
PROPER DIVISIBILITY IN COMPUTABLE RINGS

NOAM GREENBERG AND ALEXANDER MELNIKOV

Abstract. We study divisibility in computable integral domains. We develop

a technique for coding Σ0
2 binary trees into the divisibility relation of a com-

putable integral domain. We then use this technique to prove two theorems
about non-atomic integral domains.

In every atomic integral domain, the divisibility relation is well-founded.

We show that this classical theorem is equivalent to ACA0 over RCA0.
In every computable non-atomic integral domain there is a ∆0

3 infinite se-

quence of proper divisions. We show that this upper bound cannot be improved

to ∆0
2 in general.

1. Introduction

Throughout most of the 19th century algebra was algorithmic; existence proofs
were given by explicit constructions. Kronecker’s elimination theory stands in con-
trast with the later abstract development led by Dedekind, Kummer and Hilbert;
however all of mathematics up to that point was as constructive [22]. Computable
algebra aims to unearth the effective content of algebraic objects and construc-
tions, revealing that aspect of mathematics which is lost when using the axiomatic,
set-theoretic approach.

There has been much work considering fields. Early work concerning splitting
algorithms in fields (Herrman [17], van der Waerden [32]) was later made precise
(for example Fröhlich and Shepherdson [14]) using the tools of computability theory,
developed by Gödel, Church, Turing and Kleene (e.g., [30, 31]). These tools allow us
to rigorously define, for example, what is a computable field, and what operations
on fields are computable. For example, Rabin [23] showed that every computable
field can be computably embedded into a computable algebraically closed field;
however the image of the embedding of the field into its algebraic closure may not
always be computable, indeed to identify it sometimes extra computational power
is required, such as the halting problem. Rabin’s construction is not identical to
Steinitz’s original construction of algebraic closure [28]; in the absence of a splitting
algorithm, an alternative approach is necessary, presenting the algebraic closure as
the quotient of a polynomial ring by a computable ideal.

Computability theory allows us not only to differentiate the computable from
that which is not, but also compare different noncomputable objects, using rela-
tive computability. This captures the intuitive concepts of relative complexity, or
information content: what it means for one object to be more complicated than

Greenberg was supported by a Rutherford Discovery Fellowship, by the Marsden Fund, and by

a Turing Research Fellowship “Mind, Mechanism and Mathematics” from the Templeton Foun-

dation. We thank Damir Dzhafarov and Dan Turetsky for some useful convrsations. We thank
Valentin Bura, whose Master’s thesis [4] contains an outline of Theorem 1.1, for allowing us to

include material from his thesis. Valentin Bura declined co-authroship of this paper.

1

2 NOAM GREENBERG AND ALEXANDER MELNIKOV

another, or one problem to be easier to solve than another. For example, Friedman,
Simpson and Smith showed [13] that in general, constructing a maximal ideal in a
commutative ring is more complicated than constructing a prime ideal, but neither
can be done computably. A yardstick for measuring complexity is given by iter-
ations of Turing’s jump operator, defined by taking the relative halting problem.
For example, the full power of the halting problem is required to construct maximal
ideals in all rings, but is not necessary for building prime ideals.

There is a fundamental connection between computability and foundational ques-
tions formalised in second order arithmetic. The project of reverse mathematics at-
tempts to pin-point the proof-theoretic power of mathematical facts and theorems.
It finds the number-theoretic axioms required to prove these theorems. Those ax-
ioms are often formalised as set existence axioms. Examples for the connection
are the system RCA0 of “recursive comprehension”, which in terms of set existence
corresponds to relative computability; and the system ACA0 of “arithmetic compre-
hension”, which corresponds to the Turing jump. Using this correspondence, the
effective results from [13] mentioned above yield a proof that the statement “every
ring has a maximal ideal” is equivalent to ACA0, but that the statement “every ring
has a prime ideal” is strictly weaker. We remark though that computable algebra
and reverse mathematics are complementary approaches for measuring the com-
plexity of objects and theorems. Unlike reverse mathematics, computable algebra
does not give any information about the amount of induction required to prove a
theorem. On the other hand, in terms of set existence, computable algebra makes
finer distinctions; for example, reverse mathematics cannot distinguish between one
or two iterations of the Turing jump.

The groundwork for computable algebra was laid by Rabin [23] and Mal′cev [19]
and continued by Metakides and Nerode [21, 20] and Ershov [12] and his school (for
example [11]). While there has been much work on groups [18], fields [11] and vector
spaces [20], relatively little is known about rings. Other than the work by Friedman,
Simpson and Smith mentioned above, investigations were made into algorithms of
ideal membership (see [29] for a survey), the complexity of radicals [9], Euclidean
domains [25, 8], the proof-theoretic strength of the statement “every Artinian ring
is Noetherian” [5], and the complexity of primes [10]. In this paper we consider a
couple of basic facts regarding unique factorisation.

1.1. Results. It is well-known that every Euclidean domain is a principal ideal
domain, and that every principal ideal domain is a unique factorisation domain.
Underlying the latter implication is the following characterisation of unique fac-
torisation:

Theorem A. An integral domain R is a unique factorisation domain if and only
if:

(1) every irreducible element of R is prime; and
(2) the divisibility relation in R is well-founded.

An integral domain satisfying (1) is sometimes called an AP-domain; property (2)
is abbreviated as “accp”, because the condition is equivalent to the ascending chain
condition for principal ideals. One half of one direction of this equivalence is:

Theorem B. If R is an integral domain satisfying accp, then every element of R
is the product of irreducible elements of R.

PROPER DIVISIBILITY IN COMPUTABLE RINGS 3

A ring satisfying the conclusion of Theorem B is called atomic. We remark that
the converse of Theorem B fails [16]. In this paper we determine the proof-theoretic
strength of these theorems:

Theorem 1.1. Both Theorem A and Theorem B are equivalent to ACA0 over RCA0.

In terms of computability we consider the complexity of a witness for the contra-
positive of Theorem B. An infinite sequence 〈an〉 of elements of an integral domain R
witnesses the failure of accp if for all n, an+1 properly divides an. We call such a
sequence an infinite chain of proper divisibility. If the accp fails, how much com-
putational power do we need to find such a chain? As mentioned above, results in
reverse mathematics often utilise constructions from effective mathematics. In our
example, the proof of Theorem 1.1 is an adaptation to second-order arithmetic of
the following:

Theorem 1.2. There is a computable integral domain R which is not atomic, such
that every infinite chain of proper divisibility in R computes the halting problem ∅′.

That is, the halting problem is sometimes necessary for finding witnessing se-
quences. It is important to note that while Theorem 1.1 gives a complete answer
for the proof-theoretic content of Theorems A and B, in terms of computability,
Theorem 1.2 is not optimal. A crude upper bound for the complexity of a sequence
witnessing the failure of accp (in non-atomic rings) is ∅′′, the second iteration of
the Turing jump. We can show that ∅′ is not enough:

Theorem 1.3. There is a computable integral domain R which is not atomic, such
that ∅′ does not compute any infinite chain of proper divisibility in R.

We note that our method seems insufficient for a coding of ∅′′ into the proper
divisibility relation of a computable domain: we leave open the question whether
there is a non-atomic computable integral domain in which every chain of proper
divisibility computes ∅′′. We also remark that we expect that in atomic rings in
which accp fails, witnessing sequences may need to have much higher complexity,
all the way up the hyperarithmetic hierarchy.

1.2. A new technique. To prove Theorems 1.2 and 1.3 we employ a technique of
coding binary trees into integral domains. In terms of complexity we can translate
Σ0

2 (computably enumerable relative to ∅′) binary trees T into computable integral
domains QT . The coding is not injective on isomorphism types. Nonetheless,
properties of the resulting ring QT are controlled by the originating tree T in a way
that allows us to separate much of the algebra from the computability-theoretic
constructions. For example we will ensure that:

• T is finite if and only if QT is atomic.

In our coding we will identify the nodes (vertices) of T as elements of QT , which
in some sense generate QT . Much of our work will be to show that witnesses
to the failure of accp in QT essentially come from infinite decreasing sequences
in T . More precisely, by multiplying their elements we can view multisets of nodes
of T as elements of QT ; a sequence 〈Mn〉 of multisets is properly decreasing if the
corresponding sequence of elements of QT witnesses the failure of accp. However,
it is crucial that this relation on multisets can be read off the tree T without the
need to consult the ring QT . Thus, we can work directly with Σ0

2 trees without
worrying about algebra. We will show (Corollary 3.36):

4 NOAM GREENBERG AND ALEXANDER MELNIKOV

• Suppose that T is infinite. Every sequence of elements of QT which wit-
nesses the failure of accp computes a properly decreasing sequence of mul-
tisets of T .

We note that coding ideas were used in the context of computable abelian
groups [7, 3, 1] where divisibility plays an important role, and also in Boolean
algebras [15]. We believe that such codings of trees into the divisibly relation have
never been seriously studied/applied in computable ring theory. We expect that
our coding will have applications beyond those presented in this paper. On the
other hand, if there is a way to improve our theorems to code ∅′′ into descending
sequences (we encourage the reader to try, so as to get an idea of the complications
involved), we suspect that different coding techniques will be required.

1.3. The structure of the paper. In Section 2 we give more detailed background
and necessary definitions. In Section 3 we describe the coding of Σ0

2 trees into
rings and prove various technical lemmas about the coding. In Section 4 we prove
Theorems 1.1 and 1.2. In Section 5 we prove Theorem 1.3.

2. Preliminaries

2.1. Computability theory. The main notions of computability are partial com-
putable functions and computably enumerable sets. While the formal definitions
are involved (see for example [24]) the main idea is that a function f is partial
computable if there is an algorithm (for example implemented by a Turing ma-
chine) which given an input n halts after finitely many steps and outputs f(n) in
case n ∈ dom f , and never halts otherwise. A set A is computably enumerable if
there is an algorithm which runs indefinitely and outputs the elements of A. A set A
is computable if membership in A can be decided by an algorithm (formally, if its
characteristic function is partial computable). A computable function is a partial
computable function whose domain is a computable set. A set is computable if and
only if it and its complement are computably enumerable. A function is partial
computable if and only if its graph is computably enumerable.

A key notion is relative computability. Given a set (or function) B, we say that
a set (or function) A is B-computbale if A is computable by a machine which is
given access to information about B (as a “black box”). We write A 6T B and
say that A is Turing reducible to B. Informally, this says that B contains at least
as much information as A. Turing reducibility 6T is a pre-partial ordering; the
equivalence classes are known as the Turing degrees. Similarly, a set is computably
enumerable relative to B if there is an algorithm with access to B which enumerates
the elements of A.

The halting problem relative to a set B, denoted B′, is the collection of algorithms
with access to B which terminate (after finitely many steps). It is a universal B-
computably enumerable set. B′ computes B but not vice-versa. The relative halting
problem induces an increasing map on Turing degrees, which is known as the Turing
jump.

There is a close connection between computability and definability in arithmetic.
The semi-ring (N,+, ·) is analysed using first-order logic. Formulas in the language
of semi-rings are put in a hierarchy of complexity based on alteration of quantifiers.
For example a formula is Σ0

1 if it contains a single unrestricted existential quantifier,
Σ0

2 if it is of the form ∃∀, and so on. A set of numbers is Σ0
n if it is definable by a

PROPER DIVISIBILITY IN COMPUTABLE RINGS 5

Σ0
n formula. A set is ∆0

n if it and its complement are Σ0
n. A set is computable if

and only if it is ∆0
1, c.e. if and only if it is Σ0

1, computable from ∅′ if and only if it
is ∆0

2, c.e. in ∅′ if and only if it is Σ0
2, computable from ∅′′ if and only if it is ∆0

3,
and so on.

For more on computability, a standard reference is [27].

2.2. Computable algebra. As mentioned above, using the notion of Turing com-
putable sets and functions, Rabin [23] and independently Mal′cev [19] gave the first
general definition of computable structures. For rings we obtain the following.

Definition 2.1. A computable ring is a ring (R,+R, ·R) such that R is a computable
subset of N and +R and ·R are computable functions from R2 to R.

More generally, we ask how much external computational power we need to con-
struct all objects that are used in the proof of a theorem that we have in mind. The
answer will, in a way, measure how “constructive” the theorem is. As mentioned
above, Friedman, Simpson and Smith [13] constructed a computable ring in which
every maximal ideal computes ∅′. On the other hand they showed that every com-
putable ring contains a prime ideal which is computationally significantly weaker
than ∅′; however they did construct a computable ring which has no computable
prime ideal.

For more on effective algebra see for example [2, 11].

2.3. Reverse mathematics. Reverse mathematics [13] studies subsystems of second-
order arithmetic. We fix a relatively weak base theory; a standard choice is RCA0,
which contains the usual semi-ring axioms together with Σ0

1 induction and ∆0
1 com-

prehension (set existence). The standard models of RCA0 are those whose second-
order part induces an ideal in the Turing degrees. On the other hand, since we
use limited induction, in analysing RCA0 we need to take into account non-standard
models in which there are “infinite” natural numbers. Informally, RCA0 is the weak-
est system which allows the formalisation of relative computability.

The other system we use is ACA0, arithmetic comprehension. It extends RCA0 by
adding comprehension of all arithmetic sets (first-order definable sets). It turns out
that Σ0

1 comprehension is sufficient. This implies that over RCA0, ACA0 is equivalent
to the existence of the Turing jump: a model M of RCA0 is a model of ACA0 if and
only if for every set X in the second-order part of M , the Turing jump X ′ belongs
to M as well. This means that the standard models of ACA0 are those which induce
a jump-ideal of the Turing degrees. Equivalently, a standard formulation is that a
model of RCA0 is a model of ACA0 if and only if for every function f in the model,
the range of f is also in the model (we say that the range of f “exists”).

Informally, when we show that a theorem of mathematics is provable in RCA0 (for
example, the intermediate value theorem, or the existence of algebraic closure), it
means that it is “effective”, or algorithmic. When we show that a theorem is
equivalent to ACA0 (for example, the Bolzano-Weierstrass theorem, or the existence
of maximal ideals) we show that not only the theorem is not effective, but that ACA0
is the weakest extension of RCA0 that can prove it: it requires the Turing jump.

For more, see the standard reference [26].

2.4. Accp and atomic rings. For summary we recall the properties of integral
domains that we consider:

• accp, equivalent to the divisibility relation being well-founded;

6 NOAM GREENBERG AND ALEXANDER MELNIKOV

• AP domain: every irreducible element is prime;
• atomic domain: every non-unit element is the product of irreducible ele-

ments;
• unrestricted UFD (abbreviated U-UFD): if an element is the product of

irreducibles, then this factorisation is unique (up to units).

Here recall that an irreducible element is a minimal nonunit element in the divisi-
bility relation, and that a prime element p is one satisfying p|ab⇒ p|a or p|b. Every
prime is irreducible (in any integral domain).

Theorem A says that an integral domain is atomic and a U-UFD if and only if
it has accp and is an AP domain. Theorem B says that the accp implies atomicity.
We mentioned that this does not reverse (Grams [16]). It is also the case that
every AP domain is a U-UFD; this too does not reverse [6]. The reason we do not
state this as “Theorem C” is that it is not equivalent to ACA0; in fact it is provable
in RCA0.

Recall the proof of Theorem B. Let R be a non-atomic integral domain. There
are two cases. If there is some non-unit a ∈ R which has no irreducible factor, then
an infinite sequence witnessing the failure of accp is constructed by taking a0 = a
and an+1 some proper factor of an. Otherwise, take any a ∈ R which is not the
product of irreducible elements. Let a0 = a, and given an (which inductively has
the same property), let an+1 = an/p for some irreducible factor p of an.

An examination of the definitions shows that if R is a computable ring then
the divisibility relation is computably enumerable (c.e.) and hence ∅′-computable;
it follows that the set of units is c.e. as well. The set of irreducible elements is
then co-c.e. in ∅′ (Π0

2), and so is computable from ∅′′. We conclude that in the
first case above, the sequence constructed can be made computable from ∅′; in
the second case, from ∅′′. Formalising this argument in second-order arithmetic
shows that ACA0 implies Theorem B; similar considerations show that ACA0 implies
Theorem A as well. We remark that the split into two cases illustrates one of the
many difficulties in coding ∅′′ into the failure of accp: in any ring witnessing such
a coding, every element must have an irreducible factor.

2.5. Trees. Regarding trees, we follow terminology from combinatorics and com-
puter science rather than computability. We will be exclusively using full binary
trees, in which every node that is not a leaf has two children. Every tree has a
designated root. If x is a node of a tree T which is not a leaf of T , then one of
the children of x is designated as the left child and one is designated as the right
child. For example, the infinite complete binary tree is 2<ω (the set of all finite
binary strings) with the root being the empty string, and σ 0̂ and σ 1̂ being the left
and right children (respectively) of a string σ ∈ 2<ω. Note that the relations “x is
the root of T”, “y is the left child of x” and “y is the right child of x” completely
specify the structure of a tree.

A subtree of a tree T is a subset S ⊆ T which is closed under taking parents and
which is a tree under the relations of T (so we require that S is a full binary tree).
For example, the “fishbone” {0n, 0n1 : n < ω} is a subtree of 2<ω.

3. Translating trees to rings

In this section we define the translation (coding) of Σ0
2-trees into computable

integral domains.

PROPER DIVISIBILITY IN COMPUTABLE RINGS 7

3.1. An informal explanation of the translation. In our construction we will
approximate a Σ0

2 tree T by a sequence 〈Tn〉 of finite trees. We construct QT as a
sequence of extensions; QTn will be a subring of QTn+1 and QT =

⋃
nQTn .

We will set A = Q[tn, t
−1
n : n ∈ ω] where the tn are purely transcendental (alge-

braically independent) over Q. To begin with we start with the tree T0 consisting
of a single node r (the root) and set QT0

= A[r] (with r transcendental over A).
During the construction we will be adjoining new elements to the ring and declare
new relations on it. We describe the two basic operations that we may apply to
our ring at a later stage of the construction.

Operation 1: Factorizing a transcendental. Since we will be willing to play with
proper divisibility, we might want to factorize purely transcendental elements over A.
For example suppose that T1 consists of the root r and its two children a and b.
In QT1

we will factorise r into a and b. That is, we will set QT1
= A[a, b] with

a, b algebraically independent over A, and identify r with ab. So a and b properly
divide r. We could then further factorise, say a, into its two children x and y on T2;
we obtain the ring QT2 = A[b, x, y], with a identified with xy. See Fig. 1.

Operation 2: Inverting a transcendental. We might later decide to change our mind
about the proper division x | a by inverting y. This happens for example if T3 = T1,
that is, the leaves x and y were chopped off T2. Starting with QT2

= A[b, x, y] we
obtain the extension QT3

= A[b, x, y, y−1] = A[y, y−1][b, x]. The base ring A was
chosen so that A[y, y−1] is isomorphic to A, and in QT3 , a and x are associates; so
QT3 = A[y, y−1][b, x] = A[y, y−1][a, b] ∼= A[a, b] = QT1 . See Fig. 2.

x y

a b ⇒ a = xy b

r = ab r

Figure 1. Operation 1: factorization of a into xy.

x y

a b ⇒ a ∼ x via y b

r r

Figure 2. Operation 2: inverting a leaf. “a ∼ x via y” indicates
that a and x are associates and y is the unit witnessing this fact.

8 NOAM GREENBERG AND ALEXANDER MELNIKOV

Note that in the example above we may at a later stage factorize a again, say
a = x′y′, and then invert or factorize y′ or x′, etc.1 The same can be said about
any leaf of the finite binary tree that we have at any stage. What will we build
at the end? The ring that we end up with will naturally correspond to a (perhaps
infinite) binary tree consisting precisely of those nodes that are introduced but never
erased. Up to isomorphism, we could start with the final tree T and define QT by
only applying operation 1: going down the levels of T , repeatedly factoring the
elements of T into their children. The point is that this direct approach will only
yield a computable ring if the final tree T is computable. Using the approximation
for T and operation 2 as well as operation 1 allows us to construct a computable
copy of QT even if T is merely Σ0

2 and not necessarily computable.

As mentioned, the main goal is to computably translate descending chains of
proper divisibility into multisets of elements of our trees. The main step is Proposi-
tion 3.31 (and Corollary 3.36) which says that descending chains compute descend-
ing chains of monomials, products of nodes in our trees. The point is that when we
construct T we can control the complexity of chains of divisibility in QT by only
considering multisets of nodes in T (and its finite approximations). We do not have
to worry about general elements of QT . Of course, to show that this reduction can
be achieved, we need a detailed analysis of the structure of QT .

Example 3.1. When working with the ring QT3 above we may wonder if elements
such as x2a + y, x2y2a2t23 − 14x3y−4a or t0x

2b3 + 2y−3 + 3t0x
2 + (1/7)t0t3a

2 are
involved in infinite chains of divisibility in the final ring, and it is not clear how to
control the result just using the trees. In contrast, divisibility of monomials such
as x3b2, a2x2b2 and yab2 is immediate from the sequence of trees constructed so
far. We can present these monomials as associates of products of leaves of T3 and
then just compare powers. For example a2x2b2 ∼ a4b2 and x3b2 ∼ a3b2 and so the
latter properly divides the former in QT3

. If later a is inverted then the division is
no longer proper.

3.2. Roadmap for this section. In the rest of this section we give the formal
treatment of our transformation of trees into rings. We do it in three steps.

In Section 3.3 we define the operator T 7→ QT , defined on all binary trees T . As
mentioned above this only uses operation 1. The treatment in this subsection is not
effective. The direct approach allows us to gain some basic information about the
algebraic structure of QT (Proposition 3.8). We observe the algebraic properties
of nodes on the tree and conclude, for example, that T is finite if and only if QT
is atomic (Corollary 3.9). We also observe how operation 1 and operation 2 affect
the rings we obtain (Proposition 3.5 and Lemma 3.13).

In Section 3.4 we introduce linear systems of trees (Definition 3.15). In appli-
cation, a linear system of trees will consist of the final tree we construct, together
with its finite approximations. For an inductive treatment, in this section we con-
sider both finite and infinite linear systems of trees. Using both operation 1 and
operation 2 we define the ring QL associated with a linear system of trees L. This
tree is isomorphic to QTL , where TL is the last tree of the system; the difference is
that nodes introduced somewhere in the system but later discarded are elements

1We note though that the labels of new children of a must be distinct from x and y; once y
has been inverted, we cannot make it transcendental again. This corresponds to condition (3) in

the definition of linear systems of trees (Definition 3.15).

PROPER DIVISIBILITY IN COMPUTABLE RINGS 9

of QL, where they are either units or associates of nodes on the final tree TL. In this
subsesction we show (Proposition 3.20) that the transformation on linear systems
is computable. As Σ0

2 trees are those which can be approximated via computable
linear systems, this shows that for such trees T , QT has a computable copy.

Finally, in Section 3.5 we show how to simplify sequences witnessing the failure
of accp in QL. As discussed above (and formalised in Definition 3.22), monomials
are products in QL of nodes appearing in trees along the system (both ones which
are eventually discarded, and ones which survive until the final tree TL). The bulk
of this subsection is devoted to an analysis of the prime elements of QL. Some of the
primes are given by the leaves of TL. The others (denoted by P(L)) multiplicatively
generate a subset wfd(L) on which the divisibility relation is well-founded. The
main technical fact is Lemma 3.25 which says that these primes are not factorized
during the construction; they are either inverted or remain prime. This analysis of
primes allows us to show that divisibility in QL is in some sense a “direct sum” of
divisibility in wfd(L) and in monomials (Lemma 3.26 and Corollary 3.29). Since
wfd(L) is well-founded, the well-founded part of elements of a sequence 〈an〉 of
proper divisibility in QL stabilises. We can then divide by the stabilised value and
obtain a sequence of monomials, yielding our goal, Proposition 3.31. At the end of
this subsection we discuss monomial decompositions, which are multisets of nodes,
and translate Proposition 3.31 to the language of multisets (Corollary 3.36)).

3.3. The ring associated with a binary tree. We emphasize again that all
trees we discuss are full binary trees (finite or countable) with a designated root
and designated left and right children for all non-leaves.

Notation 3.2. Let {tn : n < ω} be a set of indeterminates. We let

A = Q[tn, t
−1
n : n < ω].

Remark 3.3. A is a localization of Q[tn : n < ω]. The latter is a unique factorization
domain, and so A is a unique factorization domain.

Definition 3.4. Let T be a tree. Considering the elements of T as indetermi-
nates over A, we let IT be the ideal of A[T] generated by the polynomials x − yz,
where x, y, z ∈ T and y, z are the children of x. We let QT = A[T]/IT .

We identify the elements of T with their images in QT .

3.3.1. Extension. We show that if S is a subtree of T then QS is canonically a
subring of QT . This means that the identity map on A ∪ S induces an embedding
of QS into QT , equivalently that IT ∩ A[S] = IS .

Proposition 3.5.

(1) If S is a subtree of T then QS is canonically a subring of QT .
(2) If T =

⋃
k<ω Tk where each Tk is a subtree of Tk+1, then QT =

⋃
k<ωQTk

.

Proof. The proof is based on the the following lemma.

Lemma 3.6. Let S be a subtree of a tree T , and suppose that T = S ∪ {y, z}
where y and z are the children on T of a node x which is a leaf of S. Then
QT ∼= QS [y, z]/(x − yz), and QS is canonically a subring of QT . In QT , y and z
are transcendental over QS.

10 NOAM GREENBERG AND ALEXANDER MELNIKOV

We first prove the proposition using the lemma, and then we prove the lemma.
Let S be a subtree of T . If there is a finite sequence S = S0 ⊂ S1 ⊂ · · · ⊂ Sm = T
with each Sk+1 extending Sk by adding two children to a leaf of Sk then we obtain
our result by applying Lemma 3.6 m times. In particular, if T is finite then QS is
canonically a subring of QT .

Suppose that T =
⋃
k<ω Tk with each Tk finite and Tk a subtree of Tk+1.

Since IT =
⋃
k<ω ITk

and ITm
∩ A[Tk] = ITk

for all k < m, it follows that
for all k < ω, IT ∩ A[Tk] = ITk

. So each QTk
is canonically a subring of QT ,

and QT =
⋃
k<ωQTk

.
This also implies that even if T is infinite and S is any subtree of T , QS is

canonically a subring of QT . �

Proof of Lemma 3.6. Let J = (IS)A[T] be the ideal of A[T] generated by IS . Since
A[T] = A[S][y, z] (with y, z algebraically independent over A[S]),

A[T]/J ∼= (A[S]/IS) [y, z] = QS [y, z]

by an isomorphism which is the identity on A∪T . We have IT = (IS∪{x−yz})A[T]

and so
QT ∼= (A[T]/J)/(x− yz) ∼= QS [y, z]/(x− yz).

Since x− yz is a nonconstant polynomial over QS , (x− yz)∩QS = {0} and so QS
is a subring of QT .

Let f be a polynomial with coefficients in QS . If f(y) = 0 in QT then f(y) ∈
(x−yz) as an element ofQS [y, z], but again since x−yz is a nonconstant polynomial
over QS [y], this means that f = 0, and so y is transcendental over QS in QT ; the
same holds for z. �

Remark 3.7. Let R be an integral domain. Then R[x, y, z]/(x − yz) ∼= R[y, z]
canonically (i.e. by the map which is the identity on R, y and z). The point is that
this map from R[y, z] to R[x, y, z]/(x − yz) is injective: no polynomial f ∈ R[y, z]
can be divisible by x− yz since in R[x, y, z], x is transcendental over R[y, z].

3.3.2. Algebraic properties. In the following, leaves(T) stands for the set of leaves
of a tree T .

Proposition 3.8. Let T be a tree.

(1) A is (canonically) a subring of QT .
(2) If T is finite then QT = A[leaves(T)], where leaves(T) is algebraically inde-

pendent over A.
(3) QT is an integral domain.
(4) No x ∈ T is a unit of QT .
(5) If x is a leaf of T then x is prime in QT . If x ∈ T is not a leaf then x is

reducible in QT .

Proof. We first prove the proposition in the case when T is finite. The poof is an
induction on the number of nodes in T . For T = {r} (the tree whose only node is
its root), QT = A[r] by definition (IT is trivial). Let T be a finite tree with more
than one node. Choose any leaf y of T , and let x be the parent of y on T , and let z
be the child of x other than y. Let S = T \ {y, z}. So S is a subtree of T and x is
a leaf of S.

By Lemma 3.6, QS is a subring of QT . By induction, A is a subring of QS ,
so it is a subring of QT . Let L = leaves(S). By induction, QS = A[L], and

PROPER DIVISIBILITY IN COMPUTABLE RINGS 11

so in QS , x is transcendental over A[L \ {x}]. By Remark 3.7, in QT , {y, z} is
algebraically independent over A[L\{x}]. This shows thatQT = A[L∪{y, z}\{x}] =
A[leaves(T)] with leaves(T) algebraically independent over A. This is certainly an
integral domain. Every x ∈ T is the product of irreducible elements (namely the
leaves that extend x) and so is not a unit. Every leaf of T is prime, the other nodes
are products of several primes.

Suppose that T is an infinite tree. We can write T =
⋃
k<ω Tk, where each Tk

is finite and a subtree of Tk+1. Proposition 3.5 says that QT =
⋃
k<ωQTk

. The
properties (1), (2) and (4) carry over to T . Let x ∈ T . If x is a leaf of T then x
is prime in every QTk

such that x ∈ Tk and so is prime in QT . Otherwise, x = yz
in QT where y and z are the children of x on T , and y and z are nonunits in QT . �

Corollary 3.9. For any tree T , QT satisfies the ascending chain condition for
principal ideals if and only if T is finite. In fact:

(1) If T is finite then QT is a unique factorization domain.
(2) If T is infinite then QT is not atomic.

Proof. If T is finite then QT is a polynomial ring over A, which is a unique factor-
ization domain. By Gauss’s lemma, it is a unique factorization domain.

If T is infinite then by König’s lemma there is an infinite path 〈xn〉n<ω in T .
Let yn be the child of xn−1 other than xn. Then xn−1 = xnyn. As yn is not a unit
of QT , xn properly divides xn−1 in QT .

To see that QT is not atomic, we show that the root r of T is not the product
of irreducible elements. For let A be a finite multiset of elements of QT such
that r =

∏
A. As in the proof of Proposition 3.8, write T =

⋃
k<ω Tk as the

union of an increasing sequence of finite subtrees. Let k be sufficiently large so
that every element of A is in QTk

. In QTk
, L = leaves(Tk) is the unique irreducible

factorization of r, so (up to association) each element of A is a product of leaves
of Tk, and each leaf appears exactly once. Since T 6= Tk we can take some x ∈ L
which is not a leaf of T , and find some a ∈ A which is divisible by x (in QTk

, and
so in QT). Then in QT , a is divisible by x and x is a reducible element of QT , and
so a is a reducible element of QT . �

3.3.3. Pruning. When we chop off the children of some node on a tree (recall op-
eration 2), we want to invert the left child, making the right child an associate of
the parent.

Definition 3.10. Let T be a tree and let Y be a set disjoint from T . Considering Y
as a set of indeterminates over A[T], we let

QYT = QT [Y, Y −1] = QT [y, y−1 : y ∈ Y].

We note that letting AY = A[Y, Y −1] and IYT = (IT)AY [T] we have QYT =

AY [T]/IYT (canonically). Since A ∼= AY and IT ∩ A = {0}, we have:

Lemma 3.11. QYT ∼= QT by an isomorphism which is the identity on T .

The isomorphism though is not canonical since it is not the identity on A; there
is no canonical way to choose an isomorphism between A and AY . The combination
of Proposition 3.8 and Lemma 3.11 (and the analysis preceding it) gives:

Proposition 3.12. Let T be a tree and Y be a set disjoint from T .

(1) AY is canonically a subring of QYT .

12 NOAM GREENBERG AND ALEXANDER MELNIKOV

(2) If T is finite and L = leaves(T) then QYT = AY [L], with L algebraically
independent over AY .

(3) QYT is an integral domain.
(4) No x ∈ T is a unit of QYT .
(5) If x is a leaf of T then x is prime in QYT . If x ∈ T is not a leaf then x is

reducible in QYT .
(6) If T is finite then QYT is a unique factorization domain. Otherwise it is not

atomic.

And of course, every element of Y is a unit of QYT .

Lemma 3.13. Let T be a subtree of a tree S, and suppose that S = T ∪ {y, z}
where y and z are the children on S of a node x which is a leaf of T . Then
QyT = QS [y−1].

Thus QS [y−1] ∼= QT via an isomorphism which is the identity on T .

Proof. QT is a subring of QS . In QS , y is transcendental over QT (Lemma 3.6),
and so in QS [y−1], QyT = QT [y, y−1]. Since QS [y−1] is generated over QT by y, z
and y−1, and since x ∈ QT and z = y−1x in QS [y−1] we obtain the desired equality.

�

Corollary 3.14. Let T be a subtree of a finite tree S. Let N be the collection of
nodes in S \ T which are the left child of their parent. Then QNT is canonically
isomorphic to QS [N−1].

3.4. Linear systems of trees and the associated rings.

3.4.1. Linear systems of trees.

Definition 3.15. A linear system of trees is a sequence (either finite or infinite)
of finite trees 〈Ti〉 such that:

(1) T0 = {r} is the tree with one node;
(2) For each i, Ti−1 ∩ Ti is a subtree of both Ti−1 and of Ti; and
(3) For each i, the set Ti−1 \ Ti is disjoint from

⋃
j>i Tj .

If L = 〈T0, T1, . . . , Tn〉 is a finite linear system of trees then we let `(L) = n be
the length of L. If L = 〈T0, T1, . . .〉 is an infinite sequence then we let `(L) = ω.

If L = 〈Ti〉 is an infinite linear system of tress then we let

Tω = limL =
⋃
i<ω

⋂
j>i

Tj .

This is in a sense the direct limit of the system L. The elements of Ti−1 \ Ti are
the ones which are discarded at step i, and the elements of Tω are the ones which
“survive” from the step at which they are introduced. Property (3) says that once
an element is discarded, it cannot be later reintroduced.

We can append the limit tree Tω to the sequence and so write L = 〈Ti〉i6`(L)
even when `(L) = ω. For any system (finite or infinite) we write TL for T`(L), the
last tree in the system L.

Example 3.16. Let S ⊆ 2<ω be a Σ0
2 subtree of 2<ω, and let 〈Sn〉n<ω be an effective

approximation of S. Thus, each Sn is a finite subtree of 2<ω, the sequence 〈Sn〉
is computable, and S = lim infn→∞ Sn =

⋃
n<ω

⋂
m>n Sm. The sequence 〈Sn〉 can

PROPER DIVISIBILITY IN COMPUTABLE RINGS 13

be made to satisfy properties (1) and (2) of Definition 3.15 but does not naturally
satisfy property (3): usually we change our minds about whether σ ∈ 2<ω is an
element of S or not finitely or even infinitely many times. However a natural
relabelling of the elements of Sn by adding the stage number at which they are
introduced yields a sequence 〈Tn〉 canonically isomorphic to 〈Sn〉 satisfying the
definition.

Notation 3.17. Let L = 〈Ti〉 be a linear system of tress. We let

all(L) =
⋃

i6`(L)

Ti

be the collection of all nodes which appear along the system, both the discarded
ones and the ones which survive until the last tree TL. Let

dead(L) =
⋃

i<`(L)

Ti \ Ti+1 = all(L) \ TL.

be the collection of nodes which are discarded at some step. We let inv(L) be the
collection of elements of dead(L) which are the left child of their parent.

For a directed system of trees L we let QL = Qinv(L)
TL

. If y ∈ dead(L)\ inv(L) then

inductively (on the height of y) we identify y with the element z−1x of QL, where x
is the parent of y (y is the right child of x) and z is the left child of x (on any Ti
which contains y). As z ∈ inv(L), it is already identified with an element of QL.
Thus we can identify any element of all(L) with an element of QL. By induction
we can see:

Lemma 3.18. In QL, every element of inv(L) is a unit. Every element of dead(L)
is either a unit or an associate of an element of TL.

The point of this is to enable canonical embeddings corresponding to extending
the system of trees. If L = 〈Ti〉 is a linear system of trees, and β 6 `(L), then we
let L �β= 〈Ti〉i6β . We let S 4 L if S = L �β for some β 6 `(L). Certainly if S 4 L
then all(S) ⊆ all(L).

Lemma 3.19. If S 4 L then QS is canonically a subring of QL (the identity
map on A ∪ all(S) induces an embedding of QS into QL). If `(L) = ω then QL =⋃
n<ωQL�n .

Proof. We prove the lemma by induction on `(L). We first suppose that n = `(L)
is finite; by induction, it suffices to treat the case S = L �n−1. Let S = Tn−1 ∩ Tn.
Then N = inv(L) \ inv(S) is the set of nodes in Tn−1 \ S which are the left child of

their parent. By Corollary 3.14, QS[N−1] is canonically isomorphic to Qinv(L)
S . By

Proposition 3.5, Qinv(L)
S is canonically a subring of QL. Of course QS is canonically

a subring of its localisation QS[N−1].
Now suppose that `(L) = ω. For k < ω let Sk = Tk ∩ Tω. Let Rk = QSk

and

let Qk = Qinv(L)�k
Sk

; for brevity we let Nk = inv(L) �k, so Qk = Rk[Nk, (Nk)−1]. We

have just argued that (canonically) we have

QL�0 ⊆ Q0 ⊆ QL�1 ⊆ Q1 ⊆ · · ·
so
⋃
kQL�k =

⋃
kQk, and

⋃
kQk = (

⋃
k Rk) [Nω, (Nω)−1] (where Nω = inv(L) =⋃

kNk). Since Tω = TL =
⋃
k Sk with each Sk a subring of Sk+1, by Proposition 3.5,

14 NOAM GREENBERG AND ALEXANDER MELNIKOV

QTL =
⋃
k Rk, and so

QL = QTL [Nω, (Nω)−1] =
⋃
k

Qk =
⋃
k

QL�k

(and each QL�k is canonically a subring of QL.) �

3.4.2. Effectiveness of the transformation. We note that if L is a computable di-
rected system of trees then all(L) is naturally a computably enumerable set. How-
ever in our constructions we can label the new elements of Tk by an extra label k,
which makes the set all(L) computable; we assume this is the case from now. Note
though that dead(L) is c.e. (and TL is co-c.e.) but not necessarily computable. For
this reason, the ring QL as presented above is not computable. By approximat-
ing QL with QL�n we can find a computable copy of QL.

Proposition 3.20. Let L = 〈Tk〉 be a computable directed system of trees. There
is a computable ring Q and an isomorphism ϕ : QL → Q such that ϕ �all(Q) is
computable.

We will identify the computable ring given by the proposition with QL.

Proof. By recursion on n < ω we construct (uniformly) a computable copy Qn
of QL�n , such that each Qn is a computable subset of Qn+1. Further, letting Ln =
leaves(Tn) and Yn = inv(L�n), we will find a computable subring Rn of Qn isomor-
phic to AYn , so Qn = Rn[Ln] (with Ln algebraically independent over Rn), and the
function n 7→ Ln is computable.

We start with some computable copy Q0 of A[r] = QL�0 and let R0 = A. To
carry out the construction we first peel off nodes from Tk and then add nodes
to Tk ∩ Tk+1 to obtain Tk+1. In terms of constructing the rings, it then suffices to
show the following.

Claim 3.21. Let R be a computable subring of a computable unique factorization
domain Q, with Q = R[L] where L is finite and algebraically independent over R.
Let x ∈ L.

(1) There is a computable presentation A of Q[x−1] such that both Q and
R[x, x−1] are computable subsets of A.

(2) There is a computable presentation B of Q[y, z]/(x− yz) such that both R
and Q are computable subsets of B.

Further, all operations are uniform given L, x and computable indices for R and Q.

Proof. For (1), a computable copy A of Q[x−1] is built in a standard way as equality
of two presentations of a fraction is a computable relation. However we also note
that the collection of pairs (k, a) ∈ ω×Q such that xk divides a in Q is computable:
by a search, we can find the unique polynomial f ∈ R[X] such that a = f(L) and
verify that xk divides each of its monomials. This shows that Q is a computable
subset of A.

We compute membership in R[x, x−1] inside A. The argument above shows
that R[x] is a computable subset of Q and so of A. Given a ∈ A we can effectively
find b ∈ Q and k < ω such that a = b/xk and x does not divide b in Q. Then a ∈
R[x, x−1] if and only if b ∈ R[x]: for if a ∈ R[x, x−1], say a = c/xm for some c ∈ R[x]
and m < ω, with x not dividing c; from cxk = bxm and the fact that Q is a unique
factorization domain we conclude that c = b.

PROPER DIVISIBILITY IN COMPUTABLE RINGS 15

For (2), let K = R[L \ {x}]. As above, K is a computable subset of Q. We can
use Remark 3.7 to let B = K[y, z]; the embedding of Q into B has a computable
range: the polynomials of the form f(yz). The embedding is the identity on K;
since R is a computable subset of Q, it is a computable subset of K and of B.

3.21,3.20

3.5. Simplifying chains of divisibility in QL.

3.5.1. Monomials and other primes. Let L be a linear system of trees.

Definition 3.22. A monomial of QL is an associate of a product of elements
from all(L). We let mon(L) be the collection of monomials in QL.

Since every element of all(L) is either a unit or an associate of an element of TL,
a monomial in QL is an associate of a product of elements of TL.

The following is clear:

Lemma 3.23. If S 4 L, then mon(S) ⊆ mon(L). If `(L) = ω then mon(L) =⋃
k<ω mon(L�k).

We will see below that the notion is absolute: mon(S) = mon(L) ∩ QS. This is
not immediate because theoretically we could have an element of QS \mon(S) which
after some inversions becomes an associate of a product of elements of TL. To give
a smooth proof of this absolutness, we need to examine the other prime elements
of QL.

Notation 3.24. We let P(L) be the collection of prime elements of QL which are
not associates of leaves of TL, and we let wfd(L) be the multiplicative subset of QL
generated by P(L).

We note that elements of P(L) are not divisible (in QL) by any element of TL;
see Proposition 3.12(5)).

Lemma 3.25. For each S 4 L, P(S) ⊆ P(L).

Proof. Suppose that `(L) = ω and that the lemma is known for all systems of finite
length. Let S = L �n for some n < ω, and let p ∈ P(S). Since QL =

⋃
k>nQL�k

and p is prime in each QL�k , p is prime in QL (being prime is an ∀∃ property).
Similarly if p is divisible in QL by some x ∈ TL then for sufficiently large k, p is
divisible in QL�k by some x ∈ Tk = TL�k (recall that Tω = TL ⊆

⋃
k<ω Tk).

For the finite case, by induction, it suffices to consider the two basic steps of
constructing the rings. Let R be a unique factorization domain and let L be a
finite set algebraically independent over R. Let p ∈ R[L] be prime in R[L], which
is not an associate of any element of L. Let x ∈ L. We need to show that:

(1) p is prime in R[L, x−1], and is not an associate of any element of L \ {x}
in R[L, x−1].

(2) p is prime in R[L, y, z]/(x − yz), and is not an associate of any element
of L ∪ {y, z} \ {x} in that ring.

For (1), we note that x is the only prime of R[L] which is a unit in R[L, x−1];
association classes of elements of R[L] which are not divisible by x are not collapsed
in the localisation R[L, x−1].

16 NOAM GREENBERG AND ALEXANDER MELNIKOV

Property (2) requires more work. Let Q = R[L \ {x}]. By Remark 3.7, {y, z}
is algebraically independent over Q in R[L, y, z]/(x− yz) and R[L, y, z]/(x− yz) =
Q[y, z]. Of course R[L] = Q[x]. The units ofQ[y, z] equal the units ofQ[x] equalQ∗,
so p is not an associate of any element of L \ {x} in Q[y, z]. Since p ∈ Q[x] and
y, z /∈ Q[x], p cannot be an associate of y or of z in Q[y, z]. It remains to show
that p is prime in Q[y, z]. Since Q[y, z] is a unique factorization domain, it suffices
to show that p is irreducible in Q[y, z]. Recall that we assume that x does not
divide p in Q[x]. Thus, as a polynomial in x with coefficients from Q, the constant
coefficient of p is nonzero, i.e. p(0) 6= 0.

Let g, h ∈ Q[y, z] and suppose that p = gh. We need to show that one of g
or h is a unit of Q[y, z]. Again we think of g and of h as polynomials in y and z:
p(x) = p(yz) = g(y, z)h(y, z).

We deal with several cases.
First, suppose that degx p = 0, i.e., that p ∈ Q. In this case, g dividing p implies

that g ∈ Q, and similarly h ∈ Q. Since p is irreducible in Q[x] (and so in Q), one
of g or h is a unit of Q, and so a unit of Q[y, z].

Suppose that degz g = degy h = 0, i.e., that g ∈ Q[y] and h ∈ Q[z]. We
substitute z = 0. Since x = yz this implies that x = 0, so we obtain 0 6= p(0) =
g · h(0). It follows that g ∈ Q, and similarly h ∈ Q, so p ∈ Q, which returns us to
the first case.

Thus, without loss of generality, we can assume that d = degy g > 0 and e =
degy h > 0. We claim that this case is impossible. Aiming for a contradiction, we
write h and g as elements of C[z][y]:

g =
∑
i6d

gi(z)y
i and h =

∑
i6e

hi(z)y
i.

The ring A contains infinitely many units. So we can choose some nonzero α ∈ A
such that gd(α) 6= 0 and he(α) 6= 0. Consider the polynomial

ḡ = g(x/α, α) =
∑
i6d

α−igi(α)xi;

then degx ḡ = d > 0. Similarly, degx h̄ = e > 0 where h̄ = h(x/α, α). On the other
hand p = p(x/α · α) = ḡ · h̄, and so in Q[x] we see that p is the product of two
nonconstant polynomials, neither of which can be a unit of Q[x]; this contradicts
the assumption that p is irreducible in Q[x]. �

Lemma 3.26. Every element of QL is the product of a monomial m ∈ mon(L) and
an element of wfd(L).

Proof. If L is finite then the lemma follows from QL being a unique factorization
domain, and the fact that the irreducible elements of QL are partitioned into P(L)
and the leaves of TL.

If L is infinite, then the lemma follows from the finite case using the upward
absoluteness of the monomials and the other primes (Lemmas 3.23 and 3.25) using
of course the fact that QL =

⋃
k<ωQL�k . �

Corollary 3.27. Every irreducible element of QL is prime (that is, QL is an AP-
domain).

PROPER DIVISIBILITY IN COMPUTABLE RINGS 17

As mentioned in Section 2, this implies that QL is a U-UFD: while some elements
may not have an irreducible factorization, an element which does have one has a
unique one up to association.

Proof. Let p ∈ QL be irreducible. By Lemma 3.26, either p ∈ wfd(L) or p is a
monomial of QL. In the first case p is a product of prime elements, and so is prime.
In the second case p must be a leaf of T , and so is prime (Proposition 3.12(5)). �

Lemma 3.28. Suppose that `(L) = ω. Then wfd(L) =
⋃
k<ω wfd(L�k).

Proof. We first show that P(L) =
⋃
k<ω P(L�k). We take p ∈ P(L) and need to show

that p ∈ P(L �k) for some k < ω. Let i < ω such that p ∈ QL�i . By Lemma 3.26,
p = cm where c ∈ wfd(L �i) and m ∈ mon(L �i). By Lemma 3.23, m ∈ mon(L).
However no proper monomial of QL divides p in QL, and so m is a unit of QL. In
other words, p ∼ c in QL.

We observe that c ∈ P(L �i): let C be a prime factorization of c in QL�i . Each
element of C is prime in QL. Since p is irreducible in QL, |C| = 1.

There is some k > i such that m is a unit of QL�k . By Lemma 3.25, c ∈ P(L�k),
and p ∼ c in QL�k , as required.

Now we prove the lemma. Let c ∈ wfd(L); c =
∏
C where C is a (finite) multiset

of elements of P(L). There is some k < ω such that each p ∈ C is in P(L �k).
Then c ∈ wfd(L�k). �

Corollary 3.29. Let m,m′ ∈ mon(L), c, c′ ∈ wfd(L), and suppose that mc divides
m′c′ in QL. Then m divides m′ and c divides c′ (in QL). Hence, the presentation
of an element of QL as the product of a monomial and an element of wfd(L) is
unique up to association.

Proof. If L is finite, then this again follows from the fact that QL is a unique
factorization domain. If `(L) = ω then by Lemmas 3.23 and 3.28, m,m′ ∈ mon(L�k)
and c, c′ ∈ wfd(L �k) for some k < ω. If k is sufficiently late then mc divides m′c′

in QL�k . We then apply the finite case. �

It follows that in QL, no non-unit monomial can divide a non-unit element
of wfd(L), and vice-versa.

Remark 3.30. If S 4 L then mon(S) = mon(L) ∩ QS. To see this, note that any
divisor of a ∈ QS in wfd(S) is a non-unit divisor of a in wfd(L).

Note however that it is quite likely that there are a ∈ wfd(L) ∩ QS which are
not in wfd(S); some monomial of QS divides a in QS, but that monomial is a unit
of QL.

3.5.2. Monomials and the failure of accp. Recall that an infinite chain of proper
divisions in an integral domain R is a sequence a0, a1, . . . of elements such that
each an+1 properly divides an. In other words it is a counter example to the
ascending chain condition for principal ideals.

Proposition 3.31. Let L be a computable linear system of trees. Every sequence
of proper divisions in QL computes a sequence of proper divisions consisting of
monomials.

Proof. Let 〈an〉 be a sequence of proper divisions in QL. For each n < ω we
write an = cnmn, where cn ∈ wfd(L) and mn is a monomial of QL.

18 NOAM GREENBERG AND ALEXANDER MELNIKOV

By Corollary 3.29, cn+1 | cn for all n. The divisibility relation of QL restricted
to wfd(L) is well-founded as each element of wfd(L) is a product of primes. Hence
there is some n∗ such that for all n > n∗, cn ∼ cn∗ . It follows that for all n > n∗,
mn+1 properly divides mn. The desired sequence is 〈an/cn∗〉n>n∗ . �

3.5.3. Monomial decompositions. Recall that multisets are sets which record mul-
tiplicities. We only consider finite multisets (and so finite multiplicities).

Definition 3.32. Let L be a linear system of trees, and let m ∈ mon(L). A
monomial decomposition (or factorization) of m is a multiset M of elements of
all(L) such that m ∼

∏
M .

We emphsize that a monomial factorization of a monomial m is far from unique,
even if we restrict ourselves to nodes from TL. Given m ∈ mon(L) we can effectively
find some monomial decomposition M of m, by enumerating multisets and waiting
for a unit witnessing that m ∼

∏
M .

Definition 3.33. Let L be a linear system of trees; let M and N be multisets
of elements of all(L). We write M 4L N if

∏
M divides

∏
N in QL. We write

M ≺L N if M 4L N but N 64L M .

Lemma 3.34. If L is finite then the relation 4L is computable, uniformly in L. If
L is infinite then the relation 4L is c.e. in L.

Proof. If L is finite then we let L be the set of leaves of TL. Given any multiset M
of elements of all(L) we can effectively find a multiset M̄ of elements of L such that∏
M̄ ∼

∏
M . If M and N are multisets of elements of L then M 4L N if and only

if M ⊆ N (multiset inclusion, which means the multiplicity of any element x ∈ L
in M is no greater than its multiplicity in N .)

Suppose that L is infinite, and let M and N be multisets of elements of all(L).
Then M 4L N if and only if there is some k < ω such that all the elements of M
and N are from all(L�k) and M 4L�k N . �

Again we emphasize that it is possible that M and N are multisets of elements
of all(L�k), that M 4L N but that M 64L�k N . The reason is that M may contain
elements which later become units.

Definition 3.35. Let L be an infinite linear system of trees. A sequence 〈Mn〉 of
multisets of elements of all(L) is properly decreasing if for all n, Mn+1 ≺L Mn.

Proposition 3.31 and the observation that from a monomial we can obtain some
decomposition yield:

Corollary 3.36. Let L be a computable linear system of trees. Every sequence
of proper divisions in QL computes a properly decreasing sequence of multisets of
elements of all(L).

Corollary 3.36 is the final step in our programme to hide the algebra in our
constructions. When building systems L we never make reference to the ring QL;
rather, we control the complexity of properly decreasing sequences of multisets.

4. The hardness result

In this section we prove Theorems 1.1 and 1.2. We start with coding ∅′.

PROPER DIVISIBILITY IN COMPUTABLE RINGS 19

Proof of Theorem 1.2. Let f be a computable function whose range is ∅′.
Define a linear system of trees L = 〈Tk〉 by letting each Ts be the “fishbone”

tree of length s; f(s) is the length of agreement between Ts and Ts+1. In detail, Ts
will consist of the root a0,s and nodes ak,s and bk,s for k ∈ [1, . . . , s], with ak+1,s

being the right child of ak,s and bk+1,s being the left child of ak,s. For k < f(s)
we let ak,s+1 = ak,s and bk,s+1 = bk,s; for k > f(s), ak,s+1 and bk,s+1 will be new
elements not used before. In other words Ts ∩ Ts+1 consists of the first f(s) many
levels of Ts. In ring terms, the elements bk,s for k > f(s) are inverted in QL�s+1 ,
and so as,s becomes associate with af(s)−1,s in that ring.

a0,s

b1,s a1,s

b2,s a2,s

b3,s

as−2,s

bs−1,s as−1,s

bs,s as,s

Figure 3. The fishbone Ts.

We claim that the ring QL is as required. We first analyse multisets of elements
of all(L).

Let M be such a multiset. For sufficiently large s, every element of M is in
all(L �s). For such s we let M [s] be the unique multiset of leaves of Ts such that∏
M ∼

∏
M [s]. As mentioned in the proof of Lemma 3.34, it is easy to compute

M [s] given M . The leaves of Ts are as,s and bk,s for k = 1, . . . , s. To obtain M [s+1]
from M [s] we first extract every copy of as,s and bk,s for k > f(s); and then add
copies of as+1,s+1 and bk,s+1 for k = f(s), . . . , s+ 1; with multiplicities all equaling
the multiplicity of as,s in M [s]. In particular the multiplicity of as,s in M [s] does
not depend on s; we denote this multiplicity by m(M).

Let k > 1 and let s∗ = s∗(M) be the least s such that M [s] is defined. Let
k∗ = k∗(M) = min {f(t) : t > s∗}. Let t > s∗ such that f(t) = k∗. Then for
all s > t, the multiplicity of bk,s in M [s] is m(M). For k < k∗, the multiplicity
of bk,s in M [s] is constant for all s > s∗. We denote this constant value by bk(M).

Say N is another such multiset and N 4L M . Then for all sufficiently late s,
N [s] ⊆ M [s]. This implies that m(N) 6 m(M). If m(N) < m(M) then N ≺L M .
Suppose that m(N) = m(M) and that N ≺L M . Then there must be some
k < k∗(M), k∗(N) such that bk(N) < bk(M).

Let 〈Mn〉 be a properly decreasing sequence of multisets of elements of all(L).
Since m(Mn+1) 6 m(Mn), the sequence m(Mn) eventually stabilizes. By taking a
final segment of the sequence, we may assume that m(Mn) is constant for all n.

20 NOAM GREENBERG AND ALEXANDER MELNIKOV

For each n, find some sufficiently late s such that Mn[s] and Mn+1[s] are both
defined. Find the least k such that the multiplicity of bk,s in Mn+1[s] is smaller
than its multiplicity in Mn[s]. Then for all t > s, f(t) > k, in other words ∅′s is
correct up to k. To show that this allows us to compute ∅′ we need to show that
these numbers k are unbounded as we scan larger and larger n. But the numbers
bk(Mn) are non-decreasing with n. So they cannot drop infinitely often for finitely
many values of k. �

4.1. Reverse mathematics.

Proof of Theorem 1.1. We show that Theorem 1.2 can be proved in RCA0. More pre-
cisely: in RCA0 we show that for every function f : N→ N there is a non-atomic inte-
gral domain R such that every infinite chain of divisibility in R computes (together
with f) the range of f . This immediately implies that Theorem B implies ACA0
over RCA0. Further, we observe that the domain R produced is an AP-domain; this
implies that Theorem A implies ACA0 over RCA0.

It is not actually the case that all of our arguments above can be carried out
in RCA0 as-is. For example, in the very first definition ofQT , even if T is computable,
the ideal IT may fail to be computable. So some care must be taken.

Working in RCA0, we start with a function f : N→ N. The sequence of trees L =
〈Ts〉s∈N defined in the proof of Theorem 1.2 certainly exists. The next step is to
construct an increasing sequence 〈Qs〉 of rings which play the role of QL�s . We rely
on the characterisation given by Proposition 3.12(2) and the construction given in
Proposition 3.20. Let Ls be the set of leaves of Ts, and let Ys = inv(L�s)∪{tn : n ∈
N}. Then we let Qs = Q[Ls, Ys, Y

−1
s]. The standard embedding of Qs into Qs+1

exists and moreover its image exists, uniformly in s.
For further analysis of the rings Qs we appeal to the well-known Schubert-

Kronecker algorithm, which can be carried out in RCA0. The algorithm shows
that the set of irreducible polynomials in Q[x1, . . . , xn] is computable, uniformly
in n. Since association of polynomials is computable, the divisibility relation in
these rings is computable too. A direct argument can now be made to show that
each of these polynomial rings is atomic. To show that each such ring is a UFD,
it now suffices to show that each such ring is an AP-domain. This is proved by
induction on n, using the arguments proving Gauss’s lemma. The reason that Σ0

1

induction suffices is that irreducibility and divisibility are computable in these rings
(uniformly in s). This makes the statement that Q[x1, . . . , xn] is an AP-domain
Π0

1. We mentioned above that the standard proof that AP domains are U-UFDs
can be carried out in RCA0.

Further we note that every irreducible element of Q[x1, . . . , xn] is irreducible also
in Q[x1, . . . , xn+1], and by induction, in Q[x1, x2, . . .], and that no new units are
added. Further, in RCA0 we show that the localisation of a UFD is a UFD. It follows
that: every ring Qs is a UFD; divisibility and irreducibility in the rings Qs exists
(uniformly in s). The tree Tω may not exist, but the ring Qω does, and is shown
to be non-atomic. Hence there is a sequence 〈an〉 of elements of Qω, each an+1

properly dividing an.
The analysis of Subsection 3.5.1 is followed verbatim. Proposition 3.31 also holds.

The point is that the sets wfd(L�s) and mon(L�s) exist, uniformly in s. Given the
sequence 〈an〉n∈N, we can, for each n ∈ N, first find s(n) ∈ N such that an ∈ Qs(n),
and then find cn ∈ wfd(L �s(n)) and mn ∈ mon(L �s(n)) such that an = cnmn. The

PROPER DIVISIBILITY IN COMPUTABLE RINGS 21

sequences 〈cn〉 and 〈mn〉 exist, and for all n, cn+1 divides cn. Further, let Cn be a
finite multiset of elements of P(L �s(n)) such that cn =

∏
Cn. Then |Cn+1| 6 |Cn|

and if cn+1 divides cn properly, then |Cn+1| < |Cn|. Since the sequence 〈|Cn|〉
exists, there is some n∗ ∈ N such that for all m > n, |Cm| = |Cn|. After renaming,
we obtain a properly decreasing sequence 〈Mn〉 of multisets of elements of all(L).

We now join the proof of Theorem 1.2. The sequence of numbers 〈m(Mn)〉 exists
and is non-increasing, and so stabilizes on a value m∗; so we may assume that this
value is constant for all n ∈ N. The array 〈Mn[s]〉 exists. In RCA0 we can show
that for all n there is some s = s(n) such that for some k < n, the multiplicity of
bk,s in Mn+1[s] is smaller than its multiplicity in Mn[s]. We let k(n) be the least
such k.

In RCA0 we carry out the argument showing that for all n, for all t > s(n),
f(t) > k(n). It remains to show in RCA0 that for all K ∈ N there is some n such that
k(n) > K. To do so we define a sequence of numbers 〈n(j)〉j∈N such that k(n(j)) > j
by effective recursion. Given n(j), let c be the sum of the multipicities of bk,s in
Mn[s] for all k 6 j, where n = n(j) and s = s(n(j)). For all s > s(n(j)), f(s) > j,
so in the interval (n(j), n(j) + c] there must be some m such that k(m) > j;
let n(j + 1) = m. �

5. The insufficiency result

In this section we prove Theorem 1.3: there is a computable, non-atomic integral
domain R such that ∅′ does not compute any infinite chain of divisibility in R.

For a tree T we define 4T and ∼T as 4L and ∼L where L = 〈T 〉. In other words
for multisets of elements of T , multiset equivalence is generated by the operation
of replacing a node with both its successors in T . This gives rise to the notion of
decreasing and properly decreasing sequences of multisets of elements of T . We
prove the following.

Proposition 5.1. There is an infinite Σ0
2 tree T ⊆ 2<ω such that there is no ∆0

2

properly decreasing sequence of multisets of elements of T .

Proof of Theorem 1.3, assuming Proposition 5.1: We use the translation technique
outlined in Example 3.16. Let T be given by the proposition, and let 〈Ts〉 be a
computable semi-approximation of T (σ ∈ T if and only if σ ∈ Ts for almost all s).
We define a linear system of trees L by attaching stage number labels to nodes;
if σ is added to Ts then we add (s, σ) to the sth tree in L. The limit tree TL is
isomorphic to T via the map (s, σ) 7→ σ which is of course the restriction to TL of
a computable map, and so is a ∆0

2-computable isomorphism. We claim that QL is
as required. Suppose that there is a ∆0

2 sequence 〈an〉 of proper divisibility in QL.
By Corollary 3.36 there is a ∆0

2 properly decreasing sequence 〈Mn〉 of multisets
of elements of all(L). The halting problem ∅′ can convert each multset in all(L)
to a multiset of elements of TL, so we may assume that each 〈Mn〉 only contains
elements of TL. Now applying the isomorphism from TL to T gives a ∆0

2 properly
decreasing sequence of elements of T . �

5.1. Discussion. We now informally discuss the proof of Proposition 5.1. We
construct a computable semi-approximation 〈Ts〉 of T . Suppose that we first try to
diagonalise against a computable sequence 〈Mk〉 of multisets of finite binary strings.
The idea is the following. Assume that we start with T = 2<ω. By passing to an
equivalent multiset we may assume that all strings in M0 have some length s0.

22 NOAM GREENBERG AND ALEXANDER MELNIKOV

We choose a string ρ0 of length s0; let m0 be the multiplicity of ρ0 in M0. We
then declare that all other strings of length s0 are terminal on T ; the construction
henceforth will be limited to extensions of ρ0. If indeed each Mk is a multiset
of strings on T , then each multiset Mk is equivalent to the multiset union (sum)
Ak +Bk, where Ak consists of strings of length s0 which are incomparable with ρ0;
and Bk of strings of some length tk > s0, all extending ρ0. If the sequence is
decreasing then Ak+1 ⊆ Ak; since A0 is finite, the sequence 〈Ak〉 must stabilise. If
the sequence 〈Mk〉 is properly decreasing, this means that eventually, some element
of Bk must have multiplicity smaller than m0. We pick such k, declare s1 = tk,
choose ρ1 to be some element of Bk of multiplicity m1 < m0, and repeat the process
by declaring that the strings in T of length s1 other than ρ1 are terminal on T . This
process clearly must terminate: eventually we find some ρn for which we cannot find
any Mk with elements extending ρn of multiplicity smaller than mn (for example
if mn = 0). In this way we force 〈Mk〉 to fail to be properly decreasing. We can
then move on to diagonalize against the next sequence of multisets, still restricting
ourselves though to only extending ρn.

As described this construction works if the sequences 〈Mk〉 we are diagonalising
against are computable. If 〈Mk〉 is merely ∆0

2 then at each stage s we only have
an approximation Mk,s, which may or may not stabilise to a final Mk. Of course if
the approximation does not stabilise then the requirement is met vacuously. If for
example we see that M0 changed then we can cancel ρ0 and rescind the declaration
that other strings of length s0 are terminal on T .

What is the effect on the construction if the approximation to 〈Mk〉, say even
to M0, does not stabilise? In that case we would like the tree to be passed to the
next requirement be all of 2<ω, that is, we do not want the first requirement to
exclude any string from T . This is easily achieved by requiring that each subsequent
time a new definition of a string ρ0 is made, it is made longer and longer, so that
each length is eventually protected from the action for the itinerant M0.

We need to consider though the effect on weaker requirements. The next re-
quirement surely needs to know what the first requirement does; if M0 does not
stabilize then it needs to know that it should not wait for a string ρ0 below which
it must work. This is achieved by a Π0

2 / Σ0
2 guessing procedure, so we employ

a tree of strategies. Each strategy will be concerned with one step toward meet-
ing a requirement, rather than fully meeting the requirement. If 〈M0

k,s〉 is the
first approximation that we need to work against, then the root strategy works on
defining ρ0; a child 〈∞〉 of the root strategy believes that M0 does not stabilize,
and so works for the next requirement; whereas other children of the root strategy
guess a value for ρ0 (and m0) and try to define ρ1, so are still working for the first
requirement. The outcome 〈∞〉 is the stronger one — so this strategy working for
the second requirement is stronger than the strategies working for the second step
of the first requirement.

Consider a strategy γ extending αˆ∞ for some α, and a child δ of α (other than
αˆ∞). Each strategy ε is working above some string ρ(ε) (and declares other strings
on T of that length to be terminal); so both γ and δ work above the string ρ(α).
There are two points to consider (see Fig. 4).

• It would be very bad if δ eliminated ρ(γ) from T , in fact if γ is correct it
would want ρ(γ) and many extensions of ρ(γ) to stay on T . This is easily
achieved as discussed above, by requiring that the string ρ(δ) chosen by δ

PROPER DIVISIBILITY IN COMPUTABLE RINGS 23

is longer than ρ(γ), and in fact as we cycle through various δ’s between
returning to γ, the corresponding strings ρ(δ) must get longer and longer.
• On the other hand, when searching for ρ(δ), α cannot agree to restrict the

search to extesntions of ρ(γ). This is because it is possible that the drops
in multiplicities above ρ(α) all occur away from ρ(γ). All (sufficiently long)
extensions of ρ(α) must be considered. From the point of view of γ, this
is not a problem. When we go back to γ we simply erase the long strings
not extending ρ(γ) from T . If this happens infinitely often, these strings
are not on T .

α

β

γ

δ

Figure 4. The interaction of α, γ and δ (where γ � β � αˆ∞
but δ is another child of α). We write α for ρ(α) etc. The string
ρ(δ) must be longer than ρ(γ) since γ was visited before δ. The
strategies α and δ work for the same requirement, as indicated by
the fill pattern, as do β and γ.

5.2. Construction. We can now give the formal construction.

5.2.1. The tree of strategies. We start with the definition of the tree of strategies.
For each strategy we define three parameters: (1) e(α), the index of the requirement
for which the strategy α works; (2) ρ(α), the string above which α works; and (3)
m(α) 6 ω, the multiplicity which α needs to decrease.

24 NOAM GREENBERG AND ALEXANDER MELNIKOV

We start with the root (the empty string 〈〉); we set e(〈〉) = 0, ρ(〈〉) = 〈〉 and
m(〈〉) = ω.

Suppose that α is a strategy. The children (immediate successors) of α on the
tree of strategies are: (a) αˆ∞; and (b) α (̂τ, n, k) where n < m(α), τ properly
extends ρ(α) and k < ω. The parameters for the children are defined as fol-
lows: e(αˆ∞) = e(α) + 1 (we move to the next requirement), ρ(αˆ∞) = ρ(α), and
m(αˆ∞) = ω; and e(α (̂τ, n, k)) = e(α), ρ(α (̂τ, n, k)) = τ , and m(α (̂τ, n, k)) = n.
The number k indicates the index of the multiset Me

k which witnesses the multi-
plicity n of τ .

With each strategy α we associate a tree T (α) which specifies the strings which α
allows to stay on T . We start with T (〈〉) = 2<ω. Given T (α) we let T (αˆ∞) = T (α),
while T (α (̂τ, n, k)) is the tree obtained from T (α) by removing all strings longer
than τ but which do not extend τ . In other words, if 〈〉 = α0 ≺ α1 ≺ α2 ≺ · · · ≺
αk = α are α’s predecessors on the tree of strategies then

T (α) = D
(
ρ(α0), |ρ(α1)|

)
∪ D

(
ρ(α1), |ρ(α2)|

)
∪ · · ·

∪D
(
ρ(αk−1), |ρ(αk)|

)
∪ D

(
ρ(αk), ω

)
where for a string σ and n > |σ| we let

D(σ, n) = {τ < σ : |τ | 6 n} .

5.2.2. ∆0
2 sequences of multisets. If M is a multiset of strings and τ is a string

which has no proper extensions in M then we define the multiplicity of τ in M to
be the number of initial segments of τ in M (with multiplicities counted of course).
This of course is the multiplicity of τ in a multiset equivalent to M which does not
contain other strings comparable with τ . If τ has proper extensions in M then we
say that the multiplicity of τ in M is undefined (because it may be “fractional”).

Let 〈Me
k,s〉 be a primitive recursive enumeration of finite multisets of strings such

that if 〈Mk〉 is a ∆0
2 sequence of finite multisets of strings then there is some e such

that for all k, Mk = Me
k,s for all but finitely many s.

5.2.3. Construction. At stage s we define which strategies are accessible. The
empty strategy is always accessible.

Suppose that a strategy α is accessible at stage s, and that |α| < s. If s is the first
stage at which α is accessible, then we let αˆ∞ be next accessible. Otherwise, let t
be the previous stage at which α was accessible. Now there are two possibilities.

(1) At stage t, α (̂τ, n, k) was accessible (for some τ , n and k). In this case we

ask if M
e(α)
k,s = M

e(α)
k,t . If so, then we let α (̂τ, n, k) be accessible at stage s.

Otherwise, we let αˆ∞ be accessible at stage s.
(2) At stage t, αˆ∞ was accessible. In this case we ask if there is some k 6 s

and some τ � ρ(α) of length at least t such that the multiplicity n of τ

in M
e(α)
k,s is smaller than m(α). If so, then we choose the least such k and

let α (̂τ, n, k) be accessible at stage s. Otherwise, we let τˆ∞ be accessible
at stage s.

The stage is stopped when we have reached an accessible strategy δs of length s.
We then let Ts = T (δs).

This concludes the construction.

PROPER DIVISIBILITY IN COMPUTABLE RINGS 25

5.3. Verification. Define the true path δω by recursion. The empty string is on
the true path. If α is on the true path and αˆ∞ is accessible infinitely often, then
αˆ∞ is on the true path. Otherwise there is some child α (̂τ, n, k) which is accessible
at all but finitely many stages at which α is accessible; this child is on the true path.

In general we say that a strategy α lies to the left of a strategy β if γˆ∞ 4 α,
where γ is the longest common ancestor of α and β. If β lies on the true path then
at only finitely many stages does δs lie to the left of β.

Let T = lim infs Ts be the set of strings σ such that σ ∈ Ts for all but finitely
many stages s.

Claim 5.2. T =
⋂
α∈δω T (α).

Proof. Let α0 ≺ α1 ≺ α2 ≺ · · · be an increasing enumeration of the true path δω.
Then

⋂
i T (αi) =

⋃
iD(ρ(αi), |ρ(αi+1)|). It thus suffices to show that if α ∈ δω, β

is α’s successor on δω and β 6= αˆ∞, then: (a) D(ρ(α), |ρ(β)|) ⊆ T ; and (b): all
strings on T of length greater than |ρ(α)| extend ρ(α). Fix such α and β. Say
β = (α (̂τ, n, k)).

Let s be a stage at which β is accessible. Then all strings on T (δs) of length
greater than |ρ(α)| extend ρ(α). This establishes (b). For (a), let t be a stage at
which β is accessible, and such that for all s > t, δs does not lie to the left of β.
We claim that for all s > t, D = D(ρ(α), |ρ(β)|) ⊆ Ts. Let s > t.

If β 4 δs then D ⊆ T (δs) = Ts. Otherwise there is some γ ≺ α such that
α < γˆ∞ but γ (̂σ,m, l) 4 δs for some σ, m and l. Since γˆ∞ was accessible at
stage t, the outcome (σ,m, l) was chosen after stage t, so |σ| > t > |ρ(β)|. Then
D ⊆ D(ρ(γ), |σ|) ⊆ Ts since ρ(γ) 4 ρ(α). �

For the next claim, note that for every e there is some α ∈ δω such that e(α) = e,
but only finitely many.

Claim 5.3. The tree T does not contain properly decreasing ∆0
2 sequences of mul-

tisets.

Proof. Let 〈Mk〉 be a ∆0
2 sequence of multisets of strings. Suppose, for a contra-

diction, that each Mk only contains elements of T and that the sequence 〈Mk〉 is
decreasing; we will show it is not properly decreasing.

Find some e such that for all k, for almost all s, Me
k,s = Mk. Let β be the longest

strategy on the true path 4δω such that e(β) = e (so βˆ∞ ∈ δω); and let α be β’s
predecessor.

If e(α) = e − 1 (or β = 〈〉) then let M∗ be the multiset containing infinitely
many copies of the empty string, let τ∗ = 〈〉 and n∗ = ω (we do this just to
avoid discussing two cases separately). Otherwise β = α (̂τ, n, k); in this case let
M∗ = Mk, τ∗ = τ and n∗ = n.

Since β lies on the true path, every string on T of length greater than |τ∗|
extends τ∗. On the other hand since βˆ∞ ∈ δω, for no k does Mk contain an
extension of τ∗ with multiplicity smaller than n∗. Since Mk 4T Mk∗ for k > k∗, for
each such k we can find multisets Ak of strings such that: (a) Ak contains strings
of length τ∗ other than τ∗; and (b) Mk ∼T Ak + (n∗ · [τ∗]) (Mk is equivalent to
adding n∗ many copies of τ∗ to Ak). Since the elements of Ak are terminal on T ,
Ak+1 ⊆ Ak, and so the sequence 〈Ak〉 stabilizes. We conclude that the sequence
〈Mk〉 cannot be properly decreasing. �

26 NOAM GREENBERG AND ALEXANDER MELNIKOV

References

[1] B. Andersen, A. Kach, A. Melnikov, and R. Solomon. Jump degrees of torsion-free abelian
groups. J. Symbolic Logic, 77(4):1067–1100, 2012.

[2] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume

144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 2000.

[3] C. Ash, J. Knight, and S. Oates. Recursive abelian p-groups of small length. Unpublished.

An annotated manuscript: https://dl.dropbox.com/u/4752353/Homepage/AKO.pdf.
[4] Valentin Bura. Reverse Mathematics of Divisibility in Integral Domains. PhD thesis, Victoria

University of Wellington, New Zealand, 2013.
[5] Chris J. Conidis. Chain conditions in computable rings. Trans. Amer. Math. Soc.,

362(12):6523–6550, 2010.

[6] Jim Coykendall and Muhammad Zafrullah. AP-domains and unique factorization. J. Pure
Appl. Algebra, 189(1-3):27–35, 2004.

[7] R. Downey, A. Melnikov, and K. Ng. Iterated effective embeddings of abelian p-groups. To

appear in International Journal of Algebra and Computation.
[8] Rodney G. Downey and Asher M. Kach. Euclidean functions of computable Euclidean do-

mains. Notre Dame J. Form. Log., 52(2):163–172, 2011.

[9] Rodney G. Downey, Steffen Lempp, and Joseph R. Mileti. Ideals in computable rings. J.
Algebra, 314(2):872–887, 2007.

[10] D. Dzhafarov and J. Mileti. The complexity of primes in computable UFDs. To appear in

Notre Dame Journal of Formal Logic.
[11] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and Logic.

Consultants Bureau, New York, 2000.
[12] Yu. Ershov. Problems of solubility and constructive models [in russian]. Nauka, Moscow

(1980).

[13] H. Friedman, S. Simpson, and R. Smith. Countable algebra and set existence axioms. Ann.
Pure Appl. Logic, 25(2):141–181, 1983.

[14] A. Fröhlich and J. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy. Soc.

London. Ser. A., 248:407–432, 1956.
[15] S. Goncharov. Countable Boolean algebras and decidability. Siberian School of Algebra and

Logic. Consultants Bureau, New York, 1997.

[16] Anne Grams. Atomic rings and the ascending chain condition for principal ideals. Proc.
Cambridge Philos. Soc., 75:321–329, 1974.

[17] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.

Math. Ann., 95(1):736–788, 1926.
[18] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2,

volume 139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland, Amsterdam, 1998.

[19] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[20] G. Metakides and A. Nerode. Recursively enumerable vector spaces. Ann. Math. Logic,

11(2):147–171, 1977.
[21] G. Metakides and A. Nerode. Effective content of field theory. Ann. Math. Logic, 17(3):289–

320, 1979.
[22] G. Metakides and A. Nerode. The introduction of nonrecursive methods into mathematics. In

The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), volume 110 of Stud.

Logic Found. Math., pages 319–335. North-Holland, Amsterdam, 1982.

[23] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer.
Math. Soc., 95:341–360, 1960.

[24] H. Rogers. Theory of recursive functions and effective computability. MIT Press, Cambridge,
MA, second edition, 1987.

[25] Leonard Schrieber. Recursive properties of Euclidean domains. Ann. Pure Appl. Logic,

29(1):59–77, 1985.

[26] S. Simpson. Subsystems of second order arithmetic. Perspectives in Logic. Cambridge Uni-
versity Press, Cambridge, second edition, 2009.

[27] R. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated

sets.

https://dl.dropbox.com/u/4752353/Homepage/AKO.pdf

PROPER DIVISIBILITY IN COMPUTABLE RINGS 27

[28] Ernst Steinitz. Algebraische Theorie der Körper. Chelsea Publishing Co., New York, N. Y.,

1950.

[29] V. Stoltenberg-Hansen and J. V. Tucker. Computable rings and fields. In Handbook of com-
putability theory, volume 140 of Stud. Logic Found. Math., pages 363–447. North-Holland,

Amsterdam, 1999.

[30] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1936.

[31] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society, 43:544–546, 1937.
[32] B. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen. Math. Ann.,

102(1):738–739, 1930.

	1. Introduction
	1.1. Results
	1.2. A new technique
	1.3. The structure of the paper

	2. Preliminaries
	2.1. Computability theory
	2.2. Computable algebra
	2.3. Reverse mathematics
	2.4. Accp and atomic rings
	2.5. Trees

	3. Translating trees to rings
	3.1. An informal explanation of the translation
	3.2. Roadmap for this section
	3.3. The ring associated with a binary tree
	3.4. Linear systems of trees and the associated rings
	3.5. Simplifying chains of divisibility in L

	4. The hardness result
	4.1. Reverse mathematics

	5. The insufficiency result
	5.1. Discussion
	5.2. Construction
	5.3. Verification

	References

