21.

PROOF OF PART (2) OF THEOREM 3.11. Let @ < 9. Proposition 3.18 states
that 19 is w®-c.a. By Proposition 3.17, every function g < I2 is also w*-c.a.

For the converse, let g be an w®-c.a. function; let {gs, ms) be an w*-computable
approximation for g. For every < w, the sequence (g,(x), ms(x)),__ is an instance
of an w®-computable approximation, and so by acceptability of the numbering of
the partial instances of such approximations, there is a computable function h such
that for all z, h(z) € C, and g(z) = Fo(h(z)). By Lemma 3.21, there is a weak-
truth table functional (®, ) such that F, = ®(I9). Let ¢(x) = o(h(zx)), and
for any oracle f, let U(f,x2) = ®(f, h(x)) with the same use. Then 1) is total (as

rangeh € C,), and @(Ig) =g, 50 g <y 19. O

PROOF OF PART (1) OF THEOREM 3.11. The proof of the backward direction
is identical to the corresponding proof of part (2), because as mentioned after the
statement of Proposition 3.18, Proposition 3.9 implies that @I<* is w®-c.a.

For a < &, define D,: C, — {0,1} by letting D,(e) = F,(e) mod 2. If A
is an w®-c.a. set, then there is a computable function h: w — C|, such that for
all , A(x) = D, (h(x)). Hence to show that every w®-c.a. set is weak truth-table
reducible to @, we show that D, is a partial bounded @<®-computable function.

The proof follows the line of argument for Lemma 3.21. A computable function
R such that for all o, P R(a) (®<°‘>) = D, is constructed by effective transfinite
recursion on €g + 1, once analogues of Lemmas 3.22, 3.23, and 3.24 are proved:

(1) Dy is a partial computable function;
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(2) There is a computable function S such that for all & < g and all a < w,
for any set A € 2%, if i)a(A) = D,, then @S(Q)a)(AT) =Dgyi1-

(3) There is a recursive function T' such that for any limit ordinal a, a < w
and sequence <A5>ﬁ<a of sets, if for all 8 < «, &)Wa(ﬁ)(Aﬁ) = Dg, then

O1(a,a) (@ﬁ<a Aﬁ) = Da.

(1) follows immediately from the definition of Dy and Lemma 3.22. For (3)
we can simply take the function given by the proof of Lemma 3.24. The only
new ingredient is in the proof of (2). Again, given «, a and e € Cyi1, we let
(f,0) = (foTt 0ot!), and define the functions 3 and n, the number M, the pairs
(f™,0™) for m < M and the numbers k and d,, exactly as was done in the proof
of Lemma 3.23. So m > k if and only if d,,, € Cy, and Dy 1(e) = Do (dg).

The difficulty of course is that AT does not tell us the value of <f>a(A, dm) = Do(dm),
only whether i)a(A, d.,) converges or not. But since the value is either 0 or 1, we
can convert it to convergence or divergence of an auxiliary functional. That is, we
can effectively calculate an index b and numbers ¢, for m < M such that for any
oracle X, <i>b(X, ¢m) | if and only if d,,, € C,, and @a(X, dm)|= 1; for the use we
can let @p(cm) = @a(dm). We then let

Y(e) =1+ max{(a,dm), (b,cm) : m < M},

which is again partial computable; and for any oracle Y € 2%, we calculate, for
e € Coy1, (Y, e) by first finding the least m such that (a,d,,) € Y (we diverge if
there is none), and then output Y (b, ¢,,). If ®,(A) = D, and e € Cy41 then the

least m such that (a,d,,) € A is k, and
(AT e) = AT(b, k) = Pu(A, d) = Da(dy) = Dasi(e)

as required. (I



CHAPTER III

The hierarchy of totally a-c.a. degrees

The following is the central definition of this work. For a = w, this definition
was originally made by J.S. Miller (unpublished), and first investigated in detail
in [25].

DEFINITION. Let a < g9. A Turing degree d is totally a-c.a. if every function
fedis a-c.a.

1. Totally R-c.a. degrees

Basic properties of totally a-c.a. degrees are shared among totally R-c.a. de-
grees, even when R is not canonical. For any computable well-ordering R, we say
that a Turing degree d is totally R-c.a. if every function f € d is R-c.a.

We note the following:

Lemma 1.1. Let R be a computable well-ordering. A degree d is totally R-c.a. if
and only if every f <r d is R-c.a.

PROOF. Suppose that d is a totally R-c.a. degree. Let g € d be any function.
Let f <ty d. Then f®ged, so f @ g has an R-computable approximation, from
which we can get an R-computable approximation for f. ([l

1.1. Totally R-c.a. degrees and low,; degrees. The following theorem
shows that total R-c.a.-ness is indeed a notion of lowness.

THEOREM 1.2. For any computable well-ordering R, every totally R-c.a. degree
is lows.

PrOOF. Let R be a computable well-ordering. By Corollary I1.1.8, there is
a 0’-computable sequence {f¢) _  consisting of all R-c.a. functions. Using this
sequence, it is easy to construct a 0’-computable function f which dominates every
R-c.a. function. Hence if d is a totally R-c.a. degree, then f dominates all functions
in d. By a classic result of Martin’s [70], d is lows. O

Ershov’s Theorem I1.2.1 can be extended to low, degrees.

Proposition 1.3. Every AY, lowy degree is totally R-c.a. for some computable
well-ordering R of order-type w.

PROOF. Let d be a AY, lows degree. The proof of Theorem I1.2.1 can be
adapted once we give a uniform 0’-enumeration of all the functions reducible to d.
Let D € d, and let {(Ds) be a computable approximation of D.

51
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Since d is lows, the collection of e such that ®.(D) is total is £9; say ®.(D)
is total if and only if JxVy3z Q(e, z,y,2) where @ is computable. For e,z and
s < w, let ys(e,x) be the greatest y such that for all ¢y < y there is some
z < s such that Q(e,x,y’,z) holds. Now for all such e,z and s, for n < w, let
fem(n) = ®.(D,n)[ys(e,x)] if n < dom @.(D)[ys(e, x)], and f&*(n) = 0 for other
n (recall that we write ®.(D)[s] for ®. 4(D;)).

If « witnesses that ®.(D) is total (it is an existential witness to the out-
ermost quantifier in the X9 property above, meaning that ys(e,z) — o0), then
lim, f&* = ®.(D); if not, then the sequence (f&*) _  is eventually constant.
Hence, renumbering, we get a uniformly computable sequence << fsd>s<w> deo of
computable approximations, with the collection of limits {f? : d < w} (where
f4 =1lim, f%) consisting precisely of all the functions computable from d.

Now we let R be the interspersed union of the well-orderings built in the proof
of Theorem I1.2.1 for the approximations < fg> We let

R={(d,z,s) ewxwxw:s=0or i) # 21 (x)},

and for (d,z,s),(e,y,t) € R, let (d,x,s) <r (e,y,t) if {d,x) < {e,yy or if
(d,z) = (e,y) and ¢t < s. The argument of the proof of Theorem I1.2.1 shows that
R = (R, <r) has order-type w and that for every d < w, <fsd>s<w can be extended
to an R-computable approximation. Hence d is totally R-c.a. (]

The argument for Corollary I1.2.17 now shows:

Corollary 1.4. Every AY, lowy degree is totally R,-c.a. for some notation o € O

for w?.

1.2. C.e. degrees. In this work we focus on totally a-c.a. c.e. degrees, namely
those totally a-c.a. Turing degrees which contain a c.e. set.

The following result shows that the for c.e. degrees, sets (elements of Cantor
space) capture everything expressed by functions (elements of Baire space) as far
as approximations are concerned. Technically, this is the first application in this
monograph of the permitting method, calibrated at the level of total R-c.a.-ness.

Proposition 1.5. Let R be a computable well-ordering. A c.e. degree d is totally
R-c.a. if and only if every set Z <t d is R-c.a.

The argument of Lemma 1.1 shows now that a c.e. degree is totally R-c.a. if
and only if every set Z € d is R-c.a.

PROOF. Let d be a c.e. degree, and suppose that some g <t d is not R-c.a.
Since d is c.e., there is some computable approximation {gs» of g such that d
computes the modulus of this approximation.

We construct Z by giving a computable approximation (Z) for Z. Let
({Z5,05) <)o, be an effective enumeration of tidy (R + 1)-computable approxi-
mations such that letting Z¢ = limy Z¢, the sequence (Z¢) enumerates the R-c.a.
sets. Further, as is clear from the construction in Proposition I1.1.7, every R-c.a.
set appears as Z¢ for some e such that the approximation (Z¢,0¢) is eventually
R-computable: for all n there is some s such that 0¢(n) € R.

To defeat the threat that Z = Z¢, we pick potential witnesses z for this e'"
requirement, and try to ensure that Z(x) # Z¢(x). Naturally, we examine the
sequence (Z¢(x)), ., and if there is equality between Z,(z) and Z¢, | (x), we will
want to change the value of Z(z). To keep Z being computable from D, each such
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change must be permitted by g. We prompt g to give us such a permission by
making a threat of our own, of giving an R-computable approximation for g.

Since permission will only be granted eventually, we need to attempt to ensure
that Z(z) # Z¢(x) for infinitely many numbers x. To avoid unnecessary interaction
between requirements, these all have to be distinct. Recall that <w[e]>e<w is a par-
tition of w into uniformly computable sets (which we often refer to as “columns”).

We start by defining Zy = 5. At stage s we wish to flip x € wl® if 0¢(z) € R
and Zf(xz) = Zsi1(x). We are allowed to flip = at stage s if gsp1 |27 gs o
If we both wish to flip and are allowed to flip some x, then we flip it: we set
Zsi1(x) = 1= Zs(x). Otherwise, we set Zgy1(x) = Zs(x). This defines the sequence
(2.

Let v < w. If g5 o= gt [, for all s = t then Z (x) = Zi(x) for all s > ¢.
Hence (Z,) is a computable approximation of a set Z. In fact, since d computes
the modulus for {gs), Z <r d.

To show that Z is not R-c.a. we show that if the approximation (Z¢,0¢) is
eventually R-computable then Z # Z¢. Fix such e and suppose for a contradiction
that Z¢ = Z. We define a sequence {(hgs,msy by recursion. For y < w let = be
the least element of wl®! greater than y. For all s let m,(y) = o%(x). Start with
hs(y) = 0forall s < y. Now if ms(y) = ms_1(y) then let hs(y) = hs—1(y); otherwise
let hs(y) = gs(y). Then (hs,ms) is an eventually R-computable approximation
for h = limg, hy (which is therefore R-c.a.); we show that h = g.

Suppose not. Again let y < w and let z be the least element of wle]
greater than y. Let ¢t be the stage at which the sequence {(ms(y)) stabilizes. So
h(y) = ht(y) = ¢g:(y) (by minimality of ¢) and for all s > ¢, Z¢(x) = Z§f(z) = Z°(x).
Suppose that g(y) # ¢:(y). Let s be the least stage s > t at which we see that
gs+1 la# gs [o. We are permitted to flip Z(x) at stage s, so Zs41(x) # Z5,,(x)
(either because we flipped it at stage s, or we did not need to). By induction, at
no later stage will we want to flip x, so Z(z) # Z$,,(x) = Z°(z), contradicting the
assumption that Z = Z°¢. O

The fact that d is a c.e. degree is heavily used in the proof of Proposition 1.5.
Barmpalias (unpublished) constructed a degree d such that every set Z € d is w-c.a.
(in fact, d is superlow), but some function f € d is not w-c.a.

2. The first hierarchy theorem: totally w®-c.a. degrees

Let v < a < €p. Since every ~-c.a. function is also a-c.a. (see Section I1.2),
every totally ~-c.a. degree is also totally a-c.a. The question is when does this
hierarchy collapse.

THEOREM 2.1. Let a < €y. There is a totally a-c.a. degree which is not totally
v-c.a. for any v < « if and only if a is a power of w. If a is a power of w, then
in fact there is a c.e. degree which is totally a-c.a. but not totally v-c.a. for any
v <a.

The first w-2 many levels of the hierarchy of totally a-c.a. degrees are depicted
in Figure 1.

For the forward direction of the first hierarchy theorem, we prove the following
lemma. It is proved in generality greater than is currently necessary, but which will
be useful later.
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F1GURE 1. The first hierarchy theorem. “w®” denotes the collec-
tion of totally w*-c.a. degrees.

Lemma 2.2. Let v < gg, and let d be a Turing degree such that every g € d is
ym-c.a. for some m < w. Then d is totally v-c.a.

PRrROOF. Let f € d. Define g(x) = f |,; then g € d. By assumption, there is
some m < w such that g is ym-c.a. Let (g, 05y be a ym-computable approximation
for g. By speeding up this approximation, we may assume that for all z and s, gs(z)
is a string of length z.

For every x and s there is some unique k < m such that os(z) € [y-k,v- (k+1));
we denote this k by kg(x). We have os(x) = v - ks(x) + Bs(x) for some B(x) < .
For every z and s, ks11(x) < ks(x), and so k,(z) = limg kg(z) is well-defined. We
let k* = liminf, k, ().

We can now give a y-computable approximation {fs, ms) for f. Fix x* such
that for all z > a*, k,(z) = k*; so for all s and all z > a*, ks(z) > k*. For any
y < w we can effectively find some x = h(y) > y such that k, (z) = k*, by insisting
that > z* and waiting until we see some stage s such that ks(z) = k*. We let
t(y) be some stage ¢ such that k:(h(y)) = k*. Fix y, and let = h(y); we then let

ms(y) = ﬁmax{&t(y)}(x)
and
fs(y) = (gmax{s,t(y)}(x)) (y)

I foa(y) # fo() then s > t(y) and gas1(2)) # ga(2), and 50 0g1(2) < 0(2).
Since s = t(y), we have os(z) = v - k* + B5(z) and o0s41(z) = v - k* + Bs4+1(x), and
$0 Msy1(y) = Bsy1(x) < Bs(x) = my(y). Hence (fs,msy is indeed a y-computable
approximation. If g;(z) = g(«) then fs(y) = (9(x))(y) = f(y), so lim f = f. T
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The forward direction of Theorem 2.1 follows: if « is not a power of w, then
there is some v < o and some m such that « < ym, and so every totally a-c.a.
degree is totally ym-c.a., and so by Lemma 2.2 is actually totally v-c.a.

The rest of this section is devoted to the proof of the backward direction of
Theorem 2.1: given some « < g9 which is a power of w, the construction of a c.e.
degree which is totally a-c.a. but not totally y-c.a. for any v < . Fix such a. The
key property of «, which makes the construction work, is that « is closed under
addition (Proposition I1.3.13). We define a computable enumeration {Ds) of a c.e.
set D, and ensure that deg (D) is totally a-c.a. but not totally y-c.a. for any v < «.

To witness the properness, we enumerate a Turing functional A and ensure
that A(D) is not v-c.e. for any v < «. We fix, for each 7 < «a, an enumera-
tion ({f$7,097) )y, Of tidy (7 + 1)-computable approximations whose limits

e = lim, f&7 consist of all y-c.a. functions (Proposition I1.1.7). To show that
A(D) is not v-c.a. for any v < «, it is sufficient to meet, for all v < o and e < w,
the requirement

Pe7: There is some p such that A(D,p) # f¢7(p).

Of course, we also need to ensure that A(D) is total. To show that deg.(D) is
totally a-c.a., we need to meet, for all e < w, the requirement

Qc: If &.(D) is total, then it is a-c.a.

Discussion. Perhaps surprisingly, the simplest construction one would hope
to work, does work. We give full details because several other constructions we
present later are elaborations on this one. We use the terminology discussed in
Subsection 1.6.3.

First, independently consider the strategies for meeting each requirement. To
meet P%7 we pick a witness p (which recall is also called a follower), and whenever
we observe that f&7(p) = As(Ds,p), we change the value of A(D, p) by enumerating
the use A (p) = )\ (Ds,p) into Dgsy1. Recall our convention that since both D and T' are
defined by us, the use A(p) is the largest number actually queried during the computation. If this
is performed without interruption, success is guaranteed, because our opponent can
change the value of f¢7(p) only finitely many times.

To meet )., the only thing we can do is observe, for each input z, the
value of ®.s(Ds,z), and at various stages s declare that we believe that
®.(D,z) = P 4(Ds,x). If &.(D) is total then we will eventually be right; we
need to ensure, informally speaking, that the “number of times” we change our
mind about the value of ®.(D,z) is bounded by «. (Of course, technically we
mean that we need to define a decreasing sequence of ordinals below « which is
associated with the mind-changes. However, it is useful to think of « as bounding
the number of mind-changes, in an analogy with the situation a« = w.) There is
one possible action Q. can take, and that is to impose restraint: if we freeze D
below the use @q s(Ds, x), then our guess is correct.

The conflict between different requirements is now clear: when a requirement
P®7 enumerates As(p) into D, this may destroy a computation ®4 +(D, x) for some
d < e say, which @4 has earlier declared it believed. The requirement Q4 can
tolerate some injury; after all, it is not trying to make ®4(D) computable. Tt
needs to limit the “amount of injury” to be below «. This is possible because
once a follower p is chosen, we can tell “how many times” the requirement P¢”
will act: the bound is o ”(p). Before starting to make guesses about ®4(D, ),
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the requirement Qg will observe which requirements will bother it and take their
bounds og " (p) into consideration. The fact that a is closed under addition means
it can deal with injury from more than one other requirement.

This plan will not succeed if we allow requirements P¢? to “gang up” on Q.
Suppose that at some stage s, Qg starts making guesses about ®4(D, z), and de-
clares an ordinal S < a bounding the “number of times” it will change its mind
about this value. This bound g is calculated on the basis of which followers p for
requirements P%7 it is observing at stage s. It would be bad if we allow a different
requirement P%7 (say for some e > s) to also destroy ®4(D,x): the bound on the
action of such a requirement cannot be comprehended by @4 at stage s. Such re-
quirements need to be restrained by Qg4: the numbers \;(p) which they enumerate
into D must be greater than the use ¢q s(z).

On the face of it, this can be arranged using only finite injury: when Qg4
observes a new ®,4(D, x) computation, it initialises all requirements P®? which are
not allowed to injure this computation. The use A(p) for followers picked by these
requirements later will be greater than ¢4 s(z) as required. The reason that the
injury will be finite is that it is guaranteed that the finitely many requirements which
do have the right to injure ®4(D, x) only act at finitely many stages. Thus, it would
seem, we would eventually either see a final computation ®4(D,x) and injury to
weaker P7 on behalf of this computation will cease; or the computation ®4(D, x)
never recovers, in which case also, eventually initialisation of weaker requirements
will stop.

However, a complication arises from the combined influence of several nega-
tive requirements on some positive requirement. To see this, we first note that the
permission to injure a computation that some )y is monitoring is follower-based
rather than requirement-based. Say that a positive requirement P®7 picks a fol-
lower p. Then we see a computation ®4(D,z). Since p is already chosen, Q4 can
observe o7 (p) and allow P*7 to injure the computation. However, if for some
reason later, P®7 abandons the follower p and replaces it by a new follower p’, the
requirement Q4 can no longer tolerate any action by P%7: the ordinal 0%7(p’) may
be much larger than oy (p), and could not have been observed by Qg at the stage
it first started copying ®4(D,z). In a sense, the requirement P*7 is demoted (it
loses priority) relative to the pair (d, z).

Now consider such a positive requirement P = P7 and two negative require-
ments Q. and Q4. Suppose that, by an action of a positive requirement stronger
than P, P is no longer allowed to destroy ®.(D,0), but that currently, ®.(D,0)1.
Meanwhile, P has a follower py, and we observe ®4(D,0) for the first time. The
follower pq is allowed to injure that computation, and that computation is indeed
destroyed (by P or by some weaker positive requirement). Then, we see that
®.(D,0)| with large use; this forces P to cancel py and appoint a new follower p;.
In turn, this means that ®4(D,0) no longer tolerates P-action. While ®4(D,0)1,
we see that ®.(D,1)], and it observes p;; some action destroys the computation.
We then see that ®4(D,0)], and p; is abandoned and replaced by a new follower ps,
and so ®.(D, 1) can no longer tolerate P. The see-saw between Q. and @4 even-
tually causes infinitely much injury to P. Note that one negative requirement is
not sufficient for this argument, as we assume that dom ®4(D) is an initial segment
of w.
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The source of this problem is P’s haste in appointing a replacement follower.
If it waited until ®.(D,0) converged before it appointed pg, no injury would be
necessary. For this to be possible, P needs to guess whether ®.(D,0) will indeed
converge in the future; if not, it will not wait. This necessitates the use of a tree of
strategies in the construction.

The tree of strategies. As mentioned above (Section 1.6), to define the tree,
we specify recursively the association of nodes to requirements, and specify the
outcomes of nodes working for particular requirements. To specify the priority
ordering of nodes, we specify the ordering between outcomes of any node.

We order all the requirements, ). and P%7, in order-type w; all nodes of length
k work for the k' requirement on the list. The outcomes of a node working for Q.
are o0 and fin, with o0 < fin; a node working for P®?” has only one outcome.

Construction. At stage s, we let the collection of accessible nodes §; be an
initial segment of the tree of strategies.

Let o be a node which is accessible at stage s. We describe the action that o
takes, and if it does not end the stage, then we specify which immediate successor
of o is also accessible at stage s. Both of these depend, of course, on the requirement
for which o works.

Suppose first that o works for Q.. Then ¢ takes no action beyond determining
which successor is accessible. If s is the least stage at which ¢ is accessible, we let
0" € ds. If not, let ¢ be the last stage before stage s at which ¢"00 was accessible.
If t < dom CI)e,S(DS) (again recall that we assume that dom ®¢ s(Ds) is an initial segment of w
(Convention 1.6.2), and that we use von Neumann natural number notation, Convention 1.6.3),
let 0”0 € §5. Otherwise, we let 0"fin € J,.

Now suppose that o works for P%7. As ¢ has but one outcome, the determi-
nation of the next element of J, is immediate, unless o acts and ends the stage, in
which case o is the last element of §5. We let o act as follows:

(1) If o has no follower, then o appoints a new, large follower p for itself.
(2) If o has a follower p, and As(Ds,p) = f&7(p), then o enumerates A (p)
into Dgy1. We will later verify that As(p) ¢ Ds.

In either case, we set Agy1(Dsy1,p) = s+ 1 with large use. Technically, this means
that we pick a large number u, and enumerate the axiom Dsy1 [u+— (p,s) into Asy1. The point
of the value s + 1 is that A1 1(Dsy1,p) # fei) (p), since by convention, for all ¢, f;"(p) < t.

Also, in either case, we end the stage. If neither case (1) nor case (2) hold,
then o does not act, and the unique immediate successor of o on the tree of strate-
gies is accessible at stage s.

If o ended the stage, then all nodes that are weaker than o are initialised. For
positive requirements P®7, being initialised means that their followers are cancelled,
and so at the next time they are visited, they have no follower and need to appoint
a new one.

At the end of the stage, for each p < s which is not at that moment a follower
for some node on the tree, if A;(Ds, p)t then we set Ag1(Dsy1,p) = 0 with use —1.

That is, we enumerate the axiom () — (p,0) into As41.

Verification. The following lemma will be familiar to experts in effective con-
structions, indeed, it is usually taken for granted and not mentioned explicitly. We
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give a careful and detailed presentation here, but will subsequently only sketch such
proofs. For the following lemma, we first note that if p is a follower for some node o
at the beginning of stages t < s, and p € dom A;(D;) and p € dom A4(D;) (as we
shall soon verify), then p < A;(p) < As(p), since A.(p) is always chosen to be large.

Lemma 2.3. The functional A is consistent for D. Further, at every stage s:
(a) As is consistent for Ds.

Let o be a node which works for a positive requirement, and suppose that at the
beginning of stage s, o has a follower p.

(b) As(Ds,p)l and As(p) ¢ Ds.

(¢c) Ifp' is, at the beginning of stage s, a follower for a node o’ weaker than o,
then As(p) < p'. And so As(p) < As(p').

(d) Let t < s, and suppose that p was a follower for o at the begin-
ning of stage t. So o was not initialised at any stage r € [t,s). Then
Di 5, p)= Ds "x,(p)- Ifs further, o does not act at any stage r € [t,s),
then D, f)\t(p)Jrl: Dy [At(p)Jrl (this implies that \s(p) = At(p)).

PRrROOF. We prove (a), (b), (c) and (d) simultaneously by induction on s. As-
sume the lemma holds for s — 1; we consider the action taken at stage s — 1.

For (a) at stage s, we invoke Lemma I.6.1. Condition (1) of that lemma certainly
holds at every stage of the construction. Condition (2) also holds: at stage s —1, at
most one node o enumerates a new axiom into A which pertains to its follower p; at
the end of the stage we may enumerate further axioms, but only for numbers which
are no longer followers, and so for numbers other than p. For condition (3), suppose
that a new axiom pertaining to some number p is added to Ag during stage s — 1,
but that p € dom As_1(Ds—_1); we need to show that A\;_1(p) is enumerated into Dj.
The assumption on p implies that p is not chosen as a new follower at stage s — 1.
At the end of the stage we add axioms only for numbers p ¢ dom A;_1(Ds_1); so it
must be that p is a follower for some node ¢ at the beginning of stage s—1. Thus, o
acts at stage s — 1 and enumerates A;_1(p) into Dy (we use (b) at stage s —1); this
shows condition (3) of Lemma I.6.1 holds. This shows that (a) holds at stage s as
well.

We next prove (d). Let ¢, o and p be as described. Suppose that a number
y enters D, ;1 for some r € [t,s). Then y = A.(p') for some follower p’ for some
node ¢’. Since o is not initialised at stage r, either ¢’ is weaker than o, in which
case by (c) at stage r we have y > \.(p) = \(p); or 0/ = o, in which case of course
Yy = Ar(p) = Me(p). In either case, Dy Iy, ()= Ds 5, (p)- If 0 does not act at any
stage r € [t,s) then we always have y > A¢(p) and s0 Dy 5, (p)+1= Ds Ix,(p)+1-

To show (b) at stage s, let p be a follower for a node o at the beginning
of stage s. If o acts at stage s — 1, then at that stage we define As(Ds,p) |
with large use As(p); since it is large, we have As(p) ¢ Ds. Otherwise, p is a
follower for o at the beginning of stage s — 1, and p is not cancelled at that
stage. By (b) at stage s — 1, As—1(Ds—1,p)|. By (d) at stage s, with t = s — 1,
we have Ds [x,_ (p)+1= Ds—1 [x._,(p)+1- This implies that the axiom making
As_1(Ds—1,p)| applies at stage s as well, and in fact As(p) = As_1(p). By (b) at
stage s — 1 we have As_1(p) ¢ Ds_1, and the agreement between Ds_; and Dy just
observed shows that As(p) = As—1(p) ¢ Ds as well.
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For (c), let p’ and o’ be as described. Let t < s — 1 be the stage at which p/
was chosen as a follower for ¢’. The fact that the follower p’ is kept from stage ¢t + 1
up to stage s shows that ¢’ was not initialised at any stage r € [t,s). Since o is
stronger than ¢/, this shows that ¢ was not initialised and did not act at any such
stage. Thus, p must have been appointed by o at a stage prior to stage ¢, and so p
is a follower for o at the beginning of stage t. At stage ¢, p’ is chosen to be large,
and so p’ > A\(p) (the latter exists by (b) at stage t). By (d) (at stage s, applied
to stage t), we see that D I\, (py+1= Dt I, (p)+1, Whence As(p) = A¢(p). a

We start by working toward showing that the construction is fair.

Lemma 2.4. Let o be a node which works for requirement P®7. Let s <t be stages,
and suppose that o acts at both stages s and t, and is not initialised at any stage
€ (s,t). Let p be the follower for o at the end of stage s. Then 07" (p) < 0%7(p).

PRrROOF. The follower p is not cancelled at any stage r € (s,t]. In particular, o’s
action at stage t is not appointing a new follower, and so this action is prompted
by the equality f;""(p) = A¢(Ds, p).

We observe that Ay(Dy,p) > s. This follows from the fact that at stage s, we
set Ag+1(Dsi1,p) = s+ 1, and that at no later stage do we decrease the value of
Ar(Dy,p).

Now we have f;"7(p) = A¢(Dy,p) > s and by convention, f&7(p) < s. So
17 (p) # f7 (p). Since (f&7,097),_,, is a (y+ 1)-computable approximation, and
f&7(p) is not constant on r € [s,t], we must have 07”7 (p) < 0%7(p). O

Since for all s, d; is an initial segment of the tree of strategies, the true path é,,
is an initial segment of the tree. Since every node on the tree of strategies has but
finitely many outcomes, the only thing that could stop the true path from being
infinite is that some node on the true path acts and ends the stage at almost every
stage it is accessible.

Lemma 2.5. Suppose that o is a node on the true path working for some positive
requirement P¢7, and that the construction is fair to o. Then o acts only finitely
many times.

PRrROOF. Let sg be the last stage at which ¢ is initialised. Let s; be the least
stage beyond sp at which o is accessible. At stage si, o appoints a follower p.
Since s1 > sg, this follower is never cancelled.

The fact that o acts only finitely many times beyond stage s; now follows from
Lemma 2.4. Since (f&7,0%7) is a (7 + 1)-computable approximation, there is some
stage t > s; after which 057 (p) is constant. Then o can act at most once after
stage t. ([

By induction on the length of nodes, we see that the construction is fair to
every node on the true path, and so that no node can be the last node on the true
path.

Corollary 2.6. The true path d,, is infinite, and the construction is fair to every
node on the true path.

Next, we show that the positive requirements are met, and so that A(D) wit-
nesses that deg..(D) is not totally v-c.a. for any v < «.
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Lemma 2.7. A(D) is total.

PrROOF. Let p < w. Suppose that there is some stage sy > p at which p is not
a follower for any node. After stage sy, we enumerate an axiom into A regarding p
at most once, because such an axiom has use —1 and so defines a computation that
cannot be destroyed. So overall, only finitely many axioms in A are made for p.
Thus, if p ¢ dom A(D), then at almost every stage s we have p ¢ dom A(D;). But
then at some such stage s > so we would define Agy1(Ds1,p)| with use —1, which
would imply that p € dom A(D) after all — contradiction.

Now suppose that p is picked as a follower for some node o, and that p is never
cancelled. The construction is fair to o, and so either o lies to the left of the true
path, or lies on the true path. In either case, o acts at most finitely many times
(Lemma 2.5). Let s —1 be the last stage at which o acts. Lemma 2.3(d) now shows
that D r)\s(p)Jrl: Dy r)\s(p)Jrl and so p € dom A(D). U

Lemma 2.8. Every positive requirement is met.

PrROOF. Let P®7 be a positive requirement. Let ¢ be a node on the true
path which works for P®7. As in the proof of Lemma 2.7 there is a last
stage s — 1 at which o acts, and at that stage we define a D-correct compu-
tation Ag(Ds,p). If A(D,p) = f=7(p), then for almost all stages t > s we would
have A;(Dy,p) = f;”7(p). There is such a stage ¢ > s at which o is accessible. At
such a stage, o would act — contradiction. [l

We now need to show that deg,(D) is totally a-c.a., that is, that every re-
quirement @, is met. Fix e < w, and suppose that ®.(D) is total; we give ®.(D)
an a-computable approximation.

Since the true path J,, is infinite, there is some node 7 € §,, that works for the
requirement Q.. Let s* be the last stage at which the node 7 is initialised (this is
the same as the last stage at which the node 7700 is initialised). We let

S={s>s*:7Tweds}.

Since ®.(D) is total, S is infinite (so 7700 is on the true path) — a greatest stage in
S would yield a contradiction. Let sg, s1,... be the increasing enumeration of the
(computable) set S.

For z < w, we let i(x) be the least index ¢ such that < dom ®.(D)[s;]. For
j = i(x), we let a;(x) be the collection of nodes o > 7700 which at the beginning of
stage s; have a follower p = p(o, x) which was chosen before stage s;(,). Note that
for all j > i(x), aj41(z) < a;(x). The next lemma says that only nodes in a;(z)
can injure the computation ®.(D, z)[s;].

Lemma 2.9. Let j > i(x). Suppose that ®c(D,x)[sj41] # Pe(D, )[s;]. Then the
weakest node in a;1(x) acts at stage s;.

PRrROOF. There is some stage 7 € [s;, s;+1) at which some node o enumerates a
number smaller than ¢, s, (x) into D, 1, destroying the computation ®.(D, x)[s;].
Recall that since ®. is not enumerated by us, our convention is that ¢e(z) is not the largest
number queried but one greater, the length of the string in the axiom defining the computation.
We show that r = s; and that o is the weakest node in a;11(x).

Let p be ¢’s follower at stage r. Let t be the stage at which p was appointed.
We have A\.(p) < @e,s,(x), and so t < s;.
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Certainly, o cannot be stronger than 700, since » > s*. On the other hand,
700 is accessible at stage s;, and o is not initialised at stage s; (this would cancel
p), whence o must extend 7°00. From this we already conclude that r = s;, as ¢ is
not accessible at any stage in the interval (s;, sj41).

Since o acts at stage s;, all nodes weaker than o are initialised at stage s;, and
so no node weaker than o can have, at stage s;;1, a follower chosen prior to stage
Si(z)- 1.e., no node weaker than ¢ can be an element of a;1(x). To finish the proof
of the lemma, it remains to show that o € a;j1(x), i.e., to show that ¢ < s;(y),
and that o is not initialised at some stage r € [s;,s;41). The latter is immediate:
at stage s;, 0 acts and so is not initialised; and at stage r € (s;,5;41), 700 is not
accessible, and so the fact that 7700 is not initialised at stage r implies that neither
is o.

Suppose, for a contradiction, that ¢ > s;,). Since o extends 7700, we see
that ¢t € S and so that * < dom ®.(D)[t]. This is the crucial point for the entire
construction: in this case every time we define A(p) we observe ®.(D,x), and so
the former is larger than the use of the latter.

Let u = p. (). At stage t we pick A¢(p) > u. Since o is not initialised at any
stage r € [t,s;), Lemma 2.3(d) shows that D; [,= Dy, I, which in turn implies
that @c s, (z) = u. This contradicts A, (p) < @e,s, (7). O

Fix ¢ <w. For j > i(z) and o € a;j(z) we let t;(0) be the greatest stage t < s;
at which o acts. Such a stage t exists, because o acts when it appoints the follower
p(o,z). We note for later that o is not initialised between stage ¢;(o) and stage s;.
In fact, t;(o) = s; for some ¢ < j, but this is not material.

For j > i(x) and o € aj(x) we let B;(0) = Oiﬂa) (p(o,x)), where o works for
the requirement P»Y. We order the set a;(z) by descending priority to obtain a
sequence, and let

mi(@) = >, Bjlo),
oeaj(x)
with the addition performed along the order of a;(x): if aj(z) = {o1,02,...,0%)
then m;(x) = B;(01)+B;(o2)+---+5;(0). Welet g;(x) = ®.(D, x)[s;]. Certainly
lim;_, o gj(z) = (D, x).

Lemma 2.10. Let j > i(z). Then mji1(x) < mj(x) < «, and if g;+1(z) # gj(z)
then mj1(x) < mj(z).

We then let m;(z) = m;,)(x) and gj(x) = gi)(z) for all j < i(x), and see
that (g;,m;) is an a-computable approximation for ®.(D).

PrROOF. First note that for each j > i(x), for each o € a;(x), if o works for
P then Bj(0) < v < a; as a is closed under addition (here is where we use the
assumption), m;(z) < « for all j.

Next, we observe that thought of as sequences, a;41(z) is an initial segment
of a;j(z). This is because if o € aj(z)\a;j+1(x), then o is initialised at some stage
r € [sj,s;41); at that stage r, every node weaker than o is also initialised and
extracted from a;q ().

Now for each o € aj1(x), tj+1(0) = tj(0) and so B;4+1(0) < Bj(0). Altogether,
we see that mj;yq1(z) < mj(z).

Suppose that g;4+1(z) # gj(z). Let o be the weakest node in ajiq1(x). We
know (Lemma 2.9) that o acts at stage s;. Thus, tj(0) < s; = t;4+1(0). Since
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o acts at both stage ¢;(c) and stage t;41(0), and is not initialised between these
stages, Lemma 2.4 says that §;11(0) < ;(0). Together with 5;41(7) < B;(r) for
all other 7 € a;41(x), and since f;11(0) is the last summand in m;q1(x), we see
that m;1(z) < mj(z). O

3. A refinement of the hierarchy: uniformly totally w®-c.a. degrees

Downey, Jockusch and Stob [31] have shown that the following are equivalent
for a c.e. degree d:

(1) d is array computable;

(2) for every increasing computable function h, every function f € d has
an h-bounded computable approximation;

(3) there is some increasing computable function h such that every function
f € d has an h-bounded computable approximation.

By Proposition I1.1.12, every c.e., array computable degree is totally w-c.a.
Note that the computable enumerablility of d is necessary here, as there are un-
countably many array computable degrees.

The converse does not hold: there is a c.e. degree which is totally w-c.a. but
not array computable. An indirect argument for the existence of such a degree is
given by a conjunction of work by Walk [101] and Downey, Greenberg and Weber
[25]. Walk constructed a c.e. degree which is not array computable, but does not
bound a critical triple. Downey, Greenberg and Weber showed that such a degree
must be totally w-c.a.

Theorem 3.5 gives a direct construction of a c.e. degree which is totally w-
c.a. and not array computable, by finding a generalisation of the notion of array
computability to all levels of the hierarchy of totally w®-c.a. degrees. We call this
generalisation the uniform wversion of total w®-computable approximability. The
key idea is the observation, mentioned above, that for ordinals a > w, the first
value op(x) of an a-computable approximation {fs, 05y is the correct measure of
“how many times” the approximation {fs(z)),_  changes, rather than the natural
number my (), the value of the mind-change function.

Definition 3.1. Let a < &q.

An a-order function is a non-decreasing computable function h: w — a whose
range is unbounded in a.

Let h be an a-order function. An a-computable approximation (f,0s) is an
h-computable approzimation if for all x, op(z) < h(x). In the language of Section I1.3,
for each z, the sequence (fs(x), 0s(z)) is an instance of an h(x)-computable approximation.

We say that a function f: w — w is h-computably approzimable (or h-c.a.) if
there is an h-computable approximation {fs, 05y such that limg fs = f.

Note that for all a < g¢, a-order functions exist; in fact, there is a computable,
strictly increasing and unbounded function from w to « (see Lemma I1.2.12). This
shows that a function is a-c.a. if and only if it is h-c.a. for some a-order function h.

The following uses an argument used by Terwijn and Zambella [95] in the
context of computable traceability, and earlier by Downey, Jockusch and Stob [31].

Lemma 3.2. The following are equivalent for a Turing degree d and o < €.

(1) There is some a-order function h such that every f € d is h-c.a.
(2) For every a-order function h, every f € d is h-c.a.
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PROOF. Let h and h be a-order functions. We show that for all f: w — w
there is some ¢ =r f such that if ¢ is h-c.a., then f is h-c.a.

The function g is obtained by “stretching” f along the composition of the “dis-
crete inverse” of h with h. Namely, we (computably) partition w into an increasing
sequence of finite intervals I* < Iy < I; < I < ... so that for all n, for all x € I,,,
h(x) = h(n). Some intervals I,, are allowed to be empty (this is used when A is not
injective). We simply let I* be the set of = such that h(z) < h(0); and if

h(n—1) < h(n) = -+ = h(m) < h(m + 1)

(possibly m = n) then we let I,, be the set of = such that h(n) < h(z) < h(m + 1);
this is finite since A is unbounded in «. For k between n and m + 1 we let I, be
empty.

We then define g(n) = f |1,. Let {(gs,0,) be an h-computable approximation
for g. By speeding up this approximation we may assume that for all s and n, gs(n)
is a function from I,, to w. We can then define fi(x) = (gs(n))(x) for z € I,, (and
let ms(z) = 05(n)); for x € I'* we let fs(z) = f(z) and mg(x) = 0. Then (f,, ms)
is an h-computable approximation for f. O

Definition 3.3. A Turing degree d is uniformly totally a-c.a. if for some (all)
a-order function(s) h, every f € d is h-c.a.

The Downey, Jockusch and Stob characterisation shows that a c.e. degree is
array computable if and only if it is uniformly totally w-c.a.

Lemma 3.4. A Turing degree d is uniformly totally a-c.a. if and only if for some
(all) a-order function h, every f <r d is h-c.a.

PROOF. Suppose that d is uniformly totally a-c.a., and let A be an a-order
function. Let f <rd and let ge d;so f@g e d. Then f@gis h@® h-c.a.; it follows
that f is h-c.a. O

The argument of Proposition 1.5 shows that a c.e. degree is uniformly totally
a-c.a. if and only if for some (all) a-order function h, every set in d is h-c.a.

We turn to investigate the distribution of uniformly totally a-c.a. degrees in the
hierarchy of totally a-c.a. degrees. An immediate fact, using the constant function
with value a, is that for all a < g¢, every totally a-c.a. degree is uniformly totally
(o + 1)-c.a.

It follows from the easy direction of Theorem 2.1 that if 8 € (w®,w®™?!) (that
is, if B is not a power of w), then every uniformly totally S-c.a. degree is totally
w®-c.a. Hence, if 8 is not a power of w, then there is an ordinal a which is a power
of w such that the collection of uniformly totally 8-c.a. degrees is the same as the
collection of totally a-c.a. degrees.

Thus, the only ordinals « for which the class of uniformly totally a-c.a. degrees
does not necessarily coincide with the class of totally §-c.a. degrees for some ordi-
nal (8 are the powers of w. Theorem 3.5 shows that for ordinals a < ey which are
powers of w, the uniformly totally a-c.a. degrees indeed form a distinct level of the
hierarchy.

THEOREM 3.5. Let a < g be a power of w.

(1) There is a uniformly totally a-c.a. c.e. degree which is not totally vy-c.a.
for any v < a.
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(2) There is a totally a-c.a. c.e. degree which is not uniformly totally a-c.a.

The first w-2 many levels of the hierarchy of totally and uniformly totally a-c.a.
degrees are depicted in Figure 2.

/unm
/:\

PN

unif. w

FIGURE 2. The first refinement of the hierarchy. “w®” denotes the
collection of totally w®-c.a. degrees. “unif. w®” denotes the class
of uniformly totally w®-c.a. degrees.

3.1. Proof of Theorem 3.5(1). We show that the first part of Theorem 3.5
is actually already proved using the construction used for proving Theorem 2.1.
Given a < g9 which is a power of w, that construction produces a c.e. set D whose
Turing degree is totally a-c.a., but such that there is some f <t D that is not
v-c.a. for any v < . We show that deg.(D) is actually uniformly totally a-c.a.
The reason for this is the long delay between expansionary stages that was already
incorporated into the construction.

For concreteness, let P peum o effectively enumerate all the positive
requirements P¢7, and suppose that for all £ < w, all nodes of length 2k work
for the requirement P¢7. In particular, all nodes of even length work for some
positive requirement.
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Lemma 3.6. For all stages s, for all o € 5, |o| < 2s.

PRrROOF. By induction on s. If this holds for all stages ¢ < s, and if at stage s,
some node o of length 2s is accessible, then since it works for a positive requirement,
and was not accessible at any stage before s, at stage s, the nodes o acts by
appointing a follower, and ends the stage. O

For all n < w, let

2n
h(n) = (glgw) -2%",
Since every ordinal below « appears as some 7, the function A is an a-order
function. The combinatorial point is that if o1,...,0; is a sequence of distinct
nodes on the tree, each of length at most 2n, with o; working for P¢:i"7: (so
k; < n), then as the tree of strategies is (at most) binary branching, we have
1 <227, and so
i<l

We show that every f <t D is (h+1)-c.a. To this end, fix some e < w such that
®.(D) is total, and let 7 be a node on the true path which works for requirement
Q.. Recall the construction, during the proof of Theorem 3.5, of an a-computable
approximation {(g;,m;) for ®.(D). We let s* be the last stage at which 7 was
initialised, and

S={s>s*:70eds} = {s0,51,---}

For all z < w, i(x) was the least index 4 such that ¢ < dom ®.(D)[s;]. For
j = i(x) we observed the set a;(x) of nodes o > 7°c0 that have followers at the
beginning of stage s;(,), and are not initialised between stages s;(,) and s;; we focus
on a(r) = a;(z)(z). The ordinal mo(z) = M) (z) was defined to be the sum of

ordinals of the form 0?7 (p), where t < s;(,) is some stage, and p is a follower at

stage s;(,) for o € a(r), working for P#7. Certainly oi’w(p) < 7. And so, if 2n is
a bound on the lengths of nodes in a(zx), then mg(z) < h(n). The proof will be
complete when we show that for almost all x, 2x is a bound on the lengths of nodes
in a(z), and so my(z) < h(z); so a modification of the approximation (g;, m;) on
finitely many inputs yields an h-computable approximation for ®.(D).

Lemma 3.7. For all z > dom ®.(D)[s1], for all o € a(z), |o] < 2z.

PROOF. Let x > dom ®.(D)[s1]. So i(x) > 2; for brevity, we let ug = 8;(z)—2
and u1 = s,(;)—1. By the instructions for 7, ug < dom ®.(D)[u1]; by minimality
of i(z), dom ®.(D)[u1] < x; so x > ug. By Lemma 3.6, all nodes accessible at any
stage t < ug have length at most 2ug.

Let o € §,, be a node working for some positive requirement P which has
not been accessible at any stage s < ug (if there is such a node). Since 7 and all
of its predecessors are accessible at stage ug, we have o > 7700. But since wu; is the
immediate successor of ug in S, ¢ was not accessible at any stage s € (ug,u1); so
uy is the least stage at which o is accessible, and so o ends the stage u;. It follows
that for such o we must have |o| < 2ug + 2.

In total, if o > 7700 is accessible at any stage s < uq, then |o| < 2(ug+1) < 2z.

Let o € a(z). The node o extends 7700, and was accessible at some stage t € S,
smaller than s;(,); so t < u;. Hence |o| < 22 as required. O
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3.2. Proof of Theorem 3.5(2). A minor modification of the construction for
Theorem 2.1 gives the proof of the second part of Theorem 3.5. Again, we are given
an ordinal o which is a power of w, so is closed under addition; and we enumerate
a c.e. set D whose Turing degree will be totally a-c.a. but not uniformly so. By
Lemma 3.4, it is sufficient to fix an a-order function h and enumerate a functional
A such that A(D) is total and is not h-c.a. What makes this construction work
is that we can enumerate tidy (h + 1)-computable approximations. The definition
is the expected modification of Definition I1.1.5. A simpler version of the proof of
Proposition I1.1.7 yields:

Lemma 3.8. Let a < ¢¢ and let h be an «-order function. Then there is an
effective enumeration {f¢,0%) of tidy (h + 1)-computable approzimations such that

letting f¢ = lim f§, the sequence (f¢),_,, contains all h-c.a. functions.

Fixing h, we get an enumeration of (h + 1)-computable approximations
{f§05)s<i)ez,, as in Lemma 3.8, and repeat the construction for Theorem 2.1
where the positive requirements are now:

Pe: There is some p such that A(D,p) # f¢(p).

The rest of the construction is identical, as are the verifications, and so we
omit them. The critical reader would ask, though: as was shown in the previous
subsection, the construction for Theorem 2.1 actually produces a uniformly totally
a-c.a. degree. Why can we not replicate the argument now to get a contradiction?

We recall the argument proving the first part of Theorem 3.5. Let e < w
such that ®.(D) is total. A uniform bound for mo(z), where (g;,m;),_, is the
a-computable approximation for ®.(D), was given by seeing that for almost all
x, the nodes in a(z) all had length at most 2z, a fact which is preserved in the
current, modified construction. In the previous construction, this was sufficient
to give the bound, since for any follower p for some node o € a(z), working for
some P»7, we had oé’w(x) < 7. In the current construction, of course, we just have
o} (p) < h(p) + 1, so the size of p plays a role.

Can we not use the argument showing that o € a(x) has length at most 2z to
also bound the size of followers for such o7 After all, these followers are chosen at
some T-expansionary stage ¢ smaller than s;(,), and, roughly speaking, a follower
chosen at stage ¢ has size “close to t”. As in the proof of Lemma 3.7, let ug < uy be
the immediate predecessors of ;) in S. Then ug is bounded by x, but u; may be
much larger than z; and one element o of a(x) may pick its follower at stage u;. So
even though the length of that o is bounded by 2z, the size of its follower cannot
be computably bounded in z, and it is this single element of a(x) that chooses a
follower late, which prevents us from giving an approximation ®.(D, ) with some
ordinal bound which depends on z but not on ¢ and p (and so not on 7).

4. Another refinement of the hierarchy: totally < w®-c.a. degrees

The hierarchy of totally a-c.a. degree is not, a priori, the finest one could devise.
For a limit ordinal «, one could conceive of a totally a-c.a. degree d such that every
f edis y-c.a. for some v < a, but such that d is not totally v-c.a. for any v < a.

Definition 4.1. Let a < g9. A Turing degree d is totally < a-c.a. if every f e d
is y-c.a. for some vy < a.
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As is the case with totally a-c.a. degrees and with uniformly totally a-c.a.
degrees, a Turing degree d is totally < a-c.a. if and only if every f <t d is ~-c.a.
for some v < a.

As was indicated in the introduction, the class of totally < w“-c.a. degrees is
the main class investigated in this work.

As we did for uniformly totally a-c.a. degrees, we now examine how the classes
of totally < a-c.a. degrees fit in the hierarchy of totally a-c.a. degrees. Of course, if
v < «, then every totally v-c.a. degree is totally < a-c.a., and every totally < a-c.a.
degree is totally a-c.a. In fact, slightly more holds: for any ordinal «, every totally
< a-c.a. degree is uniformly totally a-c.a., because for any a-order function h and
all v < a, h(x) = v for almost all x, so any y-computable approximation can easily
be converted into an h-computable approximation.

Lemma 2.2 shows that if 3 € (w®, w®*!], then every totally < S-c.a. degree is
totally w®-c.a.; in particular, note that this holds even if 3 = w®*!. Hence, if § is
not a limit of powers of w, then there is some a < 3, a power of w, such that the
class of totally < B-c.a. degrees coincides with the class of totally a-c.a. degrees.

Also note that the construction proving Theorem 2.1 and Theorem 3.5(1) pro-
duces a degree that is uniformly totally a-c.a. but not totally < a-c.a.; to show
that the degree constructed was not totally v-c.a. for any v < «, we constructed a
single function A(D) which was not y-c.a. for any v < a.

The following theorem then completely determines the new levels of our hier-
archy, the first w - 2 levels of which are depicted in Figure 3.

THEOREM 4.2. If a < g is a limit of powers of w, then there is a c.e. degree
which is totally < a-c.a. but not totally v-c.a. for any v < .

The rest of this section is devoted to the proof of Theorem 4.2. We are given
an ordinal «a < &g, a limit of powers of w, and give a computable enumeration (D)
of a c.e. set D such that deg..(D) is totally < a-c.a. but not totally v-c.a. for any
v < a.

For every v < o and e < w we must meet the requirements

P7: There is a function f <t D which is not ~-c.a.
and
Qc: If &.(D) is total, then ®.(D) is y-c.a. for some v < a.

Discussion. The first thing to notice is that we cannot, uniformly in 7, compute
from D a function f which is not y-c.a.; for we could string these functions together
to get a single function which is not y-c.a. for any v < «, and so fail to make deg..(D)
totally < a-c.a.

It is also fairly easy to see how the construction necessitates this non-uniformity.
For suppose we tried to copy the construction proving Theorem 2.1. A node T,
working for @, is now trying to make ®.(D) a v-c.a. function for some v < «. But
extending 7700 are nodes o, working for P? for ordinals 8 which are unbounded in
«; their action would cause changes to 7’s approximation of ®.(D), and so force T
to have its « larger than all of these 3’s, i.e., to be at least «.

The solution concerns that basic staple of both comedy and computability
theory, namely timing. Remember that in a situation as above, a node ¢ extending
7700 can injure a computation @, (D, z)[s] only if the follower p for o at stage s was
appointed before the T-expansionary stage ¢t = s;(,) at which we first observed and
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FIGURE 3. The second refinement of the hierarchy. “w®” denotes
the collection of totally w®-c.a. degrees. “< w®” denotes the col-
lection of totally < w®-c.a. degrees. “unif. w®” denotes the class
of uniformly totally w®-c.a. degrees.

certified a computation ®.(D,z)[t]. On the other hand, regardless of when p was
appointed, upon enumerating As(p) into Ds11, we need to immediately appoint a
new use A;11(p), without waiting for a new ®.(D, z)[u] computation to recover;
this, because we need to make A(D) total. Even though o guesses that ®.(D)
is total, it is participating in the construction of the global functional A, and is
responsible for making p € dom A(D), even if its guess is incorrect. Inevitably, the
new marker A, 1(p) will be smaller than the use ¢, () at the next 7-expansionary
stage, and so further action with p will injure ®.(D, z) again.

~ In the previous construction this was fine, because o provided 7 with a bound
og” (p) on the “number of times” it will act for p, and the sum of these bounds was
smaller than «. As mentioned above, this is insufficient when we want to show that
the function ®.(D) is y-c.a. for some v < . Once we determined 7, what we need
to do is break the cycle of repeated injury by the same follower p, when the bound
for the follower is greater than . This is possible if we delay defining A(D, p) until
we see the computation ®.(D,x) recover. To do this, we distribute in a tree of
strategies nodes 7, working for P?, which are responsible for a local version A, (D)



II1.4. ANOTHER REFINEMENT: TOTALLY < w®-C.A. DEGREES 69

of A(D). Only nodes extending 7 contribute to the definition of A, (D), and the
function A, (D) is required to be total only if 1 lies on the true path. If such 5
extends 7700, then indeed definitions of A, (D,p) can wait until ®.(D, z) recovers
at the next 7-expansionary stage. We see how this gives the non-uniformity in
defining the function witnessing P?: we need the true path to find it.

How do we find 4?7 The approach of waiting to define A, cannot be employed
if 7 extends n. If o is a “child” node of such n with 7700 < ¢, then we are back at
the situation of the original construction: repeated action for a follower p for o will
keep injuring a computation ®.(D,z). Again, o provides a bound for its action,
and that bound is itself bounded by 3, where 1 works for P?. And 3 < a. Since
there are only finitely many “mother” nodes 7 < 7, the bound  will be any ordinal,
closed under addition, which bounds the ordinals S for these nodes 7. That such
an ordinal v < « can be found follows from the fact that « is a limit of ordinals
closed under addition.

The tree of strategies. Let v < . In order to meet the requirement P”, for
each e < w, we need to meet the subrequirements P%7 which diagonalise against
f¢7. We arrange all of the requirements and subrequirements — Q., P and P*"
— effectively, in a list of order-type w, but ensuring that for each v and e, P?
appears before P®7. We let all strategies on the tree of length k work for the k"
requirement on the list.

Nodes working for requirements P? and P¢” have only one outcome. Nodes
working for (). have two outcomes, co and fin, the former stronger than the latter.

Nodes n working for P enumerate a functional A,. For any node ¢ working
for P7¢ there is a unique node n < o working for PY. We denote this node, the
“mother” of o, by n(o).

Construction. At stage s, we let d,, the collection of nodes accessible at stage s,
be an initial segment of the tree of strategies.

Suppose that a node 7 that works for requirement . is accessible at stage s.
If s is the least stage at which 7 is accessible, then we let 7700 € §5. Otherwise, we
let ¢ be the last stage before s at which 7700 was accessible. If ¢ < dom @, (Dy),
then we let 7700 € §5. Otherwise, we let 7°fin € J;.

Suppose that a node n that works for requirement P7 is accessible at stage s.
If there is some p which is a follower for some child o > n of 1 (an extension of 7
working for some subrequirement P*7) such that p ¢ dom A, s(D;), then we define
Ay s+1(Ds,p) = s+ 1 with large use, and end the stage (in this case, we do not
initialise all nodes weaker than n; but as usual, we do initialise all nodes which lie
to the right of 7).

Otherwise, for all p < s which are not in dom A,, s(Dy), we define A, s41(Ds,p) =0
with use —1; the unique immediate successor of 17 on the tree of strategies is acces-
sible next.

Suppose that a node o that works for a subrequirement P®” is accessible at
stage s.

(1) If o has no follower, then o appoints a new, large follower for itself.
(2) If o has a follower p, and A, (o) s(Ds,p)l= f&7(p), then we enumerate

An(o),s(p) into Dgyq.
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Note that in either case, we do not define a new computation A; () s11(Dst1,p)-
In either case, we end the stage and initialise all nodes weaker than o. If o does not
act, then the unique immediate successor of o on the tree of strategies is accessible
at stage s.

Verification. Let n be a node that works for P7. At stage s, we only define a
new A, s+1(Ds,p) computation if p ¢ dom A;(D;). Lemma 1.6.1 ensures that each
A, s is consistent for D,, and so that each A, is consistent for D.

Lemma 4.3. Let s be a stage, and let o be a node working for P*” which has a
follower p at the beginning of stage s.

(1) If p ¢ dom Aoy s(Ds), then at the last stage t < s at which n(o) was
accessible, so was o, and o acted at stage t.

(2) If o’ is a node weaker than o, working for P and has a follower p' at
the beginning of stage s, then p < p'. If in addition p € dom A, (5 s(Ds)
then Ayo),s(p) < p'. Consequently, if also p' € dom Ay, (Ds) then
)\’I’[(O'),S(p) < An(a’),s(p/)'

PROOF. Both parts of the lemma are proved simultaneously, by induction on s.
Assume both parts hold at all stages before stage s. Let nn = (o).

For (1), let t < s be the last stage before s at which n(o) was accessible, and
suppose that o does not act at stage t. Then p is already a follower for o at
the beginning of stage ¢, and so o was not initialised at any stage r € [t,s). If
p ¢ dom A, (D), then at stage ¢,  defines a new computation A, ¢y1(Dy,p), and
ends the stage. This means that D11 = Dy, and so p € dom Ay ;41(D¢41) with
Ant(P) = Ape+1(p). By (2) at all stages r € [t + 1, s), this computation cannot be
injured at stage  without initialising o, so p € dom A,, s(Ds). If, on the other hand,
p € dom A, +(D;), then by (2) at all stages r € [t, s), this computation cannot be
injured without initialising o.

For (2), let o’ and p’ be as described. That p < p’ follows as usual from the
fact that the stage at which p’ was chosen is later than the stage at which p was
chosen.

For the second part, let ¢ < s be the stage at which the computation A, (Ds, p)
was defined. To show that A, s(p) < p’, we show that the follower p’ was chosen
after stage t. We know that A, (D,p)[t]1. Let u be the last stage prior to stage
t at which n was accessible. By (1) at stage t, o acted at stage u, and so ¢’ was
initialised at stage u. Since i < o, 7 is stronger than o’. If ¢’ lies to the right of 7,
then it is initialised at stage t, and so p’ is chosen after stage ¢. Otherwise, o’ > 1,
and so ¢’ is not accessible at any stage r € (u,t) and also not accessible at stage ¢
(as n ends the stage). Thus, again, p’ was chosen after stage t. (I

As a corollary we can conclude that for o and p as above, if p € dom A, (5 5(Ds),
then A,y s(p) ¢ Ds. An analogue of Lemma 2.3(d) also holds, with a similar
argument.

Lemma 4.4. Lett > s be stages and let o be a node which works for some positive
subrequirement. Suppose that p is a follower for o at the beginning of stage s.
Suppose that o is not initialised at any stage r € [s,1).

(1) Dstp= Dy tp.

(2) If in addition p € dom A, (o) 5(Ds), then D rAn(rI),s(P): D, r/\nw),s(P)'
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(3) If, further, o does not act at any stage r € [s,t), then p € dom Ay, +(Dy)
and )\n(o'),s(p) = )‘n(a),t(p)'

Lemma 4.5. Suppose that o works for P, and that p is a follower which is
appointed for o at some stage and is never cancelled. Suppose that o does not
act infinitely often. Suppose also that n(c) is accessible infinitely often. Then
p € dom An(a) (D)

PROOF. Let s be the last stage at which o acts; since p is not cancelled after
stage s, o is not initialised after stage s. Let ¢ be the least stage after stage s at
which 7 = (o) is accessible. If p € dom A,, (D) then the action of o at stage s
removes p from dom A, s11(Dsy1); in any case, p ¢ dom A, +(Dy). At stage t, n
defines a new computation Ay ;41(D¢41,p). By Lemma 4.4, this computation is
D-correct. O

Lemma 2.4 holds for the current construction as well: if o, working for P¢7,
acts at stages s < t and has the same follower p at the end of stage s and the end of
stage t, then of"(p) < 057 (p). The proof is similar; the computation A, .(Dy,p)
must have been defined by n(o) at a stage u > s, and so its value is u + 1 which is
bigger than s, so f&7(p) <s <u+1= f;""(p). Now an argument, identical to the
argument proving Lemma 2.5, shows that if o, working for P®7 is on the true path,
and the construction is fair to o, then o eventually appoints a follower p which is
never cancelled, eventually stops acting, and Ay, (D, p) # f©7(p). It follows that
the true path is infinite, that the construction is fair to every node on the true
path, and that if  on the true path works for P?, then A, (D) is total, and is not
v-c.a. Since the true path has a node in every level, each P7 is met, so deg(D) is
not totally ~-c.a. for any v < a.

To conclude the proof of Theorem 4.2, we need to show that for all e < w such
that ®.(D) is total, ®.(D) is v-c.a. for some v < a. Fix such e, and let 7 be the
node on the true path that works for requirement Q.. At first, we proceed as in
the proof of Theorem 2.1. Let s* be the last stage at which 7 is initialised, and let

S={s>s*:170eds}={s0,51,---}

as again, S is infinite. For x < w we define i(x) as before, to be the least ¢ such
that < dom ®.(D)[s;]. And again, for j > i(x) we let a;(x) be the set of nodes
o » 770 which at the beginning of stage s; have a follower p = p(o, z) which was
appointed before stage s;(;). Lemma 2.9 holds for the current construction, with
the same proof, except that now we use p > u rather than )\n(a),t(p) > u; SO We use
part (1) of Lemma 4.4 instead of part (2).

We now find an ordinal bound below « for the complexity of ®.(D). Fix z < w.
For o € a(x), since o > 7700, n(0) is comparable with 77c0.

Lemma 4.6. Let o € a(x), and suppose that n(c) > 7°c0. Then there is at most
one j = i(x) such that o acts at stage s; and injures the computation ®.(D,x)[s;].

PROOF. Let s; be a stage at which o acts, where j > i(z). We show by induc-
tion that for all ¢ > j in S, if p is a follower for ¢ at the beginning of stage s;, and
p € dom Ay () (D)[s:], then A\ypy.s,(P) > @e,s;(7), so o cannot injure (D, z)[s;]
at stage s;. Let n = n(o).

The base step is vacuous, and this is the main point of the proof. At stage s;, o’s
action extracts its follower p from dom A,y (D). The assumption 1 > 77°c0 means



72 CHAPTER III. THE HIERARCHY OF TOTALLY a-C.A. DEGREES

that 7 is not accessible at any stage r € (s;,s;+1), and so p ¢ dom A, (D)[s;j4+1].
Note that p is still the follower for o at the beginning of stage s;41.

Let ¢ > j+ 1 and suppose the inductive claim holds for all i € (j,4). Let p be a
follower for o at the beginning of stage s;, and suppose that p € dom A, (D)[s;]. The
proof follows the idea for Lemma 2.9. Let ¢ be the stage at which the computation
Ay (D, p)[s;] was defined. Since n > 770, t € S; and t > s;41. Thus A, .(p) is
chosen to be larger than u = ¢, ¢(z). Lemma 4.4(2) now shows that D, [,= Dy I
and so0 @e s, () = u < Ay s, (p) as required. O

Since « is a limit of ordinals which are closed under addition, and 7 has only
finitely many predecessors on the tree of strategies, find some ordinal § < «, closed
under addition, such that for all < 7 which work for some P? we have v < 4.
We give a d-computable approximation for ®.(D), along the lines of the proof of
Theorem 2.1.

Again fixing z, for j > i(z) and o € a;j(z) we again let t;(c) be the greatest
stage t < s; at which o acts. The main part is defining the ordinal g;(o):

o If n(o) < 7, then we let 8;(o) = 02;7(0) (p(o, x)), where o works for P%7.
o If n(o) > 7700, then we let §;(0) = 0 if there is some ¢ € [i(x), j) for which
o acts at stage s; and destroys the computation ®.(D,x)[s;]. If there is

no such 4, then we let 8;(0) = 1.

We then mimic the rest of the proof of Theorem 2.1, ordering a;(z) by de-
scending priority, and defining m;(z) = Zaeaj (@) Bj(x). The proof of Theorem 4.2
is complete once we show that Lemma 2.10 holds for the current construction
(with 0 replacing «). The proof of this lemma is identical to the previous proof,
except for one case: showing that ;11(0) < B;(0) if gj11(z) # gj(x), where o is
the weakest node in aj;1(x), in the case that n(c) > 77c0. But in this case we
appeal to Lemma 4.6.

5. Domination properties

In [31], Downey, Jockusch and Stob extend the notion of array computability
from the c.e. degrees to all the Turing degrees. This they do by using domination
properties of degrees. Such properties have been used early on, to characterise
classes such as the hyperimmune-free degrees, the high degrees and the non-lows

degrees. More recently [53], a combination of domination and measure characteri-
sations have yielded a characterisation of LR-hardness.
Recent work ([20, 71]) has indicated that the generalisations of array com-

putability defined in this chapter can also be extended to the non-c.e. degrees by
considering domination. We give the results for completeness.

Recall that if C is a class of functions from w to w, then a Turing degree d is
C-dominated if every function g € d (equivalently g <t d) is dominated by some
function f € C. For example, the hyperimmune-free degrees are the degrees which
are AY-dominated, where A denotes the collection of all computable functions.

Definition 5.1. A Turing degree is a-c.a. dominated if it is C-dominated, where C
is the class of all a-c.a. functions. IL.e., if every d-computable function is dominated
by some a-c.a. function.

THEOREM 5.2 (Diamondstone,Greenberg, Turetsky [20]). Let a@ < g9. A c.e.
degree is totally a-c.a. if and only it is a-c.a. dominated.
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PROOF. Let d be a c.e. degree and let D € d be a c.e. set.

In the non-trivial direction, suppose that d is a-c.a. dominated. Let g € d,
g = T'(D) for a functional I'. Since D is c.e. it can compute the modulus m for the
approximation (g, for g given by gs; = I's(Ds); here the modulus m is defined by
m(k) = s if s is the least stage such that for all t = s, g¢ lk+1= g [k+1-

Let h be an w-c.a. function which majorises m, and let (hs,0.),_,, be an a-
computable approximation for h. Letting g:(k) = gn, 1) (k) we get that (g, 0:)
is an a-computable approximation for g. Essentially, this argument repeats the proof of
Proposition 11.3.17, after noticing that g is weak-truth-table reducible to any function dominating
the modulus m. O

The same argument yields an analogous result for the special limit classes.

THEOREM 5.3. Let o < g9 be a limit of powers of w. A c.e. degree d is totally
< a-c.a. if and only if it is < a-c.a. dominated, i.e., if for every d-computable
function g there is some v < a and some y-c.a. function which dominates g.

For the uniform version, for a class of functions C, say that a Turing degree d
is uniformly C-dominated if there is some function f € C which dominates every
function in d. In other words, if d is {f}-dominated for some f € C. For example,
a AY degree is low, if and only if it is uniformly AY-dominated. A Turing degree is
uniformly a-c.a. dominated if, as expected, it is uniformly C-dominated, where C
is the collection of all a-c.a. functions.

The following is a generalisation of the aforementioned result by Downey,
Jockusch and Stob: a c.e. degree is array computable if and only if it is uniformly
w-c.a. dominated.

THEOREM 5.4 (with McInerney). Let o < gg be a power of w. A c.e. degree d
is uniformly totally a-c.a. if and only if it is uniformly a-c.a. dominated: some
a-c.a. function dominates all functions in d.

PROOF. In one direction the argument is similar to the argument for Theo-
rem 5.2, but noticing the uniformity. Assuming that d is uniformly a-c.a. domi-
nated, let g be an a-c.a. function which dominates every function in d; fix an a-c.a.
order function h such that g is h-c.a. Let f € d, and let p be the modulus function
for f, by an approximation given by a c.e. set in d, so g <t d. Then g dominates
u, and the argument above shows that f is h-c.a.

In the other direction, we show that slightly stronger fact, that for any a-
order-function h, there is an a-c.a. function which dominates every h-c.a. function.
Fix an a-order-function h. Let {f¢) be an effective listing of all h-c.a. functions,
each with a tidy (h + 1)-computable approximation {f¢,0%) (Lemma 3.8). Let
f(n) = maxe<, f¢(n). Certainly f dominates every h-c.a. function. For n < w and
s <w, let fo(n) = maxe<, f¢(n) and let 64(n) = De<n 05(n); see the discussion of
commutative addition of ordinals in Subsection I1.3.3. Lemmas I1.3.15 and 11.3.16
show this is an a-computable approximation for f. ([l

Downey, Jockusch and Stob also showed that one can pick a single w-c.a. func-
tion dominating all array computable degrees: the modulus of &'. A similar result
holds for the higher uniform levels as well.

Proposition 5.5. Let a < g be a power of w. There is an a-c.a. function q such
that any Turing degree d is uniformly a-c.a. dominated if and only if it is {q}-
dominated.
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PROOF. Let 8 < g such that o = w?. Recall (Theorem I1.3.11) that Ig is
a-c.a., and has greatest weak truth-table degree among all a-c.a. functions. Let
{ps, 05y be an a-computable approximation of I B@ ; let ¢ be the modulus function of

this approximation: ¢(n) is the least s such that for all t > s, p; [, = I? M-

The function ¢ is a-c.a.: for r < w let ¢,(n) be the least s < r such that for
all t € [s,r], pt [n=pr [n- Also let m.(n) =0,(0) @0, (1) P -Do,(n—1). Then
{gs,msy is an a-computable approximation of g.

We now follow the proof in [31, Thm.1.3]. Suppose that d is not {g}-dominated;
we show that it is not uniformly a-c.a. dominated. Let h € d be a function which
is not dominated by ¢. Let f be an a-c.a. function; we define a function g <t h
which is not dominated by f.

Let (®,9) we a weak truth-table functional such that @(lﬁ@) = g. We
may assume that h and ¢ are strictly increasing. To deﬁne g(n), search for the
least s > h(p(n+1)) such that ®,(ps,n)|; we let g(n) = ®4(ps,n)+1. Let k be such
that h(k) > q(k); since ¢ is strictly increasing, let n such that p(n) < k < p(n+1).
Then

a(¢(n)) < q(k) < h(k) < h(p(n + 1)),
and so the stage s witnessing the definition of g(n), which was chosen to be greater
than h(e(n + 1)), is greater than q(p(n)); s0 ps lpm)= I Mo(n), Whence the
computation ®,(ps,n) is correct, so g(n) = f(n) + 1. O



CHAPTER IV

Maximal totally a-c.a. degrees

For a collection F of c.e. degrees, we say that a degree a € F is maximal in F
if it is maximal as an element of the partial ordering induced on F by the ordering
on the Turing degrees. In other words, if there is no degree b > a in F.

Classes of c.e. degrees which contain maximal elements are rare; they are mostly
prevented by density considerations. For example, no jump classes contain maximal
elements, and there are no maximal cappable degrees. A notable exception is the
example of the contiguous degrees — those degrees all of whose c.e. elements have
the same weak truth-table degree. Cholak, Downey and Walk [14] showed that
there are maximal contiguous degrees. Since the contiguous degrees are definable
in the c.e. degrees (Downey and Lempp [33]), the maximal contiguous degrees form
a definable antichain of c.e. degrees.

The relevance of contiguous degrees to the current study is that contiguous
degrees are all array computable, that is, uniformly totally w-c.a. Like the contigu-
ous degrees, the maximality phenomenon occurs at various level of the hierarchy
discussed in Chapter III.

1. Existence of maximal totally w®-c.a. degrees

THEOREM 1.1. If o < €¢ is a power of w, then there is a mazximal totally a-c.a.
c.e. degree.

To prove Theorem 1.1, fix an ordinal o < g¢ which is a power of w; we enumerate
a c.e. set D whose Turing degree will be maximal totally a-c.a. To ensure that
deg..(D) is totally a-c.a., we meet, for each e < w, the requirements

Qc: If &.(D) is total, then (D) is a-c.a.

To ensure maximality, for each e < w, we want to ensure that either W, <1 D,
or that there is some f <t D @ W, which is not a-c.a. We enumerate a Turing
functional A, with the aim of showing that either W, <t D or A.(D,W,) is not
a-c.a. By Proposition I1.1.7 let {{f¢, oé>s<w>i<w be an effective list of tidy (o +1)-
computable approximations such that letting f* = lim, f?, the sequence < fl> lists
the a-c.a. functions; and as above, every a-c.a. function appears as f* for some i
such that the approximation { fZ,0%) is eventually a-computable. For e,i < w, we
try to meet the requirement

Pg: If < f§,0é> is eventually «a-computable then either W, <t D or
Ae(D, W) # .

Globally we need to ensure that for all e, A.(D,W,) is total.

75
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Discussion. The construction is not difficult. To meet a requirement Q. we
use the mechanism proving the theorems in Chapter I1I: a node 7, working for @,
measures an approximation to the question “is ®.(D) total?”; in the case of an
affirmative answer, initialisation of weaker nodes that guess incorrectly allows 7 to
devise an a-computable approximation for ®.(D).

A node o working for a requirement P} would like to appoint a follower p and
follow the strategy of nodes working for positive requirements in the constructions
of Chapter I1I: whenever fi(p) = Ags(Ds, We.s,p), enumerate Mg s(p) into Dgyq.
This action may interfere with the work done by a node 7 for some requirement Q.
such that 7700 < 0. However, unlike previous constructions, when o picks p we do
not know yet the ordinal bound on the “number of times” ¢ may need to act for p;
the functions o’ are in some sense partial, since they allow the value «, which for
us is useless.

We isolate three principles which guide the interaction between 7 and o extend-
ing 7700. These have been followed in previous constructions as well, but sometimes
more easily since the approximations were “total”. Let p be a follower for o, a node
working for P..

(a) Suppose that 7 first certifies a computation ®.(D,z)[s] at stage s (in
previous notation, s = s;(;y). If ol (p) < a, then 7 can incorporate this
ordinal to the bound on its mind-changes for ®.(D,z). It can thus allow
every future action for p to injure ®.(D, x).

(b) If the use Ag.(p) is chosen at a stage ¢ at which we see ®.(D, z) converge,
then the next action for p will not injure ®.(D, z)[t].

(c) Since A4 is global, o needs to define \;(p) immediately when it appoints p,
that is, before it sees o'(p) < a.

We remark that we could have made the definition of each A, local, tied to a
“mother node” n as in the proof of Theorem I11.4.2. However, in this construction
this is not necessary and would not give any benefit. The effect of the finitely many
mother nodes < 7 would be the same as the effect of having every Ay be global,
i.e. the root of the tree is the mother node for every Ag.

The principles outlined leave one potentially problematic sequence of events.
First o appoints p and defines A4(p); then 7 certifies ®.(D,x); and only later do
we see 0'(p) < . In this case, the use is too small, so action for p would injure
the certified computation; but 7 did not know how many times o will act for p
when it certified the computation. Note that 7 could not wait for this later event,
since we may never see 0'(p) < a. Of course, this is where we use the additional
computational power of W,. Before we see o'(p) < a, o does not need to act for
p. Once we see o' (p) < a, if Wy €1 D, then Wy will permit o to lift the use Ag(p)
beyond the use of a computation ®.(D,z), in fact beyond the use of a D-correct
such computation. Only then is p cleared by 7 and ¢ can attack with impunity.
We cannot expect that every follower we appoint is permitted, and so ¢ will need
to appoint a sequence of followers pg, p1,...; one of them will be permitted.

We note two issues. One is that while Wy will permit some follower appointed
by o, the stage at which it gives this permission is not necessarily a stage at which o
is accessible, and this permission cannot “remain open” until ¢ is next visited: o
may never be visited again, and we need to define \;(p) to keep Aq(D, Wy) total.
So we act on permissions immediately, even if o is not accessible; this does no harm
to the rest of the construction.
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The other issue is that of totality. For each follower p, we note which com-
putations ®.(D,x) it is not allowed to injure, and seek permission from W, at a
stage at which ®.(D, )| for all such computations. We are guaranteed eventual
permission only if these are D-correct computations. How do we know that such
a stage will occur? Of course o, since it extends 7700, guesses that ®.(D) is total.
But there are constructions in which 7700 lies on the true path but the measured
function ®.(D) is in fact not total. This is avoided in this construction because we
make D totally a-c.a. and so lows.

The tree of strategies. As usual, to define the tree, we specify recursively the
association of nodes to requirements, and specify the outcomes of nodes working
for particular requirements. To specify the priority ordering of nodes, we specify
the ordering between outcomes of any node.

We order all of the requirements 4 and P/ in order-type w; all nodes of length k
work for the k" requirement on the list. The outcomes of a node working for Q,
are o0 and fin, with o0 < fin. A node working for P! has only one outcome.

Clearing followers. A follower p for a node o working for P! can be in one of
three states.

(1) When p is first appointed, it is unready.

(2) At a later stage (at which o is accessible) we may see that o'(p) < «;
then p becomes ready: we have determined which computations ®4(D, x)
it is allowed to injure.

(3) At a later stage yet, W, may give permission to lift the use A.(p) and
begin an attack with p. We say that p is in the clear.

Let prec(o) be the collection of nodes 7 such that 7 works for a requirement Qg4
and 7700 < o. This is the collection of nodes that may need to restrain ¢’s action to
protect computations they are monitoring. For each follower p for o, if p becomes
ready (by observing that o'(p) < a) then we define, for each 7 € prec(o), a value
m”(p), which serves as a watermark. If 7 works for @4, then action by o for p
is allowed to injure computations ®4 4(Ds, ) for = m”(p), but not for smaller
values of z.

Construction. At each stage we will do one of two things. Normally we will
build the path of accessible nodes and act accordingly. But at some stages we will
observe W, permissions that will allow us to clear a follower for some o. In that
case no node is accessible at that stage and no other action is taken by any node.
In both cases, though, after the main action, we maintain functionals (work toward
making them total).

OPTION A. At stage s we first ask: is there some node o working for a positive

requirement P! which currently has a ready follower p such that:
*p ¢ dom AE,S(DS7 We,s+1); and
e for all 7 € prec(o), working for ()4, we have m” (p) < dom @4 4(D,).

If so, then we let o be the strongest such node. We pick such a follower p
for o, and declare it to be in the clear. We cancel all other followers for o. We let
Dgy1 = D,. We define Ac s41(Dsy1, We s41,p) = s + 1 with large use (the D-use
and the We-use will always be equal). We initialise all nodes weaker than o. For
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any pair (d,q) < s distinct from (e, p) we maintain A\;(q) as follows, and then end
the stage.

MAINTAINING Ag(q): If ¢ ¢ domAgs(Dsi1, Wy s+1), then we define a new
computation Ay si1(Dst1, Wa,s+1,9) = s + 1 with use Ags+1(¢) determined by
cases:

e If ¢ is currently a follower for a node ¢’ working for Pg for some j (in
particular, ¢ was not just cancelled), then we set Mg s1+1(¢) = Aa,s(q)-
e Otherwise, A\gs+1(q) = —1.
The instructions will ensure that in the first case, A\g, s(q) is indeed defined, that is, ¢ € dom Ag s(Ds, Wg_ ).
The point of the first clause is to keep Agq(D, W) total when we have Wy-changes which are
not beneficial, i.e. occur when the follower g is unready or dom ®.(D)[s] < m7(q) for some

T € prec(a’).

OpTION B. If option A was not taken, then we let, by recursion, the collection
of accessible nodes 5 be an initial segment of the tree of strategies. So the root of
the tree is accessible at stage s.

Suppose that a node 7 that works for requirement @), is accessible at stage s.
If s is the least stage at which 7 is accessible then we let 7700 € d5. Otherwise we
let ¢ be the last stage before s at which 7700 was accessible. If t < dom @, s(Ds)
then we let 7700 € §,. Otherwise we let 7°fin € J;.

Suppose that a node o, working for requirement P!, is accessible at stage s.
There are two cases: either o has a unique follower which is in the clear; or no
follower for o is in the clear. In the latter case, ¢ possibly has a number of ready

followers, and possibly one unready follower.

1. Suppose that o has follower p in the clear.

If Aes(Ds, We s,p) = fi(p) then we enumerate A s(p) into Dsyq and redefine
Acs11(Dsi1, We s41,p) = s+1 with large use. We initialise all nodes weaker than o
and halt the stage.

If Ae7S(DS, We,s,p) # f; (p) then the unique immediate successor on the tree of
strategies is next accessible.

2. Suppose that o has no follower in the clear. There are two things we may do.

(a) If o has a currently unready follower p and o’(p) < «, then we de-
clare p to be ready. For each 7 € prec(o), working for @4, we define
m™(p) = dom @4 4(Ds).

(b) If either the action in part (a) has just been performed, or o currently
has no followers, then currently all followers for o are ready. We then
appoint a new, large follower p’ for o (which is unready) and define
Acs41(Dsy1, We s41,0") = s + 1 with large use.

If neither (a) nor (b) are performed then o already has one unready follower p with
ol (p) = a, and we do nothing.

If |o] < s, then the unique immediate successor on the tree of strategies is next
accessible; otherwise we halt the stage. In case 2, we do not initialise weaker nodes even
if we appoint a new follower. This is because if W, <t D, it is possible that infinitely many

followers will be appointed.

At the end of the stage, we maintain A\;(q) for pairs (d, q) < s (other than pairs
for which Ag(D, Wy, q)[s + 1] has just been defined) as above.
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Verification. For a while, we follow the verifications for Theorem I11.2.1. We
have an analogue of Lemma II1.2.3. In the verification, we say that a node o acts
at a stage s if either it is accessible at stage s and enumerates a number into Dy
on behalf of a follower in the clear; or if stage s option A is taken and a follower
for o is cleared.

As indicated in the construction, if a follower p for o is cleared at some stage s,
then all other followers for ¢ are cancelled at that stage. Until possibly a later stage
at which o is initialised, p remains ¢’s unique follower.

Lemma 1.2. Let s be a stage.
(a) Ewery functional A, s is consistent for the pair Dg, W .

Suppose that at the beginning of stage s, p is a follower for a node o which works
for P!.

(b) Ae,s(D&p)l and Ae,s(p) ¢ Dy.

(c) Suppose that p’ is a follower for a node o', weaker than o, working for Pe’/l
Then Ae,s(p) # Aers(D'). If p is in the clear at the beginning of stage s,
then Aes(p) < p'. As usual p' < Ay 4 (p').

Lett < s, and suppose that p was already a follower for o at the beginning of stage t.

(d) If p was in the clear at stage t, then Dy 1y, (p)= Ds ., (p); if, in addition,
o did not act at any stage r € [t,s), then D Paee@)+1= Ds Mx. .(p)+1-
(e) If p is not in the clear at the beginning of stage s then Ac +(p) = Ae,s(p)-

PROOF. Similar to the proof of Lemma II1.2.3. We note the differences.
For (b), that A, ¢(Ds,p) | is immediate here, from the maintenance round we
do at the end of every stage. To show that A.s(p) ¢ Ds, the new case is if at
stage s — 1, when performing maintenance, we saw that A, s_1(Ds, We s, p)1, and
defined a new computation with A (p) = Acs—1(p). However, by induction,
Y = Aes—1(p) € Ds—1. The node o does not act at stage s — 1, and the first part
of (¢) (at stage s — 1) shows that no other node can enumerate y into D;.

For (c), we note that as usual, new uses A s(p) are chosen to be large, and so
distinct from existing uses. The second part follows from the fact that at the stage
at which p is cleared, o’ is initialised. The proof of (d) is identical to the previous
proof. (e) is new, and follows immediately by induction, since o never acts for p
before p is cleared, and once the use A.(p) is picked (at the stage at which p is
appointed), the use is never lifted (see maintenance step). O

The proof of Lemma II1.2.4 gives its analogue, recalling, though, that we say
that o acts for p at stage s only if p is cleared at stage s, or if o enumerates A s(p)
into Dgy1 (when p is already in the clear); not when p is appointed or is declared
ready.

Lemma 1.3. Let o be a node that works for requirement P:. Let p be a follower for
o at stages s < t, and suppose that at both stages, o acts for p. Then o%(p) < 0%(p).

It follows that for each p, o enumerates A.(p) into D at only finitely many
stages. If the construction is fair to o, then it follows that ¢ halts the stage at
most finitely many times after it is last initialised: at most once when a follower p
becomes cleared, and then finitely many times when it enumerates A s(p) into D.
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Lemma 1.4. The true path 6, is infinite, and the construction is fair to every
node on the true path.

PROOF. The point is that there are infinitely many stages at which we do not
take option A and stop the stage: there are infinitely many stages at which d, is
nonempty. Suppose for a contradiction that there is a last stage s* at which we
take option B. There are only finitely many nodes ¢ which have followers at the
end of stage s*. But for each such node o there is at most one stage s > s* at
which we act for o. At that stage, a follower for o is cleared. Either this follower
is never cancelled and o does not act again. Or ¢ is initialised at some later stage
but never has the chance to appoint new followers. This is a contradiction. ([

Lemma 1.5. For all e, A.(D,W,) is total.

Proor. The difference from the proof of Lemma II1.2.7 is that W,-changes
may make A.-computations diverge. The maintenance step, and in particular
keeping the use fixed unless a follower becomes cleared, addresses this issue. For-
mally, the convergence of A.(D, W, p) for a permanent follower p for o follows from
Lemma 1.2(e) if p is never cleared, and from Lemma 1.3 if it is. t

The argument of Lemma I11.2.5 now shows that if a node ¢ on the true path,
working for requirement P!, has a follower which is eventually cleared but never
cancelled, then A.(D,W,) # f*.

As mentioned above, perhaps surprisingly, in order to show that each finitary
requirement P! is met, we need to investigate the infinitary requirements first. The
verification for the finitary requirements will use the fact that deg.(D) is lows.

Fix a node 7, working for requirement ()., such that 77c0 lies on the true path.
By Lemma 1.4, let s* be the last stage at which 7 is initialised. Let S = {sg, $1,...}
be the collection of stages s > s* at which 7700 is accessible. For z < w, let i(z) be
the least ¢ such that < dom ®,(D)[s;]. For z < w, we let a(z) be the collection
of pairs (o, p) such that ¢ > 7700 (in other words 7 € prec(c)), and p is a follower
for o which became ready at some stage prior to stage s;(,), but is not cancelled
by stage s;(;). For j = i(z) we let a;j(x) be the collection of pairs (o,p) € a(z) such
that o is not initialised at any stage r € [s;(,), s;), and p is still a follower for o at
the beginning of stage s;.

The set a(z) plays the same role as it did in the proof of Theorem II1.2.1: only
action by o for some p such that (o, p) € a;(z) can injure a computation ®.(D, z) at
stage s;. This will show that ®.(D) is a-c.a., as a(z) is finite, effectively obtained
from x, and at stage s, we already know an ordinal bound of (p) on the “number
of times” ¢ can attack with p. Note that for each o there is at most one p such
that (o, p) € a(z) and o will attack with p at a later stage s;. However, the identity
of this p — the one follower for ¢ that will be cleared, if there is one — is not yet
known at stage s;(s)-

Lemma 1.6. Let o > 7°c0, working for Pi, and let p be a follower for o which is
already in the clear at the beginning of stage s = s;(yy. Suppose that (o,p) ¢ a(x).
Then:

(1) m™(p) > 2.
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(2) Let t be the stage at which p is cleared. Then x € dom ®.(D)[t] and
Dy Ftpe’t(w)z D Ftpe,t(w)' It follows of course that x € dom ®.(D)[s] and that

Pe,s(x) = pe,t(T).
(3) Aa,s(p) > pes(z).

PRrOOF. For (1), let w be the stage at which p is declared ready. If w < s;,)
then (o,p) € a(x), so w > s;(,) (and it follows that ¢ > s;(,). At stage w, o is
accessible, and so w = s; for some j > i(x), whence x < dom @, (D) = m™ (p).

At stage ¢t we have dom @, (D)[t] = m7 (p) — this is one of the conditions for p to
be cleared. Hence x < dom ®.(D)[t], so e () is indeed defined. Let u = @, ((z).
At stage t, we define Ag4+1(p) to be large, and so larger than wu.

At stage t no node is accessible, so D;y; = D;. Lemma 1.2(d) applied to
t+ 1< s says that Ds [y, ., (»)= Di+1xs11(p)» and (2) follows.

As Mg r(p) is non-decreasing with r, it follows that Ay s(p) > u = e s(x). O

We are now ready to prove an analogue of Lemma [11.2.9.

Lemma 1.7. Let j > i(x). Let u = @cs,(x). Suppose that Ds, ., 1y# Ds; lu.
Then there is some (o, p) € a;(x) such that o acts for p at stage s; and enumerates
Ad,s; (p) < u into Dy, 1.

PROOF. The argument follows the proof of Lemma II1.2.9. Suppose that
at stage s € [s;,5j+1), a node o acts for some follower p and enumerates
Ad,s(P) < @e,s,;(x) into Dy 1. The argument that o extends 7°c0, and so s = s, is
the same as above. Note that p is already in the clear at the beginning of stage s;.
Lemma 1.6(3) shows that (o,p) € a(x), and so (o,p) € a;(x). O

The next lemma shows that D is lows.

Lemma 1.8. Let 7 be a node on the true path that works for requirement Q.. Then
7 00 lies on the true path if and only if ®.(D) is total.

PROOF. The non-trivial direction is left-to-right. Let x < w. To show that
x € dom ®.(D), we observe that there are only finitely many j > i(x) such that
Dy, ., [%,Sj ()7 Ds,; f%,sj (). This follows from the fact that a(x) is finite, and
that for each (o,p) € a(x), o acts for p at most finitely many times. O

We can now show that the positive requirements are met.

Lemma 1.9. For all e and i, the requirement P! is met.

PROOF. Let ¢ be a node on the true path, working for P!. We observed
above that if there is a follower p for ¢ which is at some point cleared and is
never cancelled, then P! is met. Let 7* be the last stage at which ¢ is initialised,
and suppose that no follower for o is cleared after stage r*. If (fi o) is not
eventually a-computable, then P! is met vacuously, so we assume that it is. Then
every follower that o appoints after stage r* eventually becomes ready (of course,
using the fact that o is accessible during infinitely many stages). Then o appoints
infinitely many followers. We show that W, <t D.

Let p be a follower for o, appointed after stage r*; let sy be the stage at which p
is appointed, and let u = A¢ s, (p). As u > sg, the numbers u are unbounded, as p
ranges over the followers for 0. To compute W, |, from D, we first go to the

stage ¢ at which p becomes ready. At that stage we observe the numbers m7(p) for
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T € prec(o). For all 7 € prec(c), 770 lies on the true path. By Lemma 1.8, there
is a stage s at which for all 7 € prec(o), for all z < m™(p), z € dom ®.(D)[s] by a
D-correct computation. Certainly D can find such a stage s; and W, s [, = We |4,
for otherwise p would be cleared at some stage s’ > s. [

We now rejoin the proof of Theorem II1.2.1, using Lemma 1.7 to show that for
every e such that ®.(D) is total, the node 7 on the true path working for Q. is
successful in devising an a-computable approximation for ®.(D). Fix such e and 7;
we again use the stages s;, the indices i(z) and the sets a;(z) discussed above. Fix
x < w. We note, and this is the main point, that for all (o,p) € a(x), if o works
for P} then oii(w)(p) <a.

Let j > i(x) and let o be a node, working for P, which appears in a;(z) (i.e.,
(0,p) € a;(x) for some p). If no follower for o is cleared by the beginning of stage s;,
we let

B(0) = max {0l (v) : (0,p) € a(a)}.

Otherwise, let p be the unique follower for o at stage s;; (o,p) € a;(x). We let t;(o)
be the greatest stage ¢ < s; at which o acts (for p); such a stage exists, since p
becomes cleared at some stage t < s;. We then let 8;(c) = Oij(a) (p). Finally, we
order the nodes appearing in a;j(x) in descending priority as oo, 01, ..., 0k(;), and
let m;(x) = Xlpcr(j) Bi(on). We note that if o acts at stage s; then k(j +1) < k.
Lemma, II1.2.10 holds for the current construction, with much the same proof. This
completes the proof of Theorem 1.1.

1.1. Maximal uniformly totally w*-c.a. degrees. Not only are there max-
imal uniformly totally w*-c.a. degrees, but there are such degrees which are also
maximal totally w®-c.a.

THEOREM 1.10. If o is a power of w, then there is a uniformly totally a-c.a.
degree which is maximal totally a-c.a.

PRrROOF. To prove Theorem 1.10, we run the construction for Theorem 1.1 with
but one modification: a follower p for a node o working for P! becomes ready at a
stage t; if o is accessible at stage t1, and at the previous stage ty < t; at which o
was accessible we saw that o} ,(p) < a. That is, we only let p become ready at the
second stage at which o is accessible and at which we see oi(p) < a. It is easily
verified that this delay in declaring a follower to be ready does not affect the success
of the construction, so the degree deg(D) produced under this new definition of
readiness is also maximal totally a-c.a.; we show though that the degree produced
is also uniformly totally a-c.a.

We follow the argument for proving part (1) of Theorem II1.3.5. By design of
the current construction, a node o accessible at stage s has length at most s. We
fix some 7, working for Q)., such that 7700 lies on the true path. Now we examine
the proof of Lemma II1.3.7. For > dom ®.(D)[s1], again let ug < u1 < 8;z)
be successive stages at which 7700 is accessible. Let (o, p) € a(z), with o working
for Pi. Then o} (p) < a, and ug < x. Since |o| < ug, we may assume that
i < z. It follows that m;(,(x) is an ordinal which can be observed at stage x of the
construction, and this is independent of 7. This gives an a-order function h such
that every f <t D is h-c.a. O
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In Section II1.3.2 we explained why we could not combine the proofs of the two
parts of Theorem II1.4.2 and obtain a contradiction (a degree which both is and is
not uniformly totally a-c.a.). The explanation focussed on the stage u; = s;(3)—1,
the last stage in S before stage s;(,). A follower p appointed at stage u; would have
bound o, (p) which can be arbitrarily large with relation to p, but will be able to
destroy computations ®.(D, x)[s;] for j > i(z). In the previous chapter there is no
way around this; we have to allow such a p to destroy the computations, or ¢ will
not be able to meet its requirement. In the current situation, using Wy to lift the
use A (p) when p is cleared allows us to choose which followers to restrain, and this
makes possible the proof of Theorem 1.10.

For the case « = w, Theorem 1.10 says that there is an array computable
c.e. degree which is maximal totally w-c.a. In fact, we suspect that combining
the methods of this chapter together with the construction of a contiguous degree,
one can show that there is a contiguous degree which is maximal totally w-c.a.
Since every contiguous degree is array computable, such a degree is also maximal
contiguous.

The following theorem, for o = w, shows that not all maximal totally w-c.a.
degrees are maximal contiguous degrees.

THEOREM 1.11. If a is a power of w, then there is a maximal totally a-c.a.
degree which is not uniformly totally a-c.a.

SKETCH OF PROOF. We combine the construction for Theorem 1.1 with the
technique proving Theorem II1.3.5(2). To the construction for Theorem 1.1 we
add the enumeration of a functional I', with the aim of making I'(D) witness that
deg (D) is not uniformly totally a-c.a. Again we fix an a-order function h, and
enumerate h-c.a. functions {g;) along with tidy (h + 1)-computable approximations
for these functions. We add a third kind of requirement, R?, namely that I'(D) # g;.
The action for these requirements is identical to that of the previous chapter. There
is no interaction (other than mutual initialisations) between nodes working for R’
and nodes working for Pg; and the interaction between nodes working for R’ and
nodes working for Q). is as in the previous chapter. That is, when showing that D
is lows, and then devising an a-computable approximation for ®.(D) if it is total,
the sets a(z) may contain pairs (o, p) where o works for either a requirement R® or
for a requirement PC{. In either case, the ordinal bound on the number of times o
will act for p can be observed at stage s;(;), and if (o,p) is not in a(x), then action
by o for p cannot injure a computation ®. s(Ds,z) observed at a T-expansionary
stage. 0

2. Limits on further maximality

One might wish for even stronger maximality properties than those provided
by Theorem 1.1. Could there be, for example, a totally w-c.a. degree which is a
maximal totally w?-c.a. degree? In general, can a degree in one level of our crudest
hierarchy be maximal for a higher level? The following theorem says it cannot.

THEOREM 2.1. Let 8 < eq. Every totally wP-c.a. c.e. degree is bounded by a
strictly greater totally wPt-c.a. c.e. degree.
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To prove Theorem 2.1, fix an ordinal 5 < ¢¢, and let & = w”. Let V be a c.e. set
whose Turing degree is totally a-c.a. We enumerate a set D such that deg.(V @ D)
is strictly greater than deg, (V) and is totally a - w = w’*!-c.a. The requirements
to meet are:

P.: U, (V)# D;
and

Qe If ®.(V, D) is total then it is « - w-c.a.

Discussion. The main idea for meeting the requirement Q. is as follows. We
track ®.(V, D, z) for some z. Changes to such a computation can come from two
sources: a V-change or a D-change. To keep track of the V-changes — the ones we
do not control ourselves — we build what we call a “shadow functional” fi>e, with
intended oracle V' alone. We pick an input ¢ and define ci>e(V7 ¢) with the same
use as that of ®.(D,V,z) (recall that we assume that the V-use and the D-use
are identical). The input ¢ is called the tracker for z. We ensure that if ®.(D,V)
is total, then ®.(V) is total as well. Since degp(V) is totally a-c.a., ®.(V) will
equal f? for some i, where < f1> lists a-c.a. functions. We guess the correct index i;
this will be done using the fact that V is lows. This is a AJ-guessing process,
which is very similar to a I1§/%9 process, except that infinitely many outcomes
are required. The correct guess will observe o’(c) and bound the V-changes in
o, (D,V,x).

We have to think though what happens when we cause a D-change (for the sake
of meeting some P;). The computation ®.(D,V,x) is gone, but it is possible that
the V-part of the computation was correct. In this case é)e(V, ¢) is a correct compu-
tation, and we cannot use the tracker ¢ to shadow new ®.(D,V,x) computations.
We need to replace ¢ by a new tracker and repeat the process. This is how we get
a-w: when we first certify ®.(D,V,z), we put a bound on the number of D-changes
that we allow to destroy such a computation; say it is n. We appoint a tracker ¢
and observe By = of(co). We then declare that ®.(D,V,z) will not change more
than a-n + By many “times”. While we only see V-changes, the associated ordinal
is still a - n + 0%(cp). Once we cause a D-change that destroys a ®.(D,V,x) com-
putation, we appoint a new tracker c;, observe 31 = 0 (c;), decrease our ordinal to
a-(n—1) + B1, and repeat the process.

We could be tempted to improve the bound. If we know in advance (i.e. when
®.(D,V,x) is first certified) a bound n on the number of D-injuries to the compu-
tation, we could immediately appoint n trackers ¢y, ..., c,_1 and start our approx-
imation knowing S = of(ci) for all of these trackers. Then the bound would be
Brn-1+ Bn_1+ -+ Bo which in fact is smaller than o. We would prove that there
is no maximal totally a-c.a. degree. The fallacy is easy to see: we do not know
whether we will actually see n-many D-injuries to the computation; n is just a
bound. While we are using the tracker ¢y we cannot define computations ée(V, ck)
for the other trackers (k > 0); we need to keep them open, because the use of these
computations is the use of ®.(z)-computations we have not yet observed. This
would make ®,(V) partial even if ®.(D, V) is total, and so void the whole plan.

We now discuss how to meet P., bearing in mind the severe restriction imposed
by the negative requirements: such requirements need to know in advance (relative
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to the input x) the number of times (in this instance without quotation marks) a
D-change could ruin a computation ®4(D,V, z).

We pick a follower p and wait for ¥.(V,p) to converge, with the intention of
ensuring that ¥.(V,p) # D(p). Of course the difficulty is that we do not know,
when presented with such a computation, whether the presented computation is V-
correct. If V were low we could apply R. Robinson’s guessing technique. However V'
need not be low. But it is lows, and again we use this to guess the answer to the
question “is (V) total?”.

Independent of the restrictions imposed by the negative requirements, ensuring
that D €t V would now be easy. Define a D-computable function A(D). Each
outcome of P, which believes that ¥.(V) is total appoints a follower p. If such
an outcome is believed and we currently see that ¥.(V,p) = A(D,p) then we
diagonalise. If such an outcome lies on the true path then its guess is correct:
U, (V) is indeed total, and so the outcome would act only finitely many times.

Such action causes conflict with stronger negative requirements. To keep A(D)
total, a new value for A(D,p) needs to be picked immediately when an outcome
of P, acts. This means that such an outcome will repeatedly injure a computation
®,4(D,V,x). We could try to use the fact that deg.(V) is totally a-c.a., rather than
the weaker fact that it is lows. We guess that W, (V) = f* for some a-c.a. function f?
on our list; the node following ®4(D,V, z) will observe how many “times” the P.-
child will act, and incorporate it into its bound. The bound though is a rather
than w. In this way we could try to make D @ V totally a?-c.a., but not totally
a - w-c.a. Of course for v = w this is sufficient.

To overcome this difficulty we modify the action of P, as follows. The problem
was that even though we have certification that W.(V) is total, many single com-
putations we see will be incorrect. To respect the main restriction, after a failed
attack with a follower we abandon that follower altogether. To ensure that this does
not go on indefinitely we build a shadow functional \i/e, with intended oracle V.
We need to ensure that if U, (V) is total then so is U, (V). Each node that guesses
totality appoints an anchor g which will serve many followers p. We ensure that
the uses of W, (V,p) and W.(V,q) are the same. If the node is correct then the fact
that \i!e(V, q) stabilises ensures that only finitely many followers are ever appointed
by that node.

We need to discuss in greater detail how a node 7 working for . can
tolerate the action of a node o working for P;. Assuming that the node o
guesses that limsup,dom®.(V,D)[s] = oo, it also needs to guess whether
liminfs dom ®.(V, D)[s] = oo, that is, if ®.(V, D) is total or not. If o guesses
that ®.(V, D) is total then for each x we allow an enumeration of a follower for o
to injure ®.(V, D, z) at most once. As in the construction of a maximal totally
a-c.a. degree, we set a “watermark” mg (o), differentiating between large inputs
whose computations ¢ is allowed to injure, and smaller inputs which need to be
protected. Each time o attacks, the watermark is updated. It is possible that due
to a V-change, a follower p is smaller than the use ¢, s(x) for some protected input
x < mg(o). In this case the V-change makes \ild(V, q)71, and we can discard the
follower and choose a new, large one. Note that when this is done we do not need
to update my(o): the node 7 only cares about the number of followers that will
injure a computation ®.(D,V,z), not about the identity of the follower that will
inflict the injury.
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What at first appears to be a trickier situation is when o guesses that ®.(V, D)
is partial. We still need to protect computations ®.(V, D, x) for small z, because
we don’t know that o’s guess is correct. This means cancelling a follower p for o
when we see a V-change that causes p.(x) to increase. But if ®.(V,D,x)? then
this can happen infinitely often. However, o can guess the exact place at which
®.(V, D) becomes partial, that is, the value of liminf, dom ®.(V, D)[s]. Say that
value is y. Inputs x < y will eventually settle and stop causing the cancellation
of ¢’s follower. When we guess the value y we delay the definition of <i>T(V, c)
where c is the current tracker for x. Action by o at such a stage will not cause
problems for stronger “totality outcomes” of 7: if @T(V, ¢)? [s] then enumeration
of a number into D at stage s does not mean that we need to abandon the tracker.
On the other hand if ®.(V, D) is total then such y will be guessed only finitely often
and so &, (V, ¢) will eventually be defined and we can ensure that (V) is total as
well, which is necessary for 7’s strategy to work.

The tree of strategies and AY guessing. We define the tree of strategies and
assign strategies to nodes on the tree by recursion.

We start with the empty node, to which we assign the requirement @Qy. Suppose
that 7 is a node on the tree which was assigned the requirement Q.. The node will
have a number of children on the tree which help 7 meet its goal. The outcomes of 7
are 0 < fin. These outcomes measure limsup, dom ®.(V, D)[s]. The node 7°fin
is assigned to the requirement P..

The outcomes of 7700 on the tree are oo, and fin, for n < w (ordered by
wg < fing < 007 < fin; < w0y < ---). These outcomes participate in the AY
guessing process of whether &, (V) is total or not. The nodes 7°0°fin,, which
guess that éT(V) is not total, are assigned to the requirement P.. The outcomes
of nodes of the form 70000, are all i < w (ordered naturally). A node 7°00"c0,,
guesses that &, (V) is total. If it is correct then &, (V) must equal f for some i,
where < fi> as usual is a list of the a-c.a. functions equipped uniformly with tidy
(o + 1)-computable approximations <f§, Oi>; this is guessed by the node 770000, .
We assign each such node the requirement P,.

Suppose that a node 7 is assigned the requirement P,. The node 7 has infinitely
many outcomes o0, and fin,, ordered as above. Again this is for guessing the
totality of U, (V), a shadow functional enumerated by the node 7. The children
of m — its immediate successors on the tree — combine forces to help m meet its
requirement. They each have a single immediate extension on the tree, which is
assigned to the requirement Qe 1.

As discussed, nodes 7 working for Q. define a shadow functional ®, and nodes 7
working for P. define a shadow functional U,.. Since V is lows, the set of indices
of functionals © such that ©(V) is total is £J. Membership in a IIJ set can be
translated to the question whether a given non-decreasing computable sequence is
bounded or not. By the recursion theorem we know the indices of the functionals
enumerated by the nodes 7 and 7 on the tree. Thus we obtain for each such
node p a computable list £5(p,n) of sequences, nondecreasing in s, such that the
functional enumerated by p is total if and only if for some n, the sequence ({5 (u,n)>
is unbounded.
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As mentioned above, a node 7 working for Q. appoints trackers try(7,x) for
inputs < w. If o is a child of a node 7 working for P, which believes that W, (V)
is total (i.e. 0 = w"00,, for some n < w) then o may appoint both an anchor acg(o)
and a follower £f1,(c). All followers, anchors and trackers are cancelled when the
node which appointed them is initialised.

Suppose that 7 is a node which works for P.. We let prec(m) be the set of
nodes 7 working for some @4 such that 7700 < m. We split this set into two parts:
prec () is the set of nodes 7 € prec(m) such that 7°c0"c0,, < 7 for some n;
prec;; (m) is the set of nodes 7 € prec(m) such that 7700 fin,, < 7 for some n. If &
is a child of m which believes that \i/,r(V) is total then during the construction we
may define markers mg(c). Let 7 € prec(n) and let © < w. We say that o respects
the input = (for ) at stage s if:

e 7 e prec, (m) and z < my(o); or
e T eprec,;, (m) and x <y, where 7700 fin, < 7.

Construction. Let s be a stage. We let, by recursion, the collection of accessible
nodes s be an initial segment of the tree of strategies.

Suppose that a node 7, working for requirement @), is accessible at stage s.
Let t < s be the last stage prior to stage s at which 7°0c0 was accessible, t = 0 if
there is no such stage. If dom @, (Vs, D) <t then we let 7°fin be next accessible;
otherwise we let 7700 be next accessible.

Suppose that 7700 is accessible at stage s. For each n < s let ¢, be the last
stage prior to stage s at which 7°00"c0,, was accessible, t,, = 0 if there was no such
stage. Also, let y be the least such that either ®..(V;, Dy, y)1 or the computa-
tion ®..(V;, Dy, y) was destroyed since stage ¢, that is, either D, ,# D, [, or
Vi tu# Vs lu, where u = @, (y). Note that y < t. If there is some n < y such that
Ls(T,n) = t, then we let 7°00"c0,, be next accessible for the least such n. Otherwise
we let 7700"fin, be next accessible.

Before we proceed we maintain the functional d,. Let z < w such that
¢ = trg(r, ) is already defined. If either

e 7700 fin, is next accessible, and z < y; or
e 770000, is next accessible, and x < t

and ‘i)T,S(VS,Ds,c)T then we define i)T,sH(VS,Ds,c) = s with use @, s(Vs, Ds, ).
Also, if ¢ < s is not currently a tracker for any input for 7 and ci)ns(‘/;,Ds,C)T
then we define (i)775+1(vs, Dy, C) = 0 with use 0 (recall that since V is not built by us, the
use of ® is not the largest number queried; it is the length of the string appearing in an axiom
applying to the oracle). Finally for every & < s for which try(r, z) is undefined, we
define a new, large tracker trgyq(7, ).

Suppose that 7700700, is accessible (for some n). For each i < s let r; be the
last stage at which 77°00"00,,"¢ was last accessible, r; = 0 if there was no such stage.
We let 7°00°0,,"7 be next accessible for the least i < s such that for all z < r;,
¢ = try(r,z) is defined, o’ (c) < a and @, ,(Vi,c) = fi(c). Note that rs = 0 and so
such 7 does exist.

Suppose that a node 7, working for P, is accessible at stage s. If || = s then we
end the stage. Suppose that || < s. We first maintain the shadow functional ¥.
For every ¢ < s which is not currently an anchor for any child of «, if \ilﬂys(VS, q)1
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then we define W, ,y1(Vi,q) = 0 with use 0. Now let ¢ = ac,(c) be an anchor for a

child ¢ of 7, and suppose that \i'mS(VS, q)t. Let p = £14(0) be the current follower
of o.

o If either p € Dy, or for some 7 € prec(m) working for @y and some x
which o currently respects (for 7) we have p < ¢q s(z), then we cancel p
and appoint a new, large follower £1,,1(c). We leave \ijw,3+1(‘/tg,q) un-
defined. In the first case we have already attacked with p, but now the computation
against which we diagonalised has disappeared. In the second case, as described earlier,
we need to protect the computation ®4(D,V,z) from the action of o.

e Otherwise, if p € dom ¥, (V) then we define \ilﬁ)Hl(VS,q) = s with use
Ye,s(p). If p¢ dom ¥, 4(V;) then we leave @W,S“(VS, q) undefined.

For n < s let t,, be the last stage at which n"00,, was accessible, t,, = 0 if there
is no such stage. Also let y = dom \TIW,S(VS). If there is some n < y such that
ls(m,n) = t, then we let 7700, be next accessible for the least such n. Otherwise
we let 7"fin, be next accessible.

Suppose that ¢ = 700, is accessible.

e If o has no anchor then we appoint a new large anchor ¢ = ac,11(0) and
a new, large follower p = f1,41(0). We let my11(0) = s.

o Ifp =£1,(0)isdefined, p ¢ Dy, ¥, 4(Vs,p) = 0, and acs(o) € dom \ilﬂvs(VS)
then we enumerate p into Dgy;. Redefine mgyi1(0) = s. For all
T € prec,(m) and all inputs = which o does not currently respect
(for T) that is, = = ms(0), cancel the tracker tr(r,x).

If either of these happen, we stop the stage and initialise all nodes weaker than o.
If the stage was not ended, then the unique child of ¢ is next accessible.

Verification. First we note that for the functionals Z we define, V.. and @T,
we only define a new axiom Zg.1(Vs, ) if © ¢ dom Z4(V;). This shows that these
functionals are consistent for V', indeed at every stage.

We will need to show that these shadow functionals behave properly. The
W-functionals are easy.

Lemma 2.2. Let m be a node working for a requirement P,. Let o be a child
of m. Let s be a stage and suppose that ¢ = acs(o) and p = £14(0) are defined. If

(V. q)l [s] then T (V,p)| [s] and ¥ 5(q) = e s(p).

PROOF. Suppose that \ilﬂ(V, Q) [s]; let u = @w,s(q). Let t < s be the stage
at which we defined this computation. So V; l,= Vs [,. At stage t we have
U.(V,p) | [s] with use u. Hence this computation persists until stage s. We
may assume that while U.(V,p) |, no new computations (with different use) are
enumerated into ¥.. Thus 9. s(p) = u. O

Lemma 2.3. Suppose that a node m working for P. is accessible infinitely often
and is initialised only finitely often. There is a child o of m which is accessible
infinitely often. Let o be the strongest such child. Then:

(1) o ends the stage only finitely many times.
(2) o believes that W (V) is total if and only if (V) is indeed total.
(3) If (V) is total then the requirement P, is met.
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PROOF. Suppose that ¥, (V) is not total. Then for every n, 700, is accessible
only finitely often (otherwise lim £4(m,n) = o0 and this implies that W (V) is total).
On the other hand, because U is defined only at stages at which 7 is accessible, we
know that y = liminf, dom ¥ (V)[s] is finite, and y = dom W, (V)[s] at infinitely
many stages s at which 7 is accessible. Hence 7"fin,, is accessible infinitely often,
and is the strongest child of m which is accessible infinitely often. This node never
ends the stage.

Suppose that ¥, (V) is total. There is some n such that lim, £s(m,n) = 0;
let n be the least such. For almost every stage s, dom W, (V)[s] > n. Hence 7" o0,,
is accessible infinitely often, and is the strongest such child of .

At the first stage at which o = 7”00, is accessible after that last stage at which
it is initialised we define an anchor ¢ = ac(o); this anchor is never cancelled. Let ¢
be the stage at which the V-correct computation @W(V, q) is defined (note that o
need not be accessible at that stage). The follower p = £1;(0) is never cancelled.
After stage ¢, the node o ends the stage at most once, when p is enumerated into D.

We claim that U.(V,p) # D(p). We have p ¢ D, (for otherwise p would be
cancelled at stage t). By Lemma 2.2, W .(V,p)| [t] is a V-correct computation. If
U.(V,p) = 0 then at the next stage s > t at which o is accessible, p is enumerated
into D. If ¥.(V,p) = 1 then at no stage do we enumerate p into D. O

Lemma 2.4. Let m be a node which works for requirement Py. Let T € prec(r).
Let o be a child of m which guesses that \@W(V) is total. Let s be a stage at which w
is accessible, and let x be an input for T which o respects at stage s. Suppose that
p=f£1s(0) and ¢ = £15(0) are defined. Then ®.(V, D, z)| [s] and either (i) p € Ds;
or (ii) Wx(V,q)1 [s]; or (iii) ¢e,s(x) < p-

PROOF. Suppose that W, (V,q)| [s] and that p ¢ D,. Let t < s be the stage
at which the computation W, (V,q)[s] is defined. When the anchor is chosen it is
large, and it is not large at stage ¢; hence ¢ = ac¢(c). The follower £1;(o) is not
enumerated into D at stage ¢ since W (V, )1 [t]. The follower is not cancelled at
stage t; otherwise \TJW(V, q) is not defined at stage t. The follower is not cancelled
at any stage in the interval (r, s) since \i/W(V, q)| at these stages. Hence p = £1;(0).
Since p ¢ Dg, ms(0) < t.

If 7 € prec(m) then © < my(o). If 7 € prece,(m) then © < y where
T°0"fin, < 7. Since 7 is accessible at stage mg(o) we have y < m4(0) so again
x < mg(o). Hence ®.(V,D,x)| [r] at every stage r > ms(o) at which 7700 is
accessible. In particular this holds for » = ¢. Since m(0) = ms(o), x is respected
by o at stage t. If p < @ +(x) then since @W(V, q)?1 [t], p would be cancelled at
stage ¢t. Hence p = ¢, ().

For brevity let v = @. (x). We may assume that ¥4.(p) > p, and
Uri(q) = tas(p). The fact that the computation W, (V,q)[t] survives until
stage s implies that V; |, = Vi |,. The lemma would be proved once we show that
Dy 4= Ds 1; this would imply that the computation ®.(V, D, z)[¢t] survives until
stage s and so u = @, s(z) < p as required.

Suppose for a contradiction that at some stage r € [t, s) a number p’ < u is enu-
merated into D, ;1; let r be the least such stage. So the computation ®.(V, D, z)[¢]
survives until stage 7; @, (2) = u. The number p’ is the follower £1,(¢’) for some
node o', a child of a node 7’ working for Py. The node 7’ must extend 7: it must
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be weaker than o, since it does not initialise o at stage r; and it is not initialised at
stage t, because the follower p’ is large when it is chosen, and so p’ is chosen prior
to stage t. The node ¢’ is initialised at stage ms(c). Hence m,(c’) > mg(c). This
shows that x is respected (for 7) by o’ at stage r (if 7 € prec,,(7) then we use
the fact that both 7 and 7’ extend the same child of 7°00). Applying the lemma
at stage r, since p’ ¢ D, and \ifﬂr(V, ac,(0’))| [r] (otherwise p’ is not enumerated
into D,41), it must be that p’ > ¢ »(z) = u, a contradiction. O

Lemma 2.5. Let 7 be a node which works for requirement Q.. ALet s be a stage;
let x be an input such that ¢ = try(T,x) is defined. Suppose that ©,(V,c)| [s]. Let
u={rs(c). Then:

(1) @.(V,D,x)| [s] and u = (Pe,s(x)'

(2) If Ds tu# Dsy1 lu then the tracker c is cancelled at stage s.

PRrROOF. Both parts of the lemma are proved by simultaneous induction on
the stage s. Suppose the lemma has been verified for all stages prior to stage s.
Assume the hypotheses of the lemma hold at stage s. Let ¢ < s be the stage at
which the computation i’T(V, ¢)[s] was defined. So V; ,= Vi .. At stage t we
have ®.(V,D,z)| [t] with use @ +(x) = u. Because trackers are chosen large,
¢ =try(r, ).

The conditions of the lemma hold at every stage in the interval [¢,s). Since
the tracker c is not cancelled at any stage in that interval, by induction on these
stages (using (2)) we see that Dy ,= Dy . This shows that the computation
®.(V, D, x)[t] is preserved up to stage s, and so establishes (1) at stage s.

Suppose that a number p < u is enumerated into D at stage s. Then p = £1,(0)
for some node o, a child of a node w. The follower p must be chosen prior to stage ¢.
If o is stronger than 7 then 7 is initialised at stage s, whence c is cancelled at stage s.
Assuming otherwise, it must be the case that ¢ > 7700, as ¢ is not initialised at
stage t.

Lemma 2.4 ensures that o does not respect = (for 7) at stage s. Suppose that
7°00"fin, < 7 for some y. Let r be the last stage prior to stage s at which 7700
was accessible. Then r > t. It follows that ®.(V, D, )] [r] and the computation
is preserved until stage s. Hence y > x. But then o respects x. So T € prec_, ().
Then o is instructed to cancel ¢ at stage s; so (2) holds. (]

Lemma 2.6. Let 7 be a node which works for Q.. Suppose that T is initialised
only finitely often, and that 7"00 is accessible infinitely often.
(1) For every x we eventually appoint a tracker tr(r,x) which is never can-
celled.
(2) There is an outcome o € {00y, fin,} such that 77000 is accessible infinitely
often.

Let p = 7700 be the strongest child of 7°00 which is accessible infinitely often.
(3) If ®.(V, D) is total then so is ®(V), and 0 = o, for some n. Further,

for some i, 700 00,71 is accessible infinitely often.
(4) Otherwise o = fin, where y = dom ®.(D, V).

PROOF. Let x < w. At any stage ¢t > x at which 77c0 is accessible, if tr;(r, )
is undefined then we appoint a new tracker tr;yi(7,z). Suppose that a tracker
try(7,z) is defined and is cancelled at stage s. The stage s is ended by a child o
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of a node 7 working for some Py; 7 € prec,,(m) and the node o enumerates its
follower p = £14(0) into Ds11. We have x = ms(0). The marker m4(o) is chosen
at stage ms(o), at which o is accessible. Thus there are only finitely many nodes o
which can ever cancel the tracker tr,(z, 7). Each such node does so at most once,
since when it does, it updates mgsy1(0) = s > x. This gives (1).

Suppose that ®.(V, D) is not total; let y = dom ®.(V, D). Let ¢ be the eventual
tracker for y, which is never cancelled. Then y ¢ dom @T(V). This is ensured by
part (1) of Lemma 2.5; If (iDT(V, ¢)| with use u then at a late stage at which both V
and D are correct up to u we would get a V, D-correct computation of ®.(y).
Since ¢, (V) is partial, no totality outcome co,, is guessed infinitely often. Since
®.(V, D, x) is eventually fixed for all x < y, eventually, no outcome stronger than
fin, is ever guessed; but fin, is guessed infinitely often. This gives (4).

Suppose that ®.(V, D) is total. For every y, fin,, is guessed only finitely many
times. We show that éT(V) is total. This will imply that some c0,, is guessed
infinitely often. Let ¢ < w. As usual, if ¢ is never chosen as a follower or is chosen
and later cancelled, then @T(V, ¢)|. Suppose that ¢ is chosen as a tracker for x at
stage r, and is never cancelled. Eventually no fin, for y < z is ever guessed; so
eventually, at every stage s at which 7700 is accessible, if @T(V, ¢)? [s] then a new
computation §>775+1(V8, ¢) is defined. The use is @, s(x). This use stabilizes, and
eventually V stabilizes below that use, and so eventually a V-correct computation
must be made.

Since deg,(V) is totally a-c.a., there is some i < w such that &, (V) = fi
and < fL oi> is eventually a-computable. Since every input eventually receives a
permanent tracker, the outcome 7 is guessed infinitely often for the least such ¢. O

Lemmas 2.3 and 2.6 together show that the true path is infinite and that the
construction is fair to every node on the true path.

Lemma 2.7. Every positive requirement P, is met.

PROOF. Let m be the node on the true path which works for P,. Suppose that
W, (V) is total. We show that ¥, (V) is total (and then appeal to Lemma 2.3).

Let ¢ < w. To show that \i/ﬁ(V, q)l we may, as usual, assume that ¢ is chosen
as an anchor of a child ¢ of 7 at some stage r, and is never cancelled. We show that
followers for o are cancelled only finitely many times. This suffices: if p is a follower
for o which is never cancelled, then eventually we see the V-correct computation
W, (V,z). At any stage s at which 7 is accessible, if W, (V,q)?1 [s] then a new
computation is defined with use 9. 4(p), which eventually stabilizes.

The node o believes that W, (V) is total. Hence if o is accessible infinitely often
then \i/,r(V) is total and we are done. We assume that o is accessible only finitely
many times. The marker m4(c) is updated only when o is accessible, so reaches a
final value m(o) at stage ¢t = r.

Suppose that the follower p = £1,(0) is cancelled at a stage after stage ¢. This
is done on behalf of a node 7 € prec(m) (working for some @Q;) and an input z.
There are two cases. If 7 € prec_,(m) then a totality outcome for 7700 lies on the
true path. This implies that ®4(V, D) is total. Also, x < m(o). If the follower for o
is cancelled after the correct computation ®4(V, D, x) appears then a new follower
is chosen to be large, and so is greater than g () for all later s. This implies that
this 7 can cause only finitely many cancellations of £14(0).



92 CHAPTER IV. MAXIMAL TOTALLY «-C.A. DEGREES

The other case is T € precg,, (7); say 7°0c0"fin, < 7; so ¢ < y. By Lemma 2.6,
y = dom ®4(V, D), so again ®4(V, D, ) eventually converges by a correct compu-
tation. The argument is now the same as in the first case. O

To finish the verification we show that every requirement Q. is met. Let 7
be the node on the true path which works for Q., and suppose that ®.(V, D) is
total. Then 770 lies on the true path; and Lemma 2.6 says that for some n and ¢,
p = 7 00°00,, 1 lies on the true path. Then < 1L 0§> is eventually a-computable and
éT(V) = f'. As in previous proofs let s* be the last stage at which p is initialised,
and let sy < s1 < s9 < --- be the stages after stage s* at which p is accessible.

Fix ¢ < w. We let j(x) be the least j such that < sj_;. For all
J = j@), ®(V.D,z) ] [s;], ¢ = cj(z) = try(r,2) is defined, oy (¢;) < «a
and @, (V,¢;) = fi(c;) [s;]. For j = j(x) let a; = a;j(z) be the set of nodes o,
children of nodes 7 working for some Py such that p < =, such that m,, (o) < 2.
Since mg(o) is non-decreasing, if j < j' then a;s < a;.

The following lemma is an analogue of Lemmas I11.2.9 and 1.7.

Lemma 2.8. Let x <w and j = j(v). Let u = . s, ().
(1) Ifaj+1 = aj then Ci+1 = Cj;
(2) IfDSj+1 ru?é DSj fu then Cj+1 7> Cjs ) )
(3) If Ds;,y tu= Ds; Tu but Vi, Tu# Vs, Tu then o, (¢;) < oy, (¢;).

PROOF. The instructions ensure that only a node ¢ (with parent 7) such that
T € prec,(m) and my(c) < z can cancel try(r,z). Say that a node m with
T € prec,, () is accessible at a stage 7 € (s;,s;41); then 7 is initialised at stage s;
and so ms(o) > s; > x. So if ¢; is cancelled by stage s;;1, then it is cancelled
by a node o € a;. But then we define mg,1(¢c) = s; > x and so o ¢ a;;1. This
gives (1).

The same argument shows that if Dy, , [,# Ds, Iy then Dy 1 [o# Ds; lu-
(2) is given by Lemma 2.5(2).

Suppose that a;1 = a; but Vi, [u# Vi, [4. Let s > s; be the least stage
such that Vi1 [u# Vs lu-

By Lemma 2.5(1), u = ¢r s, (c;), and so &, (V,¢j)1 [s+1]. When we redefine a
value for <i>T(V, ¢;), it is the stage number, and so <i>T(V, ¢;)sj4+1] > s;. In particular
D, (V,¢j)[s541] # ®-(V,¢;)[s;]. But then f;Hl(cj) # f;j(cj), and (3) follows. [

Now let for all j > j(z)

Vi =75(@) = - aj| + 0 (¢;).
Since « is closed under addition, for all n and all 8 < a we have a-n+8 < a-(n+1).
Thus if aj41 # a; then (as aj41 & a;) vj+1 < ;. Suppose that aj.1 = a;. Then
¢j+1 = ¢; and so oéj+1(cj+1) = oijﬂ(cj) = oij (¢j); 80 Y41 < ;. Suppose further
that ®.(V, D, z)[s;] # ®c(V,D)[s;41]. Since ¢j11 = ¢j, Dy, tu= Ds; ty. Then
Lemma 2.8(3) ensures that ;41 < ;. This concludes the verification.

2.1. Uniformity again. Inspecting the construction we see that |aj(x) ()] < @.
This is because ms;, , (o) is distinct for distinct o € a;(,)(z) (when ms(o) is set the
stage ends). This shows that in fact deg.(V @ D) is uniformly totally a - w-c.a., as
every ®.(V, D) is h-c.a. for h(n) = a- (n + 1).
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2.2. Maximal < «a-c.a. degrees. Suppose that « is a limit of powers of w,
and that deg.(V) is totally < a-c.a. We can modify the construction above by
letting the sequence < fi> range over all functions which are §-c.a. for some § < a.
Examining the proof above, we see that the ordinal bound on the number of changes
of ®.(V, D, z) is given by a finite multiple of 0°(c) for a variety of ¢ but for fixed i.
Thus, if f? is B-c.a., then ®,(V, D) is 3 - w-c.a. We thus obtain:

THEOREM 2.9. If a < g¢ is a limit of powers of w, then no c.e. degree is
mazximal totally < a-c.a.






CHAPTER V

Presentations of left-c.e. reals

In this chapter we prove Theorem 1.3.3:

(1) If a c.e. degree d is not totally w-c.a. then there is a left-c.e. real p <r d
and a c.e. set B <t p such that every presentation of ¢ is B-computable.

(2) If a left-c.e. real p has a totally w-c.a. degree then there is a presentation
of ¢ which is Turing equivalent to g.

1. Background

One of the main ideas of this books is unifying the combinatorics of construc-
tions in various sub-areas of computability theory. In this chapter we will look at
one such sub-area: algorithmic randomness ([69, 27, 74]). Algorithmic random-
ness seeks to give meaning to our intuition that sequence like 010111010101111.... is
not random, whereas ones obtained from e.g. tosses of an unbiased coin would be.
The idea is that we should not be able to give algorithmic tests for predictability
and if a sequence fails such a test, then it cannot be random. The test above would
be that every even bit is a 1.

By way of motivation, we now give a brief account of the basics of algorithmic
randomness, and include the basic definitions required in this chapter.

The “playing ground” of basic algorithmic randomness is Cantor space, 2%,
the space of all infinite binary sequences (later these concepts can be extended to
other spaces such as the unit interval). The topology on Cantor space is the product
topology starting with the discrete topology on {0, 1}. This topology is generated by
sets of the form [o] = {X € 2¥ : 0 < X}, where 0 € 2<% is a finite binary string. In
general, the open subsets of Cantor space are of the form [W]= = J{[c] : 0 € W}
for subsets W of 2<“. By coding finite binary strings by natural numbers in a
reasonable fashion, we can consider notions such as computable and c.e. sets of
finite strings. This turns Cantor space into an effective topological space. The
effectively open subsets of Cantor space are those of the form [W]= for c.e. sets
W < 2=<“. These are also called c.e. open sets. These sets are important in their
own right: the study of the effective topology of Cantor space is essentially the
study of restricted notions of Cohen genericity. for example, an element of Cantor
space is 1-generic if and only if it is not an element of the boundary of any effectively
open set.

A notion of restricted genericity is determined by considering a countable col-
lection of meagre sets. Those sets are considered “small” and so their elements
are considered atypical, at least topologically. The main idea of algorithmic ran-
domness is to replace category with measure, and so replace meagre sets by null
sets. To do that we need to work with a measure on our space, and we choose the
“fair-coin” measure, which we denote by A. This is the product measure starting

95
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by giving 0 and 1 equal probability, namely 1/2. For every finite binary string o,
M[o]) = 271l If we think of 0 as tails and 1 as heads, then this measure represents
the probability that an infinite sequence of independent tosses begins with the coin
tosses represented by the string o. The fair-coin measure A is also often referred
to as Lebesgue measure, because of the measure-preserving almost isomorphism
between Cantor space and the unit interval, which we will mention below.

Whilst algorithmic randomness has a history going back to the early work of
Borel [8] on normal numbers, von Mises [100] and even Turing [99] (see Downey-
Hirschfeldt [26]), the key concept in the modern incarnation of algorithmic informa-
tion theory is Martin-Léf randomness. A notion of randomness is determined by a
countable collection of null sets, with each null set considered a statistical test. El-
ements of the null sets are those which have failed the test; they are atypical, in the
sense of measure. For Martin-Léf (ML) randomness we use the collection of effec-
tively G, effectively null sets: intersections [\U,, of uniformly effectively open sets
whose measure goes to 0 computably (we can require for example A(U,) < 27").
Such intersections are called ML-null, and an element of Cantor space is ML-random
if it is an element of no ML-null set.

One of the reasons the notion of ML-randomness is central is that it is robust. It
has many equivalent characterisations, and one of them is in term of Kolmogorov
Complexity ([56, 68]). The motivating ideas here is that finite strings should
be considered random if they cannot be effectively compressed: if the only way
to convey the informations they store is in writing them down. In other words,
they do not have short descriptions. To formalise this, we consider any partial
computable function M: 2<% — 2<% ag a “description system”; if M (o) = 7 then
we say that o is an M -description of 7. We call M a “machine”. The idea is that all
information in 7 is already stored in o, as M can effectively produce 7 given o. The
M -complezity of 7 is the length of the shortest M-description of 7. Kolmogorov’s
intuition is that 7 is M -random if its M-complexity is no smaller than its length.
That is, M thinks 7 is so random it cannot be compressed at all.

There is a slight problem with this definition in that in decompressing, M ac-
tually uses not only the information stored in o but also its length |o|, since we
know that M halts on o. In some sense this means that M has actually “used”
|o| + logs |o| many bits of information. In many applications of Kolmogorov com-
plexity this slight difference does not matter, but in the definition of random infinite
sequences it does. This consideration leads to a central concept in algorithmic ran-
domness, namely prefiz-free machines.

Definition 1.1. A set of strings C' < 2<% is prefiz-free if no two distinct strings
in C are comparable.

A machine M is prefix-free if its domain is prefix free. Prefix free machines
are those that have the “telephone number” property (no two telephone numbers
are prefixes of each other). For a prefix-free machine M we write K/ (7) for the
M-complexity of 7. Schnorr’s Theorem links Kolmogorov complexity with ML-
randomness:

THEOREM 1.2 (Schnorr, see [11]). X € 2% is ML-random if and only if for all
prefiz-free machines M, Ky (X |,,) =T n.

That is, if for some constant d, for all n, K (X I,) = n —d.
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Prefix-free machines occupy a central role in the theory of algorithmic random-
ness. This connection is evidenced by a number of further results. The easiest way
to exhibit a ML-random sequence was observed by Chaitin. For a set of strings
C < 2<% we write A\(C) for the measure of the open set generated by C; if C' is
prefix-free then A(C) = 3__,271°l. For a prefix-free machine M, A(dom M) is also
known as the a priori probability that a string is in the domain of M; it is referred
to as the halting probability of M.

Levin and others observed that there are universal prefix-free machines: ma-
chines U which simulate any other machine, in that for any prefix-free machine M
there is some p € 2<% such that for all o, M (o) = U(p"c). For such machines U we
have Ky <t Ky for any prefix-free machine M. Thus in Schnorr’s theorem above,
we can replace all prefix-free machines M by a single universal machine U. Chaitin
observed that if U is a universal prefix-free machine, then A(domU) (written in
binary) is ML-random. For a universal machine U, the quantity A(dom U) is now
called Chaitin’s ). More precisely, Qp since it depends on the universal machine in the same
way that @’ = {e : @e(e) |} depends on the enumeration of the partial computable functions in
classical computability theory.

While the halting problem is c.e., the binary expansion of the halting prob-
ability € is not c.e. To characterise halting probabilities we find an analogue of
computable enumerability on the real line.

Definition 1.3. A real number g € R is left-c.e. if its left cut, the set of rational
numbers g < g, is c.e.

A real number is left-c.e. if and only if it is the limit of an increasing, com-
putable sequence of rational numbers. Left-c.e. reals are also known as lower semi-
computable reals. If A is a c.e. set then 0.4 (the real whose binary expansion is A)
is a left-c.e. real. However, not all left-c.e. reals are of this form. To see this we use
that the following are equivalent for a real p in the unit interval [0, 1]:

(1) ois left-c.e.;

(2) o is the measure of an effectively open set;

(3) 0= A(C) for a c.e., prefix-free set of strings C;

(4) o is the halting probability of a prefix-free machine;
(see Soare [90], Calude et al. [10]). Thus § is left-c.e.; since no c.e. set can be
ML-random, it is not of the form 0.A for a c.e. set A. Kucera and Slaman [58] gave
much more information about left-c.e. random reals. Using an analogue of many-
one reducibility <, introduced by Solovay [92], they showed that a left-c.e. real
is ML-random if and only if it is the halting probability of a universal prefix-free
machine.

Theorem 1.3.3, which we will prove in this chapter, characterises the dynamic
properties of a construction of unusual left-c.e. reals. The equivalence above moti-
vates the following definition.

Definition 1.4. A presentation of a left-c.e. real o € [0,1] is a c.e. prefix-free
set C' < 2<% such that A(C) = p.

As this chapter is concerned with presentations, all real numbers from now on
are in the unit interval [0, 1].

As we saw, every left-c.e. real has presentations. Indeed, every left-c.e. real
has computable presentations: if C' is a presentation of g then, fixing an effective
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enumeration (Cs) of the c.e. set C, we replace C by a computable prefix-free set D
of the same measure g as follows: if a string ¢ is enumerated into C' at stage s, we
enumerate into D all extensions of o of length s.

Every presentation of a left-c.e. real g is computable from p. To see this, suppose
that C' is a presentation of p. Again let (Cs) be a computable enumeration of C;
let 05 = A(Cs); so {psy is a computable increasing sequence of rational numbers
converging to p. To determine whether a string o is in C, search for some s such that
0 — 0s < 2719l This can be done if p is given as an oracle. Then o € C' < ¢ € C,.

In light of this fact, it is natural to ask if the complexity of ¢ (as measured by its
Turing degree) is reflected in the complexity of some of its presentations. Namely,
is every left-c.e. real computable from one of its presentations? In [32], Downey
and LaForte gave a strong negative answer to this question: they constructed a
noncomputable left-c.e. real p, all of whose c.e. presentations are computable. On
the other hand they showed that any left-c.e. real with promptly simple degree (for
example, ) has a noncomputable presentation. Stephan and Wu [94] showed that
the same holds for all noncomputable K-trivial left-c.e. reals. See also [36, ].

Theorem 1.3.3 extends these results. It characterises the computational power
required to compute one of the “unusual” left-c.e. reals, those with no presenta-
tion computing them, precisely as non-total w-c.a.-ness. Indeed it gives a stronger
dichotomy, with the unusual examples ¢ having a single bound B strictly below o
bounding the complexity of all presentations of .

Computing with real numbers. In this chapter we view real numbers as elements
both of the computable metric space [0, 1] and as infinite binary sequences in N’
(where Nt = {1,2,3,...}) by using their binary expansion.

As the former, an oracle determining a real number p is a sequence {(I}) of
closed intervals satisfying:

e the endpoints of each I are binary rational numbers, indeed integer mul-
tiples of 27%;

e the length of I, is 27%;

e the sequence is nested: Iy, < Iy; and

o {0} = ﬂk I

The sequence (I ) is coded by an element of Baire space; we ignore this detail. In
computable analysis, the sequence (I is called a name of p.
On the other hand, given X < N* we let 0.X = Y, _, 27%. Thinking of X

as an element of 2N+, it is a binary expansion of p = 0.X. We abuse notation by
referring to X as p: we write o(k) for the k" bit of o’s binary expansion.

If o is not a binary rational, then it has both a unique binary expansion, and
a unique name (I}, and these are Turing equivalent; their degree is also called the
Turing degree of p.

Passing between names and binary expansions is uniform, provided that we
are guaranteed that o is not a binary rational number. Of course binary rational
numbers are computable; each has two binary expansions, one ending with zeros
and one with ones. They also have two names. The reals ¢ we will construct will
not be computable. However their stage s approximations will be binary rationals,
and so during constructions, to be definite, we always choose the binary expansion
which ends with zeros.
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2. Presentations of c.e. reals and non-total w-c.a. permitting

In this section we prove part (1) of 1.3.3.

2.1. A simplified construction. Before adding permitting we construct a
left-c.e. real ¢ and a c.e. set B such that B <t ¢ but every presentation of o is
B-computable. As mentioned above, this has been done in [32] with B = 5. We
present the construction proving the weaker statement because it is simpler than
the original one. The simplification is compatible with non-total w-c.a. permitting.
The original construction is in some sense compatible with non-total < w®-c.a.
permitting. We discuss this later, in Subsection 2.3.

We enumerate a c.e. set B, and give an increasing computable approximation
{os) of a left-c.e. real p.

Let {(¥,) be an enumeration of functionals which outputs names of reals in the
interval [0,1]. So for each k (and oracle X), U (X, k) (if it converges) is a closed
interval I, of length 27%, with endpoints which are integer multiples of 27%. We
also agree that if K > 0 and U, (X, k)| = I} then U (X, k—1)|= I;_1 and I}, < I_1.
Thus, if ¥.(X) is total then (¥ (X, k)) = () is a name of a real number p in the
unit interval; we abuse notation by writing ¥.(X) for .

We need to meet the requirements:
P.: U.(B) # p.
Let (C.) be an enumeration of all prefix-free c.e. sets of binary strings. We
need to meet the requirements

Ng: If \(C,) = o then C. <t B.
Globally we also need to ensure that B <t o.

Discussion. Recall the argument above that shows that if C' is a presentation
of o then C <1 g: if o — A(Cs) < 27F then no string of length k or shorter can be
added to C' after stage s. In the other direction, if we know C, then ¢ may still
elude us: it may be that no strings of length < k are added to C' after stage s, but
a large increase to p after stage s can be made by adding to C' many long strings.

To meet a requirement P, we can wait for U.(B, k) to converge and give us
an interval I = [} for some fairly large k, so that I is fairly short. We then aim to
ensure that o ¢ I. If at a current stage s we have g5 € I, then adding a quantity of
no more than 2% to ¢ will suffice to escape I. Of course, we also need to ensure
that B will not change below the use b = (k) of the ¥, computation giving us
the interval 1.

To meet a requirement N, for each length ¢ (or at least for infinitely many ¢),
we need to let B know if strings of length < ¢ will enter C. after some stage.
If indeed A(Ce) = o then A(C.s) and g, will get closer and closer. One way
to ensure that strings of length < ¢ will not enter C, after a stage s will be to
wait for [0s — AM(Ce,s)| < 2% (which we will eventually see); and then ensure that
0—0s < 277,

The conflict between requirements is clear: N, would like to keep o — g, < 27¢,
while P; would like to increase o by at least 2%, and we may have 27% > 27,

However, N, need not be so greedy. It can temporarily require that ¢ should
not increase by more than 27¢. The positive requirement P, (positive because it
causes increases to g, while the negative requirements N, want to keep increases
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small) can increase g by the allotted 27¢. Then, we wait for a later stage s’ at which
we again see |9y — A(Ce, )| < 27%. Again, if this does not happen then A\(Ce) # o
and we do not need to worry about N.. When we see such a stage s’, we allow Py
to increase p by another 27t. This cycle can repeat 2¢=F times. At the end, P, gets
to increase ¢ by as much as it needs (27%), while at no stage can strings of length
< t enter C,. This strategy has been likened to a cautious investor, slowly realising gains by
repeatedly selling small amounts of stock, ensuring that the market does not notice their actions:
they only sell a further amount once the stock price recovered to the original value.

We remark that of course Py needs to guess whether we will keep seeing “e-
expansionary” stages: stages s at which A\(C. ;) is close to gs. Thus as usual, the
construction is performed on a tree of strategies.

So far we have not really mentioned B, and it seems that we can arrange for
every presentation of ¢ to be computable. And indeed, as we discussed above, this is
possible, and this argument is the basic module for the more elaborate construction
of [32]. The more difficult issues show up when we consider more than one negative
requirement N.. Actually, the module as described above is imprecise. The point
is that the requirement N, needs to let ¢ go to infinity, as it needs to compute
more and more of C,. On the other hand it needs to wait for P, to finish 2¢=%
cycles before it moves to greater ¢; otherwise the cycle could be infinite. When Py
is accessible, and declares its intention to increase o by 27%, it sends a message to
that effect to the stronger requirement N,.. Because the node working for N, does
not know if the Pz-node will be accessible again, it takes upon itself the task of
repeatedly increasing p. It waits for 2¢~% many expansionary stages, increases o
at each one, while keeping t fixed, and only then allows ¢ to increase, and nodes
extending the infinite outcome to be accessible.

When we consider though Ny, Ny,..., N, all stronger than P,;, the various
cycles relating P; with each N; need to be nested, which is incompatible with
permitting at the level of w-c.a. We discuss this in greater detail below in Subsec-
tion 2.3. For the construction we are doing now, B simplifies things. Instead of
trying to compute C., for each ¢ we set up markers 7.(t), intended for B; this is
the B-use for determining C. on strings of length < ¢. If we enumerate 7,(t) into B
then we are allowed to violate the restriction limiting each increase to 9. Now the
various restraints of the requirements N, stronger than P; can be uniformised as
follows. At some stage r the requirement P; sees that U4(B,k)|= I with some
B-use b = 14(k) that it wants to protect. It immediately enumerates any markers
7;(t) which are greater than b into B. Its “quota” for each increment of g is then
given by the greatest number ¢ with n;(t) < b for any ¢ < e, which is really the stage
number r at which we saw the ¥; computation. Thus it is allowed to increase g
by 277 at a time, and so needs 2"~* many iterations of such increases; note that
this is independent of ¢ < e. We can therefore forget about delegating the task of
increasing o to the N; nodes; we can wait until the P; node is accessible again, and
at each time, enumerate the markers n;(¢) for ¢t > r into B.

These were the main ideas of the construction; we discuss a couple more minor
points. First note that N, may assume that for all s < w, A(Ce,s) < 0. For we will
ensure that p is not a dyadic rational. When we see that enumerating a string o
into C¢ s will make A\(C. s) > ps, we hold back the enumeration and wait until g,
grows beyond A(Ce s—1 U {o}), and only then enumerate o into C.. If A(Ce) = 0
then such a stage will occur.
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Next, we note that above, we said that P, only needs to worry if it sees g5 € 1.
This is not quite true, because if the non-computability requirements are not met
then it is actually possible that o5 would converge to the left endpoint of I. Thus
we need to spring into action when we see ps getting close to I. This will mean
that we need a couple more rounds of increases (more than 2"~ detailed above) to
ensure that ¢ will eventually lie to the right of I.

The tree of strategies. The requirements P. and N, are ordered in order-type w;
the k'™ level of the tree is devoted to meeting the k*" requirement. If ¢ is a node
which works for P., then ¢ has only one outcome. If 7 is a node which works for N,
then the outcomes of 7 are c0 < fin.

A node o working for P, may define first a follower k, ; and then an interval
I, s which it would like o to avoid. It also defines 7, s, the amount by which it
is allowed to increase ¢ at a single step. When o is initialised, the follower k.,
the interval I, and restraint bound r, are cancelled. They will be cancelled only
when o is initialised.

Nodes 7 working for N, define markers 7, (). We note that it is not necessarily
the case that the set of ¢ for which 7, (¢) is defined is an initial segment of w. In
fact 7, (t) may be defined at most once (at a stage greater than t), and ¢ will be
a stage at which 7 is accessible. For this reason 7. (t) is not indexed by the stage
number s.

Construction. At stage s we define the path of accessible nodes J; to be an
initial segment of the tree of strategies, and at the end of the stage define g4, 1.
We start with gp = 0.

Suppose that a node 7, working for N, is accessible at stage s. Let t < s be
the previous stage at which 7°c0 was accessible; ¢ = 0 if there was no such stage.
If o5 — M(Ces) < 27" we let 7700 be next accessible and choose 7, (t) to be large.
Otherwise we let 7°fin be next accessible.

Suppose that a node o, working for P,, is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than o are initialised.

First, suppose that a follower k, , is not defined. Define k, 11 to be large;
let ps+1 = 0s and end the stage.

Next, suppose that k., is defined but an interval I, is not defined. If
U.(B,ks)| [s] = I (recall that I is a dyadic rational interval of length 2~%<.s) then we
let Is 511 =1 and ry 541 = 5. Let gs4+1 = 05 and end the stage.

If U.(B,k,)?1 [s] then o does not end the stage (and as we said, the unique
immediate successor of o is next accessible).

Suppose that I, is defined. If d(gs, I, s) < 27 "=« then for all 7 working for
some N, such that 7700 < o, for all ¢t > r, s such that 7,(¢) is defined, enumerate
7-(t) into Bsy1. Let 911 = 05 + 27" and end the stage.

If the distance d(os,I,,s) is at least 277=* we do not end the stage.
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Verification. The global requirement is satisfied:
Lemma 2.1. B <t 9.

PROOF. Suppose that = enters B at stage s. Then x = n,(t) for some ¢ and 7,
and 9541 = s + 27" where t = r. Since 7, (t) > t, we see that once o — g5 < 277,
no numbers below r can enter B. O

We observe that the construction is fair and that the true path ¢, is infinite.
This follows by induction on the length of nodes, using the following lemma.

Lemma 2.2. Suppose that a node o, working for a positive requirement P,, is
accessible infinitely often and is initialised only finitely often. Then o ends the
stage only finitely often.

PROOF. Let t be the last stage at which o is initialised. At the next stage after ¢
at which o is accessible we appoint a new follower k, which is never cancelled. If
there is no later stage at which an interval I, is defined then o never stops the
stage again.

Otherwise, an interval I, is defined at some stage r,; the interval (and the
bound r,) are never cancelled again. If o is accessible at stage s > r, then o ends
stage s only if d(ps, I,) < 277, in which case it adds 27"~ to g,. Since the length
of the interval I, is 27%~ this happens at most 27> ~%= 4+ 2 many times. [

To bound the value of g, for a positive node o (one working for some P.) and
a stage t let

B(o,t) = Z(Qerl —0s) [s=t & o ends stage s].
So ¢ — o; is the sum of §(o,t) for all positive nodes o.

Lemma 2.3. Suppose that a positive node o is initialised at stage t. Then
Blo,t) < 2-Gt+1),

PROOF. Suppose that ¢ is initialised at stage ¢, that v > ¢ and o is not ini-
tialised at any stage in the interval (¢,u]. Let k, be the value of the follower for o
in the interval [¢,u] (if appointed). Since k. is chosen large relative to ¢ we assume
that k, > 3t + 3; and r, > k,. The proof of Lemma 2.2 shows that the sum

Z(gs+1 —0s) [s€lt,u] & o ends stage s]|

is bounded by 27%< + 2. 27"~ which is bounded by 2~*+2) We now sum over all
the stages ' > t at which o is initialised. ([

We conclude that ¢ = limg o, exists and lies in the unit interval.
Lemma 2.4. o < 1.

PROOF. Every node of length s is initialised at every stage s’ < s. Thus for
such a node ¢ we have 3(c,0) = B(o,s) < 2-Gs+D . There are at most 2° many
nodes of length s as the tree of strategies is at most binary branching. Hence
level s contributes at most 2~ (%1 to p. Some levels consists of negative nodes and
so contribute nothing to p. O

We turn to showing that all requirements are met.

Lemma 2.5. Each positive requirement P, is met.
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PROOF. Let o be a node on the true path which works for P,. Let k, be the
value of the last follower chosen by o, the one which is never cancelled. We suppose
that W.(B) is total; so I, is eventually defined at a stage r, > k,. Since o acts
only finitely often, for almost all stages s, d(gs, Iy) = 27 ". Hence d(p,I,) = 27"
and so o ¢ I,,.

It remains to show that ¥.(B) € I,, which would follow once we show that the
computation W.(B,k,)[rs] is B-correct. Let b = ¢ (B, k,)[r,] be the use of this
computation.

Suppose that a number z enters B at stage s > r,, enumerated by a node p.
We show that > b. The number x equals 7, (t) for some 7700 < p and some t.
We know that @ = 1,(t) >t > r, . The node p cannot be stronger than o, for
otherwise o is initialised at stage s > r,, contradicting the permanence of k., and I,,.
Hence r, s > ro: this is clear if p = o; otherwise, p is initialised at stage 75, s > 7,
and r, ¢ must be greater than r,. Finally the use b = v.(B, k)[r,] is bounded
by 7. (I

Toward showing that negative requirements are met, let 7 be a node, working
for N., and suppose that 7700 lies on the true path. Let t* be the last stage at
which 7 is initialised. We let S be the set of stages t > t* at which 7700 is accessible.
For t € S let t* be the next stage in S.

The markers defined by 7 are n,(t) for t € S. The marker n,(t) is defined at
stage .

Lemma 2.6. Let u < t be two stages in S. Assume that n;(u) ¢ Biy1. Then
01+ — 0¢ < 27%. 1t follows that no strings of length less than u lie in Ce 1+ \Ce;.

PROOF. We consider various contributions. All nodes that lie to the right of
7 00 are initialised at stage t. The calculation in the proof of Lemma 2.4 shows
that o+ — 0i41 <278 < 2~ (ut1),

Next consider nodes o > 77c0. In the interval of stages [t,¢1), such nodes are
only accessible at stage t. At stage t at most one such node o increases g; the
amount of increase g;+1 — o equals 27"=t. Since 7, (u) is not enumerated into B
at stage t we have 7, > u, and so 9141 — 0t < 9~ (ut+l)

As discussed above, the last sentence follows: g — A(Cet) < 27¢ and
MCoy+) < 0+ and 50 M(Cpyv) — A(Cey) < 27% 4278 < 27(u=D), O

The verification ends with:
Lemma 2.7. Each negative requirement N, is met.

PROOF. We assume that A(C.) = g; we need to show that C. <t B. Let 7 on
the true path working for N.. The assumption implies that 7°c0 lies on the true
path.

We claim that infinitely many markers n,(u) are not enumerated into B.
Let w > t* be a stage. Let o be the strongest extension of 7700 which acts (ends the
stage) after stage w. Since infinitely many nodes on the true path act, o cannot lie
to the right of the true path. It follows that o acts only finitely often. Let ¢ be the
last stage at which o acts. The marker 7, (¢) is appointed at stage t*. Let p > 7700
be a node which enumerates a marker 7, (v) into B at some stage s > t*. The
node p is initialised at stage ¢; after stage t it is first accessible not before stage ¢,
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and so v > r, s > tT*. Hence n,(t) (and in fact n,(t*) as well) are never enumer-
ated into B.

Now Lemma 2.6 shows that the following algorithm with oracle B correctly
computes C,: Given k < w, find a stage t > k in S such that 7, (¢) ¢ B. Announce
that Ce r2<t: Ce,t+ F2<t. U

2.2. Non totally w-c.a. permitting. We now add non-totally w-c.a. per-
mitting to prove part (1) of Theorem 1.3.3: if d is not totally w-c.a. then there is
a left-c.e. real o <p d and a c.e. set B <t ¢ such that every presentation of p is
B-computable.

Fix some function g € d which is not w-c.a. Since d is c.e., we can replace g by
its modulus (see the proof of Theorem II1.5.2). So we have a computable approxi-
mation {gs) of g such that:

e if s <t then g4(n) < g:(n) for all n;
o if gs11(n) # gs(n) then gsi1(m) # gs(m) for all m > n.

At first approximation, the idea for reducing o to g (and hence to d) is to declare
that if g, (k) = g(k) then o— o, < 27*. Using the notation of the construction above,
when a node o is visited and wants to increase p we must first wait for a change
in g(k,). The number of permissions needed to meet o’s requirement is bounded
by 27. We note that it is the follower k, that needs to be permitted, even though
at each step we increase o by 2777, not 2~%~. It is the eventual increase in ¢ which
counts, because the promise is that if k is not permitted then o — o, < 27F.

Of course it is possible that the number of permissions will be insufficient.
While waiting for permissions the node o must appoint more followers k, with
the expectation that at least one of them will receive the necessary number of
permissions. If the follower k£ does not receive enough permissions then we can
approximate g(k) with fewer than 2" many mind-changes. If no follower receives
enough permissions then infinitely many of them will be appointed. This will give
an w-computable approximation of g.

The remaining issues are the timing of permissions and necessary cancellation
of followers. The follower k£ could be permitted at a stage s at which o is not
accessible. We cannot “leave the permission open” and wait to increase p at the
next stage at which o is accessible, since we do not know whether such a stage will
occur. We need to act on permissions immediately.

When a follower k receives a permission we increase g by the associated amount
27> (k) (determined by the stage r, (k) at which we see the computation ¥,(B, k)
converge) and we need to enumerate markers 7, (t) for ¢ > r,(k) into B. This
means that the computations U.(B,k’) for followers & > k for the same node
are destroyed. We cannot keep these followers: overall we want action for some
follower k to not increase o by more than 27%+! say. So the larger followers &’ are
cancelled, and later, larger followers may be appointed.

But this creates a problem when arguing that eventually some follower will be
permitted. Suppose that a follower k is eventually cancelled. When approximat-
ing g(k) we do not know in advance that it will be cancelled, so we promise that our
guesses for g(k) will not change more than 27°(*) many times. We observe many
changes, and then k is cancelled. Henceforth changes in g(k) do not seem to help
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us to meet o’s requirement, which means that there is no mechanism which will
bound these changes. We need to ensure that every change in g(k) is useful.

The solution (as in [25]) is to allow stronger followers take over the respon-
sibility for approximating greater portions of g. When a follower k is permitted,
larger followers k' > k are cancelled. We declare that from now on, what would
have been permissions for &’ must count as permissions for k. Technically we define
moveable markers ay s, and we declare that k is permitted if g(ay) changes (rather
than g(k)). When k is permitted then we raise a s to be greater than the previous
values of aj for the followers k&’ which were cancelled.

Construction. The tree of strategies is the same as in the construction above.
Positive nodes o appoint followers. All followers are cancelled when o is initialised
or when smaller followers for o receive attention; otherwise they are retained. For
all followers k of o (except possibly for the largest one) we also define associated
intervals I, (k) (of length 27%) and bounds r, (k) as above. Any number can be
chosen at most once as a follower for any requirement.

Negative nodes 7 define markers 7, (t) as in the previous construction. Globally
we define location markers ay, , for all k& < s, useful for reducing o to g.

We start with setting oo = 0. At stage s we either act on permissions or define
the path of accessible nodes §5 and act for nodes on that path.

We say that a node o is already met by stage s if at stage s there is some
follower k for o such that I, (k) is defined and g lies strictly to the right of I, (k).

OPTION A: ACTING ON PERMISSIONS. We say that a follower k (for a positive
node o) requires attention at stage s if:

e The node o is not already met at stage s;
o The interval I, (k) is defined;
o d(0s, I, (k) <27 ®);
e the follower k did not receive attention since the last stage at which o was
accessible; and
° gs+1(ak,s) 7 gs(ak,s)'

If no follower requires attention then we take option B. Otherwise let k£ be
the strongest follower which requires attention: the node o is the strongest, any
of whose followers requires attention at stage s; and k is the strongest (smallest)
follower for o that requires attention at stage s. We say that the follower k receives
attention.

We execute the following instructions. Let 0,11 = 05 + 27"°*). For all neg-
ative nodes 7 such that 7700 < o, for all ¢ > r,(k) such that n,(t) is defined,
enumerate 7, (t) into Bgy1. Initialise all nodes weaker than o; cancel all followers
for o greater than k and their associated intervals. Redefine a,, 541 to be large for
all m > k, and define a new marker a; 511 to be large as well. End the stage.

k)

OPTION B: BUILDING THE PATH OF ACCESSIBLE NODES.

If option A was not taken then we define the path &4 of accessible nodes. Since
no permissions were used, we set gs41 = 05 and amy s41 = Gm,s for all m < s; we
define a 441 to be large.

Suppose that a node 7 working for V. is accessible at stage s. Let ¢t < s be
the previous stage at which 700 was accessible; ¢t = 0 if there was no such stage.
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If o5 — A(Ce,s) < 27" we let 770 be next accessible and choose 7, (t) to be large.
Otherwise we let 7°fin be next accessible.

Suppose that a node o working for P, is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than o are initialised.
If the node o is already met by stage s then o takes no action and does not end
the stage.

Suppose that o is not already met. If o has no followers then a new, large one
is appointed, and the stage is ended. Otherwise, let k be the largest follower for o.

If I, (k) is defined and d(gs, I, (k)) < 27"<(*) then appoint a new, large follower
for o and end the stage. If d(os, I, (k)) = 27"=(*) then the stage is not ended.

Suppose that I, (k) is not defined. If U (B, k)| [s] then set I, (k) = U (B, k)[s]
and 7, (k) = s; end the stage. If U.(B, k)1 [s] then no action is taken and the stage
is not ended.

Verification. Suppose that a positive node o is initialised only finitely many
times. Every follower for o is either eventually cancelled, or receives attention only
finitely many times. As above the point is that the follower k£ cannot receive at-
tention more than 27 (*)=% 1 1 many times, as each time p is increased by 277 ¥)
Indeed if a follower k receives attention the full number of times then the require-
ment is declared met and no follower for o receives attention, at least until a later
stage at which o is cancelled.

Since new followers are always chosen large we see that as promised, each k
is chosen at most once to be a follower (for any node). A location marker a,, s is
moved only when some follower k& < m receives attention. We conclude that the
location markers a,, s reach limits a,,. Thus, for all m < w there is some stage s at
which gs(@m,s) = g(am s). The following lemma then shows that p is computable
from g, and so from d.

Lemma 2.8. Suppose that gs(am,s) = g(am,s). Then o — 05 < 9—(m=1)

PROOF. Note that am t41 # Gm¢ only if ger1(am,e) # Gi(am,). Hence am s = am
is the final value of this marker. Let 3(k) be the sum of g;11 — g, as t ranges over
the stages at which the follower k receives attention. As discussed above, (k) is
bounded by 27% + 277 (k) < 2.27F (where o is the node for which k is a follower),
since rq (k) > k. Since no follower of size less than or equal to m receives attention
after stage s we know that

0—0s< ), Bk)<2-27 O

k>m

The proof that B <t g is identical to the one given earlier. The proof that ¢ < 1
requires minor modifications but is essentially the same. If ¢ is a positive node
which is initialised at stage ¢ then the total contribution to ¢ — g; due to stages at
which followers for o receive attention is bounded by 2" 27* where the sum ranges
over follower k for o appointed after stage t. Since all of these followers are chosen
to be large we may assume that this sum is bounded by 273~ as above.

The following lemma ensures that the true path is infinite and that the con-
struction is fair to nodes on the true path. First note that there are infinitely many
stages at which option B is taken: if s is the last stage at which option B is taken,
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then only finitely many followers are ever appointed and each one receives attention
at most once after stage s.

Lemma 2.9. Suppose that o is a node which works for requirement P, is only
initialised finitely many times and is accessible infinitely often. Then the unique
immediate successor of o on the tree of strategies is initialised only finitely often
and so is accessible infinitely often. Further, the requirement P, is met.

PROOF. Let t* be the last stage at which o is initialised.

Let s* > t* and let k be a follower for o at stage s* which is never cancelled.
No follower stronger than k receives attention after stage s*.

If the interval I, (k) is never defined then no larger followers for o are ever
appointed and o never later ends a stage at which it is accessible. Since all followers
receive attention only finitely many times we see that the successor of ¢ is initialised
only finitely many times. Further, in this case ¥.(B, k)1 and so the requirement P,
is met.

Suppose then that at some stage 7, the interval I, (k) is defined. The argument
in the previous construction shows that the computation ¥ (B, k)[r,(k)] is B-
correct and so if total, U.(B) € I, (k).

If at all stages s = 7, (k), o5 lies to the left of I, (k) and d(os, I,(k)) = 27" *)
then no follower greater than k is ever appointed for o, so again the successor of o
is on the true path and the construction is fair to that successor. As before, in this
case d(o,I,(k)) = 27""(K) s0 g # U (B).

Similarly, if at some stage s = r,(k) we see that g, lies strictly to the right
of I,(k) then o is declared met and no action is taken for o after stage s. Since
0 = 0s again we see that o ¢ I,(k) and so P, is met.

Further, in this last case we do not need to assume in advance that k is never
cancelled: once we see g, lying to the right of I,(k), all action for o ceases and no
follower is cancelled.

We claim that there is some follower k for ¢ which is never cancelled and for
which one of the cases described above holds. Assume, for a contradiction that this
is not the case. We show that g is w-c.a.

The assumption means that:

e For every follower k for o appointed after stage s, either k is cancelled
or I, (k) is eventually defined and for all but finitely many stages s = r, (k).
e The node o is never declared met after stage t*.
For a follower k of o, if there is such a stage, we let s, (k) be the least stage s = r, (k)
such that d(gs, I,(k)) < 2-77(k) and ¢ is accessible at stage s. As observed above,
if k is a follower for o at a stage s and is not the largest follower for o at that stage,
then s > s, (k).

Let © < w. Let S(z) be the set of stages s > t* satisfying:

e o is accessible at stage s; and

e there is some follower k of o at stage s such that s > s, (k) and = < ay s.
For s € S(z) let ks(x) be the smallest follower for o witnessing that s € S(z). We
first claim that if s € S(x), t > s and o is accessible at stage ¢ then t € S(x) and
ki(z) < ks(z). Let k = kg(x). If k is still a follower for o at stage ¢ then k witnesses
that ¢t € S(x), because ays < ap. Otherwise a follower stronger than k receives
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attention at a stage between stages s and t. Let m be the strongest such follower.
Then m is still a follower for o at stage t. If m receives attention at stage u € (s, t)
then we define a,,,+1 to be large, in particular greater than z, and so & < am ¢
and m witnesses that ¢t € S(x).

Suppose that s < t are successive stages in S(z) and that g:(x) # gs(x). Let
k = ks(z). The fact that < ay s implies that g,(ak,s) # gs(ak,s). Let m be the
smallest follower for o such that g¢(am s) # gs(am,s); so m < k. Let u be the least
stage u € (s,t) at which gy+1(am,s) # gu(@m,s). Then m is not cancelled by stage u,
and as it did not receive attention at stages between s and wu, it requires attention
at stage u, and receives it.

Above we calculated for any follower & for which I, (k) is ever appointed a bound
h(k) = 2=(M)=k 1 1 for the number of times k receives attention. It follows that
the number of stages s € S(z) such that g¢(x) # gs(x) (where ¢ is the next stage in
S(z)) is bounded by >’ h(m), where m is a follower for o at stage s = min S(z) and
S¢(m) < s. From this we can construct an w-computable approximation for g. [

It remains to show that every negative requirement is met. Let e < w and let 7
on the true path work for N; in the interesting case 7°00 also lies on the true path.
The proof of Lemma 2.7, that infinitely many markers 7, (t) are not enumerated
into B goes through as above: say w is a late stage; let o be the strongest node which
ever acts (ends the stage) or a follower of whose receives attention after stage w.
Then o extends 7700 and does not lie to the right of the true path. Either o lies to
the left of the true path, in which case o appoints only finitely many followers; each
one receives attention infinitely often. If o lies on the true path then Lemma 2.9
shows that o acts only finitely often. Hence there is a last stage ¢ at which o is
accessible and ends the stage, or a follower for o receives attention. Any node p
which acts after stage ¢ is initialised at stage t. If ¢’ is the least stage t' > t at which
700 is accessible then 7, (¢') is not enumerated into B.

Thus we need to prove an analogue of Lemma 2.6. Again let u < ¢ be two late
stages at which 77c0 is accessible and suppose that 1, (u) ¢ B+, where again t* is
the next stage after ¢ at which 7700 is accessible. As above, the total contribution
to 0.+ — 0; made by nodes that lie to the right of 7°c0 is bounded by 27%, as
all such nodes are initialised at stage t. It is no longer true however that nodes
extending 7700 do not act at stages strictly between ¢ and ¢, nor that only one such
node acts between these stages. Nonetheless, every follower k for a node o > 7700
receives attention at most once between stages t and ¢, and so the total increase
in g attributed to such nodes is bounded by 2770 (k) where o > 7700, k is a follower
for o at stage t and r,(k) > u (again as n,(u) ¢ By+). Since the numbers r, (k)
are distinct for distinct followers k we see that this sum is bounded by 27%. We
conclude that g;+ — g; is bounded by 2~ (=1 and so that strings of length smaller
than v — 1 do not enter C. between stages ¢t and ¢+, completing the proof.

2.3. The complexity of the original construction. As mentioned above,
the original construction in [32] gives a noncomputable left-c.e. real g, all of whose
presentations are computable. That is, B = (. This construction is more compli-
cated than the one presented above. Since we are not allowed to enumerate markers
into B, promises that a node 7 makes at an expansionary stage are binding to all.
Considering one such node 7 and one positive node o extending 700, ensuring
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that o acts only finitely many times requires 7 to delay making stricter restraints.
Suppose that an interval I, is defined at some stage r,. Ignoring subtleties we
assume that at that stage the node 7 declares that from now on, any increase in o
between two successive T-expansionary stages must be bounded by 277

The node o issues a request from 7: until o’s mission is accomplished, 7 should
refrain from imposing stronger bounds on the increase of p between T-expansionary
stages. In turn, since 7 does not know if o will be accessible sufficiently many times
to complete its task, it cannot abide by o’s request indefinitely. Hence 7 takes upon
itself to act on ¢’s behalf: at the next few 7-expansionary stages, the stage ends
when 7 is accessible and an amount of 27" is added to . This happens finitely
many times, until g, lies to the right of I,; after that, o never acts again and 7 is
free to make stricter promises about increases of p.

So far the number of actions required is similar to the previous construction,
but the story gets more complicated when more than one node 7 is considered.
Suppose now that 7 and 7 are two negative nodes with 71"00 < 75 and "0 < 0.
At stage r, both negative nodes promise that between 7;-expansionary stages, o
increases by no more than 277>, So we cannot increase g by the desired 27"~ until
the next m-expansionary stage. Now 7y is in a bind. It cannot act on its own to
help o, it seems; but it does not know if there are infinitely many 7o-expansionary
stages, so it cannot wait for one while not making its own promises about o stricter.

The solution is to follow a nested loop. Suppose that ¢ > r, is To-expansionary.
Unlike 71, the node 75 can afford to wait until o is done, and so keeps the bound
between T-expansionary stages to be 277, Until the next mp-expansionary stage
the entire construction is restricted to the interval [ps, s + 2777). At stage s the
node 7 announces a strict bound, roughly 27¢. At subsequent 7i-expansionary
stages we increase p on ¢’s behalf, say up to ps + 2777 /2. This means that at the
next 2="~! many 7i-expansionary stages, the path of accessible nodes ends at 7.
After this action, the construction continues without special action on ¢’s behalf but
with sufficient initialisations to the right of ¢ so that the promise that o < ps+27"°
is honoured. At the next 7o-expansionary stage we repeat the cycle again: a new,
stricter bound 27" is announced by 71; for the next ot —ro—1 many Ty-expansionary
stages we act on behalf of o, and then again wait for a new m»-expansionary stages.
After no more than 2" many such iterations we meet ¢’s requirement.

Consider now how this argument would translate to a permitting argument.
We know in advance that to meet o on the follower k we will need something
like 27«(®) many Ty-expansionary stages. If t is one of these stages, we will need
roughly 2¢ many permissions for 71 to act on ¢’s behalf. We will not know the next
value until we actually observe the next mp-expansionary stage. So the number of
total permissions required is given by an w?-c.a. function: the number of times we
change our mind about how many permissions we need for follower k is bounded by
the computable number 27 (%) If we know that d is not totally w?-c.a. then we can
meet o’s requirement. If there are three negative nodes 7y, 7 and 735 below ¢, then
we have three layers of nesting of loops, and so the number of permissions is now
given by an w?-c.a. function, and so on. Overall we see that this kind of permission
is related to non-total < w*-c.a. permission.
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3. Total w-c.a. anti-permitting

We prove part (2) of Theorem 1.3.3. Let ¢ be a left-c.e. real such that deg. (o)
is totally w-c.a. We enumerate a presentation C' of ¢ which is Turing equivalent
to o.

The technique we use is the so-called “anti-permitting” technique described
in [25, 7]. In some sense it is a mirror image of the previous construction. As
discussed earlier in this chapter, we view g as an infinite binary sequence via binary
expansion. This is unique as we may assume that o is noncomputable. In fact we
will later make significant use of the assumption that g is noncomputable; it will
help us lift array computable anti-permitting to total-w-c.a. anti-permitting.

3.1. Basic algorithm and plan. Before we describe the construction we
discuss one of the algorithms that will be used in the construction and the high-
level plan for the construction.

Building presentations. We want to enumerate a presentation C' of p. We follow
a proof by J. Miller of the Kraft-Chaitin theorem of algorithmic randomness theory
(see [27]). We fix an increasing approximation {g,) of g, where each g, € [0,1) is a
dyadic rational number. We will no

t require that A\(Cs) = g5 for all stages s. We will only add strings to Cs to
bring its measure up to g5 at stages s at which we receive some “certification” that
various initial segments of o, are correct. This process of certification is the heart
of the construction. Ignoring the mechanics of certification for the moment, let s
be a stage at which we want to add strings to Cs_; to ensure that A(Cs) = gs. The
instruction will be:

ADDING STRINGS TO C.

Let 8 = o5 — A(Cs—1). For each k such that B(k) = 1, add a
single string of length &k to Cs.

(Recall that we consider 3 as a string via its binary expansion.) Since [ = Z ﬁ(k)Zik, it is
clear that A(Cs) = ps. The pertinent point is:

if 3= 27" then a string of length at most k enters C,.

We need to argue though that the instruction can be carried out while keep-
ing C; prefix-free. This is done by using an auxiliary sequence of strings. At each
stage t we will have reserved strings 7+ for each k such that A\(Cy)(k) = 0, with
|7k.¢| = k, such that C¢ U {7+ : A(Cy)(k) = 0} is prefix-free. We work with each
length at a time, so we may assume that § = 27%, i.e., we want to add a single
string of length k to Cs_;. Since A(Cs_1) < g5 < 1 there is some m < k such that
A(Cs—1)(m) = 0. Let m be the greatest such. So the change in g5 compared to gs_1
is that the m*® bit changes from 0 to 1, and the n*® bit, for all n € (m, k] (if k > m)
changes from 1 to 0. So 7,5 = Tns—1 for n ¢ [m,k]. We then add 7, s—1°0*~™
to Cy and for n € (m, k] we let 7, s = Ty s—1°0" "™ 11. See Figure 1.

Henceforth the details of the auxiliary strings are assumed, and we only invoke
the algorithm above.

Layers. Suppose that we enumerate a presentation C' as described above. Why
is it the case that C might not compute ¢? We have arranged for that in the
previous construction: we gradually add small amounts to ¢. If we update C' each
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FIGURE 1. Cs = Cs_1 U {c}.

time, this means that only long strings enter C. However the cumulative effect on o
may be big, which is a change that C' does not comprehend.

In terms of binary expansions, the problematic case is when g, contains a long
block of 1’s. Suppose that os [ k) is a string of ones. Then adding 2% to o,
results in adding a string of length k& to C but changes the bit g(m).

We can try to prevent this by setting up layers which contain sufficiently
many zeros, and appropriately set uses for computing ¢ from C. We set mark-
ers (o < (1 < (2 < --- such that the block ¢ I, ¢,,,) contains many zeros (and
the idea is that the markers may increase with time, but hopefully settle down
eventually). We let (41 be the use for reducing ¢ [¢, to C. See Figure 2. Here
since C'is a set of strings, by use u we mean querying the oracle on strings of length
less than u.

C 7 v ¥

FIGURE 2. Layers. The dashed lines represent the reduction of ¢ to C.

Now the point is that if between stages s and s + 1, ¢ changes on the interval
[Cn—1,Cn), then since the interval g, f[cmgnﬂ) contains zeros, the increase gs11 — 05
is greater than 27¢»+1; and so if we update C' then some string of length smaller
than (41 will enter C' and allow us to fix the reduction of g ¢, to C.

After this increase, we may have 0511 [[¢,,c..,) be all ones, but we can in-
crease (,+1 so that the new interval contains many zeros. However, it is possible
that no string of length smaller than (, entered Cs1; so we cannot increase (,, as
this is the use of computing o [¢, ,. Which is a problem, since we lost a zero on
the interval [(,—1,¢n). Note though that we lose at most one zero, or the increase
is beyond 27¢* and strings of length smaller than ¢, will in fact enter Cs 1. So if
we can ensure that the number of times this happens is at most the number of zeros
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we originally set up in the interval [(,—1, (), the construction will succeed. This
is precisely what the certification process gives us.

Certification. The certification process relies on the computational weakness
of degr(0). We enumerate a Turing functional I with intended oracle g, and ensure
that I'(p) is total. We know that the function I'(g) is w-c.a. Suppose that {gs,0,)
is an w-computable approximation for I'(¢). When a computation I's(gs,n) is
destroyed, we redefine it with a new value. It follows that there are fewer than
op(n) many stages s at which I's(gs,n) = gs(n) and the computation I's(gs,n) is
o-incorrect.

The plan for setting up the layers is then as follows. Given (,_1, calculate op(n)
and let ¢, be sufficiently large so that the current version of g contains at least op(n)
many zeros in the interval [(,—1,(,). Define I'(o, n) with use (,,. Recall that since the

oracle p is given, our convention is that by use u we mean that g [, computes I'(n), not g ly41.

We can then carry out our original plan. Suppose that for a while, everything
is stable, but that at some stage t we see an increase in o:y1, say a quantity
q € (27%+1,27¢n].  As discussed above, this may change the bits of ¢ on the
interval [¢n—1,(n). This means that now I'(o,n)1. We define a new value for the
computation (say t) with the same use. Before we act, we wait for certification: for
a later stage s at which we see that gs(n) equals that new value t. Only once we’ve
seen this certification do we add strings to Csy1 (of lengths between ¢, and (,41).
Compared to ot [[¢,_,,¢,)» the interval g ¢, _, ¢,) contains one zero fewer. But this
is compensated by the change in g, which ensures that o4(n) < o;(n). Note though
that while waiting, further increases can occur. If the amount increases beyond 2=
then we can abandon ¢, and repeat the work on the interval [(,—2,(—1).

Uniformity, and simple permitting. All is well, except that even if we en-
sure that I'(p) is total, we cannot effectively find an w-computable approximation
for I'(p). We need to guess one. Let (g°) be an enumeration of the w-c.a. functions,
equipped with tidy (w+ 1)-computable approximations {g¢, o) (Proposition I1.1.7).
We perform countably many constructions which are almost independent of each
other. The e'! construction guesses that I'(9) = g, and based on this guess enu-
merates a prefix-free set C° and a reduction of g to C°. If the guess is correct then
the construction will succeed.

Since they enumerate distinct sets and reductions, there is very little inter-
action between the different constructions. However they do combine forces in
defining T'(p). To keep things simple, the e*® construction defines I'(g, n) for inputs
n € wl (the et column of w). The catch is that even if the guess that T'(p) = ¢°
is incorrect, an eventual g-correct definition of I'(9,n) must be made by the e'!
construction, for all n € wlel.

Even while waiting for an agreement between I'(o,n) and g¢(n), the e con-
struction can keep defining new values of markers ¢, for m > n in w!®!, and with
them computations I'(o,m). If deg (o) were array computable this would not be
a problem. Recall that we need to ensure that the block ending with (,, must
contain at least 0%(m) many zeros (where s is the stage at which we make the
definition). If we know that I'(p) is say id-c.a., then we can work with a list of tidy
(id +1)-computable approximations, and so of(m) = m for all e and m, and we can
find how large (,,, must be. However under the weaker assumption that deg (o) is
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totally w-c.a., we need to work with what are essentially (if not formally) partial
approximations. So the conflict is that we need to define (,, even if 0%(m) = w for
all s; so we cannot wait for a value 0¢(m) < w to show up. But if we define (,,
before seeing 0¢(m) < w then we will not have enough zeros and will not be able
to carry out the construction outlined above, even if the e guess is correct.

The solution (as in [25]) is to make use of the fact that o is noncomputable. We
actually use simple permitting. This is perhaps paradoxical in an anti-permitting
argument. But of course the point is that noncomputable (simple) permitting is
weaker than non-total w-c.a. permitting, and so the former can co-exist with the
negation of the latter.

What we do is go ahead and define a computation I'(g,m) without waiting
for 0%(m) to give us a natural number. But we wait with the definition of the
reduction of ¢ to C¢ (which is fine, as it is local to the e'!' construction). Once
we see the value 0¢(m) we wait for a voluntary change in ¢ below the use y(m).
Simple permitting will ensure that for infinitely many m we will see such changes
(provided of course that the approximation is eventually w-computable). If we
see such a change then we can now define a new large value for v(m), bounding
sufficiently many zeros, and declare it to be one of our markers (,,. Note again that
to move (,, we need not only an g-change below (,,, but also a change in C¢ on
strings of length below (,,,, if the reduction of ¢ I¢,,_, to C° has already been defined.
This is why it is important to keep this reduction undefined until we see 0%(m) < w.

This discussion contained all the ideas needed for the proof, and so we turn to
giving the formal details.

3.2. Total w-c.a. anti-permitting: the details. As discussed, we are given
a noncomputable left-c.e. real g € [0,1) with an increasing approximation {psy. We
use a list (¢¢) of all w-c.a. functions, with tidy (w + 1)-computable approximations
(95, 05)-

We enumerate a Turing functional I', with intended oracle p, viewed as an
element of Cantor space.

For every e < w we perform the e construction. These constructions are
independent of each other. Fix some e < w. In the e construction we enumerate
a prefix-free c.e. set C¢ and define T'(p,m) for all m € wlel. Also, we define an
increasing sequence of numbers k¢(0) < k°(1) < ... (the list may eventually be
finite or infinite). All of the numbers k¢(n) are elements of wl®l. These will be
the numbers that are permitted (simply) and so they will be the ones that will
be used as inputs for defining the layers. We renumber our markers by letting

G = v(k4(n)).

The beginning of stage s. By the beginning of a stage s we will have already:

(1) Enumerated the set C¢;

(2) Defined the sequence k°(0),k°(1),...,k°(v) for some v = v¢, such that
each k°(n) € wl®) A 5. For brevity we let b = k¢(v¢) be the last element
of this sequence.

(3) Defined computations T'y(gs,m) for all m € wl®! A s, with uses ~,(m). For
n < of we let €5, = 5 (4(n).

The uses v5(m) are not quite monotone:
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o if k°(n — 1) < m < k°(n) for some n < v¢ then v;(m) = 0. That is,
the computation I's(gs,m) does not look at the oracle and so is never
destroyed. These inputs m were discarded when we got permission to
use k°(n) to define the next layer ending with (¢ ..

e Otherwise, the uses are monotone: l

s = Vs(k9(n)) < vs(k¢(n+ 1)) = (541 5 for all n < vg;

— If n < g and m > bg then ¢, < vs(m);

— If b¢ < m < m' then v5(m) < v5(m').

See Figure 3.
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FIGURE 3. The e'" construction at stage s. In this example v¢ = 3,
and T's(0s) is also defined on m' > m > b¢ = k°(3), the two next
elements in wlel.

The €™ construction. The construction begins at stage s = minwl®. At
that stage we define k¢(0) = s and C¢,, = J. We define a new computation
F5+1(gs+1, 8) = 0 with use 1. So Cg,erl = 1. Recall our convention that o = 0.9(1)o(2) - - -.
This means that g [ is the bit-sequence g(1)o(2)---o(k — 1). If we define a computation with

use 1 this means that the oracle is not consulted and so this computation is never destroyed.

Now suppose that s > minwl¢l. We give the instructions for the e*® construc-
tion at stage s.

STEP 1: REDEFINING DESTROYED COMPUTATIONS I'(g,m).

We may see that some of the computations I';(ps,m) are destroyed by the
change from g5 to ps11. If none of these computations are destroyed then we skip
to step 2 below.

Otherwise we need to define new computations I's;1(0s+1,m) for m for which
the computations were destroyed. In all but one case the value of the new compu-
tations will be s + 1, and so to define these computations we only need to specify
their use 541 (m).
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Let p be the smallest element of wl®) such that p < s and I'y(0s41,p)1. There
are three cases.

FIRST CASE. USELESS CHANGE: p > b¢ BUT 0%(p) = w.

For all m € [p,s) n wl®l set y511(m) = v5(m). We don’t increase
the uses, to ensure that they do not go to infinity.

SECOND CASE. MAKING USE OF SIMPLE PERMISSION: p > b% AND 05(p) < w.

In this case we add p as the new last element of the list of useful
inputs. That is, we define k°(n) = p where n = v$ +1 = v¢, ;
sop=0b5,.

e For m € (b¢,0%,;) nwll define 511 (0s41,m) = (05, m)
with use 1. We use the previous value to keep the functional con-
sistent.

e Set Ys11(p) (which of course equals (; ..;) to be the
least uw > (5 + 1 such that the block gsi1 [f¢
contains at least o¢(p) + 2 many zeros.

e For m e (p,s) nwl® set v,,1(m) to be large.

1 W)

THIRD AND MAIN CASE: p = k°(¢) FOR SOME ¢ < v¢.

Let n € [g,v¢]. Let 8 = 511 — A(C?).

o If B < 2 % then set Chst1 = Chs (in other words, set
Yor1 (K (n)) = 74 (ke ().

o If 8> 2 % then set Cp,s+1 to be the least possible value
greater than (;_, ; + 1 so that the block o [ce  cey [s+1]
contains at least 0S(n) + 2 many zeros.

As in the second case, for all m € (b¢, s) N wl®! set y411(m) to be
large.

This defines the computations I's 1 (0541, m) for allm < s in wlel and concludes
the first step.

STEP 2: UPDATING C°.
Let 8 = ps+1 — A(C?). Suppose that 8 > 0 and that for all n < v¢, n > 0
such that 8 < 27%-1.« we have I'(g, k°(n)) = g¢(n) [s + 1]. Then enumerate strings

into C%, following the algorithm above to ensure that A(C%, ;) = 0s41-

STEP 3: A NEW COMPUTATION.

At the very end of the stage, if s € wl® we define a new computation
Psi1(0s41,s) with new, large use.

This concludes the instructions for stage s > minwl®l.
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Verification. Each functional T'; is consistent for p,. This uses the fact that (s>
is an increasing approximation, and that at every stage we define a new computation
Fs+1(@s+1a m) Only if Fs(Qerlv m)Ta or otherwise we let F8+1(Qs+17 m) = Fs(gsv m)

Lemma 3.1. I'(p) is total.

PROOF. Let m < w; let e be such that m € wl®l. Let v¢ = sup, v¢.

If there is some n < v such that k°(n) < m < k°(n + 1) then at the stage at
which k¢(n + 1) is defined we define a new computation I'(m) with use 1. Recall
that this means that the oracle is not consulted. So certainly T'(o, m)|.

Suppose that m = k¢(n) for some n < v¢ or that v® < w and m > b¢ = k°(v®).
By induction on such m we show that I'(9, m)|. For every s > m the computation
I's(0s, m) converges. To show that I'(p, m)] it is sufficient to show that the sequence
{vs(m)) is bounded. For if it is bounded by some value v and g4 [,= o I, then
[s(0s,m) is an g-correct computation.

First suppose that m = k¢(n) for some n. If n = 0 then 7,,4+1(m) = 0 which
implies that the computation Iy, 1(0m+1,m) is o-correct and so is never destroyed.
Suppose that n > 0. By induction we assume that (;_; ; reaches a limit (f_;.
Let r > m be a stage sufficiently late so that n < vy and (5, , = (5 for
all s = r. We note that the fact that n < v¢ implies that o%(m)]. Let u be the least
number greater than ¢;_; such that the block ¢ [ce ) contains at least ot(m)
many zeros; such a number exists since g is not a dyadic rational. By increasing r
we may assume that g, [,= o[, (and so g5 [y= 0y forall s = 7). If s = ris a
stage at which v411(m) is redefined then we choose y541(m) < u.

Now suppose that v¢ < w and m > b¢. Let m’ be m’s predecessor in wl¢l. By
induction find a stage r > m sufficiently late so that the computation I',.(g,, m’) is -
correct. At every stage s = r at which we redefine ;.1 (m) we let y511(m) = vs(m).

O

Since we assume that deg. (o) is totally w-c.a. there is some e such that
I'(0) = g° and the approximation {g¢,0%) is eventually w-computable. We fix
such e. From now we only concern ourselves with the et® construction. For clarity
of notation we omit the superscript e from all the associated objects (we write g
for g5, C for C°, (s for ¢ ; and so on).

Lemma 3.2. lim, vy, = w.

PROOF. Assume for a contradiction that v = lim; v, is finite. Let r be a stage
sufficiently late so that by stage r, (, s has reached a limit ¢, and o, [¢,= 0 [¢,-
The assumption for contradiction means that at all stages s > r, for all m € wll N s
such that os(m) < w, the computation I's(gs,m) is g-correct. This implies that g is
computable. Given u < w, to compute o, we pick m > u,r in wl® and wait for a
stage s > m at which os(m) < w; 80 0s [, (m)= @ [, (m). But vs(m) >m >wu. O

We can show that C' is a presentation of o.
Lemma 3.3. \(C) = p.

PROOF. Suppose not. Let n be sufficiently large so that 27" < o — A(C). But
if s is a very late stage then all markers ¢, s for all m < n have stabilised to their
final values and are all certified: gs(k(m)) = T'(o, k(m)) for all m < n. Also assume
that o — 0s < 27" and 05 — A(Cs) > 27™. Then at stage s we would increase C' to
have measure g5, which is a contradiction. ([
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The next lemma (really an observation) is trivial but useful. Both parts rely
on the fact that for all 8 € [0,1) and k > 1, 8 I (as a number in binary) is the
integral part of 2F=153.

Lemma 3.4. Lett <s and k > 1.

(1) If or — 05 = 271 then g4 1+ 05 1
(2) If 0s — 0 < 27 and further ot(k) = 0 then o4 k= 0s |-

The following is the main combinatorial lemma.

Lemma 3.5. Let s be a stage, and let n > 0, n < v,. The block o ¢, ¢y [5]
contains a zero.

PRrOOF. Fix n. For brevity let m = k(n). Suppose that s is a stage and n < v,.

As above, say that the marker ¢, s is certified at stage s if I's (g5, k(n)) = gs(k(n)).
Let Scers be the set of such stages. This set contains a final segment of w.

We say that the marker ¢, s is redefined if I's(gs—1, m)] and either

e ;1 =n—1,1ie. (s is the very first value of this marker; or
o B=0s—ANCs_1) > 2 Cns1,
Let Sieqer be the set of such stages s.

Let S = Scert U Sredes- We show by induction on the stages s for which n < v,
that:

(a) If s € S then the block o ¢, , ) [s] contains at least os(m) + 2 many
Z€TOS.

(b) If s ¢ S then the block o ¢, _, ¢,) [s] contains at least os(m) + 1 many
Z€T08.

In either case the number is positive, and so the lemma follows.

The induction starts with s = min Syeqes. The instructions ensure that (a)
holds at every stage s € Sreges-

Let t € S and suppose that (a) has already been verified for stage s. Let r be
the next stage in S after stage t. We verify that (a) holds at stage r and that (b)
holds at all stages s € (¢,r).

The marker , s is constant for s € [t,r); we denote this fixed value by ¢, (note
that this is not necessarily the final value of this marker). Similarly define ¢,_1.

Now for brevity let:

e A be the set of stages u € (¢,7) such that Cy, # Cy—1.
o If r € Sreder let B be the set of stages s € (¢, r) such that g, ¢, # 0s—1 I¢,.;
if 7 ¢ Sredqes let B be the set of such stages in the interval (¢, 7].

‘We make two observations.

(1) Let u € A. Then g, — A(Cy_1) is strictly greater than 27¢»-1. This is
because u ¢ Scert-
(2) Let s € B. Then g5 — A(Cs—1) < 2—¢n . For otherwise s € Syeqes.

In particular, A and B are disjoint.
Suppose that B is empty. Then 9,1 [¢,= 0 I¢,; and if 7 ¢ Sreqer then
or 1¢,= 0t I¢,. Since o5(m) < oi(m) for all s € (t,r], we see that (b) holds for all
€ (t,r). If r € Sreger then we already know that (a) holds at 7. If r ¢ Sreqer then
the latter equality ensures that (b) holds at stage r.
We assume therefore that B is nonempty.
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Suppose that A is nonempty. We claim that A < B. That is, there are no
s € B and u € A with s < u. For a contradiction, suppose there are. By choosing
a maximal s and then minimal v we can find s € B, u € A such that s < u but the
interval (s, u) is disjoint from both A and B. Since A N [s,u) is empty we see that
Cs_1 = Cy_1. Let ¢ = \N(Cs_1); then o, —q < 2% and g, — q > 27%"~1. Since
Cn—1 > Cpu + 1, this means that g, — o5 > 2-27%". By Lemma 3.4, g, [¢, # 0s |¢,.-
This contradicts the assumption that B n (s, u] is empty.

Thus, we let ¢ = maxA if A is nonempty, and t' = t otherwise. Then
Qt/ rCn: Qt rCn'

Let 7" = max B. Then g, [¢, = 0r—1 l¢,; and if r ¢ Sreger then g ¢, = o7 I'¢
Also we note that C» = Cyp and so g — A(Cy) < 2= 6n,

Let k be the rightmost zero in the block o [¢,_, ) [t] — the greatest k < (,
such that g;(k) = 0. Such k exists by induction.

Since 0, — oy < 27 and oy(k) = oi(k) = 0, Lemma 3.4 says that
or k= op k. Overall, we see that g9._1 k= 0¢ lk; and if 7 & Speqer then
Or rk: Ot rk

The block o; I[¢,_, k) contains at least o;(m) + 1 many zeros. Since
0s(m) < o¢(m) for all s > t, we see that (b) holds for all stages s € (¢, 7).

"

Now consider r. We may assume that r ¢ Speqer. Then the argument above
shows that the block o, [[¢,_, ¢, contains at least o;(m) + 1 many zeros. Further,
Cn,r = Cn and Cnfl,r = Cnfl-

We assumed that B # . Indeed, a new computation T, (o,-,m) is defined
and T\ (or,m) = T'p(or,m) = r'. Since r € S it must be that 7 € Scere.
Thus g.(m) = v > t > g(m). It follows that o.(m) < oi(m), and so

or(m) + 2 < 04(m) + 1. This establishes (a) for stage r. O
Finally we show that C' computes o.

Lemma 3.6. Let s be a stage and let n < vs. Suppose that for all strings o of
length at most Cuy1,s, 0 € C if and only if o € Cs. Then o l¢, .= 0s ¢, .-

PROOF. Let s be a stage as described. The assumption means that for all u > s,
if Oy # Cy_1 then A(Cy) — A(Cy_y) < 27 Cn+tss,

For brevity let ¢, = (s and (p41 = Cnt1,s- By induction on ¢ > s we show
that (.t = Cny Cnt1,t = Cng1 and o [¢, = 05 ¢, - Suppose this is known for t—1 > s.

We claim that 3 = gy — A\(Cy_1) < 27%#+1. Suppose otherwise; let u be the
least stage u > t such that Cy # Cy—1. Then A\(Cy—1) = A(Cy—1) and g, > 90; and
so M(Cy) — MCy—1) = B, contradicting our assumption on Cs.

The instructions (third case) now show that at stage ¢t — 1 we set (p 1+ = (nt—1
and (i1t = Cui1,t—1-

Further, ¢; [¢,= 0s ¢, Since (ni1,0—1 = Cug1 and (py—1 = (p, Lemma 3.5
implies that the block g1 (¢, ¢,.,,) contains a zero. If g; [¢, # 011 [¢, then by
Lemma 3.4, oy — ;1 > 27%+1, and of course g; 1 = A(C;_1). O



CHAPTER VI

m~topped degrees

It was Post [78] who first pointed out that many reducibilities occurring in
practice were stronger than Turing reducibility; indeed most codings of the halting
problem into a concrete undecidable problem like the word problem for groups
were m-reducibilities. For example, for the word problem, for each instance e, we
could compute a word w(e) such that e € @' < w(e) = 1. The thrust of Post’s
problem was whether all instances of undecidable c.e. problems were simply the
halting problem in disguise. Myhill characterised the c.e. sets as those that are
m-reducible to @’. Thus interactions of Turing and m-reducibilities would seem a
natural thing to study.

Downey and Jockusch [29] answered a longstanding question of Odifreddi and
Degtev (See Odifreddi [76]) by proving the existence of incomplete c.e. sets which
resembled the Halting problem in the sense of these interactions. That is, they
constructed what are now called m-topped degrees: degrees containing c.e. sets A
such that for every c.e. set B <r A we have B <,, A. In other words, a c.e.
Turing degree a is m-topped if among the m-degrees of c.e. sets inside a there is
a greatest one. Thus, locally they resemble ¢f'. Such sets seem strange, and have
some remarkable properties. For example, they were one of the first “natural classes
all of whose members are lowy. Moreover, Downey and Jockusch showed that m-
topped degrees cannot be low. Finally, Downey and Shore [34] showed that every
lows c.e. degree is bounded by an m-topped degree. Thus the m-topped degrees
c.e. degrees can be used to define the lows c.e. degrees in the degree structure with
both reducibilities.

In [23] we investigated the dynamics required for the Downey-Jockush con-
struction. We showed that the cascading effect that happened in the construction
led to an w“-type behaviour. Specifically, we showed that there is an m-topped
degree which is totally w“-c.a. We also hinted at a proof that this is the best
possible:

THEOREM 0.1. No m-topped degree is totally < w®-c.a.

In this chapter we flesh out the details of this construction. Apart from the
intrinsic interest in this result, this argument will serve as a preparation for the
next chapter.

The dynamics of the cascading phenomenon occurring in the construction of an
m-topped degrees strongly resembles the dynamics of the embedding of the 1-3-1
lattice in the c.e. degrees, which we discussed in the introduction. These dynamics
are captured by the class of totally < w“-c.a. degrees, in that, as we show in the next
chapter, the 1-3-1 lattice can be embedded precisely below the not totally < w“-c.a.
degrees. Similar dynamics occurred in the original construction of a noncomputable
left-c.e. real with only computable presentations, which we discussed in the previous
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chapter; this is made more formal when we discuss prompt not total < w“-c.a.
permitting in the last chapter of this monograph. However, the similarity has some
limits. Unlike the 1-3-1 embedding, the m-topped construction cannot be captured
precisely by the hierarchy of totally < a-c.a. degrees: it is not the case that every
c.e. degree which is not totally < w®“-c.a. bounds an m-topped degree. This is
because as mentioned above, m-topped degrees cannot be low, and every level of
our hierarchy contains low (as well as nonlow) degrees. It would be interesting
to see if there is a permitting argument combining non total < w®-c.a.-ness and
non-lowness that would yield bounding of m-topped degrees.

Before we give the full argument we start with easier, weaker results. We show
that no totally w-c.a. degree is m-topped; then that no totally w?-c.a. degree is
m-~topped; and then give the full proof.

1. Totally w-c.a. degrees are not m-topped

Let d be a totally w-c.a. c.e. degree. To show that d is not m-topped we need,
given a c.e. D € d, to enumerate some c.e. set V <t D which is not many-one
reducible to D.

The basic module is as follows. Suppose that we want to show that the d*!
computable function ¢4 is not a many-one reduction of V to D. We set up a finite
set X of followers and wait for them to be realised, which means that ¢q(z)] for all
x € X. While we wait we prevent the enumeration of the followers into V. When
they get realised we may assume that @q(z) ¢ Dy for all z € X; otherwise we get an
easy win. We then attack by enumerating some x € X into V. The opponent can
respond by enumerating p4(x) into D, in which case we will attack with another
follower in X. We need to ensure two things:

e V is Turing reducible to D; and
e X is sufficiently large so that the opponent cannot always respond.

For the first we will define a functional ¥ with the intention of having ¥(D) = V.
To be able to attack without violating this reduction we will ensure that the use
Ys(x) of any follower is greater than p4(y) for any other follower. Thus a response
by our opponent to our attack with y will be the D-change which allows us to
attack next with x.

For the second we use the “anti-permitting” method used in Chapter V. We tie
the set of followers X with some input n for a function I'(D) we build which will
serve as an “anchor” (or “anti-permitting number”). Since I'(D) is w-c.a. we find a
bound m on the number of times an approximation for I'(D, n) changes. We ensure
that the use vy(n) of I'(D,n) is the same as the use ¢(z) for followers z € X. So
the opponent’s D-change that allows us to attack with another follower also allows
us to redefine I'(D, n) to have a new value and so reduce the number of changes left
to the opponent. If | X| > m then the opponent will not be able to always respond.
See Figure 1.

As in the previous chapter we need to add a simple permitting step. Previously
this was only necessary because we were working with a degree which is totally
w-c.a. and not necessarily an array computable one: the number m is revealed
to us eventually but is not fixed in advance; if we guess incorrectly about our
approximation for T'(D) it may never be given. We nonetheless must make sure
that T'(D,n)| (so that T'(D) is total) even if the guess using n is wrong. In the
current construction there is another reason to use simple permitting. We do not
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know whether ¢4 is total or not. This means that we need to set the uses 14(x)
for x € X immediately when we appoint these followers. Before we attack we need
to lift these uses beyond ¢4(y) for y € X, and these values are revealed to us after
we already appoint the followers and define the W-computations. So we wait for
a “free pass” to raise these markers, and this will be given as usual by assuming
that D is noncomputable.

wa(z1) va(ro)  pa(r2)
1 N g D

FIGURE 1. w-c.a. degrees are not m-topped

1.1. Construction. We are given a c.e. set D whose Turing degree is totally
w-c.a. We use a list (¢g°) of all w-c.a. functions, with tidy (w + 1)-computable ap-
proximations {g¢, 0¢). We enumerate a Turing functional I" with intended oracle D.

For every e < w we perform an e construction. These constructions are inde-
pendent of each other, except that as usual they together define the functional T'.
The et construction will guess that I'(D) = ¢g°. For every d < w the e™ con-
struction will employ an agent d, which performs a “sub-construction” of the et!
construction. The action of distinct agents is independent of each other; we only
need to ensure that they don’t share followers. We use the term “agent” to refer to
entities working independently of each other in parallel constructions; “strategies” or “nodes” lie
on a tree of strategies and interact with each other.

The et construction will enumerate a c.e. set V. It also defines a Turing
functional ¥¢ with the aim of having ¥¢(D) = V.

An agent d for construction e aims to define a finite set X of followers. The
sets of followers for distinct agents are pairwise disjoint. The agent will choose an
anchor n (distinct from the numbers chosen by any other agent for any construc-
tion). The agent will be responsible for defining I'(D, n) and for defining ¥¢(Djy, x)
for x € X. The use ¥¢(z) for all z € X will be the same, namely v;(n).

We note that the agent must ensure that n € domT's(D;) at every stage s
(and that the uses 7s(n) are bounded). However ¥¢(D) = V¢ is required only
if the hypothesis that I'(D) = ¢¢ is correct. The agent is thus allowed to leave
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computations U¢(Ds, x) undefined until it gets further evidence that the hypothesis
holds.
In this chapter we simplify our notation as follows.

Notation 1.1. The intended oracle for the functionals I" and W€ is D; At stage s
we only define computations I's(Dg, n) and ¥¢(Ds,x). Further, the value of these
computations is also fixed: at stage s, the value of a new I's(Ds,n) computation
is always s, and the value of a new W¢(D,,x) computation is VE(z). Thus to
specify a computation all we need to provide is the use vs(n) or ¥¢(x). Instead of
mentioning the functionals we only mention the uses (which can be thought of as
moving markers). So for example we write ¢¢(x)] if U¢(Ds,x)], and when a new
computation is defined, we simply say that we define ¢¢(x).

As mentioned above, before we can use any followers to diagonalise against
many-one reductions we need them to be simply permitted by D. Thus before
commencing the attacks, the agent will define distinct sets of followers Xy, X7, ...
associated with anchors ng,ni,..., one of which we hope will become the X and n
we eventually use.

To carry out the construction we need the following, which we will verify after
we specify the construction. It says that an agent does not run out of followers to
attack with.

Lemma 1.2. Suppose that at some stage s, an agent d for the e construction is
attacking with a set of followers X. Then X ¢ V.

The action of agent d for the e construction. We now describe two cycles
(subroutines) detailing the action of an agent d for the e*® construction. The agent
starts with set-up cycles; if some set of followers is set up and permitted then the
agent moves to attack cycles. During either cycle the agent is instructed to wait
for some event. It is possible that the event does not happen, in which case the
agent will wait forever and not act again, other than maintaining the convergence
of some functionals. In fact we will show that either we get an easy win, or the
agent will get stuck waiting indefinitely from some point onwards, either because
g© is not the correct guess, ¢g4 is not total, or because some attack succeeds.

The agent starts with setting up the first set of followers.
SETTING UP THE k' SET OF FOLLOWERS.

1. Let sp be the stage at which this set-up cycle begins. Choose
a large anchor ng. Define v,,(ng) = ng.

2. We wait for a stage s; at which of (ny) < w. At that stage
we choose a set X of (of, (nx) + 2)-many large followers. For
each x € X we define ¢ () = ng.

3. We wait for a stage so > s1 at which ¢g s, (z)| for all z € Xj.

4. We then wait for a stage s3 > s at which Dy, [, # Dss—1 [n,-
While waiting we (recursively) set up the (k+1)*" set of followers.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors ny and sets of followers X/ for k¥’ # k.
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Welet X = X and n = ny. Welet u = 1+max {¢q(z) : ©€ X}.
We start an attack with some x € X.

Throughout the set-up phase, if some anchor n; is already chosen and
Dg 1, # Ds—1 I'n, then unless we start an attack at stage s, we redefine v5(ny) = ny
and if also X}, is defined, ¥¢(z) = ny, for all z € Xj.

If we start an attack at some stage ¢ then we will ensure that I';_1(D;,n)] and
that U¢_(Dy,2)1 for all z € X.

ATTACKING WITH A FOLLOWER .

1. Let tg be the stage at which the attack begins. We define a
new I' computation by setting 7, (n) = u.

2. We wait for a stage t; > to at which gf (n) = 'y, (Dy,,n).
While waiting, the markers ¢¢(z) for all z € X remain undefined.

If pq(x) € Dy, then we interrupt the attack cycle and discard
both n and X; all action for the agent ceases. In this case we get
an easy win by keeping x out of V€.

Otherwise, we enumerate z into V,2; we define ¢ (2) = u
for all z€ X.

3. We wait for a stage to > ¢; at which @q(z) € Dy,. At that
stage we end the current attack and commence a new attack
with some 2’ € X\V.

Throughout the attack phase, if Dy [,# Ds_1 [, and we do not start a new
attack at stage s then we define v5(n) = u, and if further ¥¢_;(2)| for z € X (i.e.
if s > ¢1) then we define ¥¢(z) = u.

Globally, if n < s and n is at stage s not used as anchor by any agent for any
construction (either it was never chosen, or was chosen and later discarded) then
we define y(n) = 0. For all e < s, if x < s and « is not at stage s used as a follower
by any agent for the e construction then we define ¥¢(x) = 0.

1.2. Verification. We first need to show that the construction can be per-
formed as described. Fix an agent d for the e construction.

Let t be a stage at which an attack cycle begins. We need to show that
T'i—1(D¢,m)1 and that U§ (D, 2)1 for all z € X. Suppose that the set-up phase
ended at stage t. Then Dy |,,# D;_1 |, and n equals both v:_1(n) and ¥§_;(z) for
z € X. If on the other hand an attack cycle (with some follower x) ends at stage ¢
then ¢q4(x) € Di\D;—1 and p4(x) < u, and u equals both v;_1(n) and ¥§_,(z) for
ze X.

Next, we prove Lemma 1.2, which stated that an agent never runs out of
followers: if an agent for the e construction is attacking at some stage s with a
set of followers X, then X ¢ V.

PROOF OF LEMMA 1.2. During each attack cycle at most one follower is enu-
merated into D. Let t < s be two stages at which an attack cycle begins. Since
gé(n) = T'y(Dy,n) = t at some stage r € (t,s) and by convention gf(n) < t we
see that of(n) < of(n). It follows that at most os,(n) + 1 many attack cycles are
started, where sq is the stage at which X is appointed. Thus at most os,(n) + 1
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many elements of X are enumerated into V¢. The lemma follows from the choice
| X| = 05, (n) + 2. O

We also observe that T'(D) is total. For let n < w. If n is not chosen as an
anchor by any agent for any construction, or is chosen but is later discarded, then
we arranged that n € domI'(D) (with use 0). Otherwise n = ny, for some unique
agent for a unique construction. If the agent never enters the attack phase then
vs(n) is defined at every stage after n is chosen, always with use n, and so eventually
a correct computation is defined. If the agent enters the attack phase with n then
at every stage s during this phase the computation v5(n) is defined, with use u; so
again a correct computation is eventually defined.

We fix some e such that I'(D) = ¢° and {f¢,0°%) is eventually w-computable.
We will show that the e*® construction succeeds. We drop all superscripts e from
now on.

Lemma 1.3. ¥(D)=1V.

PROOF. Let x < w. If z is enumerated into V at some stage ¢ then ¥;_ (Dy, )1
and a computation with a correct value is defined at stage s. So it suffices to show
that € dom ¥ (D).

If  is never chosen as a follower by any agent for the e construction, or if it
is chosen and later discarded, then we arrange that ¥ (D, z)| with use 0. Suppose
that x is chosen by some agent d and is never discarded.

During the set-up phase we ensure that 14(x)| at every stage after the stage at
which = was appointed, with use ny (if z € Xj). As with I'(D), if the attack phase
never begins then this ensures that n € dom V(D).

Suppose that the attack phase eventually begins and that x € X. Suppose
that s is a stage during the attack phase and that ¥s(z)?. Let ¢ < s be the stage
at which the attack cycle began which is running at stage s. At stage s we are still
waiting to see g.(n) = I'(D,,n). Since we assume that = is never discarded, the
attack phase is never interrupted. Since g = I'(D) we see that a stage r as required
will occur, and at that stage we will define ¢,.(z) = u. Again we see that eventually
a correct computation will be defined. O

Lemma 1.4. V £, D.

PROOF. Suppose that ¢4 is total; we show that there is some x such that
xeV < pq(x) ¢ D.

We claim that agent d will enter the attack phase. For otherwise, the fact
that ¢4 is total and that {(f¢, 0%) is eventually w-computable ensures that anchors ny,
are defined for every k < w. But then we compute D: if X} is appointed and
Xj, € dom g at stage s, then Dy [, is correct.

We have argued that only finitely many attack cycles are started by the agent.
Let x be the last follower with which we start an attack. If the attack is interrupted
then ¢q(z) € D but we keep z ¢ V. Otherwise, as argued above, we eventually
enumerate = into D. Since no new attack is ever started, pq(x) ¢ D. (I

2. Totally w?-c.a. degrees are not m-topped

2.1. An easy proof. Consider how the construction in the previous section
needs to change if deg (D) is totally w?-c.a. In this case the ordinal oy, (n) that we
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discover is not a natural number m but an ordinal of the form w - my + my, where
mg and my are natural numbers.

The most natural adaptation is the following. When the ordinal w - m + k is
revealed, we appoint a set X of followers of size k + 1. We wait for ¢4 to converge
on the followers in X and then for permission to lift the uses vs(n) = ¥¢(z) (for
z € X)) above the values of ¢,4(z) for z € X. When permission is granted we attack
as above; but it is possible that eventually we exhaust all the followers in X. But
when that happens, since |X| > k, the ordinal we see when X is exhausted is
w-m' + k', with m’ < m: we dropped below the limit ordinal w-m. We then would
like to repeat the process: appoint a new set X’ of followers of size k' + 1; wait
for ¢4 to converge on X', and then for permission to lift v5(n) = ¥5(z) above the
values of ¢g4; and then attack again. We can go through at most m many cycles of
cycles of attacks, and so eventually the opponent will not be able to respond.

The only question is why we would get enough permissions. Simple permit-
ting is insufficient here; we need multiple permitting for each attempt to meet the
requirement. But it is hopefully clear that the kind of permitting which we need
to carry this plan out is non-total w-c.a. permitting. That is, if we assume that
deg,(D) is totally w?-c.a. but not totally w-c.a. then this argument will actually
work. If deg.(D) does happen to be totally w-c.a. then we just refer to the con-
struction in the previous section.

We can also see how to generalise this argument to show to n > 2, to show that
every c.e. degree which is totally w™-c.a. is not m-topped. This approach however
does not seem to work when we consider degrees which are totally < w“-c.a. but
not totally w”-c.a. for any n (see Theorem I11.4.2). In that argument we define
a single function I'(D) and guess some n such that I'(D) is w™-c.a.; and guess an
appropriate approximation. However, for the permitting part of the argument we
cannot just guess some function ©(D) which is not w” !-c.a.: the point is that
to set y(m) in the first place we need 0(k) where k is the associated permitting
number; if ©(D, k) never converges then we will fail to make I'(D) total.

We thus give even for the case n = 2 a more complicated argument which we
will be able to generalise to give the full result.

Nonuniformity. Rather than hope for a voluntary D-change, we manufacture it
by using more than one set. Returning to the w? case, suppose that we enumerate
two c.e. sets V and W. It suffices to ensure for every pair (c,d) of indices that
either ¢4 is not a many-one reduction of V' to D or ¢, is not a many-one reduction
of W to D. The rough idea is to use two sets of followers ¥ and X. We associate
an anchor n with the requirement; if we guess that I'(D,n) will not change more
than w - m + k many times then we set |Y| > m and |X| > k. We attack with the
followers 2 € X against ¢4 (and so enumerate them into V). When X runs out,
as discussed above, the new ordinal is smaller than w - m; we then attack with one
follower y € Y against ¢, (and so aim to enumerate it into W). Before the attack
with y commences we appoint a new set of followers to take the role of the new X,
sufficiently large to last until we drop below the next limit ordinal. We wait for
realisation of the new followers and then attack with y. The failure of this attack
will give us the D-change that allows us to lift the new I'(D)-use (and ¥¢(D)-use
for computing V' from D) beyond ¢4(z) for all z in the new X.

While we wait for the realisation of the new followers we must leave open the
reduction of W to D (in the same way that in the w-construction, while we wait for
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a new agreement between g¢ and I'(D) to appear we leave the reduction of V to D
open). This means that the totality of the reduction of W to D must rely on the
totality of 4. We thus enumerate not a single set W but infinitely many, one for
each yg4, and we rename the sets V;. Assume that the guess g€ is correct. Then we
will in any case ensure that V <t D; and if ¢4 is a many-one reduction of V to D,
then we will ensure that V; <t D and that it is not many-one reducible to D. See
Figure 2.

®e(yo) $e(y1) ei(ro)  pe(y2)  palz1)
: : 1 : — D

FIGURE 2. w?-c.a. degrees are not m-topped

2.2. Construction. We are given a c.e. set D whose Turing degree is totally
w?-c.a. We use a list (g¢) of all w?-c.a. functions, with tidy (w? + 1)-computable
approximations (g¢,0%). We enumerate a Turing functional T" with intended ora-
cle D.

For every e < w we perform an e'"" construction. As above, these constructions
are independent of each other. For every pair (d, ¢) of natural numbers, the ' con-
struction will employ an agent (d,c¢). The action of distinct agents is independent
of each other; we only need to ensure that they don’t share followers.

The e construction will enumerate a c.e. set V¢, and for all d < w, a c.e. set
V. It also defines a Turing functional ¥¢ with the aim of having ¥¢(D) = V¢, and
Turing functionals U9 with the aim of having ¥5(D) = V¥. We continue to follow
Notation 1.1 and mostly refer to the uses of these computations.

As discussed, an agent (d,c) for the e'® construction plans to set up sets of
followers Y and X. Once it enters the attack phase, the set Y is fixed, but the
set X is not: once the followers in X are exhausted, we attack with another follower
from Y and appoint a new set of followers to play the role of X. While it is not
precise, during the construction we refer to the current version of X simply by “X”
rather than give it an index. During the verification we may refer to the version
of X at stage s by Xs.

h
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During the set-up phase we appoint a sequence Y7, Y5, ... of sets, one of which
may be chosen to be the set Y we use for attack.

The action of agent (d,c) for the e construction. The agent starts with setting
up the first set Y7.

SETTING UP Yj.

1. Let sy be the stage at which this set-up cycle begins. We
choose a large anchor ny. Define v, (ng) = ng.

2. We wait for a stage s; at which of (nj) < w?. Suppose that
05, (n) = w-m + p. At stage s; we choose a set Yy of (m + 2)-
many large followers. For each y € Y we define wg,sl(y) = ng.

3. We wait for a stage s; > s1 at which ¢, (y) | for all
y € Yg. 4. We then wait for a stage s3 > sy at which

Dy tny# Dsg—1 [, While waiting we (recursively) set up the
set Yii1.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors ny and sets of followers Yy for k' # k.
Welet Y =Y, and n = ni. Welet u =1+ max {p.(y) : yeY}.
We start an attack with some y e Y.

Throughout the set-up phase, if some anchor nj is already chosen and
D 1, # Ds_1 Iy, then unless we start an attack at stage s we redefine vs(ng) = ng
and if also Y} is defined, ¢ ,(y) = n.

ATTACKING WITH A FOLLOWER y € Y.

1. Let rg be the stage at which the attack begins. We define
Yro(n) = u. We appoint a set X of (p + 2)-many large followers,
where o, (n) = w-m + p. For each x € X we define 5 (v) = u.
For now, we leave 95 _(y') for y’ € Y undefined.

2. We wait for a stage 71 > rg at which ¢g,,, ()| for all z € X.
If v.(y) € D,, then we interrupt the attack cycle, discard all as-
sociated followers and anchor, and cease all action for the agent.

Otherwise we enumerate y into V7, . For all ' € Y we
define 93 (y) = u.

3. We wait for a stage ro > r1 at which ¢.(y) € D,,. At that
stage we end the current attack and commence an attack with
some z € X; we let v = 1 + max{pq(z) : x € X}.

Throughout this attack phase, if Dy [,# Ds_1 |, and we do not start an attack
with some x € X at stage s, then we redefine v,(n) = u with use u; and we redefine
Ys(x) = ufor x € X. If s > rq then we also define ¢g (y') = u for all y' € Y.

ATTACKING WITH A FOLLOWER = € X.
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1. Let tg be the stage at which the attack begins. We define
Yo () = 0.

2. We wait for a stage t; > to at which gf (n) = I'y, (Dy,,n).
While waiting, we leave 5(z’) for 2’ € X undefined. Note that g _(y) for
y € Y will be undefined throughout the attack with x.

If pq(z) € Dy, then we interrupt the attack cycle, discard
all associated followers and anchor, and cease all action for the
agent.

Otherwise, we enumerate = into V;¢. We define ¢f (2') = v
for all v’ € X.

3. We wait for a stage ta > t1 at which ¢4(z) € Dy,.

If X VS then we discard X and start a new attack with
some y € Y\V7, . Otherwise we commence a new attack with
some z' € X\V<.

The functionals T'(D,n) and ¥¢(D,z') are maintained as above.

Also as in the w case, we ensure totality of functionals by defining them with
use 0 on all inputs which are not used as anchors or followers.

2.3. Verification. We need to show that the construction can be preformed
as described. Fix an agent (d, c) for the ' construction.

First we observe that if an attack cycle begins at some stage w then all func-
tionals are divergent at that stage. Namely:

o If an attack with y € Y begins at stage w = rg then I'yy—1(Dy,n)T, and
UG w1 (Dw,y')1 for all y' € Y; and

e If an attack with z € X begins at stage w = to then also ¥¢ _,(D,,z')1
for all 2’ € X.

But as above these are ensured by the D-change encountered at the last stage of
the previous cycle. If the set-up phase ended at stage w, then we just saw a change
on D !,, and all uses are n; at the end of an attack with y € Y, we just saw a
change on D [, and all uses are u; at the end of an attack with x € X, we just saw
a change on D [,, and the uses y(n) and ¥°(2’) are v, while ¢5(y) are undefined
throughout the attack with x.

We also obtain an analogue of Lemma 1.2: if Y is already defined at stage w
then Y & V7. Suppose that the set Y is chosen at some stage sp, with
05, (n) =w-m* +p, so |Y| =m* + 2. We argue that an attack with some follower
in Y is started at most m* + 1 many times. For ¢t < w let of(n) = w - my + p;. We
claim that if two attacks with followers in Y start at stages s < ¢ then m; < ms.
This in turn is done by examining attacks started with elements of X. We have
| Xs| = ps + 2. The argument in the w-case shows that if w < r are stages in (s, t)
at which we start an attack with an element of X then of(n) < 0% (n). The fact
that ps + 2 many such attacks occur implies that m; < ms as required.

Next we observe that I'(D) is total. The argument is similar to the one in the
w-case. Suppose that n is an anchor for some agent, and is never discarded. A
computation T's(Dg,n) is defined at every stage s > n. The use is bounded. There
are three possibilities. An attack may never begin; in this case v5(n) = n for all s.
Alternatively, an attack with some y € Y is never ended; we then eventually have
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vs(n) = u. Finally it is possible that an attack with some x € X for some version
of X is never ended; we then eventually have v5(n) = v (and v is never redefined).

We fix some e such that ['(D) = g¢ and {(g¢,0¢) is eventually w?-computable.
We will show that the e construction succeeds. We drop all superscripts e from
now on.

The argument proving Lemma 1.3 shows that ¥(D) = V. If V €, D then
we are done. Assume this fails; fix some total computable function ¢4 such that
vi'[D1=V.

We argue that ¥4(D) = V. Observing that we only enumerate y € Y into Vj
at stages at which U4(D,y) diverges, again it suffices to show that U4(D) is total.
We focus on some y which is a follower in some set of followers Y for some agent
(d,c). If no attack by the agent is every started (it is always in the set-up phase)
then 14(y)| at every stage after y is appointed, with a bounded use ny. Otherwise,
the key is that since ¢ '[D] = V, every attack by this agent with a follower z € X
must end. So there is an attack with some 3’ € Y by the agent which never ends.
However the assumption that wgl[D] = V implies that the attack is not stuck
waiting for a stage r1; @q is total. So we are eventually stuck waiting for a stage rs;
while waiting, we keep defining ¢4(y) = u.

Finally, the argument of Lemma 1.4 shows that V; <,, D. Fix some total ¢..
The simple permitting argument shows that the agent (d, c) will enter the attack
phase; we just observed that an attack with some y € Y must succeed.

3. Totally < w“-c.a. degrees are not m-topped

The general case follows the structure of the w? case. Each construction guesses
the m such that I'(D) is w™-c.a., and an appropriate approximation. It builds sets
in m layers of nonuniformity.

3.1. Construction. We are given a c.e. set D whose Turing degree is totally
< w¥-c.a. We use uniform lists (¢>™) of all w™-c.a. functions, with tidy (w™ + 1)-
computable approximations (g™, 0%™), for all m < w. We enumerate a Turing
functional I" with intended oracle D.

For every pair (e,m) we perform an (e, m)-construction. These constructions
are independent of each other. For every m-tuple d = (do,...,dn_1), the (e,m)-
construction will employ an agent d. The construction enumerates c.e. sets Va'™ for
all tuples ¢ of numbers of length strictly smaller than m. For each such sequence ¢,
the construction also enumerates a functional ¥2™, as usual with the aim of having
U™(D) = V2™ so as usual, to define a computation for one of these functionals,
we only need to specify its use.

The action of agent d for the construction (e,m). The agent aims to estab-
lish m sets of followers X,,_1, X;n_2,..., Xg. The followers in X}, are targeted for
VdfFin' After receiving simple permission, the set X,,_1 is fixed but the sets X,, o,
Xm—3,... are not fixed. When all followers in Xy_1, Xg_o,...,X( are used, we
discard these sets and attack with a new follower from Xj.

Before we receive our simple permission though we need to appoint a sequence
of candidates for X,,,_1. These will be denoted by Y7,Y5,....

The agent starts with setting up the first set Y.

SETTING UP Y.
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1. Let sy be the stage at which this set-up cycle begins. We
choose a large anchor n;. Define ~,,(n;) = n;.

2. We wait for a stage s; at which 0§, (n;) < w™. Suppose that
0%™(n;) = w™ - p+ B (for some B < w™ ). At stage s; we
choose a set Y; of (p + 2)-many large followers. For each y € Y;
we define wgaihsl(y) =n,.

3. We wait for a stage so > s1 at which ¢g4,, , s, (y)] for all
yey;.

4. We then wait for a stage s3 > so at which Dg, [, # Ds;—1 ;-
While waiting we (recursively) set up the set Y; ;1.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors n; and sets of followers Y, for i’ # i. We
let X,,_1 = Y; and n = n;. We start an attack with some
T e Xm71~

Throughout the set-up phase, if some anchor n; is already chosen and
Dg 1h,# Dg_1 I, then unless we start an attack at stage s we define v4(n;) = n;
and if also Y; is defined, wgrm,l J(y) =n; for ye ;.

Throughout the attack phase we let

m—1

Og,m(n) =w D1 + wm—2pm72’s + 4w “Pi,s _|_p0’s.

When we start an attack with some element of Xj (for & < m) the sets
Xm—1,..., Xy are defined but X;_1,...,Xo are not. If X is defined then so
isup =1+ max{gog’km(z) : ¢ € Xi,}. During an attack with some x € X, the
computations \112(: () for all & > k and y € X are undefined.

ATTACKING WITH A FOLLOWER z € X}, FOR k > 0.

1. Let ry be the stage at which the attack begins. We define
Yro (1) = ug. We appoint a set Xj_1 of (pg—1,,, + 2)-many large
followers. For each z € Xj_; we define wg’ﬂil "o (2) = ug. For

now we leave 1/);—’;: (@) for all 2’ € Xj, undefined.

2. We wait for a stage r1 > 7o at which pg4, ,,(2)] for all
z € Xg—1. If pg, (x) € D,, then we interrupt the attack cycle,
discard all associated followers and anchor, and cease all action
for the agent.

Otherwise we enumerate z into Vdfr’zrl. For all ' € X we

define wgﬁn (') = ug.

3. We wait for a stage ro > r1 at which ¢4, (x) € D,,. At that
stage we end the current attack and commence an attack with
some y € Xg_1.

As usual we respond to spontaneous D [, -changes by rectifying existing com-
putations with the same use uy.

ATTACKING WITH A FOLLOWER z € Xj.
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1. Let tg be the stage at which the attack begins. We define
Yo () = Up.

2. We wait for a stage t; > to at which g;"™(n) = Ty, (Dy,, n).
While waiting, we leave 1[)<e>’"; (y) for y € Xo undefined. If ©do (.T) € Dt1
then we interrupt the attack cycle, discard all associated follow-
ers and anchor, and cease all action for the agent.

Otherwise we enumerate x into Vég For all ' € X, we

define wgzll (x') = up.

3. We wait for a stage to > ¢; at which pg,(z) € D;,. At that
stage we end the current attack. Let & = 0 be the least such
that X, & V;r’:”tZ. Discard X+ (and so uy) for all k' < k. Start

m

a new attack with some y € Xk\VJefk o’

As above, we maintain functionals, and define them on numbers that are not
used by any construction.

3.2. Verification. These are similar to the previous verifications. First we
need to ensure that the construction can be carried out as described. As above we
observe that at the end of any cycle (set up or attack), all related computations are
undefined. We also prove that if X,,_; is defined at a stage s (for some agent d for
a construction (e,m)) then X,,_1 & V;r’m . To see this, by induction on k < m

m—

we observe that if s < t are stages at which at attack with some x € X} is started,
then 0%™(n) — o™ (n) = w*.

The proof that T'(D) is total is as above. Fixing (e, m) which is a correct
guess (I'(D) = ¢g&™ and (g&™,09™) is eventually w™-computable), and dropping
the superscripts (e,m), we argue that the (e,m) construction is successful. As
above we argue that U(D) = V. If V is not as required, we fix some dy such that
4,0;01 [D] = V. Then for any agent ¢ such that ¢y = dp, no attack with some = € X,
can succeed. This shows that ¥4 (D) = Vg,. If V4, is not as required then we fix
some d; such that gogll [D] = Vi,. Then for any agent ¢ with (co, ¢1) = (do, d1), no
attack with some z € X, can succeed. This shows that ¥4, g, (D) = Vg, 4,. And so
on... this process must end at some k < m, giving some Vg, q4,,.... 4, which shows
that deg(D) is not m-topped.






CHAPTER VII

Embeddings of the 1-3-1 lattice

One of the central and longstanding areas of classical computability theory con-
cerns the structure of the degrees of unsolvability, and particularly the computably
enumerable degrees. In the same way that studying symmetries in nature and so-
lutions to equations leads to group theory, studies of the computational content of
mathematics lead naturally to the structure of sets of integers under reducibilities.
Understanding these structures should lead to insights into relative computability.

Notable in these studies is the question of embeddability into the c.e. degrees.
We know that the c.e. degrees form an upper semilattice. Sacks [82] showed that
this structure is a dense partial ordering. Lachlan [59] and Yates [105] proved that
it is not a lattice, but some lattices could be embedded preserving meet and join. For
example, Lachlan and Yates showed that the diamond could be embedded. Their
constructions of minimal pairs mean that there are nontrivial c.e. problems whose
only common information is precisely the computable sets. The Lachlan-Lerman-
Thomason Theorem (see [91, IX.2]) established that any countable distributive
lattice could be embedded as a lattice into the computably enumerable degrees.
It is natural to wonder precisely which lattices can be embedded. We note that
this question is related to the longstanding question of a decision procedure for
the two quantifier theory of the c.e. degrees. Unfortunately, we do not know a full
characterisation of the finite lattices embeddable into the c.e. degrees. The most
up to date state of our knowledge can be found in Lerman-Lempp-Solomon [64].

We do know that there are nondistributive lattices that can be embedded. As
we mentioned in Chapter I, both the nonmodular 5-element lattice and the 1-3-1
modular nondistributive lattice can be embedded in the c.e. degrees (Lachlan [61],
fig.I1.1). The embedding of the 1-3-1 lattice was an amazing result, and introduced
the “continuous tracing” technique into computability theory. The first inkling of
quite how remarkable this technique is, was the proof of Lachlan and Soare [62],
who showed that it is not possible to embed 1-3-1 while making the top element
branching, i.e. the bottom of a diamond in the c.e. degrees (see fig. 1.2.) This was
the first non-embedding result in the c.e. degrees.

There is a hidden message in the Lachlan-Soare technique. The non-embedding
of Sg was proved by a Lachlan game, in which one more or less assumes that the
given embedding of the 1-3-1 lattice follows Lachlan’s construction. Then the min-
imal pair machinery for the top diamond is shown to interact fatally with this
methodology. This gives us the intuition that Lachlan’s technique is not only suf-
ficient but necessary for embedding the 1-3-1 lattice. This is in some sense the
essence of the main result of this monograph, Theorem 1.3.5, which we prove in
this chapter: the 1-3-1 lattice is embeddable in the c.e. degrees below a c.e. de-
gree d if and only if d is not totally < w®-c.a. This result shows that the class of
totally < w“-c.a. degrees is definable in the c.e. degrees.

133
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Recall that Downey and Shore [35] showed that the 1-3-1 lattice can be embed-
ded in the c.e. degrees below any nonlow; degree. Our embedding of the 1-3-1 below
any degree which is not totally < w®-c.a. is an elaboration on their construction.
In the introduction (in Section 1.3) we discussed the dynamics of this construction,
and explained why it aligns with not-totally < w®“-c.a. permitting. What we did
not do is justify why indeed these are the dynamics one gets when embedding the
1-3-1 lattice. This is done below (in Section 1.1) once we state the requirements
involved.

In the other direction, Downey [21] and Weinstein [103] showed that there are
c.e. degrees which do not bound a (weak) critical triple (see fig. 1.3); Walk [101]
showed that such degrees can be made array noncomputable. Toward proving the
other direction of Theorem 1.3.5, we cannot simply adapt their constructions to
an anti-permitting argument, as we know that there are totally < w“-c.a. degrees
which do bound critical triples, namely, all such degrees which are not totally w-
c.a. Thus we will need to find an elaboration on their constructions which can be
adapted to such a proof.

1. Embedding the 1-3-1 lattice

We prove the first direction: if d is not totally < w“-c.a. then the 1-3-1 lattice
is embeddable below d.

1.1. Lachlan’s construction. To prove this we use the construction of
Downey and Shore’s [35] which shows that the 1-3-1 lattice can be embedded be-
low any non-lowy degree. This is an elaboration on Lachlan’s original embedding of
the 1-3-1 lattice into the c.e. degrees. We briefly recall a version of the construction
given by Stob (unpublished notes), using Lerman’s pinball machine technique [65].
This is one of the few infinite-injury constructions which does not benefit much from the use of a
tree of strategies.

In this construction we enumerate three c.e. sets Ag, A; and As. To ensure
that their degrees form the middle section of an embedding of the 1-3-1 lattice
(with bottom 0) we need to ensure that they are noncomputable, any two form
a minimal pair (which also implies that they must be Turing incomparable), and
each is computable from the join of the other two. The requirements to meet are:

Pi: A, # @,
where (®.) is an enumeration of all partial computable functions; and for i # j
from {0,1,2},

NBI: 1f ©.(A;) and U (4;) are total and equal, then they are computable;

here (O, ¥, ) is an enumeration of all pairs of Turing functionals.

The global requirement that A, <t A; ® A when {7, j, k} = {0,1, 2} is met by
the mechanism of appointing traces. A requirement P! will appoint a follower z,
targeted for A;, and wait for it to be realised, which means ®.(z)|= 0; as usual,
when the follower is realised the requirement will want to enumerate it into A;.
Before x is realised, it is assigned a trace y > x, another number, which is targeted
for either A; or Ay. This is essentially the current A; @ Ag-use of computing A;(x).
The main rule is that we cannot enumerate x into A; before we enumerate y into
the set it is targeted for, A; or A;. Sometimes we will be able to enumerate y into
the required set, but not be yet able to enumerate x into A;; in this case, we will
appoint a new trace y’, again targeted for A; or A, but not necessarily to the same
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set for which y was targeted. Indeed it is switching between A; and Ay which is
the key idea which makes the construction work.

Say that currently (at some stage s) = has a trace y, targeted for A;. Another
global requirement is A; <r A; ® Ay. And so we need to repeat: the number y
receives a trace z > y of its own, targeted for either A; or Ag. Overall, the follower x
is accompanied by an entourage of traces y, z,..., each element of the sequence
being a trace for the number appearing before. At any stage, only numbers in a
final segment of the entourage may be enumerated into the sets for which they are
targeted. No two successive elements of the entourage are targeted for the same
set. At stage s, the last element w of the entourage is a number of size at least s,
and so does not yet require a trace. At the end of the stage, if w < s + 1 then we
will assign it a new, large trace. The construction will specify the set for which the
new trace will be targeted. For simplicity of expression, we abuse the term a little
by letting the word entourage refer to the entire sequence x,, z, . . ., including the
follower.

All numbers we use in the construction as potential elements of the three
sets Ag, Ay and A, are represented as balls which will move in a pinball ma-
chine (see Figure 1). The main components of the machine are gates and holes.
Some balls drop through holes to the main track of the machine. The balls move
downwards. Along their journey they encounter gates. A gate may allow a ball
to pass, or stops its movement. In the latter case, the ball is placed in a corral
associated with the gate. Balls in the corral may later be released and allowed to
resume their journey. When a ball arrives at the bottom of the machine we imagine
that it lands in one of the pockets associated with one of the sets A;, namely the
set the ball is targeted for. When a ball marked with the number z lands in the
pocket associated with A;, the number z is enumerated into the set A;.

Holes Hy, Hy, Ho, ... are associated with positive requirements P! (much like
strategies on a tree are assigned to requirements). As described above, the require-
ment appoints a follower x = ty. While waiting for the follower to be realised, an
entourage of traces t1,t2,t3,... is appended to x. Once the follower is realised,
the entourage tg,%1,... drops through the associated hole H, and starts moving
down through the machine. The entourage may be stopped by one of the gates G,,
for m < n, in which case it enters the corral C),. The last ball y = ¢, in the
entourage rolls out of the corral and waits at the gate G,,. While waiting, the
entourage is extended with more traces, all of which wait at the gate with y. At
some point the gate opens and y and its sequence of traces (the final segment of the
current entourage waiting at the gate) continue their journey down the machine.
This sequence of balls may be stopped at a lower gate G,y (so m’ < m). All of
the balls enter the corral C,,, and the last element z = ¢4 rolls out to the gate.
Again while waiting, new traces are added to the entourage beyond z. When the
gate opens, z and its traces continue their fall. Eventually some of these balls, in a
final segment of the entourage, pass all of the gates and land in their pockets (with
numbers enumerated into the sets they are targeted for). These balls are removed
from the entourage. Say the final segment starting with ¢; has just landed in the
pockets, and £ > 0. The ball ¢;4_; is now the last element of the entourage. It
has been waiting in some corral C,,. It now rolls out to the gate G,, and waits
for the gate to open. While it is waiting, new traces tj,tg+1,... are added to the
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Hole
H,
Corral C Gate G
Hole
Hy
Corral Cy Gate Gg
Pockets
Ap Ay A

FI1GURE 1. A pinball machine

entourage; they wait at the gate G,, together with t;_1. The process continues...
in general the structure is as described in the following lemma.

Lemma 1.1. Let x be a follower for some requirement P! associated with the
hole H,,. Suppose that x has already been dropped through its hole but has mot
yet been enumerated into A;, so all balls in x’s entourage are currently lying at
various corrals and gates below the hole. The entourage is partitioned into segments

I, <Ij,_ 1 <---<lIy<I* where each Iy lies in the corral Cy and I* waiting at
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some gate G,,. Some of the segments I, may be empty; indeed all segments Iy, for
k < n are empty. I* however is nonempty.

We need to address two issues:

(1) we need to describe when gates open and when balls are stopped at some
gate; and

(2) we need to explain why the follower will eventually be enumerated into
its set.

We first explain (1). The gates Go, G1, Ga,... are associated with negative
requirements. Let G, be a gate and suppose that it is associated with the require-
ment N2, The requirement is met by following Lachlan’s minimal pair strategy of
freezing a computation on one side or the other until it recovers on the other side.
Suppose that s is a stage and that ¢t < s was the previous stage at which the gate G,,
was open. Then G,, opens at stage s if the length of agreement between ©.(A4;)
and W.(A;) exceeds t. That is, if for all z < t, ©.(A;, z)|= V.(A;,z)] [s]. When
open, the gate GG, cannot allow both balls targeted for A; and balls targeted for A;
to drop below it. For this reason we need to ensure that if a final segment I* of
an entourage is waiting at the gate GG,, at the beginning of stage s then either no
ball in I* is targeted for A; or no ball in I* is targeted for A;. This is achieved
by appointing new traces correctly: say that the first ball z in I* rolled out to the
gate G, from the corral C,, at stage r < s. Suppose that z is targeted for A;.
Then the next trace w that we appoint for z will be targeted not for A; but for Ay.
And the next trace that we appoint for w will be targeted for A;; and so on, so no
ball waiting at the gate at stage s is targeted for A;. The segment I* is sometimes
called an (i, k)-stream. If z is targeted for A; then we build I* to be a (j, k)-stream.
Of course if z is targeted for Aj then we can build I* to be either a (k,i)-stream
or a (k,j)-stream.

The whole process can be thought of as re-targeting of traces. Say that the
segment [,, waiting in C,, is an (i, j)-stream. Each ball in that segment waits until
its trace, its successor in I, is enumerated into its set; we then appoint a new trace,
targeted for Ay.

This brings us to question (2) above. We need to show that progress is made
at every step. Let x be a follower. On the face of it, it would appear that because
we keep extending the entourage, it is possible that balls in x’s entourage move
down at infinitely many stages (but x itself is never enumerated). This is not so.
Consider as a first example the case of one gate: suppose that =z = ¢y and its
entourage I = (to,t1,...,ts) at stage r arrive at the corral Cy at that stage. The
last ball t; in I rolls out to the gate Gy. We keep appointing traces and extend
the entourage beyond t,, but when the gate opens, t; and all of these new balls fall
to the pockets and are removed from the entourage. Next, the ball ¢,_; rolls out
to the gate and the process resumes. We see that after ¢, + 1 many iterations, the
follower = = ¢y will be enumerated into the set it is targeted for, and the process
will end.

Now consider two gates Gy and G1. At some stage rg,  and its entourage
I = (to,...,ts) arrives to the corral Cy. The ball ¢, rolls out to the gate. While
waiting the entourage is extended to I* = (tg,tr+1,...,te4p). At some stage the
gate GG1 opens, this segment is allowed to proceed, but is placed in the corral Cy. As
discussed above, after p—¢+ 1 many times at which G opens, t, will be enumerated
into its set and the ball t,_; will roll out to the gate G;1. After £+ 1 many iterations
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of this longer process, the follower lands in Cj, and we are back in the first case.
This kind of nested analysis can be extended to any finite number of gates.

This argument can be coded succinctly using ordinals below w®. Say x is a
follower, and let I,,, < I,,_1 < --- < Iy < I* be a partition of its entourage as
in Lemma 1.1. Consider the ordinal w™|I,| + w™ 1] + -+ + OIo| + w™,
where I* lies at the gate G,. The analysis above shows that each time a gate
opens and part of x’s entourage moves, this ordinal decreases. The well-foundedness
of w* guarantees that parts of x’s entourage move only finitely many times. In the
next subsection we will see that this “ordinal analysis” corresponds to the kind of
permitting which is required to get the argument to work below a given c.e. degree.

We also remind the reader of Theorem 1[.5.2, part of which relies on the fact that for most
admissible ordinals o > w, the 1-3-1 lattice cannot be embedded (at least with an incomplete
top). The reason the argument fails is the instruction that the last ball of the entourage roll
out to the gate. Since entourages may keep growing, it is perfectly possible that some will have
order-type a limit ordinal. The only way to overcome this is if an a-c.e. degree can compute a
bijection between o and w. In that case the construction is essentially rearranged to resemble the

standard w-construction, with finite entourages at every stage.

The main ideas of this construction have been described, but we mention a
couple of aspects which we missed. In the analysis above we ignored the possibility
that the last segment of an entourage is waiting at a gate which will never open
again, because the hypothesis of the associated negative requirement fails. In this
case the follower will not be enumerated into its set. For this reason, a positive
requirement needs to appoint more followers and hope that one of them succeeds.
We need to ensure that not all the followers will get stuck in this way. A good way to
do this is to let each gate apprehend the entourage-segment of at most one follower.
This is made possible by a process of cancellation. Followers are assigned priorities
based on the time they were appointed. When a positive requirement receives
attention (for example when appointing a new follower or when one of its followers
receives attention), all followers for weaker requirements are cancelled. Thus the
priority ordering between followers respects the ordering between requirements.
When a follower receives attention (when its last entourage segment moves), all
weaker followers, even for the same requirement, are cancelled. As usual, since new
followers are appointed large, a follower x is stronger than a follower y if and only
if z < y. Suppose that the last segment of z’s entourage is waiting at a currently
closed gate GG, and that the segment of y’s entourage is currently moving down.
The gate can let y’s segment pass even though it is not currently open and even
though y’s segment may contain balls targeted for both sets A; and A; that the
gate cares about. The reason is the following. The fact that z’s segment is still
waiting at the gate when y’s segment is moving (and so when y receives attention)
shows that = is stronger than y; otherwise x would be cancelled at this stage. The
last stage r at which x received attention is no earlier than the last stage u at
which G,, was open. The computations currently protected by the gate have been
observed at stage u. At stage r, followers weaker than x are cancelled, and so y
was appointed later than stage u. It is therefore much too large to disturb any of
the computations that the gate is currently trying to protect, and it (or part of its
entourage) can pass without let or hindrance. Overall, this shows that if a positive
requirement is using the hole H,, then at most n + 1 many of its followers could
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be permanently stuck at some gate. One of its followers will therefore either never
get realised, or successfully enumerated into its set.

We remark that the necessity for appointing more than one follower could be
avoided if we put the construction on a tree of strategies. The tree now acts as
the track of the machine, with positive nodes acting as holes and others as gates.
A positive node on the true path guesses correctly which gates will open infinitely
often and so its follower cannot get permanently stuck. However, when we add
permitting in the next section we will need to let positive requirements appoint
many followers; even if they do not get stuck at gates, they can wait in vain for a
permission. For the permitting argument it seems that adding a tree of strategies
does not help simplify the construction.

1.2. Embedding the 1-3-1 lattice with non-total < w“-c.a. permitting.
Recall the argument above for why every follower x receives attention only finitely
many times. The ordinals used to show that the progress was well-founded corre-
spond to the amount of permissions required to get the follower to its pocket. First
note that for that argument, it is crucial that when part of z’s entourage lands in
the pockets, that the numbers are actually enumerated into their sets. We cannot
appoint a new trace for the last element of the entourage still waiting in a corral
without first enumerating its current trace. Further, before a gate opens again, we
need to ensure that the numbers that it allowed to pass at the last time it was open
are actually enumerated into the sets. Otherwise it may let balls potentially injur-
ing the other side pass, and then both sides may get injured before the next time
the gate opens. So the number of permissions we need to get until x is enumerated
is close to the number of times the follower actually receives attention. The fact
that x receiving attention corresponds to a decrease in the ordinal shows us that
a bound on the ordinal also bounds the number of permissions required. For the
hole H,,—1 the bound is w™.

This can be explained in detail looking at the simple cases. In the one-gate-
case, once the follower is realised, we know the size of its entourage that enters the
corral Cy, and so the number of times the gate Gy needs to open until the follower
arrives in its pocket. If the gate opens at some stage and releases one of the balls in
the entourage, then we need a permission before the next such stage. So the number
of permissions required is the same as the size of the entourage. This corresponds
to non-total w-c.a. permitting. (It is not array noncomputable permitting because
we need to wait until the follower is realised before we know the eventual size of
the entourage that enters Cp; we cannot tell it in advance.) When two gates are
involved, when the follower is realised we know how many times we need G; to
open. Each time it does open (and not before) we find out how many Go-openings,
and so how may permissions, we need until the next (Gi-opening. Even though we
don’t need a permission between G opening and the first time after that when G
opens, the size of the entourage in C; does tell us how many times we need to
update the bound on the number of permissions required. This is precisely non-
total w?-c.a. permitting. Weaker holes need to pass more and more gates, so overall
for permitting we need a function which is not w™-c.a for any n < w.

This analysis shows that to pass m gates, a single ball requires w™ permissions.
However, the situation becomes more complicated when more than one ball is
involved. As usual, a positive requirement will issue many followers, because some
of them may get stuck at gates that don’t open, and some of them will get stuck
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waiting for permissions. When one ball receives attention, weaker balls for the
same requirement are cancelled. In many other a-c.a. permitting constructions, if a
follower x cancels a follower y then x takes over the “permitting number” of y. That
is, from that point on, every y-permission should be also counted as an z-permission.
We cannot do this in this construction. The reason is that in order to increase x’s
permission number we first need to actually receive x permission (with the old
number). Otherwise the whole process of requiring permissions does not help us
show that the permitting degree bounds all the sets being constructed. However in
the 1-3-1 construction below a nonlows degree we cannot require permission during
every movement of a follower; this is only possible with high permitting. (This has
to do with the question of what happens when a gate opens but the corresponding
follower is waiting for permission to move.) In a nonlows or weaker construction
we can only require permissions when attempting to enumerate numbers into sets.
So whenever x receives attention but does not try to enumerate numbers into sets,
weaker followers y will be cancelled, but their permitting numbers cannot be taken
over by .

Our solution is to abandon the technique of taking over permitting numbers.
Essentially this means that if y is a follower with permitting number k, and y is
cancelled, then the next follower 3’ appointed gets the permitting number & as well
(technically this is not quite so, but for nonessential reasons). However the first
ordinal we compute for 3’ may be much larger than the ordinals we observed for y
while y was still alive. When arguing that the positive requirement is met we need
to threaten to give an w™-computable approximation (for some n) for a function
which doesn’t have one. During this approximation we are not allowed to increase
the ordinals. However we notice that y was cancelled because a stronger follower x
received attention. This means that z’s ordinal count went down. Multiplying x’s
ordinal by the bound w™ (on the left) and adding to y’s ordinals we see that a single
drop in ’s ordinal allows us to increase the y-ordinal to the y’-ordinal. Overall,
to pass m gates, we need w?™-permission. The details are given in the proof of
Lemma 1.5.

The permitted embedding cannot be done while preserving the least element.
Our embedding will have a bottom degree b > 0. This is similar to the non-
lows construction of Downey and Shore’s [35]. The reason is an aspect of the
construction that we glossed over in the previous section. Let G,, be a gate, work-
ing for requirement N7, and suppose that the requirement’s hypothesis holds:
©c(A4;) = U (Aj). We need to show how to compute this common function. We
look at a stage s at which the gate opens; we need to argue that if no balls targeted
for A; (say) drop from the gate at this stage, then the computation ¥.(A;)[s] up to
the length of agreement will survive until the next stage ¢ at which the gate opens.
This is not actually always true, the reason being that small balls targeted for A;
are currently waiting at a gate G,, below G, and may be enumerated between
stages s and t. We only certify the computation at stage s if we know that no
small balls targeted for A; that are at stage s waiting at gates below G,, will ever
be enumerated into A;. Note that some such balls may be stuck forever at a gate
below G,,. So G,, cannot wait for a stage at which there are no small balls targeted
for A; at any gate below. It only needs to ensure that such balls will not enter A;.
How can G,, tell? Well, there are only finitely many gates below G,,, and each can
have at most one segment as a permanent resident. The information which of the
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gates below has permanent residents can be given to G,, non-uniformly, and we
can wait for stages at which below G,,, only gates with permanent members are
occupied. Again, a tree of strategies is equivalent to non-uniformly giving this advice to Gp;
but as we will now see, this advice will be insufficient in the permitted construction.

In the permitted construction, many more balls can get stuck below G,,: those
which passed all the gates, are lying in their pockets, but are still waiting for
permission to be enumerated (the pockets act as a “permission bin”). Over all the
construction, there will be infinitely many such balls. We need some uniform way
to tell G,, which of those are dangerous. For this reason we introduce the new c.e.
set B. To ensure that deg (Ao @ B), deg (A1 @ B) and deg(As @ B) form the
middle of an embedding of the 1-3-1 lattice with bottom deg(B) we need to meet
the modified requirements:

Pi: A; # ®.(B); and
N&i: If ©.(A;, B) and U (A, B) are total and equal, then they are com-
putable from B.

The global requirements are now A4; <r A4; ® A, ® B.

When an entourage segment lands in the pockets, we attach a new trace to the
end of the entourage; this new trace is targeted for B. When permitted, the balls
in that segment, together with the new trace, are enumerated into their sets. A
gate G, now can look at the pockets and consulting B can tell which entourage
segments will be enumerated in the future into their sets, and so find whether a
computation it is examining may be injured by balls waiting in the pockets.

Note that a number targeted for B does not need a trace of its own. We may
be tempted to close off entourages with a trace targeted for B before they land in
the pockets. We cannot appoint such a trace while the ball is waiting to be realised:
since we are now diagonalising against B, a positive requirement will protect the B-
computation which realises the follower; it can certainly not plan to enumerate a
number into B before it sees the use of such a computation. Suppose that the
follower dropped through the hole, is moving down the machine, and its entourage
has a final segment [* waiting at a gate. When the gate will open it will want to
protect a computation on one side. However now both sides use B, so again, the
gate cannot allow the appointing of a small number targeted for B before it sees
the use of these computations. Thus only an entourage segment which passed all
the gates and is waiting in the pockets can appoint a trace targeted for B.

The reader may want to compare this construction with the permitted con-
struction of a critical triple below a non-totally w-c.a. degree in [25]. In that
construction the gates do not look at computations involving the “centre” B, and
so a B-trace can be appointed at the node working for the positive requirement,
once the B-computation realising the follower is discovered.

Toward the construction. Let d be a c.e. degree which is not totally < w“-c.a.
Let g € d be a function which is not w”-c.a. for any n < w. As in the argument
in Chapter V, since d is c.e., we may replace g by its modulus, and obtain an
approximation (gs» which is non-decreasing and such that changes in g(n) force
changes in g(m) for all m > n.

List both kinds of requirements in order-type w; associate the hole H,, with
the n't positive requirement P! and the gate G,, with the n'" negative require-
ment NI,
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As discussed, each positive requirement appoints followers. Each follower x for
a positive requirement will be assigned a permitting number a(xz). We say that
a follower = for the requirement P! is realised at stage s if @, 4(Bs,z)|= 0. An
uncancelled follower may, at a given stage, either still reside above its hole; occupy
some gate or corral; lie in a pocket; or already be enumerated into the set A;. We
say that a follower x is permitted at stage s if gs11(a(x)) # gs(a(z)). We say that
the requirement is satisfied at stage s if there is a follower x for P! which is still
realised and has already been enumerated into A;.

Also as discussed, followers are linearly ordered by priority. When a follower x
receives attention, all weaker followers are cancelled. When a follower is cancelled,
all of its entourage is cancelled with it. We allow cancellation of followers which
are already enumerated into the sets for which they are targeted. The point is that
if z is enumerated into A; but a stronger follower acts, then this action may cause an enumeration
into B which destroys the cancellation which made x realised. We then need to cancel x, and the
requirement to which x belonged will need to start again.

At each stage, a gate may be occupied by a final segment of some entourage.
We will ensure the following.

Lemma 1.2. Let G,, be a gate, associated with the requirement NI, At a stage s
the gate may be occupied by at most one final segment of an entourage. That
entourage segment does not contain both a ball targeted for A; and a ball targeted
for A;.

The associated corral may contain segments of more than one entourage. How-
ever, if the gate is occupied by the final segment of the entourage of some follower x,
then x is weaker than any other follower which has a segment of its entourage in
the corral.

We also ensure the following:

Lemma 1.3. Let x be a follower for a requirement associated with the hole H,,.
Suppose that at stage s, x is on the machine. Then x’s entourage at stage s is
increasing and is partitioned into intervals I, < I, 1 < --- < Iy < I* such that:

e For each k < m, Iy is in the corral Cy; and
e [* js nonempty, and either occupies a gate Gy for some k < m, or is lying
in the pockets. If I'* is at gate Gy then I, = & for alln < k.

FEvery ball in the entourage, except possibly for the last one, is targeted for one of
the sets Ay, Ay or As, with no two successive ball in the entourage targeted for the
same set. The last ball of the entourage is targeted for B if and only if I* lies in
the pockets.

Construction. At stage s a gate Gy, associated with the requirement N7,
opens if for all y < t, ©.(B, A;,y) = Vo(B, Aj,y)[s], where t is the previous stage
at which the gate opened, t = 0 if there was no such stage.

At stage s, a follower x requires attention if one of the following holds:

(1) « is still waiting above its hole, and is now realised;

(2) x is on the machine, and the final segment I* of its entourage (as in
Lemma 1.3) is waiting at a gate G,,, which is now open; or

(3) z is on the machine, the final segment I* of its entourage is waiting in the
pockets, and x is permitted at stage s.
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A positive requirement P! requires attention if either one of its followers requires
attention, or if it is not currently satisfied, and no follower for this requirement is
currently waiting above the hole.

Let P! be the strongest requirement which requires attention at stage s. We
cancel the followers for all weaker requirements. If no follower for P! requires
attention at this stage, then we appoint a new, large follower z for P!, and place it
over the hole. Define a(z) to be large.

Otherwise, let = be the strongest follower for P! which requires attention at
stage s. We cancel all weaker followers for P?.

Let I* be the final segment of z’s entourage given by Lemma 1.3; if  currently
lies above its hole let I* be all of a’s current entourage. In cases (1) and (2), the
segment I* drops to the highest gate below its current location which is now unoc-
cupied (this is measured after the cancellation of weaker followers). The segment I*
is put in the corresponding corral, and the last ball in I* rolls out to wait at the
gate.

However, if there are no unoccupied gates below I*’s current location, then
the balls in the segment I* are put into the pockets. A new, large trace, targeted
for B, is appended to this segment.

In case (3), all of the balls in I'* are enumerated into the sets for which they are
targeted; they are removed from 2’s entourage. If I* consisted of the entirety of x’s
entourage then x has just been enumerated and the requirement is now satisfied;
we can cancel all other followers for P!. Otherwise, the last ball in the remaining
entourage is waiting in some corral. That last ball now rolls out of the corral and
waits at the gate.

At the end of the stage, for any follower z which is still uncancelled, if the last
ball w in z’s entourage is smaller than s 4+ 1, and is not targeted for B, then we
appoint a new, large trace and append it to the end of z’s entourage. The location
on the machine of the new trace is the same as the location of the previously last
ball w. Say w is targeted for a set A;. The new trace is targeted for one of the two
sets Aj or Ay (where {3, 5, k} = {0,1,2}) so that Lemma 1.2 still holds.

Verification. Before we embark on the verification, we need to ensure that
the construction can actually be carried out as described. We need to show that
Lemmas 1.2 and 1.3 hold at every stage. These two lemmas are proved together
by induction on the stage. Most parts are immediate. We verify two parts of
Lemma 1.2:

(1) If z and y are distinct followers, and at stage s, part of z’s entourage lies
in the corral C,, and part of y’s entourage waits at the gate G,,, then y is
weaker than z; and

(2) If a ball z rolls out to a gate G,, at stage s, then at that time, the gate is
unoccupied.

For (1), consider the stage r < s at which the segment of y’s entourage which
occupies the gate GG,, at the beginning of stage s arrived at the gate. Between
stages r and s the gate is occupied so no new entourage segments are added to
the gate or corral. Hence z’s entourage segment already lay in the corral at the
beginning of stage r. Since x was not cancelled at stage r, it must be stronger
than y.
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For (2), let x be the follower of whose entourage z is a member. The follower
receives attention at stage s. If at that stage the final segment of z’s entourage
arrives at the corral C,,, then by the instructions, G,, is empty when that segment
moves. Otherwise, balls in a final segment of x’s entourage are enumerated into
their sets at stage s. The new final segment (of which z is the last element) has
been waiting in the corral C), at the beginning of the stage. Suppose that G,, was
occupied at the beginning of the stage. Then we know it was occupied by the final
segment of the entourage of some other follower y. By (1), x is stronger than y. And
so all the balls in y’s entourage are cancelled at stage s (as x receives attention),
and the gate becomes unoccupied.

Let « be a follower which at stage s has already been issued from the
hole H,, but is not yet cancelled or enumerated into the set it is targeted for.
Let Ly s(x) < Im—1s(z) < -+ < Ips(z) < IF(z) be the decomposition of z’s
entourage at that stage given by Lemma 1.3. We define an ordinal S;(z). Let

Bs(x) = W™ - 2|l s(z)| + - + wh - 2|1 s(2)] + WY - 21p,s(x)].

If I*(x) resides at gate Gy, at stage s then we let Bs(z) = By(x) + w*. If I} (z)
resides in the pockets then we let Ss(z) = Bs(x).
Considering various cases, we observe:

Lemma 1.4. Suppose that x is on the machine at stage s and is not cancelled at
stage s, nor is it enumerated into its set a stage s. Then Bsi1(x) < Bs(x); if x
receives attention at stage s then Bsi1(x) < Bs(x).

It follows that every follower receives attention only finitely many times.

Lemma 1.5. Every positive requirement Pei recetves attention finitely many times,
and is met.

PROOF. Suppose that the requirement P/ is associated with the hole H,, 1.

To begin, we note that if x is a follower for P? which is realised at some
stage r and is still not cancelled at a stage s > r then ®.(B,z)|= 0[s] by the
same computation which was present at stage r. This is standard: suppose that a
number b < ¢, s(Bs, z) enters B at stage s. The number b is the last element of an
entourage of some follower y. If y is stronger than x then z is cancelled at stage s.
Otherwise, the trace b is chosen after stage r, and so is greater than ¢, (B, z),
which by induction equals ¢, s(Bs, ).

By induction, all positive requirements stronger than P! eventually cease all
action; in particular, they stop cancelling followers for P?. Let r* be the last stage
at which a requirement stronger than P! receives attention.

If some follower for P! enters A; after stage r* then the lemma holds. This is
also the case if some follower x for P! is never cancelled but never realised. We will
show that one of these two cases must hold. Suppose otherwise, for a contradiction.

We will give an w?™-computable approximation for g.

Suppose that x is a follower for P¢ which is never cancelled. By assumption, it is
realised at some stage. By Lemma 1.4 the follower receives attention finitely many
times. We assumed that = is not enumerated into A;. This means that the final
configuration for x (given by Lemma 1.3) contains an ever-increasing final segment
I'*(x) which is either a permanent resident of some gate G,,, or a permanent resident
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of the pockets. In the first case, we say that x’s entourage is stuck at the gate G,,;
in the second case, that it is stuck in the pockets.

There are only finitely many followers for P! whose entourage gets stuck at
some gate. Indeed there are at most m many. This is because each gets stuck at
some gate G, for some n < m, and each gate contains at most one segment as a
permanent resident.

We let 7** > r* be the last stage at which a follower, whose entourage is
eventually stuck at some gate, receives attention; r** = r* if there is no such
stage. Every follower which receives attention after stage r** was also appointed
after stage r**. Every such follower is either eventually cancelled, or eventually its
entourage is stuck in the pockets, awaiting permission which is never given.

Infinitely many followers are appointed for P, and of those, infinitely many
are never cancelled. The argument is again standard: for any stage ¢ consider
the strongest follower x which requires attention after stage ¢t. Then x is never
cancelled, and after the last stage at which x receives attention, a new follower is

appointed, and eventually receives attention as it is eventually realised.

Let p > r**. To approximate g(p) we let, for s > p, X (p) be the set of
followers y > r** for P! which are uncancelled at stage s such that a(y) < p.
This set is naturally ordered (in an increasing fashion). If s < ¢ then X;(p) is an
initial segment of X(p); some followers in X, (p) may get cancelled; new permitting
numbers are always assigned to be large.

Let S(p) be the set of stages s > r** p such that:

e at stage s there is some follower > r** for P! such that a(x) > p; and
o if © = x4(p) is the least such follower, then the final segment I*(z) of x’s
entourage is waiting in the pockets at stage s.

The set S(p) is infinite, indeed it is cofinite. The sets X (p) stabilise to
some X (p); let s be the last stage at which any follower in X (p) receives attention.
The next follower x, appointed at stage s + 1, is never cancelled and a(x) > p, so
x = z¢(p) for all t > s; a’s entourage is eventually stuck in the pockets.

Let s € S(p); let y1.s,92,6,---,Yu(s),s be the increasing enumeration of X, (p).
We let

Z ﬂs(y) = Bs(yl,s) + 63(92,3) +oeoeet 53(3/4(5),5)
yeXs(p)

and

V@) =™ [ > Bay) | + Belas(p)).
yeXs(p)
Since Bs(x) < w™ for all z, we see that v4(p) < w?™.

Let s € S(p), and let ¢t be the next stage in S(p) after stage s. We show that
7t(p) < 7s(p), and that if g,(p) # gs(p) then v:(p) < 7s(p)-

Suppose that z;(p) # zs(p). Then the follower x4(p) must be cancelled
by stage t. This means that one of the followers in X (p) received attention
between stages s and t; let z be the least such follower. Then z is the last
(greatest) element of X;(p). By Lemma 1.4, 8;(z) < Bs(z). This shows that

2yex, () Be(¥) < 2yex, () Bs(y). Even though B¢(2:(p)) may be much larger than
Bs(xs(p)), it is smaller than w™, and this shows that v(p) < vs(p).
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So we assume that z(p) = x4(p); let = z5(p). For all y € X (p) = X;(p),
Bi(y) < Bs(y), and Bi(z) < Bs(x), so 1(p) < 7s(p). Suppose that g;(p) # gs(p).
Since z is not cancelled between stages s and ¢ and a(z) > p, it follows that x is
permitted at some stage between s and ¢t. At the first such stage, z’s final entourage
segment is still waiting in the pockets, and so = receives attention between stages s
and t. Lemma 1.4 guarantees that 8;(z) < Bs(x), and this implies that v;(p) < vs(p)
as required. ([

Lemma 1.6. All sets Ag, Ay, A2 and B are computable from d.

PROOF. To determine if a number z is an element of one of these sets or not,
we first go to stage z. We then see if z has already been chosen as a follower or a
trace; and if so, to which set it is targeted. If not, then z does not enter any set,
since new followers and traces are chosen to be large.

Suppose that z is an element of an entourage of a follower x (possibly z = z)
at some stage ¢t < z. The number a(z) is already determined by stage z. With
oracle g we can find a stage after which the follower x is never permitted. The
function g can thus calculate a stage after which z cannot enter any set. O

The verification concludes with the following two lemmas, which are standard,
but are added for completeness.

Lemma 1.7. If {i,j,k} = {0,1,2} then A; <r A; ® A, ® B.

PROOF. We ensured that if y is targeted for A; then at all stages s > y at
which y is on the machine, y has a trace z targeted to one of the sets A;, A or B,
and y does not enter A; unless the trace z enters the set it is targeted for. Further,
y is either cancelled or eventually receives a trace which is never cancelled; this is
due to Lemma 1.4. (I

Lemma 1.8. Every negative requirement N7 is met.

PRrROOF. Suppose that O.(4;,B) = ¥ .(A;, B) are total. Let G,, be the gate

associated with the requirement NZJ.
By Lemma 1.5, let 7* be the last stage at which either:

e Any positive requirement which is a associated with a hole H,, for
some m < n receives attention; or

e Any follower whose entourage is eventually stuck at some gate G,, for
some m < n receives attention.

Let M be the set of m < n such that the gate G, does not have a permanent
resident. We assumed that the hypothesis of N2¥ holds; this implies that G, opens
infinitely often, and so n € M.

We let S* be the set of stages s > r* at the beginning of which:

e For all m € M, the gate GG, is unoccupied;
o If I*(x) is the final segment of an entourage of a follower x which lies in
the pockets, then z will not receive attention at stage s or after stage s.

The set S* is computable from B; this is because entourage segments in the
pockets end with traces targeted for B. We note that if s € S* and x is a follower,
part of whose entourage resides anywhere below the gate G,,, then x does not receive
attention after stage s; the last segment of z’s entourage is either permanently at
a gate or in the pockets.



VII.1. EMBEDDING THE 1-3-1 LATTICE 147

The set S* is infinite. Let ¢ be a large stage. As usual, let & be the strongest
follower which ever receives attention after stage t; say z last receives attention at
stage s — 1 > t. All balls on the machine at the beginning of stage s will never
move again; if a gate G,,, is occupied at the beginning of stage s then the residents
of G,, at stage s are permanent. Hence s € S*.

Let p < w. We let s(p) be the least stage s € S* such that s > p, G,, was
open at some stage in the interval (p,s), and O.(A;, B,p)l= Y.(A;,B,p)| [s].
Such a stage exists because we assume that the hypothesis of N2/ holds.
Let a = O.(A;, B,p)[s(p)]. We claim that a = O.(A;,B,p). To show this
we prove by induction that for all s > s(p), either ©.(4;,B,p)| [s] = a or
(A, B,p)l [s] = a.

Let s > s(p) and suppose that the claim is already established for all stages in
the interval [s(p), s). Let  be the strongest follower which receives attention at any
stage in the interval [s(p), s) (if no follower receives attention then the computations
which were observed at stage s(p) were not destroyed by stage s).

Since s(p) € S*, no part of x’s entourage lies below G,, at stage s(p). Suppose
that no part of 2’s entourage crosses the gate G,, at any stage in the interval [s(p), s).
In this case let t < s be the last stage before stage s at which x received attention.
By induction either ©.(A;, B,p)| [t] = a or ¥.(A4;, B,p)| [t] = a; without loss of
generality, assume the former. No numbers are enumerated into sets during stage t.
If a number from some follower y’s entourage is enumerated into any set between
stages t and s, then y is weaker than x, and so was appointed after stage ¢, and so
is greater than the use 6. ;(p). Thus the computation ©.(A;, B,p)[t] is preserved
until stage s.

Suppose then that parts of z’s entourage do cross the gate GG,, at some stages
in the interval [s(p), s). Let ¢ be the last stage in that interval at which any part
of x’s entourage crosses the gate. We note that whenever = receives attention, all
other followers that were appointed after stage s(p) are cancelled. In particular, G,
becomes unoccupied. We conclude that no segments of x’s entourage ever pass by
the gate without stopping first. Hence, at stage ¢, the gate opens, and part of z’s
entourage that was waiting at the gate is allowed to proceed downwards.

This implies two things: the first, that ©.(4;, B,p)| [{] = ¥.(A;, B,p)| [t]; by
induction, the common value is a. The second is that the segment of x’s entourage
which is released from the gate at stage t does not contain both balls targeted for A;
and balls targeted for A;. Without loss of generality, suppose it does not contain
any balls targeted for A;. We claim that the computation W.(A;, B,p)[t] is not
destroyed by stage s.

For suppose that some number u below the use 9. ,(p) of that computation is
enumerated into A; or B at some stage in the interval [¢, s). Let y be the follower to
whose entourage u belongs. By the choice of x, either y = x or y is weaker than .
If y is weaker than = then y is appointed after stage ¢, and so y, and all of the balls
in its entourage, are greater than the use 9. (p). But y = x is impossible too: u
must be appointed before stage t, and so is already an element of x’s entourage at
stage t. But it does not cross the gate at stage ¢: no balls targeted for either A;
or B proceed from the gate at stage t. All other balls in x’s entourage at stage t
remain above the gate until stage s. O

1.3. The 1-4-1 lattice. The embedding technique used above actually shows:
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THEOREM 1.9. If d is a totally < w“-c.a. c.e. degree then for all n = 3, the
1-n-1 lattice can be embedding into the c.e. degrees below d.

ag Ap—1

b

FIGURE 2. The 1-n-1 lattice

Take for example the case n = 4. We enumerate sets Ay, A1, Ay and Az, and a
bottom set B. The requirements are as above, except for the pairwise joins: if 4, j, k
are distinct indices from {0, 1,2, 3} then A; <t A; ® A @ B. The rule for traces
now is that if {4, j, k,1} = {0,1,2,3} then every number targeted for A; needs to
have two traces, for two of the sets A;, A, and A;.

It would seem that an entourage in this construction will be a binary branching
tree, but we can actually make do with linear entourages as in the construction
above; the two balls following a ball in a (linear) sequence of balls are considered
its traces. That is, if the follower is ¢y and the entourage is tg,t1,%2,...,t, then
for all ¢ < £ — 2, t;41 and t;,o are the traces for t;. For the tracing to work we
need to require that for any such i, no two of the three balls ¢;, t;11 and ¢;,5 are
targeted for the same set. Given two previous balls ¢;_5 and t;_1, this still leaves
two options for choosing a target for the next ball ¢;, and this allows us to re-target
followers at gates. A sequence of balls waiting at a gate working for N/ will be an
(i, k,1)-stream or a (j, k,1)-stream. The rest of the construction is identical.

In fact, we can string together these constructions to obtain an embedding of the
1-w-1 lattice; the n*® follower appointed (across all requirements) and its entourage
will only concern itself with the first » middle sets; reductions A; <t A; ® A, ® B
will be non-uniform.
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2. Non-embedding critical triples

As discussed in the introduction, a critical triple in an upper semi-lattice con-
sists of three incomparable elements ag,a; and b such that a; < b v a;_; for
1 = 0,1, and such that any e lying below both ag and a; lies below b as well. That
is, ag A a; < b, except that we don’t actually require the meet ag A a; to exist.
The element b is called the centre of the triple.

In [25] the authors show that a c.e. degree bounds a critical triple (in the c.e.
Turing degrees) if and only if it is not totally w-c.a. The proof shows that the
same holds for weak critical triples. The proof that no totally w-c.a. c.e. degree
bounds a weak critical triple is an “anti-permitting” elaboration on an argument
from [13] that constructs a c.e. degree which bounds no weak critical triple. That
argument in turn is a simplification of an argument from [103], which constructs a
c.e. degree that bounds no weak critical triple. Toward the proof of the second half
of Theorem 1.3.5, we now give an anti-permitting elaboration on Downey’s original
argument in [21]. It is somewhat more complicated than Weinstein’s weak critical
triple argument, and gives a weaker result. But it will be the argument that we
need to generalise in order to prove our theorem. To avoid an extra step of simple
permitting we work with array computable degrees rather than totally w-c.a. That
is, in this section we prove:

e no array computable c.e. degree bounds a critical triple in the c.e. degrees.

2.1. Layering. The fundamental notion from [21] is that of protecting com-
putations by layers. In our setting, let D be a c.e. set whose Turing degree is array
computable; and let Ag, A1, B <t D be sets whose degrees potentially form a crit-
ical triple. To show that they in fact do not form a critical triple we will build a
c.e. set QQ <t Ag, Ay such that Q €t B; or we may fail to do so, but in that case
we will show that Ay is computable from B. We fix functionals A, ®3 and ®; such
that A(D) = (B, Ay, A1), and such that ®;(B, A;_;) = A; for i =0, 1.

The general idea of the construction is as follows. We define an auxiliary
function A(D), and as in the anti-permitting arguments in the previous chapters,
non-uniformly we know an id-computable approximation for A(D). We enumerate
the set @, together with reductions I'; of Q to A;. For each d < w, to ensure that
U4(B) # Q we appoint a follower z, and after it is realised (V4(B,x)|= 0) we hope
for double permission — changes in both Ay and A; below the uses of reducing
Q(z) to these sets — so that we can enumerate z into (). The natural two questions
are: (a) why would we get double permission? (b) if we do, how do we protect the
realisation of the follower — i.e., how do we ensure that indeed ¥4(B,x) = 07

The idea is to have a backup strategy. We build a functional Z4; if the d*"
requirement fails, that is, if U4(B) = @, then we will ensure that Z4(B) = Ap.
Suppose that x is a follower. When we see that x is realised then we set up
a computation of Ag [, from B, with use at least i4(B,xz). If later we attack
with z and then x becomes unrealised, then we will be able to cancel x, because
any incorrect computation of Ay |, from B can be discarded as well. This solves
the problem (b) above. However, this process introduces two analogous problems
(assuming that indeed ¥U4(B) = Q): (b’) how do we protect the correctness of a
computation Z4(B) = Ag [ (when z is not cancelled); and (a’) how to ensure that
infinitely many followers are not cancelled so that Z4(B) is total?
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This is where anti-permitting comes in. We associate a follower x with an
anchor n, an input for A(D). As long as we keep A(D) total, having guessed the
correct approximation, we know there will be no more than n many changes to
D 1s(ny. If we can arrange (n) to be large enough, beyond A(u), then we can
ensure that there are at most n many changes to A4; [, or B |, (recall that A is the
functional computing Ag, A; and B from D).

A single layer above x is the length u > x required to ensure that a change
in one of the sets Ay or A; below = necessitates a change in at least one other set
among Ay, A; and B below u. Formally we define

2 = max{po(B, A1, ), 1(B, Ag, 2)};

see fig. 3. We then let
2D = (z(M)M)

(see fig. 4).
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FIGURE 4. Three layers.

When we set up z, we define the use of reducing Q(x) to the sets A; to be ()
and set §(n) = A\(z(™). When z is realised, we set the use £4(z) of reducing Ag |,
to B to be max{z(™ 14(2)}. We consider what the next change could be. Assuming
that = remains realised, we are concerned about A;-changes. The key, again, is that
the number (™ = (z(»~D)(1) is chosen so that a change in some A; below z(®~1)
forces a change in either B or A;_; below (™. So now there can be two kinds of
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Aj-changes. If one A; changes below z(®~1 then (again assuming that x remains
realised, so B does not change), there must be a change in A;_; below (™. But
(") = ~;(x) = v;_;(x), the uses of reducing Q(z) to A; and A;_;; so in this case
we get the double change we wished for, and we can attack with x: enumerate it
into Q, and hopefully win the d'"" requirement W4(B) # Q. Otherwise, the A;-
change that concerns us happens below z(™ but above z("~1). We say that the
nt layer is peeled. Since 6(n) = A\(z(™), the A;-change allows us to redefine A(n)
and extract one D [5,)-change from our opponent. And the opponent’s capital is
bounded: at most n changes are possible. The nt" layer is gone, but we now repeat
the argument with the (n — 1)%* layer instead: a change below z("=2) leads to an
attack; a change below (1) but not below z("~2) means that the next layer is
peeled, and another change in A(D,n) is paid by the opponent. Since we have set
up sufficiently many layers, if an attack never occurs, the opponent cannot peel all
of the layers, which in particular means that no changes to Ay |, are possible —
ensuring the correctness of the reduction Z4(B) on x.

Finally, the anchor n is also used to solve problem (a’): if we can ensure that
each time that we cancel z, D changes below §(n), then we can cancel x and
appoint a new follower z’, but keep the same anchor n. For each anchor n, at
most n followers can be cancelled, and so one will be permanent. There are some
delicate details involved, though, and we discuss them below.

2.2. Four procedures. Let us give more details and fix notation. For every
e < w we will perform an e construction. All constructions together define a
functional A, and ensure that A(D) is total. Let {(f¢, 0°) be an effective enumeration
of all id-c.a. functions (with tidy (id +1)-computable approximations). The !
construction guesses that A(D) = f¢. The e'® construction enumerates a c.e. set
Q°. For each d, an agent d for the e'® construction tries to ensure that U4(B) # Q°.
The construction builds two functionals I'§ and I'§, with the aim of ensuring that
T'¢(A;) = Q°. The d" agent also enumerates a functional Z.

We adopt the conventions of Notation VI.1.1; for example, we write fsys(ac)l
to indicate that Z(B,z)] [s], and when we define the computation we just as-
sign a value to the use; we know that we always define Z9(B,z) = Ao |+ [s],
I¢(A;,x) = Q°(x) [s], and Ag(Ds,n) = s.

We go one step further and omit mentioning the stage number during the
construction; so we just write £5(z)| and understand that this is to be evaluated
at the present, i.e., at the stage currently under consideration. To further simplify
the notation we omit the superscript e.

As discussed above, we are given functionals A and ®; such that for ¢ = 0,1,
®,(B,A1_;) = A;, and A(D) = (B, Ag, A1). At a given stage of the construction we
may refer to uses such as A(u) for some number v. When we do this we understand
that we are speeding up the enumerations of the sets and functionals which are given
to us so that we see a convergence of the relevant computation (in the example,
A(D,u)). Applying this to the uses ¢;, this allows us to refer to numbers such as
(") defined above.

At each stage, agent d will appoint a new anchor n (using the next unused
number). Each anchor will start a process which will be independent of all other
processes for all agents and all constructions. The process cycles between four
procedures (or phases):
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Set-up: Appointing a follower z; defining a parameter u = ("), and defin-
ing d(n) = A(u); waiting for A(D,n) = f(n). Once this is observed,
defining v;(x) = u.

Realisation: Waiting for U4(B, z)|. When convergence is obtained, defin-
ing &4(e) = max{u, vu(x)).

Maintenance: Waiting for double permission: both «;(z)?. (While waiting,
demanding payment for layers being peeled.)

Attack: When double permission is received, enumerating x into ). Then,
monitoring the correctness of the realising computation U4(B, x).

To understand the construction we need to explain under what circumstances we
move from one procedure to another, and how we react to changes when we see
them. We discuss some of the principles involved.

Cancelling o follower. We cancel a follower x if both §(n)t and £4(z)1, except
during the set-up procedure. We need §(n)1 so that we will be free to redefine
§(n) = M((2")(™) for a new follower 2’ which will be appointed once z is cancelled.
We need £;(z)1 as while Z4(x)| we need to maintain the correctness of this compu-
tation. We are not allowed to cancel the follower during the set-up phase, because
during set-up we are still waiting for our opponent to make a payment; each can-
cellation will be charged against a change in f¢(n), and during set-up we have not
seen this change yet.

Why would we need to cancel 2?7 While we are in set-up, both ~;(x) are
undefined, and so any change to any of the sets A; or B below u will cause us
to simply recalculate a new value for u = (™) and restart the set-up procedure;
note that this change forces §(n)1. However once we exit set-up, a change in B
below u might cause many layers to disappear but it is still possible that one of
vi(z) remains defined; so we cannot return to a fresh set-up for . And certainly,
once we have attacked, if realisation is destroyed (¥ 4(B,z)?1) then we need to get
rid of x, as we cannot extract it from Q.

The value of u. As discussed above, during the set-up phase, any changes to
sets A; or B may increase the value of z(™); we need to keep track of these changes
and update the value of u. Once we leave set-up we cannot update the value of u
anymore; peeling the layers one by one would result in increases to (™, but at
least one of v;(z) is still defined, so we cannot increase this use to be the new z(™).
Once we leave set-up, the value of u is fixed (until the follower x is cancelled).

Actually, one could ask why we ever need to give up on any layer. When the
last layer is peeled — say Aq [, changes but not A; |, — why shouldn’t we just
redefine yo(x) to be the new (™ and leave v;(x) = u? And later if A; |,, changes
we could update 7, () as well. However the change causes z(™ > £;(x). A change
now in A; below z(®~1) would cause a change in B (rather than Ag) below the
new z(™ but not below &;(z); we cannot cancel z, so we are peeling another layer
even though we tried to resurrect the last layer. In other words, there is no way to
actually revive the last layer: one change means it is gone.

The value of §(n). To keep A(D) total, as usual, we need to ensure that §(n)]
at every stage (even if the guess A(D) = f¢ is wrong), and we need to ensure that
the value of this use is bounded. When exiting set-up we have §(n) = A\(u); when we
see that x is realised we will likely have 14(x) > u so will not have §(n) = A(&4(z)).
This means that during maintenance it is quite possible that a B-change causes the
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realising computation ¥4(B,z) to disappear, but D does not change below §(n).
In this case we need to go back to the realisation procedure and cannot cancel x.

However, once we attack, it is important that d(n) = A(€4(z)); the reason is
that if B [¢, ;) changes we must be able to cancel z, as it is already enumerated
into Q. However the double change in A; I, that enabled that very attack caused
d(n)T, and this allows us to redefine §(n) to be at least A({4(x)) as required.

Further, during maintenance, if we see one layer peeled the we must update
d(n) to be A(&q(z)). The reason is that while waiting for the opponent to pay for
this peeling we may see that U4(B,z)t. We would then like to cancel z: if we do
not do so, while waiting we may see more layers unravel, so we would like to attack,
but obviously cannot do so if = is no longer realised.

2.3. Construction. We detail how to react to changes during each procedure
for an anchor n for an agent d (for construction e). Recall that during the con-
struction, at each stage, every agent for every construction appoints a new anchor n
and starts cycling through the procedures for n. The following description of these
procedures therefore describes the entire construction.

SET-UP.
1. Appoint a new follower z. Define §(n) = A\(z(™). Wait for
A(D,n) = f4(n).
e While waiting, if D changes below d(n), we redefine §(n)
using the current value of (™).
2. Once we see that A(D,n) = f¢(n), we define u = (™ and
vi(z) = u, and move to realisation.
REALISATION.
1. Wait for Uy(B,x)|= 0.
o If, while waiting, we see that D changes below §(n), then
we cancel x and return to set-up.
2. Once we see that Uy(B, x)|= 0, we define £;(z) = max{u, ¥q(z)},
and move to maintenance.
MAINTENANCE.

We wait for a change in D below d(n) or in B below £4(z). When
we see such a change we react according to the first case which
applies:
(a) Cancellation: If both §(n)1 and &4(x)1 then we cancel x
and return to set-up.
(b) Realisation: If £4(x)t (but §(n)]), we return to the realisa-
tion phase.
(c) Attack: If both ~;(x)1 (but &4(z)|) then we move to the
attack phase.
(d) Layer peeled: If only one 7;(x)] then we redefine §(n) = A(&4(x))
and wait for A(D,n) = f¢(n).
e While waiting, if one of the cases (a), (c) or (e) ap-
plies, we react accordingly. (b) cannot happen anymore.
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ATTACK.

2.4.

Lemma
There is

When we see the required agreement we redefine v;(x) = u,
d(n) = A(u), and stay at the maintenance phase.

(e) Trivial change: If only 6(n)? then we redefine 6(n) = A(&4(x))
and stay at the maintenance phase.

1. We enumerate x into Q). We define d(n) = A(&4(z)).

2. We wait for £;(x)t. When this is observed, we cancel x and
return to set-up.
e While waiting, if we see that §(n)1, we redefine 6(n) = A(&4(z)),
and keep waiting.

Verification.

2.1. Let e be a construction, d an agent for e, and n an anchor for d.
a follower which is appointed for n and is never cancelled.

PROOF. Let s¢ be a stage after which f¢(n) does not change. Suppose that at
some stage s; > sg a follower x is appointed for n. Then the set-up phase is never
exited, and so z is never cancelled. ([l

Lemma

2.2. A(D) is total.

PROOF. Let n < w be an anchor for some agent d (for construction e). We
note that d(n) is never left undefined at the end of a stage, so we just need to show
that the value of §(n) is bounded (over all stages).

By Lemma 2.1, let x be the last follower appointed for n. There are several
possibilities for where we can end up with x.

(1)

(2)

It is possible to get stuck forever waiting for realisation. In this case, we
know that d(n) can never get undefined after starting the realisation run,
as that would cancel z.

An attack with x is performed. We would never end this attack. The
value &4(z) is constant during the attack. During the attack we let
d(n) = A(&q(x)). Since A(D) is total, the value A(v) stabilizes for all v.
It is possible to be left in the set-up cycle, never getting a correct f€ guess.
The value of (™ may change a number of times, but since ®,;(B, A1)
are both total, it eventually stabilises. We always define §(n) = A(z(™),
and so again since A(D) is total, this value is eventually constant.

After we enter the maintenance phase, D [5(,) never changes. In this case
obviously d(n) is constant after we enter maintenance.

We enter maintenance with z, and at some stage s; after that we see a
D 15(n)-change. We then define d(n) = A(€4(x)). After stage s; there can-
not be a change in B [¢, () — such a change would cause us to cancel z. We
will therefore remain at maintenance and always define §(n) = A(£4(x));
again, this reaches a limit. (Il

We fix some e such that A(D) = f¢, and continue with omitting the super-

script e.

Lemma

2.3. Q is computable from both Ay and A;.
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PROOF. The construction ensures that a follower x never enters () unless both
T'o(Ap,x)t and T'1(Ay,2)T. We always define I';(A;, ) to agree with Q(z); so we
just need to show that v;(x)], or x is cancelled, or is enumerated into Q. Suppose
that x is a follower (for some anchor n for some agent d) which is never cancelled
and is never enumerated into Q. We show that ~;(z) is defined at infinitely many
stages, and that the value is bounded. (As usual we assume that if = is cancelled,
or never chosen as a follower, or is enumerated into @), then we eventually define
both computations I';(A;, x) with use 0.)

Since the guess A(D) = f€ is correct, we successfully exit the set-up phase
for x. After set-up, the parameter u is fixed, and 7;(x), when defined, is always
defined to equal u, and is thus bounded. The only time after set-up at which ~;(z)
is undefined is when a layer is peeled, and we wait for agreement between A(n) and
f€(n); such agreement will eventually be found, and then ~;(z) will be redefined.
Since whenever 7;(z)1 we also get d(n)?, any other context at which 7;(z)1 causes x
to be cancelled (or attacked with). O

If @ €+ B then we are done. Otherwise, we fix some d such that ¥4(B) = Q; we
will show that Z4(B) computes Ay successfully. We made sure that if a follower x
for agent d is ever cancelled, then £4(x)1 when we do so. The agent d appoints a
new anchor at every stage; by Lemma 2.1, for each one there is a follower which is
never cancelled. So it suffices to show that if = is a follower for agent d which is
never cancelled, then eventually a permanent computation Z4(B, z) is defined, and
this computation correctly computes Ag |,. Fix a never-cancelled follower z for an
anchor n for agent d.

Since e’s guess that A(D) = f¢ is correct, we exit the set-up phase with x.
Since U4(B) = @, every time we enter the realisation phase with z we will also
exit it. Further, the use 1¥4(z) reaches a limit, which implies that the use &4(x)
reaches a limit; whence we eventually define a permanent computation Z4(B, ).
We need to verify its correctness. We note that since x is never cancelled, we do not
enter the attack phase with . And so after the permanent computation Z4(B, x)
is defined, we will forever be in maintenance with x, potentially observing layers
being peeled. Again, since e is correct, after each peeling we will observe agreement
between A(D,n) and f¢(n).

Let s* be the stage at which the permanent computation Z4(B,z) is de-
fined. We need to show that Ay [,= Ag s+ 5. This is the heart of the argu-
ment: showing that setting up sufficiently many layers protects the correctness of
E4(B,z). First we observe again that between set-up and last realisation we do
not see D [5(,)-changes. That is, if ¢* is the stage at which set-up of z is ex-
ited, then Dy« 150)= Dy [5(n); otherwise, we would increase §(n) to be &q(z),
and then at some stage before stage s*, x would be cancelled. This implies that
A v Tu= Ajx 1y and Bgx 1= Byx [y since u = 2(") as calculated at stage t*, we
have u = z(") at stage s* as well.

For k < n we let v, = () as calculated at stage s* (or t*); and we let
1 < S < 83 < -+ < S, be the stages at which a layer for = is peeled (stages
at which we observe case (d) of the maintenance cycle for ). So for some i < 2,
Ai,skJrl Fu# Ai,sk ru

Since o§(n) < n and during the set-up stage we force one change in A(D,n),
we have of (n) <n — 1. Every time a layer is peeled we force one more change in
A(D,n); this implies that for all k, of, (n) < n — k. It follows that m < n.
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Lemma 2.4. For all k < m, for bothi=0,1,
(1) Ai,Sk rvn—k+1: Ai,S* F'Un—k+1

ProoOF. The stage s; is the least stage after stage s* at which we see any
change in either A; below u. In other words, A; s, 4= A; s* y; since u = vy, the
equalities (1) hold for k = 1.

Now by induction let k& < m and suppose that Eq. (1) holds for k (for both
i < 2). We note that for all s > s* and r < n, if 4; |, = A; sx |, for both i
then (™ = v, when calculated at stage s. Fix ¢ such that A; s, 11 [u# Ais, u-
Since at the beginning of stage sy, (™ **1 = v, .1, the fact that A;_; |, does
not change at stage s, implies that the change in A; at that stage is necessarily
above v,_i. Now, by induction on s € (s, sk+1) we show that for both j < 2,
Aj,s rv",k: 14]',3;C rv",k-

Let t > si be the stage at which we exit the peeling subroutine (d) of the
maintenance cycle that we enter at stage s,. Suppose that s € (sg,tx). Between
stages s, and t; we see no changes in A;_; [, as such a change would open an
attack. Recall that we are assuming that B l¢, (., and hence B [, is correct from
stage s* onwards. This, and the fact that Ai_; s 1= Ai—;s, lu, implies that
@i(ByAl—i, Un—k)[s] < Up—g+1, and that Ai,s Fvn,k: Ai,sk fv,,,k~

After stage t, and before stage siy1 we see no changes in A; [, for ei-
ther j < 2; this follows from the definition of sg,1. It follows that for both j < 2,
Ajsiir Tonn= Ajsy Ton_= Aj s [v,_, as required. O

3. Defeating two gates

We go up one level in our hierarchy; in this section we show:

e a uniformly totally w?-c.a. c.e. degree does not bound a copy of the 1-3-1
lattice in the c.e. degrees.

Of course the main difference between this and the previous section must come
from the fact that some uniformly totally w?-c.a. degrees do bound critical triples
(those which are not totally w-c.a.). We observe that if ag, a; and as are the
middle elements of the 1-3-1 lattice then each of the a; is the centre of a critical
triple (consisting of these three elements). Given a c.e. set D of uniformly totally
w?-c.a. degree and By, Bi, A <t D we show that either By is not the centre of a
critical triple By, By, A; or By is not the centre of a critical triple By, B, A. As
expected, this adds one more level of non-uniformity.

The main idea is the following. We enumerate a c.e. set @ = Q° which will
be computable from A and By, and try to ensure that Q €t By. If we fail, say
Vy(B1) = Q, then we enumerate a back-up set Qg = Q, this time computable
from A and Bj, and hope that Qg €t By. If we fail then we will ensure that
B, <7 By.

The number of times that D [5(,) could change will be at most wn. We will
appoint two followers x and y; the latter targeted for @, the former for Q4. We will
ensure that if the remaining number of changes is wm + k then y > u, > z("™) and
Uy = y®) . where u, and uy are our analogues of u of the previous construction.
The peeling as above will happen from outside in: first, y layers will be peeled by
successive A- and By changes, while B; remains unchanged. When all the y-layers
have been peeled, one or two z-layers will be peeled. But peeling the z-layers
happens in successive A- and Bj-changes, not By-changes. Such a Bj-change will
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allow us to cancel our follower y (while keeping ), and set up a new version of y,
with however many new layers we might need (the new ordinal is now w(m—1)+k’,
with &’ as large as our opponent may like).

An overall intuition is that the alternation between A, By-peeling and A, B;-
peeling reflects the re-targeting of traces in two gates of the pinball machine used
for constructing an embedding of the 1-3-1 lattice. Speaking vaguely, we say that a
degree which is not totally w-c.a. has enough power to pass one gate, but may run
out of gas when trying to pass two gates.

3.1. Discussion. We start with some details. Let D be a c.e. set whose Turing
degree is uniformly totally w?-c.a. Let A, By, By <r D; fix a functional A such that
A(D) = (A, By, B1). We further suppose that any two of of these sets compute the
third; we fix functionals ®, &y and ®; such that ®(By, B1) = A, ®¢(A, B1) = By
and @1 (A4, By) = By. For < w we define

x(l) = max {SO(BOa Bl7x)a <)00(A7B13‘T)5 501(147 B07$)}

and z("+t1) = ()1,
Again the idea is that a change in one of the sets A, By or By below x neces-
sitates a change in one other of these sets below z(1).

Let h(n) = wn; let {(f¢ 0% be an effective listing of all h-c.a. functions (with
tidy (h + 1)-computable approximations). We will define a functional A; the e'h
construction will guess that A(D) = f¢.

The et construction will enumerate a c.e. set Q = Q¢ and functionals I' = I'®
and © = ©° with the aim of having I'(A) = @ and ©(By) = Q. Further, for
each d < w the construction will enumerate a c.e. set @}y = Q¢ and functionals
Iy =T and ©4 = ©F with the aim of having I';(4) = Q4 and O4(B1) = Qq.
The action for the construction will be done by agents indexed by pairs of natu-
ral numbers. An agent (d,c) for the e'® construction will enumerate a functional
Ed,c = Eg, with the aim of computing By from Eg .(By).

As mentioned, each anchor for each agent will try to appoint a pair of followers x
and y. The movement between the four procedures is now complicated by the fact
that each x can have several y’s. In other words we will sometimes cancel y but
not = (we always cancel y if we cancel z). So for example we may need to return
to the set-up procedure to set up a new y; but a change may cause us to interrupt
the set-up and either cancel x or attack with it.

How should we set up our uses? On top of the principles applied in the
simpler construction above, we have the following. Recall that the idea is to
set up ¢ < u, < y < u, and to arrange that if at the current stage we have
0°(n) = wm + k then u, > y® and u, > (™. We need to think about the
possible changes and at which times they occur.

The follower y behaves similarly to the follower in the previous construction.
It is targeted for @); we will define v(y) = 6(y) = u, once we leave the set-up
procedure (and define §(n) > A(uy)). After y is realised (Uy4(B1,y)|= 0), when
both A and By change below u, we will be able to attack with y: enumerate it
into . Changes in B; below 14(y) will either cause us to return to the realisation
phase or to cancel y; when a single layer is peeled (either v(y)1 or 8(y)?1) then we
redefine A(D,n) and wait for the opponent to catch-up.

The follower x is targeted for @Qg; we will be able to attack with = if we see
that U.(By,z)|= 0 and then both ~v4(z) and 04(x) are undefined. As discussed,
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the idea is that if two layers below w, are peeled and x is still realised (no change
in By) then we are guaranteed a change in By (and in A); so we would be able to
cancel y and set up many layers for the new y.

One role of z in the simpler construction is taken up in this construction by x
and not by y: we will define &4 .(z) = v.(z), and will use the peeling of z-layers
to protect the computation Zg.(Bo,z) = By [,. The role of the y-layers is sec-
ondary; they protect the x-layers. As before, we can only cancel x if it becomes
unrealised (¢.(z)1) — otherwise we need to keep protecting the correctness of the
Ea4,c-computation. However, we will also only be allowed to cancel y if it is un-
realised (¢4(y)1); while it is realised, it needs to keep protecting the outermost
x-layers.

A threat. The success of this process relies on the layers between y and u, to
be peeled one at a time, so that when the two layers below u, are peeled, we will
have already seen 0°(n) drop below the next limit ordinal (we see wm’ + &’ for some
m’ < m). Consider though the situation in which layers between y and u, are
still unpeeled, but the last layer below u, is peeled due to an A-change. Of course
there is a change in either By or B; on the first y-layer; the former would allow us
to attack with y. The latter would allow us to cancel y. However, our opponent
will pay by decreasing the ordinal, but not below the limit ordinal wm; rather, to
wm + k', for k¥ < k. We are now left with insufficiently many x-layers.

In this situation what we would really like to do is attack with x. For this
reason we will define the use 64(x) to be at least u,, not u,.

In fact, we will want to define 84(x) > 14(y) as well. This is done to prepare
the ground for the new follower. When y is cancelled we appoint a new one, say v/,
and then we would like to define 04(x) > u,. For us to be able to do so, we need
04(x)? when y is cancelled. The cancellation of y of course follows from 14(y)?.

This requirement in turn means that while we are waiting for y to be realised,
we must leave 04(z) undefined. This is ok because we only need to use the set Qq
if our first attempt with @ has failed; we only need ©4(B;) = Qq if ¥4(B1) = Q.

Similarly, if during an attack with y we see that v4(z)1, then we leave it unde-
fined for the duration of the attack. The attack is prompted by changes in A and
in By, but B; remains fixed; in particular, 8;(x)|. The A-change below u, = v4(x)
causes an z-layer to be peeled; the opponent has not paid for this by successive
peeling of y-layers. If the attack later fails (By changes below ¢4(y) < 64(z)) then
the fact that v4(z)1 will allow us to attack with z instead.

3.2. Construction. At every stage, every agent (d,c) for a construction e
appoints a new anchor n and starts a new set-up procedure for n. We then cycle
through the four procedures for n as soon described. For brevity:

o We say that z is realised if £4.(x)]. We say that y is realised if 4(z)].

e We say that a follower is confirmed if we have already exited the set-up
cycle during which it was appointed.

e We may cancel a follower if it is confirmed, unrealised and §(n)t.

o We may attack with x if it is realised, and both v4(z)1 and 64(z)1. We
may attack with y if it is realised, and both v(y)! and 6(y)1.

We stipulate that throughout the construction, including the set-up cycle, if we
may cancel x or attack with it then we do so; in either case we cancel y. Otherwise,
if we may cancel y or attack with it we do so, except during the set-up of y. If we
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cancel a follower but are not attacking, then we return to the set-up cycle. These
instructions override all other instructions during the construction.

We now describe the procedures. For each procedure we also list (in small font)
facts about divergence of functionals at the beginning of each procedure, to be
verified later.

SET-UP: §(n)t AND 04(z)1.

1. If z is not currently defined, appoint a new follower zx.
In either case, appoint a new follower y > z(®®. Define
5(n) = My™®), where currently o¢(n) = wm + k. Wait for
A(D7 TL) = fe (n) Note that if z is already defined, then it is realised,
and we choose y > &4 (), so 6(n) = A(€q,c(x)).

While waiting, we react to changes as follows.

e If x was appointed during this set-up cycle, and one of A,
By or By changes below (2™ we cancel y, appoint a new y,
and redefine §(n) accordingly.

e Otherwise, if §(n)1 then we redefine §(n) = A(y®)) (using
the current value of y*)).

2. Once we see that A(D,n) = f°(n), we define u, = y*) and
v(y) = 0(y) = uy. If & was appointed during this cycle, then
2n)If y4(x)1 then we define v4(x) = uy. As
discussed, we leave 64(x) undefined.

We move to realisation.

we define u, = x

REALISATION: 64(z) OR &g,c(2)1.

1. If y is unrealised, wait for ¥4(B;,y) |= 0. Once this is
observed, define 4(z) = max{u,,¥q(y)}.

2. If x is unrealised, wait for ¥.(Bg,z) |= 0. Once this is
observed, define &4 .(z) = max{u,, ¥.(z)}; move to maintenance.
We could have defined £g .(z) > uy but this cannot be maintained, since

we may later cancel y but be unable to move &4 .(z).

MAINTENANCE: ALL FUNCTIONALS DEFINED.

We wait for a change in D below d(n) or for z or y to become
unrealised. When this occurs:

(a) If  or y are unrealised, move to realisation.

(b) If a layer is peeled: either v(y) 1 or 6(y) T, but not
both — redefine d(n) = X(max{fq(x),&qc(x)}). Wait
for A(D,n) = f¢(n). While waiting, if §(n)? (but no attack
or cancellation are possible) then we just redefine it by the
same formula. When A(D,n) = f¢(n) is observed we rede-
fine all the markers v(y),0(y),v4(z) which are undefined,
with value u, or u, as appropriate.

(c) If only 6(n)t then we redefine 6(n) = A (max{04(x), a,c(x)})
and stay at the maintenance phase.



160 CHAPTER VII. EMBEDDINGS OF THE 1-3-1 LATTICE

ATTACK WITH ¥: 6(y)t, v(y)1, 6(n)1.

We enumerate y into Q. We define §(n) = A (max{04(x), q4.c()}).
We wait for changes. If d(n)1 we redefine it according to the
formula above. As discussed, if v4(x)} we leave it undefined.

ATTACK WITH z: 04(z)t, vq(z)t, 6(n)?.

We enumerate z into Qq. We define 6(n) = A (§g,c(x)). If 6(n)1
we redefine it according to the same formula.

Ya() 7(y)
: : A
: B
Oa(x)
: : : y By
r €a,c() y 0(y)

FIGURE 5. Two gates: a typical configuration.

3.3. Verification. First, we observe that functionals discussed indeed diverge
as promised at the beginning of each cycle. For example, we indeed have §(n)? at
the beginning of an attack because we always define §(n) > A(u,) (which in turn is
at least A(uz)), and y(y) = u, and v4(x) = u, whenever they are defined. Similarly,
when we return to a set-up and x is not cancelled, it is because y is cancelled; y
became unrealised, which means that 64(x)?.

We also observe that the instructions described cover all possible occurrences.
Consider for example the maintenance cycle. We stipulated that if = or y can be
either cancelled or attacked with then we do so (with « having precedence over y
in that respect). Suppose that §(n)! during maintenance. If z or y are unrealised,
then they are cancelled. Otherwise, at most one of y(y)1 or 6(y)?, in which case a
y-layer is peeled; and possibly v4(z)1 but as y is realised, 04(x)|, so an x-layer is
peeled.

Also observe that during an attack with x, if £ becomes unrealised then it is
cancelled, as d(n) = A(&q4,c(z)). Similarly, during an attack with y, if either x or y
becomes unrealised then it is cancelled. And similarly, if 6(n)t during maintenance
then we never return to the realisation cycle without passing through set-up again.

We note that if we attack with  then we may indeed cancel y, as 64(x)] implies
that y is unrealised, and ~4(z)1 implies that §(n)1.

Finally note that 64(x) = vq(y) so if y is realised then ¥y(By,y)|= 0; if = is
realised then ¥.(By,z)|= 0.

We extend Lemma 2.1.
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Lemma 3.1. Let e be a construction, d an agent for e, and n an anchor for d.
There is a follower x for n which is never cancelled. There is a last follower y for n
which is ever appointed; it is only cancelled if we attack with x.

PROOF. As in the proof of Lemma 2.1, let s be a stage after which f¢(n) does
not change. Suppose that at some stage s; > sp we are in the set-up cycle. the
follower x at that time will never be cancelled. The follower y may be cancelled,
but only if one of the sets A, By or B; change below z(3*"). Eventually, the value
of (") stabilizes. O

Lemma 3.2. A(D) is total.

PROOF. Let n < w be an anchor for some agent d (for a construction e). Again
we note that d(n) is never left undefined at the end of a stage, so we just need to
show that the value of §(n) is bounded (over all stages).

By Lemma 3.1, let  and y be the last followers appointed for n. There are
several possibilities for where we can end up.

(1) Tt is possible to get stuck forever waiting for realisation for either x or y.
In this case, we know that d(n) can never get undefined after starting the
realisation run, as that would cancel x or y.

(2) An attack with x or with y is performed. The attack with y can be exited
only if we start an attack with x (otherwise, y is cancelled). The attack
with = cannot be exited. The value 04(z) is constant during an attack
with y; the value &4 .(z) is constant during an attack with y or with z.
And A(D) is total.

(3) It is possible to be left in the set-up cycle, never getting a correct f¢ guess.
The value of 0°(n) and so of y*) eventually stabilizes; we again then use
the totality of A(D).

(4) After we enter the maintenance phase, D !5,) never changes. In this case
obviously d(n) is constant after we enter maintenance.

(5) We enter maintenance with x, and at some stage s; after that we see a
D [ 5(n)-change. After that stage, x and y are always realised. O

As above we fix e such that A(D) = f¢.
Lemma 3.3. Q is computable from both A and By.

PROOF. The proof is pretty much identical to the proof of Lemma 2.3: if y a
permanent follower for some anchor n for some agent for e, then u, is eventually
defined; if we never attack with y then we only leave v(y) or 6(y) undefined when
waiting for agreement between A(D,n) and f¢(n) (after a layer is peeled). O

If Q €t By then we are done. Otherwise fix some d such that ¥4(B;) = Q.
Lemma 3.4. Qg4 is computable from both A and B;.

PROOF. The proof is slightly more elaborate; let « be a follower for an anchor n
for an agent (d, ¢), and suppose that x is neither cancelled nor attacked with. We
consider stages during which v4(x)1 or 64(z)1.

We possibly have 74(x) 1 while waiting for agreement between A(D,n)
and f¢(n). As for y, during a realisation cycle, if v4(x)1 then §(n)? and then we
cancel x or y; eventually this stops happening. We may also have 4(x)1 during
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an attack with some y. But such an attack must end, as ¥4(B1) = Q. So v4(z) is
defined at all but finitely many stages, and its value is constant u,.

Usually, when 04(x)1 we can cancel y. Otherwise, we can have 64(x) while we
are waiting for some y to be realised (here it is important that if both y and x
are unrealised, we first realise y, then z); but U4(B;) = @ implies that every y
is eventually realised or cancelled. There will be a last y appointed, and never
cancelled (as we assumed that we do not attack with x); and the value q4(x) will
eventually stabilise. This implies that the values of §,(x) are bounded. (]

If Q4 €1 By then we are done. Otherwise fix some ¢ such that ¥U.(By) = Qq.
We will show that with 24 ., By correctly computes B;. As in the simpler construc-
tion, we need to show that if = is a follower for some anchor for the agent (d,c),
and z is never cancelled, then eventually we define a computation Z4 .(Bp, x) which
always converges, and that Bj [, is constant from the stage at which this compu-
tation is defined. Fix such z. The argument of the simpler construction shows
that &4.(z) is bounded and defined at infinitely many stages. We only need to
notice that if y is the last follower appointed for z’s anchor, then every realisation
cycle that we enter after appointing y must be exited, as both ¥4(B;) = @ and
V.(Bo) = Qa-

So it all comes down to correctness, which as above is the heart of the argument.
Let s* be the stage at which the permanent computation =4 .(By, x) is defined. For
kE < 2n let v, = 2®) as calculated at stage s*. As x is not cancelled, d(n)| at all
stages from the end of the set-up of x and stage s*; it follows that u, = va,.

The key observation is that the peeling of the z-layers has to alternate
between A and B;. For k < n let s; be the least stage s > s* such that
Bist1 lvan# Bis lvse; Otherwise let s = co. By induction on s € [s*,s]
we see that vg,_1 = x(2*=D at stage s and that Ay luy ;= At oy s
but A, oo # Ast loges,- Let tp be the least stage t > s* such that
Ap1 loge 17 Ast oy, ; the fact that we never attack with z implies that
Sp <Tp < Spoy <tpo1 < ---.

Lemma 3.5. For all k < n such that sy, < o0,
(2) 0s,,(n) < wk
(where o0 = 0¢).

The inequality will imply that so must equal 00, and so By g .= Bi [, as
required.

PROOF. Since we start with og(n) = wn and we redefine A(D, n) when setting x
up, we have og, (n) < wn; so Eq. (2) holds for k = n.

We prove Eq. (2) by induction on k. Fix k < n such that s;_; < 00, and suppose
that os, < wk. Since var, < u, < 04(x), y is unrealised at stage s and d(n)1 at that
stage; so we cancel y at stage si. At stage t; we must have 64(x)], since otherwise
we attack with x at that stage. So there is some last stage ry € (sg,tx) at which
we realise a follower y = yi. The familiar argument shows that at stage r, we have
u, = y™ where o, (n) = w(k — 1) + m’ for some m’ < m (we may assume that
or, (n) = w(k—1), otherwise we are done for this inductive step). The follower yy, is
not cancelled before stage t;. An important point is that we do not attack with yy
before or at stage t;. To see this, observe that every attack with y, must eventually
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fail, and y is then cancelled; so this failure does not happen before stage t;. But
then, as v4(x)1 at stage tx, it remains undefined until the attack with y fails —
and then we would attack with x.

At stage t;, we do not start an attack with z so at that stage 64(z)| (and recall
that 64(z) > u,). We do not start an attack with y at that stage, whereas v(y)1
at tx; so 0(y)| at tx. So y > uy at stage tx. The only way this could happen is
that between stages r;, and tj, all the layers between y and u, were peeled. Each
time this happens we extract another A(D,n) change; we have m such changes,
which drives the ordinal o, (n) below w(k — 1) as required. O

4. The general construction

No new ideas are required for the general construction. The general idea that
if we guess that A(D) is w™-c.a. then we set up m many followers. We go straight
to the details. We are presented with a c.e. set D of totally < w*“-c.a. degree, three
c.e. sets A, By and B, and reductions A(D) = (A, By, B1), ®(By,B1) = A, and
®,(A,B;—;) = B; for i = 0,1. For z < w we define zM and (™ as in the previous
section.

For m < w define h,,(n) = w™ - n. Every function computable from D is h,,-
c.a. for some m. Fix (uniformly in m) an effective list {f™,0%™) of all h,,-c.a.
functions, with the usual tidy approximations. For simplicity of notation we will
only use odd m’s. We enumerate a functional A; a construction (e,m) for e < w
and odd m will guess that A(D) = f*™. Agents for the (e, m)*™-construction are
indexed by m + 1-tuples d = (do, dy, . . ., d,,) of natural numbers. For each sequence
¢ of length at most m the construction enumerates a c.e. set Qz = Q2™ and func-
tionals Tz = I'y"™ and ©; = ©™; we plan for T'z(A) = Q¢ and for ©z(B[g)) = Qe,
where we let [¢] = |¢] mod 2. For simplicity we will also write [k] for k& mod 2.
BEach agent d defines a functional =Z; = EZ™, hoping that Z3(Bo) = B (if m were
even we would need to exchange By and Bj, all the rest would be identical). We
write 0,7, Q for 0,70y, Q-

An agent d will appoint anchors n, inputs for A(D). Each anchor will try
to appoint a sequence of followers z,, < T,,_1 < -+ < 11 < xo, With x; tar-
geted for Qgz,. When a follower zj is cancelled or attacked with, we cancel
all the larger followers xp for k' < k. The main idea will be to ensure that if
04™(n) = WPy + W™ Py 1 + - + wpr + po then ;1 will bound at least py
many layers above xj.

To streamline the description of the construction we define, for k = 0,...,m—1,
x(xr) = 0g,,, (Tr+1); and define x(z,) = {g(zm). See Figure 6. We will say that
the follower xy, is realised if x(xg)|.

As before, we say that we may attack with a follower zy if it is realised, and
both g, (7x)| and 04, |. We say that a follower x, is confirmed if the set-up
cycle at which it was appointed has already finished. We may cancel a confirmed
follower xy, if it is unrealised and §(n)t. Throughout the construction, if we may
cancel a follower or attack with it then we do so, always choosing the smallest
follower (the one with largest index) with which to attack or cancel. If we cancel a
follower and do not start an attack, then we return to the set-up cycle.

We now describe the procedures undertaken by an anchor n.

SET-UP.
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Vg (3) Var, (%2) v (21) (o)
1 1 1 1 A
T T Bl
04, (x3) Og, (1)
= X(22) = X (o)
; ; ; ; ; ; : By
T3 Ea(xs) T2 11 O, (22) TO 6(zo)
= X(xs) = x(z1)

FIGURE 6. Four gates: a typical configuration.

1. Say that ., Tm—1,...,%r+1 are defined and confirmed. We

appoint new followers x, < zp_1 < Tp_o2 < --- < xo so that
(2pj+1)
j+1

0°™(n) = w"pm+- - -+wpi+po. We then define §(n) = )\(x(()m)),
and wait for A(D,n) = f©™(n). While waiting, we update the
values of z; for j < k and of 6(n) to keep the desired inequalities.
We do so in a conservative way: only cancel x; if there is a change

in A, By or By below xﬁij“).

T > ugy1, and for all j < K, z; > , where currently

2. Once we see that A(D,n) = f®™(n) we define for all

Jg=1,..,k u; = xgzpj), and define ug = x(()p‘))

y . For each j such
that g, (z;)1 we define this marker to equal u;. We also define
9(1’0) = Uy.

We move to realisation.

REALISATION.

For each k < m, if x, is unrealised, wait for Wy, (By_fx], 1) = 0.
Once this is observed we define x(zj) = max{uk, ¥a, (x)}. That
is, we define ed_rk+1 (k+1) or £g(xm) depending if k = m or k < m.

Note that the search is done in parallel, and we define x(x)
immediately when the realising computation is discovered. Once
all followers are realised we move to maintenance.

MAINTENANCE.

We wait for a change in D below §(n) or for some follower to
become unrealised. When this occurs:
(a) If a follower is unrealised, move to realisation. As above this

assumes that §(n)|, otherwise we would cancel the follower.
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(b) If either v(zo)1 or 6(xp)?, but not both, redefine
d(n) = A (max{x(xg) : k< m}).

Wait for A(D,n) = f©™(n). While waiting, if 6(n)1 (but
no attack or cancellation are possible) then we just redefine
it by the same formula. When A(D,n) = f©™(n) is ob-
served we redefine all the markers y(xy) and 6(z) which
are undefined (with value uy).

(¢c) Ifonly 6(n)t then we redefine §(n) = X (max{x(zx) : k < m})
and stay at the maintenance phase.

ATTACK WITH .
We enumerate zy into Qz,. We define 6(n) = A (max{x(z;) : j = k}).
We wait for changes. If §(n)1 we redefine it according to the
formula above. If y4(z;)1 for some j < k we leave it undefined.

4.1. Verification. The verification is identical to the two-gate case and so we
omit it.

4.2. A conjecture. There are two known obstacles for embedding finite lat-
tices into the c.e. degrees. One is structural, involving the impossibility for a
re-targeting procedure past a number of gates; this results in the failure to embed
lattices such as Lgg (Lempp and Lerman [63]). Computational strength (high-
ness) is irrelevant here. The other is the interference of a meet requirement with
continuous tracing, preventing lattices such as Sg being embeddable (Lachlan and
Soare [62]; see fig. 1.2). Perhaps these are the only obstacles. We thus conjecture:

Conjecture 4.1. If a finite lattice is embeddable into the c.e. degrees then it is
embeddable below any non totally < w“-c.a. c.e. degree.

A counterexample to the conjecture would need significant new insight into
lattice embeddings into the c.e. degrees.






CHAPTER VIII

Prompt permissions

In this chapter we consider prompt versions of the permitting notions we inves-
tigated in this monograph. These prompt notions of permission allow us to perform
constructions that are closer to the original construction we considered, rather than
their variations when adopted for permitting. For example, in the usual embedding
of the 1-3-1 lattice one gets the bottom element to be 0. When we then added
permitting, we showed that the 1-3-1 lattice can be embedded below any not to-
tally < w“-c.a. degree, but we did not get an embedding with bottom 0; this seems
necessary. However, below any degree which is promptly not totally < w®-c.a., we
can get an embedding of the 1-3-1 lattice with bottom 0.

1. Prompt classes

Recall that a c.e. set A permits promptly if it is has an enumeration {A,) such
that for some computable function p > id, for any e, if W, is infinite then there is
some n which enters W, at some stage s such that A, [,,# Ap) In. This notion
is invariant under Turing equivalence; a degree permits promptly if and only if it
contains a promptly simple set; see [2]. Prompt permitting is the prompt version
of simple permitting; a set which permits promptly is in some sense promptly non-
computable.

For considering the prompt version of non-total a-c.a. permitting, fix an ef-
fective listing (f*) of all a-c.a. functions, each equipped (uniformly) with tidy
(o + 1)-computable approximations {f&* 0©*) as in Proposition I1.1.7. We will
shortly use more properties of this list. However to motivate these properties we
first give our definitions.

Definition 1.1. Call a function g self-modulating if there is a computable approx-
imation {gs» of g such that:

e for all s and n, gs(n) < s;
o for all s and n, if gs(n) # gs—1(n) then gs(n) = s and in fact for all m > n,
gs(m) = s.

It follows that for all s, gs < gs4+1 (pointwise) and that if gs(n) # gs—1(n)
then gs(m) # gs—1(m) for all m > n. The idea is that g is the modulus of the
approximation {gs». Above we used the fact that if d is c.e. but not totally a-
c.a. then there is a self-modulating function g € d which is not a-c.a. Note that
every self-modulating function has a c.e. degree. Below we assume that each self-
modulating function g “comes with” the approximation {gs) of which it is the
modulus.

Definition 1.2. A speed-up function is a non-decreasing, computable function p
such that p(n) = n for all n.

167
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Definition 1.3. Let g be a self-modulating function and let p be a speed-up func-
tion. Let n < w. Let {fs,0s) be a tidy (a + 1)-computable approximation. We
say that g promptly p-escapes (fs, 05y on input n if for all s, if o4(n) < « and
fs(n) = gs(n) then g, (n) # gs(n). We say that g promptly p-escapes (fs,0,) if
it promptly p-escapes it on some input.

A self-modulating function g is promptly not a-c.a. if there is some speed-up
function p such that g promptly p-escapes each {f&%,0%*).

A c.e. degree d is promptly not totally a-c.a. if there is a self-modulating func-
tion g <t d which is promptly not a-c.a.

Note that if an approximation {f&®,0%*) is not eventually a-computable then
vacuously, for almost all n, g promptly p-escapes this approximation on n; the power
of promptness is when it is applied to “total” approximations (approximations
which are eventually a-computable).

1.1. Slow-down lemma. Recall how prompt permitting is used in construc-
tions. Suppose for example that we want to show that a promptly permitting
degree d is not half of a minimal pair. Let D € d and let B be c.e. and non-
computable. We build a c.e. set () computable from both D and B and plan to
make Q non-computable. To diagonalise against the e*® computable set, a require-
ment appoints a follower x and waits for it to be realised (¢.(z)|= 0). When it is
realised we wait for simple permitting from B; Bgi1 [.# Bs [». When we see this
we ask for prompt permission from D, namely D)) [+# Ds [.. If both are granted
then we can enumerate z into () and meet the requirement. Why will permission
be granted? Of course we potentially appoint infinitely many followers. Since B is
non-computable, infinitely many of them will be permitted by B. Let U. = Wy,
be the c.e. set of followers for this requirement which will be permitted by B. Ap-
plying prompt permission to this set U, guarantees prompt permission from D for
one of the followers in U,.

This sketch of an argument involved a little cheating. While indeed we know,
by the recursion theorem, an index g(e) for U,, the effective enumeration of Wy,
may be different from our enumeration of U,. We put = into U, at the stage at
which B permits z. It is conceivable that z is enumerated into Wy () at an earlier
stage; so the prompt permission for x was given in the past, and is useless for
us now. We need to find g(e) such that not only Wy = U, but every number
enters Wy (.) not before we put it into U.

This “slow-down lemma” can be obtained by a more sophisticated use of the
recursion theorem (see [91, Thm.XII.1.5]). This elaborate use of the recursion theo-
rem is actually not quite necessary. Interpret the et partial computable function ¢,
as a function of two variables. We can transform this function into an effective enu-
meration of a c.e. set (call it W) such that if ¢, is an effective enumeration (V, ;) of
a c.e. set V. (that is, . is total and for all s, p.(—, s) is the characteristic function
of Ve 5) then W, = V, and further, for all s, W s < V, ;. Namely, we put z into W,
at stage s if at that stage we have seen sufficiently much convergence from ¢, to
see that x € V.. The slow-down lemma can now be obtained by using the recursion
theorem to obtain an index g(e) such that ¢, ) is our enumeration of U,; we then
apply prompt permitting to Wy .

In our usage of prompt permitting of the form given by Definition 1.3 we need
a similar form of a slow-down lemma. Namely, to force changes we will define,
for some requirement, an a-computable approximation (hg) attempting to trail the
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function g given by the definition, and ask for immediate changes in g. To do this
we will need to find one of the functions f¢“ on the list such that for all n, for
all s there is some ¢ > s such that f;"*(n) = hs(n). To obtain this we follow the
construction proving Proposition II.1.7. Using the notation of the proof of that
proposition, we think of ¢, as giving the sequence (hg, ms) which we transform
into the partial approximation {f&%,0%*), making sure that as long as (hs,ms)
appears to be a tidy (a + 1)-computable approximation, we copy every value that
shows up. It is this sequence of approximations that we use in Definition 1.3. This
sequence will be acceptable in a strong way.

Call a pair (hg,msy of partial computable functions a partial tidy (o + 1)-
computable approximation if for all  and s, hs(z)|< mg(z)] and if so, for all y < x
and 7 < s, h,(y)] and the array (b, (y), mr(Y)), <, <, satisfies the conditions for
being an initial segment of such an approximation: that is, mg(y) = a, m,(y) < a,
ho(y) = 0, m(y) < my—1(y), and if h,(y) # hy—1(y) then m.(y) < m,_1(y). The
sequence {f&%,02%) is acceptable in the following sense:

o if (hg,mS), ., is asequence of (uniformly) partial tidy (a+1)-computable

approximations then there is a computable function k (obtained uni-
formly from an index for the sequence) such that for all e, x and s > 0,

if h¢(x) | then there is some ¢ > s such that of(e)’a(m) = mf(x) and
k(e), e
119 @) = h(@).
In particular, for each e, if (h¢,m¢) is a (total) a-computable approximation, then

<f§(e)’°‘, 05(6)’O‘> is eventually a-computable and further, for all n and s there is
some t > s such that h&(n) = ftk(e)’a(n).

Finally, in some arguments it would be useful to assume that like the enumer-
ation of the sets W,, at each stage s we have only said finitely much about all
functions. Formally,

e For all s, e and n, f&%(n) < s, and 09%(n) < « implies e, n < s.

1.2. Counting down «. The functions f&* are not really important for
promptness; it is the ways 0> of counting down « that we need to escape.

Definition 1.4. A counting down « is a sequence of uniformly computable func-
tions (o) from w to a + 1 such that for all n, og(n) = a; 0s5(n) = a if s < n;
0s(n) < o0s—1(n) for all n and s; and if o5(n) < « then os(n — 1) < « as well.

In other words, {0,y is a counting down « if it appears as the ordinal part in a
tidy (« 4+ 1)-computable approximation {fs, 0s).

Definition 1.5. Let g be a self-modulating function and let p be a speed-up func-
tion; let (osy be a counting down a. We say that g promptly p-escapes (o) on an
input n if for all s > 0, if 05(n) # 0s_1(n) then g,)(n) # gs(n). We say that g
promptly p-escapes (o) if it does so on some input.

Lemma 1.6. Let g be a self-modulating function. Then g is promptly not a-c.a.
if and only if there is a speed-up function q such that g promptly q-escapes each

(o).

One direction is short.
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Lemma 1.7. Let {fs,05) be a tidy (o + 1)-computable approzimation such that
fs(n) < s for all s and n. Suppose that a self-modulating function g promptly
p-escapes {osy on input n. Then it also promptly p-escapes {fs, 05y on input n.

PROOF. Suppose that os(n) < « and that fs(n) = gs(n). Let ¢ < s be the
least such that o:(n) = os(n). So fs(n) = fi(n). Since fi(n) < t we see that
gs(n) < t; since g is self-modulating, this implies that gt( ) gs(n). By assump-
tion, o¢(n) # 0;—1(n), and so gy (n) # gi(n) = gs(n). But p(t) < p(s) and g is
non-decreasing so g,(s) (1) = gp(t)(n) > gs(n) as required. O

PROOF OF LEMMA 1.6. One direction is provided by Lemma 1.7 and one of
our conditions on the listing of approximations {f&%,0%*). In the other direction
suppose that p witnesses that ¢ is promptly not a-c.a. For brevity we write f$ and o¢
for f&* and 02®. For each e we define an approximation (h¢) which chases g as
much as 0° allows it. Namely, we define

0, if s = 0;
hé(n) = { h¢_1(n), if s >0 and of(n) = 0of_;(n); and
gs(n), otherwise.

The approximation (h¢,0%) is (o + 1)-computable and tidy. By the a-slow-down
lemma find some computable function £ such that for all e, n and s there is some
t = t(e,n,s) = s such that ok(e)( ) = 0%(n) and ftk(e) (n) = h&(n). For s < w define
t*(s) = max {t(e,n,s) : e,n < s}, and let q(s) = p(t*(s)).

k(e)

Fix e. There is some n such that g promptly p-escapes < ff (e), 0s > on input n.

We claim that g promptly g-escapes {0%) on input n. For let s > 0 be a stage such
that 0¢(n) # 0%_;(n). Then h¢(n) = gs(n); so ftk(e) (n) = gs(n) for t = t(e,n,s). We
need to show that gg.s)(n) # gs(n). Note that of(n) < o implies that e,n < s, so
t <t*(s). If gt(n) # gs(n) then we are done, as g(s) = t. Otherwise ftk(e) (n) = g:(n)

(and o} (e)( ) = 05(n) < a) so by our assumption, g, (n) # g:(n); but q(s) = p(t).
O

Therefore for the purposes of promptness we from now on ignore the function
part fs. We state the slow-down lemma in this context. As expected, define a
partial counting down « to be a partial computable sequence (o) such that for
all s and z: (a) if os(z)| then os(z) < a and o(y)| for all t < s and y < z; (b)
if og(z)| then op(z) = «; (c) if s > 0 and os(x)| then os(z) < 0s_1(x); if 0s(2)],
y < x and o04(y) = « then o4(z) = a.

Lemma 1.8. Suppose that {m¢) is a uniform sequence of partial countings down .
There is a computable function k such that for all e, s and x, if m&(x)| then there is

somet = s such that ok(e) “(z) = mé(x). The function k can be obtained effectively.

We can conclude that promptness does not really depend on the choice of list
{(0©*) (as long as it is acceptable).

Corollary 1.9. Suppose that {m¢) is a uniformly computable sequence of (total)
countings down « such that for all s the set {(e,x) : m&(x) < a} is bounded, com-
putably in s. Suppose that a function g is promptly not a-c.a. Then there is a
speed-up function q such that g promptly q-escapes {mS) for each e.
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PROOF. As in the proof of Lemma 1.6 let t*(s) be a bound on stages
t = tle,x,s) = s such that of(e)(x) = m&(x) for all e,z such that m¢(x) < «
(where k is given by the slow-down Lemma 1.8; as above 0¢ = 0%%). Suppose

that p witnesses that g is promptly not a-c.a.; let g(s) = p(t*(s)). To see that this

k(e)

works, suppose that g promptly p-escapes <os on an input z. Let s > 0 and

suppose that m¢(z) # m¢_;(z). Then m¢(x) < a, so t*(s) = t(e, z,s). Let u be the
least such that of(®) (x) = m&(z); sou < t(e,z,s). But alsou > t(e,z,s—1) = s—1

so u > s. By assumption, g, () # gu(z), and q(s) = p(u). O
We can escape infinitely many inputs.

Lemma 1.10. Suppose that g is promptly not a-c.a. Then there is some speed-
up function q such that for all e there are infinitely many x such that g promptly
q-escapes {o©*) on input x.

PrROOF. Note that the first attempt that comes to mind to prove this does
not work. Non-uniformly we could guess an initial segment of g and change an
approximation to make sure that permission is not given on the first n locations.
But there are infinitely many possible initial segments of a fixed finite length, and
we cannot define our speed-up taking into account all of them (see the proof of [91,
Thm.XII.1.7(iii)]). What we do is shift by n.

Namely, for all e and n define m&™(z) = o(x + n) (for brevity let 0¢ = 0&®).
Note that m&™(z) < o implies e, z,n < s. Let g be given by Corollary 1.9. Suppose
that g promptly g-escapes (m%™) on input x; we conclude that g promptly g-escapes
(0%) on input = + n, the reason being that if g, (z) # gs(z) then gq.)(y) # 9s(y)
for all y > =x. O

The proof of this lemma shows that we can effectively, given a uniform list (m¢)
of tidy (a + 1)-computable approximation and a speed up-function p such that g
promptly p-escapes each (m¢), find a speed-up function ¢ such that g promptly
g-escapes each (m®*) on infinitely many inputs.

1.3. Powers of w. Let a < go. For brevity let PN(«) denote the class of
degrees which are promptly not totally a-c.a.

Lemma 1.11. If 8 < « then every function which is promptly not «a-c.a. is also
promptly not B-c.a.

Hence PN(a)) < PN(B).

PROOF. Define m$(z) = oS’ (x) if this value is smaller than f; otherwise let
mg(x) = a. Now apply Corollary 1.9. O

Proposition 1.12. Suppose that g is promptly not a-c.a. Then for allm < w, g
is promptly not « - m-c.a.

So PN(y) = PN(a) for all v € [a, -w). As for the non-prompt case, this means
that each prompt class is PN(«) for an ordinal o which is a power of w. Below we
will see that this is sharp.

PROOF. We need to uniformise Lemma I11.2.2. We define a list <m§’k>e<w ke
of countings down a. We claim that by the recursion theorem we have a speed-up
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function ¢ such that g promptly g-escapes each (m&") (and further we require that
this happens on infinitely many inputs).

Actually this relies on a property of the construction. By stage s we will have
already defined m&* for all r < s (for all e and k < m). The finiteness condition of
Corollary 1.9 will be obtained by ensuring that m&*(z) = « unless e,z < 7. During
stage s we define the functions m%*, but in the process of doing so we only consult ¢
on values strictly smaller than s. Then the fact that m®* is defined for all s implies
that ¢(s) is defined (as in the proof of Corollary 1.9), and the construction can
proceed to the next stage.

The counting m&* guesses that k& = k* (in the notation of Lemma I11.2.2).
However it is not sufficient for g to escape (0©*™) on some input only from the
stage at which 02*™(z) < a(k + 1); we need it to escape earlier as well. So it
looks for inputs which have already been escaped up to that point (using ¢) and
only copies them. Inductively, Lemma 1.10 says there will be infinitely many such
inputs.

Now to the details. To define m&*(x) we search for some y > x such that:

e 05 (y) € [ak,a(k + 1)) but 05" (y) = a(k + 1) (note that this implies
y < s); and
e for all t < s at which oy (y) # 02" (y) we have gy (y) # 9¢(y).

If such y is found then we declare y = y**(z) and s = s¥(x). If such y is never
found we let s*(z) = w. Now we can define:

a, ift < s®*(z);
m&F(x) =< B, ift=soF(x) and of*™ (y>*(z)) = ak + B; and

0, ift>=s®*(z)and o] “™(y**(z)) < ak.

Fix e. For k < m we let I, = I} be the set of inputs x such that for all s such
that 00 ™ (z) # 09%" (x) and 0™ (x) > ak, we have gy (z) # gs(x). Vacuously
we have I,,, = w; and our aim is to show that Iy is nonempty. In fact we show by
decreasing induction on k = m,m — 1,...,0 that each I is infinite.

Let k < m and suppose that we know that I is infinite. There are two cases.
It is possible that for almost all « € Ij1, for all s, 0™ (x) = a(k+1). Each such x
is in I, (in fact in Iy). Otherwise, for all z < w, s¥(x) (and y**(z)) are defined.
There are infinitely many x on which g promptly g-escapes <m§k> Let x be such
an input and let y = y**(z), s* = s¥(x). So y € I;1 and we claim that in fact
y e Iy if s = s*, 099 (y) > ak and 09" (y) # 07" (y) then m&*(x) # m*, (x)

and 50 gg(s) () # gs(2); since y = x, gqrs)(y) # gs(y)- O

1.4. Relation to prompt simplicity. A counting {os) down the ordinal 1
is essentially a computable function. Namely let h(n) be the unique stage s such
that os(n) = 0 but 0;_1(n) = 1. The domain of h is an initial segment of w.
As mentioned above, the property PN(1) can be thought of as being “promptly
non-computable”: it forces that g(n) # h(n), and this is observed promptly.

Lemma 1.13. A c.e. degree is promptly simple if and only if it is in PN(1).

PROOF. Suppose that A permits promptly; let (As) be an enumeration of A
which witnesses this fact. Let g be the modulus of the enumeration of A: gs(n) =t
if t < s is least such that A [,,= Ay .
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For each e and n let h¢(n) = s if 0©*(n) = 0 but 0%, (n) = 0. If h¢(n) = s then
enumerate n into a c.e. set U® at stage s. By the promptly simple slow-down lemma
there is a non-decreasing computable function ¢ such that for all e, if U€ is infinite
then there is some n which enters U® at some stage s such that A, [,,# Ay In, 5O
g promptly g-escapes <0§*1> on n. We only care about the case U° = w.

In the other direction suppose that deg.(A) € PN(1), witnessed by some g
(which recall comes with an approximation (gs)). Let T' be a functional such
that T(A) = g. Let (A;) be some enumeration of A such that for all s,
domT'4(As) = s. Define a subsequence 0 = s(0) < s(1) < ... such that for
all k, Tyry (Asr)) T= Gs(r) Tk

For each x < w search for an index k = k°(xz) > x,e such that some num-
ber n enters W, at stage k and the use v,()(z) is smaller than n. We then define
h¢(x) = s(k). The domain of h° is an initial segment of w. We translate this to a
counting down the ordinal 1: m§(z) = 1 iff ¢ < h®(z) (or h%(x)1). Note that the
counting {(mg) is total even if h¢ is partial. Further, m$(z) = 0 implies e,z < t. So
by Corollary 1.9 find a computable function ¢ such that for all e, if h¢ is total then
there is some x such that g pe(2))(2) # ghe (o) ().

Fix e. If W, is infinite then A€ is total. Suppose that ¢ escapes h°
on z (as described above). If h¢(z) = s(k) then find the k¥’ > k such that
q(s(k)) € (s(k' —1),s(k")]. Define p(k) = k’. Let n be a number which enters W,
at stage k such that v,)(7) < n. The fact that g(x) changes between stages
s(k) and p(s(k)) means that A, [, @)% Ask) [yo)(x)- We conclude that the
enumeration <As(k)> and the function p witness that A permits promptly. O

1.5. A prompt hierarchy theorem. Let N(«) denote the class of c.e. de-
grees which are not totally a-c.a. The class N(1) consists of the nonzero degrees.

Fig. 1.5 details the containment relations between the classes. The following
theorem implies that no further implications hold between these classes.

THEOREM 1.14. Suppose that a < B < g¢ are powers of w. Then there is a c.e.
degree d such that:

o d e PN(v) if and only if v < «; and
o d e N(v) if and only if v < B.

For example, by choosing o = 3 we obtain:

Corollary 1.15. Let § < 9. There is a degree which is promptly not totally w’-c.a.
but is totally W -c.a.

On the other hand by choosing 8 > « we see:

Corollary 1.16. Let § < 9. There is a degree which is not totally w’-c.a., but
not promptly so (i.e. not in PN(w®)), but is promptly not y-c.a. for all v < w®. (In
particular if § > 0 then the degree is promptly simple.)

In this subsection we prove Theorem 1.14.

We define an approximation {gs» witnessing that g = lim; g5 is self-modulating,
and intend to let d = deg..(g).

For the positive side, for each v < § and e < w we need to meet the requirement

P%7: There is some p < w such that:
e g(p) # [ (p);
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PN(w?) ——— N(w?)
FIGURE 1. Prompt and regular classes. Arrows indicate containment.

e and if v < « then in fact g promptly id-escapes (0%7) on the input p.
For the negative side, we need to meet the usual requirements:
Ne: If @.(g) is total then it is S-c.a.
where as usual (®.) is an effective listing of functionals. However, in addition we
now have new requirements ensuring that d is not in PN(a). Let (I'V, 47, h7) be an
effective list of all triples of functionals, partial computable functions and partial

computable approximations. We will build a family m? of (total) countings down «.
We will need to meet the following requirements for each j < w:
Mi: If (W (n,s)) is a (total) approximation of a self-modulating function
IV (g), and if 17 is total, then I'V(g) (equipped with the approximation
h7) does not promptly v’-escape m? on any input.
We then appeal to Corollary 1.9 to see that d ¢ PN(a).

The plan to meet this requirement is the following. One n at a time we:

(1) Wait for a stage at which we see I'V (g, n)|, say with value ¢; until the end
of the module for n we restrain g from changing below the use.

(2) Wait for a stage s at which we see that hi(n,r)|= q for some r < s;

(3) Define mi(n) #m’_(n);

(4) Wait until we see that 17 (s)| and h?(n, %7 (s))|= q. When this is observed
we end the module for n, lift the restraint, and move to n + 1.

The main conflict is between the actions that must be done promptly and
those that must wait until they become accessible again. We argued above that
to meet N® we must use a tree of strategies. However to meet P*7 for v < «
we need to change g(p) immediately when we see that 07 (p) changes. The main
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observation here is that while action with existing followers must be immediate,
the appointment of followers need not be: it can respect the priority tree. We will
argue that this is sufficient to resolve the conflict between P%7 and N°€.

Another conflict is between M7 and P®7 for v > «, in particular when M7
is stronger. When v < « we can allow action for P*? injure the action for M.
We restart the module above (for the same n). If we started with a large enough
ordinal m®(n) then we have room to keep decreasing it. We just need to distribute
priorities so that for all n, only finitely many P<? can disturb the module for n.
If v > a then we cannot allow P*7 to injure M7. However, if v > « then we do not
need to act promptly for P*7. And between ending the module for n and starting
the module for n 4+ 1, M7 can drop all restraint. On a tree, this is enough to ensure
that P*7 eventually succeeds.

Construction. On the tree of strategies we apportion to each requirement all
nodes of some level of the tree. The outcomes for nodes working for N¢ and M7
are o0 < fin; nodes working for P*? have a single outcome.

We start with gy being the constant function 0. At a stage s > 0 we define g;.
This is done by determining a number p* and letting gs(p) = s for p > p¥*, and
gs—1(p) = gs(p) for p < p*. If the stage is ended without determining p* then we
let 9s = gs—1-

Nodes o working for some P%7 will appoint followers. If a node ¢ is initialised
then its follower is cancelled.

Nodes p working for some M7 will define a counting (m?) down a. We start
with mf being the constant function a. At stage s > 0 we define m? for all p.
If p is initialised then we throw the counting (m£) out and start a new one (we
complete the old counting trivially, say with zeros everywhere, so that at the end
we do get a uniformly computable sequence of total countings.) If p is initialised
at stage s then we (re)define m¥ to be the constant function « for all ¢ < s. If p is
not initialised at stage s but is not accessible at stage s then we define m? = mf_,.

At each stage s, each node p working for M7 will be trying to meet the subre-
quirement MF for some n; we denote this n by ns(p). We set ng(p) = 0, and
reset ng(p) = 0 if p is initialised at stage s. Unless otherwise stated, we let

ns(p) = ns-1(p).

At stage s we first tend to promptness requirements. We ask if there is some
node o, working for some P®? for v < «, which has a follower p defined, and
097 (p) # 027, (p). If so, we let o be the strongest such node; we determine p¥ = p,
and initialise all nodes weaker than o. No node is accessible, and we move to the
next stage.

If there is no such node o then we build the path of accessible nodes.

Suppose that a node 7, working for some N¥€, is accessible at stage s. We let ¢
be the greatest stage before s at which 7700 was accessible, t = 0 if there was no
such stage. If dom @, ;(gs—1) = t then we let 7700 be next accessible. Otherwise we
let 7°fin be next acccessible.

Suppose that a node o, working for some P%7, is accessible at stage s. If ¢ has
no follower then it appoints a new, large follower, initialises all weaker nodes, and
ends the stage. If o already has a follower p, v = « and f&7(p) = gs—1(p) then we
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determine that p¥ = p, initialise all weaker nodes, and end the stage. Otherwise,
we let the unique successor of o on the tree be next accessible.

Suppose that a node p, working for some M7, is accessible at stage s.
Let n = ns_1(p). The subrequirement MF is currently seen to be satisfied if
there is some stage r < s such that m2(n) # mf_,(n), ¥’(r)| by stage s, and
hi(n,93(r)) |= h/(n,r). If this subrequirement is currently seen to be satisfied
then we let ng(p) = n + 1, and let p"oo be next accessible; we let m2(k) = 0 for
k <n and m?(k) = « for k > n.

Suppose that this is not the case. If I'/(gs_1,n)1, let m? = m’_, and let p'fin
be next accessible. Suppose that I (gs_1,n)|= ¢, and let vJ(n) be the use. If there
is some node ¢ > p'fin, working for some P%?, which has a follower p < v (n),
then we initialise all nodes to the right of p"c0, let m? = m”_,, and end the stage.

Otherwise, if there is no r < s such that currently we see that h?(n,r) = q
then again we let m? = mf_, and let p’fin be next accessible. If there is such r,
let ¢ be the last stage at which p"oo was accessible, ¢ = 0 if there was no such stage.
Let 01,09, ...,0k be the list, with descending priority, of the nodes extending p“o0,
working for some P¢” for some v < a, which currently have a follower p; let p; be
the follower for node o; and say that o; works for P¢ 7. We let

m) = 00 )
i<k
we let m2(n’) = 0 for all n’ < n and m2(n’) = « for all n’ > n. We let p"fin be
next accessible.

Verification. Let p be a node, working for some M7. Our first task is to prove:
Lemma 1.17. (m®) is a counting down a.

Let s < w, and let r* be the last stage prior to stage s at which p was accessible.
We need to show that the conditions for m? for being a counting have not been
violated by stage s. We observe:

o If r* <t < s then ny(p) < ng(p);
e For all n’ < ns(p), m2(n') =0;
e For all n’ > ns(p), m2(n') = a.

So the only question is what happens on n = ng(p). Let u* = r* be the least stage
such that n,x(p) = n. Fort € (u*, s]let o, 0%, ..., 07, be the list, with descending
priority, of the nodes extending p"co, working for some P¢” for some vy < «, which
at stage t have a follower. Since p"o0 is not accessible on the interval (u*, s], we in
fact know that the node o} does not depend on ¢, so we write 01,09, ... s Ok(r); and
the follower p; for o; does not change. Say o; works for P¢7; for brevity let, for

t > u*,
Zz < koy" 7 (pi).

So 7 is non-increasing, and if some node o; acts at a stage w € (u*,s] then as
0% (p;) < 0y (p;) we have Bf, < 32 . Further, since « is closed under addition
and each ; is smaller than «, we have 3f < « for all ¢ € (u*,s]. Now let ¢t < s.
Either mj (n) = a, in which case certainly m£(n) < m/,(n); or there are stages t' <t
and s’ > t’ such that m{(n) = B;, and m2(n) = %; so we get m#(n) < mf(n) as
required. This proves Lemma 1.17.
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Keeping with the same notation, say that p acts at a stage t > ™ if it is
accessible at stage t and ends the stage (initialising all extensions of p"fin).

Lemma 1.18. Suppose that p acts at two stages s > t, that ns(p) = ni(p), and
that p is not initialised at any stage in the interval [t,s]. Then B5_, < BY.

PROOF. Let n = ny(p). The action of p at stage t ensures that the computation
Fg (gt—1,n) is injured between stage ¢ and stage s. This action, and the fact that p
itself is not initialised between stages t and s, means that some node ¢ extending
poo acts at some stage w € (¢, s) and changes g below the use of the computation.
Since p“oo is not accessible at that interval, ¢ must work for some P%7 where v < a.
We observed that this means that 82 < 7 _. O

Lemma 1.19. The true path is infinite, and the construction is fair to every node
on the true path.

PrROOF. As usual, if p is a follower for some node o then o acts for p only
finitely often. This shows that there are infinitely many stages at which we build
the path of accessible nodes. Hence the root node lies on the true path, and of
course is never initialised. Also this shows that a node that lies to the left of the
true path can act at most finitely often.

Further, the usual arguments show that if a node working for either P*7 or N¢
is on the true path and is initialised only finitely many times, then some immediate
successor of the node on the tree lies on the true path, and is only initialised finitely
many times.

So we consider a node p on the true path, working for some M7. The node p
never initialises nodes extending p"c0, so if p"o0 is accessible infinitely often then
we are done. Suppose that this is not the case. Then we can let t* be the stage
at which the last value n* for ns(p) is set (either the last stage at which p“oo is
accessible, or the last stage at which p is initialised). Now Lemma 1.18 implies
that p acts only finitely many times after stage t*. O

It is not difficult to see that every positive requirement is met. Further, fol-
lowing the proof of Theorem II1.2.1 we can see that each requirement N°€ is met.
As we mentioned above, it is not actually important that a computation ®.(g, z),
already certified by a node 7 on the true path, is injured only during 7 co-stages;
it is only important that the node injuring the computation extends 7°co. We are
left therefore with verifying that each M/ is met. Fix j, let p be a node on the
true path working for M7, and suppose that 7 is a total speed-up function, 7 is a
(total) approximation witnessing that I'V(g) (which is total) is self-modulating. We
show that every subrequirement M is satisfied: for every n there is some stage r
such that mf(n) # m’_,(n) and h?(n,’(r)) = h’(n,r). Of course if the subre-
quirement is ever seen to be satisfied then it is indeed satisfied. So by induction we
show that {(ns(p)) is unbounded, equivalently that p“oo lies on the true path.

Suppose that this is not the case; let n = limg n4(p); let ¢* be the least stage (not
before the last stage at which p was initialised) such that n.(p) = n. The fact that
I(g,n)| and that lim, h?(n,s) = IY(g,n) implies that lims m?(n) = lim, 32(n);
let 6 be that common value. Let s be the least stage at which m?(n) = J; since
§ < a, mP(n) # m%_,(n). Also, by our instructions, m?(n) = 2(n) so f¢(n) = &
and in fact 37 (n) = § for all ¢ > s.
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Suppose that the computation ') (gs_1,n) = g is correct. There is some r < s
such that h’/(n,r) = ¢; since h/ correctly approximates I'(g), and in a non-
decreasing way, it must be that h’/(n,w) = ¢ for all w > 7. But then since v’
is total, we will eventually see that M? is satisfied, contrary to our hypothesis.
Hence the computation I')(gs_1,n) is injured at some stage w > s. The fact that p
does not act at stage s implies, as in the arguments above, that some node o ex-
tending p°co does this injury, and that it must work for P*? for some v < «; this
implies that 82, < B¢. This is the desired contradiction, showing that M7 is met,
and concluding the proof of Theorem 1.14.

1.6. Uniform prompt classes. The uniform layers in our hierarchy also have
prompt versions. Let a < ¢p be an infinite power of w. Recall the definition of
an a-order function h and of h-computable approximations (Definition ITI.3.1).
Recall also that we have a uniform listing <f§7h,0§*h> of tidy (h + 1)-computable
approximations of all h-c.a. functions. To avoid technical annoyances we define:

Definition 1.20. A self-modulating function g is promptly not h-c.a. if there is
a speed up function p such that g promptly p-escapes each counting <0§’h> on
infinitely many inputs.

An elaboration on the argument giving Lemma I11.3.2 yields the following.

Lemma 1.21. The following are equivalent for a c.e. degree d:

(1) For some a-order function h, some g <t d is promptly not h-c.a.;
(2) For every a-order function h, some g <r d is promptly not h-c.a.

If these conditions hold then we say that d is promptly not uniformly a-c.a.
When a = w we say that d is promptly array noncomputable.

PROOF. Let h and h be a-order functions; let f be a function which is promptly
not h-c.a. As in the proof of Lemma I11.3.2 partition w into an increasing sequence
of finite intervals I* < Iy < I; < Iy < ... such that for all n, for all x € I,, we have
h(z) = h(n).

Define a self-modulating function g by setting gs(n) = s if fs(z) = s for some
xz € I, for some m < n.

For each e, define a counting (m&(z)) down h by letting

0, if xerl*;
mé(x) = { h(z), ifxel, and 0% (n) = h(n); and
0% (n) if x € I,, and 02" (n) < h(n).

The slow-down lemma holds for A and so an analogue of Corollary 1.9 ensures
that there is a speed-up function p such that f promptly p-escapes each (m¢) on
infinitely many inputs.

Fix e and suppose that f promptly p-escapes (m¢) on an input = ¢ I¥;
say x € I,,. Then g promptly p-escapes <o§’h> on the input n. ([

We can also define the prompt version of the class of not totally < a-c.a.
functions; the definition carries no surprises. The techniques used above allow us
to prove hierarchy theorems for these classes; we do not elaborate here.
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2. Minimal pairs of separating classes

To demonstrate the dynamic power encapsulated by prompt classes we discuss
separating classes. For disjoint sets Ay and A;, we let Sep(Ap, A1) denote the
class of separators of Ay and A; — the separating class of Ay and A;. If Ag
and A; are c.e. sets, then Sep(Ag, A1) is a II{ class. If Ag U A; is co-infinite then
Sep(Ag, A1) is perfect, otherwise it is finite. In the literature at the time (for
example [52, 30]), computing the extendible strings in a I1{ class P (the strings o
such that [0] n P # &) was referred to as “computing the class P”. In the case
of a separating class Sep(Ag, A1), this is equivalent to computing both Ay and Ay;
here we only discuss computing separating classes.

Downey, Jockusch and Stob [30] proved that a c.e. degree is array noncom-
putable if and only if it computes two separating classes P and Q which are in-
comparable in the sense that any element of P is Turing incomparable with any
element of Q. In one direction they showed that any separating class computed by an array
computable degree has an element of degree 0’. Here we prove:

THEOREM 2.1. Every c.e. degree which is promptly array noncomputable com-
putes two separating classes P and Q such that any element of P forms a minimal
pair with any element of Q.

2.1. The Jockusch-Soare construction. To prove the theorem, we first
recall how to construct two separating classes P and Q such that every element
of P forms a minimal pair with every element of Q. This was first done by Jockusch
and Soare in [52]. We are not aware of a modern presentation of this construction,
so we discuss it in some detail.

We wish to enumerate four c.e. sets Ag, Ay, By and By with the intention of
letting P = Sep(Ag, A1) and Q = Sep(By, B1). The minimality requirements we
need to meet are:

R.: T X eP,YeQand P.(X) = U (Y) is total, then it is computable.

(Here as usual (@, ¥.) is a list of all pairs of functionals).

Discussion. There are two basic ways for constructing minimal pairs: by forc-
ing, and by Lachlan’s priority construction.

The forcing argument produces Cohen generic sets. The argument is as follows.
When tackling the e'!' requirement, we look for an e-split: a pair (7,v) of strings
such that ®.(w) L W.(v). If we have already declared that o and 7 are initial
segments of the sequences A and B that we are building, then we look for an e-split
(w,v) with 7 > o and v > 7. If such a split is found then we declare that 7 < A and
v < Bj; the requirement is met. If no such split exists and still ®.(A) = V. (B), then
we argue that the common value is computable, by searching all possible extensions.

Lachlan’s construction produces c.e. sets. The main idea is freezing one side
of a computation below the current length of agreement. That is, as time goes by,
we monitor ®.(A,z) and ¥ (B, z), and wait for common values to show up. We
then allow positive requirements (making A and B noncomputable) to enumerate
numbers into one of the two sets but not into both. This one-sided restraint is
maintained until we see new agreement. Because one side of the computation was
preserved, the new common value is identical to the old one.

The main idea of the Jockusch-Soare construction is to mix these two construc-
tion techniques.
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To meet one requirement R, on its own we can try to follow the forcing con-
struction. We look for an e-split (7, v). If one is found then we declare that P < [r]
and Q < [v], where for a string 7, [7] denotes the clopen subset of Cantor space 2¢
consisting of the sequences extending 7. To ensure that P < [r], for example, we
enumerate all n such that 7(n) = 0 into Ag, and all n such that 7(n) = 1 into A;.

However, we are performing a computable construction, so we cannot ask &’
whether an e-split exists or not. All we can do is wait for one to show up, and
then try to take it. The main difficulty in the construction is when we consider
how R, would deal with the action of weaker requirements. Since they cannot wait
for R. to find an e-split, they will grab their own splits when they can. Thus, as
time goes by, numbers are enumerated by weaker requirements into the four sets
we are enumerating, making P and Q shrink in the process. There may be many
e-splits, but we may discover them too late: whenever an e-split (,v) is discovered
at stage s, we already have [7] n Py = & or [v] n Qs = &J. We would then like
to argue that if ®,(X) = U (V) for X € P and Y € Q then this common value
is computable. However, the forcing argument is useless for this, since e-splits do
exist.

In this case we employ Lachlan’s technique. Suppose that at no stage s do
we find a viable e-split. This means that if we look for strings ¢ which are initial
segments of @, ;(X) for some X € P, and ¥, (V) for some Y € Q, then we will
not find incomparable such strings. We will then act toward ensuring that ¢ is in
fact correct, in that ( < ®.(X) and ¢ < U.(Y) for all X € P and Y € Q such that
®.(X) = U .(Y). Some action is required here: if we do nothing, then it is possible
that all oracles X € P; and Y € Q, which compute ( at stage s fall off these classes,
and only later, at some stage ¢ > s, we find new elements X € Py and Y € Q; which
both compute some ( incomparable with (.

The natural thing to do, at stage s, would be to take some m < X and v < Y
such that ¢ < ®.(w), ¥.(v), and immediately declare that P < [r] and Q < [v].
This option is immediately rejected because we would need to do this for longer and
longer such strings ( — remember that our mission is to compute ®.(X) = ¥ (V).
Alternatively, we could just ensure that [7] " P # & and [v] n Q # &F, or maybe
even just one of these; this can be done by imposing restraint on weaker require-
ments, to enumerate into sets only numbers greater than || or |v|. However again
we will want to do this for longer and longer such strings, and we don’t want the
restraint, even on one side, to go to infinity. The solution, namely Lachlan’s, is to
impose restraint on one side, wait for recovery, and then maybe impose restraint
on the other side. We ensure that [7] n P, # & for r = s; it is possible that v falls
off Q. We wait for a stage ¢ > s at which we get more convergence on some new
Y € Q,. If this is incomparable with ¢, we found a split and we can win quickly.
Otherwise, we see ¢ (and more) on both sides, and can injure one of them, while
keeping the correctness of { < ®.(X) = ¥ .(Y).

What the restraint means is that when we do see a split (m,v), we cannot
immediately ensure that P < [n] and Q < [v]: this would entail enumerating
numbers into both Ag U Ay and By u By, which we promised not to do. We first
ensure that P < [r]. We wait for the next stage ¢ at which the node doing the
work is accessible. By imposing restraint, we can ensure that if the node was not
itself initialised, then we still have [v] N Q; # &, and so can ensure that Q < [v].
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This discussion ignored the fact that we need to make P and Q uncountable,
that is, make both Ag U A; and By u By co-infinite. To ensure that, we will have
to impose further restraint on requirements. We will forbid a requirement R, to
enumerate the smallest e-many elements from the complement of Ay s U A 5 into
Ag u Ay, and the same on the B-side.

This means that each requirement R, will have to be broken into finitely many
sub-requirements. If R, is prohibited from enumerating numbers below some num-
ber r into sets, then each subrequirement will need to guess what X I, and Y [, are.
Each such guess determines two clopen sets C and D of Cantor space, and there are
22"_many such pairs. Each subrequirement will be associated with a particular pair
(C, D), and its job will be to find an e-split (7, v) with [7] € C and [v] € D. When
such a split is found, it will want to enumerate numbers from |7|\r into Ay U A; to
ensure that if X € C n P, then m < X; and similarly on the other side.

The last point that needs discussion is the structure of the tree of strategies, in
particular, how to deal with strategies and substrategies. Suppose that 7 is a node
on the tree of strategies working for some requirement R.; and let r be the restraint
imposed on 7, that is, 7 is not allowed to enumerate numbers smaller than r into
sets. For each pair (£, 6) of strings of length r, a subrequirement R, ; restricts itself
to work within the pair of clopen sets [] and [f]. Each such subrequirement can
have either a Iy outcome (agreement goes to infinity) or a 3o outcome, which needs
to be guessed by weaker nodes. The correct outcomes are independent between the
subrequirements, and so we will add to the tree below 7 levels of nodes working for
subrequirements.

On the other hand, when such a subrequirement finds a split and wants to
act on it, it needs to impose large restraint on every node to its right. If this was
done by the individual subrequirement node, this means that restraint would be
increased for other nodes ¢ which work for subrequirements of 7; but that means
that there subrequirements now have to consider even more clopen sets, and this
process would never end. Thus when a subrequirement of 7 wishes to act positively,
this is actually done by 7 and not by its subrequirement.

We note that since the restraint on a node influences the association of nodes
to subrequirements below the node, we build the restraint into the tree, rather
than dynamically change the tree during the construction. Thus nodes will not be
initialised in this construction; rather, many versions of a strategy will each guess
the restraint imposed on them.

The tree of strategies. Nodes on the tree of strategies will be finite sequences
of numbers and the symbol co. With every node p we will associate a restraint r(p)
(imposed on p). There will be two kinds of nodes: primary nodes T which work
for some requirement R.; and auxiliary nodes o whose job is to help calculate the
restraint imposed by subrequirements. For brevity, for a primary node 7 we let

m(7) = 22"("). The tree and the restraint are defined together recursively.
We start with the empty string () which is a primary node, working for Ry.
We let r({)) = 0. Suppose that 7 is a primary node, working for a requirement R,.
e The outcomes of 7 are all the numbers k < w (ordered naturally). We let

r(7°k) = max{r(7), 2k}.

e Foreachi=1,2,...,m(7), all extensions of 7 of length |7|+7 are auxiliary
nodes associated with a subrequirement R, ; (which will be the restriction
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of R, to a pair of clopen sets). If o is such a node then the outcomes
of o are o0 and all natural numbers, ordered v < 0 <1 < ---. We let
r(c"w) = r(o) and r(c"k) = max{r(o), 2k}.

e All extensions of 7 of length |7|+m(7)+1 are primary nodes, each working
for Reyq.

Notation. To be specific, for a pair of disjoint sets F and F' we let
Sep(E,F)={Xe€2¥: (neE—->X(n)=0) & (neF - X(n)=1}
Recall that for a string £ € 2<%,
€] = {Xe2v: {< X}

be the clopen subset of Cantor space 2% determined by &.
For every r < w fix a listing

{(&(r),0:(r) : i=1,2,...,2°"}

of all pairs of strings (&, 0) of length r. Then, for every primary node 7 on the tree
of strategies, for i = 1,2,...,7(7), we let C;; = [§(r(7))] and D.,; = [0;(r(7))].
The subrequirement R, ; is the restriction of R, to the clopen sets C;; and D ;.

Construction. We enumerate four sets Ag, A;, Bg and Bj;, and make
sure to keep Ag and A; disjoint, and By and B; disjoint. At stage s we
let PS = Sep(AO,S,ALS) and QS = Sep(Bg’S,BLS).

At stage 0 nothing happens. At stage s > 1 we describe the path of accessible
nodes. The root is always accessible. Let 7 be a primary node which is accessible
at stage s. If |7| = s then 7 does nothing and we end the stage. Suppose that
|| < s.

Suppose that 7 works for R.. Recall that an e-split is a pair (m,v) of binary
strings such that ®.(7) L ¥.(v). Let i < m(7).

o We say that the subrequirement R, ; is seen to be met at stage s if there
is an e-split (m, v) (observed by this stage) such that P; n C;; < [7] and
QsnD,; < [v].

o We say that R.; admits a split at stage s if there is an e-split (7,v),
observed by this stage, such that [7] < C,,, [v] € D, [71] " Ps # I,
and [v] N Qs # .

e Suppose that R,; does not admit a split at stage s. We then define
Cs(7,4), the (7,1)-agreement at stage s, to be the longest binary string ¢
such that ¢ < @, s(X) and { < U, 4(Y) for some X € Py N C,; and some
Y e Qs n DTJ;. Note that since R;; does not admit a split at stage s, no two

incomparable strings satisfy the definition of (.

At stage s, if there is some subrequirement R, ; which admits a split but is not
seen to be met at this stage, then we choose the least such i, and we let (m,v) be
the least split admitted by the subrequirement. We then act as follows:

o If P, nC;; & [r] then we enumerate numbers into Ag 511 and Aj 541 so
that P11 nCr; € [m]. Namely for all z < |n|, 2 = r(7), v ¢ Ag s U A1 s,
we enumerate  into Ag 41 if m(z) = 0 and enumerate x into Ay 441 if
m(x) = 1. We declare that 7 acted at stage s and end the stage.
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o If P, nC;; € [n] then we act similarly, to ensure that Qs+1 N D, ; < [v],
declare that 7 acted and end the stage.
If 7 does not act at stage s we extend the path of accessible nodes up to the
next primary node.

e We first determine the immediate extension of 7 by determining 7’s out-
come at stage s. The outcome is the greatest stage t < s at which 7 acted;
if there is no such stage, let ¢t be the least ¢ < s at which 7 was accessible.

e Now let ¢ < m(7) and suppose that a node o of length || + 4 (and so
associated with R, ;) is accessible at stage s.

— If this is the first stage at which o is accessible, let the outcome of o
at this stage be co.
— If R;; is seen to be met at stage s, then we let 0"00 be next accessible.
— Otherwise, let ¢t be the greatest stage prior to stage s at which o"oo0
was accessible.
# If |Cs(7,1)| > t then we let 0”0 be next accessible.
% Otherwise we let 0"t be next accessible.

Verification. Letting nodes guess their restraint implies that no two incompa-
rable strings can be accessible infinitely many times. Thus the true path consists
of those nodes which are accessible infinitely often. To show that the true path is
infinite, we will need to show that every primary node on the true path acts only
finitely many times.

Note that for all nodes p and p, if p < p then r(p) < r(p).

Lemma 2.2. Let u be a node on the tree of strategies. Suppose that p is accessible
at some stage t; suppose that a node p, which lies to the right of u, is accessible at
some stage s > t. Then r(p) = 2t.

PROOF. Let v be the longest common initial segment of u and p; let p be the
outcome of v such that v"p < p; let g be the outcome of v such that v"¢ < p. Then
p # 0, and if ¢ # oo then ¢ < p.

We show that p > ¢; this is sufficient, as r(p) = r(v"p) = 2p.

If v is an auxiliary node, let E be the set of stages at which v" o0 is accessible.
If v is a primary node, let E be the set of stages at which v acts. For any finite
outcome o of v, if v"0 is accessible at a stage v, then o is the greatest stage in F
prior to stage v. If ¢ = o0 then t € E so p = t. Otherwise, the fact that ¢ < p
implies that E n (¢, s) is nonempty, in which case p > t. a

The following is also clear:

Lemma 2.3. Suppose that a primary node T acts at stage t. If p > 7 is accessible
at a stage s >t then r(p) > 2t.

For a node p on the true path, let s*(p) be the least stage s > r(p) at which p
is accessible. Lemma 2.2 implies:

Corollary 2.4. If p lies on the true path then no node to the left of p is accessible
after stage s*(p).

Suppose that 7, a primary node working for R,, lies on the true path.

Lemma 2.5. No node stronger than T ever acts at or after stage s*(1).
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PROOF. Let u be a node stronger than 7 and let ¢ = s*(7). If p lies to the left
of 7 then by Corollary 2.4, u is not accessible at stage t. Suppose that p < 7. As
r(1) < s*(r) < t, By Lemma 2.3, if p acts at stage ¢ then 7 cannot be accessible
after stage t, contradicting the assumption that 7 lies on the true path. [

Lemma 2.6. Let i < m(7). If the requirement R, ; is seen to be met at some
stage s, then it is seen to be met at every stage t > s.

PRroOF. Follows from the definition of “seen to be met”, because P; € P, and

Qt < Qs- O
Lemma 2.7. The node T acts only finitely many times.

PRrROOF. By induction on ¢ = 1,2,...,m(7), we show that 7 acts on behalf of
the subrequirement R, ; only finitely many times. Fix such ¢ and suppose that after
stage s; = s*(7), T does not act on behalf of R, ; for any j < 1.

If at some stage ¢t > s;, 7 acts on behalf of R,;; by enumerating numbers
into By U Bj, then this action (and the fact that we are enumerating numbers
into By u By and not Ag U A1) means that R ; is seen to be met at stage s + 1; by
Lemma 2.6), 7 will not act for R.; after stage s.

Suppose that at some stage u > s;, 7 acts on behalf of R,; by enumerating
numbers into Ag U A;. Let (7, v) be the e-split prompting this action. The enumer-
ation ensures that Py nCr; S [7]. Since Qqy1 = Qs, we have Qqy1 N [v] # .

Since the pair (w,v) is observed by stage u, we have |v| < u. Let ¢ > u be the
next stage at which 7 is accessible. By Lemmas 2.5 and 2.2, no numbers below 2u,
and so below |v|, enter By U By between stages v and ¢. As Q is a separating class,
this implies that Q; n [v] # . Since t > s;, it follows that at stage ¢, 7 acts on
behalf of R, ; again, and ensures that R, ; is seen to be met from the next stage
onwards. O

Lemma 2.7 implies that the true path is infinite.
Lemma 2.8. The classes P and Q are uncountable.

PRrROOF. Let 7 be a primary node on the true path; let s** be the greater
between the last stage at which 7 acts, and s*(7).

By the convention we already used above, every string examined at a stage s
has length < s; it follows that Ay 5, A1 5, Bo,s, B1,s < s.

By Lemmas 2.5, 2.2 and 2.3, no number below 2s** is enumerated into any
set after stage s**; it follows that no number in the interval [s**,2s**) is even
enumerated into any set. Thus both Agu A; and Byu By are disjoint from infinitely
many nonempty interval, and so are co-infinite. ([

koK

Lemma 2.9. FEvery requirement R, is met.

PROOF. Let e < w; let 7 be the primary node on the true path which works
for R,.

Let X € P and Y € Q, and suppose that ®.(X) = ¥ (V). There is a
unique ¢ < m(7) such that X € C;; and Y € D, ;. The subrequirement R, ; is
never seen to be met, and in fact, by the proof of Lemma 2.7, from some stage
onwards, at no stage ¢ at which 7 is accessible does R, ; admit a split.

Let o be the auxiliary node on the true path which is associated with R, ;.
The reals X and Y show that ¢"o0 lies on the true path. We show that if s > t are
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stages at which o"o0 is accessible then (;(7,4) < (s(7,1); the fact that no splits are
ever observed will imply that (;(7,7) < ®.(X) for all such ¢. Note that the node 7
does not act after stage ¢ (or o would not be on the true path).

As discussed above, the argument is really the Lachlan minimal pair argument.
At stage t, at most one node extending ¢ acts. That node enumerates numbers
into Ag U Ay, or into By u By, but not both. Without loss of generality, say it is
the former. The arguments above show that any node ¢ that acts between stages ¢
and s has restraint 7(o) > t. This implies that if [v] € Q; n D, ; has length ¢ and
U, (v) = (i (7,4) then [v] N Qg # & as well. O

2.2. Adding prompt permissions. To prove Theorem 2.1 we observe that
the proof of Lemma 2.7 shows that in fact we can computably bound the number of
times a primary node will need to act: at most twice for each R, ;, once all action

for R, ; for j < i has ceased. The total is ), )2i = om(M+1 = 91+27 7 g5 we

let h(r) = 21+2”" We need the permissions to be prompt: otherwise the Lachlan
mechanism of keeping one side of the computation alive cannot work. Let d be a
c.e. degree which is promptly array noncomputable; by Lemma 1.21 there is some
function g <t d which is promptly not h-c.a.

i<m(T

The idea is to use g to permit the action of a node 7. Each time 7 wants to act
we will seek a change in g(r(7)). If we do not get it we will of course notice that
immediately; we will then essentially want to increase r(7) by 1 and try all over
again. Of course this means that we need to break the requirement up into more
subrequirements. Rather than increase r(7) we will incorporate into the tree the
guess as to where permission will be given.

Some details. The tree of strategies now consists of three different nodes:

)

e “super-primary” nodes ¢, whose outcomes are guesses as to where g gives
permission;
e primary nodes and auxiliary nodes which have the same role as in the

previous construction.

Again we define the tree of strategies by recursion, along with the restraint func-
tion 7. We start with the root, which is a super-primary node working for Ry, again
with 7({)) = 0.

Suppose that ¢ is a super-primary node, working for R.. The possible outcomes
of ¢ are the numbers k > r(¢), ordered naturally. For a super-primary node ¢ and
k = r(s), we let r(¢"k) = k, and we declare that ¢"k is a primary node working
for R..

Then the definition is as before: the outcomes of a primary node 7 are all natu-
ral numbers, ordered naturally, with r(7°k) = max{r(7),2k}. Fori =1,2,...,m(7)
(where again m(7) = 227(7)), all nodes extending 7 of length |7| + i are auxil-
iary nodes working for R,,. As above, the outcomes of an auxiliary node o are
w<0<1l<2<--, with r(c"0) = r(o) and r(¢"k) = max{r(c),2k}. All nodes
of length |7] +m(7) + 1 extending 7 are super-primary nodes, all working for Re.

For each super-primary node ¢ we will build a (total) counting (o$) down h. By
the recursion theorem (and the slow-down lemma) we can find a speed-up function p
such that for all ¢, the function g promptly p-escapes each (05), each on infinitely
many inputs.
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For each super-primary node ¢ we will have a counter ng(s). This is the current
input on which we guess that g will give prompt permission.

For every primary node 7 we define C,; and D, ; as above.

Construction. Again, we enumerate four sets Ay, Ai;, By and B;, and
make sure to keep Ay and A; disjoint, and By and B; disjoint. At stage s
we let PS = Sep(A(),s,Al,s) and QS = Sep(B(]’S,BLS).

At stage s we start by defining, for every super-primary node g,

e no(s) = 7(s);
e 0y(n) = h(n) for all n < w.

No node is accessible at stage 0.

At stage s > 0 we start with the root, which is accessible.

Suppose that ¢ is a super-primary node, accessible at stage s. If [¢] = s we
end the stage; for every super-primary node ¢ we define ng(9) = ng_1(9) and
B — B

Otherwise, we let 7 = ¢"(ns_1(<)) be next accessible. The definitions of:

e R, ; is seen to be met at stage s;
e R, ; admits a split at stage s; and
o (s(7,1)

are exactly as above.

At stage s, if there is some subrequirement R, ; which admits a split but is not
seen to be met at this stage, then we choose the least such i, and we let (7, v) be
the least split admitted by the subrequirement. We then act as follows:

o If P, nC,; & [r] then letting n = ns_1(s), we:
— define 0,(n) = 0s_1(n) — 1, and check to see if g,(5)(n) # gs(n).
— If so, we enumerate numbers > 7(7) into Ag s4+1 and A 41 so that
PS+1 N C-,—’i o= [7T]
We let ns(s) = n, os(m) =0 for all m < n, and os(m) = h(m) for all
m > n. We declare that 7 acted at stage s and end the stage. For all
super-primary nodes 9 # ¢ we let ny(9) = n,_1(9) and Y = h?_,.
— If not, then declare that ns(s) = n+ 1. For all m < n we define
h$(m) = 0; for all m > n we let hi(m) = h(m). We treat other
super-primary nodes in the same way; we end the stage.
o If Py nC.; < [r] then we act exactly as in the first case, trying to ensure
that Qs11 N 'DTJ' c [U]

If 7 does not attempt to act at stage s then we continue to choose accessible
nodes until we get to the next super-primary node. The choice of outcomes is
precisely as above.

Verification. We follow the verification of the previous construction, noting the
differences. Note that again for all nodes p and ¢, if p < ¢ then r(p) < r(s).

First, we need to show that if a primary node 7, the child of a super-
primary node ¢, is attempting to act at a stage s, then o_;(n) > 0 (where again
n = ng_1(s) = r(7)). This was discussed above, and was the motivation for the
definition of h: the total number of times 7 acts is smaller than h(r(7)) = h(n); at
stage s, 05(n) is h(n)—the number of times 7 acted by stage s.
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Lemma 2.2 does not hold as stated and needs refinement. For nodes p and p on
the tree of strategies, let p A u be the longest common initial segment of p and pu.
We write p <* p if u lies to the left of p, and p A p is not a super-primary node.
The proof of Lemma 2.2 gives:

Lemma 2.10. Suppose that p <* p, u is accessible at some stage t, and that p is
accessible at some stage s >t. Then r(p) = 2t.

The use of this comes from:

Lemma 2.11. Suppose that u lies to the left of p but that u <* p. If p is accessible
at some stage t, then p is not accessible at any stage s > t.

PROOF. Let v = u A p. Let kE < m be the outcomes of v such that vk < p
and v"m < p. At stage t, we have n,_1(v) = m, whence for all stages s > ¢t we will
have ng(v) = m > k, so p will not be accessible after stage s. (]

Together, these lemmas give us Corollary 2.4. Lemma 2.3 holds as is, and so
we also get Lemma 2.5, with the same proof. Finally, we also conclude another
weakened version of Lemma 2.2:

Lemma 2.12. Suppose that p lies on the true path, is accessible at some stage t,
and some node p which lies to the right of pu is accessible at stage s > t. Then
r(p) = 2t.

Proor. We show that u <* p, and then appeal to Lemma 2.2 applies. If
1 <* p then by Lemma 2.11, p will not be accessible after stage s, contradicting
the assumption that p lies on the true path. (I

Lemma 2.6 holds with the same proof; putting everything together, the proof
above gives Lemma 2.7 as well. However, this is not sufficient for showing that
the true path is infinite; we need to consider a super-primary node ¢ which lies on
the true path. That is, we need to show that the sequence (n4(<)) is eventually
constant. Since this sequence is non-decreasing, we need to show that it is bounded.
This follows from the fact that g does promptly p-escape (0% on infinitely many
inputs. Let k be the least number n > r(s) such that g promptly p-escapes {o$) on
input n. If {ns(c)) is unbounded then there is some stage s such that ns(s) = k.
Then for all ¢ > s we also have n;(c) = k. This is because whenever 7 = ¢k
attempts to act, it does receive permission to act.

The rest of the verification (the proofs of Lemmas 2.8 and 2.9) follows as above,
noticing that if 7 is a primary node on the true path, then 7 will receive permission
to act whenever it attempts to act.

3. Prompt permission and other constructions

Prompt versions of permitting can also be adapted to other constructions we
have been discussing. The main example is the embedding of the 1-3-1 lattice. The
main idea is that if non-total < w“-permission is given promptly then when balls
enter the permitting bin, instead of appointing a trace for the bottom set B, we
ask for prompt permission. If this is not given then the follower is cancelled. This
yields:

THEOREM 3.1. Ifd is promptly not totally < w*-c.a. then there is an embedding
of the 1-3-1 lattice in the c.e. degrees below d which maps the bottom element to 0.
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As mentioned in the introduction, a full reversal is impossible, since every high
degree bounds such an embedding as well, and some high degrees are not even
promptly simple.

Another construction to which such prompt permission can be adapted is the
one mentioned is the construction of a noncomputable left-c.e. real g all of whose
presentations are computable. This was briefly discussed in Chapter V, where we
mentioned that the construction of such a real is more complicated than the one
proving Theorem 1.3.3(1). In the simplified construction the c.e. set B not only aids
in coding permissions, but also in “wiping the deck” concerning earlier promises
that interfere with our requirement. In the original construction such a clearing
cannot be done, and as a result a more complicated process of proliferating small
quanta and their gradual peeling back is employed. The dynamics are similar to the
constructions discussed above, and so the following can be established by similar
methods.

THEOREM 3.2. If d is promptly not totally < w“-c.a. then then there is a
noncomputable left-c.e. real o <t d all of whose presentations are computable.
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