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CHAPTER I

Introduction

What does it take to perform a certain construction? In computability theory,
this question is the basis of a long-term programme which seeks to understand the
relationship between dynamic properties of sets and their algorithmic complexity.
Our main thesis in this monograph is that where the computably enumerable (c.e.)
Turing degrees are concerned, a degree can compute complicated objects if and only
if some functions in the degree are difficult to approximate. Computability-theoretic
tools allow us to quantify precisely what we mean by “difficult to approximate”.
More specifically, we use a classification of ∆0

2 functions defined by Ershov in [39,
40, 41]. While Ershov’s hierarchy of complexity is orthogonal to complexity as
measured by Turing reducibility, we show that combining these two notions of
complexity yields a new, transfinite hierarchy inside the low2 c.e. degrees, and
that two levels of this hierarchy capture the dynamics of a number of seemingly
unrelated constructions in different areas of computability. Further, some of these
constructions show that these two levels are naturally definable in the c.e. degrees.

1. Historical context

The roots of computability theory go back to the work of Borel [8], Dedekind
[18], Hermann [50], Dehn [19], and others in the late 19th and early 20th century.
From a modern point of view, these authors were highly interested in algorithmic
procedures in algebra. Around the same time, Hilbert famously posed the Entschei-
dungsproblem, which asked whether there was an algorithmic procedure to decide
the validity of statements in first-order logic. To show that the answer is yes, we
would need to give such an algorithm, as we do with truth tables in propositional
logic. However, to demonstrate that there is no such algorithm, we would first need
to mathematically specify what an algorithm is. Culminating in the work of Tur-
ing [97], several authors gave proofs that first-order logic is undecidable; there is
no such algorithm. Turing’s work built on Gödel’s First Incompleteness Theorem,
and gave a beautiful conceptual analysis which convincingly laid the foundations
of computability theory. Turing machines gave a universal model of computation.

Following these early results, many problems, such as Hilbert’s 10th problem,
the word problem for groups, or DNA self-assembly, have been shown to be unde-
cidable. These proofs mostly followed a familiar pattern. They used Turing’s notion
of a reduction [98], and typically showed that the halting problem is reducible to
the algorithmic decision problem at hand by some effective coding process.

A major impetus for the development of computability theory was Post’s [78]
which gave an analysis of the fine structure of reductions, and set a research
agenda in the “structure theory” of computation. This paper was also famous as
it “stripped away the formalism associated with the development of recursive func-
tions in the 1930’s and revealed in a clear informal style the essential properties
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6 CHAPTER I. INTRODUCTION

of recursively enumerable sets and their role in Gödel’s incompleteness theorem”
(Soare [91]). Following Post’s paper, three major developments were:

‚ The Kleene-Post development of the finite extension method. This and
related techniques demonstrated the richness of the structure of the Turing
degrees, and were arguably a precursor to Cohen’s method of forcing.

‚ The Friedberg-Muchnick Theorem showing that there were intermediate
computably enumerable Turing degrees. This result introduced the prior-
ity method to computability theory and is a hallmark of the area to this
day.

‚ Sacks’s work [81, 82] which culminated in his book [80] which proved
a number of penetrating results on the structure of degrees, and devel-
oped the infinite injury priority method, first introduced by Shoenfield
[85]. Sacks’s book famously proposed a research agenda with a number
of difficult questions still open.

There were subsequent books by, for example, Rogers [79], Lerman [66] and
Soare [91] exploring the universe of the degrees of unsolvability. But conceptual
clarification provided by this early work has seen a flowering of applications of
computability theory to many areas of mathematics. These include computable
analysis [102] (a subject going back to Turing’s [97]), computable algebra and
model theory (see for example e.g. [38]), algorithmic randomness ([27, 74, 69]),
algorithmic learning theory ([45]), and reverse mathematics [89], to name but a few.
(See [22] for a general historical discussion of this development, mainly focussing
on randomness.) Each of these areas has its own subareas, and hence the area of
computability has become remarkably diverse.

This monograph has several goals. Some are in the spirit of Sacks’s book. That
is, we wish to introduce new techniques and classification tools for understanding
the complexity of computation. These include some new nonuniform methods and
certain symmetric games in the sense of Lachlan [60], in which obstacles in con-
structions turn out to reflect the boundary between what is and what is not possible.
These games allow us to prove new definability results in the computably enumer-
able degrees. Another goal is in the spirit of Soare’s book; we carefully guide the
graduate student through complex techniques involving modern arguments. Our fi-
nal goal is to formalize the persistent intuition that many of the constructions in the
diverse areas of computability theory seems to have common combinatorics. How
should we explain that? We will draw several areas back together by showing that
the hierarchy we introduce can be used to explain, classify, and unify combinatorics
in these areas.

2. Background: unifying constructions and natural definability

2.1. Unifying constructions and levels of permitting. Computability
theory has a small number of classes of degrees which capture the underlying dy-
namics of a number of apparently similar constructions. A good example is the
class of high degrees, the degrees d satisfying d1 ě 02. Martin [70] showed that a
c.e. degree is high if and only if. . .

(1) it contains a function dominating all computable functions;
(2) it contains a maximal set;
(3) it contains a hyperhypersimple set.
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Another example would be the class of the promptly simple degrees (Ambos-
Spies, Jockusch, Shore and Soare [2]), which coincide with the low-cuppable degrees
and the non-cappable degrees. A more recent example of current interest is the class
of K-trivial degrees (see for example [28, 72, 73]), which have several characteri-
sations arising from lowness constructions.

The example most relevant to this monograph is the class of array computable
degrees, defined by Downey, Jockusch and Stob [30, 31]. Recall that by Shoenfield’s
Limit Lemma [84], a function g : ω Ñ ω is ∆0

2 if and only if it has a computable
approximation: a uniformly computable sequence xgsy of functions which converge
to g in the discrete topology, that is, for which for all n, gspnq “ gpnq for all but
finitely many s. We think of each gs as a stage s approximation for g. Associated
to every computable approximation xgsy is its mind-change function, which maps
each n to the number of stages s such that gs`1pnq ‰ gspnq.

A c.e. Turing degree a is array computable if every function g P a has a com-
putable approximation xgsy such that for all n there are at most n many stages s
such that gs`1pnq ‰ gspnq, that is, whose mind-change function is bounded by
the identity function. The array computable degrees capture the combinatorics
of a wide class of constructions. To wit, we observe that a c.e. degree is array
noncomputable if and only if. . .

(1) it is the degree of a perfect thin Π0
1 class (Cholak, Coles, Downey and

Herrmann [12]);
(2) it bounds a disjoint pair of c.e. sets which have no separator computing

H1 (Downey, Jockusch, Stob [30]);
(3) it contains a c.e. set with maximal Kolmogorov complexity (Kum-

mer [57]);
(4) it does not have a strong minimal cover in the Turing degrees (Ish-

mukhametov [51]);
(5) it has effective packing dimension 1 (Downey and Greenberg [24]);
(6) it contains two left-c.e. reals with no common upper bound in the cl-

degrees of left-c.e. reals (Barmpalias, Downey and Greenberg [7]);
(7) it contains a set which is not reducible to the halting problem with tiny

use (Franklin, Greenberg, Stephan and Wu [43]).

The dynamics captured by classes of degrees are often phrased in terms of
permitting. We perform some computable construction, often using the priority
method. To make the construction succeed, we need to satisfy infinitely many
requirements, and to meet each requirement, we need to enumerate some numbers
into a c.e. set A that we are building. The question is whether we can perform the
construction “below” a given c.e. degree d, which means, can we make A ďT d? In
the standard framework, we choose a c.e. set D P d, and along with the construction
we define a Turing reduction Φ of A to D. Then, when we want to enumerate a
number n into D, we seek permission from D to do so, which means, that we want
to see some number enter D below the use ϕpnq that we declared for computing
Apnq from D using Φ. Naturally, we will not always receive such permission, and
so we need to make several attempts at meeting the requirement, using different
potential numbers n to enumerate into A.

The “amount” of permitting that is required to carry out the construction (that
is, to meet every requirement) corresponds to the class of degrees d below which
we can perform the construction. The most common notion is simple permitting,
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which is given by any nonzero c.e. degree d. Here it suffices for at least one of the
attempts made by a given requirement to receive permission. This argument then
shows, for example, that every c.e. degree bounds two incomparable c.e. degrees
(the Fridberg-Muchnik construction can be performed using simple permitting), or
that every c.e. degree bounds a 1-generic sequence.

Prompt permission, given by any promptly simple degree, also needs just one
attempt to receive permission, but this permission must be given quickly: the re-
quired change in D needs to happen within some computable bound given the stage
number. In the other extreme from simple permitting is high permitting, in which
every requirement makes infinitely many attempts, and to meet the requirement,
all but finitely many of these attempts need to be permitted.

Array noncomputable permitting, originally called “multiple permitting”, is an
intermediate version, in which for each attempt at meeting a requirement, a number
of required permissions is stated in advance. The connection with the complexity
of approximations of functions in the degree is direct: mind-changes essentially
correspond to instances of permission; the computable bound on the number of
mind-changes is the same bound on the number of permissions required to meet a
requirement. The remarkable fact is that in many cases it is shown that the level of
permitting is not only sufficient but also necessary for the construction to succeed.

As we shall see, in this monograph we introduce a transfinite hierarchy of
classes, each of which has its own level of permitting; these classes generalise the
array noncomputable degrees.

2.2. Natural definability and lattice embeddings. Ever since Lachlan
and Yates’s [59, 105] construction of a minimal pair refuted Shoenfield’s conjecture
[86] that the c.e. degrees are homogeneous, research in the c.e. degrees tended
toward showing that they are as complicated as can be. For example, their theory
(as a partial ordering) is computationally equivalent to full first-order arithmetic
(see [49, 75]). This paradigm leads us to study definability in the partial ordering
of the c.e. degrees, with the expectation that full bi-interpretability with arithmetic
would hold. That would entail that a relation in the c.e. degrees is definable if and
only if it is induced by a degree-invariant, arithmetic relation on indices of c.e. sets.
Currently, this has almost been achieved, up to double jump classes:

Theorem 2.1 (Nies, Shore, Slaman [75]). Any relation on the c.e. degrees
which is invariant under the double jump is definable in the c.e. degrees if and only
if it is definable in first-order arithmetic.

The proof of Theorem 2.1 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and obtaining a definable
map from degrees to indices (in the model) which preserves the double jump. The
result gives a definition of a large collection of classes of degrees (for example all
jump classes highn and lown, the latter for n ě 2).

Theorem 2.1 has two shortcomings. One is the reliance on the invariance of the
relation under the double jump. It follows that no collection of c.e. degrees that
contains some, but not all, low2 degrees, can be defined using the theorem; these
are the kinds of collections that we investigate in this monograph.

Another issue is that the definitions provided by the theorem are not natural,
as discussed by Shore [88]. The definitions given by Theorem 2.1 are not structural;
they do not give insights into the role of the relations being defined in the structure
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of the c.e. degrees. To date, there are not many examples of natural definitions in
the c.e. degrees. Among them are:

‚ The promptly simple degrees are defined as the non-cappable ones
(Ambos-Spies, Jockusch, Shore, and Soare [2]);

‚ The contiguous degrees are defined as the locally distributive ones
(Downey and Lempp [33]) and also as the ones which are not the top of
a copy of the pentagon lattice (the non-modular, 5-element lattice N5) in
the c.e. degrees (Ambos-Spies and Fejer [1]).

‚ A third example takes place in the truth-table c.e. degrees rather than the
Turing c.e. degrees: a c.e. truth table degree is low2 if and only if it has
no minimal cover in the c.e. truth table degrees (Downey and Shore [34]).

The example of the contiguous degrees (Turing c.e. degrees all of whose c.e.
elements are weak truth-table equivalent) shows that natural definability results
can be found when considering lattice embeddings into the c.e. degrees (see for
example [63, 64, 67]). The question of which finite lattices can be embedded into
the c.e. degrees (preserving join and meet) is also closely related to the problem of
determining how much of the theory of the c.e. degrees is decidable. For example,
Kleene and Post [55] showed that every finite partial ordering is embeddable into
the c.e. degrees, and so that the 1-quantifier theory of the c.e. degrees is decid-
able. Deciding 2-quantifier questions involves lattice embeddings and extensions of
embeddings.

All distributive finite lattices are embeddable into the c.e. degrees (Thoma-
son [96], and independently Lerman, unpublished). All non-distributive lattices
contain copies of one of the two following lattices:

M5 N5

Figure 1. The two basic non-distributive lattices

As mentioned, the lattice N5 is non-modular (the relation a_px^bq “ pa_xq^b
fails for some a ď b), and every non-modular lattice contains a copy of N5. The
lattice M5, also known as the 1-3-1 lattice, is modular, and every non-distributive,
modular lattice contains a copy of the 1-3-1 lattice. Both lattices are embeddable
into the c.e. degrees (Lachlan [61]).

The general question of which finite lattices are embeddable into the c.e. degrees
remains open. The 1-3-1 is a significant obstacle, in that a slightly more complicated
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formation, known as the lattice S8 (fig. 2), is not embeddable into the c.e. degrees
(Lachlan and Soare [62]).

Figure 2. The lattice S8.

Thus, the 1-3-1 lattice is “just barely embeddable” in the c.e. degrees. Re-
calling our discussion above about permitting, the next natural question is how
much computational power is required to embed this lattice. The point is that the
embedding of the 1-3-1 lattice is quite complicated. Such an embedding, which is
often done preserving the bottom element, involves the enumeration of three c.e.
sets, A0, A1 and A2, which pairwise form a minimal pair, and pairwise join above
the third. The join and meet requirements interact very badly, and to overcome
the difficulties, Lachlan used what became known as “continuous tracing”. These
difficulties were exploited by Downey [21], who showed that not every c.e. degree
bounds a copy of the 1-3-1 lattice. In that paper, Downey noted that the embedding
of the 1-3-1 lattice seemed to be tied up with multiple permitting in a way that was
similar to non-low2-ness. This intuition was verified by Downey and Shore [35],
who showed that every non-low2 c.e. degree bounds a copy of the 1-3-1 lattice in
the c.e. degrees.

In attempting to synthesize the exact lattice structure which creates the embed-
ding problems, Downey [21] and Weinstein [103] isolated the notion of a critical
triple. A critical triple in a lattice consists of elements a0, a1 and b such that
a0 _ b “ a1 _ b but a0 ^ a1 ď b (fig. 3)

More generally, in an upper semilattice (which may fail to be a lattice), the
meet requirement is replaced by c ď a0, a1 Ñ c ď b. Weinstein also introduced the
notion of a weak critical triple (which we will not use in this manuscript); there
the meet requirement is replaced by c ď a0, a1 Ñ a0 ę b _ c. In the 1-3-1 lattice,
the middle three elements, in any order, form a critical triple. Downey actually
constructed an initial segment of the c.e. degrees in which there are no critical
triples, and Weinstein did the same for weak critical triples.
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a0 b a1

Figure 3. A critical triple.

The notion of non-low2-ness seemed too strong to capture the class of degrees
which bound a copy of the 1-3-1 lattice, but it was felt that something like that
should suffice. On the other hand, Walk [101] constructed an array noncomputable
c.e. degree bounding no weak critical triples, and hence it was already known that
array noncomputability was not enough for such embeddings. In any case it was
presumed that bounding the 1-3-1 lattice is equivalent to bounding a critical triple
(or a weak critical triple). Our main result in this monograph implies that this pre-
sumption is false, and completely characterises the amount of permitting required
to embed the 1-3-1 lattice.

3. Toward the hierarchy of totally α-c.a. degrees

We now turn to discussing two levels of the new hierarchy that we introduce.
Some preliminary ideas and results appear in the companion papers [25, 23], and
some related results appeared after our work was discussed with colleagues. Now
we will discuss these ideas and results together in a mathematically, rather than
historically, coherent way. Later we will discuss in detail the content of this mono-
graph.

3.1. Totally ω-c.a. degrees. In 2005, J. Miller (unpublished) defined a non-
uniform version of the class of array computable degrees. We call a function ω-
computably approximable (ω-c.a.) if it has a computable approximation whose
mind-change function is bounded by some computable function. This is equivalent
to the function being weak truth-table reducible to H1. The notion is widely used
in computability, with applications in algorithmic randomness as well (for example
in [44, 48, 47, 42]).1

This first step toward our new hierarchy is inspired by the above characterisa-
tion of array computable c.e. degrees as those which only contain functions with
computable approximations with mind-change functions bounded by the identity.
This is in some sense a “forced marriage” between two notions of complexity: com-
plexity in terms of Turing degree; and complexity in terms of simplicity of approx-
imations. ω-c.a. functions are in some sense relatively simple, in that we can guess
them with few mistakes; on the other hand, they can be Turing equivalent to 01,
making them as complicated as possible among all ∆0

2 functions when we consider

1The terminology “ω-c.a.” is new. In the literature one usually finds “ω-c.e.”, although
“ω-computable” is also used. In Chapter II below we justify the new terminology.
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Turing reducibility. When we consider approximations of all functions in a Turing
degree, we get a new, useful concept. Thus Miller defined:

Definition 3.1. A c.e. degree is totally ω-c.a. if every function in it is ω-c.a.

Array computability is in a uniform version of this notion: it requires the same
bound on the mind-change function for all functions in the degree.

As discussed, this notion naturally aligns itself with a level of permitting. Recall
that in array noncomputable permitting (previously named “multiple permitting”),
each requirement plans infinitely many attempts at meeting it. Roughly, for the nth

attempt to succeed, it needs n many permissions on numbers associated with this
attempt. This corresponds to the identity bound on the number of mind changes.
In non-totally ω-c.a. permitting, we again set up infinitely many attempts, but
we are allowed to wait to declare how many permissions each attempt requires.
Thus, for example, if the nth attempt is set up at stage s, then we could require s
many permissions; and s could be much larger than n. For each requirement, the
function mapping n to the number of permissions required to meet the nth attempt,
is computable, but different requirements will define different computable functions,
likely with no uniform computable bound on these functions when all requirements
are considered.

Using this notion of permitting, the class of totally ω-c.a. degrees captures the
dynamics of a number of constructions. The first result appeared in [25], in which
the authors, together with R. Weber, proved:

Theorem 3.2. The following are equivalent for a c.e. degree d:

(a) d bounds a critical triple in the c.e. degrees;
(b) d bounds a weak critical triple in the c.e. degrees;
(c) d is not totally ω-c.a.

Note that this theorem shows that the totally ω-c.a. degrees are naturally de-
finable in the c.e. degrees.

In this book we show another equivalence, characterising the dynamics of an
existing construction. It considers presentations of left-c.e. reals in the unit inter-
val r0, 1s. A real is left-c.e. if the left cut it defines in the rationals is c.e. These
reals are the measures of effectively open subsets of Cantor space; equivalently, each
such real equals the sum

ř

σPA 2´|σ| for some prefix-free c.e. set A Ă 2ăω. Such a
set A is called a presentation of the sum, and is always computable from the sum.
However, presentations can be simpler than the sum; in fact, every left-c.e. real
has a computable presentation, even though the left-c.e. real itself may be noncom-
putable. The question is, whether we can always code the complexity of a left-c.e.
real into one of its presentations. In [32], Downey and LaForte answered this ques-
tion negatively in a strong way: they constructed a noncomputable left-c.e. real, all
of whose presentations are computable. The dynamics of coding complexity into
presentations is captured by the totally ω-c.a. degrees:

Theorem 3.3.

(1) If a c.e. degree d is not totally ω-c.a. then there is a left-c.e. real % ďT d
and a c.e. set B ăT % such that every presentation of % is B-computable.

(2) If a left-c.e. real % has a totally ω-c.a. degree then there is a presentation
of % which is Turing equivalent to %.
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For more background and details see Chapter V, where we prove Theorem 3.3.

After our results were announced, Barmpalias and the authors [7] obtained
yet another construction whose dynamics are captured by this class. Their results
concern the interaction of Turing and weak truth-table reducibility. They showed
that a c.e. degree is totally ω-c.a. if and only if every set in that degree is weak
truth-table reducible to a ranked set (equivalently, to a hyperimmune set, or to a
proper initial segment of a computable, scattered linear ordering.) In further work,
Brodhead, Downey and Ng [9] showed that the totally ω-c.a. degrees capture a
finite form of randomness.

Also, Adam Day [17] proved that a c.e. degree bounding a generic set which
could compute an indifferent subset for itself cannot be totally ω-c.a. In his Ph.D.
thesis, McInerney [71] has established similar results relating “multiple genericity”
and “integer valued martingales” to being totally ω-c.a.

In the same way that array computability has become a central area of com-
putability theory and its applications, we are confident that once researchers be-
come sensitized to the combinatorics involving the notion of total ω-c.a.-ness, many
further applications will be found.

3.2. Totally ă ωω-c.a. degrees. As mentioned, contrary to expectation, we
show in this monograph that in the c.e. degrees, bounding critical triples is not
equivalent to bounding the 1-3-1 lattice. Very roughly speaking, the “continuous
tracing” used in the embedding of the 1-3-1 lattice requires layers over layers of
permitting. We now describe the dynamics of the construction, without connecting
them to the requirements; more details will be given in Chapter VII.

The basic cycle in the construction of a critical triple goes as follows. A re-
quirement starts defining a sequence x0, x1, x2, . . . of numbers which it may want
to enumerate into a c.e. sets that we are building. At each stage s, we choose an-
other number xs and add it to the list. Then, possibly, at some stage t, a primary
Σ1 event happens (the realisation of a follower), and we want to enumerate these
numbers into the sets, starting with xt and working backwards. For each such
number we need to wait for a secondary Σ1 event (a new length of agreement of
a minimal pair requirement). The requirement is met when the first number x0 is
enumerated. In a permitting argument, each such enumeration needs permission,
so to meet the requirement we need t many permissions. This kind of permitting
is precisely the kind given by non-totally ω-c.a. degrees.

In the 1-3-1 embedding, though, the number of minimal pair requirements
stronger that the one we are looking at makes the process more complicated. If
there is just one such requirement to contend with, the behaviour is just like the
critical triple embedding. If there are two, though, the process is as follows:

(a) Define a sequence x0, x1, x2, . . . , adding a new number at each stage.
(b) When the primary Σ1 event happens, start with xt, and repeat the fol-

lowing t times:
(i) If we are currently dealing with xj (for j ď t), start appointing a

sequence yj0, y
j
1, y

j
2, . . . , adding a new number at each stage.

(ii) When a secondary Σ1 event happens at some stage s “ sj , say, we

start enumerating the numbers yjs, y
j
s´1, . . . , each time waiting for

some tertiary Σ1 event.
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(iii) When all numbers yji for i ă sj have been enumerated, we also enu-
merate xj , and repeat the cycle with xj´1. If j “ 0, the requirement
is met.

When dealing with three minimal pair requirements, we add a layer:

(a) Define a sequence x1, x2, . . . , adding a new number at each stage.
(b) When the primary Σ1 event happens, start with xt, and repeat the fol-

lowing t times:
(i) If we are currently dealing with xj , start appointing a sequence

yj0, y
j
1, y

j
2, . . . , adding a new number at each stage.

(ii) When a secondary Σ1 event happens at some stage s “ sj , start with
yjs, and repeat the following s times:

(1) If we are currently dealing with yji (for i ă sj), we appoint a

sequence zj,i0 , zj,i1 , zj,i2 , . . . , adding a new number at each stage.
(2) When a tertiary Σ1 event happens, at some stage r “ rj,i, we

start enumerating the numbers zj,ir , z
j,i
r´1, . . . , each time waiting

for a quaternary Σ1 event.
(3) When all numbers zj,ik have been enumerated, we also enumer-

ate yji , and repeat the cycle with yji´1. If i “ 0 then we exit
this cycle.

(iii) We enumerate xj ; we repeat the outer cycle with xj´1. If j “ 0, the
requirement is met.

How many permissions are needed to meet the requirement? With two minimal
pair requirements constraining us, we need t` s0` s1` ¨ ¨ ¨ ` st many permissions;
with three, we need

t`

s0 ` r0,0 ` r0,1 ` r0,2 ` ¨ ¨ ¨ ` r0,s0`

s1 ` r1,0 ` r1,1 ` r1,2 ` ¨ ¨ ¨ ` r0,s1`

...

st ` rt,0 ` rt,1 ` rt,2 ` ¨ ¨ ¨ ` rt,s
t

.

We come now to the key insight. The real question is not how many permissions
are required, but what is the reason that the process of meeting a requirement
requires only finitely many steps. And the answer to the latter question is that
we can attach a transfinite ordinal number to the process, and count down the
ordinal along with the steps. With two minimal pair requirements, we start with
the ordinal ω2. When stage t is discovered, we go down to ωpt ` 1q. When st is
discovered, we descend to ωt` st, and then decrease by 1 each time we enumerate
another yti . When yt0 is enumerated, we are at ωt; when st´1 is discovered, we do
down to ωpt ´ 1q ` st´1, and repeat. When three minimal pair requirements are
present, we need to start at ω3; then we go down to ω2pt` 1q, then ω2t`ωpst` 1q,

then ω2t` ωst ` rt,s
t

, then decrease by 1 each time some zt,s
t

k is enumerated, and

so on. Each time an inner cycle is finished (we enumerate some yji ) we go past some
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multiple of ω; each time an outer cycle is finished (we enumerate some xj) we go
past some multiple of ω2.

In terms of permitting, the corresponding notion comes from Ershov’s hierarchy
of ∆0

2 functions. We give exact details in Chapter II, but informally, for a com-
putable ordinal α, an α-computable approximation is a computable approximation
xgsy of a ∆0

2 function g equipped with a counting down α which witnesses the fact
that gspnq changes only finitely many times: it is a uniformly computable sequence
xosy of functions from N to α such that for all n, ospnq ă α, os`1pnq ď ospnq, and
if gs`1pnq ‰ gspnq then os`1pnq ă ospnq. The function g is called α-computably
approximable, or α-c.a. Note that for α “ ω the notion coincides with the defi-
nition above. We thus see that in the 1-3-1 embedding, very roughly, to meet a
requirement which has to contend with n stronger minimal pair requirements, we
need permission from a function which is not ωn-c.a. Thus we define:

Definition 3.4. A c.e. degree is totally ă ωω-c.a. if every function in it is ωn-c.a.
for some n.

And the main theorem in this monograph, which realises the intuitive descrip-
tion above, is:

Theorem 3.5. A c.e. degree bounds a copy of the 1-3-1 lattice if and only if it
is not totally ă ωω-c.a.

Note that as above, Theorem 3.5 shows that the class of totally ă ωω-c.a.
degrees is naturally definable in the c.e. degrees.

Non-uniform anti-permitting arguments. When we show that a class of degrees
captures the dynamics of a construction (such as we do in Theorems 3.2 and 3.5) the
argument has two parts: a permitting argument, which shows that the construction
can be performed below a degree which permits accordingly; and an anti-permitting
argument, which shows the converse. The latter is not a priority argument; we
usually have different attempts at constructing objects which give that direction
of the theorem, but these have very little interaction with each other. On the
other hand, there is a certain non-uniformity to the construction, in that one of the
attempts will succeed, but we cannot computably tell which. In the case of totally
ă ωω-c.a. degrees, we have ω levels of non-uniformity, which means that even
though no injury occurs, only the oracle Hpωq can tell which of the constructions
we performed actually succeeds. This kind of argument, which we hinted at in [23],
is presented in this monograph (in Chapters VI and VII) in full for the first time.
We believe that it will have wider applications.

3.3. The hierarchy of totally α-c.a. degrees. We have characterised the
degrees which bound critical triples and degrees which bound a copy of the 1-3-1
lattice; but we have not yet argued that these classes are distinct, that is, that
there is a degree which bounds a critical triple but not a copy of the 1-3-1. This
will come out of a general investigation into a hierarchy of classes of degrees. The
two classes under discussion are two levels of this hierarchy.

Armed with the definition of α-c.a. functions (which as discussed, will require
clarification, which we give in Chapter II), we can extend the definitions above
and define a degree to be totally α-c.a. if every function in it is α-c.a.; and more
generally, to be totally ă α-c.a. if every function in it is β-c.a. for some β ă α.
All such degrees are low2. In the first part of this monograph, we give a detailed
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investigation of these classes, and in particular we find which are the proper levels
of the hierarchy. For example, we show:

‚ There is a totally α-c.a. degree which is not totally β-c.a. for any β ă α
if and only if α is a power of ω.

‚ There is a totally ă α-c.a. degree which is not totally ă β-c.a. for any
β ă α if and only if α is a limit of powers of ω.

This, in particular, shows that there are ω many distinct levels between the totally
ω-c.a. degrees and the totally ă ωω-c.a. degrees.

4. The contents of this monograph

In the first part of the monograph, we introduce and investigate our new hier-
archy.

In chapter II, we give a rigorous treatment of the notion of α-c.a. functions.
The main issue is to properly define what we mean by a computable function o
from N to α, which is required for the definition of α-computable approximations.
Naturally, to deal with an ordinal α computably, we need a notation for this ordinal,
or more generally, a computable well-ordering of order-type α. To form the basis
of a solid hierarchy, the notion of α-c.a. should not depend on which well-ordering
we take, rather it should only depend on its order-type. Thus we cannot consider
all computable copies of α. Rather, we restrict ourselves to a class of particularly
well-behaved well-orderings, in a way that ensures that they are all computably
isomorphic. For example, when considering copies of ω2, we must compute not
only the collection of limit points and the successor function, but we also need to
know which copy of ω inside ω2 is which. In general, we need the Cantor normal
form to be computable. This turns out to be sufficient for small enough ordinals;
we develop the theory for ordinals α ď ε0. The theory can be pushed further, but
not all the way up to ωCK1 ; we do not pursue such extensions here.

Having defined α-c.a. functions, we also (in Section II.3) relate these functions
to iterations of the bounded jump (the jump inside the weak truth-table degrees).
This extends and solidifies work by Coles, Downey and LaForte [15], and inde-
pendently Anderson and Csima [3]. Extending the familiar result for ω, we show
(Theorem II.3.11) that a function is ωα-c.a. if and only if it is weak truth-table
reducible to the αth iteration of the bounded function jump; an analogous result
holds for sets.

Having defined α-c.a. functions, in chapter III we investigate the hierarchy of
totally α-c.a. degrees. As mentioned above, we show precisely when this hierarchy
collapses (Theorem III.2.1), and refine this hierarchy when we consider totally ă α-
c.a. degrees (Theorem III.4.2). We further consider uniform versions of our classes.
Recall that the array computable degrees were a uniform version of the totally ω-c.a.
degrees, in that we took a single computable bound on the mind-change function of
approximations of functions in the degree. We find the right formulation that gen-
eralises this to define uniformly totally α-c.a. degrees, and show (Theorem III.3.5)
how they fit in our hierarchy. For a general picture, see fig. III.3.

4.1. Maximality. It is not common to find maximal elements of classes in
the c.e. degrees; usually, density prevails. However, in Chapter IV we show that
at every level of our main hierarchy there are maximal degrees (Theorem IV.1.1).
Thus, for example, there are maximal degrees with respect to not bounding a critical
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triple, namely, maximal totally ω-c.a. degrees. Since the totally ω-c.a. degrees are
naturally definable, we obtain a naturally definable antichain in the c.e. degrees; the
only previously known such antichain consisted of the maximal contiguous degrees
(Cholak, Downey and Walk [14]).

On the other hand, we show (Theorem IV.2.1) that maximality cannot go too
far, that is, to the next level. For example, no totally ω-c.a. degree can be maximal
totally ω2-c.a. A corollary of the argument shows that there are no maximal totally
ă ωω-c.a. degrees, that is, no degrees maximal with respect to not bounding a 1-3-1.

We remark that in further work with Katherine Arthur [5] we investigate
bounding by maximal degrees. For example, there are totally ω-c.a. degrees
bounded by no such maximal degrees. The general picture is interesting. We
suspect that in general, the following holds:

‚ Let α ď β ď ε0 be powers of ω. Then every totally α-c.a. degree is
bounded by a maximal totally β-c.a. degree if and only if β ě αω.

Further questions consider collapse of our hierarchy in upper cones. Theorem IV.2.1
implies that every totally ω-c.a. degree is bounded by a strictly greater degree which
is totally ω2-c.a. However we do not know if we can always make that degree not
totally ω-c.a. The best result so far, which appears in [5], implies that every totally
ω-c.a. degree is bounded by a totally ω4-c.a. degree which is not totally ω-c.a. Is it
ω2, or ω3? We cannot yet tell.

4.2. Calibrating dynamics of constructions. The second part of the
monograph consists of Chapters V, VI and VII, in which we discuss and calibrate
the dynamics of three different constructions. In Chapter V we prove Theorem 3.3
about presentations of left-c.e. reals. In Chapter VII we prove our main Theo-
rem 3.5. In Chapter VI we consider m-topped degrees, continuing [23]. The notion
of m-topped degrees comes from a general study of the interaction between Turing
reducibility and stronger reducibilities among c.e. sets. For example, this study
includes the contiguous degrees. A c.e. Turing degree d is m-topped if it contains a
greatest degree among the many-one degrees of c.e. sets in d. Such degrees (other
than 01) were constructed Downey and Jockusch [29]. They are all low2. In [23]
we showed that there are totally ωω-c.a. m-topped degrees. Here we show that this
is the best possible: no m-topped degree is totally ă ωω-c.a. (Theorem VI.0.1).
We remark though that in this case we cannot hope to get full equivalence: we
cannot prove that every degree which is not totally ă ωω-c.a. bounds an m-topped
degree. This is because m-topped degrees cannot be low, whereas every level of
our hierarchy contains both low degrees and degrees which are low2 but not low.

4.3. Promptness. One can ask, regarding the embedding of the 1-3-1 lattice,
what it would take to get an embedding preserving the bottom, that is, an embed-
ding whose bottom degree is 0 (as is obtained in Lachlan’s original construction).
We discuss this in Chapter VIII, where we introduce prompt versions of all levels
in our hierarchy. This generalises the already familiar notion of prompt permitting,
which is the prompt version of simple permitting. Prompt array noncomputable
permission, for example, allows us to construct a pair of separating classes whose
elements form minimal pairs (Theorem VIII.2.1); whereas traditional (non-prompt)
array noncomputable permission only gives Turing incomparability [30]. Similarly,
a degree which is promptly not totally ă ωω-c.a. bounds a copy of the 1-3-1 lattice
with bottom 0.
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This however cannot be reversed: every high degree bounds a copy of the 1-3-1
lattice with bottom 0, and there are high degrees which are not promptly simple
(let alone promptly non totally ă ωω-c.a.) Informally what this says is that there
are at least two ways to get such an embedding: either by quickly getting the precise
number of permissions required; or by getting many permissions (cofinitely many),
in which case we can wait for the permissions and don’t need them promptly.

It would be interesting to find a common generalisation.

5. An application to admissible computability

Combined with results of the second author, our work has an application to
admissible computability. This is a generalisation of traditional computability to
ordinals beyond ω. In [46] it is shown that for any admissible ordinal α, the α-
c.e. degrees are not elementarily equivalent to the c.e. degrees. This was done in
cases, depending on the proximity of α to ω. In one case the separation between
the theories is not natural but relies on coding models of arithmetic. However one
result is:

Theorem 5.1 ([46]). Let α ą ω be an admissible ordinal, and let a be an
incomplete α-c.e. degree. The following are equivalent:

(1) a computes a cofinal ω-sequence in α.
(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result. The
basic idea is the following. Consider again the dynamic aspect of the embedding
of a critical triple which we discussed above. We start by appointing elements
x0, x1, x2, . . . , adding one at each stage. When the primary Σ1 event happens
(the follower is realised), it is important (because of use considerations) that we
attempt to enumerate the elements xj starting with the last number xt and working
backwards.

Trying to do this when time goes beyond ω presents a completely new problem:
after ω many stages, we will have elements xj for all j ă ω, that is, we will not
have a last element. We cannot then peel it back, each step removing only the last
element. It turns out that this blockage is fundamental. The only case it might
be possible for a degree a to bound a critical triple is if it itself can see that α is
far from being a regular cardinal — if it can essentially re-order time and space to
order-type ω, so that the construction can be (at least after the fact) seen to have
taken ω steps, avoiding infinite sequences of numbers. In one direction, effectively
closed and unbounded sets are used to show that this is necessary. In the other
direction, a fine-structural result of Shore’s [87] says that an incomplete degree
of computable cofinality ω must be high, and can compute a bijection between α
and ω. Working below such a degree, we can translate back to ω-computability,
and use non-low2 permitting to embed the 1-3-1 lattice (for a technical reason, we
cannot quite use high permitting).

To sum, what this says is that once we go beyond ω, the fine distinctions
between totally ω-c.a. degrees and totally ă ωω-c.a. degrees completely disappear.
Combined with the current work, this gives us a single, natural sentence which
separates the elementary theory of the c.e. degrees from the theory of the α-c.a.
degrees for any admissible α ą ω.
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Theorem 5.2. Let α ě ω be admissible. The following are equivalent:

(1) There is an incomplete α-c.e. degree which bounds a critical triple but not
the 1-3-1 lattice.

(2) α “ ω.

6. Notation and general definitions

We recap some notions that we discussed above, and introduce terminology
and conventions that will be used throughout the monograph. First, though, we
comment on the expected mathematical background a reader will need. We assume
that the reader has mastered the basics of computability theory, up to an including
basic finite-injury priority arguments, in particular the Friedberg-Muchnik theo-
rem, and basic infinite-injury priority constructions, mainly the construction of a
minimal pair of c.e. degrees, as performed on a priority tree. For years, the stan-
dard reference in this area has been Soare’s [91]. Other possible sources are the
second chapter of [27], the first chapter of [74], Cooper’s [16], Odifreddi’s [77], or
Steffen Lempp’s unpublished notes on priority arguments in computability theory,
available on his website. We also assume some basic information on ordinals and
ordinal arithmetic; any standard set theory text would be more than sufficient.

6.1. Computable approximations and enumerations. A computable ap-
proximation for a function f : ω Ñ ω is a uniformly computable sequence xfsysăω
of functions such that for all x, for almost all s, fspxq “ fpxq. In other words,
f “ lims fs when we equip ω with the discrete topology. Shoenfield’s limit lemma
[84] states that a function f is ∆0

2-definable if and only it is computable from
the halting set H1 if and only if it has a computable approximation. If A is a
set (a subset of ω, identified with an element of Cantor space) then a computable
approximation of A is a sequence of sets.

A computable enumeration of a c.e. set A is a computable, Ď-increasing se-
quence of finite sets xAsy such that A “

Ť

sAs. We can also think of a computable
enumeration as a computable approximation of A, again by taking characteristic
functions. We say that a number x is enumerated into As if x P AszAs´1.

6.2. Turing functionals. A (Turing) functional is a c.e. set of triples xσ, x, yy
consisting of a finite sequence σ of natural numbers and a pair of natural numbers x
and y. We consider such triples as axioms, and sometimes write them as σ ÞÑ px, yq.
If f : ω Ñ ω and Φ is a functional, then we define the multi-valued function (i.e.,
relation) Φpfq Ď ωˆω by letting Φpf, xq “ y if there is some finite σ ă f such that
the axiom σ ÞÑ px, yq is in Φ. We write Φpf, xqÓ for x P dom Φpfq and Φpf, xqÒ for
x R dom Φpfq.

In general we allow functionals, especially the ones that we build, to be incon-
sistent. That is, we allow them to contain contradictory axioms: a pair of axioms
σ ÞÑ px, yq and τ ÞÑ pz, wq such that σ and τ are comparable (that means that
σ ď τ or τ ď σ), x “ z but y ‰ w. A functional Φ is called consistent relative to
an oracle f if Φpfq is a partial function, i.e., is not multi-valued. A functional is
consistent if and only if it is consistent relative to every oracle.

The following are equivalent for f, g : ω Ñ ω:

(1) there is a consistent functional Φ such that Φpfq “ g;
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(2) there is a functional Φ, consistent relative to f , such that Φpfq “ g;
(3) g ďT f .

If xΦsy is a computable enumeration of a functional Φ, then each Φs is also a
functional. If xfsy is a computable approximation of a function f : ω Ñ ω, then the
finite multi-valued function Φspfsq can be effectively obtained from s. If for all s,
Φs is consistent relative to fs, then Φ is consistent relative to f . Note that if further,

Φpfq is a total function, then we can extend xΦspfsqy to a computable approximation of Φpfq, since

xdom Φspfsqy is uniformly computable. When the notation Φspfsq becomes unwieldy, we
sometimes write Φpfqrss, and in general may use Lachlan’s square bracket notation.

Suppose that Φ is a functional which is consistent relative to an oracle f . If
x P dom Φpfq, we also refer to Φpf, xq “ y as a “computation”. Let σ be the
shortest initial segment of f for which σ ÞÑ px, yq is an axiom in Φ. Often in fact
there will be a unique such initial segment. The string σ determines the use of the
computation, denoted by ϕpf, xq (and when f is clear from the context, by ϕpxq).
We will use two conflicting notions:

‚ If either f or Φ are given, then the use is the length of σ.
‚ If both f and Φ are built by us then we let the use be |σ|´1, the “greatest

number queried during the computation”. In this case f is usually a
c.e. set A. The idea is that we may want to void the computation by
enumerating the use ϕpxq into A.

If xΦsy is a computable enumeration of a Turing functional Φ, and xfsy is a
computable approximation of a function f (and again we assume that for all s,
Φs is consistent relative to fs), s ă ω and x P dom Φspfsq, then we say that the
computation Φspfs, xq is destroyed (or injured) at stage s` 1 if σ ć fs`1, where σ
as above is the shortest axiom applying to f giving the computation at stage s.
That is, if fs`1 æu‰ fs æu where u “ ϕspfs, xq is the use of the computation, in the
case in which either f or Φ are given; if both are built by us, then the computation
is destroyed if fs æu`1‰ fs`1 æu`1, and as described above, this will often happen
because we enumerate u into fs`1.

In contrast, we say that a computation Φspfs, xq “ y is f -correct if σ ă f .
The fundamental fact about Turing computations, used without mention through-
out computability theory, is that x P dom Φpfq if and only if there is a stage s
(equivalently, for almost all stages s) such that x P dom Φspfsq by an f -correct
computation. When working with c.e. sets we often use the fact that correct com-
putations never go away: if xAsy is a computable enumeration of a c.e. set A, and
ΦspAs, xq is an A-correct computation, then for all t ě s, x P dom ΦtpAtq by the
same computation.

The following lemma is used when we build functionals which apply to c.e. sets
that we enumerate.

Lemma 6.1. Let xΦsy be a computable enumeration of a functional Φ, and let xAsy
be a computable enumeration of a c.e. set A. Suppose that for all s,

(1) if an axiom σ ÞÑ px, yq is enumerated into Φs, then σ ă As;
(2) for each x, at most one axiom σ ÞÑ px, yq is enumerated into Φs.

Let s ă ω, and suppose that Φs is consistent for As. Suppose that for all x ă ω,

(3) If an axiom σ ÞÑ px, yq is enumerated into Φs`1, and x P dom ΦspAsq,
then some number u ď ϕspAs, xq is enumerated into As`1.

Then Φs`1 is consistent for As`1.
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Hence if conditions (1)–(3) hold at every stage s, then Φ is consistent for A.
Note that usually Φ will not be consistent for all oracles: we could void a compu-
tation ΦspAs, xq by enumerating u “ ϕspAs, xq into As`1, and then define a new
computation Φs`1pAs`1, xq with smaller use, so Φs`1 may be inconsistent for As.

Convention 6.2. We often assume that for a given consistent functional Φ, for any
oracle f , dom Φpfq is an initial segment of ω. That is, we require that if σ ÞÑ px, yq
is in Φ, then for all x1 ă x there is some σ1 ď σ and some y1 such that σ1 ÞÑ px1, y1q
is also in Φ. We simply prevent σ ÞÑ px, yq from entering Φ until we see the other
necessary axioms.

In this situation we also assume that if xΦsy is a computable enumeration of a
Turing functional Φ, then for all s and f , dom Φspfq is an initial segment of ω.

The point is that if we are only interested in total functions computable from
an oracle f , then we can restrict ourselves to functionals of the type described.

We let xΦey be some enumeration of all consistent functionals; associated with
which we are given uniformly computable enumerations xΦe,sy of Φe.

Convention 6.3. We sometimes identify natural numbers with the von Neumann
ordinals isomorphic to them; that is, we identify the natural number n with the set
t0, 1, 2, . . . , n ´ 1u. In particular, if for some functional Φ and oracle f , dom Φpfq
is an initial segment of ω (per Convention 6.2), then we write x ă dom Φpfq for
x P dom Φpfq, and x ď dom Φpfq for t0, 1, . . . , x´ 1u Ď dom Φpfq.

Functionals which take more than one oracle are treated in a similar fashion.
For example, when taking two oracles, axioms will be of the form pσ, τq ÞÑ px, yq.
Usually, for a pair of oracles f, g in which we are interested, for each x there will
be at most one pair of strings σ ă f and τ ă g such that pσ, τq ÞÑ px, yq is in the
functional Φ we are building or examining. These determine the f -use and the g-
use of the computation Φpf, g, xq, according to the notational convention discussed
above. When Φ is not built by us we often assume that the f -use and the g-use are
the same, and that common value is referred to simply as the use ϕpf, g, xq of the
computation.

6.3. Priority arguments and tree constructions. In our constructions we
keep the convention of small numbers.

Convention 6.4. At stage s of a construction, all numbers played by the “oppo-
nent” are bounded by s. These are the values of functions that are not defined by
us during the construction.

On the other hand, the constructions would often call on us to define new
values for functions that are large. This means that the new values are picked to
be numbers that are larger than any other number previously used or observed in
the construction, including the stage number.

Most terminology we will use in priority constructions is common. We will
attempt to meet requirements. Positive requirements are those which can be met
by enumerating numbers into c.e. sets we are enumerating. Negative requirements
are met by imposing restraint on other actors. The numbers enumerated into
the c.e. sets are sometimes called followers. In the standard Friedberg-Muchnik
construction, for example, a requirement attempting to ensure that ΦpAq ‰ B will
appoint a follower x, which means choose some number x (that will not be used by
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any other requirement), wait until we see that ΦpA, xqÓ“ 0, and then enumerate it
into B. The prototypical negative requirements, on the other hand, are met in the
Lachlan-Yates minimal pair construction. In most of our constructions, restraint
will be imposed by initialising other requirements. Typically, initialising a positive
requirement means that any follower x it appointed is cancelled : this means that
the number x will not be involved in the construction any longer. Any new follower
will be chosen to be large.

Tree constructions, namely priority constructions done with the aid of a tree
of strategies, are now standard; a reference is Chapter XIV of [91]. Elements of
the tree are called strategies, or nodes; these are finite sequences of symbols. To
describe the tree of strategies, we give two pieces of information:

(a) An association of requirements for nodes; we say that a node works for
the requirement associated with it. Often, but not always, all nodes of a
given level of the tree work for the same requirement.

(b) For nodes working for some requirement, the list of outcomes of these
nodes.

The tree is then defined recursively. The empty node is always on the tree of
strategies; if a node σ has already been determined to lie on the tree of strategies,
and a requirement R has been associated with it, then the immediate successors of
σ on the tree are the nodes of the form σ ô, where o is a possible outcome for nodes
working for R.

The collection of possible outcomes of any node will be linearly ordered; we say
that an outcome o is stronger than an outcome o1 if o ă o1. This ordering induces
a linear ordering of the tree of strategies, by taking a lexicographic amalgamation
of the orderings of outcomes: σ ă τ if σ ă τ , or if there are η, o and o1 such that
σ ě η ô, τ ě η ô1, and o ă o1. We say that a node σ is stronger than a node τ
if σ ă τ , and that a node σ lies to the left of a node τ if σ ă τ but σ ć τ . We
sometimes write σ ăL τ ; this has nothing to do with the constructible universe.

At any stage s, the construction describes the (finite) collection δs of nodes
that are accessible at stage s. In our constructions this will always be an initial
segment of the tree of strategies, linearly ordered by extension of nodes. We will
not use constructions with links. Usually, the empty node xy is accessible at every
stage.

We then say that a node σ lies on the true path δω if there are infinitely many
stages s of the construction such that σ P δs (that is, such that σ is accessible at
stage s), but the same is not true for any node τ that lies to the left of σ. The true
path δω will be a linearly ordered initial segment of the tree of strategies. We will
need to prove that the true path is infinite.

As with simpler constructions, tree constructions will involve initialisations, this
time of nodes rather than of requirements. Again, when a node is initialised, all
parameters associated with the node (such as followers) are removed (or cancelled),
and new ones will have to be defined, either immediately, or more often, at the next
stage at which the node is accessible. When a stage ends, every node which lies to
the right of an accessible node (a node in δs) is initialised. Often, but not always,
nodes extending the longest node in δs are also initialised at the end of stage s. We
ensure that whenever a node σ is initialised, and τ is a node weaker than σ, then
τ is also initialised at the same time.
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We say that the construction is fair to a node σ if σ is initialised only finitely
many times (i.e., at only finitely many stages of the construction). The main
fairness lemma for each construction will state that the construction is fair to every
node on the true path δω. If σ is a node on the true path and the construction is
not fair to σ then there will be some node τ ă σ on the true path which initialises σ
at infinitely many stages. This is because initialisation has to respect the priority
ordering; no node weaker than σ can initialise σ.

Other standard conventions of priority constructions are employed without
mention. For example, we use “stickiness” or “persistence” of parameters: if, for
example, a requirement R or strategy σ has a follower at some stage s, and the
requirement or node is not tampered with (e.g., initialised) at stage s`1, say, then
that follower is still considered to be a follower for the requirement or strategy at
stage s` 1.

A remark on referencing. We number theorems, propositions etc. within
sections. Inside a chapter, for simplicity, we omit the chapter number when refer-
ring to the theorem, thus: Theorem 3.5. In other chapters, we will refer to it as
Theorem I.3.5.





CHAPTER II

α-c.a. functions

Ershov ([40], see also [4]) extended the hierarchy of differences of c.e. sets into
the transfinite, based on Kleene’s notations for computable ordinals. Unfortunately,
the levels of this hierarchy depend heavily on the choice of notation. To get around
this problem, based on ideas from [15], we focus on lower levels of the hierarchy,
using canonical well-orderings. We then, extending [3], relate these lower, canonical
levels, to iterations of a jump in the weak truth-table degrees.

We remark that Kleene’s notations suffice for the purposes they were designed
for. For example, Spector’s theorem states that the iteration of the Turing jump
along a computable ordinal does not depend on the choice of notation for that
ordinal. But as soon as we have finer distinctions such as those of the present
monograph, we need more sensitive notions of notations. The fact that ours robustly
and invariantly capture the combinatorics of many constructions shows that they
seem to be good choices.

1. R-c.a. functions

Let R “ pR,ăRq be a computable well-ordering of a computable set R. An
R-computable approximation of a function f is a computable approximation xfsy
of f , equipped with a uniformly computable sequence xosysăω of functions from ω
to R such that for all x and s:

‚ os`1pxq ďR ospxq; and
‚ if fs`1pxq ‰ fspxq, then os`1pxq ăR ospxq.

The sequence xosysăω, together with the well-foundedness of R, witnesses the fact
that the approximation xfsy indeed reaches a limit.

Definition 1.1. A function f : ω Ñ ω is R-computably approximable (or R-c.a.)
if it has an R-computable approximation.

The following equivalent formulation is sometimes taken as a definition:

Proposition 1.2. A function f : ω Ñ ω is R-c.a. if and only if there is a partial
computable function ψ such that for all x, fpxq “ ψpx, zq for the R-least z such
that px, zq P domψ.

(In particular, the totality of f implies that for all x ă ω there is some z P R
such that px, zq P domψ.)

Proof. Let xfs, osy be an R-computable approximation of f . For x ă ω and
z P R, let ψpx, zq “ fspxq for any s ă ω such that ospxq “ z; if there is no
such s, we let ψpx, zqÒ. The fact that fspxq-changes have to be accompanied by an
ospxq-change implies that ψ is well-defined. Then ψ witnesses that f is R-c.a.

25
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Suppose that ψ is a partial computable function as in the proposition. Define
a uniformly computable sequence xosy as follows. Let A “ domψ. Since A is c.e.,
let xAsy be some effective enumeration of A. Since f is total, for all x ă ω there is
some tx ă ω such that px, zq P Atx for some z P R. For any x ă ω and s ă ω we
let ospxq be the R-least z such that px, zq P Amaxts,txu.

Since At Ď As whenever t ď s, we have os`1pxq ď ospxq for all x and s. Let
fspxq “ ψpx, ospxqq. Then xfs, osy is an R-computable approximation of f . �

1.1. R-c.e. sets. For sets, Ershov refined the hierarchy of R-c.a. functions to
levels resembling the arithmetic hierarchy. For z P R, let Ræz“ tw P R : w ăR zu,
which is a computable R-initial segment of R; and let R æz be the restriction of
ăR to R æz. Recall that an ordinal is even if it is of the form α ` 2n for some
limit ordinal α (or α “ 0), where n ă ω; and odd otherwise. We say that R
is even if the order-type otppRq is even, and odd otherwise; and we say that an
element z P R is R-even if R æz is even, and R-odd otherwise. If R is even, we
write paritypRq “ 0; otherwise we write paritypRq “ 1. Similarly, we write
parityRpzq “ paritypRæzq.

Definition 1.3. Suppose that the collection of R-even elements of R is computable.
A set A Ď ω is R-c.e. if there is a uniformly c.e. sequence xAzyzPR such that:

‚ If z ăR w then Az Ď Aw; and
‚ for all x ă ω, x P A if and only if x P

Ť

zPRAz, and for the R-least z such
that x P Az we have parityRpzq ‰ paritypRq.

We let Σ´1
R denote the collection of all R-c.e. sets.

The definition should be understood dynamically. Indexed by some late ele-
ment z of R we see a number x enter the “playground”

Ť

w Aw. We then move
backwards in R, so to speak, and at each step we change our mind about whether
x is in the target set or not. Thus, this notion extends the finite difference hierar-
chy. For n ě 1, let n also denote a computable linear ordering which has exactly n
elements. Then a set is 1-c.e. if it is c.e., is 2-c.e. if it is the (set theoretic) difference
of two c.e. sets (also known as d.c.e.), and in general, is pn ` 1q-c.e. if it is of the
form AzB, where A is c.e. and B is n-c.e.

Ershov lets Π´1
R be the collection of complements of R-c.e. sets, and lets

∆´1
R “ Σ´1

R XΠ´1
R be the collection of sets which are both R-c.e. and co-R-c.e.

Proposition 1.4. Suppose again that the parity function parityR is computable.
Then every set in ∆´1

R is R-c.a. If further the order-type of R is a limit ordinal,

then ∆´1
R coincides with the collection of R-c.a. sets.

Proof. Suppose that A P ∆´1
R . Suppose, for simplicity of notation, that R is

even; the odd case is identical. Let xAzyzPR witness that A P Σ´1
R , and xBzyzPR

witness that A P Π´1
R . Define a partial computable function ψ as follows. Let x ă ω

and z P R. If x R Az Y Bz, we let ψpx, zqÒ. Otherwise, x shows up first in either
Az or Bz.

‚ If x shows up first in Az, then we let ψpx, zq “ parityRpzq.
‚ If x shows up first in Bz, then we let ψpx, zq “ 1´ parityRpzq.

Fix x ă ω. Then x P
Ť

zPRpAz Y Bzq because A Ď
Ť

z Az and ωzA Ď
Ť

z Bz.
Hence there is some z P R such that px, zq P domψ. Let z be the R-least element
of R such that px, zq P domψ. If x P Az, then z is the R-least such that x P Az; so



II.1. R-C.A. FUNCTIONS 27

x P A if and only if parityRpzq ‰ paritypRq “ 0. So if x shows up first in Az, then
we let ψpx, zq “ 1 if and only if parityRpzq “ 1 if and only if Apxq “ 1. If x P Bz,
then z is R-least such that x P Bz, and so x R A if and only if parityRpzq “ 1; so
if x shows up first in Bz, then we let ψpx, zq “ 0 if and only if parityRpzq “ 1 if
and only if Apxq “ 0. Overall, we see that for all x, Apxq “ ψpx, zq for the R-least
z such that px, zq P domψ. By Proposition 1.2, A is R-c.a.

For the other direction, it is sufficient to show that every R-c.a. set is in Σ´1
R ; the

result would follow from the fact that the complement of an R-c.a. set is also R-c.a.
Let A be an R-c.a. set; by Proposition 1.2, let ψ be a partial computable function
such that for all x, Apxq “ ψpx, zq for the R-least z such that px, zq P domψ. We
assume now that R has no greatest element. In particular, R is even.

We define the sequence xAzyzPR which will show that A P Σ´1
R . Let

px, zq P domψ.

‚ If ψpx, zq “ parityRpzq then we let x P Aw for all w ěR z.
‚ If ψpx, zq ‰ parityRpzq then we let x P Aw for all w ąR z.

It is clear that if z ăR w then Az Ď Aw. Let x ă ω. We know that there is
some z P R such that px, zq P domψ. Since R has no greatest element, no matter
what the parity of z is, we enumerate x into some Aw; so x P

Ť

w Aw. Let w be the
R-least element of R such that x P Aw. We want to show that x P A if and only if
w is odd in R, in other words, that Apxq “ parityRpwq.

Let z be the R-least element of R such that px, zq P domψ. Either
ψpx, zq “ parityRpzq, in which case z “ w; or ψpx, zq ‰ parityRpzq, in which
case w is the R-successor of z. In the first case,

Apxq “ ψpx, zq “ parityRpzq “ parityRpwq

as required. In the second case,

Apxq “ ψpx, zq “ 1´ parityRpzq “ parityRpwq,

again as required. �

Ash and Knight [6] refer to the sets in ∆´1
R as “R-computable”. However, in

common yet misleading terminology, many authors refer to R-c.a. sets as “R-c.e.”
We prefer to be careful and not confuse the two notions. On a fundamental level, we

believe that “c.e.” denotes the Σ-side of a hierarchy, in this case Σ´1
R , rather than the “ambiguous”

class ∆´1
R . Note that for n ă ω, the standard terminology “n-c.e.” is correct, and indeed refers

to the class Σ´1
n rather than the class ∆´1

n . It is therefore regrettable that many (but not all!)

authors use “ω-c.e.” to denote ∆´1
ω rather than Σ´1

ω .

1.2. Listing R-c.a. functions. For any computable well-ordering R, we can
effectively list all R-c.a. functions. To do this we need to consider a nice class of
pR` 1q-computable approximations. We of course let R` 1 denote a computable
well-ordering extending R by one element at the end.

Definition 1.5. Let R be a computable well-ordering. An pR ` 1q-computable
approximation xfs, osy is tidy if:

‚ For all n, f0pnq “ 0; and
‚ For all n and s, if ospn` 1q P R then ospnq P R.
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The idea is that we have a “partial” R-computable approximation, in that xfsy
is total but we may wait a while to declare the elements of R that we use; while
we wait we let ospnq be the new element beyond R. And further, at every stage
we will have declared our “true ordinals” (elements of R) for an initial segment of
inputs.

Lemma 1.6. If f has a tidy pR` 1q-computable approximation then f is R-c.a.

Proof. Let xgs,msysăω be a tidy pR ` 1q-computable approximation of f .
There are two cases. In the first, for all x there is some s such that mspxq P R. We

say that the approximation is eventually R-computable. We then modify the approximation
xgs,msy by waiting until we see this happen. Formally, for each x we let tpxq be
the least t such that mtpxq P R; we then let, for all x and s, ospxq “ mmaxts,tpxqupxq
and fspxq “ gmaxts,tpxqupxq; xfs, osy is an R-computable approximation of f .

In the second case, for all but finitely many x, ospxq is constant and equals the
extra element of R`1. In that case fpxq “ 0 for all such x, so f is computable. �

It is clear from the proof of Lemma 1.6 that passing from a tidy pR ` 1q-
computable approximation for a function f to an R-computable approximation
for f cannot be done uniformly. Indeed a diagonalisation argument shows that
there cannot be an effective list of R-computable approximations listing all R-c.a.
functions. However we can make a list of tidy pR` 1q-computable approximations
that yields all R-c.a. functions.

Proposition 1.7. There is a computable list xxfes , o
e
sysăωyeăω of tidy pR ` 1q-

computable approximations such that letting fe “ lims f
e
s , the sequence xfeyeăω

lists the R-c.a. functions.

Proof. There is an effective list of all pairs xhs,msy of uniformly computable
sequences of partial functions. We show how to convert any such pair, uniformly,
to a tidy pR ` 1q-computable approximation xfs, osy, such that if xhs,msy is an
R-computable approximation, then limhs “ lim fs.

Fix such xhsy and xmsy. The idea is to define xfsy by copying xhsy with delays,
until we see evidence that a change is allowed. Let 8 denote the extra element
of R` 1. Let x ă ω. We start with f0pxq “ 0 and o0pxq “ 8. Let s ą 0. To define
fspxq and ospxq, we enumerate the graphs of xhsy and xmsy for s many steps. We
let tspxq be the greatest t ď s such that for all r ď t and all y ď x,

‚ at stage s we see that hrpyqÓ and mrpyqÓ;
‚ mrpyq P R, and if r ą 0, mrpyq ďR mr´1pyq;
‚ if r ą 0 and hrpyq ‰ hr´1pyq then mrpyq ăR mr´1pyq.

If there is no such t, then we leave tspxq undefined. If tspxq is defined then we
let fspxq “ htspxqpxq and ospxq “ mtspxqpxq. If tspxq is not defined then we let
fspxq “ 0 and ospxq “ 8. �

Note that restricting our approximations to sets, we also get a listing of all
R-c.a. sets.

Corollary 1.8. The collection of R-c.a. functions is uniformly computable from 01.
That is, there is a uniformly 01-computable sequence xfeyeăω of all R-c.a. functions.

Remark 1.9. The reader may wonder why, in the case that otppRq is a successor
ordinal, we cannot list all R-c.a. functions, each with an R-computable approxima-
tion. After all, now we do not need to guess which ordinal to start with, we always
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start with maxR. However we still need to guess what the initial value of our
approximation is; we allowed f0 to be any computable function. If we require that
f0 is the constant function 0 then we know the initial value but when attempting
to diagonalise are restricted to keep our initial value 0 as well, and so may never
be allowed to diagonalise.

1.3. Effective embeddings and isomorphisms.

Proposition 1.10. Let R and S be computable well-orderings. If there is a com-
putable embedding of R into S, then every R-c.a. function is S-c.a.

Proof. Let j : R Ñ S be an embedding of R into S. Let xfs, osy be an R-
computable approximation. Then xfs, j ˝ osy is an S-computable approximation.

�

Corollary 1.11. Let R and S be computable well-orderings. If there is a com-
putable isomorphism between R and S, then a function is R-c.a. if and only if it
is S-c.a.

1.4. Bounds on mind-change functions. Let xfsysăω be a computable ap-
proximation of a function f . The associated mind-change function is

mxfsypxq “ # ts : fs`1pxq ‰ fspxqu .

For any function g : ω Ñ ω, we say that the approximation xfsy is a g-bounded
approximation if for all x, mxfsypxq ď gpxq, that is, if g majorises mxfsy.

Recall that if A “ pA,ăAq and B “ pB,ăBq are linear orderings, then the
product linear ordering A ¨ B is the right-lexicographic ordering on A ˆ B. Its
order-type is obtained by replacing every point in B by a copy of A.

Proposition 1.12. Let R be a computable well-ordering. A function is ω ¨R-c.a.
if and only it has a computable approximation which is g-bounded for some R-c.a.
function g.

Proof. Let xfsy be a computable approximation of a function f .
Suppose that xfs, osy is an ω ¨R-computable approximation. For any x and s,

let ospxq “ pnspxq, lspxqq P ω ˆR. For any x and s, we let tspxq be the least stage
t ď s such that lspxq “ ltpxq. We then let

gspxq “ ntspxqpxq `# tr ă tspxq : fr`1pxq ‰ frpxqu .

Then xgs, lsy is an R-computable approximation of a bound on mxfsy.
Suppose that we are given an R-computable approximation xgs, lsy for a bound

g on mxfsy. We may assume that for all x and s,

gspxq ě # tr ă s : fr`1pxq ‰ frpxqu ,

since otherwise we can just wait until gtpxq changes at some t ą s. We can therefore
let

nspxq “ gspxq ´# tr ă s : fr`1pxq ‰ frpxqu ,

and ospxq “ pnspxq, lspxqq. If t ă s and lspxq “ ltpxq then gspxq “ gtpxq which
shows that if fs`1pxq ‰ fspxq then os`1pxq ăω¨R ospxq, so xfs, osy is an ω ¨ R-
computable approximation. �
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Since the computable functions are characterised as those functions which are
R-c.a. for R of order-type 1, and since for any such R, ω ¨ R is computably iso-
morphic to ω, we see that Proposition 1.12 generalises the well-known fact that a
function is ω-c.a. if and only if it has a computable approximation whose mind-
change function is bounded by a computable function.

2. Canonical well-orderings and strong notations

Ershov proved the following:

Theorem 2.1. Every ∆0
2 function is R-c.a. for some computable well-ordering

R of order-type ω.

Proof. Let f be a ∆0
2 function. By Shoenfield’s limit lemma, let xfsy be a

computable approximation for f . Let

R “ tpx, sq P ω ˆ ω : s “ 0 or fspxq ‰ fs´1pxqu .

For px, sq and py, tq P R, let px, sq ăR py, tq if x ă y or if x “ y and s ą t. For any
x ă ω let Rx be the collection of pairs px, sq in R; so R is the disjoint union of the
Rx’s, each Rx is finite (as xfspxqy reaches a limit), and the ordering R “ pR,ăRq

orders R0 ă R1 ă R2 ă ¨ ¨ ¨ So otppRq “ ω.
For x, s ă ω, let tpx, sq be the least t ď s such that for all u P rt, ss,

fupxq “ fspxq. For all x and s, px, tpx, sqq P Rx, and so we can let ospxq “ px, tpx, sqq.
It is clear that xfs, osy is an R-computable approximation for f . �

Ershov’s theorem is displeasing as we try to define a hierarchy of complexity
inside the ∆0

2 functions. Its meaning is that calibrating the complexity of a func-
tion f by the length of a computable well-ordering R such that f is R-c.a. is not
very informative: the hierarchy collapses at level ω. The reason for this collapse
is not that all ∆0

2 functions have simple approximations, but that the complexity
of these approximations can be coded into the isomorphism between R and ω. In
other words, if R is complicated then R-c.a. functions may be complicated as well,
even if R is short. In terms of the algebraic complexity of R itself, we notice that
key functions associated with R, such as the predecessor and successor function,
may be far from computable.

One possible solution is to restrict the computable well-orderings to those given
by notations on some Π1

1 path through Kleene’s O. This is less than satisfying on
two accounts. The first is that even though the path may be cofinal in O (so have
notations for every computable ordinal), this does not exhaust all ∆0

2 functions [41].
The other is that there is no canonical way to choose a path through Kleene’s O,
and so any such choice is arbitrary, and different choices give different hierarchies
of functions.

Another way forward is to give up any claim to exhausting all ∆0
2 functions,

but restrict our attention to a particularly well-behaved class of computable well-
orderings. We will require that all orderings in the class that have the same length
are computably isomorphic, so Corollary 1.11 will ensure that we will have a good
notion of α-c.a. functions for some class of computable ordinals α. The criterion
for canonicity of these orderings is the computability of all reasonable associated
functions, such as the predecessor, successor and so on. It turns out that up to ε0,
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the function which encapsulates all the required information is Cantor’s normal
form.

2.1. Cantor normal form. Recall that every ordinal α has a unique expres-
sion as the sum

ωα1n1 ` ω
α2n2 ` ¨ ¨ ¨ ` ω

αknk

where ni ă ω are nonzero and α1 ą α2 ą ¨ ¨ ¨ ą αk are ordinals. Recall also that

ε0 “ sup
!

ω, ωω, ωω
ω

, ωω
ωω

, . . .
)

is the least ordinal γ such that ωγ “ γ, so for all α ă ε0, every ordinal appearing
as an exponent in the Cantor normal form of α is strictly smaller than α.

Let R “ pR,ăRq be a computable well-ordering of order-type ď ε0, and let
| ¨ | : R Ñ otppRq be the unique isomorphism between R and its order-type. The
pullback to R of the Cantor normal form function is the function nfR whose domain
is R and is defined by letting

nfRpzq “ xpz1, n1q, pz2, n2q, . . . , pzk, nkqy

where ni ă ω are nonzero, zi P R, z1 ąR z2 ąR ¨ ¨ ¨ ąR zk, and

|z| “ ω|z1|n1 ` ω
|z2|n2 ` ¨ ¨ ¨ ` ω

|zk|nk.

Definition 2.2. A computable well-ordering R is canonical if its associated Cantor
normal form function nfR is also computable.

Remark 2.3. Suppose that otppRq ď ε0. Then R is canonical if and only if the
relations

!

px, yq P R2 : |x| “ ω|y|
)

and
 

px, y, zq P R3 : |x| “ |y| ` |z|
(

are computable. That is, if the possibly partial operations of ordinal addition and
exponentiation with base ω are partial computable. In the second direction, it is
clear that if addition and exponentiation with base ω are partial computable, then
identifying nfRpxq is computable. In the first direction, |x| “ ω|y| if and only if
nfRpxq “ xpy, 1qy. For addition, we note that we can compute addition from the
Cantor normal form, using the fact that ordinal addition is associative, and the fact
that if β ă γ then for all m, ωβm` ωγ “ ωγ .

Note that if the relations of ordinal addition and exponentiation by ω in R are
computable, then R is canonical.

Proposition 2.4. Let R and S be canonical computable well-orderings, with
otppRq ď otppSq ď ε0. Then the unique embedding of R as an initial segment of
S is computable.

Proof. For every ordinal α ď ε0 let Jpαq be the Ď-least set of ordinals J such
that α P J and for every β P J , every exponent appearing in β’s Cantor normal
form is also in J . The set Jpαq is finite. To see this, consider the tree Tα of finite sequences

of ordinals defined recursively as follows. We declare that xαy P Tα. Then, if σˆβ P Tα, β ą 0 and

β “ ωγ1n1 ` . . . ωγknk is β’s Cantor normal form, then for all i ď k, σˆβ γ̂i P Tα. The tree is

finitely branching and each sequence on the tree is a decreasing sequence of ordinals, and so Tα

does not have a path. By König’s Lemma, Tα is finite; and Jpαq is the set of ordinals appearing

in a sequence in Tα. For a computable well-ordering R with otppRq ď ε0, for each
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z P R, let JRpzq “ tw P R : |w| P Jp|z|qu be the pull-back of Jp|z|q to elements
of R. If R is canonical then the function JR is computable. This means that from z

we effectively obtain a “strong index” for JRpzq.

Let j : R Ñ S be the embedding of R into S as an initial segment. Then
jpzq “ w if and only if there is a bijection i : JRpzq Ñ JSpwq such that ipzq “ w
and which preserves Cantor normal form: for all x P JRpzq, if

nfRpxq “ xpy1, n1q, py2, n2q, . . . , pyk, nkqy

(where necessarily y1, y2, . . . , yk P JRpzq) then

nfSpipxqq “ xpipy1q, n1q, pipy2q, n2q, . . . , pipykq, nkqy.

This shows that j is computable. �

Beyond ε0, we need to strengthen canonicity to obtain an extension of Propo-
sition 2.4. We do not develop this further here, as ε0 is well beyond the ordinals
that come up in the constructions we examine.

2.2. Existence of canonical well-orderings. For a computable well-
ordering R, The computable well-ordering ωR, whose order-type is ωotppRq,
is defined using Cantor normal form. The field of ωR is the collection of all
sequences of pairs xpz1, n1q, pz2, n2q, . . . , pzk, nkqy from R ˆ pωzt0uq such that
z1 ąR z2 ąR ¨ ¨ ¨ ąR zk. We let

xpz1, n1q, pz2, n2q, . . . , pzk, nkqy ăωR xpw1,m1q, pw2,m2q, . . . , pwl,mlqy

if k ă l and for all i ď k, pzi, niq “ pwi,miq; or if for the least i ď k such
that pzi, niq ‰ pwi,miq we have wi ăR zi or wi “ zi and ni ă mi (that is, if
pni, ziq ăω¨R pmi, wiq).

Lemma 2.5. Let R be a canonical computable well-ordering. Then the embedding
of R into ωR as an initial segment is computable.

Proof. In fact, this embedding is exactly nfR. �

Lemma 2.6. If R is a canonical computable well-ordering, then so is ωR.

Indeed, a computable index for nfωR can be effectively obtained from a com-
putable index for nfR.

Proof. Let j “ nfR be the canonical embedding of R into ωR. For any
xpz1, n1q, pz2, n2q, . . . , pzk, nkqy in the field of ωR, we have

nfωR pxpz1, n1q, pz2, n2q, . . . , pzk, nkqyq “ xpjpz1q, n1q, pjpz2q, n2q, . . . , pjpzkq, nkqy.
�

Lemma 2.7. Let xRny be a sequence of uniformly computable, uniformly canonical
well-orderings (that is, the functions nfRn

are uniformly computable). Suppose
that for all n, otppRnq ď otppRn`1q; let in : Rn Ñ Rn`1 be the embedding of Rn

into Rn`1 as an initial segment, and suppose that the sequence xiny is uniformly
computable.

Then the direct limit of the system xRn, inynăω has a canonical copy.
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Proof. For m ď n, let inm “ in´1 ˝ in´2 ˝ ¨ ¨ ¨ ˝ im be the initial segment
embedding of Rm into Rn (and inn “ idRn).

Let

Γ “
ď

n

Rn ˆ tnu.

For pw,mq, pz, nq P Γ where m ď n, we let pw,mq „ pz, nq if inmpwq “ z. Then „ is
an equivalence relation on Γ, and the universe of the direct limit of xRn, iny is Γ{ „,
the collection of „-equivalence classes. To get a computable copy, we pick out repre-
sentatives to be the ones that appear earliest in an effective enumeration xΓsy of Γ,
using the fact that x„æΓsy is uniformly computable. We let R be this computable
set of representatives. The ordering ăR is defined by letting, for pw,mq, pz, nq P R
such that m ď n, pw,mq ăR pz, nq if inmpwq ăRn

z. Certainly R “ pR,ăRq is
computable, and isomorphic to the direct limit of the system xRn, iny. Note also
that the representation function c : Γ Ñ R defined by requiring that cpz, nq „ pz, nq
is also computable.

Let pz, nq P R, and let nfRn
pzq “ xpz1,m1q, . . . , pzk,mkqy. Then

nfRpz, nq “ xpcpz1, nq,m1q, pcpz2, nq,m2q, . . . , pcpzk, nq,mkqy

and so nfR is computable. �

Corollary 2.8. There is a canonical computable well-ordering of order-type ε0.

Proof. Let R0 “ pω,ăq and Rn`1 “ ωRn , and apply Lemmas 2.5, 2.6 and 2.7.
�

If R is a canonical computable well-ordering, then for all z P R, the restric-
tion of R to the initial segment of R defined by z is also a canonical computable
well-ordering. Hence the collection of ordinals α for which there is a canonical com-
putable well-ordering of length α forms an initial segment of the ordinals. Corol-
lary 2.8 implies the following:

Proposition 2.9. For every α ď ε0, there is a canonical computable well-ordering
of order-type α.

In view of Propositions 2.4 and 2.9, we identify ordinals α ď ε0 with canonical
well-orderings of order-type α.

Definition 2.10. Let α ď ε0. A function f is α-c.a. if it is R-c.a. for some (all)
canonical well-ordering R of order-type α.

This notion is well-defined by Corollary 1.11 and Propositions 2.4 and 2.9. By
Propositions 1.10 and 2.4, if α ă β ď ε0, every α-c.a. function is β-c.a.

We go further and fix a canonical well-ordering Rε0 of order-type ε0. We
identify α ă ε0 with the element z P Rε0 such that |z|Rε0

“ α. As from z we can
effectively obtain the initial segment Rε0 æz of Rε0 determined by z, we say that
effectively from α ă ε0 we can get a canonical well-ordering Rα of order-type α.
The identification of α with both Rα and with Rα’s least upper bound in Rε0 is
true to von Neumann’s definition of ordinals: an ordinal here is identified with the
collection of its predecessors.

Note that the listing of tidy pR`1q-computable approximations provided by the
proof of Proposition 1.7 is uniform in an index for R. Hence, uniformly in α ă ε0,
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we can fix an effective list xfe,αs , oe,αs y of tidy pα ` 1q-computable approximations,
where, letting fe,α “ lims f

e,α
s , the sequence xfe,αyeăω is a listing of all α-c.a.

functions.
Proposition 1.12 allows us to define some levels of the hierarchy of α-c.a. func-

tions:

Proposition 2.11.

(1) Let n ă ω. A function is ωn`1-c.a. if and only if it has a computable
approximation which is bounded by an ωn-c.a. function.

(2) Let α ě ω, α ď ε0. A function is ωα-c.a. if and only if it has a computable
approximation which is bounded by an ωα-c.a. function.

2.3. On ordinal notations. One of the main uses of Kleene’s system of or-
dinal notations [54] is to define effective transfinite iterations of the Turing jump,
giving rise to the hyperarithmetic hierarchy. Roughly speaking, a notation for an
ordinal corresponds to a computable well-ordering on which the successor func-
tion is computable, and which associates with every limit element a computable
cofinal sequence. We briefly recall the definition. The set O and the partial order-
ing ăO are defined by (very much non-effective) recursion. We start with 1 P O.
If a P O then 2a P O and w ăO 2a Ø w ďO a. If ϕe is total and for all n,
ϕepnq ăO ϕepn` 1q then 3 ¨ 5e P O and w ăO 3 ¨ 5e Ø pDnqw ăO ϕepnq. Why 3 ¨ 5e

and not 3e? because if e “ 0 then 3e “ 1, and 1 was already used. The relation ăO is in
fact a transfinite tree, and each a P O is considered a notation for the order-type of
the well-ordered initial segment Ipaq “ tb P O : b ăO au. The ordinal |a|O is com-
putable, and every computable ordinal has a notation. Note that |2a|O “ |a|O ` 1
and |3 ¨ 5e|O “ supn |ϕepnq|O.

For a notation o P O, the set of predecessors Ipoq of o according to ăO is c.e.,
uniformly in o, but not necessarily computable; and the restriction of ăO to Ipoq
is also c.e., again uniformly in o. The uniformity allows us to pull back ăOæIpoq
by an effective enumeration of Ipoq to give a computable well-ordering Ro (with
computable domain) isomorphic to ăOæIpoq.

Spector’s theorem [93] is in some sense a version of Proposition 2.4: if a, b P O
and |a|O ď |b|O then Ha, the iteration of the jump along Ra, is Turing reducible
to Hb, the iteration of the jump along Rb. This suffices to give a precise definition
of an increasing sequence of degrees 0pαq for all computable ordinals α.

For the purposes of defining α-c.a. functions and later, totally α-c.a. degrees,
general notations are not sufficient, as the well-orderings Ro are not necessarily
canonical. For example, Ershov [40], and later, Epstein, Haas and Kramer [37],
define a function to be α-c.a. if it is Ro-c.a. for some notation o P O for α. Under
this definition, every ∆0

2 function is ω2-c.a., and as we shall see below, every ∆0
2,

low2 degree is totally ω2-c.a. For the small ordinals we are interested in, there
is a natural choice for a system of notations: we say that a notation o P O is a
strong notation if Ro is canonical. This method was also chosen by Coles, Downey
and LaForte [15] in unpublished work looking at hierarchies based on truth table
reductions below 01, and by Diamondstone, Hirschfeldt and Nies (unpublished) for
variations on Demuth randomness. Note that every notation for an ordinal below
ω2 is strong, but as we shall see, there are notations for ω2 which are not strong.

Let us say that a computable well-ordering R of successor order-type is
notation-like if:
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‚ the successor function on R is computable; and
‚ the collection LpRq of limit points of R is computable.

Lemma 2.12. Let R be notation-like. Then there is an effective map giving, for
every z P LpRq, an index for a computable ăR-increasing sequence (of order-type ω)
cofinal in Ræz.

Proof. For each n consider in turn the R-greatest element of Ræz Xt0, . . . , nu.
�

The reason that we only consider successor order-types is that if otppRq is
a limit then we would need to add the requirement that there is a computable
increasing sequence cofinal in R.

Lemma 2.13. A computable well-ordering of successor order-type is computably
isomorphic to Ro for some o P O if and only if R is notation-like.

Proof. Of course, R is computably isomorphic to Ro if and only if the order-
preserving bijection between R and pIpoq,ăOæIpoqq is computable.

If j : RÑ Ipoq is order-preserving, then for all z P R except for the top element
of R, the successor of z in R is w where jpwq “ 2jpzq; the collection LpRq of limit
points of R is the collection of z P R such that jpzq “ 3 ¨ 5e for some e. This shows
that if R is isomorphic to Ro for some o P O then R is notation-like.

Suppose now that R is notation-like. By Lemma 2.12, let f be a computable
function such that for z P LpRq, ϕfpzq is an ăR-increasing and cofinal sequence in
Ræz.

By effective transfinite recursion (as in [83]) we define a computable injection
j : RÑ O by letting:

(1) jpzq “ 1, where z is the R-least element of R;
(2) If z is the successor of w in R, then we let jpzq “ 2jpwq;
(3) If z P LpRq then jpzq “ 3 ¨ 5e where ϕe “ j ˝ ϕfpzq.

Specifically, we define a partial computable function F : ω ˆRÑ ω as follows:

‚ If z is the R-least element of R, then for all e we let F pe, zq “ 1.
‚ If z is the R-successor of w, then we let F pe, zq “ 2ϕepwq.
‚ Let g be a computable function such that for all a and b, ϕgpa,bq “ ϕa ˝ϕb.

If z P LpRq, then we let F pe, zq “ 3 ¨ 5gpe,fpzqq.

By the recursion theorem, there is an index e such that for all z P R, F pe, zq “ ϕepzq.
Then j “ ϕe æR satisfies the conditions (1)–(3) above. The main point is that
R Ď domϕe: otherwise, since R is well-founded, there is an R-least z P R for
which ϕepzqÒ, which by definition of F , must be an R-successor element of some
w P R; but then ϕepwqÓ implies that F pe, zqÓ for a contradiction.

Now the fact that R Ď domϕe implies that for all z P LpRq, ϕepzq “ 3 ¨ 5d

where ϕd is indeed an increasing and cofinal sequence in Ipϕepzqq, so by transfinite
induction on the elements of R we can show that j is an order-preserving bijection
between R and Ipoq, where o “ 2jpzq for z being the R-maximal element of R. �

Lemma 2.14. Every canonical well-ordering of successor order-type β ă ε0 is
notation-like.

Proof. Let α ď ε0, and let α “ ωα1n1`¨ ¨ ¨`ω
αknk be the Cantor normal form

of α. Then α is a limit ordinal if and only if αk ‰ 0. If α is a limit, then the successor
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of α is the ordinal β whose Cantor normal form is ωα1n1 ` ¨ ¨ ¨ ` ωαknk ` ω01;
otherwise, it is the ordinal β whose Cantor normal form is ωα1n1`¨ ¨ ¨`ω

αkpnk`1q.
�

Corollary 2.15 (Coles, Downey, LaForte). For every α ă ε0, there is a strong
notation o P O for α.

Proof. Suppose that α ă ε0 is a successor ordinal. By Proposition 2.9, let R
be a canonical computable well-ordering of order-type α. By Lemmas 2.14 and
2.13, there is some o P O with Ro computably isomorphic to R. Then Ro is also
canonical, whence o is a strong notation for α.

If α is a limit ordinal, let o be a strong notation for α`1; then log2 o is a strong
notation for α. �

We show that some notations are not strong.

Lemma 2.16. Let R be a computable well-ordering of order-type ω. Then ω ¨R`1
is notation-like.

Proof. The successor of pn, zq P ωˆR in ω ¨R is pn` 1, zq. Let z0 be the R-
least element of R. Then the collection of limit points of ω ¨R is pωzt0uqˆtz0u. �

Let R be a computable well-ordering of order-type ω. Certainly z ÞÑ p0, zq is a
computable embedding of R into ω ¨R. By Proposition 1.10, every R-c.a. function
is ω ¨R-c.a. By Lemmas 2.13 and 2.16, every R-c.a. function is Ro-c.a. for some
notation o P O for ω2. Ershov’s Theorem 2.1 now implies:

Corollary 2.17 (Ershov). For every ∆0
2 function f there is a notation o P O for

ω2 such that f is Ro-c.a.

Most ∆0
2 functions are not ω2-c.a., and so there are many notations for ω2

which are not strong.

3. Weak truth-table jumps and ωα-c.a. sets and functions

Coles, Downey and LaForte [15], and independently Anderson and Csima [3],
examined the analogue of the Turing jump in the weak truth-table degrees. An-
derson and Csima went on to tie levels of sets in the Ershov hierarchy to finite
iterations of this bounded jump, generalising the well-known fact that a set is ω-
c.a. if and only if it is weak-truth table reducible to H1. If Hxny is the result of
iterating the bounded jump operation n times, starting with H (we give a precise
definition below), then Anderson and Csima showed that a set A P 2ω is ωn-c.a. if
and only if it is weak truth-table reducible to Hxny.

Coles, Downey and LaForte defined strong notations in order to define an ana-
logue of the H-sets in the ∆0

2 weak truth-table degrees, namely to find a way
to define transfinite iterations of the bounded jump operator which are invariant
in the weak truth-table degrees. We carry out their programme for ordinals be-
low ε0, and extend Anderson’s and Csima’s result to all such ordinals (Theorem
3.11(1)). We further discuss what happens when we pass from sets to functions
(Theorem 3.11(2)).



II.3. WEAK TRUTH-TABLE JUMPS AND ωα-C.A. SETS AND FUNCTIONS 37

3.1. Bounded g-c.e. sets and the bounded jump. Recall that a function f
is weak truth-table reducible to a function g if there is a Turing functional Φ such
that Φpgq “ f , and the use function of this reduction is bounded by a computable
function. We can extend this to partial functions: for any function g : ω Ñ ω, we
say that a partial function ψ : ω Ñ ω is bounded g-computable if there is a Turing
functional Φ and a partial computable function ϕ such that for all x and y, ψpxq “ y
if and only if ϕpxqÓ and Φpg æϕpxq, xq “ y; and x R domψ if ϕpxqÒ or if there is no
such y. A total function f is bounded g-computable if and only if f ďwtt g. Note
that in this section, we abandon the convention that for a Turing functional Φ and
an oracle X, dom ΦpXq is an initial segment of ω.

A weak truth-table functional is a pair pΦ, ϕq consisting of a Turing functional
and a partial computable function. If pΦ, ϕq is a weak truth-table functional, x ă ω

and g : ω Ñ ω, then we write Φ̂pg, xq “ y if ϕpxqÓ and Φpg æϕpxq, xq “ y. We

write Φ̂pg, xqÓ if Φ̂pg, xq “ y for some y. The notation Φ̂ assumes that the partial
function ϕ is clear from context.

We say that a set A P 2ω is bounded g-c.e. if it is the domain of a partial
bounded g-computable function.

We can enumerate all partial bounded X-computable functions, and all
bounded X-c.e. sets, by giving an effective enumeration xΦe, ϕeyeăω of all weak
truth-table functionals. We fix such an enumeration which is moreover acceptable:
if xΨe, ψeyeăω is any effective list of weak truth-table functionals, then there is an
(injective) computable function g such that for all e, pΦgpeq, ϕgpeqq “ pΨe, ψeq. For

all g : ω Ñ ω,
A

Φ̂epgq
E

eăω
is a g-effective list of all partial bounded g-computable

functions, and letting Ŵ g
e “ dom Φ̂epgq,

A

Ŵ g
e

E

eăω
is a list of all bounded g-c.e.

sets.

Some of the basic properties of partial computable functions and c.e. sets do
not carry over to the bounded realm. The following proposition is meant as a
cautionary tale.

Proposition 3.1. Let g : ω Ñ ω.

(1) Every nonempty bounded g-c.e. set is the range of some function f ďwtt g;
but there is a function f ďwtt H

1 whose range is not bounded H1-c.e.
(2) The graph of any partial bounded g-computable function is bounded g-c.e.;

but there is a (total) function f which is not bounded H1-computable, but
whose graph is bounded H1-c.e.

(3) If A ďwtt g, then A is bounded g-c.e. (and so is its complement). How-
ever, there is a c.e. set C and a set A such that both A and its complement
ωzA are bounded C-c.e., but A ęwtt C. For the set C we cannot choose
H1: if both A and ωzA are bounded H1-c.e., then A ďwtt H

1.

Note, however, that with a computable oracle the distinctions disappear: a
partial function is bounded H-computable if and only if it is partial computable,
and a set is c.e. if and only if it is bounded H-c.e.

Sketch of proof. For (1), we note that for any g, if A is g-c.e. and nonempty,
then there is some f ďwtt g such that A “ range f . In fact, the use function for
reducing f to g can grow as slowly as we like; we simply wait with enumerating
some x P A into the range of f until the input of f is large enough for A to see
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that x is in A. Hence, every nonempty Σ0
2 set is the range of some ω-c.a. function.

On the other hand, below we see that every bounded H1-c.e. set is ∆0
2 (in fact,

the Anderson-Csima result implies that a set is bounded H1-c.e. if and only if it is
ω2-c.a.) The result follows from the fact that there are Σ0

2 sets that are not ∆0
2.

For (2), note that if f is a ∆0
2 function which has an increasing approximation,

that is , a computable approximation xfsy such that for all x and s, fspxq ď fs`1pxq,
then the graph of f is d.c.e., and so ω-c.a., and so weak truth-table reducible to H1,
and so certainly bounded H1-c.e. For any α ď ε0 it is easy to define an increasing
approximation for a function f which is not α-c.a. by diagonalising against all
partial α-computable approximations (Proposition 1.7), always increasing the value
of f if we want to change it. If we choose α “ ω, then we get a function which is
not ω-c.a., and so not weak truth-table reducible to H1, and so, since it is total,
not bounded H1-computable.

We sketch the proofs of (3). First, we enumerate a c.e. set C and define a set A
such that both A and ωzA are bounded C-c.e. For e ă ω, the requirement Re seeks

a witness x such that Apxq ‰ Φ̂epC, xq if the latter converges. After picking a new
witness x, we state that x R A with fresh C-use ψnopxq, and freeze C æψnopxq. If later

Φ̂epCs, xqÓ“ 0 (i.e. “no”), then we enumerate ψnopxq ´ 1 into C and declare that
x P A with A use ψyespxq ą ϕepxq, ψnopxq. Of course this enumeration into C may

free the opponent to change their mind and later still let Φ̂epCs, xq “ 1 (i.e. “yes”).
In that case we enumerate ψyespxq´ 1 into C but freeze C below that number, and
declare that x R A with the old use ψnopxq. The point is that ψyespxq ą ϕepxq,
so our freezing C means that the opponent cannot change their mind again and is
stuck with declaring that x P A, whereas we leave x R A for ever after that. Each
time a requirement acts, all weaker requirements are initialised and are forced to
pick new witnesses; so this is a finite injury construction.

The difference between C and H1, is that unlike an arbitrary c.e. set C, the
opponent in the previous construction, that is us in the current construction, con-
trols a portion of H1. That is, we enumerate an auxiliary c.e. set E, and by the
recursion theorem we know an index e such that E “We which is the eth column of
H1. Suppose that we are given that A “ dom Φ̂1pH

1q and ωzA “ dom Φ̂0pH
1q. To

reduce A to H1, given x, we wait for some i and s such that Φ̂ipH
1
s, xqÓ, i.e., ϕipxqÓ

at stage s and ΦipH
1
s, xq converges with use below ϕipxq. We then set ψpxq to be

some number large enough so that the agent which is responsible for computing
Apxq can control ϕipxq many elements ofH1 (via E) with no interference from other
agents which have already staked their claims for portions of E. We show that this
control is sufficient to compute Apxq from H1 æψpxq. As long as Φ̂ipH

1
s, xqÓ, we keep

stating that Apxq “ i, with use H1s æψpxq. If H1 changes below ϕipxq, and we then

see that Φ̂1´ipH
1
s, xqÓ, then we declare that Apxq “ 1´ i with use the new version

of H1 æψpxq (as ψpxq ą ϕipxq). If the computation Φ̂1´ipH
1, xq fizzles, we wait to

see if we next get a new computation Φ̂ipH
1
s, xqÓ. If not, then we will later get a

new Φ̂1´ipH
1, xqÓ computation, and we didn’t need to do anything. Otherwise, we

enumerate one of our agitators into E so that we can redefine Apxq “ i with the
new version of H1 æψpxq. The point is that no matter how large ϕ1´ipxq (it may be
much larger than ψpxq), every enumeration into E on behalf of computing Apxq is

tied to a failed Φ̂ipH
1
s, xq computation, and so to some historic version of H1 æϕipxq.
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Thus we never run out of agitators and we can keep up with the changes in A and
record them into H1 æψpxq correctly. �

With the perils of bounded oracle computations in mind, we turn to define the
bounded jump and a universal “jump function”. For an oracle g : ω Ñ ω, we let

g: “
à

eăω

Ŵ g
e “

!

pe, xq : x P Ŵ g
e

)

.

In analogy with the jump function J , we define a function Ig as follows:

Igpe, xq “

#

0, if x R Ŵ g
e ;

Φ̂epg, xq ` 1, otherwise.

Elementary properties of these jump operations are analogous to those of the
Turing jump.

Lemma 3.2. Let g : ω Ñ ω.

(1) g: is 1-complete for the class of bounded g-c.e. sets.

(2) g: is computably isomorphic to the set
!

e : e P Ŵ g
e

)

.

Proof. (1) – the fact that g: is bounded g-c.e. – follows from the fact that the
enumeration xΦe, ϕeyeăω is effective: xΦey is uniformly c.e., and xϕey are uniformly
partial computable.

Let g˚ “
!

e : e P Ŵ g
e

)

. Since g˚ is bounded g-c.e., to show (2) it is sufficient

to show that g˚ is also 1-complete for the class of bounded g-c.e. sets. Let pΦ, ϕq

be a weak truth-table functional. To reduce Φ̂pgq to g˚, given any x ă ω we
define a partial computable function ψx such that for all w, ψxpwqÓ if and only if
ϕpxqÓ, in which case, ψxpwq “ ϕpxq for all w; and also define a Turing functional
Ψx such that if ϕpxq Ò, then Ψxph,wq Ò for all w ă ω and all oracles h, and if
ϕpxqÓ, then Ψxph,wq “ Φph,wq for all oracles h and all w ă ω, with the same
use. Since the numbering xΦe, ϕey is acceptable, there is an injective computable
function f such that for all x ă ω, pΨx, ψxq “ pΦfpxq, ϕfpxqq. Then f witnesses

that dom Φ̂pgq ď1 g
˚. �

For functions f, g : ω Ñ ω, we say that f ďm g if there is a computable function
h such that f “ g ˝h. Note that this definition extends the familiar one for sets. If
f ďm g then f ďwtt g.

Lemma 3.3. Let g : ω Ñ ω. A set A is bounded g-c.e. if and only if A ďm g:.

Proof. Let A ďm g:; so there is a computable function h such that A “ h´1g:.
Let x ă ω; let pe, yq “ hpxq. Then we let ψpxq “ ϕepyq and Ψph, xq “ Φeph, yq for

every oracle h, with the same use. Then A “ dom Ψ̂pgq.
In the other direction, let pΦ, ϕq be a weak truth-table functional, and let

A “ dom Φ̂pgq. There is some e such that Φ̂ “ Φ̂e, and so for all x, x P A if and
only if pe, xq P g:, so the map x ÞÑ pe, xq shows that A ďm g:. �

Lemma 3.4. For all g : ω Ñ ω,

(1) g: ďwtt I
g.

(2) Ig is many-one equivalent to the “diagonal function” e ÞÑ Igpe, eq.
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Proof. For (1), we have pe, xq P g: if and only if Igpe, xq ‰ 0. For (2), the
reduction f of the proof of Lemma 3.2 satisfies Igpe, xq “ Igpfpe, xq, fpe, xqq for all
e and x. �

Lemma 3.5. Let g : ω Ñ ω.

(1) g ăwtt I
g.

(2) For any set A, A ăwtt A
:.

Proof. Let ψ “ id be the identity function, and let Ψ be a Turing functional
which maps any sequence σ to itself. So for all g : ω Ñ ω, Ψ̂pgq “ g. Hence there
is some e such that gpxq “ Igpe, xq, so g ďwtt I

g.
Every set A is bounded A-c.e., and so by Lemma 3.3, A ďm A:. It follows that

A ďwtt A
:.

The proof of (1) and (2) will be complete with the aid of Lemma 3.4(1), once
we show that for any function g, g: ęwtt g. This is Cantor’s argument, as the set

!

e : e R Ŵ g
e

)

is weak truth-table reducible to g:, and is not bounded g-c.e., so cannot be weak
truth-table reducible to g (Proposition 3.1(3)). �

Lemma 3.6. Let f, g : ω Ñ ω.

(1) f ďwtt g if and only if If ďm Ig.
(2) If f ďwtt g then f : ďm g:. The converse fails, even when restricting to

sets rather than functions.

If f, g : ω Ñ ω and f ďwtt g, then from an index e such that Φ̂epgq “ f we can

effectively obtain indices c and d such that Φ̂cpI
gq “ If and Φ̂dpg

:q “ f :.

It follows that the operations g ÞÑ Ig and g ÞÑ g: induce well-defined, strictly
increasing functions on the partial ordering of the weak truth-table degrees.

Proof. It is easy to show that if f ďwtt g, then If ďm Ig and f : ďm g:. One
simply composes the reduction of f to g with any weak truth-table functional; this
composition is uniform in an index for a reduction of f to g.

Let f, g : ω Ñ ω, and suppose that h is computable and If “ Ig ˝ f . Fix e such
that f “ Φ̂epfq. Let x ă ω, and let pd, yq “ hpe, xq. Since

Igpd, yq “ If pe, xq “ fpxq ` 1 ą 0,

we have Φ̂dpg, yqÓ“ fpxq, which shows that f ďwtt g.
The failure of the converse to (2) is exhibited by an argument similar to the one

proving the first part of Proposition 3.1(3), and so we only sketch it. We enumerate
a c.e. set B and approximate a d.c.e. set B such that A ęwtt B but A: ďm B:.
Instances Re,x of a global requirement for coding A: into B: define the value at
pe, xq of a partial computable function ψ and enumerate axioms with use Bs æψpe,xq
into a functional Ψ; we then can find a computable function h such that for all
e and x, phpe, xq, hpe, xqq P B: if and only if Ψ̂pB, e, xqÓ; we need to ensure that
this happens if and only if pe, xq P A:. Requirements Pi diagonalise Apzq against

Φ̂ipB, zq for some appointed follower z. The priorities of the Re,x requirements
are interspersed between the Pi requirements. In a typical scenario, Re,x observes

that Φ̂epAs, xqÓ for the first time; it sets ψpe, xq to be some large number, and lets

Ψ̂pBs, e, xqÓ. The size of ψpe, xq allows the requirement Re,x to enumerate a number
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into B once for each follower z ă ϕepxq for a requirement Pi stronger than Re,x. Of
course followers for weaker requirements are cancelled and new ones are chosen to
be larger than ϕepxq. Whenever a strong Pi enumerates its follower z into A, the

opponent may change whether Ψ̂epAs, xq converges or not. If the change is from
convergence to divergence, then we need to enumerate some number below ψpe, xq

into B. This, in turn, may cause Φ̂ipB, zq to change, making Pi want to extract z
from A. It does so, this time freezing B æϕipzq. The fact that ϕipzq may be larger
than ψpe, xq does not disturb us: the extraction of z from A gives our opponent

an opportunity to make Φ̂epA, xq converge again, but we can then make Ψ̂pB, e, xq
converge without changing B æψpe,xq, simply by enumerating a new axiom into Ψ. If
later an even stronger requirement Pj acts, the process repeats, injuring Pi, but any
new Pi follower will be greater than ϕepxq, and so never disturb Re,x again. Hence
we can fix ψpe, xq based on the priority of Re,x whenever we see ϕepxq converge. �

Lemma 3.7. For all ∆0
2 functions g, Ig is also ∆0

2.

And so g: is also ∆0
2.

Proof. Let xgsy be a computable approximation for g. For e, x, s ă ω, let
hspe, xq “ 0 if ϕe,spxqÒ, or if Φe,spgs æϕepxqqÒ. Otherwise let hspe, xq “ Φe,spgs æϕepxqq.
Then xhsy is a computable approximation of Ig. The point, of course, is that if
ϕepxqÓ, then gs æϕepxq eventually stabilizes. �

Since bounded H-c.e. sets are simply c.e. sets, H: and H1 are computably
isomorphic. Both sets are weak truth-table equivalent to IH, since if we know that
Φ̂epH, xqÓ, then finding the value Φ̂epH, xq can be done effectively. Hence, for any
∆0

2 function g we have g: ”T I
g ”T H

1.

3.2. Transfinite iterations of the bounded jump. Let g : ω Ñ ω. We
define, for a computable well-ordering R “ pR,ăRq, the iteration of the bounded
jump set and function along R, by induction on the order-type of R.

‚ If R is empty, then we let gxRy “ IgR “ g.

Suppose that R is nonempty, and that by recursion, for all z P R, both gxRæzy and
IgRæz have already been defined.

‚ If the order-type of R is a successor ordinal, let z be the R-greatest element

of R; we then let gxRy “
`

gxRæzy
˘:

and IgR “ II
g
Ræz .

‚ If the order-type of R is a limit ordinal, we let gxRy “
À

zPR g
xRæzy and

IgR “
À

zPR I
g
Ræz . By this we mean that for all z and x, pz, xq P gxRy if

and only if z P R and x P gxRæzy (so we consider gxRy as an element of 2ω);
and if z P R, then IgRpz, xq “ IgRæz pxq, whereas if z R R then IgRpz, xq “ 0;

so we can consider IgR as a function from ω to ω.

Proposition 3.8. Let R and S be computable well-orderings. Suppose that
otppRq ď otppSq. Also suppose that the embedding of R as an initial segment of
S is computable. Suppose further that R is notation-like. Then for all g : ω Ñ ω,
gxRy ďwtt g

xSy and IgR ďwtt I
g
S .

Proof. Let j : R Ñ S be the initial segment embedding of R into S. We
show that there are computable functions f and h such that for all z P R, for all
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g : ω Ñ ω

gxRæzy “ Φ̂fpzqpg
xSæjpzqyq

and

IgRæz “ Φ̂hpzqpI
g
Sæjpzqq.

Replacing R and S by one element extensions R ` 1 and S ` 1 then yields the
desired conclusion.

The definitions of f and h is done by effective transfinite recursion along R.
Directly, we define:

(1) If z is the R-least element of R, then we let fpzq “ hpzq “ e where

Φ̂epgq “ g for all g : ω Ñ ω.
(2) If z is the R-successor of w, then by Lemma 3.6, from fpwq we can effec-

tively find a number fpzq such that for all g,

Φ̂fpzq

´

gxSæjpzqy
¯

“ Φ̂fpzq

ˆ

´

gxSæjpwqy
¯:
˙

“

´

gxRæwy
¯:

“ gxRæzy,

and from hpwq we can effectively find a number hpzq such that for all g,

Φ̂hpzq

´

IgSæjpzq

¯

“ Φ̂hpzq

´

I
IgSæjpwq

¯

“ II
g
Ræw “ IgRæz .

(3) If z is a limit point of R, then from gxSæjpzqy and IgSæjpzq we can obtain,

uniformly in g and in w ăR z, gxSæjpwqy and IgSæjpwq , respectively, in a weak

truth-table fashion. Thus from f æRæz and hæRæz we can compute indices
fpzq and hpzq such that for all w ăR z, for all x ă ω, for all g,

Φ̂fpzq

´

gxSæjpzqy, pw, xq
¯

“ Φ̂fpwq

´

gxSæjpwqy, x
¯

“ gxRæwypxq “ gxRæzypw, xq

and

Φ̂hpzq

´

IgSæjpzq, pw, xq
¯

“ Φ̂hpwq

´

IgSæjpwq , x
¯

“ IgRæwpxq “ IgRæz pw, xq,

and so Φ̂fpzq

´

gxSæjpzqy
¯

“ gxRæzy and Φ̂hpzq

´

IgSæjpzq

¯

“ IgRæz as required.

The details of the effective transfinite recursion, using the recursion theorem, are
as in the proof of Lemma 2.13. �

It follows that if R and S are computably isomorphic, then for all g,
gxRy ”wtt g

xSy and IgR ”wtt I
g
S . Hence, using canonical well-orderings, for α ď ε0,

we can unambiguously define gxαy and Igα for all g – these are unique up to weak
truth-table degree, and in fact many-one degree if α ą 0, and induce well-defined
operations on the weak truth-table degrees. If α ă β then gxαy ăwtt g

xβy and
Igα ăwtt I

g
β .

Proposition 3.9. Let g : ω Ñ ω and let α ď ε0. Then gxαy ďwtt I
g
α.

Proof. By effective transfinite recursion on ε0 ` 1 we build a computable
function R such that for all α ď ε0 and all g, Φ̂Rpαq pI

g
αq “ gxαy. This is done by

cases:

(1) Since Igα “ gx0y “ g, we let Rp0q be a number such that for all g,

Φ̂Rp0qpgq “ g.
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(2) The proofs of Lemma 3.4(1) and Lemma 3.6(2) show that there is a com-

putable function S such that for all α ă ε0 and all a ă ω, if Φ̂apgq “ f

then Φ̂Spα,aq pI
gq “ f :. We then let, for all α ă ε0, Rpα`1q “ Spα,Rpαqq.

(3) For limit α, we string together the reductions for β ă α. The construction
for part (3) of the proof of Proposition 3.8 shows that there is a computable
function T such that for all limit ordinals α ď ε0 and all a ă ω, for all
sequences xgβyβăα of functions,

Φ̂T pα,aq

˜

à

βăα

gβ

¸

“
à

βăα

Φ̂a pgβq .

We then let Rpαq “ T pα, aq, where a is an index such that ϕa æα“ Ræα.

Again to make things concrete, we show how to perform this recursion: we
define a function F . For all a ă ω, we let F p0, aq “ Rp0q, F pα ` 1, aq “ Spα, aq
and for limit α, F pα, aq “ T pα, aq. By the recursion theorem, there is an index a
such that F p´, aq “ ϕpaq. Since F pa, 0q is defined for all a, and since S and T are
total, we have ε0 ` 1 Ď domϕa. The function R “ ϕa æε0`1 is as required. �

Proposition 3.10. For any ∆0
2 function g and any α ď ε0, Igα is ∆0

2.

Proof. Fix a ∆0
2 function g. By effective transfinite recursion we build a

computable function R such that for all α ď ε0, ϕRpαq “ xgαs y is a computable
approximation of Igα.

(1) We let Rp0q be an index for a computable approximation of g.
(2) The proof of Lemma 3.7 shows that there is a computable function S such

that for all a ă ω, if ϕa is a computable approximation of a function h,
then ϕSpaq is a computable approximation of Ih. For any α ă ε0, we let
Rpα` 1q “ SpRpαqq.

(3) An argument similar to previous ones shows that there is a computable
function T such that for all a ă ω and all limit α ď ε0, if for all β ă α,
ϕϕapβq is a computable approximation of a function hβ , then ϕT pα,aq is a
computable approximation of

À

βăα hβ . Then we let, for limit ordinals

α, Rpαq “ T pα, aq, where a is an index for Ræα. �

The following theorem, a refinement of Proposition 3.10, is the goal of this
section:

Theorem 3.11. Let α ď ε0.

(1) A set A is ωα-c.a. if and only if A ďwtt H
xαy.

(2) A function g is ωα-c.a. if and only if g ďwtt I
H
α .

This theorem generalises the fact that a function or a set is ω-c.a. if and only
if it is weak truth-table reducible to H1. Anderson and Csima [3] proved part (1)
of the theorem for α ă ω.

We note that for α ě 2, we really do need to use the function jump Ig rather
than the set jump g::

Proposition 3.12. There is an pω` 1q-c.a. function which is not weak truth-table
reducible to any set.

Proof. We define an pω`1q-computable approximation xfs, osy for a function

f . For each e ă ω, we want to ensure that for any set A, fpeq ‰ Φ̂epA, eq. Let e ă ω.
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We let Ve be the collection of all values Φ̂epσ, eq, as σ ranges over all binary strings

of length ϕepeq. For any set A, if Φ̂epA, eqÓ, then Φ̂epA, eq P Ve. The sequence xVey
is c.e., uniformly in e; if ϕepeqÒ, then |Ve| “ 0, and otherwise |Ve| ď 2ϕepeq. Let
xVe,sy be a uniformly computable enumeration of the sets Ve.

For all s ă ω, if ϕe,speqÒ, then we let fspeq “ 0 and ospeq “ ω. Otherwise,

we let fspeq be the least element of ωzVe,s, and let ospeq “ 2ϕepeq ´ |Ve,s|. Then
fpeq R Ve, which gives the desired diagonalisation. �

3.3. Commutative addition and powers of ω. We focus on ordinal powers
of ω because these consist precisely of the ordinals which are closed under addition.

Proposition 3.13. An ordinal α ą 0 is closed under addition if and only if α “ ωβ

for some β.

Proof. Let β be any ordinal, and let γ, δ ă ωβ . Let γ “ ωγ1n1`. . . ω
γknk and

δ “ ωδ1m1`¨ ¨ ¨`ω
δlml be the Cantor normal forms of γ and δ. Since ωγ1 ď γ ă ωβ ,

we have γ1 ă β; similarly, δ1 ă β. Hence

γ ` δ ď ωγ1pn1 ` 1q ` ωδ1pm1 ` 1q ď ωmaxtγ1,δ1upn1 `m1q ă ωβ ,

so ωβ is closed under addition.
Let α be an ordinal which is not a power of ω. Let α “ ωα1n1 ` ¨ ¨ ¨ ` ωαknk

be the Cantor normal form of α. Since α ‰ ωα1 , we have ωα1 ă α ă ωα1pn1 ` 1q.
This shows that α is not closed under addition. �

While addition of ordinals is a natural and useful operation, it has a few short-
comings, in particular its lack of commutativity. Less well-used is the operation of
“commutative addition” (as termed for instance in [6]), based on Cantor normal
form.

Let α1 ą α2 ą ¨ ¨ ¨ ą αk. Let β “ ωα1n1 ` ωα2n2 ` ¨ ¨ ¨ ` ωαknk, and
γ “ ωα1m1 ` ωα2m2 ` ¨ ¨ ¨ ` ωαkmk, where of course ni,mi ă ω, but we allow
some ni,mi “ 0. We let

β ‘ γ “ ωα1pn1 `m1q ` ω
α2pn2 `m2q ` ¨ ¨ ¨ ` ω

αkpnk `mkq.

Cantor normal form allows us to define β ‘ γ for all ordinals β and γ: we extend
their Cantor normal form to a presentation as above with a common sequence of
decreasing exponents by adding zero coefficients; for any sequence of exponents,
this presentation is unique.

Moreover, canonicity of our fixed computable well-orderings implies that the
operation ‘ for pairs of ordinals below ε0 is computable.

Lemma 3.14. Let α, β and γ be ordinals.

(1) β ‘ γ “ γ ‘ β.
(2) α‘ pβ ‘ γq “ pα‘ βq ‘ γ.

Proof. Quite straightforward, based on the commutativity and associa-
tivity of addition of natural numbers. For associativity, the point is that if
α1 ą α2 ą . . . αk mentions all exponents of ω in the Cantor normal forms of α, β
and γ, and

α “ ωα1n1 ` ¨ ¨ ¨ ` ω
αknk,

β “ ωα1m1 ` ¨ ¨ ¨ ` ω
αkmk,

γ “ ωα1 l1 ` ¨ ¨ ¨ ` ω
αk lk,
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then

pα‘ βq ‘ γ “ α‘ pβ ‘ γq “ ωα1pn1 `m1 ` l1q ` ¨ ¨ ¨ ` ω
αkpnk `mk ` lkq. �

The associativity and commutativity of ‘ allows us to unambiguously define
À

A for finite multisets of ordinals A.

Lemma 3.15. Any power of ω is closed under ‘.

Proof. Let β “ ωα1n1`¨ ¨ ¨`ω
αknk and γ “ ωα1m1`¨ ¨ ¨`ω

αkmk be smaller
than ωδ. Then for all i ď k, ωαini, ω

αimi ă ωδ. Since ωδ is closed under addition,
it follows that β ‘ γ ă ωδ. �

Lemma 3.16. Let β1, β2, . . . , βn and γ1, γ2, . . . , γn be two n-tuples of ordinals. Sup-
pose that for all i ď n, βi ď γi. Then

À

iďn βi ď
À

iďn γi, and
À

iďn βi ă
À

iďn γi
if and only if there is some i ď n such that βi ă γi.

Proof. Again, this is known and quite straightforward, but we give details
for completeness of our presentation. Let α1 ą α2 ą ¨ ¨ ¨ ą αk be the expo-
nents of ω appearing in the Cantor normal form of any of the βi’s and γi’s; let
βi “

ř

jďk ω
αjni,j and γi “

ř

jďk ω
αjmi,j . So

À

iďn βi “
ř

jďk

`

ωαj
ř

iďn ni,j
˘

,

and
À

iďn γi “
ř

jďk

`

ωαj
ř

iďnmi,j

˘

.

If
À

iďn βi “
À

iďn γi then by the uniqueness of Cantor normal form, for all
j ď k,

ř

iďn ni,j “
ř

iďnmi,j . By induction on j ď k, we show that for all i,
ni,j “ mi,j ; it would follow that for all i, βi “ γi. Fix j, and suppose that for all
j1 ă j, for all i ď n, ni,j1 “ mi,j1 . Since βi ď γi, the induction assumption implies
that ni,j ď mi,j . Now

ř

iďn ni,j “
ř

iďnmi,j implies that for all i ď n, ni,j “ mi,j .
Suppose that

À

iďn βi ‰
À

iďn γi. Let j be the least index such that
ř

iďn ni,j ‰
ř

iďnmi,j . An induction as in the previous paragraph shows that for
all j1 ă j, for all i ď n, ni,j1 “ mi,j1 . This information, together with the fact that
βi ď γi for all i, shows that for all i, ni,j ď mi,j , and so that

ř

iďn ni,j ď
ř

iďnmi,j .
Since

ř

iďn ni,j ‰
ř

iďnmi,j , we must have
ř

iďn ni,j ă
ř

iďnmi,j . The choice of
j now shows that

À

iďn βi ă
À

iďn γi �

The operation of commutative addition allows us to show that if α ď ε0 is
closed under addition, then the α-c.a. functions induce an initial segment of the
weak truth-table degrees.

Proposition 3.17. Let α ď ε0. If f : ω Ñ ω is ωα-c.a. and g ďwtt f , then g is
ωα-c.a.

Proof. Let xfs, osysăω be an ωα-computable approximation of f , and let

pΦ, ϕq be a weak truth-table functional such that Φ̂pfq “ g. For any x, s ă ω,
we recursively define a strictly increasing sequence xtspxqysăω of stages such that

for all s, Φ̂pftspxq, xqÓ. Let gspxq “ Φ̂pftspxq, xq, and let mspxq “
À

yăϕpxq otspxqpyq.

Then xgs,msy is an ωα-computable approximation of g: by Lemma 3.15, for all x
and s, mspxq ă ωα, and by Lemma 3.16, for all x and s, ms`1pxq ď mspxq and if
gs`1pxq ‰ gspxq then ms`1pxq ă mspxq, because fts`1pxq æϕpxq‰ ftspxq æϕpxq. �

3.4. The complexity of the iterated bounded jump. We wish to estab-
lish the following:

Proposition 3.18. For all α ď ε0, IHα is ωα-c.a.
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As a result, by Proposition 3.9 and Proposition 3.17, Hxαy is also ωα-c.a.

Proposition 3.18 is proved by effective transfinite recursion, which means that
the ωα-computable approximation for IαpHq will be given uniformly in α. That is,
by effective transfinite recursion on ε0, we will show that there is a computable func-

tion R : ε0 Ñ ω such that for all α ă ε0,
A

f
Rpαq,ωα

s , o
Rpαq,ωα

s

E

is a ωα-computable

approximation of IHα ; recall that xxfe,αs , oe,αs ysăωyeăω is an effective list, uniform in
α, of all tidy pα` 1q-computable approximations (Proposition 1.7).

The following two lemmas correspond to two of the three cases in the definition
of R.

Lemma 3.19. Let α ă ε0. If g is an ωα-c.a. function, then Ig is an pωα ` 1q-c.a.
function. From α, and an index of an ωα-computable approximation of a function
g, we can effectively obtain an index of an pωα ` 1q-computable approximation of
Ig.

Proof. Let xgs, osy be an ωα-computable approximation of g. For e, x, s ă ω,

if Φ̂epgs, xq converges in s many steps, we let hspe, xq “ 1` Φ̂epgs, xq; otherwise, we
let hspe, xq “ 0. Then xhsy is a computable approximation of Ig. We may assume
that for all e and x, h0pe, xq “ 0.

Fix e, x ă ω. For all s ă ω, let rspe, xq be the least r ď s such that for all
t P rr, ss, htpe, xq “ hspxq. We define a function mspe, xq:

‚ If rspe, xq “ 0, let mspe, xq “ ωα.
‚ If rspe, xq ą 0 then we know that ϕepxqÓ. There are two sub-cases:

– If hspe, xq ą 0, then we let

mspe, xq “
à

yăϕepxq

pospyq ‘ ospyqq .

– If hspe, xq “ 0, then we let

mspe, xq “
à

yăϕepxq

`

ospyq ‘ orspe,xq´1pyq
˘

.

By Lemma 3.15, for all e, x and s, mspe, xq ď ωα. We show that xhs,msy is an
pωα ` 1q-computable approximation. Fix e, x, s ă ω.

If hs`1pe, xq “ hspe, xq, then rspe, xq “ rs`1pe, xq. In the three cases for defin-
ing mspe, xq and ms`1pe, xq, Lemma 3.16, and the fact that os`1pyq ď ospyq for
all y, implies that ms`1pe, xq ď mspe, xq.

Now suppose that hs`1pe, xq ‰ hspe, xq; we want to show thatms`1pe, xq ă mspe, xq.
Note that rs`1pe, xq “ s` 1; let r “ rspe, xq. There are four cases.

(1) If r “ 0, then mspe, xq “ ωα and ms`1pe, xq ă ωα.
(2) Suppose that r ą 0 and that hs`1pe, xq “ 0. Then hspe, xq ą 0. This

means that Φ̂epgs, xq converges in s steps, but that Φ̂epgs`1, xq does not
converge in s ` 1 steps; so necessarily gs`1 æϕepxq‰ gs æϕepxq. So there is
some y ă ϕepxq such that os`1pyq ă ospyq. We have

mspe, xq “
à

yăϕepxq

pospyq ‘ ospyqq ,

and
ms`1pe, xq “

à

yăϕepxq

pos`1pyq ‘ ospyqq .
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The desired inequality then follows from Lemma 3.16.
(3) Suppose that r ą 0, that hs`1pe, xq ą 0, and that hspe, xq ą 0. Then

hs`1pe, xq ‰ hspe, xq implies that gs`1 æϕepxq‰ gs æϕepxq, so again, there is
some y ă ϕepxq such that os`1pyq ă ospyq. We have

mspe, xq “
à

yăϕepxq

pospyq ‘ ospyqq ,

and

ms`1pe, xq “
à

yăϕepxq

pos`1pyq ‘ os`1pyqq ,

so again ms`1pe, xq ă mspe, xq.
(4) The last case is that r ą 0, hs`1pe, xq ą 0 and hspe, xq “ 0. Now the

point is that hr´1pe, xq ą 0, so the argument in case (2) show that there
is some y ă ϕepxq such that orpyq ă or´1pyq, whence os`1pyq ă or´1pyq.
We have

ms`1pe, xq “
à

yăϕepxq

pos`1pyq ‘ os`1pyqq

and

mspe, xq “
à

yăϕepxq

pospyq ‘ or´1pyqq ,

so we get the required inequality in this case too. �

Lemma 3.20. There is a computable function T such that for any limit ordinal

α ď ε0 and a ă ω, if for some g, for all β ă α,
A

f
ϕapβq,ω

β

s , o
ϕapβq,ω

β

s

E

săω
is

a total ωβ-computable approximation of Igβ, then
A

f
ωα,T pα,aq
s , o

ωβ ,T pα,aq
s

E

săω
is an

ωα-computable approximation of Igα.

Proof. Given α and a, define xhs,msy by letting hspβ, xq “ f
ϕapβq,ω

β

s pxq and

mspβ, xq “ o
ϕapβq,ω

β

s pxq, if ϕapβqÓ and o
ϕapβq,ω

β

s pxqÓ, otherwise we let hspβ, xq and
mspβ, xq diverge. For z ‰ β for any β ă α, we of course let hspz, xq “ mspz, xq “ 0.
By the acceptability of the list of tidy pωα`1q-computable approximations, we can

define T pα, aq such that if ϕa is total, and for all β ă α,
A

o
ϕapβq,ω

β

s

E

is total, then
A

o
ωα,T pα,aq
s

E

is total, and lims f
ωα,T pα,aq
s “ lims hs. �

Proposition 3.18 now follows by effective transfinite recursion.

3.5. Reducing ωα-c.a. sets and functions to iterations of the wtt-
jump. Let α ă ε0. An instance of an ωα-computable approximation is a pair
pf, oq of computable functions f : ω Ñ ω and o : ω Ñ ωα such that for all s ă ω,
ops` 1q ď opsq and if fps` 1q ‰ fpsq then ops` 1q ă opsq.

As is done in the proof of Proposition 1.7, we can list, uniformly in α, tidy
instances of pωα ` 1q-computable approximations. In other words, there is an
effective list xfαe , o

α
e y of pairs of computable functions with the following properties:

(1) For every α ă ε0 and every e ă ω, pfαe , o
α
e q is an instance of an pωα ` 1q-

computable approximation with fαe p0q “ 0 and oαe p0q “ ωα;
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(2) The listing is acceptable: there is a (total) computable function cpα, d, eq
such that for all α ď ε0 and d, e ă ω, if pϕd, ϕeq is an instance of an
ωα-computable approximation, then lims ϕdpsq “ lims f

α
cpα,d,eq.

Again the idea is to convert any pair pg,mq of partial computable functions into a
pair functions pf, oq as in (1). We enumerate the graphs of m and g until we see
that both mp0q and gp0q converge. As long as we don’t see convergence, both f
and o are constant; otherwise we slowly copy the values that we see.

Given the lists xfαe , o
α
e y, we define the following for α ď ε0:

(1) Cα “ te : Ds poαe psq ă ωαqu. The sets Cα are c.e., uniformly in α.
(2) Partial functions Fα : Cα Ñ ω by letting, for e P Cα, Fαpeq “ lims f

α
e psq.

Lemma 3.21. For every α ď ε0, Fα is partial bounded IHα -computable.

Lemma 3.21 is proved by effective transfinite recursion on ε0 ` 1, so again it
has to be uniform: we construct a computable function R such that for all α ď ε0,

Φ̂Rpαq
`

IHα
˘

“ Fα.

The following three lemmas explain how to define Rpαq for the three kinds of
ordinals α: α “ 0, successor α, and limit α.

Lemma 3.22. F0 is a partial computable function, and so is partial bounded H-
computable.

Proof. For each e P C0, F0peq “ f0
e pnq for n such that o0

epnq “ 0. �

Lemma 3.23. There is a computable function S such that for all α ă ε0 and all
a ă ω, for any function g : ω Ñ ω, if Φ̂apgq “ Fα, then Φ̂Spα,aqpI

gq “ Fα`1.

Proof. We show how to define, effectively from α and a, a weak truth-table
functional pΨ, ψq such that for any function g, if Φ̂apgq “ Fα then Ψ̂pIgq “ Fα`1.
The acceptability of the enumeration of weak truth-table functionals then allows
us to effectively find an index Spα, aq such that pΨ, ψq “ pΦSpα,aq, ϕα,aq.

Let e ă ω. If e R Cα`1, then we leave ψpeqÒ, and for any oracle g, Ψpg, eqÒ.
Suppose that e P Cα`1. For abbreviation, let pf, oq “ pfα`1

e , oα`1
e q. The idea

now is to break up the instance pf, oq into a finite sequence of instances, each within
a copy of ωα sitting inside ωα`1. Let s˚ witness that e P Cα`1: ops˚q ă ωα`1.
Since ωα`1 “ ωα ¨ ω, we can write, for s ě s˚, opsq “ ωαnpsq ` βpsq for unique
npsq ă ω and βpsq ă α.

Let M “ nps˚q. For m ď M we define an instance pfm, omq of an ωα-
computable approximation by copying βpsq on stages on which npsq “ m. Namely
let Jm “ ts ě s˚ : npsq “ mu. Then JM ă JM´1 ă ¨ ¨ ¨ ă Jk is a partition
of rs˚, ωq for some k ď M ; let us assume that Jm for m ě k is nonempty (i.e.
the approximation pf, oq does not skip over the mth copy of ωα); this is easily ar-
ranged. For m ě k we define fmpsq “ fpsq and ompsq “ βpsq for s P Jm, and
extend in a constant way otherwise (i.e., for s ă Jm, fmpsq “ fpmin Jmq and
ompsq “ βpmin Jmq; and if m ą k and s ą Jm, we define similarly but with maxJm
replacing minJm). For m ă k we leave fmpsq and ompsq undefined for all s. The
point is of course that lims f

kpsq “ Fα`1peq.
By the acceptability of the list xfαd , o

α
d y, we can effectively get numbers dm for

m ďM such that for all m ďM ,

‚ dm P Cα if and only if m ě k; and
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‚ If m ě k, then Fαpdmq “ lims f
mpsq.

Now the procedure Ψ queries the oracle on each pair pa, dmq. The use is
bounded by maxtpa, dmq : m ă Mu; this is revealed to us once we see that
e P Cα`1, so this use is partial computable (uniformly in a, α and e). If indeed

Φ̂apgq “ Fα then Igpa, dmq “ 0 if and only if m ă k and Igpa, dkq “ 1 ` Fα`1peq,
so this is what Ψ outputs. �

Lemma 3.24. There is a recursive function T such that for any limit ordinal α,
a ă ω and sequence xgβyβăα of functions, if for all β ă α, Φ̂ϕapβqpgβq “ Fβ, then

Φ̂T pα,aq

´

À

βăα gβ

¯

“ Fα.

Proof. Of course now the point is that ωα is the limit of the ordinals ωβ for
β ă α. So given e P Cα we can effectively find some β ă α and some s˚ such that
oαe ps

˚q ă ωβ , and so can translate pfαe , o
α
e q to an instance of an ωβ-computable

approximation; so we can find some d P Cβ such that lims f
α
e psq “ lims f

β
d psq.

We can then find some number ψpeq, effectively computed from e, such that from
´

À

βăα gβ

¯

æψpeq we can compute gβ æϕapdq, and so using Φa can output

Φ̂apgβ , dq “ Fβpdq “ Fαpeq

as required. Again, all this can be coded by a functional Ψ, and by acceptability
we can effectively find an index T pα, aq such that pΦT pα,aq, ϕT pα,aqq “ pΨ, ψq. �

Now effective transfinite recursion on ε0`1, using Lemmas 3.22, 3.23, and 3.24,
builds a computable function R such that for all α ď ε0, Φ̂RpαqpI

H
α q “ Fα, and so

proves Lemma 3.21.

Proof of part (2) of Theorem 3.11. Let α ď ε0. Proposition 3.18 states
that IHα is ωα-c.a. By Proposition 3.17, every function g ďwtt I

H
α is also ωα-c.a.

For the converse, let g be an ωα-c.a. function; let xgs,msy be an ωα-computable
approximation for g. For every x ă ω, the sequence xgspxq,mspxqysăω is an instance
of an ωα-computable approximation, and so by acceptability of the numbering of
the partial instances of such approximations, there is a computable function h such
that for all x, hpxq P Cα and gpxq “ Fαphpxqq. By Lemma 3.21, there is a weak-

truth table functional pΦ, ϕq such that Fα “ Φ̂pIHα q. Let ψpxq “ ϕphpxqq, and
for any oracle f , let Ψpf, xq “ Φpf, hpxqq with the same use. Then ψ is total (as

rangeh Ď Cα), and Ψ̂pIHα q “ g, so g ďwtt I
H
α . �

Proof of part (1) of Theorem 3.11. The proof of the backward direction
is identical to the corresponding proof of part (2), because as mentioned after the
statement of Proposition 3.18, Proposition 3.9 implies that Hxαy is ωα-c.a.

For α ď ε0, define Dα : Cα Ñ t0, 1u by letting Dαpeq “ Fαpeq mod 2. If A
is an ωα-c.a. set, then there is a computable function h : ω Ñ Cα such that for
all x, Apxq “ Dαphpxqq. Hence to show that every ωα-c.a. set is weak truth-table
reducible toHxαy, we show that Dα is a partial boundedHxαy-computable function.

The proof follows the line of argument for Lemma 3.21. A computable function
R such that for all α, Φ̂Rpαq

`

Hxαy
˘

“ Dα is constructed by effective transfinite
recursion on ε0 ` 1, once analogues of Lemmas 3.22, 3.23, and 3.24 are proved:

(1) D0 is a partial computable function;
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(2) There is a computable function S such that for all α ă ε0 and all a ă ω,

for any set A P 2ω, if Φ̂apAq “ Dα, then Φ̂Spα,aqpA
:q “ Dα`1.

(3) There is a recursive function T such that for any limit ordinal α, a ă ω

and sequence xAβyβăα of sets, if for all β ă α, Φ̂ϕapβqpAβq “ Dβ , then

Φ̂T pα,aq

´

À

βăαAβ

¯

“ Dα.

(1) follows immediately from the definition of D0 and Lemma 3.22. For (3)
we can simply take the function given by the proof of Lemma 3.24. The only
new ingredient is in the proof of (2). Again, given α, a and e P Cα`1, we let
pf, oq “ pfα`1

e , oα`1
e q, and define the functions β and n, the number M , the pairs

pfm, omq for m ď M and the numbers k and dm exactly as was done in the proof
of Lemma 3.23. So m ě k if and only if dm P Cα, and Dα`1peq “ Dαpdkq.

The difficulty of course is thatA: does not tell us the value of Φ̂apA, dmq “ Dαpdmq,

only whether Φ̂apA, dmq converges or not. But since the value is either 0 or 1, we
can convert it to convergence or divergence of an auxiliary functional. That is, we
can effectively calculate an index b and numbers cm for m ď M such that for any
oracle X, Φ̂bpX, cmqÓ if and only if dm P Cα and Φ̂apX, dmqÓ“ 1; for the use we
can let ϕbpcmq “ ϕapdmq. We then let

ψpeq “ 1`max tpa, dmq, pb, cmq : m ďMu ,

which is again partial computable; and for any oracle Y P 2ω, we calculate, for
e P Cα`1, Ψ̂pY, eq by first finding the least m such that pa, dmq P Y (we diverge if

there is none), and then output Y pb, cmq. If Φ̂apAq “ Dα and e P Cα`1 then the
least m such that pa, dmq P A

: is k, and

ΨpA:, eq “ A:pb, ckq “ Φ̂apA, dkq “ Dαpdkq “ Dα`1peq

as required. �



CHAPTER III

The hierarchy of totally α-c.a. degrees

The following is the central definition of this work. For α “ ω, this definition
was originally made by J.S. Miller (unpublished), and first investigated in detail
in [25].

Definition. Let α ď ε0. A Turing degree d is totally α-c.a. if every function
f P d is α-c.a.

1. Totally R-c.a. degrees

Basic properties of totally α-c.a. degrees are shared among totally R-c.a. de-
grees, even when R is not canonical. For any computable well-ordering R, we say
that a Turing degree d is totally R-c.a. if every function f P d is R-c.a.

We note the following:

Lemma 1.1. Let R be a computable well-ordering. A degree d is totally R-c.a. if
and only if every f ďT d is R-c.a.

Proof. Suppose that d is a totally R-c.a. degree. Let g P d be any function.
Let f ďT d. Then f ‘ g P d, so f ‘ g has an R-computable approximation, from
which we can get an R-computable approximation for f . �

1.1. Totally R-c.a. degrees and low2 degrees. The following theorem
shows that total R-c.a.-ness is indeed a notion of lowness.

Theorem 1.2. For any computable well-ordering R, every totally R-c.a. degree
is low2.

Proof. Let R be a computable well-ordering. By Corollary II.1.8, there is
a 01-computable sequence xfeyeăω consisting of all R-c.a. functions. Using this
sequence, it is easy to construct a 01-computable function f which dominates every
R-c.a. function. Hence if d is a totally R-c.a. degree, then f dominates all functions
in d. By a classic result of Martin’s [70], d is low2. �

Ershov’s Theorem II.2.1 can be extended to low2 degrees.

Proposition 1.3. Every ∆0
2, low2 degree is totally R-c.a. for some computable

well-ordering R of order-type ω.

Proof. Let d be a ∆0
2, low2 degree. The proof of Theorem II.2.1 can be

adapted once we give a uniform 01-enumeration of all the functions reducible to d.
Let D P d, and let xDsy be a computable approximation of D.

51
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Since d is low2, the collection of e such that ΦepDq is total is Σ0
3; say ΦepDq

is total if and only if Dx@yDz Qpe, x, y, zq where Q is computable. For e, x and
s ă ω, let yspe, xq be the greatest y such that for all y1 ď y there is some
z ă s such that Qpe, x, y1, zq holds. Now for all such e, x and s, for n ă ω, let
fe,xs pnq “ ΦepD,nqryspe, xqs if n ă dom ΦepDqryspe, xqs, and fe,xs pnq “ 0 for other
n (recall that we write ΦepDqrss for Φe,spDsq).

If x witnesses that ΦepDq is total (it is an existential witness to the out-
ermost quantifier in the Σ0

3 property above, meaning that yspe, xq Ñ 8), then
lims f

e,x
s “ ΦepDq; if not, then the sequence xfe,xs ysăω is eventually constant.

Hence, renumbering, we get a uniformly computable sequence
@@

fds
D

săω

D

dăω
of

computable approximations, with the collection of limits tfd : d ă ωu (where
fd “ lims f

d
s ) consisting precisely of all the functions computable from d.

Now we let R be the interspersed union of the well-orderings built in the proof
of Theorem II.2.1 for the approximations

@

fds
D

. We let

R “
 

pd, x, sq P ω ˆ ω ˆ ω : s “ 0 or fds pxq ‰ fds´1pxq
(

,

and for pd, x, sq, pe, y, tq P R, let pd, x, sq ăR pe, y, tq if xd, xy ă xe, yy or if
pd, xq “ pe, yq and t ă s. The argument of the proof of Theorem II.2.1 shows that
R “ pR,ăRq has order-type ω and that for every d ă ω,

@

fds
D

săω
can be extended

to an R-computable approximation. Hence d is totally R-c.a. �

The argument for Corollary II.2.17 now shows:

Corollary 1.4. Every ∆0
2, low2 degree is totally Ro-c.a. for some notation o P O

for ω2.

1.2. C.e. degrees. In this work we focus on totally α-c.a. c.e. degrees, namely
those totally α-c.a. Turing degrees which contain a c.e. set.

The following result shows that the for c.e. degrees, sets (elements of Cantor
space) capture everything expressed by functions (elements of Baire space) as far
as approximations are concerned. Technically, this is the first application in this
monograph of the permitting method, calibrated at the level of total R-c.a.-ness.

Proposition 1.5. Let R be a computable well-ordering. A c.e. degree d is totally
R-c.a. if and only if every set Z ďT d is R-c.a.

The argument of Lemma 1.1 shows now that a c.e. degree is totally R-c.a. if
and only if every set Z P d is R-c.a.

Proof. Let d be a c.e. degree, and suppose that some g ďT d is not R-c.a.
Since d is c.e., there is some computable approximation xgsy of g such that d
computes the modulus of this approximation.

We construct Z by giving a computable approximation xZsy for Z. Let
xxZes , o

e
sysăωyeăω be an effective enumeration of tidy pR` 1q-computable approxi-

mations such that letting Ze “ lims Z
e
s , the sequence xZey enumerates the R-c.a.

sets. Further, as is clear from the construction in Proposition II.1.7, every R-c.a.
set appears as Ze for some e such that the approximation xZes , o

e
sy is eventually

R-computable: for all n there is some s such that oespnq P R.
To defeat the threat that Z “ Ze, we pick potential witnesses x for this eth

requirement, and try to ensure that Zpxq ‰ Zepxq. Naturally, we examine the
sequence xZes pxqysăω, and if there is equality between Zspxq and Zes`1pxq, we will
want to change the value of Zpxq. To keep Z being computable from D, each such
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change must be permitted by g. We prompt g to give us such a permission by
making a threat of our own, of giving an R-computable approximation for g.

Since permission will only be granted eventually, we need to attempt to ensure
that Zpxq ‰ Zepxq for infinitely many numbers x. To avoid unnecessary interaction
between requirements, these all have to be distinct. Recall that

@

ωres
D

eăω
is a par-

tition of ω into uniformly computable sets (which we often refer to as “columns”).
We start by defining Z0 “ H. At stage s we wish to flip x P ωres if oespxq P R

and Zes pxq “ Zs`1pxq. We are allowed to flip x at stage s if gs`1 æx‰ gs æx.
If we both wish to flip and are allowed to flip some x, then we flip it: we set
Zs`1pxq “ 1´Zspxq. Otherwise, we set Zs`1pxq “ Zspxq. This defines the sequence
xZsy.

Let x ă ω. If gs æx“ gt æx for all s ě t then Zspxq “ Ztpxq for all s ě t.
Hence xZsy is a computable approximation of a set Z. In fact, since d computes
the modulus for xgsy, Z ďT d.

To show that Z is not R-c.a. we show that if the approximation xZes , o
e
sy is

eventually R-computable then Z ‰ Ze. Fix such e and suppose for a contradiction
that Ze “ Z. We define a sequence xhs,msy by recursion. For y ă ω let x be
the least element of ωres greater than y. For all s let mspyq “ oespxq. Start with
hspyq “ 0 for all s ă y. Now ifmspyq “ ms´1pyq then let hspyq “ hs´1pyq; otherwise
let hspyq “ gspyq. Then xhs,msy is an eventually R-computable approximation
for h “ lims hs (which is therefore R-c.a.); we show that h “ g.

Suppose not. Again let y ă ω and let x be the least element of ωres

greater than y. Let t be the stage at which the sequence xmspyqy stabilizes. So
hpyq “ htpyq “ gtpyq (by minimality of t) and for all s ě t, Zes pxq “ Zet pxq “ Zepxq.
Suppose that gpyq ‰ gtpyq. Let s be the least stage s ą t at which we see that
gs`1 æx‰ gs æx. We are permitted to flip Zpxq at stage s, so Zs`1pxq ‰ Zes`1pxq
(either because we flipped it at stage s, or we did not need to). By induction, at
no later stage will we want to flip x, so Zpxq ‰ Zes`1pxq “ Zepxq, contradicting the
assumption that Z “ Ze. �

The fact that d is a c.e. degree is heavily used in the proof of Proposition 1.5.
Barmpalias (unpublished) constructed a degree d such that every set Z P d is ω-c.a.
(in fact, d is superlow), but some function f P d is not ω-c.a.

2. The first hierarchy theorem: totally ωα-c.a. degrees

Let γ ă α ď ε0. Since every γ-c.a. function is also α-c.a. (see Section II.2),
every totally γ-c.a. degree is also totally α-c.a. The question is when does this
hierarchy collapse.

Theorem 2.1. Let α ď ε0. There is a totally α-c.a. degree which is not totally
γ-c.a. for any γ ă α if and only if α is a power of ω. If α is a power of ω, then
in fact there is a c.e. degree which is totally α-c.a. but not totally γ-c.a. for any
γ ă α.

The first ω ¨2 many levels of the hierarchy of totally α-c.a. degrees are depicted
in Figure 1.

For the forward direction of the first hierarchy theorem, we prove the following
lemma. It is proved in generality greater than is currently necessary, but which will
be useful later.
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ω

ω2

ω3

...

ωω

ωω`1

...

Figure 1. The first hierarchy theorem. “ωα” denotes the collec-
tion of totally ωα-c.a. degrees.

Lemma 2.2. Let γ ă ε0, and let d be a Turing degree such that every g P d is
γm-c.a. for some m ă ω. Then d is totally γ-c.a.

Proof. Let f P d. Define gpxq “ f æx; then g P d. By assumption, there is
some m ă ω such that g is γm-c.a. Let xgs, osy be a γm-computable approximation
for g. By speeding up this approximation, we may assume that for all x and s, gspxq
is a string of length x.

For every x and s there is some unique k ă m such that ospxq P rγ ¨k, γ ¨pk`1qq;
we denote this k by kspxq. We have ospxq “ γ ¨ kspxq ` βspxq for some βspxq ă γ.
For every x and s, ks`1pxq ď kspxq, and so kωpxq “ lims kspxq is well-defined. We
let k˚ “ lim infx kωpxq.

We can now give a γ-computable approximation xfs,msy for f . Fix x˚ such
that for all x ě x˚, kωpxq ě k˚; so for all s and all x ě x˚, kspxq ě k˚. For any
y ă ω we can effectively find some x “ hpyq ą y such that kωpxq “ k˚, by insisting
that x ě x˚ and waiting until we see some stage s such that kspxq “ k˚. We let
tpyq be some stage t such that ktphpyqq “ k˚. Fix y, and let x “ hpyq; we then let

mspyq “ βmaxts,tpyqupxq

and

fspyq “
`

gmaxts,tpyqupxq
˘

pyq.

If fs`1pyq ‰ fspyq then s ě tpyq and gs`1pxqq ‰ gspxq, and so os`1pxq ă ospxq.
Since s ě tpyq, we have ospxq “ γ ¨ k˚ ` βspxq and os`1pxq “ γ ¨ k˚ ` βs`1pxq, and
so ms`1pyq “ βs`1pxq ă βspxq “ mspyq. Hence xfs,msy is indeed a γ-computable
approximation. If gspxq “ gpxq then fspyq “ pgpxqqpyq “ fpyq, so lims fs “ f . �



III.2. THE FIRST HIERARCHY THEOREM: TOTALLY ωα-C.A. DEGREES 55

The forward direction of Theorem 2.1 follows: if α is not a power of ω, then
there is some γ ă α and some m such that α ď γm, and so every totally α-c.a.
degree is totally γm-c.a., and so by Lemma 2.2 is actually totally γ-c.a.

The rest of this section is devoted to the proof of the backward direction of
Theorem 2.1: given some α ď ε0 which is a power of ω, the construction of a c.e.
degree which is totally α-c.a. but not totally γ-c.a. for any γ ă α. Fix such α. The
key property of α, which makes the construction work, is that α is closed under
addition (Proposition II.3.13). We define a computable enumeration xDsy of a c.e.
set D, and ensure that degTpDq is totally α-c.a. but not totally γ-c.a. for any γ ă α.

To witness the properness, we enumerate a Turing functional Λ and ensure
that ΛpDq is not γ-c.e. for any γ ă α. We fix, for each γ ă α, an enumera-
tion xxfe,γs , oe,γs ysăωyeăω of tidy pγ ` 1q-computable approximations whose limits
fe,γ “ lims f

e,γ
s consist of all γ-c.a. functions (Proposition II.1.7). To show that

ΛpDq is not γ-c.a. for any γ ă α, it is sufficient to meet, for all γ ă α and e ă ω,
the requirement

P e,γ: There is some p such that ΛpD, pq ‰ fe,γppq.

Of course, we also need to ensure that ΛpDq is total. To show that degTpDq is
totally α-c.a., we need to meet, for all e ă ω, the requirement

Qe: If ΦepDq is total, then it is α-c.a.

Discussion. Perhaps surprisingly, the simplest construction one would hope
to work, does work. We give full details because several other constructions we
present later are elaborations on this one. We use the terminology discussed in
Subsection I.6.3.

First, independently consider the strategies for meeting each requirement. To
meet P e,γ , we pick a witness p (which recall is also called a follower), and whenever
we observe that fe,γs ppq “ ΛspDs, pq, we change the value of ΛpD, pq by enumerating
the use λsppq “ λspDs, pq into Ds`1. Recall our convention that since both D and Γ are

defined by us, the use λppq is the largest number actually queried during the computation. If this
is performed without interruption, success is guaranteed, because our opponent can
change the value of fe,γppq only finitely many times.

To meet Qe, the only thing we can do is observe, for each input x, the
value of Φe,spDs, xq, and at various stages s declare that we believe that
ΦepD,xq “ Φe,spDs, xq. If ΦepDq is total then we will eventually be right; we
need to ensure, informally speaking, that the “number of times” we change our
mind about the value of ΦepD,xq is bounded by α. (Of course, technically we
mean that we need to define a decreasing sequence of ordinals below α which is
associated with the mind-changes. However, it is useful to think of α as bounding
the number of mind-changes, in an analogy with the situation α “ ω.) There is
one possible action Qe can take, and that is to impose restraint: if we freeze D
below the use ϕd,spDs, xq, then our guess is correct.

The conflict between different requirements is now clear: when a requirement
P e,γ enumerates λsppq into D, this may destroy a computation Φd,spD,xq for some
d ď e say, which Qd has earlier declared it believed. The requirement Qd can
tolerate some injury; after all, it is not trying to make ΦdpDq computable. It
needs to limit the “amount of injury” to be below α. This is possible because
once a follower p is chosen, we can tell “how many times” the requirement P e,γ

will act: the bound is oe,γ0 ppq. Before starting to make guesses about ΦdpD,xq,
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the requirement Qd will observe which requirements will bother it and take their
bounds oe,γ0 ppq into consideration. The fact that α is closed under addition means
it can deal with injury from more than one other requirement.

This plan will not succeed if we allow requirements P e,γ to “gang up” on Qd.
Suppose that at some stage s, Qd starts making guesses about ΦdpD,xq, and de-
clares an ordinal β ă α bounding the “number of times” it will change its mind
about this value. This bound β is calculated on the basis of which followers p for
requirements P e,γ it is observing at stage s. It would be bad if we allow a different
requirement P e,γ (say for some e ą s) to also destroy ΦdpD,xq: the bound on the
action of such a requirement cannot be comprehended by Qd at stage s. Such re-
quirements need to be restrained by Qd: the numbers λtppq which they enumerate
into D must be greater than the use ϕd,spxq.

On the face of it, this can be arranged using only finite injury: when Qd
observes a new ΦdpD,xq computation, it initialises all requirements P e,γ which are
not allowed to injure this computation. The use λtppq for followers picked by these
requirements later will be greater than ϕd,spxq as required. The reason that the
injury will be finite is that it is guaranteed that the finitely many requirements which
do have the right to injure ΦdpD,xq only act at finitely many stages. Thus, it would
seem, we would eventually either see a final computation ΦdpD,xq and injury to
weaker P e,γ on behalf of this computation will cease; or the computation ΦdpD,xq
never recovers, in which case also, eventually initialisation of weaker requirements
will stop.

However, a complication arises from the combined influence of several nega-
tive requirements on some positive requirement. To see this, we first note that the
permission to injure a computation that some Qd is monitoring is follower-based
rather than requirement-based. Say that a positive requirement P e,γ picks a fol-
lower p. Then we see a computation ΦdpD,xq. Since p is already chosen, Qd can
observe oe,γ0 ppq and allow P e,γ to injure the computation. However, if for some
reason later, P e,γ abandons the follower p and replaces it by a new follower p1, the
requirement Qd can no longer tolerate any action by P e,γ : the ordinal oe,γs pp1q may
be much larger than oe,γ0 ppq, and could not have been observed by Qd at the stage
it first started copying ΦdpD,xq. In a sense, the requirement P e,γ is demoted (it
loses priority) relative to the pair pd, xq.

Now consider such a positive requirement P “ P e,γ and two negative require-
ments Qc and Qd. Suppose that, by an action of a positive requirement stronger
than P , P is no longer allowed to destroy ΦcpD, 0q, but that currently, ΦcpD, 0qÒ.
Meanwhile, P has a follower p0, and we observe ΦdpD, 0q for the first time. The
follower p0 is allowed to injure that computation, and that computation is indeed
destroyed (by P or by some weaker positive requirement). Then, we see that
ΦcpD, 0qÓ with large use; this forces P to cancel p0 and appoint a new follower p1.
In turn, this means that ΦdpD, 0q no longer tolerates P -action. While ΦdpD, 0qÒ,
we see that ΦcpD, 1qÓ, and it observes p1; some action destroys the computation.
We then see that ΦdpD, 0qÓ, and p1 is abandoned and replaced by a new follower p2,
and so ΦcpD, 1q can no longer tolerate P . The see-saw between Qc and Qd even-
tually causes infinitely much injury to P . Note that one negative requirement is
not sufficient for this argument, as we assume that dom ΦdpDq is an initial segment
of ω.
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The source of this problem is P ’s haste in appointing a replacement follower.
If it waited until ΦcpD, 0q converged before it appointed p0, no injury would be
necessary. For this to be possible, P needs to guess whether ΦcpD, 0q will indeed
converge in the future; if not, it will not wait. This necessitates the use of a tree of
strategies in the construction.

The tree of strategies. As mentioned above (Section I.6), to define the tree,
we specify recursively the association of nodes to requirements, and specify the
outcomes of nodes working for particular requirements. To specify the priority
ordering of nodes, we specify the ordering between outcomes of any node.

We order all the requirements, Qe and P e,γ , in order-type ω; all nodes of length
k work for the kth requirement on the list. The outcomes of a node working for Qe
are 8 and fin, with 8 ă fin; a node working for P e,γ has only one outcome.

Construction. At stage s, we let the collection of accessible nodes δs be an
initial segment of the tree of strategies.

Let σ be a node which is accessible at stage s. We describe the action that σ
takes, and if it does not end the stage, then we specify which immediate successor
of σ is also accessible at stage s. Both of these depend, of course, on the requirement
for which σ works.

Suppose first that σ works for Qe. Then σ takes no action beyond determining
which successor is accessible. If s is the least stage at which σ is accessible, we let
σˆ8 P δs. If not, let t be the last stage before stage s at which σˆ8 was accessible.
If t ă dom Φe,spDsq (again recall that we assume that dom Φe,spDsq is an initial segment of ω

(Convention I.6.2), and that we use von Neumann natural number notation, Convention I.6.3),
let σˆ8 P δs. Otherwise, we let σ f̂in P δs.

Now suppose that σ works for P e,γ . As σ has but one outcome, the determi-
nation of the next element of δs is immediate, unless σ acts and ends the stage, in
which case σ is the last element of δs. We let σ act as follows:

(1) If σ has no follower, then σ appoints a new, large follower p for itself.
(2) If σ has a follower p, and ΛspDs, pq “ fe,γs ppq, then σ enumerates λsppq

into Ds`1. We will later verify that λsppq R Ds.

In either case, we set Λs`1pDs`1, pq “ s ` 1 with large use. Technically, this means

that we pick a large number u, and enumerate the axiom Ds`1 æu ÞÑ pp, sq into Λs`1. The point

of the value s` 1 is that Λs`1pDs`1, pq ‰ fe,γs`1ppq, since by convention, for all t, fe,γt ppq ă t.

Also, in either case, we end the stage. If neither case (1) nor case (2) hold,
then σ does not act, and the unique immediate successor of σ on the tree of strate-
gies is accessible at stage s.

If σ ended the stage, then all nodes that are weaker than σ are initialised. For
positive requirements P e,γ , being initialised means that their followers are cancelled,
and so at the next time they are visited, they have no follower and need to appoint
a new one.

At the end of the stage, for each p ă s which is not at that moment a follower
for some node on the tree, if ΛspDs, pqÒ then we set Λs`1pDs`1, pq “ 0 with use ´1.
That is, we enumerate the axiom xy ÞÑ pp, 0q into Λs`1.

Verification. The following lemma will be familiar to experts in effective con-
structions, indeed, it is usually taken for granted and not mentioned explicitly. We
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give a careful and detailed presentation here, but will subsequently only sketch such
proofs. For the following lemma, we first note that if p is a follower for some node σ
at the beginning of stages t ă s, and p P dom ΛtpDtq and p P dom ΛspDsq (as we
shall soon verify), then p ă λtppq ď λsppq, since λrppq is always chosen to be large.

Lemma 2.3. The functional Λ is consistent for D. Further, at every stage s:

(a) Λs is consistent for Ds.

Let σ be a node which works for a positive requirement, and suppose that at the
beginning of stage s, σ has a follower p.

(b) ΛspDs, pqÓ and λsppq R Ds.
(c) If p1 is, at the beginning of stage s, a follower for a node σ1 weaker than σ,

then λsppq ă p1. And so λsppq ă λspp1q.

(d) Let t ă s, and suppose that p was a follower for σ at the begin-
ning of stage t. So σ was not initialised at any stage r P rt, sq. Then
Dt æλtppq“ Ds æλtppq. If, further, σ does not act at any stage r P rt, sq,
then Dt æλtppq`1“ Ds æλtppq`1 (this implies that λsppq “ λtppq).

Proof. We prove (a), (b), (c) and (d) simultaneously by induction on s. As-
sume the lemma holds for s´ 1; we consider the action taken at stage s´ 1.

For (a) at stage s, we invoke Lemma I.6.1. Condition (1) of that lemma certainly
holds at every stage of the construction. Condition (2) also holds: at stage s´1, at
most one node σ enumerates a new axiom into Λs which pertains to its follower p; at
the end of the stage we may enumerate further axioms, but only for numbers which
are no longer followers, and so for numbers other than p. For condition (3), suppose
that a new axiom pertaining to some number p is added to Λs during stage s´ 1,
but that p P dom Λs´1pDs´1q; we need to show that λs´1ppq is enumerated into Ds.
The assumption on p implies that p is not chosen as a new follower at stage s´ 1.
At the end of the stage we add axioms only for numbers p R dom Λs´1pDs´1q; so it
must be that p is a follower for some node σ at the beginning of stage s´1. Thus, σ
acts at stage s´ 1 and enumerates λs´1ppq into Ds (we use (b) at stage s´ 1); this
shows condition (3) of Lemma I.6.1 holds. This shows that (a) holds at stage s as
well.

We next prove (d). Let t, σ and p be as described. Suppose that a number
y enters Dr`1 for some r P rt, sq. Then y “ λrpp

1q for some follower p1 for some
node σ1. Since σ is not initialised at stage r, either σ1 is weaker than σ, in which
case by (c) at stage r we have y ą λrppq ě λtppq; or σ1 “ σ, in which case of course
y “ λrppq ě λtppq. In either case, Dt æλtppq“ Ds æλtppq. If σ does not act at any
stage r P rt, sq then we always have y ą λtppq and so Dt æλtppq`1“ Ds æλtppq`1.

To show (b) at stage s, let p be a follower for a node σ at the beginning
of stage s. If σ acts at stage s ´ 1, then at that stage we define ΛspDs, pq Ó
with large use λsppq; since it is large, we have λsppq R Ds. Otherwise, p is a
follower for σ at the beginning of stage s ´ 1, and p is not cancelled at that
stage. By (b) at stage s ´ 1, Λs´1pDs´1, pqÓ. By (d) at stage s, with t “ s ´ 1,
we have Ds æλs´1ppq`1“ Ds´1 æλs´1ppq`1. This implies that the axiom making
Λs´1pDs´1, pqÓ applies at stage s as well, and in fact λsppq “ λs´1ppq. By (b) at
stage s´ 1 we have λs´1ppq R Ds´1, and the agreement between Ds´1 and Ds just
observed shows that λsppq “ λs´1ppq R Ds as well.
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For (c), let p1 and σ1 be as described. Let t ď s ´ 1 be the stage at which p1

was chosen as a follower for σ1. The fact that the follower p1 is kept from stage t`1
up to stage s shows that σ1 was not initialised at any stage r P rt, sq. Since σ is
stronger than σ1, this shows that σ was not initialised and did not act at any such
stage. Thus, p must have been appointed by σ at a stage prior to stage t, and so p
is a follower for σ at the beginning of stage t. At stage t, p1 is chosen to be large,
and so p1 ą λtppq (the latter exists by (b) at stage t). By (d) (at stage s, applied
to stage t), we see that Ds æλtppq`1“ Dt æλtppq`1, whence λsppq “ λtppq. �

We start by working toward showing that the construction is fair.

Lemma 2.4. Let σ be a node which works for requirement P e,γ . Let s ă t be stages,
and suppose that σ acts at both stages s and t, and is not initialised at any stage
r P ps, tq. Let p be the follower for σ at the end of stage s. Then oe,γt ppq ă oe,γs ppq.

Proof. The follower p is not cancelled at any stage r P ps, ts. In particular, σ’s
action at stage t is not appointing a new follower, and so this action is prompted
by the equality fe,γt ppq “ ΛtpDt, pq.

We observe that ΛtpDt, pq ą s. This follows from the fact that at stage s, we
set Λs`1pDs`1, pq “ s ` 1, and that at no later stage do we decrease the value of
ΛrpDr, pq.

Now we have fe,γt ppq “ ΛtpDt, pq ą s and by convention, fe,γs ppq ă s. So
fe,γs ppq ‰ fe,γt ppq. Since xfe,γs , oe,γs ysăω is a pγ`1q-computable approximation, and
fe,γr ppq is not constant on r P rs, ts, we must have oe,γt ppq ă oe,γs ppq. �

Since for all s, δs is an initial segment of the tree of strategies, the true path δω
is an initial segment of the tree. Since every node on the tree of strategies has but
finitely many outcomes, the only thing that could stop the true path from being
infinite is that some node on the true path acts and ends the stage at almost every
stage it is accessible.

Lemma 2.5. Suppose that σ is a node on the true path working for some positive
requirement P e,γ , and that the construction is fair to σ. Then σ acts only finitely
many times.

Proof. Let s0 be the last stage at which σ is initialised. Let s1 be the least
stage beyond s0 at which σ is accessible. At stage s1, σ appoints a follower p.
Since s1 ą s0, this follower is never cancelled.

The fact that σ acts only finitely many times beyond stage s1 now follows from
Lemma 2.4. Since xfe,γs , oe,γs y is a pγ` 1q-computable approximation, there is some
stage t ě s1 after which oe,γu ppq is constant. Then σ can act at most once after
stage t. �

By induction on the length of nodes, we see that the construction is fair to
every node on the true path, and so that no node can be the last node on the true
path.

Corollary 2.6. The true path δω is infinite, and the construction is fair to every
node on the true path.

Next, we show that the positive requirements are met, and so that ΛpDq wit-
nesses that degTpDq is not totally γ-c.a. for any γ ă α.
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Lemma 2.7. ΛpDq is total.

Proof. Let p ă ω. Suppose that there is some stage s0 ą p at which p is not
a follower for any node. After stage s0, we enumerate an axiom into Λ regarding p
at most once, because such an axiom has use ´1 and so defines a computation that
cannot be destroyed. So overall, only finitely many axioms in Λ are made for p.
Thus, if p R dom ΛpDq, then at almost every stage s we have p R dom ΛspDsq. But
then at some such stage s ą s0 we would define Λs`1pDs`1, pqÓ with use ´1, which
would imply that p P dom ΛpDq after all – contradiction.

Now suppose that p is picked as a follower for some node σ, and that p is never
cancelled. The construction is fair to σ, and so either σ lies to the left of the true
path, or lies on the true path. In either case, σ acts at most finitely many times
(Lemma 2.5). Let s´1 be the last stage at which σ acts. Lemma 2.3(d) now shows
that Dæλsppq`1“ Ds æλsppq`1 and so p P dom ΛpDq. �

Lemma 2.8. Every positive requirement is met.

Proof. Let P e,γ be a positive requirement. Let σ be a node on the true
path which works for P e,γ . As in the proof of Lemma 2.7 there is a last
stage s ´ 1 at which σ acts, and at that stage we define a D-correct compu-
tation ΛspDs, pq. If ΛpD, pq “ fe,γppq, then for almost all stages t ą s we would
have ΛtpDt, pq “ fe,γt ppq. There is such a stage t ą s at which σ is accessible. At
such a stage, σ would act – contradiction. �

We now need to show that degTpDq is totally α-c.a., that is, that every re-
quirement Qe is met. Fix e ă ω, and suppose that ΦepDq is total; we give ΦepDq
an α-computable approximation.

Since the true path δω is infinite, there is some node τ P δω that works for the
requirement Qe. Let s˚ be the last stage at which the node τ is initialised (this is
the same as the last stage at which the node τˆ8 is initialised). We let

S “ ts ą s˚ : τˆ8 P δsu .

Since ΦepDq is total, S is infinite (so τˆ8 is on the true path) – a greatest stage in
S would yield a contradiction. Let s0, s1, . . . be the increasing enumeration of the
(computable) set S.

For x ă ω, we let ipxq be the least index i such that x ă dom ΦepDqrsis. For
j ě ipxq, we let ajpxq be the collection of nodes σ ě τˆ8 which at the beginning of
stage sj have a follower p “ ppσ, xq which was chosen before stage sipxq. Note that
for all j ě ipxq, aj`1pxq Ď ajpxq. The next lemma says that only nodes in ajpxq
can injure the computation ΦepD,xqrsjs.

Lemma 2.9. Let j ě ipxq. Suppose that ΦepD,xqrsj`1s ‰ ΦepD,xqrsjs. Then the
weakest node in aj`1pxq acts at stage sj.

Proof. There is some stage r P rsj , sj`1q at which some node σ enumerates a
number smaller than ϕe,sj pxq into Dr`1, destroying the computation ΦepD,xqrsjs.
Recall that since Φe is not enumerated by us, our convention is that ϕepxq is not the largest

number queried but one greater, the length of the string in the axiom defining the computation.

We show that r “ sj and that σ is the weakest node in aj`1pxq.
Let p be σ’s follower at stage r. Let t be the stage at which p was appointed.

We have λrppq ă ϕe,sj pxq, and so t ă sj .
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Certainly, σ cannot be stronger than τˆ8, since r ą s˚. On the other hand,
τˆ8 is accessible at stage sj , and σ is not initialised at stage sj (this would cancel
p), whence σ must extend τˆ8. From this we already conclude that r “ sj , as σ is
not accessible at any stage in the interval psj , sj`1q.

Since σ acts at stage sj , all nodes weaker than σ are initialised at stage sj , and
so no node weaker than σ can have, at stage sj`1, a follower chosen prior to stage
sipxq. I.e., no node weaker than σ can be an element of aj`1pxq. To finish the proof
of the lemma, it remains to show that σ P aj`1pxq, i.e., to show that t ă sipxq,
and that σ is not initialised at some stage r P rsj , sj`1q. The latter is immediate:
at stage sj , σ acts and so is not initialised; and at stage r P psj , sj`1q, τˆ8 is not
accessible, and so the fact that τˆ8 is not initialised at stage r implies that neither
is σ.

Suppose, for a contradiction, that t ě sipxq. Since σ extends τˆ8, we see
that t P S and so that x ă dom ΦepDqrts. This is the crucial point for the entire
construction: in this case every time we define λppq we observe ΦepD,xq, and so
the former is larger than the use of the latter.

Let u “ ϕe,tpxq. At stage t we pick λtppq ą u. Since σ is not initialised at any
stage r P rt, sjq, Lemma 2.3(d) shows that Dt æu“ Dsj æu, which in turn implies
that ϕe,sj pxq “ u. This contradicts λsj ppq ă ϕe,sj pxq. �

Fix x ă ω. For j ě ipxq and σ P ajpxq we let tjpσq be the greatest stage t ă sj
at which σ acts. Such a stage t exists, because σ acts when it appoints the follower
ppσ, xq. We note for later that σ is not initialised between stage tjpσq and stage sj .
In fact, tjpσq “ si for some i ă j, but this is not material.

For j ě ipxq and σ P ajpxq we let βjpσq “ oi,γtjpσqpppσ, xqq, where σ works for

the requirement P i,γ . We order the set ajpxq by descending priority to obtain a
sequence, and let

mjpxq “
ÿ

σPajpxq

βjpσq,

with the addition performed along the order of ajpxq: if ajpxq “ xσ1, σ2, . . . , σky
then mjpxq “ βjpσ1q`βjpσ2q`¨ ¨ ¨`βjpσkq. We let gjpxq “ ΦepD,xqrsjs. Certainly
limjÑ8 gjpxq “ ΦepD,xq.

Lemma 2.10. Let j ě ipxq. Then mj`1pxq ď mjpxq ă α, and if gj`1pxq ‰ gjpxq
then mj`1pxq ă mjpxq.

We then let mjpxq “ mipxqpxq and gjpxq “ gipxqpxq for all j ă ipxq, and see
that xgj ,mjy is an α-computable approximation for ΦepDq.

Proof. First note that for each j ě ipxq, for each σ P ajpxq, if σ works for
P i,γ then βjpσq ď γ ă α; as α is closed under addition (here is where we use the
assumption), mjpxq ă α for all j.

Next, we observe that thought of as sequences, aj`1pxq is an initial segment
of ajpxq. This is because if σ P ajpxqzaj`1pxq, then σ is initialised at some stage
r P rsj , sj`1q; at that stage r, every node weaker than σ is also initialised and
extracted from aj`1pxq.

Now for each σ P aj`1pxq, tj`1pσq ě tjpσq and so βj`1pσq ď βjpσq. Altogether,
we see that mj`1pxq ď mjpxq.

Suppose that gj`1pxq ‰ gjpxq. Let σ be the weakest node in aj`1pxq. We
know (Lemma 2.9) that σ acts at stage sj . Thus, tjpσq ă sj “ tj`1pσq. Since
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σ acts at both stage tjpσq and stage tj`1pσq, and is not initialised between these
stages, Lemma 2.4 says that βj`1pσq ă βjpσq. Together with βj`1pτq ď βjpτq for
all other τ P aj`1pxq, and since βj`1pσq is the last summand in mj`1pxq, we see
that mj`1pxq ă mjpxq. �

3. A refinement of the hierarchy: uniformly totally ωα-c.a. degrees

Downey, Jockusch and Stob [31] have shown that the following are equivalent
for a c.e. degree d:

(1) d is array computable;
(2) for every increasing computable function h, every function f P d has

an h-bounded computable approximation;
(3) there is some increasing computable function h such that every function

f P d has an h-bounded computable approximation.

By Proposition II.1.12, every c.e., array computable degree is totally ω-c.a.
Note that the computable enumerablility of d is necessary here, as there are un-
countably many array computable degrees.

The converse does not hold: there is a c.e. degree which is totally ω-c.a. but
not array computable. An indirect argument for the existence of such a degree is
given by a conjunction of work by Walk [101] and Downey, Greenberg and Weber
[25]. Walk constructed a c.e. degree which is not array computable, but does not
bound a critical triple. Downey, Greenberg and Weber showed that such a degree
must be totally ω-c.a.

Theorem 3.5 gives a direct construction of a c.e. degree which is totally ω-
c.a. and not array computable, by finding a generalisation of the notion of array
computability to all levels of the hierarchy of totally ωα-c.a. degrees. We call this
generalisation the uniform version of total ωα-computable approximability. The
key idea is the observation, mentioned above, that for ordinals α ą ω, the first
value o0pxq of an α-computable approximation xfs, osy is the correct measure of
“how many times” the approximation xfspxqysăω changes, rather than the natural
number mxfsypxq, the value of the mind-change function.

Definition 3.1. Let α ď ε0.
An α-order function is a non-decreasing computable function h : ω Ñ α whose

range is unbounded in α.
Let h be an α-order function. An α-computable approximation xfs, osy is an

h-computable approximation if for all x, o0pxq ă hpxq. In the language of Section II.3,

for each x, the sequence xfspxq, ospxqy is an instance of an hpxq-computable approximation.

We say that a function f : ω Ñ ω is h-computably approximable (or h-c.a.) if
there is an h-computable approximation xfs, osy such that lims fs “ f .

Note that for all α ď ε0, α-order functions exist; in fact, there is a computable,
strictly increasing and unbounded function from ω to α (see Lemma II.2.12). This
shows that a function is α-c.a. if and only if it is h-c.a. for some α-order function h.

The following uses an argument used by Terwijn and Zambella [95] in the
context of computable traceability, and earlier by Downey, Jockusch and Stob [31].

Lemma 3.2. The following are equivalent for a Turing degree d and α ď ε0.

(1) There is some α-order function h such that every f P d is h-c.a.
(2) For every α-order function h, every f P d is h-c.a.
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Proof. Let h and h̄ be α-order functions. We show that for all f : ω Ñ ω
there is some g ”T f such that if g is h̄-c.a., then f is h-c.a.

The function g is obtained by “stretching” f along the composition of the “dis-
crete inverse” of h with h̄. Namely, we (computably) partition ω into an increasing
sequence of finite intervals I˚ ă I0 ă I1 ă I2 ă . . . so that for all n, for all x P In,
hpxq ě h̄pnq. Some intervals In are allowed to be empty (this is used when h̄ is not
injective). We simply let I˚ be the set of x such that hpxq ă h̄p0q; and if

h̄pn´ 1q ă h̄pnq “ ¨ ¨ ¨ “ h̄pmq ă h̄pm` 1q

(possibly m “ n) then we let In be the set of x such that h̄pnq ď hpxq ă h̄pm` 1q;
this is finite since h is unbounded in α. For k between n and m ` 1 we let Ik be
empty.

We then define gpnq “ f æIn . Let xgs, osy be an h̄-computable approximation
for g. By speeding up this approximation we may assume that for all s and n, gspnq
is a function from In to ω. We can then define fspxq “ pgspnqqpxq for x P In (and
let mspxq “ ospnq); for x P I˚ we let fspxq “ fpxq and mspxq “ 0. Then xfs,msy

is an h-computable approximation for f . �

Definition 3.3. A Turing degree d is uniformly totally α-c.a. if for some (all)
α-order function(s) h, every f P d is h-c.a.

The Downey, Jockusch and Stob characterisation shows that a c.e. degree is
array computable if and only if it is uniformly totally ω-c.a.

Lemma 3.4. A Turing degree d is uniformly totally α-c.a. if and only if for some
(all) α-order function h, every f ďT d is h-c.a.

Proof. Suppose that d is uniformly totally α-c.a., and let h be an α-order
function. Let f ďT d and let g P d; so f ‘ g P d. Then f ‘ g is h‘h-c.a.; it follows
that f is h-c.a. �

The argument of Proposition 1.5 shows that a c.e. degree is uniformly totally
α-c.a. if and only if for some (all) α-order function h, every set in d is h-c.a.

We turn to investigate the distribution of uniformly totally α-c.a. degrees in the
hierarchy of totally α-c.a. degrees. An immediate fact, using the constant function
with value α, is that for all α ă ε0, every totally α-c.a. degree is uniformly totally
pα` 1q-c.a.

It follows from the easy direction of Theorem 2.1 that if β P pωα, ωα`1q (that
is, if β is not a power of ω), then every uniformly totally β-c.a. degree is totally
ωα-c.a. Hence, if β is not a power of ω, then there is an ordinal α which is a power
of ω such that the collection of uniformly totally β-c.a. degrees is the same as the
collection of totally α-c.a. degrees.

Thus, the only ordinals α for which the class of uniformly totally α-c.a. degrees
does not necessarily coincide with the class of totally β-c.a. degrees for some ordi-
nal β are the powers of ω. Theorem 3.5 shows that for ordinals α ď ε0 which are
powers of ω, the uniformly totally α-c.a. degrees indeed form a distinct level of the
hierarchy.

Theorem 3.5. Let α ď ε0 be a power of ω.

(1) There is a uniformly totally α-c.a. c.e. degree which is not totally γ-c.a.
for any γ ă α.
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(2) There is a totally α-c.a. c.e. degree which is not uniformly totally α-c.a.

The first ω ¨2 many levels of the hierarchy of totally and uniformly totally α-c.a.
degrees are depicted in Figure 2.

unif. ω

ω

unif. ω2

ω2

unif. ω3

ω3

...

unif. ωω

ωω

unif. ωω`1

ωω`1

...

Figure 2. The first refinement of the hierarchy. “ωα” denotes the
collection of totally ωα-c.a. degrees. “unif. ωα” denotes the class
of uniformly totally ωα-c.a. degrees.

3.1. Proof of Theorem 3.5(1). We show that the first part of Theorem 3.5
is actually already proved using the construction used for proving Theorem 2.1.
Given α ď ε0 which is a power of ω, that construction produces a c.e. set D whose
Turing degree is totally α-c.a., but such that there is some f ďT D that is not
γ-c.a. for any γ ă α. We show that degTpDq is actually uniformly totally α-c.a.
The reason for this is the long delay between expansionary stages that was already
incorporated into the construction.

For concreteness, let P e0,γ0 , P e1,γ1 , . . . effectively enumerate all the positive
requirements P e,γ , and suppose that for all k ă ω, all nodes of length 2k work
for the requirement P ek,γk . In particular, all nodes of even length work for some
positive requirement.
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Lemma 3.6. For all stages s, for all σ P δs, |σ| ď 2s.

Proof. By induction on s. If this holds for all stages t ă s, and if at stage s,
some node σ of length 2s is accessible, then since it works for a positive requirement,
and was not accessible at any stage before s, at stage s, the nodes σ acts by
appointing a follower, and ends the stage. �

For all n ă ω, let

hpnq “

ˆ

max
kďn

γk

˙

¨ 22n.

Since every ordinal below α appears as some γk, the function h is an α-order
function. The combinatorial point is that if σ1, . . . , σl is a sequence of distinct
nodes on the tree, each of length at most 2n, with σi working for P eki ,γki (so
ki ď n), then as the tree of strategies is (at most) binary branching, we have
l ď 22n, and so

ÿ

iďl

γki ď hpnq.

We show that every f ďT D is ph`1q-c.a. To this end, fix some e ă ω such that
ΦepDq is total, and let τ be a node on the true path which works for requirement
Qe. Recall the construction, during the proof of Theorem 3.5, of an α-computable
approximation xgj ,mjy for ΦepDq. We let s˚ be the last stage at which τ was
initialised, and

S “ ts ą s˚ : τˆ8 P δsu “ ts0, s1, . . . u.

For all x ă ω, ipxq was the least index i such that x ă dom ΦepDqrsis. For
j ě ipxq we observed the set ajpxq of nodes σ ě τˆ8 that have followers at the
beginning of stage sipxq, and are not initialised between stages sipxq and sj ; we focus
on apxq “ aipxqpxq. The ordinal m0pxq “ mipxqpxq was defined to be the sum of

ordinals of the form oi,γt ppq, where t ă sipxq is some stage, and p is a follower at

stage sipxq for σ P apxq, working for P i,γ . Certainly oi,γt ppq ď γ. And so, if 2n is
a bound on the lengths of nodes in apxq, then m0pxq ď hpnq. The proof will be
complete when we show that for almost all x, 2x is a bound on the lengths of nodes
in apxq, and so m0pxq ď hpxq; so a modification of the approximation xgj ,mjy on
finitely many inputs yields an h-computable approximation for ΦepDq.

Lemma 3.7. For all x ě dom ΦepDqrs1s, for all σ P apxq, |σ| ď 2x.

Proof. Let x ě dom ΦepDqrs1s. So ipxq ě 2; for brevity, we let u0 “ sipxq´2

and u1 “ sipxq´1. By the instructions for τ , u0 ă dom ΦepDqru1s; by minimality
of ipxq, dom ΦepDqru1s ď x; so x ą u0. By Lemma 3.6, all nodes accessible at any
stage t ď u0 have length at most 2u0.

Let σ P δu1
be a node working for some positive requirement P i,γ which has

not been accessible at any stage s ď u0 (if there is such a node). Since τ and all
of its predecessors are accessible at stage u0, we have σ ě τˆ8. But since u1 is the
immediate successor of u0 in S, σ was not accessible at any stage s P pu0, u1q; so
u1 is the least stage at which σ is accessible, and so σ ends the stage u1. It follows
that for such σ we must have |σ| ď 2u0 ` 2.

In total, if σ ě τˆ8 is accessible at any stage s ď u1, then |σ| ď 2pu0`1q ď 2x.
Let σ P apxq. The node σ extends τˆ8, and was accessible at some stage t P S,

smaller than sipxq; so t ď u1. Hence |σ| ď 2x as required. �
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3.2. Proof of Theorem 3.5(2). A minor modification of the construction for
Theorem 2.1 gives the proof of the second part of Theorem 3.5. Again, we are given
an ordinal α which is a power of ω, so is closed under addition; and we enumerate
a c.e. set D whose Turing degree will be totally α-c.a. but not uniformly so. By
Lemma 3.4, it is sufficient to fix an α-order function h and enumerate a functional
Λ such that ΛpDq is total and is not h-c.a. What makes this construction work
is that we can enumerate tidy ph` 1q-computable approximations. The definition
is the expected modification of Definition II.1.5. A simpler version of the proof of
Proposition II.1.7 yields:

Lemma 3.8. Let α ď ε0 and let h be an α-order function. Then there is an
effective enumeration xfes , o

e
sy of tidy ph` 1q-computable approximations such that

letting fe “ lim fes , the sequence xfeyeăω contains all h-c.a. functions.

Fixing h, we get an enumeration of ph ` 1q-computable approximations
xxfes , o

e
sysăωyeăω as in Lemma 3.8, and repeat the construction for Theorem 2.1

where the positive requirements are now:

P e: There is some p such that ΛpD, pq ‰ feppq.

The rest of the construction is identical, as are the verifications, and so we
omit them. The critical reader would ask, though: as was shown in the previous
subsection, the construction for Theorem 2.1 actually produces a uniformly totally
α-c.a. degree. Why can we not replicate the argument now to get a contradiction?

We recall the argument proving the first part of Theorem 3.5. Let e ă ω
such that ΦepDq is total. A uniform bound for m0pxq, where xgj ,mjyjăω is the

α-computable approximation for ΦepDq, was given by seeing that for almost all
x, the nodes in apxq all had length at most 2x, a fact which is preserved in the
current, modified construction. In the previous construction, this was sufficient
to give the bound, since for any follower p for some node σ P apxq, working for

some P i,γ , we had oi,γ0 pxq ď γ. In the current construction, of course, we just have
oi0ppq ď hppq ` 1, so the size of p plays a role.

Can we not use the argument showing that σ P apxq has length at most 2x to
also bound the size of followers for such σ? After all, these followers are chosen at
some τ -expansionary stage t smaller than sipxq, and, roughly speaking, a follower
chosen at stage t has size “close to t”. As in the proof of Lemma 3.7, let u0 ă u1 be
the immediate predecessors of sipxq in S. Then u0 is bounded by x, but u1 may be
much larger than x; and one element σ of apxq may pick its follower at stage u1. So
even though the length of that σ is bounded by 2x, the size of its follower cannot
be computably bounded in x, and it is this single element of apxq that chooses a
follower late, which prevents us from giving an approximation ΦepD,xq with some
ordinal bound which depends on x but not on σ and p (and so not on τ).

4. Another refinement of the hierarchy: totally ă ωα-c.a. degrees

The hierarchy of totally α-c.a. degree is not, a priori, the finest one could devise.
For a limit ordinal α, one could conceive of a totally α-c.a. degree d such that every
f P d is γ-c.a. for some γ ă α, but such that d is not totally γ-c.a. for any γ ă α.

Definition 4.1. Let α ď ε0. A Turing degree d is totally ă α-c.a. if every f P d
is γ-c.a. for some γ ă α.
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As is the case with totally α-c.a. degrees and with uniformly totally α-c.a.
degrees, a Turing degree d is totally ă α-c.a. if and only if every f ďT d is γ-c.a.
for some γ ă α.

As was indicated in the introduction, the class of totally ă ωω-c.a. degrees is
the main class investigated in this work.

As we did for uniformly totally α-c.a. degrees, we now examine how the classes
of totally ă α-c.a. degrees fit in the hierarchy of totally α-c.a. degrees. Of course, if
γ ă α, then every totally γ-c.a. degree is totally ă α-c.a., and every totally ă α-c.a.
degree is totally α-c.a. In fact, slightly more holds: for any ordinal α, every totally
ă α-c.a. degree is uniformly totally α-c.a., because for any α-order function h and
all γ ă α, hpxq ě γ for almost all x, so any γ-computable approximation can easily
be converted into an h-computable approximation.

Lemma 2.2 shows that if β P pωα, ωα`1s, then every totally ă β-c.a. degree is
totally ωα-c.a.; in particular, note that this holds even if β “ ωα`1. Hence, if β is
not a limit of powers of ω, then there is some α ă β, a power of ω, such that the
class of totally ă β-c.a. degrees coincides with the class of totally α-c.a. degrees.

Also note that the construction proving Theorem 2.1 and Theorem 3.5(1) pro-
duces a degree that is uniformly totally α-c.a. but not totally ă α-c.a.; to show
that the degree constructed was not totally γ-c.a. for any γ ă α, we constructed a
single function ΛpDq which was not γ-c.a. for any γ ă α.

The following theorem then completely determines the new levels of our hier-
archy, the first ω ¨ 2 levels of which are depicted in Figure 3.

Theorem 4.2. If α ď ε0 is a limit of powers of ω, then there is a c.e. degree
which is totally ă α-c.a. but not totally γ-c.a. for any γ ă α.

The rest of this section is devoted to the proof of Theorem 4.2. We are given
an ordinal α ď ε0, a limit of powers of ω, and give a computable enumeration xDsy

of a c.e. set D such that degTpDq is totally ă α-c.a. but not totally γ-c.a. for any
γ ă α.

For every γ ă α and e ă ω we must meet the requirements

P γ: There is a function f ďT D which is not γ-c.a.

and

Qe: If ΦepDq is total, then ΦepDq is γ-c.a. for some γ ă α.

Discussion. The first thing to notice is that we cannot, uniformly in γ, compute
from D a function f which is not γ-c.a.; for we could string these functions together
to get a single function which is not γ-c.a. for any γ ă α, and so fail to make degTpDq
totally ă α-c.a.

It is also fairly easy to see how the construction necessitates this non-uniformity.
For suppose we tried to copy the construction proving Theorem 2.1. A node τ ,
working for Qe, is now trying to make ΦepDq a γ-c.a. function for some γ ă α. But
extending τˆ8 are nodes σ, working for P β for ordinals β which are unbounded in
α; their action would cause changes to τ ’s approximation of ΦepDq, and so force τ
to have its γ larger than all of these β’s, i.e., to be at least α.

The solution concerns that basic staple of both comedy and computability
theory, namely timing. Remember that in a situation as above, a node σ extending
τˆ8 can injure a computation ΦepD,xqrss only if the follower p for σ at stage s was
appointed before the τ -expansionary stage t “ sipxq at which we first observed and
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Figure 3. The second refinement of the hierarchy. “ωα” denotes
the collection of totally ωα-c.a. degrees. “ă ωα” denotes the col-
lection of totally ă ωα-c.a. degrees. “unif. ωα” denotes the class
of uniformly totally ωα-c.a. degrees.

certified a computation ΦepD,xqrts. On the other hand, regardless of when p was
appointed, upon enumerating λsppq into Ds`1, we need to immediately appoint a
new use λs`1ppq, without waiting for a new ΦepD,xqrus computation to recover;
this, because we need to make ΛpDq total. Even though σ guesses that ΦepDq
is total, it is participating in the construction of the global functional Λ, and is
responsible for making p P dom ΛpDq, even if its guess is incorrect. Inevitably, the
new marker λs`1ppq will be smaller than the use ϕe,rpxq at the next τ -expansionary
stage, and so further action with p will injure ΦepD,xq again.

In the previous construction this was fine, because σ provided τ with a bound
oi,γ0 ppq on the “number of times” it will act for p, and the sum of these bounds was
smaller than α. As mentioned above, this is insufficient when we want to show that
the function ΦepDq is γ-c.a. for some γ ă α. Once we determined γ, what we need
to do is break the cycle of repeated injury by the same follower p, when the bound
for the follower is greater than γ. This is possible if we delay defining ΛpD, pq until
we see the computation ΦepD,xq recover. To do this, we distribute in a tree of
strategies nodes η, working for P β , which are responsible for a local version ΛηpDq
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of ΛpDq. Only nodes extending η contribute to the definition of ΛηpDq, and the
function ΛηpDq is required to be total only if η lies on the true path. If such η
extends τˆ8, then indeed definitions of ΛηpD, pq can wait until ΦepD,xq recovers
at the next τ -expansionary stage. We see how this gives the non-uniformity in
defining the function witnessing P β : we need the true path to find it.

How do we find γ? The approach of waiting to define Λη cannot be employed
if τ extends η. If σ is a “child” node of such η with τˆ8 ď σ, then we are back at
the situation of the original construction: repeated action for a follower p for σ will
keep injuring a computation ΦepD,xq. Again, σ provides a bound for its action,
and that bound is itself bounded by β, where η works for P β . And β ă α. Since
there are only finitely many “mother” nodes η ă τ , the bound γ will be any ordinal,
closed under addition, which bounds the ordinals β for these nodes η. That such
an ordinal γ ă α can be found follows from the fact that α is a limit of ordinals
closed under addition.

The tree of strategies. Let γ ă α. In order to meet the requirement P γ , for
each e ă ω, we need to meet the subrequirements P e,γ which diagonalise against
fe,γ . We arrange all of the requirements and subrequirements – Qe, P

γ and P e,γ

– effectively, in a list of order-type ω, but ensuring that for each γ and e, P γ

appears before P e,γ . We let all strategies on the tree of length k work for the kth

requirement on the list.
Nodes working for requirements P γ and P e,γ have only one outcome. Nodes

working for Qe have two outcomes, 8 and fin, the former stronger than the latter.
Nodes η working for P γ enumerate a functional Λη. For any node σ working

for P γ,e there is a unique node η ă σ working for P γ . We denote this node, the
“mother” of σ, by ηpσq.

Construction. At stage s, we let δs, the collection of nodes accessible at stage s,
be an initial segment of the tree of strategies.

Suppose that a node τ that works for requirement Qe is accessible at stage s.
If s is the least stage at which τ is accessible, then we let τˆ8 P δs. Otherwise, we
let t be the last stage before s at which τˆ8 was accessible. If t ă dom Φe,spDsq,
then we let τˆ8 P δs. Otherwise, we let τ f̂in P δs.

Suppose that a node η that works for requirement P γ is accessible at stage s.
If there is some p which is a follower for some child σ ą η of η (an extension of η
working for some subrequirement P e,γ) such that p R dom Λη,spDsq, then we define
Λη,s`1pDs, pq “ s ` 1 with large use, and end the stage (in this case, we do not
initialise all nodes weaker than η; but as usual, we do initialise all nodes which lie
to the right of η).

Otherwise, for all p ă s which are not in dom Λη,spDsq, we define Λη,s`1pDs, pq “ 0
with use ´1; the unique immediate successor of η on the tree of strategies is acces-
sible next.

Suppose that a node σ that works for a subrequirement P e,γ is accessible at
stage s.

(1) If σ has no follower, then σ appoints a new, large follower for itself.
(2) If σ has a follower p, and Ληpσq,spDs, pqÓ“ fe,γs ppq, then we enumerate

ληpσq,sppq into Ds`1.
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Note that in either case, we do not define a new computation Ληpσq,s`1pDs`1, pq.
In either case, we end the stage and initialise all nodes weaker than σ. If σ does not
act, then the unique immediate successor of σ on the tree of strategies is accessible
at stage s.

Verification. Let η be a node that works for P γ . At stage s, we only define a
new Λη,s`1pDs, pq computation if p R dom ΛspDsq. Lemma I.6.1 ensures that each
Λη,s is consistent for Ds, and so that each Λη is consistent for D.

Lemma 4.3. Let s be a stage, and let σ be a node working for P e,γ which has a
follower p at the beginning of stage s.

(1) If p R dom Ληpσq,spDsq, then at the last stage t ă s at which ηpσq was
accessible, so was σ, and σ acted at stage t.

(2) If σ1 is a node weaker than σ, working for P e
1,γ1 , and has a follower p1 at

the beginning of stage s, then p ă p1. If in addition p P dom Ληpσq,spDsq

then ληpσq,sppq ă p1. Consequently, if also p1 P dom Ληpσ1q,spDsq then
ληpσq,sppq ă ληpσ1q,spp

1q.

Proof. Both parts of the lemma are proved simultaneously, by induction on s.
Assume both parts hold at all stages before stage s. Let η “ ηpσq.

For (1), let t ă s be the last stage before s at which ηpσq was accessible, and
suppose that σ does not act at stage t. Then p is already a follower for σ at
the beginning of stage t, and so σ was not initialised at any stage r P rt, sq. If
p R dom Λη,tpDtq, then at stage t, η defines a new computation Λη,t`1pDt, pq, and
ends the stage. This means that Dt`1 “ Dt, and so p P dom Λη,t`1pDt`1q with
λη,tppq “ λη,t`1ppq. By (2) at all stages r P rt ` 1, sq, this computation cannot be
injured at stage r without initialising σ, so p P dom Λη,spDsq. If, on the other hand,
p P dom Λη,tpDtq, then by (2) at all stages r P rt, sq, this computation cannot be
injured without initialising σ.

For (2), let σ1 and p1 be as described. That p ă p1 follows as usual from the
fact that the stage at which p1 was chosen is later than the stage at which p was
chosen.

For the second part, let t ă s be the stage at which the computation Λη,spDs, pq
was defined. To show that λη,sppq ă p1, we show that the follower p1 was chosen
after stage t. We know that ΛηpD, pqrtsÒ. Let u be the last stage prior to stage
t at which η was accessible. By (1) at stage t, σ acted at stage u, and so σ1 was
initialised at stage u. Since η ă σ, η is stronger than σ1. If σ1 lies to the right of η,
then it is initialised at stage t, and so p1 is chosen after stage t. Otherwise, σ1 ą η,
and so σ1 is not accessible at any stage r P pu, tq and also not accessible at stage t
(as η ends the stage). Thus, again, p1 was chosen after stage t. �

As a corollary we can conclude that for σ and p as above, if p P dom Ληpσq,spDsq,
then ληpσq,sppq R Ds. An analogue of Lemma 2.3(d) also holds, with a similar
argument.

Lemma 4.4. Let t ą s be stages and let σ be a node which works for some positive
subrequirement. Suppose that p is a follower for σ at the beginning of stage s.
Suppose that σ is not initialised at any stage r P rs, tq.

(1) Ds æp“ Dt æp.
(2) If in addition p P dom Ληpσq,spDsq, then Ds æληpσq,sppq“ Dt æληpσq,sppq.
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(3) If, further, σ does not act at any stage r P rs, tq, then p P dom Ληpσq,tpDtq

and ληpσq,sppq “ ληpσq,tppq.

Lemma 4.5. Suppose that σ works for P e,γ , and that p is a follower which is
appointed for σ at some stage and is never cancelled. Suppose that σ does not
act infinitely often. Suppose also that ηpσq is accessible infinitely often. Then
p P dom ΛηpσqpDq.

Proof. Let s be the last stage at which σ acts; since p is not cancelled after
stage s, σ is not initialised after stage s. Let t be the least stage after stage s at
which η “ ηpσq is accessible. If p P dom Λη,spDsq then the action of σ at stage s
removes p from dom Λη,s`1pDs`1q; in any case, p R dom Λη,tpDtq. At stage t, η
defines a new computation Λη,t`1pDt`1, pq. By Lemma 4.4, this computation is
D-correct. �

Lemma 2.4 holds for the current construction as well: if σ, working for P e,γ ,
acts at stages s ă t and has the same follower p at the end of stage s and the end of
stage t, then oe,γt ppq ă oe,γs ppq. The proof is similar; the computation Ληpσq,tpDt, pq
must have been defined by ηpσq at a stage u ą s, and so its value is u` 1 which is
bigger than s, so fe,γs ppq ă s ă u` 1 “ fe,γt ppq. Now an argument, identical to the
argument proving Lemma 2.5, shows that if σ, working for P e,γ is on the true path,
and the construction is fair to σ, then σ eventually appoints a follower p which is
never cancelled, eventually stops acting, and ΛηpσqpD, pq ‰ fe,γppq. It follows that
the true path is infinite, that the construction is fair to every node on the true
path, and that if η on the true path works for P γ , then ΛηpDq is total, and is not
γ-c.a. Since the true path has a node in every level, each P γ is met, so degTpDq is
not totally γ-c.a. for any γ ă α.

To conclude the proof of Theorem 4.2, we need to show that for all e ă ω such
that ΦepDq is total, ΦepDq is γ-c.a. for some γ ă α. Fix such e, and let τ be the
node on the true path that works for requirement Qe. At first, we proceed as in
the proof of Theorem 2.1. Let s˚ be the last stage at which τ is initialised, and let

S “ ts ą s˚ : τˆ8 P δsu “ ts0, s1, . . . u

as again, S is infinite. For x ă ω we define ipxq as before, to be the least i such
that x ă dom ΦepDqrsis. And again, for j ě ipxq we let ajpxq be the set of nodes
σ ě τˆ8 which at the beginning of stage sj have a follower p “ ppσ, xq which was
appointed before stage sipxq. Lemma 2.9 holds for the current construction, with
the same proof, except that now we use p ą u rather than ληpσq,tppq ą u; so we use
part (1) of Lemma 4.4 instead of part (2).

We now find an ordinal bound below α for the complexity of ΦepDq. Fix x ă ω.
For σ P apxq, since σ ě τˆ8, ηpσq is comparable with τˆ8.

Lemma 4.6. Let σ P apxq, and suppose that ηpσq ě τˆ8. Then there is at most
one j ě ipxq such that σ acts at stage sj and injures the computation ΦepD,xqrsjs.

Proof. Let sj be a stage at which σ acts, where j ě ipxq. We show by induc-
tion that for all i ą j in S, if p is a follower for σ at the beginning of stage si, and
p P dom ΛηpσqpDqrsis, then ληpσq,sippq ą ϕe,sipxq, so σ cannot injure ΦepD,xqrsis
at stage si. Let η “ ηpσq.

The base step is vacuous, and this is the main point of the proof. At stage sj , σ’s
action extracts its follower p from dom ΛηpσqpDq. The assumption η ě τˆ8 means
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that η is not accessible at any stage r P psj , sj`1q, and so p R dom ΛηpDqrsj`1s.
Note that p is still the follower for σ at the beginning of stage sj`1.

Let i ą j`1 and suppose the inductive claim holds for all i1 P pj, iq. Let p be a
follower for σ at the beginning of stage si, and suppose that p P dom ΛηpDqrsis. The
proof follows the idea for Lemma 2.9. Let t be the stage at which the computation
ΛηpD, pqrsis was defined. Since η ě τˆ8, t P S; and t ě sj`1. Thus λη,tppq is
chosen to be larger than u “ ϕe,tpxq. Lemma 4.4(2) now shows that Dsi æu“ Dt æu

and so ϕe,sipxq “ u ă λη,sippq as required. �

Since α is a limit of ordinals which are closed under addition, and τ has only
finitely many predecessors on the tree of strategies, find some ordinal δ ă α, closed
under addition, such that for all η ă τ which work for some P γ we have γ ă δ.
We give a δ-computable approximation for ΦepDq, along the lines of the proof of
Theorem 2.1.

Again fixing x, for j ě ipxq and σ P ajpxq we again let tjpσq be the greatest
stage t ă sj at which σ acts. The main part is defining the ordinal βjpσq:

‚ If ηpσq ă τ , then we let βjpσq “ oi,γtjpσqpppσ, xqq, where σ works for P i,γ .

‚ If ηpσq ě τˆ8, then we let βjpσq “ 0 if there is some i P ripxq, jq for which
σ acts at stage si and destroys the computation ΦepD,xqrsis. If there is
no such i, then we let βjpσq “ 1.

We then mimic the rest of the proof of Theorem 2.1, ordering ajpxq by de-
scending priority, and defining mjpxq “

ř

σPajpxq
βjpxq. The proof of Theorem 4.2

is complete once we show that Lemma 2.10 holds for the current construction
(with δ replacing α). The proof of this lemma is identical to the previous proof,
except for one case: showing that βj`1pσq ă βjpσq if gj`1pxq ‰ gjpxq, where σ is
the weakest node in aj`1pxq, in the case that ηpσq ě τˆ8. But in this case we
appeal to Lemma 4.6.

5. Domination properties

In [31], Downey, Jockusch and Stob extend the notion of array computability
from the c.e. degrees to all the Turing degrees. This they do by using domination
properties of degrees. Such properties have been used early on, to characterise
classes such as the hyperimmune-free degrees, the high degrees and the non- low2

degrees. More recently [53], a combination of domination and measure characteri-
sations have yielded a characterisation of LR-hardness.

Recent work ([20, 71]) has indicated that the generalisations of array com-
putability defined in this chapter can also be extended to the non-c.e. degrees by
considering domination. We give the results for completeness.

Recall that if C is a class of functions from ω to ω, then a Turing degree d is
C-dominated if every function g P d (equivalently g ďT d) is dominated by some
function f P C. For example, the hyperimmune-free degrees are the degrees which
are ∆0

1-dominated, where ∆0
1 denotes the collection of all computable functions.

Definition 5.1. A Turing degree is α-c.a. dominated if it is C-dominated, where C
is the class of all α-c.a. functions. I.e., if every d-computable function is dominated
by some α-c.a. function.

Theorem 5.2 (Diamondstone,Greenberg,Turetsky [20]). Let α ď ε0. A c.e.
degree is totally α-c.a. if and only it is α-c.a. dominated.
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Proof. Let d be a c.e. degree and let D P d be a c.e. set.
In the non-trivial direction, suppose that d is α-c.a. dominated. Let g P d,

g “ ΓpDq for a functional Γ. Since D is c.e. it can compute the modulus m for the
approximation xgsy for g given by gs “ ΓspDsq; here the modulus m is defined by
mpkq “ s if s is the least stage such that for all t ě s, gt æk`1“ gæk`1.

Let h be an ω-c.a. function which majorises m, and let xht, otytăω be an α-
computable approximation for h. Letting g̃tpkq “ ghtpkqpkq we get that xg̃t, oty
is an α-computable approximation for g. Essentially, this argument repeats the proof of

Proposition II.3.17, after noticing that g is weak-truth-table reducible to any function dominating

the modulus m. �

The same argument yields an analogous result for the special limit classes.

Theorem 5.3. Let α ď ε0 be a limit of powers of ω. A c.e. degree d is totally
ă α-c.a. if and only if it is ă α-c.a. dominated, i.e., if for every d-computable
function g there is some γ ă α and some γ-c.a. function which dominates g.

For the uniform version, for a class of functions C, say that a Turing degree d
is uniformly C-dominated if there is some function f P C which dominates every
function in d. In other words, if d is tfu-dominated for some f P C. For example,
a ∆0

2 degree is low2 if and only if it is uniformly ∆0
2-dominated. A Turing degree is

uniformly α-c.a. dominated if, as expected, it is uniformly C-dominated, where C
is the collection of all α-c.a. functions.

The following is a generalisation of the aforementioned result by Downey,
Jockusch and Stob: a c.e. degree is array computable if and only if it is uniformly
ω-c.a. dominated.

Theorem 5.4 (with McInerney). Let α ď ε0 be a power of ω. A c.e. degree d
is uniformly totally α-c.a. if and only if it is uniformly α-c.a. dominated: some
α-c.a. function dominates all functions in d.

Proof. In one direction the argument is similar to the argument for Theo-
rem 5.2, but noticing the uniformity. Assuming that d is uniformly α-c.a. domi-
nated, let g be an α-c.a. function which dominates every function in d; fix an α-c.a.
order function h such that g is h-c.a. Let f P d, and let µ be the modulus function
for f , by an approximation given by a c.e. set in d, so µ ďT d. Then g dominates
µ, and the argument above shows that f is h-c.a.

In the other direction, we show that slightly stronger fact, that for any α-
order-function h, there is an α-c.a. function which dominates every h-c.a. function.
Fix an α-order-function h. Let xfey be an effective listing of all h-c.a. functions,
each with a tidy ph ` 1q-computable approximation xfes , o

e
sy (Lemma 3.8). Let

f̃pnq “ maxeďn f
epnq. Certainly f̃ dominates every h-c.a. function. For n ă ω and

s ă ω, let f̃spnq “ maxeďn f
e
s pnq and let õspnq “

À

eďn o
e
spnq; see the discussion of

commutative addition of ordinals in Subsection II.3.3. Lemmas II.3.15 and II.3.16
show this is an α-computable approximation for f̃ . �

Downey, Jockusch and Stob also showed that one can pick a single ω-c.a. func-
tion dominating all array computable degrees: the modulus of H1. A similar result
holds for the higher uniform levels as well.

Proposition 5.5. Let α ď ε0 be a power of ω. There is an α-c.a. function q such
that any Turing degree d is uniformly α-c.a. dominated if and only if it is tqu-
dominated.
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Proof. Let β ď ε0 such that α “ ωβ . Recall (Theorem II.3.11) that IHβ is
α-c.a., and has greatest weak truth-table degree among all α-c.a. functions. Let

xps, osy be an α-computable approximation of IHβ ; let q be the modulus function of

this approximation: qpnq is the least s such that for all t ě s, pt æn“ IHβ æn.

The function q is α-c.a.: for r ă ω let qrpnq be the least s ď r such that for
all t P rs, rs, pt æn“ pr æn. Also let mrpnq “ orp0q ‘ orp1q ‘ ¨ ¨ ¨ ‘ orpn ´ 1q. Then
xqs,msy is an α-computable approximation of q.

We now follow the proof in [31, Thm.1.3]. Suppose that d is not tqu-dominated;
we show that it is not uniformly α-c.a. dominated. Let h P d be a function which
is not dominated by q. Let f be an α-c.a. function; we define a function g ďT h
which is not dominated by f .

Let pΦ, ϕq we a weak truth-table functional such that ΦpIHβ q “ g. We

may assume that h and ϕ are strictly increasing. To define gpnq, search for the

least s ą hpϕpn`1qq such that Φ̂spps, nqÓ; we let gpnq “ Φ̂spps, nq`1. Let k be such
that hpkq ą qpkq; since ϕ is strictly increasing, let n such that ϕpnq ď k ă ϕpn`1q.
Then

qpϕpnqq ď qpkq ă hpkq ď hpϕpn` 1qq,

and so the stage s witnessing the definition of gpnq, which was chosen to be greater

than hpϕpn ` 1qq, is greater than qpϕpnqq; so ps æϕpnq“ IHβ æϕpnq, whence the

computation Φ̂spps, nq is correct, so gpnq “ fpnq ` 1. �



CHAPTER IV

Maximal totally α-c.a. degrees

For a collection F of c.e. degrees, we say that a degree a P F is maximal in F
if it is maximal as an element of the partial ordering induced on F by the ordering
on the Turing degrees. In other words, if there is no degree b ą a in F .

Classes of c.e. degrees which contain maximal elements are rare; they are mostly
prevented by density considerations. For example, no jump classes contain maximal
elements, and there are no maximal cappable degrees. A notable exception is the
example of the contiguous degrees – those degrees all of whose c.e. elements have
the same weak truth-table degree. Cholak, Downey and Walk [14] showed that
there are maximal contiguous degrees. Since the contiguous degrees are definable
in the c.e. degrees (Downey and Lempp [33]), the maximal contiguous degrees form
a definable antichain of c.e. degrees.

The relevance of contiguous degrees to the current study is that contiguous
degrees are all array computable, that is, uniformly totally ω-c.a. Like the contigu-
ous degrees, the maximality phenomenon occurs at various level of the hierarchy
discussed in Chapter III.

1. Existence of maximal totally ωα-c.a. degrees

Theorem 1.1. If α ď ε0 is a power of ω, then there is a maximal totally α-c.a.
c.e. degree.

To prove Theorem 1.1, fix an ordinal α ď ε0 which is a power of ω; we enumerate
a c.e. set D whose Turing degree will be maximal totally α-c.a. To ensure that
degTpDq is totally α-c.a., we meet, for each e ă ω, the requirements

Qe: If ΦepDq is total, then ΦepDq is α-c.a.

To ensure maximality, for each e ă ω, we want to ensure that either We ďT D,
or that there is some f ďT D ‘We which is not α-c.a. We enumerate a Turing
functional Λe, with the aim of showing that either We ďT D or ΛepD,Weq is not
α-c.a. By Proposition II.1.7 let

@@

f is, o
i
s

D

săω

D

iăω
be an effective list of tidy pα`1q-

computable approximations such that letting f i “ lims f
i
s, the sequence

@

f i
D

lists

the α-c.a. functions; and as above, every α-c.a. function appears as f i for some i
such that the approximation

@

f is, o
i
s

D

is eventually α-computable. For e, i ă ω, we
try to meet the requirement

P ie: If
@

f is, o
i
s

D

is eventually α-computable then either We ďT D or

ΛepD,Weq ‰ f i.

Globally we need to ensure that for all e, ΛepD,Weq is total.

75
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Discussion. The construction is not difficult. To meet a requirement Qe we
use the mechanism proving the theorems in Chapter III: a node τ , working for Qe,
measures an approximation to the question “is ΦepDq total?”; in the case of an
affirmative answer, initialisation of weaker nodes that guess incorrectly allows τ to
devise an α-computable approximation for ΦepDq.

A node σ working for a requirement P id would like to appoint a follower p and
follow the strategy of nodes working for positive requirements in the constructions
of Chapter III: whenever f isppq “ Λd,spDs,We,s, pq, enumerate λd,sppq into Ds`1.
This action may interfere with the work done by a node τ for some requirement Qe
such that τˆ8 ď σ. However, unlike previous constructions, when σ picks p we do
not know yet the ordinal bound on the “number of times” σ may need to act for p;
the functions ois are in some sense partial, since they allow the value α, which for
us is useless.

We isolate three principles which guide the interaction between τ and σ extend-
ing τˆ8. These have been followed in previous constructions as well, but sometimes
more easily since the approximations were “total”. Let p be a follower for σ, a node
working for P id.

(a) Suppose that τ first certifies a computation ΦepD,xqrss at stage s (in
previous notation, s “ sipxq). If oisppq ă α, then τ can incorporate this
ordinal to the bound on its mind-changes for ΦepD,xq. It can thus allow
every future action for p to injure ΦepD,xq.

(b) If the use λd,tppq is chosen at a stage t at which we see ΦepD,xq converge,
then the next action for p will not injure ΦepD,xqrts.

(c) Since Λd is global, σ needs to define λdppq immediately when it appoints p,
that is, before it sees oippq ă α.

We remark that we could have made the definition of each Λd local, tied to a
“mother node” η as in the proof of Theorem III.4.2. However, in this construction
this is not necessary and would not give any benefit. The effect of the finitely many
mother nodes η ă τ would be the same as the effect of having every Λd be global,
i.e. the root of the tree is the mother node for every Λd.

The principles outlined leave one potentially problematic sequence of events.
First σ appoints p and defines λdppq; then τ certifies ΦepD,xq; and only later do
we see oippq ă α. In this case, the use is too small, so action for p would injure
the certified computation; but τ did not know how many times σ will act for p
when it certified the computation. Note that τ could not wait for this later event,
since we may never see oippq ă α. Of course, this is where we use the additional
computational power of Wd. Before we see oippq ă α, σ does not need to act for
p. Once we see oippq ă α, if Wd ęT D, then Wd will permit σ to lift the use λdppq
beyond the use of a computation ΦepD,xq, in fact beyond the use of a D-correct
such computation. Only then is p cleared by τ and σ can attack with impunity.
We cannot expect that every follower we appoint is permitted, and so σ will need
to appoint a sequence of followers p0, p1, . . . ; one of them will be permitted.

We note two issues. One is that while Wd will permit some follower appointed
by σ, the stage at which it gives this permission is not necessarily a stage at which σ
is accessible, and this permission cannot “remain open” until σ is next visited: σ
may never be visited again, and we need to define λdppq to keep ΛdpD,Wdq total.
So we act on permissions immediately, even if σ is not accessible; this does no harm
to the rest of the construction.
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The other issue is that of totality. For each follower p, we note which com-
putations ΦepD,xq it is not allowed to injure, and seek permission from Wd at a
stage at which ΦepD,xqÓ for all such computations. We are guaranteed eventual
permission only if these are D-correct computations. How do we know that such
a stage will occur? Of course σ, since it extends τˆ8, guesses that ΦepDq is total.
But there are constructions in which τˆ8 lies on the true path but the measured
function ΦepDq is in fact not total. This is avoided in this construction because we
make D totally α-c.a. and so low2.

The tree of strategies. As usual, to define the tree, we specify recursively the
association of nodes to requirements, and specify the outcomes of nodes working
for particular requirements. To specify the priority ordering of nodes, we specify
the ordering between outcomes of any node.

We order all of the requirements Qd and P ie in order-type ω; all nodes of length k
work for the kth requirement on the list. The outcomes of a node working for Qe
are 8 and fin, with 8 ă fin. A node working for P ie has only one outcome.

Clearing followers. A follower p for a node σ working for P ie can be in one of
three states.

(1) When p is first appointed, it is unready.
(2) At a later stage (at which σ is accessible) we may see that oisppq ă α;

then p becomes ready : we have determined which computations ΦdpD,xq
it is allowed to injure.

(3) At a later stage yet, We may give permission to lift the use λeppq and
begin an attack with p. We say that p is in the clear.

Let precpσq be the collection of nodes τ such that τ works for a requirement Qd
and τˆ8 ď σ. This is the collection of nodes that may need to restrain σ’s action to
protect computations they are monitoring. For each follower p for σ, if p becomes
ready (by observing that oippq ă α) then we define, for each τ P precpσq, a value
mτ ppq, which serves as a watermark. If τ works for Qd, then action by σ for p
is allowed to injure computations Φd,spDs, xq for x ě mτ ppq, but not for smaller
values of x.

Construction. At each stage we will do one of two things. Normally we will
build the path of accessible nodes and act accordingly. But at some stages we will
observe We permissions that will allow us to clear a follower for some σ. In that
case no node is accessible at that stage and no other action is taken by any node.
In both cases, though, after the main action, we maintain functionals (work toward
making them total).

Option A. At stage s we first ask: is there some node σ working for a positive
requirement P ie which currently has a ready follower p such that:

‚ p R dom Λe,spDs,We,s`1q; and
‚ for all τ P precpσq, working for Qd, we have mτ ppq ď dom Φd,spDsq.

If so, then we let σ be the strongest such node. We pick such a follower p
for σ, and declare it to be in the clear. We cancel all other followers for σ. We let
Ds`1 “ Ds. We define Λe,s`1pDs`1,We,s`1, pq “ s ` 1 with large use (the D-use
and the We-use will always be equal). We initialise all nodes weaker than σ. For
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any pair pd, qq ď s distinct from pe, pq we maintain λdpqq as follows, and then end
the stage.

Maintaining λdpqq: If q R dom Λd,spDs`1,Wd,s`1q, then we define a new
computation Λd,s`1pDs`1,Wd,s`1, qq “ s ` 1 with use λd,s`1pqq determined by
cases:

‚ If q is currently a follower for a node σ1 working for P jd for some j (in
particular, q was not just cancelled), then we set λd,s`1pqq “ λd,spqq.

‚ Otherwise, λd,s`1pqq “ ´1.

The instructions will ensure that in the first case, λd,spqq is indeed defined, that is, q P dom Λd,spDs,Wd,sq.

The point of the first clause is to keep ΛdpD,Wdq total when we have Wd-changes which are

not beneficial, i.e. occur when the follower q is unready or dom ΦcpDqrss ă mτ pqq for some

τ P precpσ1q.

Option B. If option A was not taken, then we let, by recursion, the collection
of accessible nodes δs be an initial segment of the tree of strategies. So the root of
the tree is accessible at stage s.

Suppose that a node τ that works for requirement Qe is accessible at stage s.
If s is the least stage at which τ is accessible then we let τˆ8 P δs. Otherwise we
let t be the last stage before s at which τˆ8 was accessible. If t ă dom Φe,spDsq

then we let τˆ8 P δs. Otherwise we let τ f̂in P δs.

Suppose that a node σ, working for requirement P ie , is accessible at stage s.
There are two cases: either σ has a unique follower which is in the clear; or no
follower for σ is in the clear. In the latter case, σ possibly has a number of ready
followers, and possibly one unready follower.

1. Suppose that σ has follower p in the clear.
If Λe,spDs,We,s, pq “ f isppq then we enumerate λe,sppq into Ds`1 and redefine

Λe,s`1pDs`1,We,s`1, pq “ s`1 with large use. We initialise all nodes weaker than σ
and halt the stage.

If Λe,spDs,We,s, pq ‰ f isppq then the unique immediate successor on the tree of
strategies is next accessible.

2. Suppose that σ has no follower in the clear. There are two things we may do.

(a) If σ has a currently unready follower p and oisppq ă α, then we de-
clare p to be ready. For each τ P precpσq, working for Qd, we define
mτ ppq “ dom Φd,spDsq.

(b) If either the action in part (a) has just been performed, or σ currently
has no followers, then currently all followers for σ are ready. We then
appoint a new, large follower p1 for σ (which is unready) and define
Λe,s`1pDs`1,We,s`1, p

1q “ s` 1 with large use.

If neither (a) nor (b) are performed then σ already has one unready follower p with
oisppq “ α, and we do nothing.

If |σ| ă s, then the unique immediate successor on the tree of strategies is next
accessible; otherwise we halt the stage. In case 2, we do not initialise weaker nodes even

if we appoint a new follower. This is because if We ďT D, it is possible that infinitely many

followers will be appointed.

At the end of the stage, we maintain λdpqq for pairs pd, qq ď s (other than pairs
for which ΛdpD,Wd, qqrs` 1s has just been defined) as above.
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Verification. For a while, we follow the verifications for Theorem III.2.1. We
have an analogue of Lemma III.2.3. In the verification, we say that a node σ acts
at a stage s if either it is accessible at stage s and enumerates a number into Ds`1

on behalf of a follower in the clear; or if stage s option A is taken and a follower
for σ is cleared.

As indicated in the construction, if a follower p for σ is cleared at some stage s,
then all other followers for σ are cancelled at that stage. Until possibly a later stage
at which σ is initialised, p remains σ’s unique follower.

Lemma 1.2. Let s be a stage.

(a) Every functional Λe,s is consistent for the pair Ds,We,s.

Suppose that at the beginning of stage s, p is a follower for a node σ which works
for P ie .

(b) Λe,spDs, pqÓ and λe,sppq R Ds.

(c) Suppose that p1 is a follower for a node σ1, weaker than σ, working for P i
1

e1 .
Then λe,sppq ‰ λe1,spp

1q. If p is in the clear at the beginning of stage s,
then λe,sppq ă p1. As usual p1 ă λe1,spp

1q.

Let t ă s, and suppose that p was already a follower for σ at the beginning of stage t.

(d) If p was in the clear at stage t, then Dt æλe,tppq“ Ds æλe,tppq; if, in addition,
σ did not act at any stage r P rt, sq, then Dt æλe,tppq`1“ Ds æλe,tppq`1.

(e) If p is not in the clear at the beginning of stage s then λe,tppq “ λe,sppq.

Proof. Similar to the proof of Lemma III.2.3. We note the differences.
For (b), that Λe,spDs, pq Ó is immediate here, from the maintenance round we
do at the end of every stage. To show that λe,sppq R Ds, the new case is if at
stage s ´ 1, when performing maintenance, we saw that Λe,s´1pDs,We,s, pqÒ, and
defined a new computation with λe,sppq “ λe,s´1ppq. However, by induction,
y “ λe,s´1ppq R Ds´1. The node σ does not act at stage s ´ 1, and the first part
of (c) (at stage s´ 1) shows that no other node can enumerate y into Ds.

For (c), we note that as usual, new uses λe,sppq are chosen to be large, and so
distinct from existing uses. The second part follows from the fact that at the stage
at which p is cleared, σ1 is initialised. The proof of (d) is identical to the previous
proof. (e) is new, and follows immediately by induction, since σ never acts for p
before p is cleared, and once the use λe,tppq is picked (at the stage at which p is
appointed), the use is never lifted (see maintenance step). �

The proof of Lemma III.2.4 gives its analogue, recalling, though, that we say
that σ acts for p at stage s only if p is cleared at stage s, or if σ enumerates λe,sppq
into Ds`1 (when p is already in the clear); not when p is appointed or is declared
ready.

Lemma 1.3. Let σ be a node that works for requirement P ie . Let p be a follower for
σ at stages s ă t, and suppose that at both stages, σ acts for p. Then oitppq ă oisppq.

It follows that for each p, σ enumerates λeppq into D at only finitely many
stages. If the construction is fair to σ, then it follows that σ halts the stage at
most finitely many times after it is last initialised: at most once when a follower p
becomes cleared, and then finitely many times when it enumerates λe,sppq into D.
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Lemma 1.4. The true path δω is infinite, and the construction is fair to every
node on the true path.

Proof. The point is that there are infinitely many stages at which we do not
take option A and stop the stage: there are infinitely many stages at which δs is
nonempty. Suppose for a contradiction that there is a last stage s˚ at which we
take option B. There are only finitely many nodes σ which have followers at the
end of stage s˚. But for each such node σ there is at most one stage s ą s˚ at
which we act for σ. At that stage, a follower for σ is cleared. Either this follower
is never cancelled and σ does not act again. Or σ is initialised at some later stage
but never has the chance to appoint new followers. This is a contradiction. �

Lemma 1.5. For all e, ΛepD,Weq is total.

Proof. The difference from the proof of Lemma III.2.7 is that We-changes
may make Λe-computations diverge. The maintenance step, and in particular
keeping the use fixed unless a follower becomes cleared, addresses this issue. For-
mally, the convergence of ΛepD,We, pq for a permanent follower p for σ follows from
Lemma 1.2(e) if p is never cleared, and from Lemma 1.3 if it is. �

The argument of Lemma III.2.5 now shows that if a node σ on the true path,
working for requirement P ie , has a follower which is eventually cleared but never
cancelled, then ΛepD,Weq ‰ f i.

As mentioned above, perhaps surprisingly, in order to show that each finitary
requirement P ie is met, we need to investigate the infinitary requirements first. The
verification for the finitary requirements will use the fact that degTpDq is low2.

Fix a node τ , working for requirement Qe, such that τˆ8 lies on the true path.
By Lemma 1.4, let s˚ be the last stage at which τ is initialised. Let S “ ts0, s1, . . . u
be the collection of stages s ą s˚ at which τˆ8 is accessible. For x ă ω, let ipxq be
the least i such that x ă dom ΦepDqrsis. For x ă ω, we let apxq be the collection
of pairs pσ, pq such that σ ě τˆ8 (in other words τ P precpσq), and p is a follower
for σ which became ready at some stage prior to stage sipxq, but is not cancelled
by stage sipxq. For j ě ipxq we let ajpxq be the collection of pairs pσ, pq P apxq such
that σ is not initialised at any stage r P rsipxq, sjq, and p is still a follower for σ at
the beginning of stage sj .

The set apxq plays the same role as it did in the proof of Theorem III.2.1: only
action by σ for some p such that pσ, pq P ajpxq can injure a computation ΦepD,xq at
stage sj . This will show that ΦepDq is α-c.a., as apxq is finite, effectively obtained
from x, and at stage sipxq, we already know an ordinal bound okt ppq on the “number
of times” σ can attack with p. Note that for each σ there is at most one p such
that pσ, pq P apxq and σ will attack with p at a later stage sj . However, the identity
of this p – the one follower for σ that will be cleared, if there is one – is not yet
known at stage sipxq.

Lemma 1.6. Let σ ě τˆ8, working for P id, and let p be a follower for σ which is
already in the clear at the beginning of stage s ě sipxq. Suppose that pσ, pq R apxq.
Then:

(1) mτ ppq ą x.
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(2) Let t be the stage at which p is cleared. Then x P dom ΦepDqrts and
Dt æϕe,tpxq“ Ds æϕe,tpxq. It follows of course that x P dom ΦepDqrss and that

ϕe,spxq “ ϕe,tpxq.

(3) λd,sppq ą ϕe,spxq.

Proof. For (1), let w be the stage at which p is declared ready. If w ă sipxq
then pσ, pq P apxq, so w ě sipxq (and it follows that t ą sipxq). At stage w, σ is
accessible, and so w “ sj for some j ě ipxq, whence x ă dom Φe,wpDwq “ mτ ppq.

At stage t we have dom ΦepDqrts ě mτ ppq – this is one of the conditions for p to
be cleared. Hence x ă dom ΦepDqrts, so ϕe,tpxq is indeed defined. Let u “ ϕe,tpxq.
At stage t, we define λd,t`1ppq to be large, and so larger than u.

At stage t no node is accessible, so Dt`1 “ Dt. Lemma 1.2(d) applied to
t` 1 ď s says that Ds æλd,t`1ppq“ Dt`1 æλd,t`1ppq, and (2) follows.

As λd,rppq is non-decreasing with r, it follows that λd,sppq ą u “ ϕe,spxq. �

We are now ready to prove an analogue of Lemma III.2.9.

Lemma 1.7. Let j ě ipxq. Let u “ ϕe,sj pxq. Suppose that Dsj`1 æu‰ Dsj æu.
Then there is some pσ, pq P ajpxq such that σ acts for p at stage sj and enumerates
λd,sj ppq ă u into Dsj`1.

Proof. The argument follows the proof of Lemma III.2.9. Suppose that
at stage s P rsj , sj`1q, a node σ acts for some follower p and enumerates
λd,sppq ă ϕe,sj pxq into Ds`1. The argument that σ extends τˆ8, and so s “ sj , is
the same as above. Note that p is already in the clear at the beginning of stage sj .
Lemma 1.6(3) shows that pσ, pq P apxq, and so pσ, pq P ajpxq. �

The next lemma shows that D is low2.

Lemma 1.8. Let τ be a node on the true path that works for requirement Qe. Then
τˆ8 lies on the true path if and only if ΦepDq is total.

Proof. The non-trivial direction is left-to-right. Let x ă ω. To show that
x P dom ΦepDq, we observe that there are only finitely many j ě ipxq such that
Dsj`1 æϕe,sj pxq

‰ Dsj æϕe,sj pxq
. This follows from the fact that apxq is finite, and

that for each pσ, pq P apxq, σ acts for p at most finitely many times. �

We can now show that the positive requirements are met.

Lemma 1.9. For all e and i, the requirement P ie is met.

Proof. Let σ be a node on the true path, working for P ie . We observed
above that if there is a follower p for σ which is at some point cleared and is
never cancelled, then P ie is met. Let r˚ be the last stage at which σ is initialised,
and suppose that no follower for σ is cleared after stage r˚. If

@

f is, o
i
s

D

is not

eventually α-computable, then P ie is met vacuously, so we assume that it is. Then
every follower that σ appoints after stage r˚ eventually becomes ready (of course,
using the fact that σ is accessible during infinitely many stages). Then σ appoints
infinitely many followers. We show that We ďT D.

Let p be a follower for σ, appointed after stage r˚; let s0 be the stage at which p
is appointed, and let u “ λe,s0ppq. As u ą s0, the numbers u are unbounded, as p
ranges over the followers for σ. To compute We æu from D, we first go to the
stage t at which p becomes ready. At that stage we observe the numbers mτ ppq for
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τ P precpσq. For all τ P precpσq, τˆ8 lies on the true path. By Lemma 1.8, there
is a stage s at which for all τ P precpσq, for all x ă mτ ppq, x P dom ΦepDqrss by a
D-correct computation. Certainly D can find such a stage s; and We,s æu“ We æu,
for otherwise p would be cleared at some stage s1 ą s. �

We now rejoin the proof of Theorem III.2.1, using Lemma 1.7 to show that for
every e such that ΦepDq is total, the node τ on the true path working for Qe is
successful in devising an α-computable approximation for ΦepDq. Fix such e and τ ;
we again use the stages si, the indices ipxq and the sets ajpxq discussed above. Fix
x ă ω. We note, and this is the main point, that for all pσ, pq P apxq, if σ works
for P id then oisipxqppq ă α.

Let j ě ipxq and let σ be a node, working for P id, which appears in ajpxq (i.e.,
pσ, pq P ajpxq for some p). If no follower for σ is cleared by the beginning of stage sj ,
we let

βjpσq “ max
!

oisj ppq : pσ, pq P apxq
)

.

Otherwise, let p be the unique follower for σ at stage sj ; pσ, pq P ajpxq. We let tjpσq
be the greatest stage t ă sj at which σ acts (for p); such a stage exists, since p
becomes cleared at some stage t ă sj . We then let βjpσq “ oitjpσqppq. Finally, we

order the nodes appearing in ajpxq in descending priority as σ0, σ1, . . . , σkpjq, and
let mjpxq “

ř

kďkpjq βjpσkq. We note that if σk acts at stage sj then kpj ` 1q ď k.

Lemma III.2.10 holds for the current construction, with much the same proof. This
completes the proof of Theorem 1.1.

1.1. Maximal uniformly totally ωα-c.a. degrees. Not only are there max-
imal uniformly totally ωα-c.a. degrees, but there are such degrees which are also
maximal totally ωα-c.a.

Theorem 1.10. If α is a power of ω, then there is a uniformly totally α-c.a.
degree which is maximal totally α-c.a.

Proof. To prove Theorem 1.10, we run the construction for Theorem 1.1 with
but one modification: a follower p for a node σ working for P ie becomes ready at a
stage t1 if σ is accessible at stage t1, and at the previous stage t0 ă t1 at which σ
was accessible we saw that oit0ppq ă α. That is, we only let p become ready at the

second stage at which σ is accessible and at which we see oitppq ă α. It is easily
verified that this delay in declaring a follower to be ready does not affect the success
of the construction, so the degree degTpDq produced under this new definition of
readiness is also maximal totally α-c.a.; we show though that the degree produced
is also uniformly totally α-c.a.

We follow the argument for proving part (1) of Theorem III.3.5. By design of
the current construction, a node σ accessible at stage s has length at most s. We
fix some τ , working for Qe, such that τˆ8 lies on the true path. Now we examine
the proof of Lemma III.3.7. For x ě dom ΦepDqrs1s, again let u0 ă u1 ă sipxq
be successive stages at which τˆ8 is accessible. Let pσ, pq P apxq, with σ working
for P id. Then oiu0

ppq ă α, and u0 ă x. Since |σ| ď u0, we may assume that
i ă x. It follows that mipxqpxq is an ordinal which can be observed at stage x of the
construction, and this is independent of τ . This gives an α-order function h such
that every f ďT D is h-c.a. �
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In Section III.3.2 we explained why we could not combine the proofs of the two
parts of Theorem III.4.2 and obtain a contradiction (a degree which both is and is
not uniformly totally α-c.a.). The explanation focussed on the stage u1 “ sipxq´1,
the last stage in S before stage sipxq. A follower p appointed at stage u1 would have

bound oiu1
ppq which can be arbitrarily large with relation to p, but will be able to

destroy computations ΦepD,xqrsjs for j ě ipxq. In the previous chapter there is no
way around this; we have to allow such a p to destroy the computations, or σ will
not be able to meet its requirement. In the current situation, using Wd to lift the
use λeppq when p is cleared allows us to choose which followers to restrain, and this
makes possible the proof of Theorem 1.10.

For the case α “ ω, Theorem 1.10 says that there is an array computable
c.e. degree which is maximal totally ω-c.a. In fact, we suspect that combining
the methods of this chapter together with the construction of a contiguous degree,
one can show that there is a contiguous degree which is maximal totally ω-c.a.
Since every contiguous degree is array computable, such a degree is also maximal
contiguous.

The following theorem, for α “ ω, shows that not all maximal totally ω-c.a.
degrees are maximal contiguous degrees.

Theorem 1.11. If α is a power of ω, then there is a maximal totally α-c.a.
degree which is not uniformly totally α-c.a.

Sketch of proof. We combine the construction for Theorem 1.1 with the
technique proving Theorem III.3.5(2). To the construction for Theorem 1.1 we
add the enumeration of a functional Γ, with the aim of making ΓpDq witness that
degTpDq is not uniformly totally α-c.a. Again we fix an α-order function h, and
enumerate h-c.a. functions xgiy along with tidy ph`1q-computable approximations
for these functions. We add a third kind of requirement, Ri, namely that ΓpDq ‰ gi.
The action for these requirements is identical to that of the previous chapter. There
is no interaction (other than mutual initialisations) between nodes working for Ri

and nodes working for P jd ; and the interaction between nodes working for Ri and
nodes working for Qe is as in the previous chapter. That is, when showing that D
is low2, and then devising an α-computable approximation for ΦepDq if it is total,
the sets apxq may contain pairs pσ, pq where σ works for either a requirement Ri or

for a requirement P jd . In either case, the ordinal bound on the number of times σ
will act for p can be observed at stage sipxq, and if pσ, pq is not in apxq, then action
by σ for p cannot injure a computation Φe,spDs, xq observed at a τ -expansionary
stage. �

2. Limits on further maximality

One might wish for even stronger maximality properties than those provided
by Theorem 1.1. Could there be, for example, a totally ω-c.a. degree which is a
maximal totally ω2-c.a. degree? In general, can a degree in one level of our crudest
hierarchy be maximal for a higher level? The following theorem says it cannot.

Theorem 2.1. Let β ă ε0. Every totally ωβ-c.a. c.e. degree is bounded by a
strictly greater totally ωβ`1-c.a. c.e. degree.
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To prove Theorem 2.1, fix an ordinal β ă ε0, and let α “ ωβ . Let V be a c.e. set
whose Turing degree is totally α-c.a. We enumerate a set D such that degTpV ‘Dq
is strictly greater than degTpV q and is totally α ¨ ω “ ωβ`1-c.a. The requirements
to meet are:

Pe: ΨepV q ‰ D;

and

Qe: If ΦepV,Dq is total then it is α ¨ ω-c.a.

Discussion. The main idea for meeting the requirement Qe is as follows. We
track ΦepV,D, xq for some x. Changes to such a computation can come from two
sources: a V -change or a D-change. To keep track of the V -changes – the ones we
do not control ourselves – we build what we call a “shadow functional” Φ̂e, with
intended oracle V alone. We pick an input c and define Φ̂epV, cq with the same
use as that of ΦepD,V, xq (recall that we assume that the V -use and the D-use
are identical). The input c is called the tracker for x. We ensure that if ΦepD,V q

is total, then Φ̂epV q is total as well. Since degTpV q is totally α-c.a., Φ̂epV q will
equal f i for some i, where

@

f i
D

lists α-c.a. functions. We guess the correct index i;

this will be done using the fact that V is low2. This is a ∆0
3-guessing process,

which is very similar to a Π0
2{Σ

0
2 process, except that infinitely many outcomes

are required. The correct guess will observe oipcq and bound the V -changes in
ΦepD,V, xq.

We have to think though what happens when we cause a D-change (for the sake
of meeting some Pd). The computation ΦepD,V, xq is gone, but it is possible that

the V -part of the computation was correct. In this case Φ̂epV, cq is a correct compu-
tation, and we cannot use the tracker c to shadow new ΦepD,V, xq computations.
We need to replace c by a new tracker and repeat the process. This is how we get
α ¨ω: when we first certify ΦepD,V, xq, we put a bound on the number of D-changes
that we allow to destroy such a computation; say it is n. We appoint a tracker c0
and observe β0 “ oi0pc0q. We then declare that ΦepD,V, xq will not change more
than α ¨n`β0 many “times”. While we only see V -changes, the associated ordinal
is still α ¨ n ` oispc0q. Once we cause a D-change that destroys a ΦepD,V, xq com-
putation, we appoint a new tracker c1, observe β1 “ oispc1q, decrease our ordinal to
α ¨ pn´ 1q ` β1, and repeat the process.

We could be tempted to improve the bound. If we know in advance (i.e. when
ΦepD,V, xq is first certified) a bound n on the number of D-injuries to the compu-
tation, we could immediately appoint n trackers c0, . . . , cn´1 and start our approx-
imation knowing βk “ oi0pckq for all of these trackers. Then the bound would be
βn´1 ` βn´1 ` ¨ ¨ ¨ ` β0 which in fact is smaller than α. We would prove that there
is no maximal totally α-c.a. degree. The fallacy is easy to see: we do not know
whether we will actually see n-many D-injuries to the computation; n is just a
bound. While we are using the tracker c0 we cannot define computations Φ̂epV, ckq
for the other trackers (k ą 0); we need to keep them open, because the use of these
computations is the use of Φepxq-computations we have not yet observed. This

would make Φ̂epV q partial even if ΦepD,V q is total, and so void the whole plan.

We now discuss how to meet Pe, bearing in mind the severe restriction imposed
by the negative requirements: such requirements need to know in advance (relative
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to the input x) the number of times (in this instance without quotation marks) a
D-change could ruin a computation ΦdpD,V, xq.

We pick a follower p and wait for ΨepV, pq to converge, with the intention of
ensuring that ΨepV, pq ‰ Dppq. Of course the difficulty is that we do not know,
when presented with such a computation, whether the presented computation is V -
correct. If V were low we could apply R. Robinson’s guessing technique. However V
need not be low. But it is low2, and again we use this to guess the answer to the
question “is ΨepV q total?”.

Independent of the restrictions imposed by the negative requirements, ensuring
that D ęT V would now be easy. Define a D-computable function ΛpDq. Each
outcome of Pe which believes that ΨepV q is total appoints a follower p. If such
an outcome is believed and we currently see that ΨepV, pq “ ΛpD, pq then we
diagonalise. If such an outcome lies on the true path then its guess is correct:
ΨepV q is indeed total, and so the outcome would act only finitely many times.

Such action causes conflict with stronger negative requirements. To keep ΛpDq
total, a new value for λpD, pq needs to be picked immediately when an outcome
of Pe acts. This means that such an outcome will repeatedly injure a computation
ΦdpD,V, xq. We could try to use the fact that degTpV q is totally α-c.a., rather than
the weaker fact that it is low2. We guess that ΨepV q “ f i for some α-c.a. function f i

on our list; the node following ΦdpD,V, xq will observe how many “times” the Pe-
child will act, and incorporate it into its bound. The bound though is α rather
than ω. In this way we could try to make D ‘ V totally α2-c.a., but not totally
α ¨ ω-c.a. Of course for α “ ω this is sufficient.

To overcome this difficulty we modify the action of Pe as follows. The problem
was that even though we have certification that ΨepV q is total, many single com-
putations we see will be incorrect. To respect the main restriction, after a failed
attack with a follower we abandon that follower altogether. To ensure that this does
not go on indefinitely we build a shadow functional Ψ̂e, with intended oracle V .
We need to ensure that if ΨepV q is total then so is Ψ̂epV q. Each node that guesses
totality appoints an anchor q which will serve many followers p. We ensure that
the uses of ΨepV, pq and Ψ̂epV, qq are the same. If the node is correct then the fact

that Ψ̂epV, qq stabilises ensures that only finitely many followers are ever appointed
by that node.

We need to discuss in greater detail how a node τ working for Qe can
tolerate the action of a node σ working for Pd. Assuming that the node σ
guesses that lim sups dom ΦepV,Dqrss “ 8, it also needs to guess whether
lim infs dom ΦepV,Dqrss “ 8, that is, if ΦepV,Dq is total or not. If σ guesses
that ΦepV,Dq is total then for each x we allow an enumeration of a follower for σ
to injure ΦepV,D, xq at most once. As in the construction of a maximal totally
α-c.a. degree, we set a “watermark” mspσq, differentiating between large inputs
whose computations σ is allowed to injure, and smaller inputs which need to be
protected. Each time σ attacks, the watermark is updated. It is possible that due
to a V -change, a follower p is smaller than the use ϕe,spxq for some protected input

x ă mspσq. In this case the V -change makes Ψ̂dpV, qqÒ, and we can discard the
follower and choose a new, large one. Note that when this is done we do not need
to update mspσq: the node τ only cares about the number of followers that will
injure a computation ΦepD,V, xq, not about the identity of the follower that will
inflict the injury.
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What at first appears to be a trickier situation is when σ guesses that ΦepV,Dq
is partial. We still need to protect computations ΦepV,D, xq for small x, because
we don’t know that σ’s guess is correct. This means cancelling a follower p for σ
when we see a V -change that causes ϕepxq to increase. But if ΦepV,D, xqÒ then
this can happen infinitely often. However, σ can guess the exact place at which
ΦepV,Dq becomes partial, that is, the value of lim infs dom ΦepV,Dqrss. Say that
value is y. Inputs x ă y will eventually settle and stop causing the cancellation
of σ’s follower. When we guess the value y we delay the definition of Φ̂τ pV, cq
where c is the current tracker for x. Action by σ at such a stage will not cause
problems for stronger “totality outcomes” of τ : if Φ̂τ pV, cqÒ rss then enumeration
of a number into D at stage s does not mean that we need to abandon the tracker.
On the other hand if ΦepV,Dq is total then such y will be guessed only finitely often

and so Φ̂τ pV, cq will eventually be defined and we can ensure that Φ̂τ pV q is total as
well, which is necessary for τ ’s strategy to work.

The tree of strategies and ∆0
3 guessing. We define the tree of strategies and

assign strategies to nodes on the tree by recursion.
We start with the empty node, to which we assign the requirement Q0. Suppose

that τ is a node on the tree which was assigned the requirement Qe. The node will
have a number of children on the tree which help τ meet its goal. The outcomes of τ
are 8 ă fin. These outcomes measure lim sups dom ΦepV,Dqrss. The node τ f̂in

is assigned to the requirement Pe.
The outcomes of τˆ8 on the tree are 8n and finn for n ă ω (ordered by

80 ă fin0 ă 81 ă fin1 ă 82 ă ¨ ¨ ¨ ). These outcomes participate in the ∆0
3

guessing process of whether Φ̂τ pV q is total or not. The nodes τˆ8 f̂inn, which

guess that Φ̂τ pV q is not total, are assigned to the requirement Pe. The outcomes
of nodes of the form τˆ8ˆ8n are all i ă ω (ordered naturally). A node τˆ8ˆ8n

guesses that Φ̂τ pV q is total. If it is correct then Φ̂τ pV q must equal f i for some i,
where

@

f i
D

as usual is a list of the α-c.a. functions equipped uniformly with tidy

pα`1q-computable approximations
@

f is, o
i
s

D

; this is guessed by the node τˆ8ˆ8n î.
We assign each such node the requirement Pe.

Suppose that a node π is assigned the requirement Pe. The node π has infinitely
many outcomes 8n and finn, ordered as above. Again this is for guessing the
totality of Ψ̂πpV q, a shadow functional enumerated by the node π. The children
of π — its immediate successors on the tree — combine forces to help π meet its
requirement. They each have a single immediate extension on the tree, which is
assigned to the requirement Qe`1.

As discussed, nodes τ working for Qe define a shadow functional Φ̂τ and nodes π
working for Pe define a shadow functional Ψ̂π. Since V is low2, the set of indices
of functionals Θ such that ΘpV q is total is Σ0

3. Membership in a Π0
2 set can be

translated to the question whether a given non-decreasing computable sequence is
bounded or not. By the recursion theorem we know the indices of the functionals
enumerated by the nodes τ and π on the tree. Thus we obtain for each such
node µ a computable list `spµ, nq of sequences, nondecreasing in s, such that the
functional enumerated by µ is total if and only if for some n, the sequence x`spµ, nqy
is unbounded.
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As mentioned above, a node τ working for Qe appoints trackers trspτ, xq for

inputs x ă ω. If σ is a child of a node π working for Pe which believes that Ψ̂πpV q
is total (i.e. σ “ πˆ8n for some n ă ω) then σ may appoint both an anchor acspσq
and a follower flspσq. All followers, anchors and trackers are cancelled when the
node which appointed them is initialised.

Suppose that π is a node which works for Pe. We let precpπq be the set of
nodes τ working for some Qd such that τˆ8 ă π. We split this set into two parts:
prec8pπq is the set of nodes τ P precpπq such that τˆ8ˆ8n ă π for some n;
precfinpπq is the set of nodes τ P precpπq such that τˆ8 f̂inn ď π for some n. If σ

is a child of π which believes that Ψ̂πpV q is total then during the construction we
may define markers mspσq. Let τ P precpπq and let x ă ω. We say that σ respects
the input x (for τ) at stage s if:

‚ τ P prec8pπq and x ă mspσq; or
‚ τ P precfinpπq and x ă y, where τˆ8 f̂iny ď π.

Construction. Let s be a stage. We let, by recursion, the collection of accessible
nodes δs be an initial segment of the tree of strategies.

Suppose that a node τ , working for requirement Qe, is accessible at stage s.
Let t ă s be the last stage prior to stage s at which τˆ8 was accessible, t “ 0 if
there is no such stage. If dom Φe,spVs, Dsq ď t then we let τ f̂in be next accessible;
otherwise we let τˆ8 be next accessible.

Suppose that τˆ8 is accessible at stage s. For each n ă s let tn be the last
stage prior to stage s at which τˆ8ˆ8n was accessible, tn “ 0 if there was no such
stage. Also, let y be the least such that either Φe,tpVt, Dt, yqÒ or the computa-
tion Φe,tpVt, Dt, yq was destroyed since stage t, that is, either Dt æu‰ Ds æu or
Vt æu‰ Vs æu, where u “ ϕe,tpyq. Note that y ď t. If there is some n ď y such that
`spτ, nq ě tn then we let τˆ8ˆ8n be next accessible for the least such n. Otherwise
we let τˆ8 f̂iny be next accessible.

Before we proceed we maintain the functional Φ̂τ . Let x ă ω such that
c “ trspτ, xq is already defined. If either

‚ τˆ8 f̂iny is next accessible, and x ă y; or
‚ τˆ8ˆ8n is next accessible, and x ă t

and Φ̂τ,spVs, Ds, cqÒ then we define Φ̂τ,s`1pVs, Ds, cq “ s with use ϕe,spVs, Ds, xq.

Also, if c ă s is not currently a tracker for any input for τ and Φ̂τ,spVs, Ds, cqÒ

then we define Φ̂τ,s`1pVs, Ds, cq “ 0 with use 0 (recall that since V is not built by us, the

use of Φ̂ is not the largest number queried; it is the length of the string appearing in an axiom

applying to the oracle). Finally for every x ă s for which trspτ, xq is undefined, we
define a new, large tracker trs`1pτ, xq.

Suppose that τˆ8ˆ8n is accessible (for some n). For each i ă s let ri be the
last stage at which τˆ8ˆ8n î was last accessible, ri “ 0 if there was no such stage.
We let τˆ8ˆ8n î be next accessible for the least i ď s such that for all x ă ri,
c “ trspτ, xq is defined, oispcq ă α and Φ̂e,spVs, cq “ f ispcq. Note that rs “ 0 and so

such i does exist.

Suppose that a node π, working for Pe, is accessible at stage s. If |π| ě s then we

end the stage. Suppose that |π| ă s. We first maintain the shadow functional Ψ̂π.

For every q ă s which is not currently an anchor for any child of π, if Ψ̂π,spVs, qqÒ
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then we define Ψ̂π,s`1pVs, qq “ 0 with use 0. Now let q “ acspσq be an anchor for a

child σ of π, and suppose that Ψ̂π,spVs, qqÒ. Let p “ flspσq be the current follower
of σ.

‚ If either p P Ds, or for some τ P precpπq working for Qd and some x
which σ currently respects (for τ) we have p ă ϕd,spxq, then we cancel p

and appoint a new, large follower fls`1pσq. We leave Ψ̂π,s`1pVs, qq un-
defined. In the first case we have already attacked with p, but now the computation

against which we diagonalised has disappeared. In the second case, as described earlier,

we need to protect the computation ΦdpD,V, xq from the action of σ.

‚ Otherwise, if p P dom Ψe,spVsq then we define Ψ̂π,s`1pVs, qq “ s with use

ψe,sppq. If p R dom Ψe,spVsq then we leave Ψ̂π,s`1pVs, qq undefined.

For n ă s let tn be the last stage at which πˆ8n was accessible, tn “ 0 if there
is no such stage. Also let y “ dom Ψ̂π,spVsq. If there is some n ď y such that
`spπ, nq ě tn then we let πˆ8n be next accessible for the least such n. Otherwise
we let π f̂iny be next accessible.

Suppose that σ “ πˆ8n is accessible.

‚ If σ has no anchor then we appoint a new large anchor q “ acs`1pσq and
a new, large follower p “ fls`1pσq. We let ms`1pσq “ s.

‚ If p “ flspσq is defined, p R Ds, Ψe,spVs, pq “ 0, and acspσq P dom Ψ̂π,spVsq
then we enumerate p into Ds`1. Redefine ms`1pσq “ s. For all
τ P prec8pπq and all inputs x which σ does not currently respect
(for τ) that is, x ě mspσq, cancel the tracker trpτ, xq.

If either of these happen, we stop the stage and initialise all nodes weaker than σ.
If the stage was not ended, then the unique child of σ is next accessible.

Verification. First we note that for the functionals Ξ we define, Ψ̂π and Φ̂τ ,
we only define a new axiom Ξs`1pVs, xq if x R dom ΞspVsq. This shows that these
functionals are consistent for V , indeed at every stage.

We will need to show that these shadow functionals behave properly. The
Ψ̂-functionals are easy.

Lemma 2.2. Let π be a node working for a requirement Pe. Let σ be a child
of π. Let s be a stage and suppose that q “ acspσq and p “ flspσq are defined. If

Ψ̂πpV, qqÓ rss then ΨepV, pqÓ rss and ψ̂π,spqq “ ψe,sppq.

Proof. Suppose that Ψ̂πpV, qqÓ rss; let u “ ψ̂π,spqq. Let t ă s be the stage
at which we defined this computation. So Vt æu“ Vs æu. At stage t we have
ΨepV, pq Ó rss with use u. Hence this computation persists until stage s. We
may assume that while ΨepV, pqÓ, no new computations (with different use) are
enumerated into Ψe. Thus ψe,sppq “ u. �

Lemma 2.3. Suppose that a node π working for Pe is accessible infinitely often
and is initialised only finitely often. There is a child σ of π which is accessible
infinitely often. Let σ be the strongest such child. Then:

(1) σ ends the stage only finitely many times.

(2) σ believes that Ψ̂πpV q is total if and only if Ψ̂πpV q is indeed total.

(3) If Ψ̂πpV q is total then the requirement Pe is met.
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Proof. Suppose that Ψ̂πpV q is not total. Then for every n, πˆ8n is accessible

only finitely often (otherwise lims `spπ, nq “ 8 and this implies that Ψ̂πpV q is total).

On the other hand, because Ψ̂π is defined only at stages at which π is accessible, we
know that y “ lim infs dom Ψ̂πpV qrss is finite, and y “ dom Ψ̂πpV qrss at infinitely
many stages s at which π is accessible. Hence π f̂iny is accessible infinitely often,
and is the strongest child of π which is accessible infinitely often. This node never
ends the stage.

Suppose that Ψ̂πpV q is total. There is some n such that lims `spπ, nq “ 8;

let n be the least such. For almost every stage s, dom Ψ̂πpV qrss ą n. Hence πˆ8n

is accessible infinitely often, and is the strongest such child of π.
At the first stage at which σ “ πˆ8n is accessible after that last stage at which

it is initialised we define an anchor q “ acpσq; this anchor is never cancelled. Let t

be the stage at which the V -correct computation Ψ̂πpV, qq is defined (note that σ
need not be accessible at that stage). The follower p “ fltpσq is never cancelled.
After stage t, the node σ ends the stage at most once, when p is enumerated into D.

We claim that ΨepV, pq ‰ Dppq. We have p R Dt (for otherwise p would be
cancelled at stage t). By Lemma 2.2, ΨepV, pqÓ rts is a V -correct computation. If
ΨepV, pq “ 0 then at the next stage s ą t at which σ is accessible, p is enumerated
into D. If ΨepV, pq “ 1 then at no stage do we enumerate p into D. �

Lemma 2.4. Let π be a node which works for requirement Pd. Let τ P precpπq.

Let σ be a child of π which guesses that Ψ̂πpV q is total. Let s be a stage at which π
is accessible, and let x be an input for τ which σ respects at stage s. Suppose that
p “ flspσq and q “ flspσq are defined. Then ΦepV,D, xqÓ rss and either (i) p P Ds;

or (ii) Ψ̂πpV, qqÒ rss; or (iii) ϕe,spxq ď p.

Proof. Suppose that Ψ̂πpV, qqÓ rss and that p R Ds. Let t ă s be the stage

at which the computation Ψ̂πpV, qqrss is defined. When the anchor is chosen it is
large, and it is not large at stage t; hence q “ actpσq. The follower fltpσq is not

enumerated into D at stage t since Ψ̂πpV, qqÒ rts. The follower is not cancelled at

stage t; otherwise Ψ̂πpV, qq is not defined at stage t. The follower is not cancelled

at any stage in the interval pr, sq since Ψ̂πpV, qqÓ at these stages. Hence p “ fltpσq.
Since p R Ds, mspσq ă t.

If τ P prec8pπq then x ă mspσq. If τ P precfinpπq then x ă y where
τˆ8 f̂iny ď π. Since π is accessible at stage mspσq we have y ă mspσq so again
x ă mspσq. Hence ΦepV,D, xqÓ rrs at every stage r ą mspσq at which τˆ8 is
accessible. In particular this holds for r “ t. Since mtpσq “ mspσq, x is respected

by σ at stage t. If p ă ϕe,tpxq then since Ψ̂πpV, qqÒ rts, p would be cancelled at
stage t. Hence p ě ϕe,tpxq.

For brevity let u “ ϕe,tpxq. We may assume that ψd,tppq ě p, and

ψ̂π,tpqq “ ψd,tppq. The fact that the computation Ψ̂πpV, qqrts survives until
stage s implies that Vt æu“ Vs æu. The lemma would be proved once we show that
Dt æu“ Ds æu; this would imply that the computation ΦepV,D, xqrts survives until
stage s and so u “ ϕe,spxq ď p as required.

Suppose for a contradiction that at some stage r P rt, sq a number p1 ă u is enu-
merated into Dr`1; let r be the least such stage. So the computation ΦepV,D, xqrts
survives until stage r; ϕe,rpxq “ u. The number p1 is the follower flrpσ

1q for some
node σ1, a child of a node π1 working for Pd1 . The node π1 must extend π: it must



90 CHAPTER IV. MAXIMAL TOTALLY α-C.A. DEGREES

be weaker than σ, since it does not initialise σ at stage r; and it is not initialised at
stage t, because the follower p1 is large when it is chosen, and so p1 is chosen prior
to stage t. The node σ1 is initialised at stage mspσq. Hence mrpσ

1q ą mspσq. This
shows that x is respected (for τ) by σ1 at stage r (if τ P precfinpπq then we use
the fact that both π and π1 extend the same child of τˆ8). Applying the lemma

at stage r, since p1 R Dr and Ψ̂π1pV, acrpσ
1qqÓ rrs (otherwise p1 is not enumerated

into Dr`1), it must be that p1 ě ϕe,rpxq “ u, a contradiction. �

Lemma 2.5. Let τ be a node which works for requirement Qe. Let s be a stage;
let x be an input such that c “ trspτ, xq is defined. Suppose that Φ̂τ pV, cqÓ rss. Let
u “ ϕ̂τ,spcq. Then:

(1) ΦepV,D, xqÓ rss and u “ ϕe,spxq.
(2) If Ds æu‰ Ds`1 æu then the tracker c is cancelled at stage s.

Proof. Both parts of the lemma are proved by simultaneous induction on
the stage s. Suppose the lemma has been verified for all stages prior to stage s.
Assume the hypotheses of the lemma hold at stage s. Let t ă s be the stage at
which the computation Φ̂τ pV, cqrss was defined. So Vt æu“ Vs æu. At stage t we
have ΦepV,D, xq Ó rts with use ϕe,tpxq “ u. Because trackers are chosen large,
c “ trtpτ, xq.

The conditions of the lemma hold at every stage in the interval rt, sq. Since
the tracker c is not cancelled at any stage in that interval, by induction on these
stages (using (2)) we see that Ds æu“ Dt æu. This shows that the computation
ΦepV,D, xqrts is preserved up to stage s, and so establishes (1) at stage s.

Suppose that a number p ă u is enumerated into D at stage s. Then p “ flspσq
for some node σ, a child of a node π. The follower p must be chosen prior to stage t.
If σ is stronger than τ then τ is initialised at stage s, whence c is cancelled at stage s.
Assuming otherwise, it must be the case that σ ą τˆ8, as σ is not initialised at
stage t.

Lemma 2.4 ensures that σ does not respect x (for τ) at stage s. Suppose that
τˆ8 f̂iny ď π for some y. Let r be the last stage prior to stage s at which τˆ8
was accessible. Then r ě t. It follows that ΦepV,D, xqÓ rrs and the computation
is preserved until stage s. Hence y ą x. But then σ respects x. So τ P prec8pπq.
Then σ is instructed to cancel c at stage s; so (2) holds. �

Lemma 2.6. Let τ be a node which works for Qe. Suppose that τ is initialised
only finitely often, and that τˆ8 is accessible infinitely often.

(1) For every x we eventually appoint a tracker trpτ, xq which is never can-
celled.

(2) There is an outcome o P t8n, finnu such that τˆ8 ô is accessible infinitely
often.

Let ρ “ τˆ8 ô be the strongest child of τˆ8 which is accessible infinitely often.

(3) If ΦepV,Dq is total then so is Φ̂τ pV q, and o “ 8n for some n. Further,
for some i, τˆ8ˆ8n î is accessible infinitely often.

(4) Otherwise o “ finy where y “ dom ΦepD,V q.

Proof. Let x ă ω. At any stage t ą x at which τˆ8 is accessible, if trtpτ, xq
is undefined then we appoint a new tracker trt`1pτ, xq. Suppose that a tracker
trspτ, xq is defined and is cancelled at stage s. The stage s is ended by a child σ
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of a node π working for some Pd; τ P prec8pπq and the node σ enumerates its
follower p “ flspσq into Ds`1. We have x ě mspσq. The marker mspσq is chosen
at stage mspσq, at which σ is accessible. Thus there are only finitely many nodes σ
which can ever cancel the tracker trspx, τq. Each such node does so at most once,
since when it does, it updates ms`1pσq “ s ą x. This gives (1).

Suppose that ΦepV,Dq is not total; let y “ dom ΦepV,Dq. Let c be the eventual

tracker for y, which is never cancelled. Then y R dom Φ̂τ pV q. This is ensured by

part (1) of Lemma 2.5; If Φ̂τ pV, cqÓ with use u then at a late stage at which both V
and D are correct up to u we would get a V,D-correct computation of Φepyq.

Since Φ̂τ pV q is partial, no totality outcome 8n is guessed infinitely often. Since
ΦepV,D, xq is eventually fixed for all x ă y, eventually, no outcome stronger than
finy is ever guessed; but finy is guessed infinitely often. This gives (4).

Suppose that ΦepV,Dq is total. For every y, finy is guessed only finitely many

times. We show that Φ̂τ pV q is total. This will imply that some 8n is guessed
infinitely often. Let c ă ω. As usual, if c is never chosen as a follower or is chosen
and later cancelled, then Φ̂τ pV, cqÓ. Suppose that c is chosen as a tracker for x at
stage r, and is never cancelled. Eventually no finy for y ď x is ever guessed; so

eventually, at every stage s at which τˆ8 is accessible, if Φ̂τ pV, cqÒ rss then a new

computation Φ̂τ,s`1pVs, cq is defined. The use is ϕe,spxq. This use stabilizes, and
eventually V stabilizes below that use, and so eventually a V -correct computation
must be made.

Since degTpV q is totally α-c.a., there is some i ă ω such that Φ̂τ pV q “ f i

and
@

f is, o
i
s

D

is eventually α-computable. Since every input eventually receives a
permanent tracker, the outcome i is guessed infinitely often for the least such i. �

Lemmas 2.3 and 2.6 together show that the true path is infinite and that the
construction is fair to every node on the true path.

Lemma 2.7. Every positive requirement Pe is met.

Proof. Let π be the node on the true path which works for Pe. Suppose that
ΨepV q is total. We show that Ψ̂πpV q is total (and then appeal to Lemma 2.3).

Let q ă ω. To show that Ψ̂πpV, qqÓ we may, as usual, assume that q is chosen
as an anchor of a child σ of π at some stage r, and is never cancelled. We show that
followers for σ are cancelled only finitely many times. This suffices: if p is a follower
for σ which is never cancelled, then eventually we see the V -correct computation
ΨepV, xq. At any stage s at which π is accessible, if Ψ̂πpV, qq Ò rss then a new
computation is defined with use ψe,sppq, which eventually stabilizes.

The node σ believes that Ψ̂πpV q is total. Hence if σ is accessible infinitely often

then Ψ̂πpV q is total and we are done. We assume that σ is accessible only finitely
many times. The marker mspσq is updated only when σ is accessible, so reaches a
final value mpσq at stage t ě r.

Suppose that the follower p “ flspσq is cancelled at a stage after stage t. This
is done on behalf of a node τ P precpπq (working for some Qd) and an input x.
There are two cases. If τ P prec8pπq then a totality outcome for τˆ8 lies on the
true path. This implies that ΦdpV,Dq is total. Also, x ă mpσq. If the follower for σ
is cancelled after the correct computation ΦdpV,D, xq appears then a new follower
is chosen to be large, and so is greater than ψd,spxq for all later s. This implies that
this τ can cause only finitely many cancellations of flspσq.
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The other case is τ P precfinpπq; say τˆ8 f̂iny ď π; so x ă y. By Lemma 2.6,
y “ dom ΦdpV,Dq, so again ΦdpV,D, xq eventually converges by a correct compu-
tation. The argument is now the same as in the first case. �

To finish the verification we show that every requirement Qe is met. Let τ
be the node on the true path which works for Qe, and suppose that ΦepV,Dq is
total. Then τˆ8 lies on the true path; and Lemma 2.6 says that for some n and i,
ρ “ τˆ8ˆ8n î lies on the true path. Then

@

f is, o
i
s

D

is eventually α-computable and

Φ̂τ pV q “ f i. As in previous proofs let s˚ be the last stage at which ρ is initialised,
and let s0 ă s1 ă s2 ă ¨ ¨ ¨ be the stages after stage s˚ at which ρ is accessible.

Fix x ă ω. We let jpxq be the least j such that x ă sj´1. For all
j ě jpxq, ΦepV,D, xq Ó rsjs, cj “ cjpxq “ trsj pτ, xq is defined, oisj pcjq ă α

and Φ̂τ pV, cjqÓ“ f ipcjq rsjs. For j ě jpxq let aj “ ajpxq be the set of nodes σ,
children of nodes π working for some Pd such that ρ ď π, such that msj pσq ď x.
Since mspσq is non-decreasing, if j ă j1 then aj1 Ď aj .

The following lemma is an analogue of Lemmas III.2.9 and 1.7.

Lemma 2.8. Let x ă ω and j ě jpxq. Let u “ ϕe,sj pxq.

(1) If aj`1 “ aj then cj`1 “ cj;
(2) If Dsj`1 æu‰ Dsj æu then cj`1 ‰ cj;

(3) If Dsj`1
æu“ Dsj æu but Vsj`1

æu‰ Vsj æu then oisj`1
pcjq ă oisj pcjq.

Proof. The instructions ensure that only a node σ (with parent π) such that
τ P prec8pπq and mspσq ď x can cancel trspτ, xq. Say that a node π with
τ P prec8pπq is accessible at a stage r P psj , sj`1q; then π is initialised at stage sj
and so mspσq ą sj ą x. So if cj is cancelled by stage sj`1, then it is cancelled
by a node σ P aj . But then we define msj`1pσq “ sj ą x and so σ R aj`1. This
gives (1).

The same argument shows that if Dsj`1 æu‰ Dsj æu then Dsj`1 æu‰ Dsj æu.
(2) is given by Lemma 2.5(2).

Suppose that aj`1 “ aj but Vsj`1
æu‰ Vsj æu. Let s ě sj be the least stage

such that Vs`1 æu‰ Vs æu.

By Lemma 2.5(1), u “ ϕ̂τ,sj pcjq, and so Φ̂τ pV, cjqÒ rs` 1s. When we redefine a

value for Φ̂τ pV, cjq, it is the stage number, and so Φ̂τ pV, cjqrsj`1s ą sj . In particular

Φ̂τ pV, cjqrsj`1s ‰ Φ̂τ pV, cjqrsjs. But then f isj`1
pcjq ‰ f isj pcjq, and (3) follows. �

Now let for all j ě jpxq

γj “ γjpxq “ α ¨ |aj | ` o
i
sj pcjq.

Since α is closed under addition, for all n and all β ă α we have α¨n`β ă α¨pn`1q.
Thus if aj`1 ‰ aj then (as aj`1 Ĺ aj) γj`1 ă γj . Suppose that aj`1 “ aj . Then
cj`1 “ cj and so oisj`1

pcj`1q “ oisj`1
pcjq “ oisj pcjq; so γj`1 ď γj . Suppose further

that ΦepV,D, xqrsjs ‰ ΦepV,Dqrsj`1s. Since cj`1 “ cj , Dsj`1 æu“ Dsj æu. Then
Lemma 2.8(3) ensures that γj`1 ă γj . This concludes the verification.

2.1. Uniformity again. Inspecting the construction we see that |ajpxqpxq| ă x.
This is because msjpxqpσq is distinct for distinct σ P ajpxqpxq (when mspσq is set the

stage ends). This shows that in fact degTpV ‘Dq is uniformly totally α ¨ ω-c.a., as
every ΦepV,Dq is h-c.a. for hpnq “ α ¨ pn` 1q.
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2.2. Maximal ă α-c.a. degrees. Suppose that α is a limit of powers of ω,
and that degTpV q is totally ă α-c.a. We can modify the construction above by
letting the sequence

@

f i
D

range over all functions which are β-c.a. for some β ă α.
Examining the proof above, we see that the ordinal bound on the number of changes
of ΦepV,D, xq is given by a finite multiple of oipcq for a variety of c but for fixed i.
Thus, if f i is β-c.a., then ΦepV,Dq is β ¨ ω-c.a. We thus obtain:

Theorem 2.9. If α ď ε0 is a limit of powers of ω, then no c.e. degree is
maximal totally ă α-c.a.





CHAPTER V

Presentations of left-c.e. reals

In this chapter we prove Theorem I.3.3:

(1) If a c.e. degree d is not totally ω-c.a. then there is a left-c.e. real % ďT d
and a c.e. set B ăT % such that every presentation of % is B-computable.

(2) If a left-c.e. real % has a totally ω-c.a. degree then there is a presentation
of % which is Turing equivalent to %.

1. Background

One of the main ideas of this books is unifying the combinatorics of construc-
tions in various sub-areas of computability theory. In this chapter we will look at
one such sub-area: algorithmic randomness ([69, 27, 74]). Algorithmic random-
ness seeks to give meaning to our intuition that sequence like 010111010101111.... is
not random, whereas ones obtained from e.g. tosses of an unbiased coin would be.
The idea is that we should not be able to give algorithmic tests for predictability
and if a sequence fails such a test, then it cannot be random. The test above would
be that every even bit is a 1.

By way of motivation, we now give a brief account of the basics of algorithmic
randomness, and include the basic definitions required in this chapter.

The “playing ground” of basic algorithmic randomness is Cantor space, 2ω,
the space of all infinite binary sequences (later these concepts can be extended to
other spaces such as the unit interval). The topology on Cantor space is the product
topology starting with the discrete topology on t0, 1u. This topology is generated by
sets of the form rσs “ tX P 2ω : σ ă Xu, where σ P 2ăω is a finite binary string. In
general, the open subsets of Cantor space are of the form rW să “

Ť

trσs : σ PW u
for subsets W of 2ăω. By coding finite binary strings by natural numbers in a
reasonable fashion, we can consider notions such as computable and c.e. sets of
finite strings. This turns Cantor space into an effective topological space. The
effectively open subsets of Cantor space are those of the form rW să for c.e. sets
W Ď 2ăω. These are also called c.e. open sets. These sets are important in their
own right: the study of the effective topology of Cantor space is essentially the
study of restricted notions of Cohen genericity. for example, an element of Cantor
space is 1-generic if and only if it is not an element of the boundary of any effectively
open set.

A notion of restricted genericity is determined by considering a countable col-
lection of meagre sets. Those sets are considered “small” and so their elements
are considered atypical, at least topologically. The main idea of algorithmic ran-
domness is to replace category with measure, and so replace meagre sets by null
sets. To do that we need to work with a measure on our space, and we choose the
“fair-coin” measure, which we denote by λ. This is the product measure starting
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by giving 0 and 1 equal probability, namely 1{2. For every finite binary string σ,
λprσsq “ 2´|σ|. If we think of 0 as tails and 1 as heads, then this measure represents
the probability that an infinite sequence of independent tosses begins with the coin
tosses represented by the string σ. The fair-coin measure λ is also often referred
to as Lebesgue measure, because of the measure-preserving almost isomorphism
between Cantor space and the unit interval, which we will mention below.

Whilst algorithmic randomness has a history going back to the early work of
Borel [8] on normal numbers, von Mises [100] and even Turing [99] (see Downey-
Hirschfeldt [26]), the key concept in the modern incarnation of algorithmic informa-
tion theory is Martin-Löf randomness. A notion of randomness is determined by a
countable collection of null sets, with each null set considered a statistical test. El-
ements of the null sets are those which have failed the test; they are atypical, in the
sense of measure. For Martin-Löf (ML) randomness we use the collection of effec-
tively Gδ, effectively null sets: intersections

Ş

Un of uniformly effectively open sets
whose measure goes to 0 computably (we can require for example λpUnq ď 2´n).
Such intersections are called ML-null, and an element of Cantor space is ML-random
if it is an element of no ML-null set.

One of the reasons the notion of ML-randomness is central is that it is robust. It
has many equivalent characterisations, and one of them is in term of Kolmogorov
Complexity ([56, 68]). The motivating ideas here is that finite strings should
be considered random if they cannot be effectively compressed: if the only way
to convey the informations they store is in writing them down. In other words,
they do not have short descriptions. To formalise this, we consider any partial
computable function M : 2ăω Ñ 2ăω as a “description system”; if Mpσq “ τ then
we say that σ is an M -description of τ . We call M a “machine”. The idea is that all
information in τ is already stored in σ, as M can effectively produce τ given σ. The
M -complexity of τ is the length of the shortest M -description of τ . Kolmogorov’s
intuition is that τ is M -random if its M -complexity is no smaller than its length.
That is, M thinks τ is so random it cannot be compressed at all.

There is a slight problem with this definition in that in decompressing, M ac-
tually uses not only the information stored in σ but also its length |σ|, since we
know that M halts on σ. In some sense this means that M has actually “used”
|σ| ` log2 |σ| many bits of information. In many applications of Kolmogorov com-
plexity this slight difference does not matter, but in the definition of random infinite
sequences it does. This consideration leads to a central concept in algorithmic ran-
domness, namely prefix-free machines.

Definition 1.1. A set of strings C Ă 2ăω is prefix-free if no two distinct strings
in C are comparable.

A machine M is prefix-free if its domain is prefix free. Prefix free machines
are those that have the “telephone number” property (no two telephone numbers
are prefixes of each other). For a prefix-free machine M we write KM pτq for the
M -complexity of τ . Schnorr’s Theorem links Kolmogorov complexity with ML-
randomness:

Theorem 1.2 (Schnorr, see [11]). X P 2ω is ML-random if and only if for all
prefix-free machines M , KM pX ænq ě

` n.

That is, if for some constant d, for all n, KM pX ænq ě n´ d.
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Prefix-free machines occupy a central role in the theory of algorithmic random-
ness. This connection is evidenced by a number of further results. The easiest way
to exhibit a ML-random sequence was observed by Chaitin. For a set of strings
C Ď 2ăω we write λpCq for the measure of the open set generated by C; if C is
prefix-free then λpCq “

ř

σPC 2´|σ|. For a prefix-free machine M , λpdomMq is also
known as the a priori probability that a string is in the domain of M ; it is referred
to as the halting probability of M .

Levin and others observed that there are universal prefix-free machines: ma-
chines U which simulate any other machine, in that for any prefix-free machine M
there is some ρ P 2ăω such that for all σ, Mpσq “ Upρ̂ σq. For such machines U we
have KU ď

` KM for any prefix-free machine M . Thus in Schnorr’s theorem above,
we can replace all prefix-free machines M by a single universal machine U . Chaitin
observed that if U is a universal prefix-free machine, then λpdomUq (written in
binary) is ML-random. For a universal machine U , the quantity λpdomUq is now
called Chaitin’s Ω. More precisely, ΩU since it depends on the universal machine in the same

way that H1 “ te : ϕepeq Óu depends on the enumeration of the partial computable functions in

classical computability theory.

While the halting problem is c.e., the binary expansion of the halting prob-
ability Ω is not c.e. To characterise halting probabilities we find an analogue of
computable enumerability on the real line.

Definition 1.3. A real number % P R is left-c.e. if its left cut, the set of rational
numbers q ă %, is c.e.

A real number is left-c.e. if and only if it is the limit of an increasing, com-
putable sequence of rational numbers. Left-c.e. reals are also known as lower semi-
computable reals. If A is a c.e. set then 0.A (the real whose binary expansion is A)
is a left-c.e. real. However, not all left-c.e. reals are of this form. To see this we use
that the following are equivalent for a real % in the unit interval r0, 1s:

(1) % is left-c.e.;
(2) % is the measure of an effectively open set;
(3) % “ λpCq for a c.e., prefix-free set of strings C;
(4) % is the halting probability of a prefix-free machine;

(see Soare [90], Calude et al. [10]). Thus Ω is left-c.e.; since no c.e. set can be
ML-random, it is not of the form 0.A for a c.e. set A. Kučera and Slaman [58] gave
much more information about left-c.e. random reals. Using an analogue of many-
one reducibility ďm introduced by Solovay [92], they showed that a left-c.e. real
is ML-random if and only if it is the halting probability of a universal prefix-free
machine.

Theorem I.3.3, which we will prove in this chapter, characterises the dynamic
properties of a construction of unusual left-c.e. reals. The equivalence above moti-
vates the following definition.

Definition 1.4. A presentation of a left-c.e. real % P r0, 1s is a c.e. prefix-free
set C Ă 2ăω such that λpCq “ %.

As this chapter is concerned with presentations, all real numbers from now on
are in the unit interval r0, 1s.

As we saw, every left-c.e. real has presentations. Indeed, every left-c.e. real
has computable presentations: if C is a presentation of % then, fixing an effective
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enumeration xCsy of the c.e. set C, we replace C by a computable prefix-free set D
of the same measure % as follows: if a string σ is enumerated into C at stage s, we
enumerate into D all extensions of σ of length s.

Every presentation of a left-c.e. real % is computable from %. To see this, suppose
that C is a presentation of %. Again let xCsy be a computable enumeration of C;
let %s “ λpCsq; so x%sy is a computable increasing sequence of rational numbers
converging to %. To determine whether a string σ is in C, search for some s such that
%´ %s ă 2´|σ|. This can be done if % is given as an oracle. Then σ P C ô σ P Cs.

In light of this fact, it is natural to ask if the complexity of % (as measured by its
Turing degree) is reflected in the complexity of some of its presentations. Namely,
is every left-c.e. real computable from one of its presentations? In [32], Downey
and LaForte gave a strong negative answer to this question: they constructed a
noncomputable left-c.e. real %, all of whose c.e. presentations are computable. On
the other hand they showed that any left-c.e. real with promptly simple degree (for
example, Ω) has a noncomputable presentation. Stephan and Wu [94] showed that
the same holds for all noncomputable K-trivial left-c.e. reals. See also [36, 104].

Theorem I.3.3 extends these results. It characterises the computational power
required to compute one of the “unusual” left-c.e. reals, those with no presenta-
tion computing them, precisely as non-total ω-c.a.-ness. Indeed it gives a stronger
dichotomy, with the unusual examples % having a single bound B strictly below %
bounding the complexity of all presentations of %.

Computing with real numbers. In this chapter we view real numbers as elements

both of the computable metric space r0, 1s and as infinite binary sequences in 2N
`

(where N` “ t1, 2, 3, . . . u) by using their binary expansion.
As the former, an oracle determining a real number % is a sequence xIky of

closed intervals satisfying:

‚ the endpoints of each Ik are binary rational numbers, indeed integer mul-
tiples of 2´k;

‚ the length of Ik is 2´k;
‚ the sequence is nested: Ik`1 Ă Ik; and
‚ t%u “

Ş

k Ik.

The sequence xIky is coded by an element of Baire space; we ignore this detail. In
computable analysis, the sequence xIky is called a name of %.

On the other hand, given X Ď N` we let 0.X “
ř

kPX 2´k. Thinking of X

as an element of 2N
`

, it is a binary expansion of % “ 0.X. We abuse notation by
referring to X as %: we write %pkq for the kth bit of %’s binary expansion.

If % is not a binary rational, then it has both a unique binary expansion, and
a unique name xIky, and these are Turing equivalent; their degree is also called the
Turing degree of %.

Passing between names and binary expansions is uniform, provided that we
are guaranteed that % is not a binary rational number. Of course binary rational
numbers are computable; each has two binary expansions, one ending with zeros
and one with ones. They also have two names. The reals % we will construct will
not be computable. However their stage s approximations will be binary rationals,
and so during constructions, to be definite, we always choose the binary expansion
which ends with zeros.
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2. Presentations of c.e. reals and non-total ω-c.a. permitting

In this section we prove part (1) of I.3.3.

2.1. A simplified construction. Before adding permitting we construct a
left-c.e. real % and a c.e. set B such that B ăT % but every presentation of % is
B-computable. As mentioned above, this has been done in [32] with B “ H. We
present the construction proving the weaker statement because it is simpler than
the original one. The simplification is compatible with non-total ω-c.a. permitting.
The original construction is in some sense compatible with non-total ă ωω-c.a.
permitting. We discuss this later, in Subsection 2.3.

We enumerate a c.e. set B, and give an increasing computable approximation
x%sy of a left-c.e. real %.

Let xΨey be an enumeration of functionals which outputs names of reals in the
interval r0, 1s. So for each k (and oracle X), ΨepX, kq (if it converges) is a closed
interval Ik, of length 2´k, with endpoints which are integer multiples of 2´k. We
also agree that if k ą 0 and ΨepX, kqÓ“ Ik then ΨepX, k´1qÓ“ Ik´1 and Ik Ă Ik´1.
Thus, if ΨepXq is total then xΨepX, kqy “ xIky is a name of a real number % in the
unit interval; we abuse notation by writing ΨepXq for %.

We need to meet the requirements:

Pe: ΨepBq ‰ %.

Let xCey be an enumeration of all prefix-free c.e. sets of binary strings. We
need to meet the requirements

Ne: If λpCeq “ % then Ce ďT B.

Globally we also need to ensure that B ďT %.

Discussion. Recall the argument above that shows that if C is a presentation
of % then C ďT %: if %´ λpCsq ă 2´k then no string of length k or shorter can be
added to C after stage s. In the other direction, if we know C, then % may still
elude us: it may be that no strings of length ď k are added to C after stage s, but
a large increase to % after stage s can be made by adding to C many long strings.

To meet a requirement Pe, we can wait for ΨepB, kq to converge and give us
an interval I “ Ik for some fairly large k, so that I is fairly short. We then aim to
ensure that % R I. If at a current stage s we have %s P I, then adding a quantity of
no more than 2´k to % will suffice to escape I. Of course, we also need to ensure
that B will not change below the use b “ ψepkq of the Ψe computation giving us
the interval I.

To meet a requirement Ne, for each length t (or at least for infinitely many t),
we need to let B know if strings of length ă t will enter Ce after some stage.
If indeed λpCeq “ % then λpCe,sq and %s will get closer and closer. One way
to ensure that strings of length ď t will not enter Ce after a stage s will be to
wait for |%s ´ λpCe,sq| ă 2´t (which we will eventually see); and then ensure that
%´ %s ď 2´t.

The conflict between requirements is clear: Ne would like to keep %´%s ă 2´t,
while Pd would like to increase % by at least 2´k, and we may have 2´k ą 2´t.

However, Ne need not be so greedy. It can temporarily require that % should
not increase by more than 2´t. The positive requirement Pd (positive because it
causes increases to %, while the negative requirements Ne want to keep increases
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small) can increase % by the allotted 2´t. Then, we wait for a later stage s1 at which
we again see |%s1 ´ λpCe,s1q| ă 2´t. Again, if this does not happen then λpCeq ‰ %
and we do not need to worry about Ne. When we see such a stage s1, we allow Pd
to increase % by another 2´t. This cycle can repeat 2t´k times. At the end, Pd gets
to increase % by as much as it needs (2´k), while at no stage can strings of length
ă t enter Ce. This strategy has been likened to a cautious investor, slowly realising gains by

repeatedly selling small amounts of stock, ensuring that the market does not notice their actions:

they only sell a further amount once the stock price recovered to the original value.

We remark that of course Pd needs to guess whether we will keep seeing “e-
expansionary” stages: stages s at which λpCe,sq is close to %s. Thus as usual, the
construction is performed on a tree of strategies.

So far we have not really mentioned B, and it seems that we can arrange for
every presentation of % to be computable. And indeed, as we discussed above, this is
possible, and this argument is the basic module for the more elaborate construction
of [32]. The more difficult issues show up when we consider more than one negative
requirement Ne. Actually, the module as described above is imprecise. The point
is that the requirement Ne needs to let t go to infinity, as it needs to compute
more and more of Ce. On the other hand it needs to wait for Pd to finish 2t´k

cycles before it moves to greater t; otherwise the cycle could be infinite. When Pd
is accessible, and declares its intention to increase % by 2´k, it sends a message to
that effect to the stronger requirement Ne. Because the node working for Ne does
not know if the Pd-node will be accessible again, it takes upon itself the task of
repeatedly increasing %. It waits for 2t´k many expansionary stages, increases %
at each one, while keeping t fixed, and only then allows t to increase, and nodes
extending the infinite outcome to be accessible.

When we consider though N0, N1, . . . , Ne, all stronger than Pd, the various
cycles relating Pd with each Ni need to be nested, which is incompatible with
permitting at the level of ω-c.a. We discuss this in greater detail below in Subsec-
tion 2.3. For the construction we are doing now, B simplifies things. Instead of
trying to compute Ce, for each t we set up markers ηeptq, intended for B; this is
the B-use for determining Ce on strings of length ă t. If we enumerate ηeptq into B
then we are allowed to violate the restriction limiting each increase to %. Now the
various restraints of the requirements Ni stronger than Pd can be uniformised as
follows. At some stage r the requirement Pd sees that ΨdpB, kqÓ“ I with some
B-use b “ ψdpkq that it wants to protect. It immediately enumerates any markers
ηiptq which are greater than b into B. Its “quota” for each increment of % is then
given by the greatest number t with ηiptq ă b for any i ď e, which is really the stage
number r at which we saw the Ψd computation. Thus it is allowed to increase %
by 2´r at a time, and so needs 2r´k many iterations of such increases; note that
this is independent of i ď e. We can therefore forget about delegating the task of
increasing % to the Ni nodes; we can wait until the Pd node is accessible again, and
at each time, enumerate the markers ηiptq for t ě r into B.

These were the main ideas of the construction; we discuss a couple more minor
points. First note that Ne may assume that for all s ă ω, λpCe,sq ă %s. For we will
ensure that % is not a dyadic rational. When we see that enumerating a string σ
into Ce,s will make λpCe,sq ě %s, we hold back the enumeration and wait until %t
grows beyond λpCe,s´1 Y tσuq, and only then enumerate σ into Ce. If λpCeq “ %
then such a stage will occur.
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Next, we note that above, we said that Pe only needs to worry if it sees %s P I.
This is not quite true, because if the non-computability requirements are not met
then it is actually possible that %s would converge to the left endpoint of I. Thus
we need to spring into action when we see %s getting close to I. This will mean
that we need a couple more rounds of increases (more than 2r´k detailed above) to
ensure that % will eventually lie to the right of I.

The tree of strategies. The requirements Pe and Ne are ordered in order-type ω;
the kth level of the tree is devoted to meeting the kth requirement. If σ is a node
which works for Pe, then σ has only one outcome. If τ is a node which works for Ne,
then the outcomes of τ are 8 ă fin.

A node σ working for Pe may define first a follower kσ,s and then an interval
Iσ,s which it would like % to avoid. It also defines rσ,s, the amount by which it
is allowed to increase % at a single step. When σ is initialised, the follower kσ,
the interval Iσ and restraint bound rσ are cancelled. They will be cancelled only
when σ is initialised.

Nodes τ working for Ne define markers ητ ptq. We note that it is not necessarily
the case that the set of t for which ητ ptq is defined is an initial segment of ω. In
fact ητ ptq may be defined at most once (at a stage greater than t), and t will be
a stage at which τ is accessible. For this reason ητ ptq is not indexed by the stage
number s.

Construction. At stage s we define the path of accessible nodes δs to be an
initial segment of the tree of strategies, and at the end of the stage define %s`1.

We start with %0 “ 0.

Suppose that a node τ , working for Ne, is accessible at stage s. Let t ă s be
the previous stage at which τˆ8 was accessible; t “ 0 if there was no such stage.
If %s ´ λpCe,sq ă 2´t we let τˆ8 be next accessible and choose ητ ptq to be large.
Otherwise we let τ f̂in be next accessible.

Suppose that a node σ, working for Pe, is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than σ are initialised.

First, suppose that a follower kσ,s is not defined. Define kσ,s`1 to be large;
let %s`1 “ %s and end the stage.

Next, suppose that kσ,s is defined but an interval Iσ,s is not defined. If
ΨepB, kσqÓ rss “ I (recall that I is a dyadic rational interval of length 2´kσ,s ) then we
let Iσ,s`1 “ I and rσ,s`1 “ s. Let %s`1 “ %s and end the stage.

If ΨepB, kσqÒ rss then σ does not end the stage (and as we said, the unique
immediate successor of σ is next accessible).

Suppose that Iσ,s is defined. If dp%s, Iσ,sq ă 2´rσ,s then for all τ working for
some Ne1 such that τˆ8 ď σ, for all t ě rσ,s such that ητ ptq is defined, enumerate
ητ ptq into Bs`1. Let %s`1 “ %s ` 2´rσ,s and end the stage.

If the distance dp%s, Iσ,sq is at least 2´rσ,s we do not end the stage.
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Verification. The global requirement is satisfied:

Lemma 2.1. B ďT %.

Proof. Suppose that x enters B at stage s. Then x “ ητ ptq for some t and τ ,
and %s`1 “ %s ` 2´r where t ě r. Since ητ ptq ą t, we see that once % ´ %s ă 2´r,
no numbers below r can enter B. �

We observe that the construction is fair and that the true path δω is infinite.
This follows by induction on the length of nodes, using the following lemma.

Lemma 2.2. Suppose that a node σ, working for a positive requirement Pe, is
accessible infinitely often and is initialised only finitely often. Then σ ends the
stage only finitely often.

Proof. Let t be the last stage at which σ is initialised. At the next stage after t
at which σ is accessible we appoint a new follower kσ which is never cancelled. If
there is no later stage at which an interval Iσ is defined then σ never stops the
stage again.

Otherwise, an interval Iσ is defined at some stage rσ; the interval (and the
bound rσ) are never cancelled again. If σ is accessible at stage s ą rσ then σ ends
stage s only if dp%s, Iσq ă 2´rσ , in which case it adds 2´rσ to %s. Since the length
of the interval Iσ is 2´kσ , this happens at most 2rσ´kσ ` 2 many times. �

To bound the value of %, for a positive node σ (one working for some Pe) and
a stage t let

βpσ, tq “
ÿ

p%s`1 ´ %sq rrs ě t & σ ends stage sss.

So %´ %t is the sum of βpσ, tq for all positive nodes σ.

Lemma 2.3. Suppose that a positive node σ is initialised at stage t. Then
βpσ, tq ă 2´p3t`1q.

Proof. Suppose that σ is initialised at stage t, that u ą t and σ is not ini-
tialised at any stage in the interval pt, us. Let kσ be the value of the follower for σ
in the interval rt, us (if appointed). Since kσ is chosen large relative to t we assume
that kσ ą 3t` 3; and rσ ą kσ. The proof of Lemma 2.2 shows that the sum

ÿ

p%s`1 ´ %sq rrs P rt, us & σ ends stage sss

is bounded by 2´kσ ` 2 ¨ 2´rσ which is bounded by 2´p3t`2q. We now sum over all
the stages t1 ě t at which σ is initialised. �

We conclude that % “ lims %s exists and lies in the unit interval.

Lemma 2.4. % ă 1.

Proof. Every node of length s is initialised at every stage s1 ď s. Thus for
such a node σ we have βpσ, 0q “ βpσ, sq ă 2´p3s`1q. There are at most 2s many
nodes of length s as the tree of strategies is at most binary branching. Hence
level s contributes at most 2´ps`1q to %. Some levels consists of negative nodes and
so contribute nothing to %. �

We turn to showing that all requirements are met.

Lemma 2.5. Each positive requirement Pe is met.
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Proof. Let σ be a node on the true path which works for Pe. Let kσ be the
value of the last follower chosen by σ, the one which is never cancelled. We suppose
that ΨepBq is total; so Iσ is eventually defined at a stage rσ ą kσ. Since σ acts
only finitely often, for almost all stages s, dp%s, Iσq ě 2´rσ . Hence dp%, Iσq ě 2´rσ

and so % R Iσ.
It remains to show that ΨepBq P Iσ, which would follow once we show that the

computation ΨepB, kσqrrσs is B-correct. Let b “ ψepB, kσqrrσs be the use of this
computation.

Suppose that a number x enters B at stage s ě rσ, enumerated by a node ρ.
We show that x ą b. The number x equals ητ ptq for some τˆ8 ď ρ and some t.
We know that x “ ητ ptq ą t ě rρ,s. The node ρ cannot be stronger than σ, for
otherwise σ is initialised at stage s ě rσ, contradicting the permanence of kσ and Iσ.
Hence rρ,s ě rσ: this is clear if ρ “ σ; otherwise, ρ is initialised at stage rσ, s ą rσ
and rρ,s must be greater than rσ. Finally the use b “ ψepB, kqrrσs is bounded
by rσ. �

Toward showing that negative requirements are met, let τ be a node, working
for Ne, and suppose that τˆ8 lies on the true path. Let t˚ be the last stage at
which τ is initialised. We let S be the set of stages t ą t˚ at which τˆ8 is accessible.
For t P S let t` be the next stage in S.

The markers defined by τ are ητ ptq for t P S. The marker ητ ptq is defined at
stage t`.

Lemma 2.6. Let u ă t be two stages in S. Assume that ητ puq R Bt`1. Then
%t` ´ %t ď 2´u. It follows that no strings of length less than u lie in Ce,t`zCe,t.

Proof. We consider various contributions. All nodes that lie to the right of
τˆ8 are initialised at stage t. The calculation in the proof of Lemma 2.4 shows
that %t` ´ %t`1 ď 2´t ď 2´pu`1q.

Next consider nodes σ ě τˆ8. In the interval of stages rt, t`q, such nodes are
only accessible at stage t. At stage t at most one such node σ increases %; the
amount of increase %t`1 ´ %t equals 2´rσ,t . Since ητ puq is not enumerated into B
at stage t we have rσ,t ą u, and so %t`1 ´ %t ď 2´pu`1q.

As discussed above, the last sentence follows: %t ´ λpCe,tq ă 2´t and

λpCe,t`q ď %t` and so λpCe,t`q ´ λpCe,tq ă 2´u ` 2´t ă 2´pu´1q. �

The verification ends with:

Lemma 2.7. Each negative requirement Ne is met.

Proof. We assume that λpCeq “ %; we need to show that Ce ďT B. Let τ on
the true path working for Ne. The assumption implies that τˆ8 lies on the true
path.

We claim that infinitely many markers ητ puq are not enumerated into B.
Let w ą t˚ be a stage. Let σ be the strongest extension of τˆ8 which acts (ends the
stage) after stage w. Since infinitely many nodes on the true path act, σ cannot lie
to the right of the true path. It follows that σ acts only finitely often. Let t be the
last stage at which σ acts. The marker ητ ptq is appointed at stage t`. Let ρ ě τˆ8
be a node which enumerates a marker ητ pvq into B at some stage s ě t`. The
node ρ is initialised at stage t; after stage t it is first accessible not before stage t`,
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and so v ě rρ,s ě t``. Hence ητ ptq (and in fact ητ pt
`q as well) are never enumer-

ated into B.
Now Lemma 2.6 shows that the following algorithm with oracle B correctly

computes Ce: Given k ă ω, find a stage t ą k in S such that ητ ptq R B. Announce
that Ce æ2ăt“ Ce,t` æ2ăt . �

2.2. Non totally ω-c.a. permitting. We now add non-totally ω-c.a. per-
mitting to prove part (1) of Theorem I.3.3: if d is not totally ω-c.a. then there is
a left-c.e. real % ďT d and a c.e. set B ăT % such that every presentation of % is
B-computable.

Fix some function g P d which is not ω-c.a. Since d is c.e., we can replace g by
its modulus (see the proof of Theorem III.5.2). So we have a computable approxi-
mation xgsy of g such that:

‚ if s ă t then gspnq ď gtpnq for all n;
‚ if gs`1pnq ‰ gspnq then gs`1pmq ‰ gspmq for all m ą n.

At first approximation, the idea for reducing % to g (and hence to d) is to declare
that if gspkq “ gpkq then %´%s ď 2´k. Using the notation of the construction above,
when a node σ is visited and wants to increase % we must first wait for a change
in gpkσq. The number of permissions needed to meet σ’s requirement is bounded
by 2rσ . We note that it is the follower kσ that needs to be permitted, even though
at each step we increase % by 2´rσ , not 2´kσ . It is the eventual increase in % which
counts, because the promise is that if k is not permitted then %´ %s ď 2´k.

Of course it is possible that the number of permissions will be insufficient.
While waiting for permissions the node σ must appoint more followers k, with
the expectation that at least one of them will receive the necessary number of
permissions. If the follower k does not receive enough permissions then we can
approximate gpkq with fewer than 2rσ many mind-changes. If no follower receives
enough permissions then infinitely many of them will be appointed. This will give
an ω-computable approximation of g.

The remaining issues are the timing of permissions and necessary cancellation
of followers. The follower k could be permitted at a stage s at which σ is not
accessible. We cannot “leave the permission open” and wait to increase % at the
next stage at which σ is accessible, since we do not know whether such a stage will
occur. We need to act on permissions immediately.

When a follower k receives a permission we increase % by the associated amount
2´rσpkq (determined by the stage rσpkq at which we see the computation ΨepB, kq
converge) and we need to enumerate markers ητ ptq for t ě rσpkq into B. This
means that the computations ΨepB, k

1q for followers k1 ą k for the same node
are destroyed. We cannot keep these followers: overall we want action for some
follower k to not increase % by more than 2´k`1 say. So the larger followers k1 are
cancelled, and later, larger followers may be appointed.

But this creates a problem when arguing that eventually some follower will be
permitted. Suppose that a follower k is eventually cancelled. When approximat-
ing gpkq we do not know in advance that it will be cancelled, so we promise that our
guesses for gpkq will not change more than 2rσpkq many times. We observe many
changes, and then k is cancelled. Henceforth changes in gpkq do not seem to help
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us to meet σ’s requirement, which means that there is no mechanism which will
bound these changes. We need to ensure that every change in gpkq is useful.

The solution (as in [25]) is to allow stronger followers take over the respon-
sibility for approximating greater portions of g. When a follower k is permitted,
larger followers k1 ą k are cancelled. We declare that from now on, what would
have been permissions for k1 must count as permissions for k. Technically we define
moveable markers ak,s, and we declare that k is permitted if gpakq changes (rather
than gpkq). When k is permitted then we raise ak,s to be greater than the previous
values of ak1 for the followers k1 which were cancelled.

Construction. The tree of strategies is the same as in the construction above.
Positive nodes σ appoint followers. All followers are cancelled when σ is initialised
or when smaller followers for σ receive attention; otherwise they are retained. For
all followers k of σ (except possibly for the largest one) we also define associated
intervals Iσpkq (of length 2´k) and bounds rσpkq as above. Any number can be
chosen at most once as a follower for any requirement.

Negative nodes τ define markers ητ ptq as in the previous construction. Globally
we define location markers ak,s for all k ă s, useful for reducing % to g.

We start with setting %0 “ 0. At stage s we either act on permissions or define
the path of accessible nodes δs and act for nodes on that path.

We say that a node σ is already met by stage s if at stage s there is some
follower k for σ such that Iσpkq is defined and %s lies strictly to the right of Iσpkq.

Option A: Acting on Permissions. We say that a follower k (for a positive
node σ) requires attention at stage s if:

‚ The node σ is not already met at stage s;
‚ The interval Iσpkq is defined;
‚ dp%s, Iσpkqq ă 2´rσpkq;
‚ the follower k did not receive attention since the last stage at which σ was

accessible; and
‚ gs`1pak,sq ‰ gspak,sq.

If no follower requires attention then we take option B. Otherwise let k be
the strongest follower which requires attention: the node σ is the strongest, any
of whose followers requires attention at stage s; and k is the strongest (smallest)
follower for σ that requires attention at stage s. We say that the follower k receives
attention.

We execute the following instructions. Let %s`1 “ %s ` 2´rσpkq. For all neg-
ative nodes τ such that τˆ8 ď σ, for all t ě rσpkq such that ητ ptq is defined,
enumerate ητ ptq into Bs`1. Initialise all nodes weaker than σ; cancel all followers
for σ greater than k and their associated intervals. Redefine am,s`1 to be large for
all m ě k, and define a new marker as,s`1 to be large as well. End the stage.

Option B: Building the path of accessible nodes.
If option A was not taken then we define the path δs of accessible nodes. Since

no permissions were used, we set %s`1 “ %s and am,s`1 “ am,s for all m ă s; we
define as,s`1 to be large.

Suppose that a node τ working for Ne is accessible at stage s. Let t ă s be
the previous stage at which τˆ8 was accessible; t “ 0 if there was no such stage.
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If %s ´ λpCe,sq ă 2´t we let τˆ8 be next accessible and choose ητ ptq to be large.
Otherwise we let τ f̂in be next accessible.

Suppose that a node σ working for Pe is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than σ are initialised.
If the node σ is already met by stage s then σ takes no action and does not end
the stage.

Suppose that σ is not already met. If σ has no followers then a new, large one
is appointed, and the stage is ended. Otherwise, let k be the largest follower for σ.

If Iσpkq is defined and dp%s, Iσpkqq ă 2´rσpkq then appoint a new, large follower
for σ and end the stage. If dp%s, Iσpkqq ě 2´rσpkq then the stage is not ended.

Suppose that Iσpkq is not defined. If ΨepB, kqÓ rss then set Iσpkq “ ΨepB, kqrss
and rσpkq “ s; end the stage. If ΨepB, kqÒ rss then no action is taken and the stage
is not ended.

Verification. Suppose that a positive node σ is initialised only finitely many
times. Every follower for σ is either eventually cancelled, or receives attention only
finitely many times. As above the point is that the follower k cannot receive at-
tention more than 2rσpkq´k ` 1 many times, as each time % is increased by 2´rσpkq.
Indeed if a follower k receives attention the full number of times then the require-
ment is declared met and no follower for σ receives attention, at least until a later
stage at which σ is cancelled.

Since new followers are always chosen large we see that as promised, each k
is chosen at most once to be a follower (for any node). A location marker am,s is
moved only when some follower k ď m receives attention. We conclude that the
location markers am,s reach limits am. Thus, for all m ă ω there is some stage s at
which gspam,sq “ gpam,sq. The following lemma then shows that % is computable
from g, and so from d.

Lemma 2.8. Suppose that gspam,sq “ gpam,sq. Then %´ %s ď 2´pm´1q.

Proof. Note that am,t`1 ‰ am,t only if gt`1pam,tq ‰ gtpam,tq. Hence am,s “ am
is the final value of this marker. Let βpkq be the sum of %t`1 ´ %t, as t ranges over
the stages at which the follower k receives attention. As discussed above, βpkq is
bounded by 2´k ` 2´rσpkq ď 2 ¨ 2´k (where σ is the node for which k is a follower),
since rσpkq ą k. Since no follower of size less than or equal to m receives attention
after stage s we know that

%´ %s ď
ÿ

kąm

βpkq ď 2 ¨ 2´m. �

The proof that B ďT % is identical to the one given earlier. The proof that % ă 1
requires minor modifications but is essentially the same. If σ is a positive node
which is initialised at stage t then the total contribution to %´ %t due to stages at
which followers for σ receive attention is bounded by 2

ř

2´k where the sum ranges
over follower k for σ appointed after stage t. Since all of these followers are chosen
to be large we may assume that this sum is bounded by 2´3t´1 as above.

The following lemma ensures that the true path is infinite and that the con-
struction is fair to nodes on the true path. First note that there are infinitely many
stages at which option B is taken: if s is the last stage at which option B is taken,
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then only finitely many followers are ever appointed and each one receives attention
at most once after stage s.

Lemma 2.9. Suppose that σ is a node which works for requirement Pe, is only
initialised finitely many times and is accessible infinitely often. Then the unique
immediate successor of σ on the tree of strategies is initialised only finitely often
and so is accessible infinitely often. Further, the requirement Pe is met.

Proof. Let t˚ be the last stage at which σ is initialised.

Let s˚ ą t˚ and let k be a follower for σ at stage s˚ which is never cancelled.
No follower stronger than k receives attention after stage s˚.

If the interval Iσpkq is never defined then no larger followers for σ are ever
appointed and σ never later ends a stage at which it is accessible. Since all followers
receive attention only finitely many times we see that the successor of σ is initialised
only finitely many times. Further, in this case ΨepB, kqÒ and so the requirement Pe
is met.

Suppose then that at some stage rσ the interval Iσpkq is defined. The argument
in the previous construction shows that the computation ΨepB, kqrrσpkqs is B-
correct and so if total, ΨepBq P Iσpkq.

If at all stages s ě rσpkq, %s lies to the left of Iσpkq and dp%s, Iσpkqq ě 2´rσpkq

then no follower greater than k is ever appointed for σ, so again the successor of σ
is on the true path and the construction is fair to that successor. As before, in this
case dp%, Iσpkqq ě 2´rσpkq so % ‰ ΨepBq.

Similarly, if at some stage s ě rσpkq we see that %s lies strictly to the right
of Iσpkq then σ is declared met and no action is taken for σ after stage s. Since
% ě %s again we see that % R Iσpkq and so Pe is met.

Further, in this last case we do not need to assume in advance that k is never
cancelled: once we see %s lying to the right of Iσpkq, all action for σ ceases and no
follower is cancelled.

We claim that there is some follower k for σ which is never cancelled and for
which one of the cases described above holds. Assume, for a contradiction that this
is not the case. We show that g is ω-c.a.

The assumption means that:

‚ For every follower k for σ appointed after stage s, either k is cancelled
or Iσpkq is eventually defined and for all but finitely many stages s ě rσpkq.

‚ The node σ is never declared met after stage t˚.

For a follower k of σ, if there is such a stage, we let sσpkq be the least stage s ě rσpkq
such that dp%s, Iσpkqq ă 2´rσpkq and σ is accessible at stage s. As observed above,
if k is a follower for σ at a stage s and is not the largest follower for σ at that stage,
then s ą sσpkq.

Let x ă ω. Let Spxq be the set of stages s ą t˚ satisfying:

‚ σ is accessible at stage s; and
‚ there is some follower k of σ at stage s such that s ě sσpkq and x ď ak,s.

For s P Spxq let kspxq be the smallest follower for σ witnessing that s P Spxq. We
first claim that if s P Spxq, t ą s and σ is accessible at stage t then t P Spxq and
ktpxq ď kspxq. Let k “ kspxq. If k is still a follower for σ at stage t then k witnesses
that t P Spxq, because ak,s ď ak,t. Otherwise a follower stronger than k receives
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attention at a stage between stages s and t. Let m be the strongest such follower.
Then m is still a follower for σ at stage t. If m receives attention at stage u P ps, tq
then we define am,u`1 to be large, in particular greater than x, and so x ă am,t
and m witnesses that t P Spxq.

Suppose that s ă t are successive stages in Spxq and that gtpxq ‰ gspxq. Let
k “ kspxq. The fact that x ď ak,s implies that gtpak,sq ‰ gspak,sq. Let m be the
smallest follower for σ such that gtpam,sq ‰ gspam,sq; so m ď k. Let u be the least
stage u P ps, tq at which gu`1pam,sq ‰ gupam,sq. Then m is not cancelled by stage u,
and as it did not receive attention at stages between s and u, it requires attention
at stage u, and receives it.

Above we calculated for any follower k for which Iσpkq is ever appointed a bound
hpkq “ 2rσpkq´k ` 1 for the number of times k receives attention. It follows that
the number of stages s P Spxq such that gtpxq ‰ gspxq (where t is the next stage in
Spxq) is bounded by

ř

hpmq, where m is a follower for σ at stage s “ minSpxq and
sσpmq ď s. From this we can construct an ω-computable approximation for g. �

It remains to show that every negative requirement is met. Let e ă ω and let τ
on the true path work for Ne; in the interesting case τˆ8 also lies on the true path.
The proof of Lemma 2.7, that infinitely many markers ητ ptq are not enumerated
into B goes through as above: say w is a late stage; let σ be the strongest node which
ever acts (ends the stage) or a follower of whose receives attention after stage w.
Then σ extends τˆ8 and does not lie to the right of the true path. Either σ lies to
the left of the true path, in which case σ appoints only finitely many followers; each
one receives attention infinitely often. If σ lies on the true path then Lemma 2.9
shows that σ acts only finitely often. Hence there is a last stage t at which σ is
accessible and ends the stage, or a follower for σ receives attention. Any node ρ
which acts after stage t is initialised at stage t. If t1 is the least stage t1 ě t at which
τˆ8 is accessible then ητ pt

1q is not enumerated into B.
Thus we need to prove an analogue of Lemma 2.6. Again let u ă t be two late

stages at which τˆ8 is accessible and suppose that ητ puq R Bt` , where again t` is
the next stage after t at which τˆ8 is accessible. As above, the total contribution
to %t` ´ %t made by nodes that lie to the right of τˆ8 is bounded by 2´t, as
all such nodes are initialised at stage t. It is no longer true however that nodes
extending τˆ8 do not act at stages strictly between t and t`, nor that only one such
node acts between these stages. Nonetheless, every follower k for a node σ ě τˆ8
receives attention at most once between stages t and t`, and so the total increase
in % attributed to such nodes is bounded by

ř

2´rσpkq where σ ě τˆ8, k is a follower
for σ at stage t and rσpkq ą u (again as ητ puq R Bt`). Since the numbers rσpkq
are distinct for distinct followers k we see that this sum is bounded by 2´u. We
conclude that %t` ´ %t is bounded by 2´pu´1q and so that strings of length smaller
than u´ 1 do not enter Ce between stages t and t`, completing the proof.

2.3. The complexity of the original construction. As mentioned above,
the original construction in [32] gives a noncomputable left-c.e. real %, all of whose
presentations are computable. That is, B “ H. This construction is more compli-
cated than the one presented above. Since we are not allowed to enumerate markers
into B, promises that a node τ makes at an expansionary stage are binding to all.
Considering one such node τ and one positive node σ extending τˆ8, ensuring
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that σ acts only finitely many times requires τ to delay making stricter restraints.
Suppose that an interval Iσ is defined at some stage rσ. Ignoring subtleties we
assume that at that stage the node τ declares that from now on, any increase in %
between two successive τ -expansionary stages must be bounded by 2´rσ .

The node σ issues a request from τ : until σ’s mission is accomplished, τ should
refrain from imposing stronger bounds on the increase of % between τ -expansionary
stages. In turn, since τ does not know if σ will be accessible sufficiently many times
to complete its task, it cannot abide by σ’s request indefinitely. Hence τ takes upon
itself to act on σ’s behalf: at the next few τ -expansionary stages, the stage ends
when τ is accessible and an amount of 2´rσ is added to %. This happens finitely
many times, until %s lies to the right of Iσ; after that, σ never acts again and τ is
free to make stricter promises about increases of %.

So far the number of actions required is similar to the previous construction,
but the story gets more complicated when more than one node τ is considered.
Suppose now that τ1 and τ2 are two negative nodes with τ1ˆ8 ď τ2 and τ2ˆ8 ď σ.
At stage rσ both negative nodes promise that between τi-expansionary stages, %
increases by no more than 2´rσ . So we cannot increase % by the desired 2´rσ until
the next τ2-expansionary stage. Now τ1 is in a bind. It cannot act on its own to
help σ, it seems; but it does not know if there are infinitely many τ2-expansionary
stages, so it cannot wait for one while not making its own promises about % stricter.

The solution is to follow a nested loop. Suppose that t ě rσ is τ2-expansionary.
Unlike τ1, the node τ2 can afford to wait until σ is done, and so keeps the bound
between τ2-expansionary stages to be 2´rσ . Until the next τ2-expansionary stage
the entire construction is restricted to the interval r%s, %s ` 2´rσ q. At stage s the
node τ1 announces a strict bound, roughly 2´t. At subsequent τ1-expansionary
stages we increase % on σ’s behalf, say up to %s ` 2´rσ{2. This means that at the
next 2t´rσ´1 many τ1-expansionary stages, the path of accessible nodes ends at τ1.
After this action, the construction continues without special action on σ’s behalf but
with sufficient initialisations to the right of σ so that the promise that % ă %s`2´rσ

is honoured. At the next τ2-expansionary stage we repeat the cycle again: a new,
stricter bound 2´t

1

is announced by τ1; for the next 2t
1
´rσ´1 many τ1-expansionary

stages we act on behalf of σ, and then again wait for a new τ2-expansionary stages.
After no more than 2rσ many such iterations we meet σ’s requirement.

Consider now how this argument would translate to a permitting argument.
We know in advance that to meet σ on the follower k we will need something
like 2rσpkq many τ2-expansionary stages. If t is one of these stages, we will need
roughly 2t many permissions for τ1 to act on σ’s behalf. We will not know the next
value until we actually observe the next τ2-expansionary stage. So the number of
total permissions required is given by an ω2-c.a. function: the number of times we
change our mind about how many permissions we need for follower k is bounded by
the computable number 2rσpkq. If we know that d is not totally ω2-c.a. then we can
meet σ’s requirement. If there are three negative nodes τ1, τ2 and τ3 below σ, then
we have three layers of nesting of loops, and so the number of permissions is now
given by an ω3-c.a. function, and so on. Overall we see that this kind of permission
is related to non-total ă ωω-c.a. permission.
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3. Total ω-c.a. anti-permitting

We prove part (2) of Theorem I.3.3. Let % be a left-c.e. real such that degTp%q
is totally ω-c.a. We enumerate a presentation C of % which is Turing equivalent
to %.

The technique we use is the so-called “anti-permitting” technique described
in [25, 7]. In some sense it is a mirror image of the previous construction. As
discussed earlier in this chapter, we view % as an infinite binary sequence via binary
expansion. This is unique as we may assume that % is noncomputable. In fact we
will later make significant use of the assumption that % is noncomputable; it will
help us lift array computable anti-permitting to total-ω-c.a. anti-permitting.

3.1. Basic algorithm and plan. Before we describe the construction we
discuss one of the algorithms that will be used in the construction and the high-
level plan for the construction.

Building presentations. We want to enumerate a presentation C of %. We follow
a proof by J. Miller of the Kraft-Chaitin theorem of algorithmic randomness theory
(see [27]). We fix an increasing approximation x%sy of %, where each %s P r0, 1q is a
dyadic rational number. We will no

t require that λpCsq “ %s for all stages s. We will only add strings to Cs to
bring its measure up to %s at stages s at which we receive some “certification” that
various initial segments of %s are correct. This process of certification is the heart
of the construction. Ignoring the mechanics of certification for the moment, let s
be a stage at which we want to add strings to Cs´1 to ensure that λpCsq “ %s. The
instruction will be:

Adding strings to C.

Let β “ %s ´ λpCs´1q. For each k such that βpkq “ 1, add a
single string of length k to Cs.

(Recall that we consider β as a string via its binary expansion.) Since β “
ř

βpkq2´k, it is
clear that λpCsq “ %s. The pertinent point is:

if β ě 2´k then a string of length at most k enters Cs.

We need to argue though that the instruction can be carried out while keep-
ing Cs prefix-free. This is done by using an auxiliary sequence of strings. At each
stage t we will have reserved strings τk,t for each k such that λpCtqpkq “ 0, with
|τk,t| “ k, such that Ct Y tτk,t : λpCtqpkq “ 0u is prefix-free. We work with each
length at a time, so we may assume that β “ 2´k, i.e., we want to add a single
string of length k to Cs´1. Since λpCs´1q ă %s ă 1 there is some m ď k such that
λpCs´1qpmq “ 0. Let m be the greatest such. So the change in %s compared to %s´1

is that the mth bit changes from 0 to 1, and the nth bit, for all n P pm, ks (if k ą m)
changes from 1 to 0. So τn,s “ τn,s´1 for n R rm, ks. We then add τm,s´1 0̂k´m

to Cs and for n P pm, ks we let τn,s “ τm,s´1 0̂n´m´11. See Figure 1.
Henceforth the details of the auxiliary strings are assumed, and we only invoke

the algorithm above.

Layers. Suppose that we enumerate a presentation C as described above. Why
is it the case that C might not compute %? We have arranged for that in the
previous construction: we gradually add small amounts to %. If we update C each
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τm`1,s
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τm`3,s

τk,sσ

Figure 1. Cs “ Cs´1 Y tσu.

time, this means that only long strings enter C. However the cumulative effect on %
may be big, which is a change that C does not comprehend.

In terms of binary expansions, the problematic case is when %s contains a long
block of 1’s. Suppose that %s æpm,ks is a string of ones. Then adding 2´k to %s
results in adding a string of length k to C but changes the bit %pmq.

We can try to prevent this by setting up layers which contain sufficiently
many zeros, and appropriately set uses for computing % from C. We set mark-
ers ζ0 ă ζ1 ă ζ2 ă ¨ ¨ ¨ such that the block % ærζn,ζn`1q contains many zeros (and
the idea is that the markers may increase with time, but hopefully settle down
eventually). We let ζn`1 be the use for reducing % æζn to C. See Figure 2. Here
since C is a set of strings, by use u we mean querying the oracle on strings of length
less than u.

%

C

ζ0 ζ1 ζ2 ζ3
0 0 0 0 0 0

Figure 2. Layers. The dashed lines represent the reduction of % to C.

Now the point is that if between stages s and s` 1, % changes on the interval
rζn´1, ζnq, then since the interval %s ærζn,ζn`1q contains zeros, the increase %s`1´%s
is greater than 2´ζn`1 ; and so if we update C then some string of length smaller
than ζn`1 will enter C and allow us to fix the reduction of %æζn to C.

After this increase, we may have %s`1 ærζn,ζn`1q be all ones, but we can in-
crease ζn`1 so that the new interval contains many zeros. However, it is possible
that no string of length smaller than ζn entered Cs`1; so we cannot increase ζn, as
this is the use of computing % æζn´1 . Which is a problem, since we lost a zero on
the interval rζn´1, ζnq. Note though that we lose at most one zero, or the increase
is beyond 2´ζn and strings of length smaller than ζn will in fact enter Cs`1. So if
we can ensure that the number of times this happens is at most the number of zeros
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we originally set up in the interval rζn´1, ζnq, the construction will succeed. This
is precisely what the certification process gives us.

Certification. The certification process relies on the computational weakness
of degTp%q. We enumerate a Turing functional Γ with intended oracle %, and ensure
that Γp%q is total. We know that the function Γp%q is ω-c.a. Suppose that xgs, osy
is an ω-computable approximation for Γp%q. When a computation Γsp%s, nq is
destroyed, we redefine it with a new value. It follows that there are fewer than
o0pnq many stages s at which Γsp%s, nq “ gspnq and the computation Γsp%s, nq is
%-incorrect.

The plan for setting up the layers is then as follows. Given ζn´1, calculate o0pnq
and let ζn be sufficiently large so that the current version of % contains at least o0pnq
many zeros in the interval rζn´1, ζnq. Define Γp%, nq with use ζn. Recall that since the

oracle % is given, our convention is that by use u we mean that %æu computes Γpnq, not %æu`1.

We can then carry out our original plan. Suppose that for a while, everything
is stable, but that at some stage t we see an increase in %t`1, say a quantity
q P p2´ζn`1 , 2´ζns. As discussed above, this may change the bits of % on the
interval rζn´1, ζnq. This means that now Γp%, nqÒ. We define a new value for the
computation (say t) with the same use. Before we act, we wait for certification: for
a later stage s at which we see that gspnq equals that new value t. Only once we’ve
seen this certification do we add strings to Cs`1 (of lengths between ζn and ζn`1).
Compared to %t ærζn´1,ζnq, the interval %s ærζn´1,ζnq contains one zero fewer. But this
is compensated by the change in g, which ensures that ospnq ă otpnq. Note though
that while waiting, further increases can occur. If the amount increases beyond 2´ζn

then we can abandon ζn and repeat the work on the interval rζn´2, ζn´1q.

Uniformity, and simple permitting. All is well, except that even if we en-
sure that Γp%q is total, we cannot effectively find an ω-computable approximation
for Γp%q. We need to guess one. Let xgey be an enumeration of the ω-c.a. functions,
equipped with tidy pω`1q-computable approximations xges , o

e
sy (Proposition II.1.7).

We perform countably many constructions which are almost independent of each
other. The eth construction guesses that Γp%q “ ge, and based on this guess enu-
merates a prefix-free set Ce and a reduction of % to Ce. If the guess is correct then
the construction will succeed.

Since they enumerate distinct sets and reductions, there is very little inter-
action between the different constructions. However they do combine forces in
defining Γp%q. To keep things simple, the eth construction defines Γp%, nq for inputs
n P ωres (the eth column of ω). The catch is that even if the guess that Γp%q “ ge

is incorrect, an eventual %-correct definition of Γp%, nq must be made by the eth

construction, for all n P ωres.
Even while waiting for an agreement between Γp%, nq and gepnq, the eth con-

struction can keep defining new values of markers ζm for m ą n in ωres, and with
them computations Γp%,mq. If degTp%q were array computable this would not be
a problem. Recall that we need to ensure that the block ending with ζm must
contain at least oespmq many zeros (where s is the stage at which we make the
definition). If we know that Γp%q is say id-c.a., then we can work with a list of tidy
pid`1q-computable approximations, and so oe0pmq “ m for all e and m, and we can
find how large ζm must be. However under the weaker assumption that degTp%q is
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totally ω-c.a., we need to work with what are essentially (if not formally) partial
approximations. So the conflict is that we need to define ζm even if oespmq “ ω for
all s; so we cannot wait for a value oespmq ă ω to show up. But if we define ζm
before seeing oespmq ă ω then we will not have enough zeros and will not be able
to carry out the construction outlined above, even if the eth guess is correct.

The solution (as in [25]) is to make use of the fact that % is noncomputable. We
actually use simple permitting. This is perhaps paradoxical in an anti-permitting
argument. But of course the point is that noncomputable (simple) permitting is
weaker than non-total ω-c.a. permitting, and so the former can co-exist with the
negation of the latter.

What we do is go ahead and define a computation Γp%,mq without waiting
for oespmq to give us a natural number. But we wait with the definition of the
reduction of % to Ce (which is fine, as it is local to the eth construction). Once
we see the value oespmq we wait for a voluntary change in % below the use γpmq.
Simple permitting will ensure that for infinitely many m we will see such changes
(provided of course that the approximation is eventually ω-computable). If we
see such a change then we can now define a new large value for γpmq, bounding
sufficiently many zeros, and declare it to be one of our markers ζm. Note again that
to move ζm we need not only an %-change below ζm, but also a change in Ce on
strings of length below ζm, if the reduction of %æζm´1 to Ce has already been defined.
This is why it is important to keep this reduction undefined until we see oespmq ă ω.

This discussion contained all the ideas needed for the proof, and so we turn to
giving the formal details.

3.2. Total ω-c.a. anti-permitting: the details. As discussed, we are given
a noncomputable left-c.e. real % P r0, 1q with an increasing approximation x%sy. We
use a list xgey of all ω-c.a. functions, with tidy pω` 1q-computable approximations
xges , o

e
sy.

We enumerate a Turing functional Γ, with intended oracle %, viewed as an
element of Cantor space.

For every e ă ω we perform the eth construction. These constructions are
independent of each other. Fix some e ă ω. In the eth construction we enumerate
a prefix-free c.e. set Ce and define Γp%,mq for all m P ωres. Also, we define an
increasing sequence of numbers kep0q ă kep1q ă . . . (the list may eventually be
finite or infinite). All of the numbers kepnq are elements of ωres. These will be
the numbers that are permitted (simply) and so they will be the ones that will
be used as inputs for defining the layers. We renumber our markers by letting
ζen “ γpkepnqq.

The beginning of stage s. By the beginning of a stage s we will have already:

(1) Enumerated the set Ces ;
(2) Defined the sequence kep0q, kep1q, . . . , kepvq for some v “ ves , such that

each kepnq P ωres X s. For brevity we let bes “ kepvesq be the last element
of this sequence.

(3) Defined computations Γsp%s,mq for all m P ωresX s, with uses γspmq. For
n ď ves we let ζen,s “ γspk

epnqq.

The uses γspmq are not quite monotone:
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‚ if kepn ´ 1q ă m ă kepnq for some n ď ves then γspmq “ 0. That is,
the computation Γsp%s,mq does not look at the oracle and so is never
destroyed. These inputs m were discarded when we got permission to
use kepnq to define the next layer ending with ζen,s.

‚ Otherwise, the uses are monotone:
– ζen,s “ γspk

epnqq ă γspk
epn` 1qq “ ζen`1,s for all n ă ves ;

– If n ď ves and m ą bes then ζen,s ă γspmq;
– If bes ă m ă m1 then γspmq ă γspm

1q.

See Figure 3.

%s

Ces

ζe0,s ζe1,s ζe2,s ζe3,s
0 0 0 0 0 0

Γsp%sq
kep0q kep1q kep2q kep3q

“ bes

m m1

Figure 3. The eth construction at stage s. In this example ves “ 3,
and Γsp%sq is also defined on m1 ą m ą bes “ kep3q, the two next
elements in ωres.

The eth construction. The construction begins at stage s “ minωres. At
that stage we define kep0q “ s and Ces`1 “ H. We define a new computation
Γs`1p%s`1, sq “ 0 with use 1. So ζe0,s`1 “ 1. Recall our convention that % “ 0.%p1q%p2q ¨ ¨ ¨ .

This means that % æk is the bit-sequence %p1q%p2q ¨ ¨ ¨ %pk ´ 1q. If we define a computation with

use 1 this means that the oracle is not consulted and so this computation is never destroyed.

Now suppose that s ą minωres. We give the instructions for the eth construc-
tion at stage s.

Step 1: redefining destroyed computations Γp%,mq.
We may see that some of the computations Γsp%s,mq are destroyed by the

change from %s to %s`1. If none of these computations are destroyed then we skip
to step 2 below.

Otherwise we need to define new computations Γs`1p%s`1,mq for m for which
the computations were destroyed. In all but one case the value of the new compu-
tations will be s ` 1, and so to define these computations we only need to specify
their use γs`1pmq.
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Let p be the smallest element of ωres such that p ă s and Γsp%s`1, pqÒ. There
are three cases.

First case. Useless change: p ą bes but oesppq “ ω.

For all m P rp, sq X ωres set γs`1pmq “ γspmq. We don’t increase

the uses, to ensure that they do not go to infinity.

Second case. Making use of simple permission: p ą bes and oesppq ă ω.

In this case we add p as the new last element of the list of useful
inputs. That is, we define kepnq “ p where n “ ves ` 1 “ ves`1;
so p “ bes`1.

‚ For m P pbes, b
e
s`1q X ωres define Γs`1p%s`1,mq “ Γsp%s,mq

with use 1. We use the previous value to keep the functional con-

sistent.

‚ Set γs`1ppq (which of course equals ζen,s`1) to be the
least u ą ζen,s ` 1 such that the block %s`1 ærζen´1,s,uq

contains at least oesppq ` 2 many zeros.
‚ For m P pp, sq X ωres set γs`1pmq to be large.

Third and main case: p “ kepqq for some q ď ves.

Let n P rq, vess. Let β “ %s`1 ´ λpC
e
s q.

‚ If β ď 2´ζ
e
n,s then set ζen,s`1 “ ζen,s (in other words, set

γs`1pk
epnqq “ γspk

epnqq).

‚ If β ą 2´ζ
e
n,s then set ζen,s`1 to be the least possible value

greater than ζen´1,s ` 1 so that the block %ærζen´1,ζ
e
nq
rs` 1s

contains at least oespnq ` 2 many zeros.
As in the second case, for all m P pbes, sqXω

res set γs`1pmq to be
large.

This defines the computations Γs`1p%s`1,mq for all m ă s in ωres and concludes
the first step.

Step 2: updating Ce.
Let β “ %s`1 ´ λpCes q. Suppose that β ą 0 and that for all n ď ves , n ą 0

such that β ď 2´ζ
e
n´1,s we have Γp%, kepnqq “ gepnq rs`1s. Then enumerate strings

into Ces`1 following the algorithm above to ensure that λpCes`1q “ %s`1.

Step 3: a new computation.
At the very end of the stage, if s P ωres we define a new computation

Γs`1p%s`1, sq with new, large use.

This concludes the instructions for stage s ą minωres.
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Verification. Each functional Γs is consistent for %s. This uses the fact that x%sy
is an increasing approximation, and that at every stage we define a new computation
Γs`1p%s`1,mq only if Γsp%s`1,mqÒ, or otherwise we let Γs`1p%s`1,mq “ Γsp%s,mq.

Lemma 3.1. Γp%q is total.

Proof. Let m ă ω; let e be such that m P ωres. Let ve “ sups v
e
s .

If there is some n ă ve such that kepnq ă m ă kepn ` 1q then at the stage at
which kepn ` 1q is defined we define a new computation Γpmq with use 1. Recall
that this means that the oracle is not consulted. So certainly Γp%,mqÓ.

Suppose that m “ kepnq for some n ď ve or that ve ă ω and m ą be “ kepveq.
By induction on such m we show that Γp%,mqÓ. For every s ą m the computation
Γsp%s,mq converges. To show that Γp%,mqÓ it is sufficient to show that the sequence
xγspmqy is bounded. For if it is bounded by some value u and %s æu“ % æu, then
Γsp%s,mq is an %-correct computation.

First suppose that m “ kepnq for some n. If n “ 0 then γm`1pmq “ 0 which
implies that the computation Γm`1p%m`1,mq is %-correct and so is never destroyed.
Suppose that n ą 0. By induction we assume that ζen´1,s reaches a limit ζen´1.
Let r ą m be a stage sufficiently late so that n ď ver and ζen´1,s “ ζen´1 for
all s ě r. We note that the fact that n ď ver implies that oerpmqÓ. Let u be the least
number greater than ζen´1 such that the block % ærζen´1,uq

contains at least oerpmq

many zeros; such a number exists since % is not a dyadic rational. By increasing r
we may assume that %r æu“ % æu (and so %s æu“ % æu for all s ě r). If s ě r is a
stage at which γs`1pmq is redefined then we choose γs`1pmq ď u.

Now suppose that ve ă ω and m ą be. Let m1 be m’s predecessor in ωres. By
induction find a stage r ą m sufficiently late so that the computation Γrp%r,m

1q is %-
correct. At every stage s ě r at which we redefine γs`1pmq we let γs`1pmq “ γspmq.

�

Since we assume that degTp%q is totally ω-c.a. there is some e such that
Γp%q “ ge and the approximation xges , o

e
sy is eventually ω-computable. We fix

such e. From now we only concern ourselves with the eth construction. For clarity
of notation we omit the superscript e from all the associated objects (we write gs
for ges , C for Ce, ζn,s for ζen,s and so on).

Lemma 3.2. lims vs “ ω.

Proof. Assume for a contradiction that v “ lims vs is finite. Let r be a stage
sufficiently late so that by stage r, ζv,s has reached a limit ζv and %r æζv“ % æζv .

The assumption for contradiction means that at all stages s ą r, for all m P ωresXs
such that ospmq ă ω, the computation Γsp%s,mq is %-correct. This implies that % is
computable. Given u ă ω, to compute %æu we pick m ą u, r in ωres and wait for a
stage s ą m at which ospmq ă ω; so %s æγspmq“ %æγspmq. But γspmq ą m ą u. �

We can show that C is a presentation of %.

Lemma 3.3. λpCq “ %.

Proof. Suppose not. Let n be sufficiently large so that 2´n ă %´ λpCq. But
if s is a very late stage then all markers ζm,s for all m ď n have stabilised to their
final values and are all certified: gspkpmqq “ Γp%, kpmqq for all m ď n. Also assume
that %´ %s ă 2´n and %s ´ λpCsq ą 2´n. Then at stage s we would increase C to
have measure %s, which is a contradiction. �



V.3. TOTAL ω-C.A. ANTI-PERMITTING 117

The next lemma (really an observation) is trivial but useful. Both parts rely
on the fact that for all β P r0, 1q and k ě 1, β æk (as a number in binary) is the
integral part of 2k´1β.

Lemma 3.4. Let t ă s and k ě 1.

(1) If %t ´ %s ě 2´pk´1q then %t æk‰ %s æk.
(2) If %s ´ %k ď 2´k and further %tpkq “ 0 then %t æk“ %s æk.

The following is the main combinatorial lemma.

Lemma 3.5. Let s be a stage, and let n ą 0, n ď vs. The block % ærζn´1,ζnq rss
contains a zero.

Proof. Fix n. For brevity let m “ kpnq. Suppose that s is a stage and n ď vs.
As above, say that the marker ζn,s is certified at stage s if Γsp%s, kpnqq “ gspkpnqq.

Let Scert be the set of such stages. This set contains a final segment of ω.
We say that the marker ζn,s is redefined if Γsp%s´1,mqÒ and either

‚ vs´1 “ n´ 1, i.e. ζn,s is the very first value of this marker; or
‚ β “ %s ´ λpCs´1q ą 2´ζn,s´1 .

Let Sredef be the set of such stages s.
Let S “ ScertYSredef. We show by induction on the stages s for which n ď vs

that:

(a) If s P S then the block % ærζn´1,ζnq rss contains at least ospmq ` 2 many
zeros.

(b) If s R S then the block % ærζn´1,ζnq rss contains at least ospmq ` 1 many
zeros.

In either case the number is positive, and so the lemma follows.
The induction starts with s “ minSredef. The instructions ensure that (a)

holds at every stage s P Sredef.
Let t P S and suppose that paq has already been verified for stage s. Let r be

the next stage in S after stage t. We verify that paq holds at stage r and that pbq
holds at all stages s P pt, rq.

The marker ζn,s is constant for s P rt, rq; we denote this fixed value by ζn (note
that this is not necessarily the final value of this marker). Similarly define ζn´1.

Now for brevity let:

‚ A be the set of stages u P pt, rq such that Cu ‰ Cu´1.
‚ If r P Sredef let B be the set of stages s P pt, rq such that %s æζn‰ %s´1 æζn ;

if r R Sredef let B be the set of such stages in the interval pt, rs.

We make two observations.

(1) Let u P A. Then %u ´ λpCu´1q is strictly greater than 2´ζn´1 . This is
because u R Scert.

(2) Let s P B. Then %s ´ λpCs´1q ď 2´ζn . For otherwise s P Sredef.

In particular, A and B are disjoint.
Suppose that B is empty. Then %r´1 æζn“ %t æζn ; and if r R Sredef then

%r æζn“ %t æζn . Since ospmq ď otpmq for all s P pt, rs, we see that pbq holds for all
s P pt, rq. If r P Sredef then we already know that (a) holds at r. If r R Sredef then
the latter equality ensures that (b) holds at stage r.

We assume therefore that B is nonempty.
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Suppose that A is nonempty. We claim that A ă B. That is, there are no
s P B and u P A with s ă u. For a contradiction, suppose there are. By choosing
a maximal s and then minimal u we can find s P B, u P A such that s ă u but the
interval ps, uq is disjoint from both A and B. Since AX rs, uq is empty we see that
Cs´1 “ Cu´1. Let q “ λpCs´1q; then %s ´ q ď 2´ζn and %u ´ q ą 2´ζn´1 . Since
ζn´1 ą ζn ` 1, this means that %u ´ %s ą 2 ¨ 2´ζn . By Lemma 3.4, %u æζn‰ %s æζn .
This contradicts the assumption that B X ps, us is empty.

Thus, we let t1 “ maxA if A is nonempty, and t1 “ t otherwise. Then
%t1 æζn“ %t æζn .

Let r1 “ maxB. Then %r1 æζn“ %r´1 æζn ; and if r R Sredef then %r1 æζn“ %r æζn .
Also we note that Cr1 “ Ct1 and so %r1 ´ λpCt1q ď 2´ζn .

Let k be the rightmost zero in the block % ærζn´1,ζnq rts – the greatest k ă ζn
such that %tpkq “ 0. Such k exists by induction.

Since %r1 ´ %t1 ď 2´ζn and %t1pkq “ %tpkq “ 0, Lemma 3.4 says that
%r1 æk“ %t1 æk. Overall, we see that %r´1 æk“ %t æk; and if r R Sredef then
%r æk“ %t æk.

The block %t ærζn´1,kq contains at least otpmq ` 1 many zeros. Since
ospmq ď otpmq for all s ą t, we see that (b) holds for all stages s P pt, rq.

Now consider r. We may assume that r R Sredef. Then the argument above
shows that the block %r ærζn´1,ζns contains at least otpmq ` 1 many zeros. Further,
ζn,r “ ζn and ζn´1,r “ ζn´1.

We assumed that B ‰ H. Indeed, a new computation Γr1p%r1 ,mq is defined
and Γrp%r,mq “ Γr1p%r1 ,mq “ r1. Since r P S it must be that r P Scert.
Thus grpmq “ r1 ą t ą gtpmq. It follows that orpmq ă otpmq, and so
orpmq ` 2 ď otpmq ` 1. This establishes (a) for stage r. �

Finally we show that C computes %.

Lemma 3.6. Let s be a stage and let n ă vs. Suppose that for all strings σ of
length at most ζn`1,s, σ P C if and only if σ P Cs. Then %æζn,s“ %s æζn,s .

Proof. Let s be a stage as described. The assumption means that for all u ą s,
if Cu ‰ Cu´1 then λpCuq ´ λpCu´1q ă 2´ζn`1,s .

For brevity let ζn “ ζn,s and ζn`1 “ ζn`1,s. By induction on t ě s we show
that ζn,t “ ζn, ζn`1,t “ ζn`1 and %t æζn“ %s æζn . Suppose this is known for t´1 ě s.

We claim that β “ %t ´ λpCt´1q ď 2´ζn`1 . Suppose otherwise; let u be the
least stage u ě t such that Cu ‰ Cu´1. Then λpCu´1q “ λpCt´1q and %u ě %t and
so λpCuq ´ λpCu´1q ě β, contradicting our assumption on Cs.

The instructions (third case) now show that at stage t´ 1 we set ζn,t “ ζn,t´1

and ζn`1,t “ ζn`1,t´1.
Further, %t æζn“ %s æζn . Since ζn`1,t´1 “ ζn`1 and ζn,t´1 “ ζn, Lemma 3.5

implies that the block %t´1 ærζn,ζn`1q contains a zero. If %t æζn‰ %t´1 æζn then by

Lemma 3.4, %t ´ %t´1 ą 2´ζn`1 , and of course %t´1 ě λpCt´1q. �



CHAPTER VI

m-topped degrees

It was Post [78] who first pointed out that many reducibilities occurring in
practice were stronger than Turing reducibility; indeed most codings of the halting
problem into a concrete undecidable problem like the word problem for groups
were m-reducibilities. For example, for the word problem, for each instance e, we
could compute a word wpeq such that e P H1 ô wpeq “ 1G. The thrust of Post’s
problem was whether all instances of undecidable c.e. problems were simply the
halting problem in disguise. Myhill characterised the c.e. sets as those that are
m-reducible to H1. Thus interactions of Turing and m-reducibilities would seem a
natural thing to study.

Downey and Jockusch [29] answered a longstanding question of Odifreddi and
Degtev (See Odifreddi [76]) by proving the existence of incomplete c.e. sets which
resembled the Halting problem in the sense of these interactions. That is, they
constructed what are now called m-topped degrees: degrees containing c.e. sets A
such that for every c.e. set B ďT A we have B ďm A. In other words, a c.e.
Turing degree a is m-topped if among the m-degrees of c.e. sets inside a there is
a greatest one. Thus, locally they resemble H1. Such sets seem strange, and have
some remarkable properties. For example, they were one of the first “natural classes
all of whose members are low2. Moreover, Downey and Jockusch showed that m-
topped degrees cannot be low. Finally, Downey and Shore [34] showed that every
low2 c.e. degree is bounded by an m-topped degree. Thus the m-topped degrees
c.e. degrees can be used to define the low2 c.e. degrees in the degree structure with
both reducibilities.

In [23] we investigated the dynamics required for the Downey-Jockush con-
struction. We showed that the cascading effect that happened in the construction
led to an ωω-type behaviour. Specifically, we showed that there is an m-topped
degree which is totally ωω-c.a. We also hinted at a proof that this is the best
possible:

Theorem 0.1. No m-topped degree is totally ă ωω-c.a.

In this chapter we flesh out the details of this construction. Apart from the
intrinsic interest in this result, this argument will serve as a preparation for the
next chapter.

The dynamics of the cascading phenomenon occurring in the construction of an
m-topped degrees strongly resembles the dynamics of the embedding of the 1-3-1
lattice in the c.e. degrees, which we discussed in the introduction. These dynamics
are captured by the class of totally ă ωω-c.a. degrees, in that, as we show in the next
chapter, the 1-3-1 lattice can be embedded precisely below the not totally ă ωω-c.a.
degrees. Similar dynamics occurred in the original construction of a noncomputable
left-c.e. real with only computable presentations, which we discussed in the previous
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chapter; this is made more formal when we discuss prompt not total ă ωω-c.a.
permitting in the last chapter of this monograph. However, the similarity has some
limits. Unlike the 1-3-1 embedding, the m-topped construction cannot be captured
precisely by the hierarchy of totally ă α-c.a. degrees: it is not the case that every
c.e. degree which is not totally ă ωω-c.a. bounds an m-topped degree. This is
because as mentioned above, m-topped degrees cannot be low, and every level of
our hierarchy contains low (as well as nonlow) degrees. It would be interesting
to see if there is a permitting argument combining non total ă ωω-c.a.-ness and
non-lowness that would yield bounding of m-topped degrees.

Before we give the full argument we start with easier, weaker results. We show
that no totally ω-c.a. degree is m-topped; then that no totally ω2-c.a. degree is
m-topped; and then give the full proof.

1. Totally ω-c.a. degrees are not m-topped

Let d be a totally ω-c.a. c.e. degree. To show that d is not m-topped we need,
given a c.e. D P d, to enumerate some c.e. set V ďT D which is not many-one
reducible to D.

The basic module is as follows. Suppose that we want to show that the dth

computable function ϕd is not a many-one reduction of V to D. We set up a finite
set X of followers and wait for them to be realised, which means that ϕdpxqÓ for all
x P X. While we wait we prevent the enumeration of the followers into V . When
they get realised we may assume that ϕdpxq R Ds for all x P X; otherwise we get an
easy win. We then attack by enumerating some x P X into V . The opponent can
respond by enumerating ϕdpxq into D, in which case we will attack with another
follower in X. We need to ensure two things:

‚ V is Turing reducible to D; and
‚ X is sufficiently large so that the opponent cannot always respond.

For the first we will define a functional Ψ with the intention of having ΨpDq “ V .
To be able to attack without violating this reduction we will ensure that the use
ψspxq of any follower is greater than ϕdpyq for any other follower. Thus a response
by our opponent to our attack with y will be the D-change which allows us to
attack next with x.

For the second we use the “anti-permitting” method used in Chapter V. We tie
the set of followers X with some input n for a function ΓpDq we build which will
serve as an “anchor” (or “anti-permitting number”). Since ΓpDq is ω-c.a. we find a
bound m on the number of times an approximation for ΓpD,nq changes. We ensure
that the use γpnq of ΓpD,nq is the same as the use ψspxq for followers x P X. So
the opponent’s D-change that allows us to attack with another follower also allows
us to redefine ΓpD,nq to have a new value and so reduce the number of changes left
to the opponent. If |X| ą m then the opponent will not be able to always respond.
See Figure 1.

As in the previous chapter we need to add a simple permitting step. Previously
this was only necessary because we were working with a degree which is totally
ω-c.a. and not necessarily an array computable one: the number m is revealed
to us eventually but is not fixed in advance; if we guess incorrectly about our
approximation for ΓpDq it may never be given. We nonetheless must make sure
that ΓpD,nqÓ (so that ΓpDq is total) even if the guess using n is wrong. In the
current construction there is another reason to use simple permitting. We do not
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know whether ϕd is total or not. This means that we need to set the uses ψspxq
for x P X immediately when we appoint these followers. Before we attack we need
to lift these uses beyond ϕdpyq for y P X, and these values are revealed to us after
we already appoint the followers and define the Ψ-computations. So we wait for
a “free pass” to raise these markers, and this will be given as usual by assuming
that D is noncomputable.

ΓpDq

V

D

n

x0

ϕdpx0q

x1

ϕdpx1q

x2

ϕdpx2q

ψ

γ

Figure 1. ω-c.a. degrees are not m-topped

1.1. Construction. We are given a c.e. set D whose Turing degree is totally
ω-c.a. We use a list xgey of all ω-c.a. functions, with tidy pω ` 1q-computable ap-
proximations xges , o

e
sy. We enumerate a Turing functional Γ with intended oracle D.

For every e ă ω we perform an eth construction. These constructions are inde-
pendent of each other, except that as usual they together define the functional Γ.
The eth construction will guess that ΓpDq “ ge. For every d ă ω the eth con-
struction will employ an agent d, which performs a “sub-construction” of the eth

construction. The action of distinct agents is independent of each other; we only
need to ensure that they don’t share followers. We use the term “agent” to refer to

entities working independently of each other in parallel constructions; “strategies” or “nodes” lie

on a tree of strategies and interact with each other.

The eth construction will enumerate a c.e. set V e. It also defines a Turing
functional Ψe with the aim of having ΨepDq “ V e.

An agent d for construction e aims to define a finite set X of followers. The
sets of followers for distinct agents are pairwise disjoint. The agent will choose an
anchor n (distinct from the numbers chosen by any other agent for any construc-
tion). The agent will be responsible for defining ΓpD,nq and for defining Ψe

spDs, xq
for x P X. The use ψespxq for all x P X will be the same, namely γspnq.

We note that the agent must ensure that n P dom ΓspDsq at every stage s
(and that the uses γspnq are bounded). However ΨepDq “ V e is required only
if the hypothesis that ΓpDq “ ge is correct. The agent is thus allowed to leave
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computations Ψe
spDs, xq undefined until it gets further evidence that the hypothesis

holds.
In this chapter we simplify our notation as follows.

Notation 1.1. The intended oracle for the functionals Γ and Ψe is D; At stage s
we only define computations ΓspDs, nq and Ψe

spDs, xq. Further, the value of these
computations is also fixed: at stage s, the value of a new ΓspDs, nq computation
is always s, and the value of a new Ψe

spDs, xq computation is V es pxq. Thus to
specify a computation all we need to provide is the use γspnq or ψespxq. Instead of
mentioning the functionals we only mention the uses (which can be thought of as
moving markers). So for example we write ψespxqÓ if Ψe

spDs, xqÓ, and when a new
computation is defined, we simply say that we define ψespxq.

As mentioned above, before we can use any followers to diagonalise against
many-one reductions we need them to be simply permitted by D. Thus before
commencing the attacks, the agent will define distinct sets of followers X0, X1, . . .
associated with anchors n0, n1, . . . , one of which we hope will become the X and n
we eventually use.

To carry out the construction we need the following, which we will verify after
we specify the construction. It says that an agent does not run out of followers to
attack with.

Lemma 1.2. Suppose that at some stage s, an agent d for the eth construction is
attacking with a set of followers X. Then X Ę V es .

The action of agent d for the eth construction. We now describe two cycles
(subroutines) detailing the action of an agent d for the eth construction. The agent
starts with set-up cycles; if some set of followers is set up and permitted then the
agent moves to attack cycles. During either cycle the agent is instructed to wait
for some event. It is possible that the event does not happen, in which case the
agent will wait forever and not act again, other than maintaining the convergence
of some functionals. In fact we will show that either we get an easy win, or the
agent will get stuck waiting indefinitely from some point onwards, either because
ge is not the correct guess, ϕd is not total, or because some attack succeeds.

The agent starts with setting up the first set of followers.

Setting up the kth set of followers.

1. Let s0 be the stage at which this set-up cycle begins. Choose
a large anchor nk. Define γs0pnkq “ nk.

2. We wait for a stage s1 at which oes1pnkq ă ω. At that stage
we choose a set Xk of poes1pnkq ` 2q-many large followers. For
each x P Xk we define ψes1pxq “ nk.

3. We wait for a stage s2 ą s1 at which ϕd,s2pxqÓ for all x P Xk.

4. We then wait for a stage s3 ą s2 at whichDs3 ænk‰ Ds3´1 ænk .
While waiting we (recursively) set up the pk`1qth set of followers.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors nk1 and sets of followers Xk1 for k1 ‰ k.
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We letX “ Xk and n “ nk. We let u “ 1`max tϕdpxq : x P Xu.
We start an attack with some x P X.

Throughout the set-up phase, if some anchor nk is already chosen and
Ds ænk‰ Ds´1 ænk then unless we start an attack at stage s, we redefine γspnkq “ nk
and if also Xk is defined, ψespzq “ nk for all z P Xk.

If we start an attack at some stage t then we will ensure that Γt´1pDt, nqÒ and
that Ψe

t´1pDt, zqÒ for all z P X.

Attacking with a follower x.

1. Let t0 be the stage at which the attack begins. We define a
new Γ computation by setting γt0pnq “ u.

2. We wait for a stage t1 ą t0 at which get1pnq “ Γt1pDt1 , nq.
While waiting, the markers ψespzq for all z P X remain undefined.

If ϕdpxq P Dt1 then we interrupt the attack cycle and discard
both n and X; all action for the agent ceases. In this case we get

an easy win by keeping x out of V e.

Otherwise, we enumerate x into V et1 ; we define ψet1pzq “ u
for all z P X.

3. We wait for a stage t2 ą t1 at which ϕdpxq P Dt2 . At that
stage we end the current attack and commence a new attack
with some x1 P XzV et2 .

Throughout the attack phase, if Ds æu‰ Ds´1 æu and we do not start a new
attack at stage s then we define γspnq “ u, and if further ψes´1pzqÓ for z P X (i.e.
if s ą t1) then we define ψespzq “ u.

Globally, if n ă s and n is at stage s not used as anchor by any agent for any
construction (either it was never chosen, or was chosen and later discarded) then
we define γpnq “ 0. For all e ă s, if x ă s and x is not at stage s used as a follower
by any agent for the eth construction then we define ψepxq “ 0.

1.2. Verification. We first need to show that the construction can be per-
formed as described. Fix an agent d for the eth construction.

Let t be a stage at which an attack cycle begins. We need to show that
Γt´1pDt, nqÒ and that Ψe

t´1pDt, zqÒ for all z P X. Suppose that the set-up phase
ended at stage t. Then Dt æn‰ Dt´1 æn and n equals both γt´1pnq and ψet´1pzq for
z P X. If on the other hand an attack cycle (with some follower x) ends at stage t
then ϕdpxq P DtzDt´1 and ϕdpxq ă u, and u equals both γt´1pnq and ψet´1pzq for
z P X.

Next, we prove Lemma 1.2, which stated that an agent never runs out of
followers: if an agent for the eth construction is attacking at some stage s with a
set of followers X, then X Ę V es .

Proof of Lemma 1.2. During each attack cycle at most one follower is enu-
merated into D. Let t ă s be two stages at which an attack cycle begins. Since
gerpnq “ ΓtpDr, nq ě t at some stage r P pt, sq and by convention get pnq ă t we
see that oespnq ă oet pnq. It follows that at most os0pnq ` 1 many attack cycles are
started, where s0 is the stage at which X is appointed. Thus at most os0pnq ` 1
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many elements of X are enumerated into V e. The lemma follows from the choice
|X| “ os0pnq ` 2. �

We also observe that ΓpDq is total. For let n ă ω. If n is not chosen as an
anchor by any agent for any construction, or is chosen but is later discarded, then
we arranged that n P dom ΓpDq (with use 0). Otherwise n “ nk for some unique
agent for a unique construction. If the agent never enters the attack phase then
γspnq is defined at every stage after n is chosen, always with use n, and so eventually
a correct computation is defined. If the agent enters the attack phase with n then
at every stage s during this phase the computation γspnq is defined, with use u; so
again a correct computation is eventually defined.

We fix some e such that ΓpDq “ ge and xfes , o
e
sy is eventually ω-computable.

We will show that the eth construction succeeds. We drop all superscripts e from
now on.

Lemma 1.3. ΨpDq “ V .

Proof. Let x ă ω. If x is enumerated into V at some stage t then Ψt´1pDt, xqÒ
and a computation with a correct value is defined at stage s. So it suffices to show
that x P dom ΨpDq.

If x is never chosen as a follower by any agent for the eth construction, or if it
is chosen and later discarded, then we arrange that ΨpD,xqÓ with use 0. Suppose
that x is chosen by some agent d and is never discarded.

During the set-up phase we ensure that ψspxqÓ at every stage after the stage at
which x was appointed, with use nk (if x P Xk). As with ΓpDq, if the attack phase
never begins then this ensures that n P dom ΨpDq.

Suppose that the attack phase eventually begins and that x P X. Suppose
that s is a stage during the attack phase and that ψspxqÒ. Let t ď s be the stage
at which the attack cycle began which is running at stage s. At stage s we are still
waiting to see grpnq “ ΓrpDr, nq. Since we assume that x is never discarded, the
attack phase is never interrupted. Since g “ ΓpDq we see that a stage r as required
will occur, and at that stage we will define ψrpxq “ u. Again we see that eventually
a correct computation will be defined. �

Lemma 1.4. V ęm D.

Proof. Suppose that ϕd is total; we show that there is some x such that
x P V ô ϕdpxq R D.

We claim that agent d will enter the attack phase. For otherwise, the fact
that ϕd is total and that xfes , o

e
sy is eventually ω-computable ensures that anchors nk

are defined for every k ă ω. But then we compute D: if Xk is appointed and
Xk Ď domϕd at stage s, then Ds ænk is correct.

We have argued that only finitely many attack cycles are started by the agent.
Let x be the last follower with which we start an attack. If the attack is interrupted
then ϕdpxq P D but we keep x R V . Otherwise, as argued above, we eventually
enumerate x into D. Since no new attack is ever started, ϕdpxq R D. �

2. Totally ω2-c.a. degrees are not m-topped

2.1. An easy proof. Consider how the construction in the previous section
needs to change if degTpDq is totally ω2-c.a. In this case the ordinal os0pnq that we
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discover is not a natural number m but an ordinal of the form ω ¨m0 `m1, where
m0 and m1 are natural numbers.

The most natural adaptation is the following. When the ordinal ω ¨m ` k is
revealed, we appoint a set X of followers of size k ` 1. We wait for ϕd to converge
on the followers in X and then for permission to lift the uses γspnq “ ψespzq (for
z P X) above the values of ϕdpzq for z P X. When permission is granted we attack
as above; but it is possible that eventually we exhaust all the followers in X. But
when that happens, since |X| ą k, the ordinal we see when X is exhausted is
ω ¨m1`k1, with m1 ă m: we dropped below the limit ordinal ω ¨m. We then would
like to repeat the process: appoint a new set X 1 of followers of size k1 ` 1; wait
for ϕd to converge on X 1, and then for permission to lift γspnq “ ψespzq above the
values of ϕd; and then attack again. We can go through at most m many cycles of
cycles of attacks, and so eventually the opponent will not be able to respond.

The only question is why we would get enough permissions. Simple permit-
ting is insufficient here; we need multiple permitting for each attempt to meet the
requirement. But it is hopefully clear that the kind of permitting which we need
to carry this plan out is non-total ω-c.a. permitting. That is, if we assume that
degTpDq is totally ω2-c.a. but not totally ω-c.a. then this argument will actually
work. If degTpDq does happen to be totally ω-c.a. then we just refer to the con-
struction in the previous section.

We can also see how to generalise this argument to show to n ą 2, to show that
every c.e. degree which is totally ωn-c.a. is not m-topped. This approach however
does not seem to work when we consider degrees which are totally ă ωω-c.a. but
not totally ωn-c.a. for any n (see Theorem III.4.2). In that argument we define
a single function ΓpDq and guess some n such that ΓpDq is ωn-c.a.; and guess an
appropriate approximation. However, for the permitting part of the argument we
cannot just guess some function ΘpDq which is not ωn´1-c.a.: the point is that
to set γpmq in the first place we need θpkq where k is the associated permitting
number; if ΘpD, kq never converges then we will fail to make ΓpDq total.

We thus give even for the case n “ 2 a more complicated argument which we
will be able to generalise to give the full result.

Nonuniformity. Rather than hope for a voluntary D-change, we manufacture it
by using more than one set. Returning to the ω2 case, suppose that we enumerate
two c.e. sets V and W . It suffices to ensure for every pair pc, dq of indices that
either ϕd is not a many-one reduction of V to D or ϕc is not a many-one reduction
of W to D. The rough idea is to use two sets of followers Y and X. We associate
an anchor n with the requirement; if we guess that ΓpD,nq will not change more
than ω ¨m` k many times then we set |Y | ą m and |X| ą k. We attack with the
followers x P X against ϕd (and so enumerate them into V ). When X runs out,
as discussed above, the new ordinal is smaller than ω ¨m; we then attack with one
follower y P Y against ϕc (and so aim to enumerate it into W ). Before the attack
with y commences we appoint a new set of followers to take the role of the new X,
sufficiently large to last until we drop below the next limit ordinal. We wait for
realisation of the new followers and then attack with y. The failure of this attack
will give us the D-change that allows us to lift the new ΓpDq-use (and ΨepDq-use
for computing V from D) beyond ϕdpxq for all x in the new X.

While we wait for the realisation of the new followers we must leave open the
reduction of W to D (in the same way that in the ω-construction, while we wait for
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a new agreement between ge and ΓpDq to appear we leave the reduction of V to D
open). This means that the totality of the reduction of W to D must rely on the
totality of ϕd. We thus enumerate not a single set W but infinitely many, one for
each ϕd, and we rename the sets Vd. Assume that the guess ge is correct. Then we
will in any case ensure that V ďT D; and if ϕd is a many-one reduction of V to D,
then we will ensure that Vd ďT D and that it is not many-one reducible to D. See
Figure 2.
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Figure 2. ω2-c.a. degrees are not m-topped

2.2. Construction. We are given a c.e. set D whose Turing degree is totally
ω2-c.a. We use a list xgey of all ω2-c.a. functions, with tidy pω2 ` 1q-computable
approximations xges , o

e
sy. We enumerate a Turing functional Γ with intended ora-

cle D.
For every e ă ω we perform an eth construction. As above, these constructions

are independent of each other. For every pair pd, cq of natural numbers, the eth con-
struction will employ an agent pd, cq. The action of distinct agents is independent
of each other; we only need to ensure that they don’t share followers.

The eth construction will enumerate a c.e. set V e, and for all d ă ω, a c.e. set
V ed . It also defines a Turing functional Ψe with the aim of having ΨepDq “ V e, and
Turing functionals Ψe

d with the aim of having Ψe
dpDq “ V ed . We continue to follow

Notation 1.1 and mostly refer to the uses of these computations.
As discussed, an agent pd, cq for the eth construction plans to set up sets of

followers Y and X. Once it enters the attack phase, the set Y is fixed, but the
set X is not: once the followers in X are exhausted, we attack with another follower
from Y and appoint a new set of followers to play the role of X. While it is not
precise, during the construction we refer to the current version of X simply by “X”
rather than give it an index. During the verification we may refer to the version
of X at stage s by Xs.
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During the set-up phase we appoint a sequence Y1, Y2, . . . of sets, one of which
may be chosen to be the set Y we use for attack.

The action of agent pd, cq for the eth construction. The agent starts with setting
up the first set Y1.

Setting up Yk.

1. Let s0 be the stage at which this set-up cycle begins. We
choose a large anchor nk. Define γs0pnkq “ nk.

2. We wait for a stage s1 at which oes1pnkq ă ω2. Suppose that
oes1pnkq “ ω ¨m` p. At stage s1 we choose a set Yk of pm` 2q-
many large followers. For each y P Yk we define ψed,s1pyq “ nk.

3. We wait for a stage s2 ą s1 at which ϕc,s2pyq Ó for all
y P Yk. 4. We then wait for a stage s3 ą s2 at which

Ds3 ænk‰ Ds3´1 ænk . While waiting we (recursively) set up the
set Yk`1.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors nk1 and sets of followers Yk1 for k1 ‰ k.
We let Y “ Yk and n “ nk. We let u “ 1`max tϕcpyq : y P Y u.
We start an attack with some y P Y .

Throughout the set-up phase, if some anchor nk is already chosen and
Ds ænk‰ Ds´1 ænk then unless we start an attack at stage s we redefine γspnkq “ nk
and if also Yk is defined, ψed,spyq “ nk.

Attacking with a follower y P Y .

1. Let r0 be the stage at which the attack begins. We define
γr0pnq “ u. We appoint a set X of pp` 2q-many large followers,
where oer0pnq “ ω ¨m` p. For each x P X we define ψer0pxq “ u.
For now, we leave ψed,spy

1q for y1 P Y undefined.

2. We wait for a stage r1 ą r0 at which ϕd,r1pxqÓ for all x P X.
If ϕcpyq P Dr1 then we interrupt the attack cycle, discard all as-
sociated followers and anchor, and cease all action for the agent.

Otherwise we enumerate y into V ed,r1 . For all y1 P Y we

define ψed,r1py
1q “ u.

3. We wait for a stage r2 ą r1 at which ϕcpyq P Dr2 . At that
stage we end the current attack and commence an attack with
some x P X; we let v “ 1`maxtϕdpxq : x P Xu.

Throughout this attack phase, if Ds æu‰ Ds´1 æu and we do not start an attack
with some x P X at stage s, then we redefine γspnq “ u with use u; and we redefine
ψespxq “ u for x P X. If s ą r1 then we also define ψed,spy

1q “ u for all y1 P Y .

Attacking with a follower x P X.



128 CHAPTER VI. M-TOPPED DEGREES

1. Let t0 be the stage at which the attack begins. We define
γt0pnq “ v.

2. We wait for a stage t1 ą t0 at which get1pnq “ Γt1pDt1 , nq.
While waiting, we leave ψespx

1q for x1 P X undefined. Note that ψed,spyq for

y P Y will be undefined throughout the attack with x.

If ϕdpxq P Dt1 then we interrupt the attack cycle, discard
all associated followers and anchor, and cease all action for the
agent.

Otherwise, we enumerate x into V et1 . We define ψet1px
1q “ v

for all x1 P X.

3. We wait for a stage t2 ą t1 at which ϕdpxq P Dt2 .
If X Ď V et2 then we discard X and start a new attack with

some y P Y zV ed,t2 . Otherwise we commence a new attack with

some x1 P XzV et2 .

The functionals ΓpD,nq and ΨepD,x1q are maintained as above.

Also as in the ω case, we ensure totality of functionals by defining them with
use 0 on all inputs which are not used as anchors or followers.

2.3. Verification. We need to show that the construction can be preformed
as described. Fix an agent pd, cq for the eth construction.

First we observe that if an attack cycle begins at some stage w then all func-
tionals are divergent at that stage. Namely:

‚ If an attack with y P Y begins at stage w “ r0 then Γw´1pDw, nqÒ, and
Ψe
d,w´1pDw, y

1qÒ for all y1 P Y ; and

‚ If an attack with x P X begins at stage w “ t0 then also Ψe
w´1pDw, x

1qÒ

for all x1 P X.

But as above these are ensured by the D-change encountered at the last stage of
the previous cycle. If the set-up phase ended at stage w, then we just saw a change
on D æn, and all uses are n; at the end of an attack with y P Y , we just saw a
change on Dæu, and all uses are u; at the end of an attack with x P X, we just saw
a change on D æv, and the uses γpnq and ψepx1q are v, while ψedpyq are undefined
throughout the attack with x.

We also obtain an analogue of Lemma 1.2: if Y is already defined at stage w
then Y Ę V ed,w. Suppose that the set Y is chosen at some stage s1, with

oes1pnq “ ω ¨m˚ ` p, so |Y | “ m˚ ` 2. We argue that an attack with some follower
in Y is started at most m˚ ` 1 many times. For t ă ω let oet pnq “ ω ¨mt ` pt. We
claim that if two attacks with followers in Y start at stages s ă t then mt ă ms.
This in turn is done by examining attacks started with elements of X. We have
|Xs| “ ps ` 2. The argument in the ω-case shows that if w ă r are stages in ps, tq
at which we start an attack with an element of Xs then oerpnq ă oewpnq. The fact
that ps ` 2 many such attacks occur implies that mt ă ms as required.

Next we observe that ΓpDq is total. The argument is similar to the one in the
ω-case. Suppose that n is an anchor for some agent, and is never discarded. A
computation ΓspDs, nq is defined at every stage s ą n. The use is bounded. There
are three possibilities. An attack may never begin; in this case γspnq “ n for all s.
Alternatively, an attack with some y P Y is never ended; we then eventually have
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γspnq “ u. Finally it is possible that an attack with some x P X for some version
of X is never ended; we then eventually have γspnq “ v (and v is never redefined).

We fix some e such that ΓpDq “ ge and xges , o
e
sy is eventually ω2-computable.

We will show that the eth construction succeeds. We drop all superscripts e from
now on.

The argument proving Lemma 1.3 shows that ΨpDq “ V . If V ęm D then
we are done. Assume this fails; fix some total computable function ϕd such that
ϕ´1
d rDs “ V .

We argue that ΨdpDq “ Vd. Observing that we only enumerate y P Y into Vd
at stages at which ΨdpD, yq diverges, again it suffices to show that ΨdpDq is total.
We focus on some y which is a follower in some set of followers Y for some agent
pd, cq. If no attack by the agent is every started (it is always in the set-up phase)
then ψdpyqÓ at every stage after y is appointed, with a bounded use nk. Otherwise,
the key is that since ϕ´1

d rDs “ V , every attack by this agent with a follower x P X
must end. So there is an attack with some y1 P Y by the agent which never ends.
However the assumption that ϕ´1

d rDs “ V implies that the attack is not stuck
waiting for a stage r1; ϕd is total. So we are eventually stuck waiting for a stage r2;
while waiting, we keep defining ψdpyq “ u.

Finally, the argument of Lemma 1.4 shows that Vd ęm D. Fix some total ϕc.
The simple permitting argument shows that the agent pd, cq will enter the attack
phase; we just observed that an attack with some y P Y must succeed.

3. Totally ă ωω-c.a. degrees are not m-topped

The general case follows the structure of the ω2 case. Each construction guesses
the m such that ΓpDq is ωm-c.a., and an appropriate approximation. It builds sets
in m layers of nonuniformity.

3.1. Construction. We are given a c.e. set D whose Turing degree is totally
ă ωω-c.a. We use uniform lists xge,my of all ωm-c.a. functions, with tidy pωm ` 1q-
computable approximations xge,ms , oe,ms y, for all m ă ω. We enumerate a Turing
functional Γ with intended oracle D.

For every pair pe,mq we perform an pe,mq-construction. These constructions
are independent of each other. For every m-tuple d̄ “ pd0, . . . , dm´1q, the pe,mq-
construction will employ an agent d̄. The construction enumerates c.e. sets V e,mc̄ for
all tuples c̄ of numbers of length strictly smaller than m. For each such sequence c̄,
the construction also enumerates a functional Ψe,m

c̄ , as usual with the aim of having
Ψe,m
c̄ pDq “ V e,mc̄ , so as usual, to define a computation for one of these functionals,

we only need to specify its use.

The action of agent d̄ for the construction pe,mq. The agent aims to estab-
lish m sets of followers Xm´1, Xm´2, . . . , X0. The followers in Xk are targeted for
V e,m
d̄æk

. After receiving simple permission, the set Xm´1 is fixed but the sets Xm´2,

Xm´3, . . . are not fixed. When all followers in Xk´1, Xk´2, . . . , X0 are used, we
discard these sets and attack with a new follower from Xk.

Before we receive our simple permission though we need to appoint a sequence
of candidates for Xm´1. These will be denoted by Y1, Y2, . . . .

The agent starts with setting up the first set Y1.

Setting up Yi.
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1. Let s0 be the stage at which this set-up cycle begins. We
choose a large anchor ni. Define γs0pniq “ ni.

2. We wait for a stage s1 at which oe,ms1 pniq ă ωm. Suppose that

oe,ms1 pniq “ ωm´1 ¨ p ` β (for some β ă ωm´1). At stage s1 we
choose a set Yi of pp ` 2q-many large followers. For each y P Yi
we define ψe,m

d̄æm´1,s1
pyq “ ni.

3. We wait for a stage s2 ą s1 at which ϕdm´1,s2pyqÓ for all
y P Yi.

4. We then wait for a stage s3 ą s2 at which Ds3 æni‰ Ds3´1 æni .
While waiting we (recursively) set up the set Yi`1.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors ni1 and sets of followers Yi1 for i1 ‰ i. We
let Xm´1 “ Yi and n “ ni. We start an attack with some
x P Xm´1.

Throughout the set-up phase, if some anchor ni is already chosen and
Ds æni‰ Ds´1 æni then unless we start an attack at stage s we define γspniq “ ni
and if also Yi is defined, ψe,m

d̄æm´1,s
pyq “ ni for y P Yi.

Throughout the attack phase we let

oe,ms pnq “ ωm´1pm´1,s ` ω
m´2pm´2,s ` ¨ ¨ ¨ ` ω ¨ p1,s ` p0,s.

When we start an attack with some element of Xk (for k ă m) the sets
Xm´1, . . . , Xk are defined but Xk´1, . . . , X0 are not. If Xk is defined then so
is uk “ 1 ` max

 

ϕe,mdk pxq : x P Xk

(

. During an attack with some x P Xk, the

computations Ψe,m

d̄æk1
pyq for all k1 ą k and y P Xk1 are undefined.

Attacking with a follower x P Xk for k ą 0.

1. Let r0 be the stage at which the attack begins. We define
γr0pnq “ uk. We appoint a set Xk´1 of ppk´1,r0 ` 2q-many large
followers. For each z P Xk´1 we define ψe,m

d̄æk´1,r0
pzq “ uk. For

now we leave ψe,m
d̄æk,s

px1q for all x1 P Xk undefined.

2. We wait for a stage r1 ą r0 at which ϕdk´1,r1pzq Ó for all
z P Xk´1. If ϕdkpxq P Dr1 then we interrupt the attack cycle,
discard all associated followers and anchor, and cease all action
for the agent.

Otherwise we enumerate x into V e,m
d̄æk,r1

. For all x1 P Xk we

define ψe,m
d̄æk,r1

px1q “ uk.

3. We wait for a stage r2 ą r1 at which ϕdkpxq P Dr2 . At that
stage we end the current attack and commence an attack with
some y P Xk´1.

As usual we respond to spontaneous Dæuk -changes by rectifying existing com-
putations with the same use uk.

Attacking with a follower x P X0.
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1. Let t0 be the stage at which the attack begins. We define
γt0pnq “ u0.

2. We wait for a stage t1 ą t0 at which ge,mt1 pnq “ Γt1pDt1 , nq.
While waiting, we leave ψe,m

xy,s
pyq for y P X0 undefined. If ϕd0pxq P Dt1

then we interrupt the attack cycle, discard all associated follow-
ers and anchor, and cease all action for the agent.

Otherwise we enumerate x into V e,m
xy,t1

. For all x1 P X0 we

define ψe,m
xy,t1

px1q “ u0.

3. We wait for a stage t2 ą t1 at which ϕd0pxq P Dt2 . At that
stage we end the current attack. Let k ě 0 be the least such
that Xk Ę V e,m

d̄æk,t2
. Discard Xk1 (and so uk1) for all k1 ă k. Start

a new attack with some y P XkzV
e,m

d̄æk,t2
.

As above, we maintain functionals, and define them on numbers that are not
used by any construction.

3.2. Verification. These are similar to the previous verifications. First we
need to ensure that the construction can be carried out as described. As above we
observe that at the end of any cycle (set up or attack), all related computations are
undefined. We also prove that if Xm´1 is defined at a stage s (for some agent d̄ for
a construction pe,mq) then Xm´1 Ę V e,m

d̄æm´1
. To see this, by induction on k ă m

we observe that if s ă t are stages at which at attack with some x P Xk is started,
then oe,ms pnq ´ oe,mt pnq ě ωk.

The proof that ΓpDq is total is as above. Fixing pe,mq which is a correct
guess (ΓpDq “ ge,m and xge,ms , oe,ms y is eventually ωm-computable), and dropping
the superscripts pe,mq, we argue that the pe,mq construction is successful. As
above we argue that ΨpDq “ V . If V is not as required, we fix some d0 such that
ϕ´1
d0
rDs “ V . Then for any agent c̄ such that c0 “ d0, no attack with some x P X0

can succeed. This shows that Ψd0pDq “ Vd0 . If Vd0 is not as required then we fix
some d1 such that ϕ´1

d1
rDs “ Vd0 . Then for any agent c̄ with pc0, c1q “ pd0, d1q, no

attack with some x P X1 can succeed. This shows that Ψd0,d1pDq “ Vd0,d1 . And so
on. . . this process must end at some k ă m, giving some Vd0,d1,...,dk which shows
that degTpDq is not m-topped.





CHAPTER VII

Embeddings of the 1-3-1 lattice

One of the central and longstanding areas of classical computability theory con-
cerns the structure of the degrees of unsolvability, and particularly the computably
enumerable degrees. In the same way that studying symmetries in nature and so-
lutions to equations leads to group theory, studies of the computational content of
mathematics lead naturally to the structure of sets of integers under reducibilities.
Understanding these structures should lead to insights into relative computability.

Notable in these studies is the question of embeddability into the c.e. degrees.
We know that the c.e. degrees form an upper semilattice. Sacks [82] showed that
this structure is a dense partial ordering. Lachlan [59] and Yates [105] proved that
it is not a lattice, but some lattices could be embedded preserving meet and join. For
example, Lachlan and Yates showed that the diamond could be embedded. Their
constructions of minimal pairs mean that there are nontrivial c.e. problems whose
only common information is precisely the computable sets. The Lachlan-Lerman-
Thomason Theorem (see [91, IX.2]) established that any countable distributive
lattice could be embedded as a lattice into the computably enumerable degrees.
It is natural to wonder precisely which lattices can be embedded. We note that
this question is related to the longstanding question of a decision procedure for
the two quantifier theory of the c.e. degrees. Unfortunately, we do not know a full
characterisation of the finite lattices embeddable into the c.e. degrees. The most
up to date state of our knowledge can be found in Lerman-Lempp-Solomon [64].

We do know that there are nondistributive lattices that can be embedded. As
we mentioned in Chapter I, both the nonmodular 5-element lattice and the 1-3-1
modular nondistributive lattice can be embedded in the c.e. degrees (Lachlan [61],
fig.I.1). The embedding of the 1-3-1 lattice was an amazing result, and introduced
the “continuous tracing” technique into computability theory. The first inkling of
quite how remarkable this technique is, was the proof of Lachlan and Soare [62],
who showed that it is not possible to embed 1-3-1 while making the top element
branching, i.e. the bottom of a diamond in the c.e. degrees (see fig. I.2.) This was
the first non-embedding result in the c.e. degrees.

There is a hidden message in the Lachlan-Soare technique. The non-embedding
of S8 was proved by a Lachlan game, in which one more or less assumes that the
given embedding of the 1-3-1 lattice follows Lachlan’s construction. Then the min-
imal pair machinery for the top diamond is shown to interact fatally with this
methodology. This gives us the intuition that Lachlan’s technique is not only suf-
ficient but necessary for embedding the 1-3-1 lattice. This is in some sense the
essence of the main result of this monograph, Theorem I.3.5, which we prove in
this chapter: the 1-3-1 lattice is embeddable in the c.e. degrees below a c.e. de-
gree d if and only if d is not totally ă ωω-c.a. This result shows that the class of
totally ă ωω-c.a. degrees is definable in the c.e. degrees.

133
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Recall that Downey and Shore [35] showed that the 1-3-1 lattice can be embed-
ded in the c.e. degrees below any nonlow2 degree. Our embedding of the 1-3-1 below
any degree which is not totally ă ωω-c.a. is an elaboration on their construction.
In the introduction (in Section I.3) we discussed the dynamics of this construction,
and explained why it aligns with not-totally ă ωω-c.a. permitting. What we did
not do is justify why indeed these are the dynamics one gets when embedding the
1-3-1 lattice. This is done below (in Section 1.1) once we state the requirements
involved.

In the other direction, Downey [21] and Weinstein [103] showed that there are
c.e. degrees which do not bound a (weak) critical triple (see fig. I.3); Walk [101]
showed that such degrees can be made array noncomputable. Toward proving the
other direction of Theorem I.3.5, we cannot simply adapt their constructions to
an anti-permitting argument, as we know that there are totally ă ωω-c.a. degrees
which do bound critical triples, namely, all such degrees which are not totally ω-
c.a. Thus we will need to find an elaboration on their constructions which can be
adapted to such a proof.

1. Embedding the 1-3-1 lattice

We prove the first direction: if d is not totally ă ωω-c.a. then the 1-3-1 lattice
is embeddable below d.

1.1. Lachlan’s construction. To prove this we use the construction of
Downey and Shore’s [35] which shows that the 1-3-1 lattice can be embedded be-
low any non-low2 degree. This is an elaboration on Lachlan’s original embedding of
the 1-3-1 lattice into the c.e. degrees. We briefly recall a version of the construction
given by Stob (unpublished notes), using Lerman’s pinball machine technique [65].
This is one of the few infinite-injury constructions which does not benefit much from the use of a

tree of strategies.

In this construction we enumerate three c.e. sets A0, A1 and A2. To ensure
that their degrees form the middle section of an embedding of the 1-3-1 lattice
(with bottom 0) we need to ensure that they are noncomputable, any two form
a minimal pair (which also implies that they must be Turing incomparable), and
each is computable from the join of the other two. The requirements to meet are:

P ie: Ai ‰ Φe,

where xΦey is an enumeration of all partial computable functions; and for i ‰ j
from t0, 1, 2u,

N i,j
e : If ΘepAiq and ΨepAjq are total and equal, then they are computable;

here xΘe,Ψey is an enumeration of all pairs of Turing functionals.
The global requirement that Ai ďT Aj ‘Ak when ti, j, ku “ t0, 1, 2u is met by

the mechanism of appointing traces. A requirement P ie will appoint a follower x,
targeted for Ai, and wait for it to be realised, which means ΦepxqÓ“ 0; as usual,
when the follower is realised the requirement will want to enumerate it into Ai.
Before x is realised, it is assigned a trace y ą x, another number, which is targeted
for either Aj or Ak. This is essentially the current Aj‘Ak-use of computing Aipxq.
The main rule is that we cannot enumerate x into Ai before we enumerate y into
the set it is targeted for, Aj or Ak. Sometimes we will be able to enumerate y into
the required set, but not be yet able to enumerate x into Ai; in this case, we will
appoint a new trace y1, again targeted for Aj or Ak, but not necessarily to the same
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set for which y was targeted. Indeed it is switching between Aj and Ak which is
the key idea which makes the construction work.

Say that currently (at some stage s) x has a trace y, targeted for Aj . Another
global requirement is Aj ďT Ai ‘ Ak. And so we need to repeat: the number y
receives a trace z ą y of its own, targeted for either Ai or Ak. Overall, the follower x
is accompanied by an entourage of traces y, z, . . . , each element of the sequence
being a trace for the number appearing before. At any stage, only numbers in a
final segment of the entourage may be enumerated into the sets for which they are
targeted. No two successive elements of the entourage are targeted for the same
set. At stage s, the last element w of the entourage is a number of size at least s,
and so does not yet require a trace. At the end of the stage, if w ă s` 1 then we
will assign it a new, large trace. The construction will specify the set for which the
new trace will be targeted. For simplicity of expression, we abuse the term a little
by letting the word entourage refer to the entire sequence x, y, z, . . . , including the
follower.

All numbers we use in the construction as potential elements of the three
sets A0, A1 and A2 are represented as balls which will move in a pinball ma-
chine (see Figure 1). The main components of the machine are gates and holes.
Some balls drop through holes to the main track of the machine. The balls move
downwards. Along their journey they encounter gates. A gate may allow a ball
to pass, or stops its movement. In the latter case, the ball is placed in a corral
associated with the gate. Balls in the corral may later be released and allowed to
resume their journey. When a ball arrives at the bottom of the machine we imagine
that it lands in one of the pockets associated with one of the sets Ai, namely the
set the ball is targeted for. When a ball marked with the number x lands in the
pocket associated with Ai, the number x is enumerated into the set Ai.

Holes H0, H1, H2, . . . are associated with positive requirements P ie (much like
strategies on a tree are assigned to requirements). As described above, the require-
ment appoints a follower x “ t0. While waiting for the follower to be realised, an
entourage of traces t1, t2, t3, . . . is appended to x. Once the follower is realised,
the entourage t0, t1, . . . drops through the associated hole Hn and starts moving
down through the machine. The entourage may be stopped by one of the gates Gm
for m ď n, in which case it enters the corral Cm. The last ball y “ t` in the
entourage rolls out of the corral and waits at the gate Gm. While waiting, the
entourage is extended with more traces, all of which wait at the gate with y. At
some point the gate opens and y and its sequence of traces (the final segment of the
current entourage waiting at the gate) continue their journey down the machine.
This sequence of balls may be stopped at a lower gate Gm1 (so m1 ă m). All of
the balls enter the corral Cm1 and the last element z “ t`1 rolls out to the gate.
Again while waiting, new traces are added to the entourage beyond z. When the
gate opens, z and its traces continue their fall. Eventually some of these balls, in a
final segment of the entourage, pass all of the gates and land in their pockets (with
numbers enumerated into the sets they are targeted for). These balls are removed
from the entourage. Say the final segment starting with tk has just landed in the
pockets, and k ą 0. The ball tk´1 is now the last element of the entourage. It
has been waiting in some corral Cn. It now rolls out to the gate Gn and waits
for the gate to open. While it is waiting, new traces tk, tk`1, . . . are added to the
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Pockets

A0 A1 A2

Gate G0Corral C0

Hole
H0

Gate G1Corral C1

Hole
H1

Figure 1. A pinball machine

entourage; they wait at the gate Gn together with tk´1. The process continues...
in general the structure is as described in the following lemma.

Lemma 1.1. Let x be a follower for some requirement P ie associated with the
hole Hm. Suppose that x has already been dropped through its hole but has not
yet been enumerated into Ai, so all balls in x’s entourage are currently lying at
various corrals and gates below the hole. The entourage is partitioned into segments
Im ă Im´1 ă ¨ ¨ ¨ ă I0 ă I˚, where each Ik lies in the corral Ck and I˚ waiting at
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some gate Gn. Some of the segments Ik may be empty; indeed all segments Ik for
k ă n are empty. I˚ however is nonempty.

We need to address two issues:

(1) we need to describe when gates open and when balls are stopped at some
gate; and

(2) we need to explain why the follower will eventually be enumerated into
its set.

We first explain (1). The gates G0, G1, G2, . . . are associated with negative
requirements. Let Gn be a gate and suppose that it is associated with the require-
ment N i,j

e . The requirement is met by following Lachlan’s minimal pair strategy of
freezing a computation on one side or the other until it recovers on the other side.
Suppose that s is a stage and that t ă s was the previous stage at which the gate Gn
was open. Then Gn opens at stage s if the length of agreement between ΘepAiq
and ΨepAjq exceeds t. That is, if for all x ď t, ΘepAi, xqÓ“ ΨepAj , xqÓ rss. When
open, the gate Gn cannot allow both balls targeted for Ai and balls targeted for Aj
to drop below it. For this reason we need to ensure that if a final segment I˚ of
an entourage is waiting at the gate Gn at the beginning of stage s then either no
ball in I˚ is targeted for Ai or no ball in I˚ is targeted for Aj . This is achieved
by appointing new traces correctly: say that the first ball z in I˚ rolled out to the
gate Gn from the corral Cn at stage r ă s. Suppose that z is targeted for Ai.
Then the next trace w that we appoint for z will be targeted not for Aj but for Ak.
And the next trace that we appoint for w will be targeted for Ai; and so on, so no
ball waiting at the gate at stage s is targeted for Aj . The segment I˚ is sometimes
called an pi, kq-stream. If z is targeted for Aj then we build I˚ to be a pj, kq-stream.
Of course if z is targeted for Ak then we can build I˚ to be either a pk, iq-stream
or a pk, jq-stream.

The whole process can be thought of as re-targeting of traces. Say that the
segment In waiting in Cn is an pi, jq-stream. Each ball in that segment waits until
its trace, its successor in In, is enumerated into its set; we then appoint a new trace,
targeted for Ak.

This brings us to question (2) above. We need to show that progress is made
at every step. Let x be a follower. On the face of it, it would appear that because
we keep extending the entourage, it is possible that balls in x’s entourage move
down at infinitely many stages (but x itself is never enumerated). This is not so.
Consider as a first example the case of one gate: suppose that x “ t0 and its
entourage I “ pt0, t1, . . . , t`q at stage r arrive at the corral C0 at that stage. The
last ball t` in I rolls out to the gate G0. We keep appointing traces and extend
the entourage beyond t`, but when the gate opens, t` and all of these new balls fall
to the pockets and are removed from the entourage. Next, the ball t`´1 rolls out
to the gate and the process resumes. We see that after t` ` 1 many iterations, the
follower x “ t0 will be enumerated into the set it is targeted for, and the process
will end.

Now consider two gates G0 and G1. At some stage r0, x and its entourage
I “ pt0, . . . , t`q arrives to the corral C1. The ball t` rolls out to the gate. While
waiting the entourage is extended to I˚ “ pt`, t``1, . . . , t``pq. At some stage the
gate G1 opens, this segment is allowed to proceed, but is placed in the corral C0. As
discussed above, after p´``1 many times at which G0 opens, t` will be enumerated
into its set and the ball t`´1 will roll out to the gate G1. After ``1 many iterations
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of this longer process, the follower lands in C0, and we are back in the first case.
This kind of nested analysis can be extended to any finite number of gates.

This argument can be coded succinctly using ordinals below ωω. Say x is a
follower, and let Im ă Im´1 ă ¨ ¨ ¨ ă I0 ă I˚ be a partition of its entourage as
in Lemma 1.1. Consider the ordinal ωm|Im| ` ωm´1|Im´1| ` ¨ ¨ ¨ ` ω0|I0| ` ωn,
where I˚ lies at the gate Gn. The analysis above shows that each time a gate
opens and part of x’s entourage moves, this ordinal decreases. The well-foundedness
of ωω guarantees that parts of x’s entourage move only finitely many times. In the
next subsection we will see that this “ordinal analysis” corresponds to the kind of
permitting which is required to get the argument to work below a given c.e. degree.

We also remind the reader of Theorem I.5.2, part of which relies on the fact that for most

admissible ordinals α ą ω, the 1-3-1 lattice cannot be embedded (at least with an incomplete

top). The reason the argument fails is the instruction that the last ball of the entourage roll

out to the gate. Since entourages may keep growing, it is perfectly possible that some will have

order-type a limit ordinal. The only way to overcome this is if an α-c.e. degree can compute a

bijection between α and ω. In that case the construction is essentially rearranged to resemble the

standard ω-construction, with finite entourages at every stage.

The main ideas of this construction have been described, but we mention a
couple of aspects which we missed. In the analysis above we ignored the possibility
that the last segment of an entourage is waiting at a gate which will never open
again, because the hypothesis of the associated negative requirement fails. In this
case the follower will not be enumerated into its set. For this reason, a positive
requirement needs to appoint more followers and hope that one of them succeeds.
We need to ensure that not all the followers will get stuck in this way. A good way to
do this is to let each gate apprehend the entourage-segment of at most one follower.
This is made possible by a process of cancellation. Followers are assigned priorities
based on the time they were appointed. When a positive requirement receives
attention (for example when appointing a new follower or when one of its followers
receives attention), all followers for weaker requirements are cancelled. Thus the
priority ordering between followers respects the ordering between requirements.
When a follower receives attention (when its last entourage segment moves), all
weaker followers, even for the same requirement, are cancelled. As usual, since new
followers are appointed large, a follower x is stronger than a follower y if and only
if x ă y. Suppose that the last segment of x’s entourage is waiting at a currently
closed gate Gn, and that the segment of y’s entourage is currently moving down.
The gate can let y’s segment pass even though it is not currently open and even
though y’s segment may contain balls targeted for both sets Ai and Aj that the
gate cares about. The reason is the following. The fact that x’s segment is still
waiting at the gate when y’s segment is moving (and so when y receives attention)
shows that x is stronger than y; otherwise x would be cancelled at this stage. The
last stage r at which x received attention is no earlier than the last stage u at
which Gn was open. The computations currently protected by the gate have been
observed at stage u. At stage r, followers weaker than x are cancelled, and so y
was appointed later than stage u. It is therefore much too large to disturb any of
the computations that the gate is currently trying to protect, and it (or part of its
entourage) can pass without let or hindrance. Overall, this shows that if a positive
requirement is using the hole Hn, then at most n ` 1 many of its followers could
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be permanently stuck at some gate. One of its followers will therefore either never
get realised, or successfully enumerated into its set.

We remark that the necessity for appointing more than one follower could be
avoided if we put the construction on a tree of strategies. The tree now acts as
the track of the machine, with positive nodes acting as holes and others as gates.
A positive node on the true path guesses correctly which gates will open infinitely
often and so its follower cannot get permanently stuck. However, when we add
permitting in the next section we will need to let positive requirements appoint
many followers; even if they do not get stuck at gates, they can wait in vain for a
permission. For the permitting argument it seems that adding a tree of strategies
does not help simplify the construction.

1.2. Embedding the 1-3-1 lattice with non-total ă ωω-c.a. permitting.
Recall the argument above for why every follower x receives attention only finitely
many times. The ordinals used to show that the progress was well-founded corre-
spond to the amount of permissions required to get the follower to its pocket. First
note that for that argument, it is crucial that when part of x’s entourage lands in
the pockets, that the numbers are actually enumerated into their sets. We cannot
appoint a new trace for the last element of the entourage still waiting in a corral
without first enumerating its current trace. Further, before a gate opens again, we
need to ensure that the numbers that it allowed to pass at the last time it was open
are actually enumerated into the sets. Otherwise it may let balls potentially injur-
ing the other side pass, and then both sides may get injured before the next time
the gate opens. So the number of permissions we need to get until x is enumerated
is close to the number of times the follower actually receives attention. The fact
that x receiving attention corresponds to a decrease in the ordinal shows us that
a bound on the ordinal also bounds the number of permissions required. For the
hole Hm´1 the bound is ωm.

This can be explained in detail looking at the simple cases. In the one-gate-
case, once the follower is realised, we know the size of its entourage that enters the
corral C0, and so the number of times the gate G0 needs to open until the follower
arrives in its pocket. If the gate opens at some stage and releases one of the balls in
the entourage, then we need a permission before the next such stage. So the number
of permissions required is the same as the size of the entourage. This corresponds
to non-total ω-c.a. permitting. (It is not array noncomputable permitting because
we need to wait until the follower is realised before we know the eventual size of
the entourage that enters C0; we cannot tell it in advance.) When two gates are
involved, when the follower is realised we know how many times we need G1 to
open. Each time it does open (and not before) we find out how many G0-openings,
and so how may permissions, we need until the next G1-opening. Even though we
don’t need a permission between G1 opening and the first time after that when G0

opens, the size of the entourage in C1 does tell us how many times we need to
update the bound on the number of permissions required. This is precisely non-
total ω2-c.a. permitting. Weaker holes need to pass more and more gates, so overall
for permitting we need a function which is not ωn-c.a for any n ă ω.

This analysis shows that to pass m gates, a single ball requires ωm permissions.
However, the situation becomes more complicated when more than one ball is
involved. As usual, a positive requirement will issue many followers, because some
of them may get stuck at gates that don’t open, and some of them will get stuck
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waiting for permissions. When one ball receives attention, weaker balls for the
same requirement are cancelled. In many other α-c.a. permitting constructions, if a
follower x cancels a follower y then x takes over the “permitting number” of y. That
is, from that point on, every y-permission should be also counted as an x-permission.
We cannot do this in this construction. The reason is that in order to increase x’s
permission number we first need to actually receive x permission (with the old
number). Otherwise the whole process of requiring permissions does not help us
show that the permitting degree bounds all the sets being constructed. However in
the 1-3-1 construction below a nonlow2 degree we cannot require permission during
every movement of a follower; this is only possible with high permitting. (This has
to do with the question of what happens when a gate opens but the corresponding
follower is waiting for permission to move.) In a nonlow2 or weaker construction
we can only require permissions when attempting to enumerate numbers into sets.
So whenever x receives attention but does not try to enumerate numbers into sets,
weaker followers y will be cancelled, but their permitting numbers cannot be taken
over by x.

Our solution is to abandon the technique of taking over permitting numbers.
Essentially this means that if y is a follower with permitting number k, and y is
cancelled, then the next follower y1 appointed gets the permitting number k as well
(technically this is not quite so, but for nonessential reasons). However the first
ordinal we compute for y1 may be much larger than the ordinals we observed for y
while y was still alive. When arguing that the positive requirement is met we need
to threaten to give an ωn-computable approximation (for some n) for a function
which doesn’t have one. During this approximation we are not allowed to increase
the ordinals. However we notice that y was cancelled because a stronger follower x
received attention. This means that x’s ordinal count went down. Multiplying x’s
ordinal by the bound ωm (on the left) and adding to y’s ordinals we see that a single
drop in x’s ordinal allows us to increase the y-ordinal to the y1-ordinal. Overall,
to pass m gates, we need ω2m-permission. The details are given in the proof of
Lemma 1.5.

The permitted embedding cannot be done while preserving the least element.
Our embedding will have a bottom degree b ą 0. This is similar to the non-
low2 construction of Downey and Shore’s [35]. The reason is an aspect of the
construction that we glossed over in the previous section. Let Gn be a gate, work-
ing for requirement N i,j

e , and suppose that the requirement’s hypothesis holds:
ΘepAiq “ ΨepAjq. We need to show how to compute this common function. We
look at a stage s at which the gate opens; we need to argue that if no balls targeted
for Aj (say) drop from the gate at this stage, then the computation ΨepAjqrss up to
the length of agreement will survive until the next stage t at which the gate opens.
This is not actually always true, the reason being that small balls targeted for Aj
are currently waiting at a gate Gm below Gn and may be enumerated between
stages s and t. We only certify the computation at stage s if we know that no
small balls targeted for Aj that are at stage s waiting at gates below Gn will ever
be enumerated into Aj . Note that some such balls may be stuck forever at a gate
below Gn. So Gn cannot wait for a stage at which there are no small balls targeted
for Aj at any gate below. It only needs to ensure that such balls will not enter Aj .
How can Gn tell? Well, there are only finitely many gates below Gn, and each can
have at most one segment as a permanent resident. The information which of the
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gates below has permanent residents can be given to Gn non-uniformly, and we
can wait for stages at which below Gn, only gates with permanent members are
occupied. Again, a tree of strategies is equivalent to non-uniformly giving this advice to Gn;

but as we will now see, this advice will be insufficient in the permitted construction.

In the permitted construction, many more balls can get stuck below Gn: those
which passed all the gates, are lying in their pockets, but are still waiting for
permission to be enumerated (the pockets act as a “permission bin”). Over all the
construction, there will be infinitely many such balls. We need some uniform way
to tell Gn which of those are dangerous. For this reason we introduce the new c.e.
set B. To ensure that degTpA0 ‘ Bq, degTpA1 ‘ Bq and degTpA2 ‘ Bq form the
middle of an embedding of the 1-3-1 lattice with bottom degTpBq we need to meet
the modified requirements:

P ie: Ai ‰ ΦepBq; and
N i,j
e : If ΘepAi, Bq and ΨepAj , Bq are total and equal, then they are com-
putable from B.

The global requirements are now Ai ďT Aj ‘Ak ‘B.

When an entourage segment lands in the pockets, we attach a new trace to the
end of the entourage; this new trace is targeted for B. When permitted, the balls
in that segment, together with the new trace, are enumerated into their sets. A
gate Gn now can look at the pockets and consulting B can tell which entourage
segments will be enumerated in the future into their sets, and so find whether a
computation it is examining may be injured by balls waiting in the pockets.

Note that a number targeted for B does not need a trace of its own. We may
be tempted to close off entourages with a trace targeted for B before they land in
the pockets. We cannot appoint such a trace while the ball is waiting to be realised:
since we are now diagonalising against B, a positive requirement will protect the B-
computation which realises the follower; it can certainly not plan to enumerate a
number into B before it sees the use of such a computation. Suppose that the
follower dropped through the hole, is moving down the machine, and its entourage
has a final segment I˚ waiting at a gate. When the gate will open it will want to
protect a computation on one side. However now both sides use B, so again, the
gate cannot allow the appointing of a small number targeted for B before it sees
the use of these computations. Thus only an entourage segment which passed all
the gates and is waiting in the pockets can appoint a trace targeted for B.

The reader may want to compare this construction with the permitted con-
struction of a critical triple below a non-totally ω-c.a. degree in [25]. In that
construction the gates do not look at computations involving the “centre” B, and
so a B-trace can be appointed at the node working for the positive requirement,
once the B-computation realising the follower is discovered.

Toward the construction. Let d be a c.e. degree which is not totally ă ωω-c.a.
Let g P d be a function which is not ωn-c.a. for any n ă ω. As in the argument
in Chapter V, since d is c.e., we may replace g by its modulus, and obtain an
approximation xgsy which is non-decreasing and such that changes in gpnq force
changes in gpmq for all m ě n.

List both kinds of requirements in order-type ω; associate the hole Hn with
the nth positive requirement P ie and the gate Gn with the nth negative require-
ment N i,j

e .
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As discussed, each positive requirement appoints followers. Each follower x for
a positive requirement will be assigned a permitting number apxq. We say that
a follower x for the requirement P ie is realised at stage s if Φe,spBs, xqÓ“ 0. An
uncancelled follower may, at a given stage, either still reside above its hole; occupy
some gate or corral; lie in a pocket; or already be enumerated into the set Ai. We
say that a follower x is permitted at stage s if gs`1papxqq ‰ gspapxqq. We say that
the requirement is satisfied at stage s if there is a follower x for P ie which is still
realised and has already been enumerated into Ai.

Also as discussed, followers are linearly ordered by priority. When a follower x
receives attention, all weaker followers are cancelled. When a follower is cancelled,
all of its entourage is cancelled with it. We allow cancellation of followers which
are already enumerated into the sets for which they are targeted. The point is that

if x is enumerated into Ai but a stronger follower acts, then this action may cause an enumeration

into B which destroys the cancellation which made x realised. We then need to cancel x, and the

requirement to which x belonged will need to start again.

At each stage, a gate may be occupied by a final segment of some entourage.
We will ensure the following.

Lemma 1.2. Let Gn be a gate, associated with the requirement N i,j
e . At a stage s

the gate may be occupied by at most one final segment of an entourage. That
entourage segment does not contain both a ball targeted for Ai and a ball targeted
for Aj.

The associated corral may contain segments of more than one entourage. How-
ever, if the gate is occupied by the final segment of the entourage of some follower x,
then x is weaker than any other follower which has a segment of its entourage in
the corral.

We also ensure the following:

Lemma 1.3. Let x be a follower for a requirement associated with the hole Hm.
Suppose that at stage s, x is on the machine. Then x’s entourage at stage s is
increasing and is partitioned into intervals Im ă Im´1 ă ¨ ¨ ¨ ă I0 ă I˚ such that:

‚ For each k ď m, Ik is in the corral Ck; and
‚ I˚ is nonempty, and either occupies a gate Gk for some k ď m, or is lying

in the pockets. If I˚ is at gate Gk then In “ H for all n ă k.

Every ball in the entourage, except possibly for the last one, is targeted for one of
the sets A0, A1 or A2, with no two successive ball in the entourage targeted for the
same set. The last ball of the entourage is targeted for B if and only if I˚ lies in
the pockets.

Construction. At stage s a gate Gn, associated with the requirement N i,j
e ,

opens if for all y ď t, ΘepB,Ai, yq “ ΨepB,Aj , yq rss, where t is the previous stage
at which the gate opened, t “ 0 if there was no such stage.

At stage s, a follower x requires attention if one of the following holds:

(1) x is still waiting above its hole, and is now realised;
(2) x is on the machine, and the final segment I˚ of its entourage (as in

Lemma 1.3) is waiting at a gate Gn, which is now open; or
(3) x is on the machine, the final segment I˚ of its entourage is waiting in the

pockets, and x is permitted at stage s.
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A positive requirement P ie requires attention if either one of its followers requires
attention, or if it is not currently satisfied, and no follower for this requirement is
currently waiting above the hole.

Let P ie be the strongest requirement which requires attention at stage s. We
cancel the followers for all weaker requirements. If no follower for P ie requires
attention at this stage, then we appoint a new, large follower x for P ie , and place it
over the hole. Define apxq to be large.

Otherwise, let x be the strongest follower for P ie which requires attention at
stage s. We cancel all weaker followers for P ie .

Let I˚ be the final segment of x’s entourage given by Lemma 1.3; if x currently
lies above its hole let I˚ be all of x’s current entourage. In cases (1) and (2), the
segment I˚ drops to the highest gate below its current location which is now unoc-
cupied (this is measured after the cancellation of weaker followers). The segment I˚

is put in the corresponding corral, and the last ball in I˚ rolls out to wait at the
gate.

However, if there are no unoccupied gates below I˚’s current location, then
the balls in the segment I˚ are put into the pockets. A new, large trace, targeted
for B, is appended to this segment.

In case (3), all of the balls in I˚ are enumerated into the sets for which they are
targeted; they are removed from x’s entourage. If I˚ consisted of the entirety of x’s
entourage then x has just been enumerated and the requirement is now satisfied;
we can cancel all other followers for P ie . Otherwise, the last ball in the remaining
entourage is waiting in some corral. That last ball now rolls out of the corral and
waits at the gate.

At the end of the stage, for any follower z which is still uncancelled, if the last
ball w in z’s entourage is smaller than s ` 1, and is not targeted for B, then we
appoint a new, large trace and append it to the end of z’s entourage. The location
on the machine of the new trace is the same as the location of the previously last
ball w. Say w is targeted for a set Ai. The new trace is targeted for one of the two
sets Aj or Ak (where ti, j, ku “ t0, 1, 2u) so that Lemma 1.2 still holds.

Verification. Before we embark on the verification, we need to ensure that
the construction can actually be carried out as described. We need to show that
Lemmas 1.2 and 1.3 hold at every stage. These two lemmas are proved together
by induction on the stage. Most parts are immediate. We verify two parts of
Lemma 1.2:

(1) If x and y are distinct followers, and at stage s, part of x’s entourage lies
in the corral Cn and part of y’s entourage waits at the gate Gn, then y is
weaker than x; and

(2) If a ball z rolls out to a gate Gn at stage s, then at that time, the gate is
unoccupied.

For (1), consider the stage r ă s at which the segment of y’s entourage which
occupies the gate Gn at the beginning of stage s arrived at the gate. Between
stages r and s the gate is occupied so no new entourage segments are added to
the gate or corral. Hence x’s entourage segment already lay in the corral at the
beginning of stage r. Since x was not cancelled at stage r, it must be stronger
than y.
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For (2), let x be the follower of whose entourage z is a member. The follower x
receives attention at stage s. If at that stage the final segment of x’s entourage
arrives at the corral Cn, then by the instructions, Gn is empty when that segment
moves. Otherwise, balls in a final segment of x’s entourage are enumerated into
their sets at stage s. The new final segment (of which z is the last element) has
been waiting in the corral Cn at the beginning of the stage. Suppose that Gn was
occupied at the beginning of the stage. Then we know it was occupied by the final
segment of the entourage of some other follower y. By (1), x is stronger than y. And
so all the balls in y’s entourage are cancelled at stage s (as x receives attention),
and the gate becomes unoccupied.

Let x be a follower which at stage s has already been issued from the
hole Hm but is not yet cancelled or enumerated into the set it is targeted for.
Let Im,spxq ă Im´1,spxq ă ¨ ¨ ¨ ă I0,spxq ă I˚s pxq be the decomposition of x’s
entourage at that stage given by Lemma 1.3. We define an ordinal βspxq. Let

β̄spxq “ ωm ¨ 2|Im,spxq| ` ¨ ¨ ¨ ` ω
1 ¨ 2|I1,spxq| ` ω

0 ¨ 2|I0,spxq|.

If I˚s pxq resides at gate Gk at stage s then we let βspxq “ β̄spxq ` ωk. If I˚s pxq
resides in the pockets then we let βspxq “ β̄spxq.

Considering various cases, we observe:

Lemma 1.4. Suppose that x is on the machine at stage s and is not cancelled at
stage s, nor is it enumerated into its set a stage s. Then βs`1pxq ď βspxq; if x
receives attention at stage s then βs`1pxq ă βspxq.

It follows that every follower receives attention only finitely many times.

Lemma 1.5. Every positive requirement P ie receives attention finitely many times,
and is met.

Proof. Suppose that the requirement P ie is associated with the hole Hm´1.

To begin, we note that if x is a follower for P ie which is realised at some
stage r and is still not cancelled at a stage s ą r then ΦepB, xqÓ“ 0rss by the
same computation which was present at stage r. This is standard: suppose that a
number b ă ϕe,spBs, xq enters B at stage s. The number b is the last element of an
entourage of some follower y. If y is stronger than x then x is cancelled at stage s.
Otherwise, the trace b is chosen after stage r, and so is greater than ϕe,rpBr, xq,
which by induction equals ϕe,spBs, xq.

By induction, all positive requirements stronger than P ie eventually cease all
action; in particular, they stop cancelling followers for P ie . Let r˚ be the last stage
at which a requirement stronger than P ie receives attention.

If some follower for P ie enters Ai after stage r˚ then the lemma holds. This is
also the case if some follower x for P ie is never cancelled but never realised. We will
show that one of these two cases must hold. Suppose otherwise, for a contradiction.
We will give an ω2m-computable approximation for g.

Suppose that x is a follower for P ie which is never cancelled. By assumption, it is
realised at some stage. By Lemma 1.4 the follower receives attention finitely many
times. We assumed that x is not enumerated into Ai. This means that the final
configuration for x (given by Lemma 1.3) contains an ever-increasing final segment
I˚pxq which is either a permanent resident of some gate Gn, or a permanent resident
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of the pockets. In the first case, we say that x’s entourage is stuck at the gate Gn;
in the second case, that it is stuck in the pockets.

There are only finitely many followers for P ie whose entourage gets stuck at
some gate. Indeed there are at most m many. This is because each gets stuck at
some gate Gn for some n ă m, and each gate contains at most one segment as a
permanent resident.

We let r˚˚ ą r˚ be the last stage at which a follower, whose entourage is
eventually stuck at some gate, receives attention; r˚˚ “ r˚ if there is no such
stage. Every follower which receives attention after stage r˚˚ was also appointed
after stage r˚˚. Every such follower is either eventually cancelled, or eventually its
entourage is stuck in the pockets, awaiting permission which is never given.

Infinitely many followers are appointed for P ie , and of those, infinitely many
are never cancelled. The argument is again standard: for any stage t consider
the strongest follower x which requires attention after stage t. Then x is never
cancelled, and after the last stage at which x receives attention, a new follower is
appointed, and eventually receives attention as it is eventually realised.

Let p ą r˚˚. To approximate gppq we let, for s ą p, Xsppq be the set of
followers y ą r˚˚ for P ie which are uncancelled at stage s such that apyq ď p.
This set is naturally ordered (in an increasing fashion). If s ă t then Xtppq is an
initial segment of Xsppq; some followers in Xsppq may get cancelled; new permitting
numbers are always assigned to be large.

Let Sppq be the set of stages s ą r˚˚, p such that:

‚ at stage s there is some follower x ą r˚˚ for P ie such that apxq ą p; and
‚ if x “ xsppq is the least such follower, then the final segment I˚s pxq of x’s

entourage is waiting in the pockets at stage s.

The set Sppq is infinite, indeed it is cofinite. The sets Xsppq stabilise to
some Xppq; let s be the last stage at which any follower in Xppq receives attention.
The next follower x, appointed at stage s ` 1, is never cancelled and apxq ą p, so
x “ xtppq for all t ą s; x’s entourage is eventually stuck in the pockets.

Let s P Sppq; let y1,s, y2,s, . . . , y`psq,s be the increasing enumeration of Xsppq.
We let

ÿ

yPXsppq

βspyq “ βspy1,sq ` βspy2,sq ` ¨ ¨ ¨ ` βspy`psq,sq

and

γsppq “ ωm ¨

¨

˝

ÿ

yPXsppq

βspyq

˛

‚` βspxsppqq.

Since βspxq ă ωm for all x, we see that γsppq ă ω2m.
Let s P Sppq, and let t be the next stage in Sppq after stage s. We show that

γtppq ď γsppq, and that if gtppq ‰ gsppq then γtppq ă γsppq.

Suppose that xtppq ‰ xsppq. Then the follower xsppq must be cancelled
by stage t. This means that one of the followers in Xsppq received attention
between stages s and t; let z be the least such follower. Then z is the last
(greatest) element of Xtppq. By Lemma 1.4, βtpzq ă βspzq. This shows that
ř

yPXtppq
βtpyq ă

ř

yPXsppq
βspyq. Even though βtpxtppqq may be much larger than

βspxsppqq, it is smaller than ωm, and this shows that γtppq ă γsppq.
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So we assume that xtppq “ xsppq; let x “ xsppq. For all y P Xsppq “ Xtppq,
βtpyq ď βspyq, and βtpxq ď βspxq, so γtppq ď γsppq. Suppose that gtppq ‰ gsppq.
Since x is not cancelled between stages s and t and apxq ą p, it follows that x is
permitted at some stage between s and t. At the first such stage, x’s final entourage
segment is still waiting in the pockets, and so x receives attention between stages s
and t. Lemma 1.4 guarantees that βtpxq ă βspxq, and this implies that γtppq ă γsppq
as required. �

Lemma 1.6. All sets A0, A1, A2 and B are computable from d.

Proof. To determine if a number z is an element of one of these sets or not,
we first go to stage z. We then see if z has already been chosen as a follower or a
trace; and if so, to which set it is targeted. If not, then z does not enter any set,
since new followers and traces are chosen to be large.

Suppose that z is an element of an entourage of a follower x (possibly x “ z)
at some stage t ď z. The number apxq is already determined by stage z. With
oracle g we can find a stage after which the follower x is never permitted. The
function g can thus calculate a stage after which z cannot enter any set. �

The verification concludes with the following two lemmas, which are standard,
but are added for completeness.

Lemma 1.7. If ti, j, ku “ t0, 1, 2u then Ai ďT Aj ‘Ak ‘B.

Proof. We ensured that if y is targeted for Ai then at all stages s ą y at
which y is on the machine, y has a trace z targeted to one of the sets Aj , Ak or B,
and y does not enter Ai unless the trace z enters the set it is targeted for. Further,
y is either cancelled or eventually receives a trace which is never cancelled; this is
due to Lemma 1.4. �

Lemma 1.8. Every negative requirement N i,j
e is met.

Proof. Suppose that ΘepAi, Bq “ ΨepAj , Bq are total. Let Gn be the gate
associated with the requirement N i,j

e .
By Lemma 1.5, let r˚ be the last stage at which either:

‚ Any positive requirement which is a associated with a hole Hm for
some m ă n receives attention; or

‚ Any follower whose entourage is eventually stuck at some gate Gm for
some m ă n receives attention.

Let M be the set of m ď n such that the gate Gm does not have a permanent
resident. We assumed that the hypothesis of N i,j

e holds; this implies that Gn opens
infinitely often, and so n PM .

We let S˚ be the set of stages s ą r˚ at the beginning of which:

‚ For all m PM , the gate Gm is unoccupied;
‚ If I˚s pxq is the final segment of an entourage of a follower x which lies in

the pockets, then x will not receive attention at stage s or after stage s.

The set S˚ is computable from B; this is because entourage segments in the
pockets end with traces targeted for B. We note that if s P S˚ and x is a follower,
part of whose entourage resides anywhere below the gate Gn, then x does not receive
attention after stage s; the last segment of x’s entourage is either permanently at
a gate or in the pockets.
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The set S˚ is infinite. Let t be a large stage. As usual, let x be the strongest
follower which ever receives attention after stage t; say x last receives attention at
stage s ´ 1 ą t. All balls on the machine at the beginning of stage s will never
move again; if a gate Gm is occupied at the beginning of stage s then the residents
of Gm at stage s are permanent. Hence s P S˚.

Let p ă ω. We let sppq be the least stage s P S˚ such that s ą p, Gn was
open at some stage in the interval pp, sq, and ΘepAi, B, pqÓ“ ΨepAj , B, pqÓ rss.
Such a stage exists because we assume that the hypothesis of N i,j

e holds.
Let a “ ΘepAi, B, pqrsppqs. We claim that a “ ΘepAi, B, pq. To show this
we prove by induction that for all s ą sppq, either ΘepAi, B, pq Ó rss “ a or
ΨepAj , B, pqÓ rss “ a.

Let s ą sppq and suppose that the claim is already established for all stages in
the interval rsppq, sq. Let x be the strongest follower which receives attention at any
stage in the interval rsppq, sq (if no follower receives attention then the computations
which were observed at stage sppq were not destroyed by stage s).

Since sppq P S˚, no part of x’s entourage lies below Gn at stage sppq. Suppose
that no part of x’s entourage crosses the gateGn at any stage in the interval rsppq, sq.
In this case let t ă s be the last stage before stage s at which x received attention.
By induction either ΘepAi, B, pqÓ rts “ a or ΨepAj , B, pqÓ rts “ a; without loss of
generality, assume the former. No numbers are enumerated into sets during stage t.
If a number from some follower y’s entourage is enumerated into any set between
stages t and s, then y is weaker than x, and so was appointed after stage t, and so
is greater than the use θe,tppq. Thus the computation ΘepAi, B, pqrts is preserved
until stage s.

Suppose then that parts of x’s entourage do cross the gate Gn at some stages
in the interval rsppq, sq. Let t be the last stage in that interval at which any part
of x’s entourage crosses the gate. We note that whenever x receives attention, all
other followers that were appointed after stage sppq are cancelled. In particular, Gn
becomes unoccupied. We conclude that no segments of x’s entourage ever pass by
the gate without stopping first. Hence, at stage t, the gate opens, and part of x’s
entourage that was waiting at the gate is allowed to proceed downwards.

This implies two things: the first, that ΘepAi, B, pqÓ rts “ ΨepAi, B, pqÓ rts; by
induction, the common value is a. The second is that the segment of x’s entourage
which is released from the gate at stage t does not contain both balls targeted for Ai
and balls targeted for Aj . Without loss of generality, suppose it does not contain
any balls targeted for Aj . We claim that the computation ΨepAj , B, pqrts is not
destroyed by stage s.

For suppose that some number u below the use ψe,yppq of that computation is
enumerated into Aj or B at some stage in the interval rt, sq. Let y be the follower to
whose entourage u belongs. By the choice of x, either y “ x or y is weaker than x.
If y is weaker than x then y is appointed after stage t, and so y, and all of the balls
in its entourage, are greater than the use ψe,tppq. But y “ x is impossible too: u
must be appointed before stage t, and so is already an element of x’s entourage at
stage t. But it does not cross the gate at stage t: no balls targeted for either Aj
or B proceed from the gate at stage t. All other balls in x’s entourage at stage t
remain above the gate until stage s. �

1.3. The 1-4-1 lattice. The embedding technique used above actually shows:
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Theorem 1.9. If d is a totally ă ωω-c.a. c.e. degree then for all n ě 3, the
1-n-1 lattice can be embedding into the c.e. degrees below d.

a0 a1 a2 a3 an´1

b

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Figure 2. The 1-n-1 lattice

Take for example the case n “ 4. We enumerate sets A0, A1, A2 and A3, and a
bottom set B. The requirements are as above, except for the pairwise joins: if i, j, k
are distinct indices from t0, 1, 2, 3u then Ai ďT Aj ‘ Ak ‘ B. The rule for traces
now is that if ti, j, k, lu “ t0, 1, 2, 3u then every number targeted for Ai needs to
have two traces, for two of the sets Aj , Ak and Al.

It would seem that an entourage in this construction will be a binary branching
tree, but we can actually make do with linear entourages as in the construction
above; the two balls following a ball in a (linear) sequence of balls are considered
its traces. That is, if the follower is t0 and the entourage is t0, t1, t2, . . . , t` then
for all i ď ` ´ 2, ti`1 and ti`2 are the traces for ti. For the tracing to work we
need to require that for any such i, no two of the three balls ti, ti`1 and ti`2 are
targeted for the same set. Given two previous balls ti´2 and ti´1, this still leaves
two options for choosing a target for the next ball ti, and this allows us to re-target
followers at gates. A sequence of balls waiting at a gate working for N i,j

e will be an
pi, k, lq-stream or a pj, k, lq-stream. The rest of the construction is identical.

In fact, we can string together these constructions to obtain an embedding of the
1-ω-1 lattice; the nth follower appointed (across all requirements) and its entourage
will only concern itself with the first n middle sets; reductions Ai ďT Aj ‘Ak ‘B
will be non-uniform.
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2. Non-embedding critical triples

As discussed in the introduction, a critical triple in an upper semi-lattice con-
sists of three incomparable elements a0,a1 and b such that ai ď b _ a1´i for
i “ 0, 1, and such that any e lying below both a0 and a1 lies below b as well. That
is, a0 ^ a1 ď b, except that we don’t actually require the meet a0 ^ a1 to exist.
The element b is called the centre of the triple.

In [25] the authors show that a c.e. degree bounds a critical triple (in the c.e.
Turing degrees) if and only if it is not totally ω-c.a. The proof shows that the
same holds for weak critical triples. The proof that no totally ω-c.a. c.e. degree
bounds a weak critical triple is an “anti-permitting” elaboration on an argument
from [13] that constructs a c.e. degree which bounds no weak critical triple. That
argument in turn is a simplification of an argument from [103], which constructs a
c.e. degree that bounds no weak critical triple. Toward the proof of the second half
of Theorem I.3.5, we now give an anti-permitting elaboration on Downey’s original
argument in [21]. It is somewhat more complicated than Weinstein’s weak critical
triple argument, and gives a weaker result. But it will be the argument that we
need to generalise in order to prove our theorem. To avoid an extra step of simple
permitting we work with array computable degrees rather than totally ω-c.a. That
is, in this section we prove:

‚ no array computable c.e. degree bounds a critical triple in the c.e. degrees.

2.1. Layering. The fundamental notion from [21] is that of protecting com-
putations by layers. In our setting, let D be a c.e. set whose Turing degree is array
computable; and let A0, A1, B ďT D be sets whose degrees potentially form a crit-
ical triple. To show that they in fact do not form a critical triple we will build a
c.e. set Q ďT A0, A1 such that Q ęT B; or we may fail to do so, but in that case
we will show that A0 is computable from B. We fix functionals Λ, Φ0 and Φ1 such
that ΛpDq “ pB,A0, A1q, and such that ΦipB,A1´iq “ Ai for i “ 0, 1.

The general idea of the construction is as follows. We define an auxiliary
function ∆pDq, and as in the anti-permitting arguments in the previous chapters,
non-uniformly we know an id-computable approximation for ∆pDq. We enumerate
the set Q, together with reductions Γi of Q to Ai. For each d ă ω, to ensure that
ΨdpBq ‰ Q we appoint a follower x, and after it is realised (ΨdpB, xqÓ“ 0) we hope
for double permission — changes in both A0 and A1 below the uses of reducing
Qpxq to these sets — so that we can enumerate x into Q. The natural two questions
are: (a) why would we get double permission? (b) if we do, how do we protect the
realisation of the follower — i.e., how do we ensure that indeed ΨdpB, xq “ 0?

The idea is to have a backup strategy. We build a functional Ξd; if the dth

requirement fails, that is, if ΨdpBq “ Q, then we will ensure that ΞdpBq “ A0.
Suppose that x is a follower. When we see that x is realised then we set up
a computation of A0 æx from B, with use at least ψdpB, xq. If later we attack
with x and then x becomes unrealised, then we will be able to cancel x, because
any incorrect computation of A0 æx from B can be discarded as well. This solves
the problem (b) above. However, this process introduces two analogous problems
(assuming that indeed ΨdpBq “ Q): (b’) how do we protect the correctness of a
computation ΞdpBq “ A0 æx (when x is not cancelled); and (a’) how to ensure that
infinitely many followers are not cancelled so that ΞdpBq is total?
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This is where anti-permitting comes in. We associate a follower x with an
anchor n, an input for ∆pDq. As long as we keep ∆pDq total, having guessed the
correct approximation, we know there will be no more than n many changes to
D æδpnq. If we can arrange δpnq to be large enough, beyond λpuq, then we can
ensure that there are at most n many changes to Ai æu or B æu (recall that Λ is the
functional computing A0, A1 and B from D).

A single layer above x is the length u ą x required to ensure that a change
in one of the sets A0 or A1 below x necessitates a change in at least one other set
among A0, A1 and B below u. Formally we define

xp1q “ maxtϕ0pB,A1, xq, ϕ1pB,A0, xqu;

see fig. 3. We then let
xpn`1q “ pxpnqqp1q

(see fig. 4).

A1

A0

B

x ϕ1pxq

ϕ0pxq

Figure 3. One layer.

A0

A1

B

x xp1q xp2q xp3q

Figure 4. Three layers.

When we set up x, we define the use of reducing Qpxq to the sets Ai to be xpnq;
and set δpnq “ λpxpnqq. When x is realised, we set the use ξdpxq of reducing A0 æx

to B to be maxtxpnq, ψdpxqu. We consider what the next change could be. Assuming
that x remains realised, we are concerned about Ai-changes. The key, again, is that
the number xpnq “ pxpn´1qqp1q is chosen so that a change in some Ai below xpn´1q

forces a change in either B or A1´i below xpnq. So now there can be two kinds of
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Ai-changes. If one Ai changes below xpn´1q, then (again assuming that x remains
realised, so B does not change), there must be a change in A1´i below xpnq. But
xpnq “ γipxq “ γ1´ipxq, the uses of reducing Qpxq to Ai and A1´i; so in this case
we get the double change we wished for, and we can attack with x: enumerate it
into Q, and hopefully win the dth requirement ΨdpBq ‰ Q. Otherwise, the Ai-
change that concerns us happens below xpnq but above xpn´1q. We say that the
nth layer is peeled. Since δpnq “ λpxpnqq, the Ai-change allows us to redefine ∆pnq
and extract one D æδpnq-change from our opponent. And the opponent’s capital is

bounded: at most n changes are possible. The nth layer is gone, but we now repeat
the argument with the pn ´ 1qst layer instead: a change below xpn´2q leads to an
attack; a change below xpn´1q but not below xpn´2q means that the next layer is
peeled, and another change in ∆pD,nq is paid by the opponent. Since we have set
up sufficiently many layers, if an attack never occurs, the opponent cannot peel all
of the layers, which in particular means that no changes to A0 æx are possible —
ensuring the correctness of the reduction ΞdpBq on x.

Finally, the anchor n is also used to solve problem (a’): if we can ensure that
each time that we cancel x, D changes below δpnq, then we can cancel x and
appoint a new follower x1, but keep the same anchor n. For each anchor n, at
most n followers can be cancelled, and so one will be permanent. There are some
delicate details involved, though, and we discuss them below.

2.2. Four procedures. Let us give more details and fix notation. For every
e ă ω we will perform an eth construction. All constructions together define a
functional ∆, and ensure that ∆pDq is total. Let xfe, oey be an effective enumeration
of all id-c.a. functions (with tidy pid`1q-computable approximations). The eth

construction guesses that ∆pDq “ fe. The eth construction enumerates a c.e. set
Qe. For each d, an agent d for the eth construction tries to ensure that ΨdpBq ‰ Qe.
The construction builds two functionals Γe0 and Γe1, with the aim of ensuring that
Γei pAiq “ Qe. The dth agent also enumerates a functional Ξed.

We adopt the conventions of Notation VI.1.1; for example, we write ξed,spxqÓ

to indicate that ΞedpB, xqÓ rss, and when we define the computation we just as-
sign a value to the use; we know that we always define ΞedpB, xq “ A0 æx rss,
Γei pAi, xq “ Qepxq rss, and ∆spDs, nq “ s.

We go one step further and omit mentioning the stage number during the
construction; so we just write ξedpxqÓ and understand that this is to be evaluated
at the present, i.e., at the stage currently under consideration. To further simplify
the notation we omit the superscript e.

As discussed above, we are given functionals Λ and Φi such that for i “ 0, 1,
ΦipB,A1´iq “ Ai, and ΛpDq “ pB,A0, A1q. At a given stage of the construction we
may refer to uses such as λpuq for some number u. When we do this we understand
that we are speeding up the enumerations of the sets and functionals which are given
to us so that we see a convergence of the relevant computation (in the example,
ΛpD,uq). Applying this to the uses ϕi, this allows us to refer to numbers such as
xpnq defined above.

At each stage, agent d will appoint a new anchor n (using the next unused
number). Each anchor will start a process which will be independent of all other
processes for all agents and all constructions. The process cycles between four
procedures (or phases):
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Set-up: Appointing a follower x; defining a parameter u “ xpnq, and defin-
ing δpnq “ λpuq; waiting for ∆pD,nq “ fepnq. Once this is observed,
defining γipxq “ u.

Realisation: Waiting for ΨdpB, xqÓ. When convergence is obtained, defin-
ing ξdpxq “ maxtu, ψdpxqu.

Maintenance: Waiting for double permission: both γipxqÒ. (While waiting,
demanding payment for layers being peeled.)

Attack: When double permission is received, enumerating x into Q. Then,
monitoring the correctness of the realising computation ΨdpB, xq.

To understand the construction we need to explain under what circumstances we
move from one procedure to another, and how we react to changes when we see
them. We discuss some of the principles involved.

Cancelling a follower. We cancel a follower x if both δpnqÒ and ξdpxqÒ, except
during the set-up procedure. We need δpnqÒ so that we will be free to redefine
δpnq “ λppx1qpnqq for a new follower x1 which will be appointed once x is cancelled.
We need ξdpxqÒ as while ΞdpxqÓ we need to maintain the correctness of this compu-
tation. We are not allowed to cancel the follower during the set-up phase, because
during set-up we are still waiting for our opponent to make a payment; each can-
cellation will be charged against a change in fepnq, and during set-up we have not
seen this change yet.

Why would we need to cancel x? While we are in set-up, both γipxq are
undefined, and so any change to any of the sets Ai or B below u will cause us
to simply recalculate a new value for u “ xpnq and restart the set-up procedure;
note that this change forces δpnqÒ. However once we exit set-up, a change in B
below u might cause many layers to disappear but it is still possible that one of
γipxq remains defined; so we cannot return to a fresh set-up for x. And certainly,
once we have attacked, if realisation is destroyed (ΨdpB, xqÒ) then we need to get
rid of x, as we cannot extract it from Q.

The value of u. As discussed above, during the set-up phase, any changes to
sets Ai or B may increase the value of xpnq; we need to keep track of these changes
and update the value of u. Once we leave set-up we cannot update the value of u
anymore; peeling the layers one by one would result in increases to xpnq, but at
least one of γipxq is still defined, so we cannot increase this use to be the new xpnq.
Once we leave set-up, the value of u is fixed (until the follower x is cancelled).

Actually, one could ask why we ever need to give up on any layer. When the
last layer is peeled — say A0 æu changes but not A1 æu — why shouldn’t we just
redefine γ0pxq to be the new xpnq and leave γ1pxq “ u? And later if A1 æu changes
we could update γ1pxq as well. However the change causes xpnq ą ξdpxq. A change
now in A1 below xpn´1q would cause a change in B (rather than A0) below the
new xpnq but not below ξdpxq; we cannot cancel x, so we are peeling another layer
even though we tried to resurrect the last layer. In other words, there is no way to
actually revive the last layer: one change means it is gone.

The value of δpnq. To keep ∆pDq total, as usual, we need to ensure that δpnqÓ
at every stage (even if the guess ∆pDq “ fe is wrong), and we need to ensure that
the value of this use is bounded. When exiting set-up we have δpnq “ λpuq; when we
see that x is realised we will likely have ψdpxq ą u so will not have δpnq ě λpξdpxqq.
This means that during maintenance it is quite possible that a B-change causes the
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realising computation ΨdpB, xq to disappear, but D does not change below δpnq.
In this case we need to go back to the realisation procedure and cannot cancel x.

However, once we attack, it is important that δpnq ě λpξdpxqq; the reason is
that if B æξdpxq changes we must be able to cancel x, as it is already enumerated
into Q. However the double change in Ai æu that enabled that very attack caused
δpnqÒ, and this allows us to redefine δpnq to be at least λpξdpxqq as required.

Further, during maintenance, if we see one layer peeled the we must update
δpnq to be λpξdpxqq. The reason is that while waiting for the opponent to pay for
this peeling we may see that ΨdpB, xqÒ. We would then like to cancel x: if we do
not do so, while waiting we may see more layers unravel, so we would like to attack,
but obviously cannot do so if x is no longer realised.

2.3. Construction. We detail how to react to changes during each procedure
for an anchor n for an agent d (for construction e). Recall that during the con-
struction, at each stage, every agent for every construction appoints a new anchor n
and starts cycling through the procedures for n. The following description of these
procedures therefore describes the entire construction.

Set-up.

1. Appoint a new follower x. Define δpnq “ λpxpnqq. Wait for
∆pD,nq “ fepnq.
‚ While waiting, if D changes below δpnq, we redefine δpnq

using the current value of xpnq.

2. Once we see that ∆pD,nq “ fepnq, we define u “ xpnq and
γipxq “ u, and move to realisation.

Realisation.

1. Wait for ΨdpB, xqÓ“ 0.
‚ If, while waiting, we see that D changes below δpnq, then

we cancel x and return to set-up.

2. Once we see that ΨdpB, xqÓ“ 0, we define ξdpxq “ maxtu, ψdpxqu,
and move to maintenance.

Maintenance.

We wait for a change in D below δpnq or in B below ξdpxq. When
we see such a change we react according to the first case which
applies:
(a) Cancellation: If both δpnqÒ and ξdpxqÒ then we cancel x

and return to set-up.
(b) Realisation: If ξdpxqÒ (but δpnqÓ), we return to the realisa-

tion phase.
(c) Attack: If both γipxqÒ (but ξdpxqÓ) then we move to the

attack phase.
(d) Layer peeled: If only one γipxqÒ then we redefine δpnq “ λpξdpxqq

and wait for ∆pD,nq “ fepnq.
‚ While waiting, if one of the cases (a), (c) or (e) ap-

plies, we react accordingly. (b) cannot happen anymore.
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When we see the required agreement we redefine γipxq “ u,
δpnq “ λpuq, and stay at the maintenance phase.

(e) Trivial change: If only δpnqÒ then we redefine δpnq “ λpξdpxqq
and stay at the maintenance phase.

Attack.

1. We enumerate x into Q. We define δpnq “ λpξdpxqq.

2. We wait for ξdpxqÒ. When this is observed, we cancel x and
return to set-up.
‚ While waiting, if we see that δpnqÒ, we redefine δpnq “ λpξdpxqq,

and keep waiting.

2.4. Verification.

Lemma 2.1. Let e be a construction, d an agent for e, and n an anchor for d.
There is a follower which is appointed for n and is never cancelled.

Proof. Let s0 be a stage after which fepnq does not change. Suppose that at
some stage s1 ą s0 a follower x is appointed for n. Then the set-up phase is never
exited, and so x is never cancelled. �

Lemma 2.2. ∆pDq is total.

Proof. Let n ă ω be an anchor for some agent d (for construction e). We
note that δpnq is never left undefined at the end of a stage, so we just need to show
that the value of δpnq is bounded (over all stages).

By Lemma 2.1, let x be the last follower appointed for n. There are several
possibilities for where we can end up with x.

(1) It is possible to get stuck forever waiting for realisation. In this case, we
know that δpnq can never get undefined after starting the realisation run,
as that would cancel x.

(2) An attack with x is performed. We would never end this attack. The
value ξdpxq is constant during the attack. During the attack we let
δpnq “ λpξdpxqq. Since ΛpDq is total, the value λpvq stabilizes for all v.

(3) It is possible to be left in the set-up cycle, never getting a correct fe guess.
The value of xpnq may change a number of times, but since ΦipB,A1´iq

are both total, it eventually stabilises. We always define δpnq “ λpxpnqq,
and so again since ΛpDq is total, this value is eventually constant.

(4) After we enter the maintenance phase, Dæδpnq never changes. In this case
obviously δpnq is constant after we enter maintenance.

(5) We enter maintenance with x, and at some stage s1 after that we see a
Dæδpnq-change. We then define δpnq “ λpξdpxqq. After stage s1 there can-
not be a change inB æξdpxq — such a change would cause us to cancel x. We
will therefore remain at maintenance and always define δpnq “ λpξdpxqq;
again, this reaches a limit. �

We fix some e such that ∆pDq “ fe, and continue with omitting the super-
script e.

Lemma 2.3. Q is computable from both A0 and A1.
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Proof. The construction ensures that a follower x never enters Q unless both
Γ0pA0, xqÒ and Γ1pA1, xqÒ. We always define ΓipAi, xq to agree with Qpxq; so we
just need to show that γipxqÓ, or x is cancelled, or is enumerated into Q. Suppose
that x is a follower (for some anchor n for some agent d) which is never cancelled
and is never enumerated into Q. We show that γipxq is defined at infinitely many
stages, and that the value is bounded. (As usual we assume that if x is cancelled,
or never chosen as a follower, or is enumerated into Q, then we eventually define
both computations ΓipAi, xq with use 0.)

Since the guess ∆pDq “ fe is correct, we successfully exit the set-up phase
for x. After set-up, the parameter u is fixed, and γipxq, when defined, is always
defined to equal u, and is thus bounded. The only time after set-up at which γipxq
is undefined is when a layer is peeled, and we wait for agreement between ∆pnq and
fepnq; such agreement will eventually be found, and then γipxq will be redefined.
Since whenever γipxqÒ we also get δpnqÒ, any other context at which γipxqÒ causes x
to be cancelled (or attacked with). �

If Q ęT B then we are done. Otherwise, we fix some d such that ΨdpBq “ Q; we
will show that ΞdpBq computes A0 successfully. We made sure that if a follower x
for agent d is ever cancelled, then ξdpxqÒ when we do so. The agent d appoints a
new anchor at every stage; by Lemma 2.1, for each one there is a follower which is
never cancelled. So it suffices to show that if x is a follower for agent d which is
never cancelled, then eventually a permanent computation ΞdpB, xq is defined, and
this computation correctly computes A0 æx. Fix a never-cancelled follower x for an
anchor n for agent d.

Since e’s guess that ∆pDq “ fe is correct, we exit the set-up phase with x.
Since ΨdpBq “ Q, every time we enter the realisation phase with x we will also
exit it. Further, the use ψdpxq reaches a limit, which implies that the use ξdpxq
reaches a limit; whence we eventually define a permanent computation ΞdpB, xq.
We need to verify its correctness. We note that since x is never cancelled, we do not
enter the attack phase with x. And so after the permanent computation ΞdpB, xq
is defined, we will forever be in maintenance with x, potentially observing layers
being peeled. Again, since e is correct, after each peeling we will observe agreement
between ∆pD,nq and fepnq.

Let s˚ be the stage at which the permanent computation ΞdpB, xq is de-
fined. We need to show that A0 æx“ A0,s˚ æx. This is the heart of the argu-
ment: showing that setting up sufficiently many layers protects the correctness of
ΞdpB, xq. First we observe again that between set-up and last realisation we do
not see D æδpnq-changes. That is, if t˚ is the stage at which set-up of x is ex-
ited, then Ds˚ æδpnq“ Dt˚ æδpnq; otherwise, we would increase δpnq to be ξdpxq,
and then at some stage before stage s˚, x would be cancelled. This implies that
Ai,s˚ æu“ Ai,t˚ æu and Bs˚ æu“ Bt˚ æu; since u “ xpnq as calculated at stage t˚, we

have u “ xpnq at stage s˚ as well.
For k ď n we let vk “ xpkq as calculated at stage s˚ (or t˚); and we let

s1 ă s2 ă s3 ă ¨ ¨ ¨ ă sm be the stages at which a layer for x is peeled (stages
at which we observe case (d) of the maintenance cycle for x). So for some i ă 2,
Ai,sk`1 æu‰ Ai,sk æu.

Since oe0pnq ď n and during the set-up stage we force one change in ∆pD,nq,
we have oes1pnq ď n´ 1. Every time a layer is peeled we force one more change in
∆pD,nq; this implies that for all k, oeskpnq ď n´ k. It follows that m ď n.
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Lemma 2.4. For all k ď m, for both i “ 0, 1,

(1) Ai,sk ævn´k`1
“ Ai,s˚ ævn´k`1

Proof. The stage s1 is the least stage after stage s˚ at which we see any
change in either Ai below u. In other words, Ai,s1 æu“ Ai,s˚ æu; since u “ vn, the
equalities (1) hold for k “ 1.

Now by induction let k ă m and suppose that Eq. (1) holds for k (for both
i ă 2). We note that for all s ą s˚ and r ď n, if Ai,s ævr“ Ai,s˚ ævr for both i

then xprq “ vr when calculated at stage s. Fix i such that Ai,sk`1 æu‰ Ai,sk æu.

Since at the beginning of stage sk, xpn´k`1q “ vn´k`1, the fact that A1´i æu does
not change at stage sk implies that the change in Ai at that stage is necessarily
above vn´k. Now, by induction on s P psk, sk`1q we show that for both j ă 2,
Aj,s ævn´k“ Aj,sk ævn´k .

Let tk ą sk be the stage at which we exit the peeling subroutine (d) of the
maintenance cycle that we enter at stage sk. Suppose that s P psk, tkq. Between
stages sk and tk we see no changes in A1´i æu as such a change would open an
attack. Recall that we are assuming that B æξdpxq, and hence B æu, is correct from
stage s˚ onwards. This, and the fact that A1´i,s æu“ A1´i,sk æu, implies that
ϕipB,A1´i, vn´kqrss ď vn´k`1, and that Ai,s ævn´k“ Ai,sk ævn´k .

After stage tk and before stage sk`1 we see no changes in Aj æu for ei-
ther j ă 2; this follows from the definition of sk`1. It follows that for both j ă 2,
Aj,sk`1

ævn´k“ Aj,sk ævn´k“ Aj,s˚ ævn´k as required. �

3. Defeating two gates

We go up one level in our hierarchy; in this section we show:

‚ a uniformly totally ω2-c.a. c.e. degree does not bound a copy of the 1-3-1
lattice in the c.e. degrees.

Of course the main difference between this and the previous section must come
from the fact that some uniformly totally ω2-c.a. degrees do bound critical triples
(those which are not totally ω-c.a.). We observe that if a0, a1 and a2 are the
middle elements of the 1-3-1 lattice then each of the ai is the centre of a critical
triple (consisting of these three elements). Given a c.e. set D of uniformly totally
ω2-c.a. degree and B0, B1, A ďT D we show that either B0 is not the centre of a
critical triple B1, B0, A; or B1 is not the centre of a critical triple B0, B1, A. As
expected, this adds one more level of non-uniformity.

The main idea is the following. We enumerate a c.e. set Q “ Qe which will
be computable from A and B0, and try to ensure that Q ęT B1. If we fail, say
ΨdpB1q “ Q, then we enumerate a back-up set Qd “ Qed, this time computable
from A and B1, and hope that Qd ęT B0. If we fail then we will ensure that
B1 ďT B0.

The number of times that D æδpnq could change will be at most ωn. We will
appoint two followers x and y; the latter targeted for Q, the former for Qd. We will
ensure that if the remaining number of changes is ωm` k then y ą ux ě xpmq and
uy ě ypkq, where ux and uy are our analogues of u of the previous construction.
The peeling as above will happen from outside in: first, y layers will be peeled by
successive A- and B0 changes, while B1 remains unchanged. When all the y-layers
have been peeled, one or two x-layers will be peeled. But peeling the x-layers
happens in successive A- and B1-changes, not B0-changes. Such a B1-change will
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allow us to cancel our follower y (while keeping x), and set up a new version of y,
with however many new layers we might need (the new ordinal is now ωpm´1q`k1,
with k1 as large as our opponent may like).

An overall intuition is that the alternation between A,B0-peeling and A,B1-
peeling reflects the re-targeting of traces in two gates of the pinball machine used
for constructing an embedding of the 1-3-1 lattice. Speaking vaguely, we say that a
degree which is not totally ω-c.a. has enough power to pass one gate, but may run
out of gas when trying to pass two gates.

3.1. Discussion. We start with some details. Let D be a c.e. set whose Turing
degree is uniformly totally ω2-c.a. Let A,B0, B1 ďT D; fix a functional Λ such that
ΛpDq “ pA,B0, B1q. We further suppose that any two of of these sets compute the
third; we fix functionals Φ, Φ0 and Φ1 such that ΦpB0, B1q “ A, Φ0pA,B1q “ B0

and Φ1pA,B0q “ B1. For x ă ω we define

xp1q “ max
 

ϕpB0, B1, xq, ϕ0pA,B1, xq, ϕ1pA,B0, xq
(

and xpn`1q “ pxpnqqp1q.
Again the idea is that a change in one of the sets A, B0 or B1 below x neces-

sitates a change in one other of these sets below xp1q.

Let hpnq “ ωn; let xfe, oey be an effective listing of all h-c.a. functions (with
tidy ph ` 1q-computable approximations). We will define a functional ∆; the eth

construction will guess that ∆pDq “ fe.
The eth construction will enumerate a c.e. set Q “ Qe and functionals Γ “ Γe

and Θ “ Θe with the aim of having ΓpAq “ Q and ΘpB0q “ Q. Further, for
each d ă ω the construction will enumerate a c.e. set Qd “ Qed and functionals
Γd “ Γed and Θd “ Θe

d with the aim of having ΓdpAq “ Qd and ΘdpB1q “ Qd.
The action for the construction will be done by agents indexed by pairs of natu-
ral numbers. An agent pd, cq for the eth construction will enumerate a functional
Ξd,c “ Ξed,c with the aim of computing B1 from Ξd,cpB0q.

As mentioned, each anchor for each agent will try to appoint a pair of followers x
and y. The movement between the four procedures is now complicated by the fact
that each x can have several y’s. In other words we will sometimes cancel y but
not x (we always cancel y if we cancel x). So for example we may need to return
to the set-up procedure to set up a new y; but a change may cause us to interrupt
the set-up and either cancel x or attack with it.

How should we set up our uses? On top of the principles applied in the
simpler construction above, we have the following. Recall that the idea is to
set up x ă ux ă y ă uy and to arrange that if at the current stage we have

oepnq “ ωm ` k then uy ě ypkq and ux ě xp2mq. We need to think about the
possible changes and at which times they occur.

The follower y behaves similarly to the follower in the previous construction.
It is targeted for Q; we will define γpyq “ θpyq “ uy once we leave the set-up
procedure (and define δpnq ě λpuyq). After y is realised (ΨdpB1, yqÓ“ 0), when
both A and B0 change below uy we will be able to attack with y: enumerate it
into Q. Changes in B1 below ψdpyq will either cause us to return to the realisation
phase or to cancel y; when a single layer is peeled (either γpyqÒ or θpyqÒ) then we
redefine ∆pD,nq and wait for the opponent to catch-up.

The follower x is targeted for Qd; we will be able to attack with x if we see
that ΨcpB0, xqÓ“ 0 and then both γdpxq and θdpxq are undefined. As discussed,
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the idea is that if two layers below ux are peeled and x is still realised (no change
in B0) then we are guaranteed a change in B1 (and in A); so we would be able to
cancel y and set up many layers for the new y.

One role of x in the simpler construction is taken up in this construction by x
and not by y: we will define ξd,cpxq ě ψcpxq, and will use the peeling of x-layers
to protect the computation Ξd,cpB0, xq “ B1 æx. The role of the y-layers is sec-
ondary; they protect the x-layers. As before, we can only cancel x if it becomes
unrealised (ψcpxqÒ) — otherwise we need to keep protecting the correctness of the
Ξd,c-computation. However, we will also only be allowed to cancel y if it is un-
realised (ψdpyqÒ); while it is realised, it needs to keep protecting the outermost
x-layers.

A threat. The success of this process relies on the layers between y and uy to
be peeled one at a time, so that when the two layers below ux are peeled, we will
have already seen oepnq drop below the next limit ordinal (we see ωm1`k1 for some
m1 ă m). Consider though the situation in which layers between y and uy are
still unpeeled, but the last layer below ux is peeled due to an A-change. Of course
there is a change in either B0 or B1 on the first y-layer; the former would allow us
to attack with y. The latter would allow us to cancel y. However, our opponent
will pay by decreasing the ordinal, but not below the limit ordinal ωm; rather, to
ωm` k1, for k1 ă k. We are now left with insufficiently many x-layers.

In this situation what we would really like to do is attack with x. For this
reason we will define the use θdpxq to be at least uy, not ux.

In fact, we will want to define θdpxq ě ψdpyq as well. This is done to prepare
the ground for the new follower. When y is cancelled we appoint a new one, say y1,
and then we would like to define θdpxq ě uy1 . For us to be able to do so, we need
θdpxqÒ when y is cancelled. The cancellation of y of course follows from ψdpyqÒ.

This requirement in turn means that while we are waiting for y to be realised,
we must leave θdpxq undefined. This is ok because we only need to use the set Qd
if our first attempt with Q has failed; we only need ΘdpB1q “ Qd if ΨdpB1q “ Q.

Similarly, if during an attack with y we see that γdpxqÒ, then we leave it unde-
fined for the duration of the attack. The attack is prompted by changes in A and
in B0, but B1 remains fixed; in particular, θdpxqÓ. The A-change below ux “ γdpxq
causes an x-layer to be peeled; the opponent has not paid for this by successive
peeling of y-layers. If the attack later fails (B1 changes below ψdpyq ď θdpxq) then
the fact that γdpxqÒ will allow us to attack with x instead.

3.2. Construction. At every stage, every agent pd, cq for a construction e
appoints a new anchor n and starts a new set-up procedure for n. We then cycle
through the four procedures for n as soon described. For brevity:

‚ We say that x is realised if ξd,cpxqÓ. We say that y is realised if θdpxqÓ.
‚ We say that a follower is confirmed if we have already exited the set-up

cycle during which it was appointed.
‚ We may cancel a follower if it is confirmed, unrealised and δpnqÒ.
‚ We may attack with x if it is realised, and both γdpxqÒ and θdpxqÒ. We

may attack with y if it is realised, and both γpyqÒ and θpyqÒ.

We stipulate that throughout the construction, including the set-up cycle, if we
may cancel x or attack with it then we do so; in either case we cancel y. Otherwise,
if we may cancel y or attack with it we do so, except during the set-up of y. If we
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cancel a follower but are not attacking, then we return to the set-up cycle. These
instructions override all other instructions during the construction.

We now describe the procedures. For each procedure we also list (in small font)
facts about divergence of functionals at the beginning of each procedure, to be
verified later.

Set-up: δpnqÒ and θdpxqÒ.

1. If x is not currently defined, appoint a new follower x.
In either case, appoint a new follower y ą xp2nq. Define
δpnq “ λpypkqq, where currently oepnq “ ωm ` k. Wait for
∆pD,nq “ fepnq. Note that if x is already defined, then it is realised,

and we choose y ą ξd,cpxq, so δpnq ě λpξd,cpxqq.

While waiting, we react to changes as follows.
‚ If x was appointed during this set-up cycle, and one of A,
B0 or B1 changes below xp2nq, we cancel y, appoint a new y,
and redefine δpnq accordingly.

‚ Otherwise, if δpnqÒ then we redefine δpnq “ λpypkqq (using
the current value of ypkq).

2. Once we see that ∆pD,nq “ fepnq, we define uy “ ypkq and
γpyq “ θpyq “ uy. If x was appointed during this cycle, then

we define ux “ xp2nq. If γdpxqÒ then we define γdpxq “ ux. As

discussed, we leave θdpxq undefined.

We move to realisation.

Realisation: θdpxqÒ or ξd,cpxqÒ.

1. If y is unrealised, wait for ΨdpB1, yq Ó“ 0. Once this is
observed, define θdpxq “ maxtuy, ψdpyqu.

2. If x is unrealised, wait for ΨcpB0, xq Ó“ 0. Once this is
observed, define ξd,cpxq “ maxtux, ψcpxqu; move to maintenance.
We could have defined ξd,cpxq ě uy but this cannot be maintained, since

we may later cancel y but be unable to move ξd,cpxq.

Maintenance: all functionals defined.

We wait for a change in D below δpnq or for x or y to become
unrealised. When this occurs:
(a) If x or y are unrealised, move to realisation.
(b) If a layer is peeled: either γpyq Ò or θpyq Ò, but not

both — redefine δpnq “ λ pmaxtθdpxq, ξd,cpxquq . Wait
for ∆pD,nq “ fepnq. While waiting, if δpnqÒ (but no attack
or cancellation are possible) then we just redefine it by the
same formula. When ∆pD,nq “ fepnq is observed we rede-
fine all the markers γpyq, θpyq, γdpxq which are undefined,
with value uy or ux as appropriate.

(c) If only δpnqÒ then we redefine δpnq “ λ pmaxtθdpxq, ξd,cpxquq
and stay at the maintenance phase.
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Attack with y: θpyqÒ, γpyqÒ, δpnqÒ.

We enumerate y intoQ. We define δpnq “ λ pmaxtθdpxq, ξd,cpxquq.
We wait for changes. If δpnqÒ we redefine it according to the
formula above. As discussed, if γdpxqÒ we leave it undefined.

Attack with x: θdpxqÒ, γdpxqÒ, δpnqÒ.

We enumerate x into Qd. We define δpnq “ λ pξd,cpxqq. If δpnqÒ
we redefine it according to the same formula.

B0

B1

A

x yξd,cpxq

θdpxq

θpyq

γdpxq γpyq

Figure 5. Two gates: a typical configuration.

3.3. Verification. First, we observe that functionals discussed indeed diverge
as promised at the beginning of each cycle. For example, we indeed have δpnqÒ at
the beginning of an attack because we always define δpnq ě λpuyq (which in turn is
at least λpuxq), and γpyq “ uy and γdpxq “ ux whenever they are defined. Similarly,
when we return to a set-up and x is not cancelled, it is because y is cancelled; y
became unrealised, which means that θdpxqÒ.

We also observe that the instructions described cover all possible occurrences.
Consider for example the maintenance cycle. We stipulated that if x or y can be
either cancelled or attacked with then we do so (with x having precedence over y
in that respect). Suppose that δpnqÒ during maintenance. If x or y are unrealised,
then they are cancelled. Otherwise, at most one of γpyqÒ or θpyqÒ, in which case a
y-layer is peeled; and possibly γdpxqÒ but as y is realised, θdpxqÓ, so an x-layer is
peeled.

Also observe that during an attack with x, if x becomes unrealised then it is
cancelled, as δpnq ě λpξd,cpxqq. Similarly, during an attack with y, if either x or y
becomes unrealised then it is cancelled. And similarly, if δpnqÒ during maintenance
then we never return to the realisation cycle without passing through set-up again.

We note that if we attack with x then we may indeed cancel y, as θdpxqÒ implies
that y is unrealised, and γdpxqÒ implies that δpnqÒ.

Finally note that θdpxq ě ψdpyq so if y is realised then ΨdpB1, yqÓ“ 0; if x is
realised then ΨcpB0, xqÓ“ 0.

We extend Lemma 2.1.
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Lemma 3.1. Let e be a construction, d an agent for e, and n an anchor for d.
There is a follower x for n which is never cancelled. There is a last follower y for n
which is ever appointed; it is only cancelled if we attack with x.

Proof. As in the proof of Lemma 2.1, let s0 be a stage after which fepnq does
not change. Suppose that at some stage s1 ą s0 we are in the set-up cycle. the
follower x at that time will never be cancelled. The follower y may be cancelled,
but only if one of the sets A, B0 or B1 change below xp2nq. Eventually, the value
of xp2nq stabilizes. �

Lemma 3.2. ∆pDq is total.

Proof. Let n ă ω be an anchor for some agent d (for a construction e). Again
we note that δpnq is never left undefined at the end of a stage, so we just need to
show that the value of δpnq is bounded (over all stages).

By Lemma 3.1, let x and y be the last followers appointed for n. There are
several possibilities for where we can end up.

(1) It is possible to get stuck forever waiting for realisation for either x or y.
In this case, we know that δpnq can never get undefined after starting the
realisation run, as that would cancel x or y.

(2) An attack with x or with y is performed. The attack with y can be exited
only if we start an attack with x (otherwise, y is cancelled). The attack
with x cannot be exited. The value θdpxq is constant during an attack
with y; the value ξd,cpxq is constant during an attack with y or with x.
And ΛpDq is total.

(3) It is possible to be left in the set-up cycle, never getting a correct fe guess.
The value of oepnq and so of ypkq eventually stabilizes; we again then use
the totality of ΛpDq.

(4) After we enter the maintenance phase, Dæδpnq never changes. In this case
obviously δpnq is constant after we enter maintenance.

(5) We enter maintenance with x, and at some stage s1 after that we see a
Dæδpnq-change. After that stage, x and y are always realised. �

As above we fix e such that ∆pDq “ fe.

Lemma 3.3. Q is computable from both A and B0.

Proof. The proof is pretty much identical to the proof of Lemma 2.3: if y a
permanent follower for some anchor n for some agent for e, then uy is eventually
defined; if we never attack with y then we only leave γpyq or θpyq undefined when
waiting for agreement between ∆pD,nq and fepnq (after a layer is peeled). �

If Q ęT B1 then we are done. Otherwise fix some d such that ΨdpB1q “ Q.

Lemma 3.4. Qd is computable from both A and B1.

Proof. The proof is slightly more elaborate; let x be a follower for an anchor n
for an agent pd, cq, and suppose that x is neither cancelled nor attacked with. We
consider stages during which γdpxqÒ or θdpxqÒ.

We possibly have γdpxq Ò while waiting for agreement between ∆pD,nq
and fepnq. As for y, during a realisation cycle, if γdpxqÒ then δpnqÒ and then we
cancel x or y; eventually this stops happening. We may also have γdpxqÒ during
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an attack with some y. But such an attack must end, as ΨdpB1q “ Q. So γdpxq is
defined at all but finitely many stages, and its value is constant ux.

Usually, when θdpxqÒ we can cancel y. Otherwise, we can have θdpxq while we
are waiting for some y to be realised (here it is important that if both y and x
are unrealised, we first realise y, then x); but ΨdpB1q “ Q implies that every y
is eventually realised or cancelled. There will be a last y appointed, and never
cancelled (as we assumed that we do not attack with x); and the value ψdpxq will
eventually stabilise. This implies that the values of θdpxq are bounded. �

If Qd ęT B0 then we are done. Otherwise fix some c such that ΨcpB0q “ Qd.
We will show that with Ξd,c, B0 correctly computes B1. As in the simpler construc-
tion, we need to show that if x is a follower for some anchor for the agent pd, cq,
and x is never cancelled, then eventually we define a computation Ξd,cpB0, xq which
always converges, and that B1 æx is constant from the stage at which this compu-
tation is defined. Fix such x. The argument of the simpler construction shows
that ξd,cpxq is bounded and defined at infinitely many stages. We only need to
notice that if y is the last follower appointed for x’s anchor, then every realisation
cycle that we enter after appointing y must be exited, as both ΨdpB1q “ Q and
ΨcpB0q “ Qd.

So it all comes down to correctness, which as above is the heart of the argument.
Let s˚ be the stage at which the permanent computation Ξd,cpB0, xq is defined. For

k ď 2n let vk “ xpkq as calculated at stage s˚. As x is not cancelled, δpnqÓ at all
stages from the end of the set-up of x and stage s˚; it follows that ux “ v2n.

The key observation is that the peeling of the x-layers has to alternate
between A and B1. For k ď n let sk be the least stage s ě s˚ such that
B1,s`1 æv2k‰ B1,s æv2k ; otherwise let sk “ 8. By induction on s P rs˚, sks

we see that v2k´1 “ xp2k´1q at stage s and that As æv2k´1
“ As˚ æv2k´1

;
but Ask æv2k`1

‰ As˚ æv2k`1
. Let tk be the least stage t ě s˚ such that

At`1 æv2k´1
‰ As˚ æv2k´1

; the fact that we never attack with x implies that
sn ă tn ă sn´1 ă tn´1 ă ¨ ¨ ¨ .

Lemma 3.5. For all k ă n such that sk ă 8,

(2) oskpnq ă ωk

(where o “ oe).

The inequality will imply that s0 must equal 8, and so B1,s˚ æx“ B1 æx as
required.

Proof. Since we start with o0pnq “ ωn and we redefine ∆pD,nq when setting x
up, we have osnpnq ă ωn; so Eq. (2) holds for k “ n.

We prove Eq. (2) by induction on k. Fix k ď n such that sk´1 ă 8, and suppose
that osk ă ωk. Since v2k ď ux ď θdpxq, y is unrealised at stage sk and δpnqÒ at that
stage; so we cancel y at stage sk. At stage tk we must have θdpxqÓ, since otherwise
we attack with x at that stage. So there is some last stage rk P psk, tkq at which
we realise a follower y “ yk. The familiar argument shows that at stage rk we have
uy “ ypmq where orkpnq “ ωpk ´ 1q `m1 for some m1 ă m (we may assume that
orkpnq ě ωpk´1q, otherwise we are done for this inductive step). The follower yk is
not cancelled before stage tk. An important point is that we do not attack with yk
before or at stage tk. To see this, observe that every attack with yk must eventually
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fail, and yk is then cancelled; so this failure does not happen before stage tk. But
then, as γdpxqÒ at stage tk, it remains undefined until the attack with y fails —
and then we would attack with x.

At stage tk we do not start an attack with x so at that stage θdpxqÓ (and recall
that θdpxq ě uy). We do not start an attack with y at that stage, whereas γpyqÒ

at tk; so θpyqÓ at tk. So yp1q ą uy at stage tk. The only way this could happen is
that between stages rk and tk, all the layers between y and uy were peeled. Each
time this happens we extract another ∆pD,nq change; we have m such changes,
which drives the ordinal otkpnq below ωpk ´ 1q as required. �

4. The general construction

No new ideas are required for the general construction. The general idea that
if we guess that ∆pDq is ωm-c.a. then we set up m many followers. We go straight
to the details. We are presented with a c.e. set D of totally ă ωω-c.a. degree, three
c.e. sets A,B0 and B1, and reductions ΛpDq “ pA,B0, B1q, ΦpB0, B1q “ A, and
ΦipA,B1´iq “ Bi for i “ 0, 1. For x ă ω we define xp1q and xpnq as in the previous
section.

For m ă ω define hmpnq “ ωm ¨ n. Every function computable from D is hm-
c.a. for some m. Fix (uniformly in m) an effective list xfe,m, oe,my of all hm-c.a.
functions, with the usual tidy approximations. For simplicity of notation we will
only use odd m’s. We enumerate a functional ∆; a construction pe,mq for e ă ω
and odd m will guess that ∆pDq “ fe,m. Agents for the pe,mqth-construction are
indexed by m`1-tuples d̄ “ pd0, d1, . . . , dmq of natural numbers. For each sequence
c̄ of length at most m the construction enumerates a c.e. set Qc̄ “ Qe,mc̄ and func-
tionals Γc̄ “ Γe,mc̄ and Θc̄ “ Θe,m

c̄ ; we plan for Γc̄pAq “ Qc̄ and for Θc̄pBrc̄sq “ Qc̄,
where we let rc̄s “ |c̄| mod 2. For simplicity we will also write rks for k mod 2.
Each agent d̄ defines a functional Ξd̄ “ Ξe,m

d̄
, hoping that Ξd̄pB0q “ B1 (if m were

even we would need to exchange B0 and B1, all the rest would be identical). We
write θ, γ,Q for θxy, γxy, Qxy.

An agent d̄ will appoint anchors n, inputs for ∆pDq. Each anchor will try
to appoint a sequence of followers xm ă xm´1 ă ¨ ¨ ¨ ă x1 ă x0, with xk tar-
geted for Qd̄æk . When a follower xk is cancelled or attacked with, we cancel
all the larger followers xk1 for k1 ă k. The main idea will be to ensure that if
oe,mpnq “ ωmpm ` ωm´1pm´1 ` ¨ ¨ ¨ ` ωp1 ` p0 then xk´1 will bound at least pk
many layers above xk.

To streamline the description of the construction we define, for k “ 0, . . . ,m´1,
χpxkq “ θd̄æk`1

pxk`1q; and define χpxmq “ ξd̄pxmq. See Figure 6. We will say that

the follower xk is realised if χpxkqÓ.
As before, we say that we may attack with a follower xk if it is realised, and

both γd̄ækpxkqÓ and θd̄æk Ó. We say that a follower xk is confirmed if the set-up
cycle at which it was appointed has already finished. We may cancel a confirmed
follower xk if it is unrealised and δpnqÒ. Throughout the construction, if we may
cancel a follower or attack with it then we do so, always choosing the smallest
follower (the one with largest index) with which to attack or cancel. If we cancel a
follower and do not start an attack, then we return to the set-up cycle.

We now describe the procedures undertaken by an anchor n.

Set-up.
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B0

B1

A

x0x1x2x3

γd̄æ3px3q γd̄æ2px2q γd̄æ1px1q γpx0q

θpx0q

θd̄æ1px1q

= χpx0q

θd̄æ2px2q

= χpx1q

θd̄æ3px3q

= χpx2q

ξd̄px3q

= χpx3q

Figure 6. Four gates: a typical configuration.

1. Say that xm, xm´1, . . . , xk`1 are defined and confirmed. We
appoint new followers xk ă xk´1 ă xk´2 ă ¨ ¨ ¨ ă x0 so that

xk ą uk`1, and for all j ă k, xj ą x
p2pj`1q

j`1 , where currently

oe,mpnq “ ωmpm`¨ ¨ ¨`ωp1`p0. We then define δpnq “ λpx
pp0q
0 q,

and wait for ∆pD,nq “ fe,mpnq. While waiting, we update the
values of xj for j ă k and of δpnq to keep the desired inequalities.
We do so in a conservative way: only cancel xj if there is a change

in A, B0 or B1 below x
p2pj`1q

j`1 .

2. Once we see that ∆pD,nq “ fe,mpnq we define for all

j “ 1, . . . , k, uj “ x
p2pjq
j , and define u0 “ x

pp0q
0 . For each j such

that γd̄æj pxjqÒ we define this marker to equal uj . We also define

θpx0q “ uj .
We move to realisation.

Realisation.

For each k ď m, if xk is unrealised, wait for ΨdkpB1´rks, xkqÓ“ 0.
Once this is observed we define χpxkq “ maxtuk, ψdkpxkqu. That

is, we define θd̄æk`1
pxk`1q or ξd̄pxmq depending if k “ m or k ă m.

Note that the search is done in parallel, and we define χpxkq
immediately when the realising computation is discovered. Once
all followers are realised we move to maintenance.

Maintenance.

We wait for a change in D below δpnq or for some follower to
become unrealised. When this occurs:
(a) If a follower is unrealised, move to realisation. As above this

assumes that δpnqÓ, otherwise we would cancel the follower.
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(b) If either γpx0qÒ or θpx0qÒ, but not both, redefine

δpnq “ λ pmaxtχpxkq : k ď muq .

Wait for ∆pD,nq “ fe,mpnq. While waiting, if δpnqÒ (but
no attack or cancellation are possible) then we just redefine
it by the same formula. When ∆pD,nq “ fe,mpnq is ob-
served we redefine all the markers γpxkq and θpx0q which
are undefined (with value uk).

(c) If only δpnqÒ then we redefine δpnq “ λ pmaxtχpxkq : k ď muq
and stay at the maintenance phase.

Attack with xk.

We enumerate xk intoQd̄æk . We define δpnq “ λ pmaxtχpxjq : j ě kuq.
We wait for changes. If δpnqÒ we redefine it according to the
formula above. If γdpxjqÒ for some j ă k we leave it undefined.

4.1. Verification. The verification is identical to the two-gate case and so we
omit it.

4.2. A conjecture. There are two known obstacles for embedding finite lat-
tices into the c.e. degrees. One is structural, involving the impossibility for a
re-targeting procedure past a number of gates; this results in the failure to embed
lattices such as L20 (Lempp and Lerman [63]). Computational strength (high-
ness) is irrelevant here. The other is the interference of a meet requirement with
continuous tracing, preventing lattices such as S8 being embeddable (Lachlan and
Soare [62]; see fig. I.2). Perhaps these are the only obstacles. We thus conjecture:

Conjecture 4.1. If a finite lattice is embeddable into the c.e. degrees then it is
embeddable below any non totally ă ωω-c.a. c.e. degree.

A counterexample to the conjecture would need significant new insight into
lattice embeddings into the c.e. degrees.





CHAPTER VIII

Prompt permissions

In this chapter we consider prompt versions of the permitting notions we inves-
tigated in this monograph. These prompt notions of permission allow us to perform
constructions that are closer to the original construction we considered, rather than
their variations when adopted for permitting. For example, in the usual embedding
of the 1-3-1 lattice one gets the bottom element to be 0. When we then added
permitting, we showed that the 1-3-1 lattice can be embedded below any not to-
tally ă ωω-c.a. degree, but we did not get an embedding with bottom 0; this seems
necessary. However, below any degree which is promptly not totally ă ωω-c.a., we
can get an embedding of the 1-3-1 lattice with bottom 0.

1. Prompt classes

Recall that a c.e. set A permits promptly if it is has an enumeration xAsy such
that for some computable function p ě id, for any e, if We is infinite then there is
some n which enters We at some stage s such that As æn‰ Appsq æn. This notion
is invariant under Turing equivalence; a degree permits promptly if and only if it
contains a promptly simple set; see [2]. Prompt permitting is the prompt version
of simple permitting; a set which permits promptly is in some sense promptly non-
computable.

For considering the prompt version of non-total α-c.a. permitting, fix an ef-
fective listing xfe,αy of all α-c.a. functions, each equipped (uniformly) with tidy
pα ` 1q-computable approximations xfe,αs , oe,αs y as in Proposition II.1.7. We will
shortly use more properties of this list. However to motivate these properties we
first give our definitions.

Definition 1.1. Call a function g self-modulating if there is a computable approx-
imation xgsy of g such that:

‚ for all s and n, gspnq ď s;
‚ for all s and n, if gspnq ‰ gs´1pnq then gspnq “ s and in fact for all m ě n,
gspmq “ s.

It follows that for all s, gs ď gs`1 (pointwise) and that if gspnq ‰ gs´1pnq
then gspmq ‰ gs´1pmq for all m ě n. The idea is that g is the modulus of the
approximation xgsy. Above we used the fact that if d is c.e. but not totally α-
c.a. then there is a self-modulating function g P d which is not α-c.a. Note that
every self-modulating function has a c.e. degree. Below we assume that each self-
modulating function g “comes with” the approximation xgsy of which it is the
modulus.

Definition 1.2. A speed-up function is a non-decreasing, computable function p
such that ppnq ě n for all n.

167
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Definition 1.3. Let g be a self-modulating function and let p be a speed-up func-
tion. Let n ă ω. Let xfs, osy be a tidy pα ` 1q-computable approximation. We
say that g promptly p-escapes xfs, osy on input n if for all s, if ospnq ă α and
fspnq “ gspnq then gppsqpnq ‰ gspnq. We say that g promptly p-escapes xfs, osy if
it promptly p-escapes it on some input.

A self-modulating function g is promptly not α-c.a. if there is some speed-up
function p such that g promptly p-escapes each xfe,αs , oe,αs y.

A c.e. degree d is promptly not totally α-c.a. if there is a self-modulating func-
tion g ďT d which is promptly not α-c.a.

Note that if an approximation xfe,αs , oe,αs y is not eventually α-computable then
vacuously, for almost all n, g promptly p-escapes this approximation on n; the power
of promptness is when it is applied to “total” approximations (approximations
which are eventually α-computable).

1.1. Slow-down lemma. Recall how prompt permitting is used in construc-
tions. Suppose for example that we want to show that a promptly permitting
degree d is not half of a minimal pair. Let D P d and let B be c.e. and non-
computable. We build a c.e. set Q computable from both D and B and plan to
make Q non-computable. To diagonalise against the eth computable set, a require-
ment appoints a follower x and waits for it to be realised (ϕepxqÓ“ 0). When it is
realised we wait for simple permitting from B; Bs`1 æx‰ Bs æx. When we see this
we ask for prompt permission from D, namely Dppsq æx‰ Ds æx. If both are granted
then we can enumerate x into Q and meet the requirement. Why will permission
be granted? Of course we potentially appoint infinitely many followers. Since B is
non-computable, infinitely many of them will be permitted by B. Let Ue “ Wgpeq

be the c.e. set of followers for this requirement which will be permitted by B. Ap-
plying prompt permission to this set Ue guarantees prompt permission from D for
one of the followers in Ue.

This sketch of an argument involved a little cheating. While indeed we know,
by the recursion theorem, an index gpeq for Ue, the effective enumeration of Wgpeq

may be different from our enumeration of Ue. We put x into Ue at the stage at
which B permits x. It is conceivable that x is enumerated into Wgpeq at an earlier
stage; so the prompt permission for x was given in the past, and is useless for
us now. We need to find gpeq such that not only Wgpeq “ Ue but every number
enters Wgpeq not before we put it into Ue.

This “slow-down lemma” can be obtained by a more sophisticated use of the
recursion theorem (see [91, Thm.XII.1.5]). This elaborate use of the recursion theo-
rem is actually not quite necessary. Interpret the eth partial computable function ϕe
as a function of two variables. We can transform this function into an effective enu-
meration of a c.e. set (call it We) such that if ϕe is an effective enumeration xVe,sy of
a c.e. set Ve (that is, ϕe is total and for all s, ϕep´, sq is the characteristic function
of Ve,s) then We “ Ve and further, for all s, We,s Ď Ve,s. Namely, we put x into We

at stage s if at that stage we have seen sufficiently much convergence from ϕe to
see that x P Ve. The slow-down lemma can now be obtained by using the recursion
theorem to obtain an index gpeq such that ϕgpeq is our enumeration of Ue; we then
apply prompt permitting to Wgpeq.

In our usage of prompt permitting of the form given by Definition 1.3 we need
a similar form of a slow-down lemma. Namely, to force changes we will define,
for some requirement, an α-computable approximation xhsy attempting to trail the
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function g given by the definition, and ask for immediate changes in g. To do this
we will need to find one of the functions fe,α on the list such that for all n, for
all s there is some t ě s such that fe,αt pnq “ hspnq. To obtain this we follow the
construction proving Proposition II.1.7. Using the notation of the proof of that
proposition, we think of ϕe as giving the sequence xhs,msy which we transform
into the partial approximation xfe,αs , oe,αs y, making sure that as long as xhs,msy

appears to be a tidy pα` 1q-computable approximation, we copy every value that
shows up. It is this sequence of approximations that we use in Definition 1.3. This
sequence will be acceptable in a strong way.

Call a pair xhs,msy of partial computable functions a partial tidy pα ` 1q-
computable approximation if for all x and s, hspxqÓô mspxqÓ and if so, for all y ď x
and r ď s, hrpyqÓ and the array xhrpyq,mrpyqyrďs,yďx satisfies the conditions for

being an initial segment of such an approximation: that is, m0pyq “ α, mrpyq ď α,
h0pyq “ 0, mrpyq ď mr´1pyq, and if hrpyq ‰ hr´1pyq then mrpyq ă mr´1pyq. The
sequence xfe,αs , oe,αs y is acceptable in the following sense:

‚ if xhes,m
e
sye,săω is a sequence of (uniformly) partial tidy pα`1q-computable

approximations then there is a computable function k (obtained uni-
formly from an index for the sequence) such that for all e, x and s ą 0,

if hespxq Ó then there is some t ě s such that o
kpeq,α
t pxq “ me

spxq and

f
kpeq,α
t pxq “ hespxq.

In particular, for each e, if xhes,m
e
sy is a (total) α-computable approximation, then

A

f
kpeq,α
s , o

kpeq,α
s

E

is eventually α-computable and further, for all n and s there is

some t ě s such that hespnq “ f
kpeq,α
t pnq.

Finally, in some arguments it would be useful to assume that like the enumer-
ation of the sets We, at each stage s we have only said finitely much about all
functions. Formally,

‚ For all s, e and n, fe,αs pnq ď s, and oe,αs pnq ă α implies e, n ă s.

1.2. Counting down α. The functions fe,αs are not really important for
promptness; it is the ways oe,αs of counting down α that we need to escape.

Definition 1.4. A counting down α is a sequence of uniformly computable func-
tions xosy from ω to α ` 1 such that for all n, o0pnq “ α; ospnq “ α if s ď n;
ospnq ď os´1pnq for all n and s; and if ospnq ă α then ospn´ 1q ă α as well.

In other words, xosy is a counting down α if it appears as the ordinal part in a
tidy pα` 1q-computable approximation xfs, osy.

Definition 1.5. Let g be a self-modulating function and let p be a speed-up func-
tion; let xosy be a counting down α. We say that g promptly p-escapes xosy on an
input n if for all s ą 0, if ospnq ‰ os´1pnq then gppsqpnq ‰ gspnq. We say that g
promptly p-escapes xosy if it does so on some input.

Lemma 1.6. Let g be a self-modulating function. Then g is promptly not α-c.a.
if and only if there is a speed-up function q such that g promptly q-escapes each
xoe,αs y.

One direction is short.
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Lemma 1.7. Let xfs, osy be a tidy pα ` 1q-computable approximation such that
fspnq ď s for all s and n. Suppose that a self-modulating function g promptly
p-escapes xosy on input n. Then it also promptly p-escapes xfs, osy on input n.

Proof. Suppose that ospnq ă α and that fspnq “ gspnq. Let t ď s be the
least such that otpnq “ ospnq. So fspnq “ ftpnq. Since ftpnq ď t we see that
gspnq ď t; since g is self-modulating, this implies that gtpnq “ gspnq. By assump-
tion, otpnq ‰ ot´1pnq, and so gpptqpnq ‰ gtpnq “ gspnq. But pptq ď ppsq and g is
non-decreasing so gppsqpnq ě gpptqpnq ą gspnq as required. �

Proof of Lemma 1.6. One direction is provided by Lemma 1.7 and one of
our conditions on the listing of approximations xfe,αs , oe,αs y. In the other direction
suppose that p witnesses that g is promptly not α-c.a. For brevity we write fes and oes
for fe,αs and oe,αs . For each e we define an approximation xhesy which chases g as
much as oe allows it. Namely, we define

hespnq “

$

’

&

’

%

0, if s “ 0;

hes´1pnq, if s ą 0 and oespnq “ oes´1pnq; and

gspnq, otherwise.

The approximation xhes, o
e
sy is pα ` 1q-computable and tidy. By the α-slow-down

lemma find some computable function k such that for all e, n and s there is some

t “ tpe, n, sq ě s such that o
kpeq
t pnq “ oespnq and f

kpeq
t pnq “ hespnq. For s ă ω define

t˚psq “ max ttpe, n, sq : e, n ď su, and let qpsq “ ppt˚psqq.

Fix e. There is some n such that g promptly p-escapes
A

f
kpeq
s , o

kpeq
s

E

on input n.

We claim that g promptly q-escapes xoesy on input n. For let s ą 0 be a stage such

that oespnq ‰ oes´1pnq. Then hespnq “ gspnq; so f
kpeq
t pnq “ gspnq for t “ tpe, n, sq. We

need to show that gqpsqpnq ‰ gspnq. Note that oespnq ă α implies that e, n ă s, so

t ď t˚psq. If gtpnq ‰ gspnq then we are done, as qpsq ě t. Otherwise f
kpeq
t pnq “ gtpnq

(and o
kpeq
t pnq “ oespnq ă α) so by our assumption, gpptqpnq ‰ gtpnq; but qpsq ě pptq.

�

Therefore for the purposes of promptness we from now on ignore the function
part fs. We state the slow-down lemma in this context. As expected, define a
partial counting down α to be a partial computable sequence xosy such that for
all s and x: (a) if ospxqÓ then ospxq ď α and otpyqÓ for all t ď s and y ď x; (b)
if o0pxqÓ then o0pxq “ α; (c) if s ą 0 and ospxqÓ then ospxq ď os´1pxq; if ospxqÓ,
y ă x and ospyq “ α then ospxq “ α.

Lemma 1.8. Suppose that xme
sy is a uniform sequence of partial countings down α.

There is a computable function k such that for all e, s and x, if me
spxqÓ then there is

some t ě s such that o
kpeq,α
t pxq “ me

spxq. The function k can be obtained effectively.

We can conclude that promptness does not really depend on the choice of list
xoe,αs y (as long as it is acceptable).

Corollary 1.9. Suppose that xme
sy is a uniformly computable sequence of (total)

countings down α such that for all s the set tpe, xq : me
spxq ă αu is bounded, com-

putably in s. Suppose that a function g is promptly not α-c.a. Then there is a
speed-up function q such that g promptly q-escapes xme

sy for each e.
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Proof. As in the proof of Lemma 1.6 let t˚psq be a bound on stages

t “ tpe, x, sq ě s such that o
kpeq
t pxq “ me

spxq for all e, x such that me
spxq ă α

(where k is given by the slow-down Lemma 1.8; as above oe “ oe,α). Suppose
that p witnesses that g is promptly not α-c.a.; let qpsq “ ppt˚psqq. To see that this

works, suppose that g promptly p-escapes
A

o
kpeq
s

E

on an input x. Let s ą 0 and

suppose that me
spxq ‰ me

s´1pxq. Then me
spxq ă α, so t˚psq ě tpe, x, sq. Let u be the

least such that o
kpeq
u pxq “ me

spxq; so u ď tpe, x, sq. But also u ą tpe, x, s´1q ě s´1
so u ě s. By assumption, gppuqpxq ‰ gupxq, and qpsq ě ppuq. �

We can escape infinitely many inputs.

Lemma 1.10. Suppose that g is promptly not α-c.a. Then there is some speed-
up function q such that for all e there are infinitely many x such that g promptly
q-escapes xoe,αs y on input x.

Proof. Note that the first attempt that comes to mind to prove this does
not work. Non-uniformly we could guess an initial segment of g and change an
approximation to make sure that permission is not given on the first n locations.
But there are infinitely many possible initial segments of a fixed finite length, and
we cannot define our speed-up taking into account all of them (see the proof of [91,
Thm.XII.1.7(iii)]). What we do is shift by n.

Namely, for all e and n define me,n
s pxq “ oespx ` nq (for brevity let oes “ oe,αs ).

Note that me,n
s pxq ă α implies e, x, n ă s. Let q be given by Corollary 1.9. Suppose

that g promptly q-escapes xme,n
s y on input x; we conclude that g promptly q-escapes

xoesy on input x` n, the reason being that if gqpsqpxq ‰ gspxq then gqpsqpyq ‰ gspyq
for all y ą x. �

The proof of this lemma shows that we can effectively, given a uniform list xme
sy

of tidy pα ` 1q-computable approximation and a speed up-function p such that g
promptly p-escapes each xme

sy, find a speed-up function q such that g promptly
q-escapes each xme,sy on infinitely many inputs.

1.3. Powers of ω. Let α ď ε0. For brevity let PNpαq denote the class of
degrees which are promptly not totally α-c.a.

Lemma 1.11. If β ă α then every function which is promptly not α-c.a. is also
promptly not β-c.a.

Hence PNpαq Ď PNpβq.

Proof. Define me
t pxq “ oe,βt pxq if this value is smaller than β; otherwise let

me
t pxq “ α. Now apply Corollary 1.9. �

Proposition 1.12. Suppose that g is promptly not α-c.a. Then for all m ă ω, g
is promptly not α ¨m-c.a.

So PNpγq “ PNpαq for all γ P rα, α ¨ωq. As for the non-prompt case, this means
that each prompt class is PNpαq for an ordinal α which is a power of ω. Below we
will see that this is sharp.

Proof. We need to uniformise Lemma III.2.2. We define a list
@

me,k
s

D

eăω,kăm

of countings down α. We claim that by the recursion theorem we have a speed-up
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function q such that g promptly q-escapes each
@

me,k
s

D

(and further we require that
this happens on infinitely many inputs).

Actually this relies on a property of the construction. By stage s we will have
already defined me,k

r for all r ă s (for all e and k ă m). The finiteness condition of
Corollary 1.9 will be obtained by ensuring that me,k

r pxq “ α unless e, x ă r. During
stage s we define the functions me,k

s , but in the process of doing so we only consult q
on values strictly smaller than s. Then the fact that me,k

s is defined for all s implies
that qpsq is defined (as in the proof of Corollary 1.9), and the construction can
proceed to the next stage.

The counting me,k
s guesses that k “ k˚ (in the notation of Lemma III.2.2).

However it is not sufficient for g to escape xoe,αms y on some input only from the
stage at which oe,αms pxq ă αpk ` 1q; we need it to escape earlier as well. So it
looks for inputs which have already been escaped up to that point (using q) and
only copies them. Inductively, Lemma 1.10 says there will be infinitely many such
inputs.

Now to the details. To define me,k
s pxq we search for some y ě x such that:

‚ oe,αms pyq P rαk, αpk ` 1qq but oe,αms´1 pyq ě αpk ` 1q (note that this implies
y ă s); and

‚ for all t ă s at which oe,αmt pyq ‰ oe,αmt´1 pyq we have gqptqpyq ‰ gtpyq.

If such y is found then we declare y “ ye,kpxq and s “ se,kpxq. If such y is never
found we let se,kpxq “ ω. Now we can define:

me,k
t pxq “

$

’

&

’

%

α, if t ă se,kpxq;

β, if t ě se,kpxq and oe,αmt pye,kpxqq “ αk ` β; and

0, if t ě se,kpxq and oe,αmt pye,kpxqq ă αk.

Fix e. For k ď m we let Ik “ Iek be the set of inputs x such that for all s such
that oe,αms pxq ‰ oe,αms´1 pxq and oe,αms pxq ě αk, we have gqpsqpxq ‰ gspxq. Vacuously
we have Im “ ω; and our aim is to show that I0 is nonempty. In fact we show by
decreasing induction on k “ m,m´ 1, . . . , 0 that each Ik is infinite.

Let k ă m and suppose that we know that Ik`1 is infinite. There are two cases.
It is possible that for almost all x P Ik`1, for all s, oe,αms pxq ě αpk`1q. Each such x
is in Ik (in fact in I0). Otherwise, for all x ă ω, se,kpxq (and ye,kpxq) are defined.
There are infinitely many x on which g promptly q-escapes

@

me,k
s

D

. Let x be such

an input and let y “ ye,kpxq, s˚ “ se,kpxq. So y P Ik`1 and we claim that in fact

y P Ik: if s ě s˚, oe,αms pyq ě αk and oe,αms pyq ‰ oe,αms´1 pyq then me,k
s pxq ‰ me,k

s´1pxq
and so gqpsqpxq ‰ gspxq; since y ě x, gqpsqpyq ‰ gspyq. �

1.4. Relation to prompt simplicity. A counting xosy down the ordinal 1
is essentially a computable function. Namely let hpnq be the unique stage s such
that ospnq “ 0 but os´1pnq “ 1. The domain of h is an initial segment of ω.
As mentioned above, the property PNp1q can be thought of as being “promptly
non-computable”: it forces that gpnq ‰ hpnq, and this is observed promptly.

Lemma 1.13. A c.e. degree is promptly simple if and only if it is in PNp1q.

Proof. Suppose that A permits promptly; let xAsy be an enumeration of A
which witnesses this fact. Let g be the modulus of the enumeration of A: gspnq “ t
if t ď s is least such that As æn“ At æn.
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For each e and n let hepnq “ s if oe,1s pnq “ 0 but oe,1s´1pnq “ 0. If hepnq “ s then
enumerate n into a c.e. set Ue at stage s. By the promptly simple slow-down lemma
there is a non-decreasing computable function q such that for all e, if Ue is infinite
then there is some n which enters Ue at some stage s such that As æn‰ Aqpsq æn, so

g promptly q-escapes
@

oe,1s
D

on n. We only care about the case Ue “ ω.

In the other direction suppose that degTpAq P PNp1q, witnessed by some g
(which recall comes with an approximation xgsy). Let Γ be a functional such
that ΓpAq “ g. Let xAsy be some enumeration of A such that for all s,
dom ΓspAsq ě s. Define a subsequence 0 “ sp0q ă sp1q ă . . . such that for
all k, ΓspkqpAspkqqæk“ gspkq æk.

For each x ă ω search for an index k “ kepxq ą x, e such that some num-
ber n enters We at stage k and the use γspkqpxq is smaller than n. We then define
hepxq “ spkq. The domain of he is an initial segment of ω. We translate this to a
counting down the ordinal 1: me

t pxq “ 1 iff t ă hepxq (or hepxqÒ). Note that the
counting xme

t y is total even if he is partial. Further, me
t pxq “ 0 implies e, x ă t. So

by Corollary 1.9 find a computable function q such that for all e, if he is total then
there is some x such that gqphepxqqpxq ‰ ghepxqpxq.

Fix e. If We is infinite then he is total. Suppose that g escapes he

on x (as described above). If hepxq “ spkq then find the k1 ą k such that
qpspkqq P pspk1 ´ 1q, spk1qs. Define ppkq “ k1. Let n be a number which enters We

at stage k such that γspkqpxq ă n. The fact that gpxq changes between stages
spkq and ppspkqq means that Aspk1q æγspkqpxq‰ Aspkq æγspkqpxq. We conclude that the

enumeration
@

Aspkq
D

and the function p witness that A permits promptly. �

1.5. A prompt hierarchy theorem. Let Npαq denote the class of c.e. de-
grees which are not totally α-c.a. The class Np1q consists of the nonzero degrees.

Fig. 1.5 details the containment relations between the classes. The following
theorem implies that no further implications hold between these classes.

Theorem 1.14. Suppose that α ď β ď ε0 are powers of ω. Then there is a c.e.
degree d such that:

‚ d P PNpγq if and only if γ ă α; and
‚ d P Npγq if and only if γ ă β.

For example, by choosing α “ β we obtain:

Corollary 1.15. Let δ ď ε0. There is a degree which is promptly not totally ωδ-c.a.
but is totally ωδ`1-c.a.

On the other hand by choosing β ą α we see:

Corollary 1.16. Let δ ď ε0. There is a degree which is not totally ωδ-c.a., but
not promptly so (i.e. not in PNpωδq), but is promptly not γ-c.a. for all γ ă ωδ. (In
particular if δ ą 0 then the degree is promptly simple.)

In this subsection we prove Theorem 1.14.
We define an approximation xgsy witnessing that g “ lims gs is self-modulating,

and intend to let d “ degTpgq.
For the positive side, for each γ ă β and e ă ω we need to meet the requirement

P e,γ: There is some p ă ω such that:
‚ gppq ‰ fe,γppq;
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PNpω0q Npω0q

PNpω1q Npω1q

PNpω2q Npω2q

PNpω3q Npω3q

...
...

Figure 1. Prompt and regular classes. Arrows indicate containment.

‚ and if γ ă α then in fact g promptly id-escapes xoe,γs y on the input p.

For the negative side, we need to meet the usual requirements:

Ne: If Φepgq is total then it is β-c.a.

where as usual xΦey is an effective listing of functionals. However, in addition we
now have new requirements ensuring that d is not in PNpαq. Let

@

Γj , ψj , hj
D

be an
effective list of all triples of functionals, partial computable functions and partial
computable approximations. We will build a family mj

s of (total) countings down α.
We will need to meet the following requirements for each j ă ω:

M j: If
@

hjpn, sq
D

is a (total) approximation of a self-modulating function

Γjpgq, and if ψj is total, then Γjpgq (equipped with the approximation
hj) does not promptly ψj-escape mj

s on any input.

We then appeal to Corollary 1.9 to see that d R PNpαq.
The plan to meet this requirement is the following. One n at a time we:

(1) Wait for a stage at which we see Γjpg, nqÓ, say with value q; until the end
of the module for n we restrain g from changing below the use.

(2) Wait for a stage s at which we see that hjpn, rqÓ“ q for some r ď s;

(3) Define mj
spnq ‰ mj

s´1pnq;

(4) Wait until we see that ψjpsqÓ and hjpn, ψjpsqqÓ“ q. When this is observed
we end the module for n, lift the restraint, and move to n` 1.

The main conflict is between the actions that must be done promptly and
those that must wait until they become accessible again. We argued above that
to meet Ne we must use a tree of strategies. However to meet P e,γ for γ ă α
we need to change gppq immediately when we see that oe,γs ppq changes. The main
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observation here is that while action with existing followers must be immediate,
the appointment of followers need not be: it can respect the priority tree. We will
argue that this is sufficient to resolve the conflict between P e,γ and Ne.

Another conflict is between M j and P e,γ for γ ě α, in particular when M j

is stronger. When γ ă α we can allow action for P e,γ injure the action for M j .
We restart the module above (for the same n). If we started with a large enough
ordinal mepnq then we have room to keep decreasing it. We just need to distribute
priorities so that for all n, only finitely many P e,γ can disturb the module for n.
If γ ě α then we cannot allow P e,γ to injure M j . However, if γ ě α then we do not
need to act promptly for P e,γ . And between ending the module for n and starting
the module for n`1, M j can drop all restraint. On a tree, this is enough to ensure
that P e,γ eventually succeeds.

Construction. On the tree of strategies we apportion to each requirement all
nodes of some level of the tree. The outcomes for nodes working for Ne and M j

are 8 ă fin; nodes working for P e,γ have a single outcome.
We start with g0 being the constant function 0. At a stage s ą 0 we define gs.

This is done by determining a number p˚s and letting gsppq “ s for p ě p˚s , and
gs´1ppq “ gsppq for p ă p˚s . If the stage is ended without determining p˚s then we
let gs “ gs´1.

Nodes σ working for some P e,γ will appoint followers. If a node σ is initialised
then its follower is cancelled.

Nodes ρ working for some M j will define a counting xmρ
sy down α. We start

with mρ
0 being the constant function α. At stage s ą 0 we define mρ

s for all ρ.
If ρ is initialised then we throw the counting xmρ

sy out and start a new one (we
complete the old counting trivially, say with zeros everywhere, so that at the end
we do get a uniformly computable sequence of total countings.) If ρ is initialised
at stage s then we (re)define mρ

t to be the constant function α for all t ď s. If ρ is
not initialised at stage s but is not accessible at stage s then we define mρ

s “ mρ
s´1.

At each stage s, each node ρ working for M j will be trying to meet the subre-
quirement Mρ

n for some n; we denote this n by nspρq. We set n0pρq “ 0, and
reset nspρq “ 0 if ρ is initialised at stage s. Unless otherwise stated, we let
nspρq “ ns´1pρq.

At stage s we first tend to promptness requirements. We ask if there is some
node σ, working for some P e,γ for γ ă α, which has a follower p defined, and
oe,γs ppq ‰ oe,γs´1ppq. If so, we let σ be the strongest such node; we determine p˚s “ p,
and initialise all nodes weaker than σ. No node is accessible, and we move to the
next stage.

If there is no such node σ then we build the path of accessible nodes.

Suppose that a node τ , working for some Ne, is accessible at stage s. We let t
be the greatest stage before s at which τˆ8 was accessible, t “ 0 if there was no
such stage. If dom Φe,spgs´1q ě t then we let τˆ8 be next accessible. Otherwise we
let τ f̂in be next acccessible.

Suppose that a node σ, working for some P e,γ , is accessible at stage s. If σ has
no follower then it appoints a new, large follower, initialises all weaker nodes, and
ends the stage. If σ already has a follower p, γ ě α and fe,γs ppq “ gs´1ppq then we
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determine that p˚s “ p, initialise all weaker nodes, and end the stage. Otherwise,
we let the unique successor of σ on the tree be next accessible.

Suppose that a node ρ, working for some M j , is accessible at stage s.
Let n “ ns´1pρq. The subrequirement Mρ

n is currently seen to be satisfied if
there is some stage r ă s such that mρ

rpnq ‰ mρ
r´1pnq, ψ

jprqÓ by stage s, and

hjpn, ψjprqq Ó“ hjpn, rq. If this subrequirement is currently seen to be satisfied
then we let nspρq “ n ` 1, and let ρ̂ 8 be next accessible; we let mρ

spkq “ 0 for
k ď n and mρ

spkq “ α for k ą n.
Suppose that this is not the case. If Γjspgs´1, nqÒ, let mρ

s “ mρ
s´1 and let ρ̂ fin

be next accessible. Suppose that Γjspgs´1, nqÓ“ q, and let γjspnq be the use. If there
is some node σ ě ρ̂ fin, working for some P d,γ , which has a follower p ă γjspnq,
then we initialise all nodes to the right of ρ̂ 8, let mρ

s “ mρ
s´1, and end the stage.

Otherwise, if there is no r ă s such that currently we see that hjpn, rq “ q
then again we let mρ

s “ mρ
s´1 and let ρ̂ fin be next accessible. If there is such r,

let t be the last stage at which ρ̂ 8 was accessible, t “ 0 if there was no such stage.
Let σ1, σ2, . . . , σk be the list, with descending priority, of the nodes extending ρ̂ 8,
working for some P e,γ for some γ ă α, which currently have a follower p; let pi be
the follower for node σi and say that σi works for P ei,γi . We let

mρ
spnq “

ÿ

iďk

oei,γis ppiq;

we let mρ
spn

1q “ 0 for all n1 ă n and mρ
spn

1q “ α for all n1 ą n. We let ρ̂ fin be
next accessible.

Verification. Let ρ be a node, working for some M j . Our first task is to prove:

Lemma 1.17. xmρ
sy is a counting down α.

Let s ă ω, and let r˚ be the last stage prior to stage s at which ρ was accessible.
We need to show that the conditions for mρ for being a counting have not been
violated by stage s. We observe:

‚ If r˚ ď t ď s then ntpρq ď nspρq;
‚ For all n1 ă nspρq, m

ρ
spn

1q “ 0;
‚ For all n1 ą nspρq, m

ρ
spn

1q “ α.

So the only question is what happens on n “ nspρq. Let u˚ ě r˚ be the least stage
such that nu˚pρq “ n. For t P pu˚, ss let σt1, σ

t
2, . . . , σ

t
kptq be the list, with descending

priority, of the nodes extending ρ̂ 8, working for some P e,γ for some γ ă α, which
at stage t have a follower. Since ρ̂ 8 is not accessible on the interval pu˚, ss, we in
fact know that the node σti does not depend on t, so we write σ1, σ2, . . . , σkptq; and
the follower pi for σi does not change. Say σi works for P ei,γi ; for brevity let, for
t ą u˚,

ηρt “
ÿ

i ď koei,γit ppiq.

So ηρt is non-increasing, and if some node σi acts at a stage w P pu˚, ss then as
oei,γiw ppiq ă oei,γiw´1ppiq we have βρw ă βρw´1. Further, since α is closed under addition
and each γi is smaller than α, we have βρt ă α for all t P pu˚, ss. Now let t ă s.
Either mρ

t pnq “ α, in which case certainly mρ
spnq ď mt

ρpnq; or there are stages t1 ď t

and s1 ě t1 such that mρ
t pnq “ βρt1 and mρ

spnq “ βρs1 ; so we get mρ
spnq ď mρ

t pnq as
required. This proves Lemma 1.17.
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Keeping with the same notation, say that ρ acts at a stage t ą u˚ if it is
accessible at stage t and ends the stage (initialising all extensions of ρ̂ fin).

Lemma 1.18. Suppose that ρ acts at two stages s ą t, that nspρq “ ntpρq, and
that ρ is not initialised at any stage in the interval rt, ss. Then βρs´1 ă βρt .

Proof. Let n “ ntpρq. The action of ρ at stage t ensures that the computation

Γjt pgt´1, nq is injured between stage t and stage s. This action, and the fact that ρ
itself is not initialised between stages t and s, means that some node σ extending
ρ̂ 8 acts at some stage w P pt, sq and changes g below the use of the computation.
Since ρ̂ 8 is not accessible at that interval, σ must work for some P e,γ where γ ă α.
We observed that this means that βρw ă βρw´1. �

Lemma 1.19. The true path is infinite, and the construction is fair to every node
on the true path.

Proof. As usual, if p is a follower for some node σ then σ acts for p only
finitely often. This shows that there are infinitely many stages at which we build
the path of accessible nodes. Hence the root node lies on the true path, and of
course is never initialised. Also this shows that a node that lies to the left of the
true path can act at most finitely often.

Further, the usual arguments show that if a node working for either P e,γ or Ne

is on the true path and is initialised only finitely many times, then some immediate
successor of the node on the tree lies on the true path, and is only initialised finitely
many times.

So we consider a node ρ on the true path, working for some M j . The node ρ
never initialises nodes extending ρ̂ 8, so if ρ̂ 8 is accessible infinitely often then
we are done. Suppose that this is not the case. Then we can let t˚ be the stage
at which the last value n˚ for nspρq is set (either the last stage at which ρ̂ 8 is
accessible, or the last stage at which ρ is initialised). Now Lemma 1.18 implies
that ρ acts only finitely many times after stage t˚. �

It is not difficult to see that every positive requirement is met. Further, fol-
lowing the proof of Theorem III.2.1 we can see that each requirement Ne is met.
As we mentioned above, it is not actually important that a computation Φepg, xq,
already certified by a node τ on the true path, is injured only during τˆ8-stages;
it is only important that the node injuring the computation extends τˆ8. We are
left therefore with verifying that each M j is met. Fix j, let ρ be a node on the
true path working for M j , and suppose that ψj is a total speed-up function, hj is a
(total) approximation witnessing that Γjpgq (which is total) is self-modulating. We
show that every subrequirement Mρ

n is satisfied: for every n there is some stage r
such that mρ

rpnq ‰ mρ
r´1pnq and hjpn, ψjprqq “ hjpn, rq. Of course if the subre-

quirement is ever seen to be satisfied then it is indeed satisfied. So by induction we
show that xnspρqy is unbounded, equivalently that ρ̂ 8 lies on the true path.

Suppose that this is not the case; let n “ lims nspρq; let t˚ be the least stage (not
before the last stage at which ρ was initialised) such that nt˚pρq “ n. The fact that
Γjpg, nqÓ and that lims h

jpn, sq “ Γjpg, nq implies that limsm
ρ
spnq “ lims β

ρ
s pnq;

let δ be that common value. Let s be the least stage at which mρ
spnq “ δ; since

δ ă α, mρ
spnq ‰ mρ

s´1pnq. Also, by our instructions, mρ
spnq “ βρs pnq so βρs pnq “ δ

and in fact βρt pnq “ δ for all t ą s.
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Suppose that the computation Γjspgs´1, nq “ q is correct. There is some r ă s
such that hjpn, rq “ q; since hj correctly approximates Γjpgq, and in a non-
decreasing way, it must be that hjpn,wq “ q for all w ě r. But then since ψj

is total, we will eventually see that Mρ
n is satisfied, contrary to our hypothesis.

Hence the computation Γjspgs´1, nq is injured at some stage w ą s. The fact that ρ
does not act at stage s implies, as in the arguments above, that some node σ ex-
tending ρ̂ 8 does this injury, and that it must work for P e,γ for some γ ă α; this
implies that βρw ă βρs . This is the desired contradiction, showing that M j is met,
and concluding the proof of Theorem 1.14.

1.6. Uniform prompt classes. The uniform layers in our hierarchy also have
prompt versions. Let α ď ε0 be an infinite power of ω. Recall the definition of
an α-order function h and of h-computable approximations (Definition III.3.1).
Recall also that we have a uniform listing

@

fe,hs , oe,hs
D

of tidy ph ` 1q-computable
approximations of all h-c.a. functions. To avoid technical annoyances we define:

Definition 1.20. A self-modulating function g is promptly not h-c.a. if there is
a speed up function p such that g promptly p-escapes each counting

@

oe,hs
D

on
infinitely many inputs.

An elaboration on the argument giving Lemma III.3.2 yields the following.

Lemma 1.21. The following are equivalent for a c.e. degree d:

(1) For some α-order function h, some g ďT d is promptly not h-c.a.;
(2) For every α-order function h, some g ďT d is promptly not h-c.a.

If these conditions hold then we say that d is promptly not uniformly α-c.a.
When α “ ω we say that d is promptly array noncomputable.

Proof. Let h and h̄ be α-order functions; let f be a function which is promptly
not h-c.a. As in the proof of Lemma III.3.2 partition ω into an increasing sequence
of finite intervals I˚ ă I0 ă I1 ă I2 ă . . . such that for all n, for all x P In we have
hpxq ě h̄pnq.

Define a self-modulating function g by setting gspnq “ s if fspxq “ s for some
x P Im for some m ď n.

For each e, define a counting xme
spxqy down h by letting

me
spxq “

$

’

’

&

’

’

%

0, if x P I˚;

hpxq, if x P In and oe,h̄s pnq “ h̄pnq; and

oe,h̄s pnq if x P In and oe,h̄s pnq ă h̄pnq.

The slow-down lemma holds for h and so an analogue of Corollary 1.9 ensures
that there is a speed-up function p such that f promptly p-escapes each xme

sy on
infinitely many inputs.

Fix e and suppose that f promptly p-escapes xme
sy on an input x R I˚;

say x P In. Then g promptly p-escapes
A

oe,h̄s

E

on the input n. �

We can also define the prompt version of the class of not totally ă α-c.a.
functions; the definition carries no surprises. The techniques used above allow us
to prove hierarchy theorems for these classes; we do not elaborate here.
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2. Minimal pairs of separating classes

To demonstrate the dynamic power encapsulated by prompt classes we discuss
separating classes. For disjoint sets A0 and A1, we let SeppA0, A1q denote the
class of separators of A0 and A1 — the separating class of A0 and A1. If A0

and A1 are c.e. sets, then SeppA0, A1q is a Π0
1 class. If A0 Y A1 is co-infinite then

SeppA0, A1q is perfect, otherwise it is finite. In the literature at the time (for
example [52, 30]), computing the extendible strings in a Π0

1 class P (the strings σ
such that rσs X P ‰ H) was referred to as “computing the class P”. In the case
of a separating class SeppA0, A1q, this is equivalent to computing both A0 and A1;
here we only discuss computing separating classes.

Downey, Jockusch and Stob [30] proved that a c.e. degree is array noncom-
putable if and only if it computes two separating classes P and Q which are in-
comparable in the sense that any element of P is Turing incomparable with any
element of Q. In one direction they showed that any separating class computed by an array

computable degree has an element of degree 01. Here we prove:

Theorem 2.1. Every c.e. degree which is promptly array noncomputable com-
putes two separating classes P and Q such that any element of P forms a minimal
pair with any element of Q.

2.1. The Jockusch-Soare construction. To prove the theorem, we first
recall how to construct two separating classes P and Q such that every element
of P forms a minimal pair with every element of Q. This was first done by Jockusch
and Soare in [52]. We are not aware of a modern presentation of this construction,
so we discuss it in some detail.

We wish to enumerate four c.e. sets A0, A1, B0 and B1 with the intention of
letting P “ SeppA0, A1q and Q “ SeppB0, B1q. The minimality requirements we
need to meet are:

Re: If X P P, Y P Q and ΦepXq “ ΨepY q is total, then it is computable.

(Here as usual xΦe,Ψey is a list of all pairs of functionals).

Discussion. There are two basic ways for constructing minimal pairs: by forc-
ing, and by Lachlan’s priority construction.

The forcing argument produces Cohen generic sets. The argument is as follows.
When tackling the eth requirement, we look for an e-split : a pair pπ, υq of strings
such that Φepπq K Ψepυq. If we have already declared that σ and τ are initial
segments of the sequences A and B that we are building, then we look for an e-split
pπ, υq with π ě σ and υ ě τ . If such a split is found then we declare that π ă A and
υ ă B; the requirement is met. If no such split exists and still ΦepAq “ ΨepBq, then
we argue that the common value is computable, by searching all possible extensions.

Lachlan’s construction produces c.e. sets. The main idea is freezing one side
of a computation below the current length of agreement. That is, as time goes by,
we monitor ΦepA, xq and ΨepB, xq, and wait for common values to show up. We
then allow positive requirements (making A and B noncomputable) to enumerate
numbers into one of the two sets but not into both. This one-sided restraint is
maintained until we see new agreement. Because one side of the computation was
preserved, the new common value is identical to the old one.

The main idea of the Jockusch-Soare construction is to mix these two construc-
tion techniques.
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To meet one requirement Re on its own we can try to follow the forcing con-
struction. We look for an e-split pπ, υq. If one is found then we declare that P Ď rπs
and Q Ď rυs, where for a string τ , rτ s denotes the clopen subset of Cantor space 2ω

consisting of the sequences extending τ . To ensure that P Ď rπs, for example, we
enumerate all n such that πpnq “ 0 into A0, and all n such that πpnq “ 1 into A1.

However, we are performing a computable construction, so we cannot ask H1

whether an e-split exists or not. All we can do is wait for one to show up, and
then try to take it. The main difficulty in the construction is when we consider
how Re would deal with the action of weaker requirements. Since they cannot wait
for Re to find an e-split, they will grab their own splits when they can. Thus, as
time goes by, numbers are enumerated by weaker requirements into the four sets
we are enumerating, making P and Q shrink in the process. There may be many
e-splits, but we may discover them too late: whenever an e-split pπ, υq is discovered
at stage s, we already have rπs X Ps “ H or rυs X Qs “ H. We would then like
to argue that if ΦepXq “ ΨepY q for X P P and Y P Q then this common value
is computable. However, the forcing argument is useless for this, since e-splits do
exist.

In this case we employ Lachlan’s technique. Suppose that at no stage s do
we find a viable e-split. This means that if we look for strings ζ which are initial
segments of Φe,spXq for some X P Ps and Ψe,spY q for some Y P Qs then we will
not find incomparable such strings. We will then act toward ensuring that ζ is in
fact correct, in that ζ ă ΦepXq and ζ ă ΨepY q for all X P P and Y P Q such that
ΦepXq “ ΨepY q. Some action is required here: if we do nothing, then it is possible
that all oracles X P Ps and Y P Qs which compute ζ at stage s fall off these classes,
and only later, at some stage t ą s, we find new elements X̃ P Pt and Ỹ P Qt which
both compute some ζ̃ incomparable with ζ.

The natural thing to do, at stage s, would be to take some π ă X and υ ă Y
such that ζ ď Φepπq,Ψepυq, and immediately declare that P Ď rπs and Q Ď rυs.
This option is immediately rejected because we would need to do this for longer and
longer such strings ζ — remember that our mission is to compute ΦepXq “ ΨepY q.
Alternatively, we could just ensure that rπs X P ‰ H and rυs XQ ‰ H, or maybe
even just one of these; this can be done by imposing restraint on weaker require-
ments, to enumerate into sets only numbers greater than |π| or |υ|. However again
we will want to do this for longer and longer such strings, and we don’t want the
restraint, even on one side, to go to infinity. The solution, namely Lachlan’s, is to
impose restraint on one side, wait for recovery, and then maybe impose restraint
on the other side. We ensure that rπs XPr ‰ H for r ě s; it is possible that υ falls
off Q. We wait for a stage t ą s at which we get more convergence on some new
Ỹ P Qt. If this is incomparable with ζ, we found a split and we can win quickly.
Otherwise, we see ζ (and more) on both sides, and can injure one of them, while
keeping the correctness of ζ ă ΦepXq “ ΨepY q.

What the restraint means is that when we do see a split pπ, υq, we cannot
immediately ensure that P Ď rπs and Q Ď rυs: this would entail enumerating
numbers into both A0 Y A1 and B0 Y B1, which we promised not to do. We first
ensure that P Ď rπs. We wait for the next stage t at which the node doing the
work is accessible. By imposing restraint, we can ensure that if the node was not
itself initialised, then we still have rυs XQt ‰ H, and so can ensure that Q Ď rυs.
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This discussion ignored the fact that we need to make P and Q uncountable,
that is, make both A0 Y A1 and B0 Y B1 co-infinite. To ensure that, we will have
to impose further restraint on requirements. We will forbid a requirement Re to
enumerate the smallest e-many elements from the complement of A0,s Y A1,s into
A0 YA1, and the same on the B-side.

This means that each requirement Re will have to be broken into finitely many
sub-requirements. If Re is prohibited from enumerating numbers below some num-
ber r into sets, then each subrequirement will need to guess what X ær and Y ær are.
Each such guess determines two clopen sets C and D of Cantor space, and there are
22r-many such pairs. Each subrequirement will be associated with a particular pair
pC,Dq, and its job will be to find an e-split pπ, υq with rπs Ď C and rυs Ď D. When
such a split is found, it will want to enumerate numbers from |π|zr into A0YA1 to
ensure that if X P C X P, then π ă X; and similarly on the other side.

The last point that needs discussion is the structure of the tree of strategies, in
particular, how to deal with strategies and substrategies. Suppose that τ is a node
on the tree of strategies working for some requirement Re; and let r be the restraint
imposed on τ , that is, τ is not allowed to enumerate numbers smaller than r into
sets. For each pair pξ, θq of strings of length r, a subrequirement Rτ,i restricts itself
to work within the pair of clopen sets rξs and rθs. Each such subrequirement can
have either a Π2 outcome (agreement goes to infinity) or a Σ2 outcome, which needs
to be guessed by weaker nodes. The correct outcomes are independent between the
subrequirements, and so we will add to the tree below τ levels of nodes working for
subrequirements.

On the other hand, when such a subrequirement finds a split and wants to
act on it, it needs to impose large restraint on every node to its right. If this was
done by the individual subrequirement node, this means that restraint would be
increased for other nodes σ which work for subrequirements of τ ; but that means
that there subrequirements now have to consider even more clopen sets, and this
process would never end. Thus when a subrequirement of τ wishes to act positively,
this is actually done by τ and not by its subrequirement.

We note that since the restraint on a node influences the association of nodes
to subrequirements below the node, we build the restraint into the tree, rather
than dynamically change the tree during the construction. Thus nodes will not be
initialised in this construction; rather, many versions of a strategy will each guess
the restraint imposed on them.

The tree of strategies. Nodes on the tree of strategies will be finite sequences
of numbers and the symbol 8. With every node ρ we will associate a restraint rpρq
(imposed on ρ). There will be two kinds of nodes: primary nodes τ which work
for some requirement Re; and auxiliary nodes σ whose job is to help calculate the
restraint imposed by subrequirements. For brevity, for a primary node τ we let
mpτq “ 22rpτq. The tree and the restraint are defined together recursively.

We start with the empty string xy which is a primary node, working for R0.
We let rpxyq “ 0. Suppose that τ is a primary node, working for a requirement Re.

‚ The outcomes of τ are all the numbers k ă ω (ordered naturally). We let
rpτ k̂q “ maxtrpτq, 2ku.

‚ For each i “ 1, 2, . . . ,mpτq, all extensions of τ of length |τ |`i are auxiliary
nodes associated with a subrequirement Rτ,i (which will be the restriction
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of Re to a pair of clopen sets). If σ is such a node then the outcomes
of σ are 8 and all natural numbers, ordered 8 ă 0 ă 1 ă ¨ ¨ ¨ . We let
rpσˆ8q “ rpσq and rpσ k̂q “ maxtrpσq, 2ku.

‚ All extensions of τ of length |τ |`mpτq`1 are primary nodes, each working
for Re`1.

Notation. To be specific, for a pair of disjoint sets E and F we let

SeppE,F q “ tX P 2ω : pn P E Ñ Xpnq “ 0q & pn P F Ñ Xpnq “ 1qu.

Recall that for a string ξ P 2ăω,

rξs “ tX P 2ω : ξ ă Xu

be the clopen subset of Cantor space 2ω determined by ξ.
For every r ă ω fix a listing

 

pξiprq, θiprqq : i “ 1, 2, . . . , 22r
(

of all pairs of strings pξ, θq of length r. Then, for every primary node τ on the tree
of strategies, for i “ 1, 2, . . . , rpτq, we let Cτ,i “ rξiprpτqqs and Dτ,i “ rθiprpτqqs.
The subrequirement Rτ,i is the restriction of Re to the clopen sets Cτ,i and Dτ,i.

Construction. We enumerate four sets A0, A1, B0 and B1, and make
sure to keep A0 and A1 disjoint, and B0 and B1 disjoint. At stage s we
let Ps “ SeppA0,s, A1,sq and Qs “ SeppB0,s, B1,sq.

At stage 0 nothing happens. At stage s ě 1 we describe the path of accessible
nodes. The root is always accessible. Let τ be a primary node which is accessible
at stage s. If |τ | ě s then τ does nothing and we end the stage. Suppose that
|τ | ă s.

Suppose that τ works for Re. Recall that an e-split is a pair pπ, υq of binary
strings such that Φepπq K Ψepυq. Let i ď mpτq.

‚ We say that the subrequirement Rτ,i is seen to be met at stage s if there
is an e-split pπ, υq (observed by this stage) such that Ps X Cτ,i Ď rπs and
Qs XDτ,i Ď rυs.

‚ We say that Rτ,i admits a split at stage s if there is an e-split pπ, υq,
observed by this stage, such that rπs Ď Cτ,i, rυs Ď Dτ,i, rπs X Ps ‰ H,
and rυs XQs ‰ H.

‚ Suppose that Rτ,i does not admit a split at stage s. We then define
ζspτ, iq, the pτ, iq-agreement at stage s, to be the longest binary string ζ
such that ζ ď Φe,spXq and ζ ď Ψe,spY q for some X P Ps X Cτ,i and some
Y P Qs X Dτ,i. Note that since Rτ,i does not admit a split at stage s, no two

incomparable strings satisfy the definition of ζ.

At stage s, if there is some subrequirement Rτ,i which admits a split but is not
seen to be met at this stage, then we choose the least such i, and we let pπ, υq be
the least split admitted by the subrequirement. We then act as follows:

‚ If Ps X Cτ,i Ę rπs then we enumerate numbers into A0,s`1 and A1,s`1 so
that Ps`1 X Cτ,i Ď rπs. Namely for all x ă |π|, x ě rpτq, x R A0,s Y A1,s,
we enumerate x into A0,s`1 if πpxq “ 0 and enumerate x into A1,s`1 if
πpxq “ 1. We declare that τ acted at stage s and end the stage.
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‚ If Ps X Cτ,i Ď rπs then we act similarly, to ensure that Qs`1 XDτ,i Ď rυs,
declare that τ acted and end the stage.

If τ does not act at stage s we extend the path of accessible nodes up to the
next primary node.

‚ We first determine the immediate extension of τ by determining τ ’s out-
come at stage s. The outcome is the greatest stage t ă s at which τ acted;
if there is no such stage, let t be the least t ď s at which τ was accessible.

‚ Now let i ď mpτq and suppose that a node σ of length |τ | ` i (and so
associated with Rτ,i) is accessible at stage s.

– If this is the first stage at which σ is accessible, let the outcome of σ
at this stage be 8.

– If Rτ,i is seen to be met at stage s, then we let σˆ8 be next accessible.
– Otherwise, let t be the greatest stage prior to stage s at which σˆ8

was accessible.
˚ If |ζspτ, iq| ą t then we let σˆ8 be next accessible.
˚ Otherwise we let σ t̂ be next accessible.

Verification. Letting nodes guess their restraint implies that no two incompa-
rable strings can be accessible infinitely many times. Thus the true path consists
of those nodes which are accessible infinitely often. To show that the true path is
infinite, we will need to show that every primary node on the true path acts only
finitely many times.

Note that for all nodes ρ and µ, if ρ ď µ then rpρq ď rpµq.

Lemma 2.2. Let µ be a node on the tree of strategies. Suppose that µ is accessible
at some stage t; suppose that a node ρ, which lies to the right of µ, is accessible at
some stage s ą t. Then rpρq ě 2t.

Proof. Let ν be the longest common initial segment of µ and ρ; let p be the
outcome of ν such that ν p̂ ď ρ; let q be the outcome of ν such that ν q̂ ď µ. Then
p ‰ 8, and if q ‰ 8 then q ă p.

We show that p ě t; this is sufficient, as rpρq ě rpν p̂q ě 2p.
If ν is an auxiliary node, let E be the set of stages at which νˆ8 is accessible.

If ν is a primary node, let E be the set of stages at which ν acts. For any finite
outcome o of ν, if ν ô is accessible at a stage v, then o is the greatest stage in E
prior to stage v. If q “ 8 then t P E so p ě t. Otherwise, the fact that q ă p
implies that E X pt, sq is nonempty, in which case p ą t. �

The following is also clear:

Lemma 2.3. Suppose that a primary node τ acts at stage t. If ρ ą τ is accessible
at a stage s ą t then rpρq ě 2t.

For a node ρ on the true path, let s˚pρq be the least stage s ą rpρq at which ρ
is accessible. Lemma 2.2 implies:

Corollary 2.4. If ρ lies on the true path then no node to the left of ρ is accessible
after stage s˚pρq.

Suppose that τ , a primary node working for Re, lies on the true path.

Lemma 2.5. No node stronger than τ ever acts at or after stage s˚pτq.



184 CHAPTER VIII. PROMPT PERMISSIONS

Proof. Let µ be a node stronger than τ and let t ě s˚pτq. If µ lies to the left
of τ then by Corollary 2.4, µ is not accessible at stage t. Suppose that µ ă τ . As
rpτq ă s˚pτq ď t, By Lemma 2.3, if µ acts at stage t then τ cannot be accessible
after stage t, contradicting the assumption that τ lies on the true path. �

Lemma 2.6. Let i ď mpτq. If the requirement Rτ,i is seen to be met at some
stage s, then it is seen to be met at every stage t ą s.

Proof. Follows from the definition of “seen to be met”, because Pt Ď Ps and
Qt Ď Qs. �

Lemma 2.7. The node τ acts only finitely many times.

Proof. By induction on i “ 1, 2, . . . ,mpτq, we show that τ acts on behalf of
the subrequirement Rτ,i only finitely many times. Fix such i and suppose that after
stage si ě s˚pτq, τ does not act on behalf of Rτ,j for any j ă i.

If at some stage t ą si, τ acts on behalf of Rτ,i by enumerating numbers
into B0 Y B1, then this action (and the fact that we are enumerating numbers
into B0YB1 and not A0YA1) means that Rτ,i is seen to be met at stage s` 1; by
Lemma 2.6), τ will not act for Rτ,i after stage s.

Suppose that at some stage u ą si, τ acts on behalf of Rτ,i by enumerating
numbers into A0YA1. Let pπ, υq be the e-split prompting this action. The enumer-
ation ensures that Ps`1 X Cτ,i Ď rπs. Since Qs`1 “ Qs, we have Qs`1 X rυs ‰ H.

Since the pair pπ, υq is observed by stage u, we have |υ| ă u. Let t ą u be the
next stage at which τ is accessible. By Lemmas 2.5 and 2.2, no numbers below 2u,
and so below |υ|, enter B0YB1 between stages u and t. As Q is a separating class,
this implies that Qt X rυs ‰ H. Since t ą si, it follows that at stage t, τ acts on
behalf of Rτ,i again, and ensures that Rτ,i is seen to be met from the next stage
onwards. �

Lemma 2.7 implies that the true path is infinite.

Lemma 2.8. The classes P and Q are uncountable.

Proof. Let τ be a primary node on the true path; let s˚˚ be the greater
between the last stage at which τ acts, and s˚pτq.

By the convention we already used above, every string examined at a stage s
has length ă s; it follows that A0,s, A1,s, B0,s, B1,s Ď s.

By Lemmas 2.5, 2.2 and 2.3, no number below 2s˚˚ is enumerated into any
set after stage s˚˚; it follows that no number in the interval rs˚˚, 2s˚˚q is even
enumerated into any set. Thus both A0YA1 and B0YB1 are disjoint from infinitely
many nonempty interval, and so are co-infinite. �

Lemma 2.9. Every requirement Re is met.

Proof. Let e ă ω; let τ be the primary node on the true path which works
for Re.

Let X P P and Y P Q, and suppose that ΦepXq “ ΨepY q. There is a
unique i ď mpτq such that X P Cτ,i and Y P Dτ,i. The subrequirement Rτ,i is
never seen to be met, and in fact, by the proof of Lemma 2.7, from some stage
onwards, at no stage t at which τ is accessible does Rτ,i admit a split.

Let σ be the auxiliary node on the true path which is associated with Rτ,i.
The reals X and Y show that σˆ8 lies on the true path. We show that if s ą t are
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stages at which σˆ8 is accessible then ζtpτ, iq ă ζspτ, iq; the fact that no splits are
ever observed will imply that ζtpτ, iq ă ΦepXq for all such t. Note that the node τ
does not act after stage t (or σ would not be on the true path).

As discussed above, the argument is really the Lachlan minimal pair argument.
At stage t, at most one node extending σ acts. That node enumerates numbers
into A0 Y A1, or into B0 Y B1, but not both. Without loss of generality, say it is
the former. The arguments above show that any node σ that acts between stages t
and s has restraint rpσq ě t. This implies that if rυs Ď Qt XDτ,i has length t and
Ψepυq ě ζtpτ, iq then rυs XQs ‰ H as well. �

2.2. Adding prompt permissions. To prove Theorem 2.1 we observe that
the proof of Lemma 2.7 shows that in fact we can computably bound the number of
times a primary node will need to act: at most twice for each Rτ,i, once all action

for Rτ,j for j ă i has ceased. The total is
ř

iďmpτq 2i “ 2mpτq`1 “ 21`22rpτq

. So we

let hprq “ 21`22r

. We need the permissions to be prompt: otherwise the Lachlan
mechanism of keeping one side of the computation alive cannot work. Let d be a
c.e. degree which is promptly array noncomputable; by Lemma 1.21 there is some
function g ďT d which is promptly not h-c.a.

The idea is to use g to permit the action of a node τ . Each time τ wants to act
we will seek a change in gprpτqq. If we do not get it we will of course notice that
immediately; we will then essentially want to increase rpτq by 1 and try all over
again. Of course this means that we need to break the requirement up into more
subrequirements. Rather than increase rpτq we will incorporate into the tree the
guess as to where permission will be given.

Some details. The tree of strategies now consists of three different nodes:

‚ “super-primary” nodes ς, whose outcomes are guesses as to where g gives
permission;

‚ primary nodes and auxiliary nodes which have the same role as in the
previous construction.

Again we define the tree of strategies by recursion, along with the restraint func-
tion r. We start with the root, which is a super-primary node working for R0, again
with rpxyq “ 0.

Suppose that ς is a super-primary node, working for Re. The possible outcomes
of ς are the numbers k ě rpςq, ordered naturally. For a super-primary node ς and
k ě rpςq, we let rpς k̂q “ k, and we declare that ς k̂ is a primary node working
for Re.

Then the definition is as before: the outcomes of a primary node τ are all natu-
ral numbers, ordered naturally, with rpτ k̂q “ maxtrpτq, 2ku. For i “ 1, 2, . . . ,mpτq
(where again mpτq “ 22rpτq), all nodes extending τ of length |τ | ` i are auxil-
iary nodes working for Rτi . As above, the outcomes of an auxiliary node σ are
8 ă 0 ă 1 ă 2 ă ¨ ¨ ¨ , with rpσˆ8q “ rpσq and rpσ k̂q “ maxtrpσq, 2ku. All nodes
of length |τ |`mpτq`1 extending τ are super-primary nodes, all working for Re`1.

For each super-primary node ς we will build a (total) counting xoςsy down h. By
the recursion theorem (and the slow-down lemma) we can find a speed-up function p
such that for all ς, the function g promptly p-escapes each xoςsy, each on infinitely
many inputs.
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For each super-primary node ς we will have a counter nspςq. This is the current
input on which we guess that g will give prompt permission.

For every primary node τ we define Cτ,i and Dτ,i as above.
Construction. Again, we enumerate four sets A0, A1, B0 and B1, and

make sure to keep A0 and A1 disjoint, and B0 and B1 disjoint. At stage s
we let Ps “ SeppA0,s, A1,sq and Qs “ SeppB0,s, B1,sq.

At stage s we start by defining, for every super-primary node ς,

‚ n0pςq “ rpςq;
‚ oς0pnq “ hpnq for all n ă ω.

No node is accessible at stage 0.

At stage s ą 0 we start with the root, which is accessible.

Suppose that ς is a super-primary node, accessible at stage s. If |ς| ě s we
end the stage; for every super-primary node ϑ we define nspϑq “ ns´1pϑq and
hϑs “ hϑs´1.

Otherwise, we let τ “ ς p̂ns´1pςqq be next accessible. The definitions of:

‚ Rτ,i is seen to be met at stage s;
‚ Rτ,i admits a split at stage s; and
‚ ζspτ, iq

are exactly as above.

At stage s, if there is some subrequirement Rτ,i which admits a split but is not
seen to be met at this stage, then we choose the least such i, and we let pπ, υq be
the least split admitted by the subrequirement. We then act as follows:

‚ If Ps X Cτ,i Ę rπs then letting n “ ns´1pςq, we:
– define ospnq “ os´1pnq ´ 1, and check to see if gppsqpnq ‰ gspnq.
– If so, we enumerate numbers ě rpτq into A0,s`1 and A1,s`1 so that

Ps`1 X Cτ,i Ď rπs.
We let nspςq “ n, ospmq “ 0 for all m ă n, and ospmq “ hpmq for all
m ą n. We declare that τ acted at stage s and end the stage. For all
super-primary nodes ϑ ‰ ς we let nspϑq “ ns´1pϑq and hϑs “ hϑs´1.

– If not, then declare that nspςq “ n ` 1. For all m ď n we define
hςspmq “ 0; for all m ą n we let hςspmq “ hpmq. We treat other
super-primary nodes in the same way; we end the stage.

‚ If Ps X Cτ,i Ď rπs then we act exactly as in the first case, trying to ensure
that Qs`1 XDτ,i Ď rυs.

If τ does not attempt to act at stage s then we continue to choose accessible
nodes until we get to the next super-primary node. The choice of outcomes is
precisely as above.

Verification. We follow the verification of the previous construction, noting the
differences. Note that again for all nodes ρ and ς, if ρ ď ς then rpρq ď rpςq.

First, we need to show that if a primary node τ , the child of a super-
primary node ς, is attempting to act at a stage s, then oςs´1pnq ą 0 (where again
n “ ns´1pςq “ rpτq). This was discussed above, and was the motivation for the
definition of h: the total number of times τ acts is smaller than hprpτqq “ hpnq; at
stage s, oςspnq is hpnq´the number of times τ acted by stage s.
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Lemma 2.2 does not hold as stated and needs refinement. For nodes ρ and µ on
the tree of strategies, let ρ^ µ be the longest common initial segment of ρ and µ.
We write µ ă˚ ρ if µ lies to the left of ρ, and ρ ^ µ is not a super-primary node.
The proof of Lemma 2.2 gives:

Lemma 2.10. Suppose that µ ă˚ ρ, µ is accessible at some stage t, and that ρ is
accessible at some stage s ą t. Then rpρq ě 2t.

The use of this comes from:

Lemma 2.11. Suppose that µ lies to the left of ρ but that µ ­ă˚ ρ. If ρ is accessible
at some stage t, then µ is not accessible at any stage s ě t.

Proof. Let ν “ µ ^ ρ. Let k ă m be the outcomes of ν such that ν k̂ ď µ
and νˆm ď ρ. At stage t, we have nt´1pνq “ m, whence for all stages s ě t we will
have nspνq ě m ą k, so µ will not be accessible after stage s. �

Together, these lemmas give us Corollary 2.4. Lemma 2.3 holds as is, and so
we also get Lemma 2.5, with the same proof. Finally, we also conclude another
weakened version of Lemma 2.2:

Lemma 2.12. Suppose that µ lies on the true path, is accessible at some stage t,
and some node ρ which lies to the right of µ is accessible at stage s ą t. Then
rpρq ě 2t.

Proof. We show that µ ă˚ ρ, and then appeal to Lemma 2.2 applies. If
µ ­ă˚ ρ then by Lemma 2.11, µ will not be accessible after stage s, contradicting
the assumption that µ lies on the true path. �

Lemma 2.6 holds with the same proof; putting everything together, the proof
above gives Lemma 2.7 as well. However, this is not sufficient for showing that
the true path is infinite; we need to consider a super-primary node ς which lies on
the true path. That is, we need to show that the sequence xnspςqy is eventually
constant. Since this sequence is non-decreasing, we need to show that it is bounded.
This follows from the fact that g does promptly p-escape xoςsy on infinitely many
inputs. Let k be the least number n ě rpςq such that g promptly p-escapes xoςsy on
input n. If xnspςqy is unbounded then there is some stage s such that nspςq “ k.
Then for all t ą s we also have ntpςq “ k. This is because whenever τ “ ς k̂
attempts to act, it does receive permission to act.

The rest of the verification (the proofs of Lemmas 2.8 and 2.9) follows as above,
noticing that if τ is a primary node on the true path, then τ will receive permission
to act whenever it attempts to act.

3. Prompt permission and other constructions

Prompt versions of permitting can also be adapted to other constructions we
have been discussing. The main example is the embedding of the 1-3-1 lattice. The
main idea is that if non-total ă ωω-permission is given promptly then when balls
enter the permitting bin, instead of appointing a trace for the bottom set B, we
ask for prompt permission. If this is not given then the follower is cancelled. This
yields:

Theorem 3.1. If d is promptly not totally ă ωω-c.a. then there is an embedding
of the 1-3-1 lattice in the c.e. degrees below d which maps the bottom element to 0.
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As mentioned in the introduction, a full reversal is impossible, since every high
degree bounds such an embedding as well, and some high degrees are not even
promptly simple.

Another construction to which such prompt permission can be adapted is the
one mentioned is the construction of a noncomputable left-c.e. real % all of whose
presentations are computable. This was briefly discussed in Chapter V, where we
mentioned that the construction of such a real is more complicated than the one
proving Theorem I.3.3(1). In the simplified construction the c.e. set B not only aids
in coding permissions, but also in “wiping the deck” concerning earlier promises
that interfere with our requirement. In the original construction such a clearing
cannot be done, and as a result a more complicated process of proliferating small
quanta and their gradual peeling back is employed. The dynamics are similar to the
constructions discussed above, and so the following can be established by similar
methods.

Theorem 3.2. If d is promptly not totally ă ωω-c.a. then then there is a
noncomputable left-c.e. real % ďT d all of whose presentations are computable.
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