CONTINUOUS HIGHER RANDOMNESS

LAURENT BIENVENU, NOAM GREENBERG, AND BENOIT MONIN

ABSTRACT. We investigate the role of continuous reductions and continuous
relativisation in the context of higher randomness. We define a higher analogue
of Turing reducibility and show that it interacts well with higher randomness,
for example with respect to van-Lambalgen’s theorem and the Miller-Yu /
Levin theorem. We study lowness for continuous relativization of randomness,
and show the equivalence of the higher analogues of the different characteri-
sations of lowness for Martin-Lof randomness. We also characterise comput-
ing higher K-trivial sets by higher random sequences. We give a separation
between higher notions of randomness, in particular between higher weak-2-
randomness and H%—randomness. To do so we investigate classes of functions
computable from Kleene’s O based on strong forms of the higher limit lemma.

1. INTRODUCTION

Algorithmic randomness uses the tools of computability theory to give a formal
definition of the notion of a random infinite binary sequence, a sequence we would
expect be the result of independent coin tosses. Many theorems of probability the-
ory and analysis detail properties of real numbers which are shared by all elements
of a set of measure 1. In other words a “typical” — or “random” real satisfies the
property. For example, a monotone function is differentiable at almost every real.
This fact though does not tell us what “typical reals” are; for every real = there is
some monotone function which is not differentiable at x. Restricting ourselves to
a computable viewpoint allows us to consider only countably many properties of
measure 1. For example we can characterise the collection of reals x at which every
computable monotone function is differentiable [BMN16].

Varying the computational strength of the tools involved we obtain in fact a
hierarchy of randomness notions. Roughly, the stronger the tools we have the easier
it is to detect irregular behaviour and so the harder it is to be considered random.
Many of the resulting notions of randomness are robust. The best known notion,
due to Martin-Lof [MLG66], can be defined by using computably enumerable betting
strategies, by the incompressibility of initial segments, and by specifying a natural
class of effectively presented, effectively null Gy sets. The resulting field studies
these notions of randomness, investigates questions such as “what does it mean
for one sequence to be more random than another?”, measures the computational
strength of random oracles, looks at connections to effective analysis, and much
more (see [Nie09, DH10]). A particularly deep area of investigation concerns notions
opposite to randomness, such as K-triviality, and relates them to computational
weakness.
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While they in some sense formalise the intuitive notion of effective computation
(albeit disregarding questions of time and space resources), computability-related
notions do not satisfy natural closure properties. For example, the variation func-
tion of a computable function of bounded variation need not be computable. As
result, even though every function of bounded variation is the difference of two
monotone functions, a real number z can be random in the sense that every com-
putable monotone function is differentiable at x, but not in the sense that every
computable function of bounded variation is differentiable at . This is related to
the fact that the halting problem is not computable. To overcome similar prob-
lems, Martin-Lof himself suggested that the “pattern detection tools” for defining
randomness should be taken from a much larger collection. Such collections are
given by the closely-related fields of effective descriptive set theory and so-called
“higher computability” (see [Sac90]). The collection of Al (or hyperarithmetic) sets
is the smallest one closed under taking the relativised halting problem and closing
downward under Turing reducibility; alternatively, under taking infinite computable
Boolean operations. Martin-Lof defined a real to be A}-random if it is an element
of every Al set of measure 1. The closure properties of the hyperarithmetic sets
result, for example, in the fact that a real z is Al random if and only if every A}
monotone function is differentiable at x if and only if every A}l function of bounded
variation is differentiable at x.

Beyond the desirable closure properties, working with Al and II} sets is partic-
ularly natural and appealing to computability theorists. This is because one can
view these notions as analogues of the fundamental and familiar notions of “com-
putable” and “computably enumerable”, interpreted over an enlarged domain of
computation. The theory of admissible computability generalises computability to
admissible ordinals. The smallest admissible ordinal is w$¥, the least ordinal which
is not the order-type of a computable well-ordering of the natural numbers. The
corresponding domain of computation is L, the smallest admissible set, which is
the initial segment of the constructible universe of height w$¥. A real is Al if and
only if it is an element of wak. The Spector-Gandy theorem says that the IT3 sets
are those which are defined by an existential quantifier ranging over the collection
of hyperarithmetic sets. Via coding of structures by reals this shows that the I3
sets are precisely those which are computably enumerable over the structure Lo
Informally, these are the sets that can be enumerated effectively if the enumeration
procedure takes w{® many steps. With this viewpoint in mind, many intuitive ideas
from traditional “countable” computability (computability over w), for example re-
duction and separation theorems (or the fixed-point theorem) extend to the higher
setting with precisely the same proofs.

An important advance in the theory of “higher randomness” was made by Hjorth
and Nies in [HNO7]. They examined the higher analogue of Martin-Lof randomness
and also isolated the new, stronger notion of I1}-randomness. They also looked at
the higher analogues of the K-trivial sets. The theory was then further developed
by Chong, Nies and Yu [CNY08] and by Chong and Yu [CY15]. One of the projects
they are concerned with is the separation of higher notions of randomness. One of
the results in this paper is the separation between ITi-randomness and the higher
analogue of weak 2-randomness. We also consider higher K-triviality.

1.1. Randomness and continuity. A main theme of this paper is the centrality
of continuous reductions to the theory of randomness. The insight that randomness
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and traditional relative hyperarithmetic reducibility do not interact well goes back
to Hjorth and Nies [HNO7].

As a first motivating example we consider the fact that strong randomness no-
tions are downward closed in the Turing degrees of ML-random sets. For example,
Miller and Yu [MYO08] showed that if X and ¥ are ML-random, ¥ computes X
and Y is in addition d-random (for some Turing degree d) then X too is d-random.
Similarly, an ML-random set X is weakly 2-random if and only if it forms a mini-
mal pair with @' [Nie09, Theorem 5.3.15], a property clearly downward closed in
the Turing degrees. Another example is difference randomness, which is equiva-
lent to being ML-random and not computing &’ [FN11]. The argument of Miller
and Yu’s works for almost every randomness notion stronger than Martin-Lof’s:
suppose that Y computes X and that X is random; say ®(Y) = X where @ is
some Turing functional. For a finite binary string o let ®~![c] be the collection of
oracles Z such that ®(Z) > o; we include oracles for which ®(Z) is not total. Then
o +— M@ 1[o]) (here \ denotes Lebesgue measure on Cantor space 2*) is a contin-
uous c.e. semimeasure (multiplied by 2! it is a c.e. supermartingale). Since X is
ML-random, A\(®~1[X 1,]) <* 27". By withholding computations, we can massage
the functional ® so that A\(®~'[o]) <* 271! for all o (but still ®(Y) = X). Using
the massaged functional we can pull back any strong test (U,,» which captures X (a
difference test, a weak 2-test, a Demuth test, a d-ML-test,...) and obtain a similar
test which captures Y.

The key to this argument is the continuity of the map ® on 2“. The reducibil-
ity <, (relatively hyperarithmetic) is not given by partial continuous functions.
And indeed some of the examples above fail in the higher setting. Hjorth and
Nies [HNO7] introduced the notion of II}-ML-randomness, the higher analogue
of ML-randomness; Nies [Nic09, 9.2.17] introduced the notion of strong IT{-ML-
randomness, the higher analogue of weak 2-randomness, studied later by Chong
and Yu [CY15]. There are however reals X and Y such that X <, Y, Y is strongly
IT3-ML-random, and X is II}-ML-random but not strongly so.

Rather than use <;,, we need a continuous higher analogue of Turing reducibility.
For preciseness, recall that a functional is simply a set of pairs (r,0) of finite
binary strings. Looking forward, note that we do not require that the functional be
consistent; we discuss this shortly. If @ is a functional then for any X € 2<% (finite
or infinite) we let

P(X) =U{a : (1,0) € ® for some 7 < X} 1.

For X,Y € 2¥, X <1 Y if and only if ®(Y) = X for some c.e. functional ®. This
motivates the following definition:

Definition 1.1. Let X,Y € 2¥. X is higher Turing reducible to Y if ®(Y) = X
for some I} functional ®. We write X < eacp V.

With this notion some of the familiar theorems mentioned above generalise to
the higher setting. For example, we will show:

Theorem 1.2. Let X,Y be II1-ML-random. Suppose that X Sperr Y and that Y
is in fact strongly 111 -ML-random. Then X too is strongly II}-ML-random.

1Here the union uses the set-theoretic concept of functions as sets of ordered pairs. So (z,y) €
®(X) if and only if there is some 7 < X and o such that o(z) = y and (1,0) € ®.
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We will also see, for example, that a II3-ML-random set X is higher difference
random if and only if O $w§kT X, where Kleene’s O is the complete II} set of
numbers. On the other hand, we will see that some results only partially generalise,
or completely fail in the higher setting. For example, a Martin-Lof random real is
weak-2-random if and only it forms a minimal pair with ¢, but we show in [GM]
that it is not the case that a I1}-ML-random set is strongly IT13-ML-random if and
only if it forms a minimal pair with Kleene’s O in the < e p-degrees.

Continuity also matters when it comes to relativizing randomness notions. The
two-step product theorem (see for example [Jec08] or [Kun11]) says that if P and Q
are notions of forcing then a filter G x H < P x Q is V-generic if and only if the
filter G < P is V-generic and H < Q is V[G]-generic. The theorem has effective
analogues. For example, a join G @ H is (Cohen) 1-generic if and only if G is
1-generic and H is 1-generic relative to G (see for example [Yu06]). van Lambalgen
[vL87] gave an analogous effectivisation for ML-randomness. It fails in the higher
setting: there are reals X and Y such that X @Y is II}-ML-random, but Y is
not I} (X)-ML-random. The reason for this failure is that the relativisation is
not continuous: enumerating clopen subsets of a component of a IT} (X )-ML-test is
not determined by only finitely many bits of X. Similarly to Turing reducibility,
we need to define a continuous higher analogue of being computably enumerable
relative to an oracle. The treatment is similar. An enumeration functional is a set
of pairs (7,m) consisting of a finite binary string and a natural number. If ¥ is an
enumeration functional and X € 2<% then we let

X = {m : (r,m) e ¥ for some 7 < X}.
A set B is c.e. in X if and only if B = ¥¥ for some c.e. enumeration functional ¥.

Definition 1.3. Let X € 2¥. A set B € w is higher X-c.e. if B = ¥X for some I1}
enumeration functional W.?

Armed with this definition we can consider higher X-c.e. open sets (sets of the
form J,.plo] where B is a higher X-c.e. set of strings), and so higher X-ML-tests
and higher X-ML-randomness. Thus IT13-ML-randomness is simply higher &-ML-
randomness, and so we call it “higher ML-randomness”. We will show that this
continuous relativisation satisfies van Lambalgen’s theorem.

Theorem 1.4. Let X,Y € 2¥. Then X®Y is higher ML-random if and only if X
is higher ML-random and Y is higher X-ML-random.

The issue of continuous relativisation is directly related to the study of anti-
randomness and lowness for randomness. A celebrated result of Nies’s (together
with work by Hirschfeldt, Nies and Stephan [Nie05, HNS07]) is the coincidence of a
number of classes, each formalising a notion of distance from randomness or weak-
ness as an oracle in detecting randomness: the K-trivial sets; the sets which are
low for ML-randomness; the sets which are low for K; and the sets which are a base
for ML-randomness. Hjorth and Nies [HN07] showed that this result fails in the
higher setting: while there are sets which are higher K-trivial but not hyperarith-
metic, every set which is low for II}-ML-randomness is hyperarithmetic. (Higher
K-triviality is defined using a II} analogue of prefix-free Kolmogorov complexity.)

2We remark that we can think of an enumeration functional as an open subset of 2% x w. If ¥
is such a set then UX is the X-section of W.
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Again this uses the fact that the relativisation of IT}-ML-randomness used in the
definition of lowness for this notion is not continuous. We will show that using
continuous relativisation the coincidence does hold:

Theorem 1.5. The following are equivalent for A € 2%:
(1) A is higher K -trivial.
(2) Ewery higher ML-random set is also higher A-ML-random.
(3) There is some higher A-ML-random set X such that A <,ap X.

We will also discuss lowness for K.

1.2. A general method for defining higher analogues. The two examples we
gave of higher analogues of basic concepts of computability (Turing reducibility
and relative computable enumerability) follow a common method which is already
implicit in the Chong-Yu work and which we will employ everywhere. We realise
that the most fundamental concept of computability theory is computable enumer-
ability. From it, all other notions can be derived: a partial computable function is
one with c.e. graph, Turing reducibility is defined using c.e. functionals, etc. Recall
again that a set of numbers is I} if and only if it is X;-definable over L e in the

terminology of higher computability, it is w$*-c.e. The method of obtaining higher
analogues is to replace every instance of “c.e.” by “wk-c.e.”. As we observed,
this means that “higher ML-randomness” is the notion of ITI{-ML-randomness de-
fined by Hjorth and Nies; and “higher weak 2-randomness” is the notion of strong
I1{-ML-randomness defined by Chong, Nies and Yu. It is only the basic notion of
computable enumerability which is being modified; all other quantifiers range over
the natural numbers (rather than w$*), and unlike metarecursion theory, the objects
studied are subsets of w rather than subsets of w$k. For example, a higher ML-test
is an w-sequence of (uniformly) higher c.e. open sets, rather than a sequence of
length w$¥. The fact though that the basic existential quantifier (the computable
unbounded search) ranges over w$k motivates some of our notation (such as <w§kT).

1.3. Continuity and its discontent. Beyond the inherent interest in higher no-
tions, the study of generalisations of computability sheds light on the familiar no-
tions by separating concepts which “accidentally” coincide in usual computability.
An example of such a phenomenon is directly related to the examples of the use of
continuity that we discussed above.

Consider the definition of higher Turing reducibility. The definition of Turing
reducibility in terms of functionals usually imposes extra requirements of consis-
tency on the functional. Namely that if (7,0) and (7/,0’) are two “axioms” in the
functional ® and 7 and 7’ are compatible, then ¢ and ¢’ are compatible. Indeed,
in [HNO7] Hjorth and Nies introduce a continuous reducibility (which they denote
by <fin—n). Their definition is similar to Definition 1.1 except that they require
that the functional ® be the graph of an order-preserving function from strings
to strings and moreover that its domain is closed under taking initial segments.
In “traditional” (or “countable”) computability this extra requirement creates no
difficulty. Namely X <t Y if and only if X = ®(Y") for some c.e. functional ® * if
and only if X = ®(Y) for some consistent c.e. functional if and only if X = ®(Y)
for some c.e. functional satisfying the definition of Hjorth and Nies. We will show

3If ® is an inconsistent Turing functional and two inconsistent axioms in ® apply to an oracle Y
then ®(Y) ¢ 2% and so Y does not compute anything with the functional ®.
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in [BGHM] that the higher analogues of the two first notions are distinct, while the
second one coincide with the third one, but not uniformly. In this paper we will
argue that among these two distinct reducibilities, the one given by Definition 1.1
is the one which fits best with the general theory of higher randomness.

It may be instructive to see why the argument that traditionally these reducibil-
ities are the same fails in the higher setting. To turn an arbitrary functional into
a consistent one (without losing total computations), when an axiom (7,0) enters
the functional at some stage s, we consider all extensions of 7 of length s, and map
those among them to ¢ for which this does not introduce an inconsistency. This
argument uses what we call a “time trick”: the fact that the number of stages is the
same as the length of the oracle, namely w. This equality fails in the higher setting,
in which we still use oracles of length w but effective constructions have w$* many
stages. Thus any argument that relies on a time trick cannot be simply copied in
the higher setting. In some cases the argument can be rectified (an example is the
proof of the higher Kraft-Chaitin theorem by Hjorth and Nies). In other cases,
such as the equivalence of the three definitions of Turing reducibility, in the higher
setting the theorem fails.

To give evidence that Definition 1.1 is more useful than other possible gener-
alisations of Turing reducibility to the higher setting, consider for example one of
the most basic properties of relative computability. The following is easily verified
using arguments of general computability:

Proposition 1.6. The following are equivalent for X,Y € 2¥:
(1) X <w§kT Y.
(2) Both X and its complement are higher Y -c.e.

The proposition fails if we replace < qcp by its stricter variant. The difficulty
is in the direction (2) == (1): suppose that ¥} = X and ¥} = w — X. We build
a functional ® with the aim that ®(Y) = X. When we see strings 7 and o such
that U7 2 {n : o(n) = 0} and ¥7 2 {n : o(n) = 1} we enumerate the axiom
(7,0) into ®. Tt is possible that for other oracles Z, ¥Z and ¥Z do not enumerate
a set and its complement. But before we see this fact, at earlier stages, compu-
tations corresponding to such oracles Z appear to give a set and its complement
— inconsistent with & — and enumerate into ® axioms (with use extending 7 but
incomparable with Y') which are inconsistent with (7, ). The current stage may be
infinite (a stage s € [w,w$¥)), and so such an event could have happened arbitrarily
close to Y (i.e. extending longer and longer initial segments 7 of Y'). Thus even if
we take 7 to be an arbitrarily long initial segment of Y, enumerating (7, 0) into ®
makes ® inconsistent; of course ®(Y') does not contain inconsistencies. This shows
how the time trick can fail bitterly. In [BGHM] we show how to turn this situation
around to prove, for example, that the two generalisations of Turing reducibility
are distinct: there exists some X, Y such that X <, Y but not via a functional
which is consistent everywhere.

The utility of Definition 1.1 with respect to randomness is witnessed in Theo-
rem 1.5 (in the notion of a higher base for randomness) and also in the example of
difference randomness. The following theorem is the correct generalisation of a the-
orem of Franklin and Ng’s. We delay the proper definition of “higher w-computably
approximable” to the next subsection.
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Theorem 1.7. The following are equivalent for a higher ML-random set X :

(1) O &yexr X (where O is Kleene’s complete 1} set).

(2) X avoids all nested tests of the form (U, n P) where {Uy) are uniformly
higher effectively open, P is higher effectively closed (a closed X1 set of
reals), and A(Up, n P) < 27",

(3) X avoids all nested tests of the form (W) ) where We (for e < w)
is the €™ higher effectively open set; A(Wye,)) < 27"; f is higher w-
computably approrimable, witnessed by <fs>s<w§k ;and if fs(n) # fi(n) then
Wy (ny and Wy, are disjoint.

The proof is the same as in [FN11]. We note where we use the fact that inconsis-
tent functionals are allowed. In proving (1) = (3) the functional I" which we build
determines that I'(7)(n) = O4(n) where s is the least such that [7] € W, [s]. On
the elements of the Solovay test {Wy(,)[s] : n € Osy1 — O} this functional may
be inconsistent. In fact, in [BGHM)] we show that there is a higher ML-random
sequence which is higher Turing above O, but is not fin-h above O.

Similarly, our definition of the relativisation of higher ML-randomness runs into
consistency problems when we try to construct a uniform universal test. Classically
there is a sequence (U, ) of enumeration operators such that for all Z, (UZ) is a
universal Z-ML-test. This fails in the higher setting. The point is that we cannot
take a higher c.e. operator (a II} enumeration functional) U and produce another
such functional V such that A(VZ) < ¢ for all Z (for some fixed ¢), and such that
U? = VZ if A(U?) < e. Again a time trick fails. In a sense it is a topological
problem. In standard computability, at a finite stage s the collection of reals for
which an axiom of Uy applies is clopen. When the axiom (7, ¢) enters U (indicating
that [0] € UZ for all Z € [7]) we let C = {Z € 2¥ : A([o] U V.Z) > &}; this set is
clopen and so we can let V enumerate [o] with oracles in the clopen set [7] — C.
In the higher setting, C' is open but may fail to be clopen, as s may be infinite.
Indeed C could be dense. There may be no way to add [o] to VZ for reals Z
outside C' without making A(V#) > ¢ for some reals Z € C.

This is an issue we will need to monitor; in some cases we can find work-arounds
to get analogues of “lower” results. In other cases this is impossible. In [BGHM]
we not only show that there is no uniform universal oracle higher ML-test; indeed
we construct an oracle A for which there is no universal higher A-ML-test.

Similarly we can construct an oracle relative to which there is no optimal higher
discrete c.e. semimeasure, and so an oracle relative to which higher prefix-free
Kolmogorov complexity K4 is not defined. Thus we need to modify the definition
of “higher low for K”, to say that every higher discrete A-c.e. semimeasure is
dominated by the optimal higher c.e. one. Of course if A is low for higher K then
higher K4 exists, namely it is higher K. We will show that this notion coincides
with higher K-triviality as well.

1.4. The higher limit lemma. The analysis of functions approximable by hyper-
arithmetic functions corresponds to that given to AY sets and functions by Shoen-
field’s limit lemma. Here Kleene’s O plays the role of the halting problem @f'. This
analysis will help us separate notions of higher randomness.

ck

Recall that a sequence (f), <usk is wi*-computable if it is 3i;-definable over L cx.

Such a sequence is a w{<-approzimation of a function f € w* if for all n there is
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some s < wk such that f;(n) = f(n) for all t € [s,w{*)). In Section 6.1 we shall
prove:

Proposition 1.8. The following are equivalent for f e w®:

(1) f <wfkT O;'
(2) f ST O;
(3) f has an wSk-computable approvimation.

Since a subset of w is c.e. in O if and only if it is ¥y definable over L e, the
functions computable from Kleene’s O are the functions which are As-definable
over Lqc. Thus we call such functions “higher AY”. We will investigate subclasses
of the collection of all higher A functions (such as the higher w-c.a. functions which
we define below). These classes are related to notions of randomness in two ways:

A. In the style of Demuth, we can use higher AY functions to give indices for higher
effectively open components of tests: tests of the form <Wf(n)> where W, is the et®
higher c.e. open set. The strongest such notion is higher MLR[O], for which we use
all functions f <t O. Unlike lower computability, this is strictly stronger than the
higher version of weak 2-randomness; indeed strictly stronger than IT{-randomness.

B. We can study A9 properties according to their approximability. In the lower
setting this involves classes determined by bounding the number of mind changes.
For example in [FHM*15] Figueira et al. show that while there is a ML-random
sequence with an approximation whose first n bits change at most 2" many times, no
such random can be superlow. The general theme is that among random sequences,
approximations with few changes correspond to computational strength.

In the higher setting we identify a number of classes of functions lying between
the higher w-c.a. functions and all higher A functions. In some sense they too
are described by conditions about how often the approximation changes. However
these conditions are qualitative rather than quantitative. Thus these classes have
no lower analogues.

Definition 1.9. Let {f,) be an w{*-computable approximation of a higher A
function f. For n < w let s(n) be the least stage s < w$* such that fs = f |-
The approximation {(f,) is collapsing if sup, s(n) = w$*. Equivalently, (f,) is
collapsing if for all s < w$¥, f does not belong to the closure of the set {f; : t < s}.

Gandy’s basis theorem implies that there is an O-computable ITi-random se-
quence, and so a II}-random sequence with some w$k-computable approximation.
However no such random sequence can have a collapsing approximation, since the
sequence (s(n)) is 3i-definable over (ngk, f), and so if f has a collapsing approx-

imation then w{ > wi (f collapses w$¥). Roughly, the intuition here is that an

approximation of a IIi-random sequence X must change so much so that all ini-
tial segments of X appear long before the end of the approximation. We note
though that there are sets X <t O which collapse w{* but do not have a collapsing
approximation.

Some of the classes we consider are defined by topological conditions. For exam-
ple:

Definition 1.10. An w{*-computable approximation { f,) of a function f is compact
if the set {fs : s <w§<} U {f} is a compact subset of Baire space w®.
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Of course if we approximate an element of Cantor space we may assume that all
elements of the approximation are also elements of Cantor space. In that case an
approximation is compact if and only if it is closed (for the usual topology).

Lemma 1.11. Suppose that {f,) is a compact approximation of a function f ¢ Al.
Then (f,) is a collapsing approximation.

Proof. Let s(n) be defined as above. Suppose that s(w) = sup,, s(n) is a computable
ordinal. Consider the closure A of the set {f; : t < s(w)}. The function f is an
element of A. However A is countable, as it is contained in the compact set {f; :
t < w$k} U{f}. Further, A is the set of paths of a finitely branching hyperarithmetic
tree with a hyperarithmetic bound on its branching. Running the Cantor-Bendixon
analysis of closed sets within L o< we see that every element of A is hyperarithmetic,
and so f is. |

We will show that no higher weakly 2-random set can have a closed approx-
imation. Thus, to separate II}-randomness from higher weak 2-randomness we
will need to find a class strictly between compact approximations and collapsing
approximations.

Narrowing our classes further we return to the idea of counting the number of
changes. Finite-change approximations have been implicitly used by Yu [Yull].

Definition 1.12. An w{®-computable approximation {f,) is a finite-change ap-
proximation if for no n is there an increasing infinite sequence {(t(4)),_, of stages
such that f;;41)(n) # fiuy(n) for all i < w.

<w

Note that it is not enough to require that there are only finitely many stages s
such that fs11(n) # fs(n). For it is possible that there are limit stages s at which
a new value is given. On the other hand, if {(f;) changes only finitely often then
for all limit s, lim;_, 4 f; exists. Since this limit is w{-computable from s, we may
assume that for all limit s, f; = lim; ., f;. In this case, we can indeed define the
number of changes on n to be the number of stages s such that fs11(n) # fs(n).
Without this assumption we can define the number of changes to be the longest
length of any increasing sequence (t(i)) of stages such that f;;41)(n) # fiiy(n). To
pay a debt, we mention the definition of higher w-c.a. functions.

Definition 1.13. A higher w-computable approzimation is a finite-change w$k-
computable approximation {fs) for which the number of changes is bounded by a
hyperarithmetic function.

Like its lower analogue, a function has a higher w-computable approximation if
and only if it is higher truth-table reducible to O.

Suppose that (fs» is a finite-change approximation which has been modified so
that f, = limy_,, f; for all limit ordinals s. Then the set {f, : s < w{k} U {f} is a
closed subset of Baire space. Further, because this is a finite-change approximation,
it is contained in the set of paths of a finitely branching subtree of w=<%, which is
compact. Hence:

Lemma 1.14. If f has a finite-change approximation then it has a compact approx-
imation.
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The simplest finite-change approximation is an w{*-enumeration of a II1 set,
or a monotone approximation of a higher left-c.e. (left-II}) real. Chong and Yu
showed [CY15] that a higher left-c.e. sequence cannot be higher weak 2-random.
Their proof used the Lebesgue density theorem. Lemma 1.14 and Proposition 5.1
give a new proof of their result. They also answer Yu’s question whether the two
halves of higher Q are ITi-random or not. Since they both have a finite-change
approximation, they are not even higher weakly 2-random. Indeed this gives us a
separation of higher weak 2-randomness from higher difference randomness, since
the two halves of higher € do not higher compute each other and so are Sk
incomplete.

2. EXTREMES OF HIGHER TURING AND HIGHER C.E.

Before we discuss randomness we investigate the notions of higher relative com-
putability and enumeration, in particular when they coincide with familiar notions.
With very strong oracles they collapse to the familiar notions of Turing reducibil-
ity and relative computable enumerability. With weak oracles they coincide with
relative Al and II3.

2.1. Higher computability and strong oracles. The fact that all IT] sets are
O-computable implies the following:

Proposition 2.1. A set is higher O-c.e. if and only if it is O-c.e.; and so a
set is higher O-computable if and only if it is O-computable. Furthermore, these
equivalences hold when O is replaced by any oracle Y =1 O. *

As mentioned in the introduction, there is an effective higher enumeration of
all T} sets, and so we can define an effective higher enumeration of all higher enu-
meration functionals. We will use the familiar notation (W,) to denote such an
enumeration. We will never use both c.e. sets and II} sets in the same context
so no confusion should arise. The enumeration gives rise to a higher jump oper-
ator Y — JV = @, _, WY, for which we easily verify ¥ <uskT JY for every Y.
Since Proposition 2.1 is uniform in the indices for O-c.e. and higher O-c.e. sets, we
see that in the particular case where Y > O, the higher jump J¥ and the standard
Turing jump Y’ are recursively isomorphic. On the other hand, O is recursively
isomorphic to JZ.

Reals which have collapsing approximations (Definition 1.9) are computationally
strong in that they compute a copy of w$¥. Recall that X <pi,—p Y if X Sk Y
via a strongly consistent functional: one whose graph is a monotone function from
strings to strings, whose domain is closed under taking initial segments.

Proposition 2.2. Suppose that Y € 2% has a collapsing approzimation. Then for
every higher Y -computable set X we actually have X <gin—p Y.

4 A more elaborate proof of this Proposition will be used later, so we detail it here. Kleene’s O
computes a bijection between w and w‘fk, and so relative to O, quantifiers ranging over wf{k can
be transformed to quantifiers ranging over w. Formally, there is an O-computable binary relation
E c w? such that (w, E) = (Lwﬁk’ €), and further, such that f . is O-computable, where
f: ngk — (w, E) is the unique isomorphism. Every set which is higher O-c.e. is 21((Lw§k, €),0)-

definable, and so, if X is higher O-c.e. then X = f~1Z where Z is ¥i-definable in the structure
(w, E) and so Z (and so X) is O-c.e.
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Proof. Let ® be a higher Turing functional such that ®(Y) = X, and let (Y;) be a
collapsing approximation for Y. We may assume that for all o € 2<%, |®(0)| < |o].
We define a fin-h functional ¥ by recursion, by selectively copying ®-computations.
At stage s let WUy consist of all the axioms already enumerated into ¥ by stage s.
For every n < w, if:

e Y, [, is not in the domain of ¥,; and

e &, (Y, |,) is consistent,
then we enumerate an axiom mapping Yy |, to ®4(Ys I,) into Usyq. Then ¥ is
a fin-h functional. It suffices to show that WU(Y) is total. Let n < w and let s(n)
be the least s such that Y, [,=Y I,. Since the approximation is collapsing, there
is some k > n such that @) (Y 1) = (Y ). Also, Y [}, is not in the domain
of Wy, and (Y 14)[s(k)] is consistent and extends ®(Y [,). It follows that
Uomy+1(Y) = (Y I). U

On the other hand we know that there are O-computable sets X and Y such
that X Sy Y but X €fin—pn Y, so some assumption on the nature of the
approximations is necessary.

2.2. Higher computability and relative II}.

Proposition 2.3. Suppose that Y preserves wSk (that is, w¥ = wSk). Then for

all X, X Sperp Y if and only if X <t Y @ H for some hyperarithmetic set H.

Proof. If H is hyperarithmetic and X <t Y @ H then we can easily devise a
hyperarithmetic functional ® such that ®(Y) = X, and so X <, e V.
In the other direction, suppose that ® is a II} functional, ®(Y) = X and w} =

wsk. Let <<I>s>s<w§,k be an effective enumeration of ®. Define f: w — w$k by letting

f(n) be the least stage s < wS* such that ®,(Y) extends X |,. The function f
is Aj-definable over L, (Y); since Y preserves wsk, f is bounded below w$*. Let
s < wsk bound the range of f. Then ®,(Y) = X and so X <1 Y ® ®,; and ®, is
hyperarithmetic. O

For Y € 2% we let Ai @Y be the class of sets Turing reducible to H @Y for
some hyperarithmetic set H. Thus Proposition 2.3 says that if Y preserves w$k
then Al @Y is the class of sets higher Turing reducible to Y. Unfortunately the
proposition cannot be reversed. This can be seen by considering the Borel rank
of the set of oracles for which Al @Y equals the collection of sets higher Turing
reducible to Y, which is fairly low, whereas the Borel rank of the reals which
collapse w$* is high (precisely Egik o [Ste78]). Alternatively we can observe that
if Y >1 O, then Al @Y is of course the collection of Y-computable sets, which by
Proposition 2.1 equals the collection of sets higher Turing reducible to Y.

Remark 2.4. Let Q denote the higher version of Chaitin’s left-c.e. random number.
A standard argument shows that Q2 = ek O, indeed the equivalence is higher weak-
truth-table. However since higher 2 is Al-random it does not (Turing) compute
any noncomputable hyperarithmetic set, let alone Kleene’s O, nor is O Turing
reducible to 2@ H for any hyperarithmetic set H. This shows that the conclusion
of Proposition 2.3 fails for the oracle €.

It is well-known that for sufficiently Cohen generic, sufficiently random and suf-
ficiently Sacks generic (with respect to forcing with hyperarithmetic perfect sets)
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sets Y, AL(Y) = Al @ Y; we discuss this shortly. Note that this equality does
imply that Y preserves ws¥; if w) > wsk then Y ) is not in Al @Y. Thus, if
Al(Y) = Al @Y then for all X, X <; Y if and only if X <o Y

We require a notion of uniformity for this equality. First we settle some notation.

Notation 2.5. We sometimes blur the distinction between notations for ordinals
and the ordinals they denote: if & € O then we let « denote also the ordinal |a|p;
we let a4+ 1 be the notation for the successor of a, and so on. For a € OY | we let
y(@ — HY be the iteration of the Turing jump along a.

Definition 2.6. Let Y € 2¥. We say that Al(Y) = Al @Y wniformly in Y if
there is a Turing functional ¥ and a higher Y-partial computable function g (a
function whose graph is higher Y-c.e.) such that for all a € OY, g(a) € O and
y(e) — (Y, @(g(a))va),

Recall that a Y-hyperarithmetic index for a set A € A}(Y) is a pair (e, o) where
ae 0¥ and A = &.(Y(®) (where here ®, is the et (lower) Turing functional).
Similarly, a Al @ Y-index for a set A is a pair (e,a) where a is a hyperarithmetic
index for a set H € Al and A = ®.(H,Y). Then A}(Y) = Al@®Y uniformly in V" if
there is a higher Y-partial computable method of transforming a Y-hyperarithmetic
index for aset A € A}(Y) to a Al@Y-index for the same set. (The reverse direction
is uniform for all oracles.)

Proposition 2.7. The following are equivalent for Y € 2“:
(1) A set is higher Y -c.e. if and only if it is I} (Y).
(2) ANY) = Al @Y uniformly in Y.

Proof. Assume (1). Note that since there are universal 11 (Y) and higher Y-c.e.
sets, the equivalence is uniform: there are computable functions translating be-
tween I1i (Y)-indices and higher Y-c.e. indices. Given this, we see that the proof
of Proposition 2.3 can be performed effectively in Y, as follows. Given o € O we
obtain indices for higher enumeration functionals which with oracle Y enumerate
A = Y@ and its complement. As a result we obtain an index for a higher Turing
functional ® such that A = ®(Y") (Proposition 1.6 is uniform). The relation “@4(Y)
is total” is Aj-definable over L,a(Y) (uniformly in @ and s < w§*); the argument
of Proposition 2.3 gives us a function g satisfying Y(®) = (Y, 29(®) ) which is
1} (Y)-definable. Applying (1) again, we see that g is higher Y-partial computable.

Assume (2), and let g witness the uniformity. We recall that we can view O as
a subset of OY (as the set of notations in OY which hereditarily do not look at the
oracle Y when computing increasing sequences of notations). Uniformly in a € O
we can get a A}(Y)-index for

O}X/:{ﬁEOY : B<o¢};
and the point is that OY = Uaeo OY . as Y preserves wsk. Using g and varying

(]
over a € O we see how to enumerate O in a higher Y-c.e. fashion. O

Porism 2.8. In Proposition 2.7 we may replace the definition of uniformity of
Al(Y) = Al @Y by the apparently weaker condition that Y(® = ¥ (Y, g39(®) «)
for all & € O (rather than all a« € OY). Spector showed (see [Sac90, 112.4]) that



CONTINUOUS HIGHER RANDOMNESS 13

there is a Turing functional T' such that for all « € OY, OY = T(Y(@+V)). If a e O
then a + 1 € O. In the proof of (2) => (1) we apply g to o + 1.

2.3. The behaviour of generics for various forcing notions. We discuss
Proposition 2.7 in the context of Cohen genericity, randomness and Sacks generic-
ity. The ideas here are certainly not new, but some are hard to find in print in the
form below.

2.3.1. Cohen generics. It is well-known, via the analysis of Cohen forcing, that if G
is Cohen generic then A}(G) = Al ® G uniformly. We will employ the following
direct definition of the class of ¥0 sets; see for example [AK00].

Definition 2.9. For a € O we define the class of %0 sets (of numbers and of reals)
and indices for these sets. For a = 1, the X sets are the c.e. sets (and c.e. open
sets of reals), with (e, 1) being the index of the e such set in some effective listing.

Let a > 1. A set is X2, if it is X% for some § <o a. A B2 ,-index for such a set
is a E%—index for some 3 <o a. A set A is XU if it is the effective union of 112, sets.
That is, if there is a c.e. set W such that A is the union of the complements of the
sets whose ¥ -indices are in W. The ¥2-index for this union is (e, ), where W
is the ' c.e. set. Note that we do not require that all elements of W are ¥
indices, so (e, a) is a X9 code for all e < w.

Let Y € 2¥. Note that Y is not a ¥°(Y)-complete set, as it is only A® (V)
(a uniform disjoint union of X2 (Y) sets for n unbounded). For this reason, we
use alternative notation (used in [GMS13], following ideas from [AKO00]) denoting
29 (Y)-complete sets. For n < w let Y,) = Y (™). For infinite a € O let Yio) =
Yo+l Also if a is limit let Y1) = Y (@) whereas for a successor Y(a—1) keeps
its obvious meaning. For all o > 1, a subset of w is ¥2(Y) if and only if it is c.e. in
Yia—1)- For all a > 1, Y, is recursively isomorphic to the set of numbers e such
that Y belongs to the ¢! X9 set of reals. The isomorphism is uniform in a.

When discussing open and closed sets we run into an annoying fact: there is an
open set U which is a 33 set of reals, but for which the predicate [o] < U is not 9.
The fact that such a set is $9 will not be too helpful for us. For this reason we call
an open set X -open if the set of cylinders contained in it is a X0 set of numbers;
equivalently, if it is ¥9(& (a—1))- The complement of such a set is called 110 -closed.

The following is the effective version of the fact that all Borel sets have the

property of Baire. Recall that for an open set V we let 0V =V — V', the boundary
of V', be the set-theoretic difference between the closure of V' and V itself.

Proposition 2.10. Suppose that A is a ¥0 set of reals. Then there is a X0 -open
set U such that the symmetric difference AAU s contained in the union | oV,
where each V,, is a X% _-open set. Indices for U and each V, can be obtained
effectively from an index for A.

Proof. If the proposition holds for  then for every 119 set B there is a 39, 4+1-0pen
set W such that the symmetric difference BAW is cointained in the union | JdV,,
where each V,, is ¥.0-open; if U is the open set given for the complement of B then
W is the complement of the closure of U, and to the list of sets V,, we add the
set U. Once this is known, the proposition follows by induction on «, using the

fact that (| An)A(UVa) € U(AnAVL). O
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Let a € O. A real G € 2% is called < a-Cohen generic if it does not lie on the
boundary of any X2 _-open set. For example n-genericity is < (n + 1)-genericity
and arithmetical genericity is < w-genericity. Proposition 2.10 implies that if G is
< a-Cohen generic then G, is c.e. in G @ Jo—1)- This implies that G,y is
computable in G ® J(,—1)- Unravelling the notation, this means:

e If n <w and G is n-generic, then G = G @ @™,
e If « > w and G is < a-generic, then G =1 G® @(O‘).
The equivalence is uniform in a.
In [GM] we show that a A}-Cohen generic set preserves wSk if and only if it is
Yl-generic. Porism 2.8 implies that if G is YX{-generic then a set is IT} (G) if and
only if it is higher G-c.e.

2.3.2. Random reals. It is well-known that if Z is 2-random then Z is generalised
low: Z/ =1 Z® g'.

The following is the effective version of the fact that all Borel sets are Lebesgue
measurable. It is treated in the theses of Kurtz and Kautz (for the arithmetic
hierarchy); see [DH10, Thm 6.8.3].

Proposition 2.11. Let a € O. For any X0 set of reals A and positive q € Q there
are:

o a X0 -open set U 2 A such that A\(U — A) < q; and

o a 1% -closed set F < A such that \(A—F) < q.
An index for U can be obtained effectively from an index for A and from q, using
the oracle J(o—1)- An index for F' can be obtained effectively from an index for A
and from q, using the oracle . All calculations are uniform in o.

A real is called a-random if it avoids all nested tests (A, ) where A, are uni-
formly 0 sets (not necessarily open). We require that A\(4,) < 27™. Proposi-
tion 2.11 implies that a real is a-random if and only if it is ML-random relative
to J(a—1)- Uniformly in a we have a universal ML-test (UZ) relative to q_1)-
An a-randomness deficiency of an a-random real Z is some n such that Z ¢ UZ.
If (V,,) is any ML-test relative to @(4_1) (so the sets V,, are uniformly ¥%-open)
then from an a-randomness deficiency of an a-random real Z and an index for the
sequence (V;,) we can effectively find some m such that Z ¢ V,,. If 8 <o « and
Z is a-random then of course it is also S-random, and a S-randomness deficiency
of Z can be effectively found from an a-randomness deficiency of Z.

Chong and Yu [CY15] observed that A{(Z) = Al @ Z uniformly for any Aj-
random real Z which preserves w$k. We prove a more precise version of this result.

Proposition 2.12. Let a > 2. If Z is a-random then Zo_1) <T Z @ J(a-1)- An
index for the reduction can be found effectively from an a-randomness deficiency
of Z. This is uniform in a.

In short, for all & > 1, if Z is ML-random relative to @(® then Z(®) =1 Z@@(®).
Note the difference at infinite levels compared with Cohen genericity. For example,
if G is arithmetically Cohen generic then G() =1 G® ). In contrast, by forcing
with arithmetical sets with positive measure one obtains an arithmetically random
set Z for which the equation fails.

Proof. We show this in two steps. First we consider successor ordinals «. Suppose
that « = 8 + 1. We need to show that if Z is § + l-random (ML random relative
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to J(g)) then Zgy <t Z @ Fp). Given a XY set of reals A we want to decide
whether Z € A or not. Using gy we find sequences (U,,) and (F},) such that U,
is E%—open, F, is Hiﬁ—closed, F,c Ac U, and A\(U,, — F,,) <27™. The sequence
(Up — Fp) is a J(3)-ML test, and so we can find some n such that Z ¢ (U, — F,).
Thus Z € A if and only if Z € F,,. To determine whether Z € F,, we employ a
similar process. F,, is Hg—closed for some v < . Relativising the case a = 1 to
() we obtain a (. -computable sequence (C,,) of clopen supersets of F}, such
that A(Cy, — F,) < 27™. Again this is a (J(,)-test and so we can find some m such
that Z ¢ (C,, — F,,). We conclude that Z € A if and only if Z € C,,, and this can
of course be checked directly with the oracle Z.

Next we consider limit ordinals a. If Z is a-random (ML-random relative
to Q(O‘)) then uniformly in v <o « it is y-random (by this we mean that we can,
uniformly in 7, compute an upper bound on the y-randomness deficiency of 7).
As Ziq_1) = Z(@) is the effective join @v<oa ZW | to compute Z(@) it suffices to
compute each Z(¥), and we may restrict ourselves to successor ordinals v. How-

ever with oracle #(® we uniformly obtain (") and we have already shown that
Z0 <1 Z @ @) uniformly. t

Remark 2.13. The components of the g)-ML tests described in the proof of
Proposition 2.12 are all Zg rather than Z% +1- These are equivalent to weak (-tests
(generalized (J(5_1)-ML tests). It would seem that we could relax the randomness
requirement. However the key is the uniformity in A: for each A we have a different
test, and the full 8 + 1-randomness deficiency of Z is used to find components of
these tests that Z avoids. Indeed, Lewis, Montalban and Nies [LMNO7] showed
that there is a weakly 2-random set which is not generalized low.

Stern [Ste75] and independently Chong, Nies and Yu [CNY08] showed that a
Al-random real is ITi-random if and only if it preserves w$¥. Suppose that Z is I1i-
random. Then it is IT}-ML random (higher ML-random). From a hyperarithmetic
index for a ML-test relative to some hyperarithmetic oracle we can effectively find
an index for this test as a sequence of uniformly II} open sets. Hence from a
randomness deficiency for Z as a higher ML-random real we can uniformly in oo € O
find an a-randomness deficiency for Z. Consequently, A}(Z) = Al @ Z uniformly.
Hence, if Z is IIi-random, then a set is 111 (Z) if and only if it is higher Z-c.e.

Remark 2.14. Chong and Yu [CY15] proved an analogue of Demuth’s theorem:
If X is II}-random, Y <; X and Y is not hyperarithmetic, then deg, (Y) contains
a I}-random sequence. The structure of their argument follows that of Demuth’s
theorem; this can be further clarified using Higher Turing reducibility. In the first
step we already know that Y <t X @ H for some hyperarithmetic set H. Further,
being ITi-random, X is Al-dominated: every A}(X) function is bounded by a
hyperarithmetic one. Applying this to the use of the reduction, we see that Y
is higher truth-table reducible to X. This implies that Y is higher ML-random
for the image measure, and since it is not hyperarithmetic, it is not an atom of
this measure. The second step of the proof is now identical to the classical one:
if Y is higher ML-random for some hyperarithmetic measure and is not an atom
of this measure, then the higher Turing degree of Y contains a higher ML-random
sequence. Being ITi-random, X preserves w§*, and so Y preserves w$* as well, which
implies that any higher ML-random sequence in degwng(Y) is in fact I1}-random.
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2.3.3. Sacks generics. We consider sets which are generic for forcing with perfect
hyperarithmetic closed sets. Sacks (see [Sac90, IV.5]) showed that if G is sufficiently
generic for this notion of forcing then G preserves w$¥ and has minimal hyperdegree.
The proof shows that Al(G) = Al @ G. However, this is not uniform. We thank
Adam Day for pointing this out.

Proposition 2.15. If G is sufficiently generic for hyperarithmetic Sacks forcing,
then O% is not higher G-c.e.

Proof. In fact we prove more: we prove that, given a countable collection of enu-
meration functionals (I';) (with no assumption on their effectivity), if G is generic
enough, then I'¥ # O for all i. Consider a given perfect hyperarithmetic closed
set, represented by a perfect tree T and an enumeration functional I'. It is easy to
construct a hyperarithmetic set of nodes D € T, open in T, which is dense in T but
such that the (hyperarithmetic) tree T'— D is perfect. Since D is hyperarithmetic,
there exists an n such that for every real X, X has a prefix in D if and only if
n ¢ OX. If there are no paths X in T such that n € I'*, then the tree T — D,
which refines T, forces that I'® # O%. Otherwise there is some o € D such that
n € I'?. Then the “full subtree” T, of nodes in T" comparable with o forces that
e # 0%, O

3. CONTINUITY AND RANDOMNESS

As discussed in the introduction, when trying to establish analogues of familiar
theorems of algorithmic randomness, we sometimes need to work around the usage
of time tricks. As a first example we consider van-Lambalgen’s theorem. The proof
of one direction: if X is higher ML-random, and Y is higher X-ML-random, then
X @Y is higher ML-random — is identical to the analogous “lower” proof. The
other direction usually uses a uniform universal ML test, and as discussed in the
introduction, no such uniform universal test exists in the higher setting. Given an
enumeration operator U, we cannot transform every U¥ to an open set with some
fixed measure bound. But we show that we can do this for most oracles X, and
then argue that this suffices.

In the following lemma and below we think of operators enumrating open sets
given oracles as open subsets of the plane; if U < (2¢)2 is open then U™ is the
X-section of U.

Lemma 3.1. Let U < (2¥)? be higher effectively open. For every ¢ > 0 there is a
higher effectively open set V < (2¢)2 such that:
(1) If M(UX) < & then UX = V¥, and
(2) For all but a set of measure e-many oracles X, A\(V¥X) < e.
An index for V' can be obtained uniformly from ¢ and an index for U.
For the proof we use the projectum function p: w{* — w: this is an w§k-
computable injective function.

Proof. We enumerate V. For s < w{® we let V; be the open set enuemrated by
stage s. Suppose that we see the cylinder [0, 7] enumerated into Usyi. Let Ps be
the set of X € [o] such that A\(V.X U [7]) > e. We find a clopen set Cy < [o] which
is close to the complement [o] — Ps of Ps inside [o]:

e Csu P, =[o]; and
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e MCynP,) <e-27P06),
We then let Vi = Vi U (Cs x [7]).

We have V' € U, and the desired property (1) holds. To see (2), let B =
{Xe2v: AN(VX)>e}. We claim that B = |J Cs N P;). Let X € B. For
limit ordinals s < w$k, Vy = |J,_, Vi (here we let Ve = V) and so there is some
s < wsk such that A(VX) < e but A(VX,) > . But then X € Cs n Ps. Now

ck(
S<(A.)1

A(B) <>\(UPS mcs) <e- 2 2 P() < ¢

ck
S<(.d1

as p is injective. O

Remark 3.2. We apply the notational convention used in the previous proof
throughout this paper. If X is any object which is approximated or enumerated

in w$k many steps then we let X o« = X. For example if U is a c.e. open set and

Us)g e is an w§k-effective enumeration of U then we write Ugee for Us if () is
an w{*-computable approximation of a function f then we let fwik = f.

We can now prove a the higher version of van Lambalgen’s theorem.

Proof of Theorem 1.4. As disucssed above, the proof of one direction has no new
ingredients, and so we omit it. In the other direction we are given a pair (X,Y’) and
assume that Y is not higher X-ML random; and need to show that the pair (X,Y)
is not higher ML-random.

Let (U be a higher X-ML-test which captures Y. By Lemma 3.1 we may
assume that for all n, the measure of B, = {Z€2¥ : A(U?) > 27"} is at most
27", X is not in any B, and Y is captured by the X-test after applying the
transformation of that lemma. So (X,Y) € (), U,. A calculation (essentially
Fubini’s theorem) shows that A(U,) < (1 —27") - 27" 4+ 27" which converges to 0
(computably).

O

3.1. Pulling back strong tests. The argument of Miller and Yu’s, sketched in
the introdution, relies on the consistency of the given functional. Recall that a
continuous semi-measure is a function m which assigns to every finite binary string
a non-negative real number, such that for all o € 2=, m(¢"0) + m(c"1) < m(o). A
continuous semi-measure is higher c.e. if the real m(o) is higher left-c.e., uniformly
in 0. If @ is a consistent functional then the function o + X (®7![o]) is a continuous
semi-measure. In the higher setting not all functionals can be made continuous.
However as above, given a functional ¥ and some ¢ > 0 we can transform ¥ to a
functional ® such that ®(X) = U(X) if U(X) is consistent, and such that ®(X) is
inconsistent for at most e-many (in the sense of measure) oracles. In fact we can
combine all the e-modifications in one to get the following.

Lemma 3.3. For every higher Turing functional ¥ there is a higher Turing func-
tional @ such that:
(1) for all X for which ¥(X) is consistent, ®(X) = ¥(X); and
(2) the function 7+ A(®71[7]) is bounded by a higher c.e. continuous semi-
measure.
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Proof. Fix a function ¢: 2<“ — Q% such that ] _,.. ¢(7) < 1 and such that
1 < 7o implies ¢(11) = q(72) (for example let ¢(7) = 27%I7l). We enumerate a
functional .

Suppose that we see the axiom (og,7s) enumerated into Uy, ;. We let Py be
the set of X € [os] such that ®4(X) is inconsistent with 75. Let Cs be a clopen
subset of [os] close to the complement [o5] — Ps; we mean that Ps u Cs = [o,] and
APy 0 Cy) < 27P0) . g(1,), where as above p is the projection function. We then
declare that ®,.1(X) > 75 for all X € Cs.

Inductively, for all s and X, ®,(X) < ¥4(X), and so if X € Py then U(X) is
inconsistent. This establishes (1).
For (2) we let

m(r) = A (®7[r]) + ) alp).

For 7€ 2<% let B(1) = ®7[7°0] n ®~![7"1]. So /
M@H70]) + M@ 1)) < M@ [7]) + M(B(7)).

If X € B(7) then there is some stage s < wfk such that X € P, nCy and 75 extends
either 7°0 or 7°1. Since ¢(7) = ¢(7s), the argument of Lemma 3.1 shows that
A(B(7)) < q(7). A calculation now shows that m is a continuous semi-measure. [

Lemma 3.3 allows us to show that strong randomness notions are downwards
closed in the w$kT-degrees of higher ML-random sets. In particular we get Theo-
rem 1.2.

Theorem 3.4. Suppose that X andY are higher ML-random and that X S Y.
IfY is higher weakly-2-random (higher difference random, higher Z-ML-random for
some Z € 2¥,...) then so is X.

Proof. By Lemma 3.3 we get a higher Turing functional ® such that ®(Y) = X
and A(®71[7]) < m(7) for some higher c.e., continuous semi-measure. Since X is
higher ML-random, m(X |,,) < ¢-27" for some constant ¢. We can then eumerate
a functional ¥ < @ such that ¥(Y) = X and A(¥~![7]) < ¢- 2717l for all 7: we
enumerate W. At stage s say an axiom (o, 7) appears in ®¢,1. If A\([c] U ¥ [p]) >
c-271°l for some p < 7 then we let ¥, = W,; otherwise we let U, 1 = U, U{(0,7)}.
In the first case A(®~'[p]) > ¢- 2717l and so p is not an initial segment of X; so o
is not an initial segment of Y.

If (U, ) is any strong test capturing X then <<I>*1[Un]> is a strong test captur-
ing Y. The point is that A(®7'[U,]) < ¢- A(U,). There may not be any higher
c.e. (higher Z-c.e.) antichain generating U, ; but for the measure calculation we do
not need effectiveness: the inequality is obtained by considering the antichain of
minimal strings (maximal intervals) in U,. O

4. K-TRIVIALITY

Hjorth and Nies defined in [HNO7] the notion of higher prefix-free Kolmogorov
complexity, based on the concept of universal I1 prefix-free machine. We denote
this complexity function by K, as we will not be using the traditonal “lower”
complexity. Armed with this concept Hjorth and Nies defined the class of higher
K-trivial sets, those sets A € 2% satisfying K(A |,) <™ K(n).
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Hjorth and Nies proved that there are higher K-trivial sets which are not hy-
perarithmetic (arguing that Solovay’s proof applies in the higher setting) and also
that every higher K-trivial is Turing reducible to Kleene’s O. As described in the
introduction, since they use discontinuous relativisations, their notions of higher
lowness for K, higher bases for randomness and higher lowness for MLR coincide
with being hyperarithmetic. Continuous relativisations yield analogues of familiar
equivalences.

In addition to Theorem 1.5, we also show that a set is higher K-trivial if and only
if it is higher low for K. As mentioned above, defining the notion is not completely
sraightforward because there are oracles A for which there is no optimal prefix-free
complexity; so K4 is not well-defined for all A. Further complication is due to the
potential failure of the equivalence between prefix-free complexity and discrete c.e.
measures. Recall that a discrete measure (often called a discrete semi-measure, but
it is a measure) is simply a measure on w (equivalently, on any computable set);
such a measure is of course determined by the measures of its atoms. A discrete
measure p is called (higher) c.e. if u(n) is a (higher) left-c.e. real, uniformly in n.
Nies and Hjorth showed that the higher analogue of the Kraft-Chaitin theorem
holds, from which follows the higher analogue of the coding theorem, which says
that every higher c.e. discrete measure can be realised as the measure dervied from
a higher prefix-free machine (pp; = 27%M). Thus 27X is an optimal higher c.e.
discrete measure.

We do not know whether the coding theorem can be continuously relativised to
every oracle. Thus given an oracle A we can investigate both higher A-computable
prefix-free machines (their graphs are higher A-c.e.) and their associated complex-
ities; and higher A-c.e. discrete measures. This gives two definitions of lowness:

e an oracle A is low for higher K if for every higher A-computable prefix-free
machine M, K <% Kj;
e an oracle A is low for higher c.e. discrete measures if for every higher A-
c.e. discrete measure v, g =* v where p is the optimal higher c.e. discrete
measure.
A-priori the second notion is stronger. We will show that both of these concepts
coincides with higher K-triviality. On the other hand, since the concept of K-
triviality itself does not involve relativisation, it can be characterised using discrete
measures: a set A is K-trivial if and only if p(A 1) =* u(n).

4.1. Approximations of K-trivial sets. The following is implicit in [HNO7].

Proposition 4.1. Every nonhyperarithmetic higher K-trivial set has a collapsing
approximation.

In fact if A is higher K-trivial then there is an increasing approximation (g,
of p and a collapsing approximation (A,) of A such that for some constant § > 0,
o (Aly) =6 py(n) for all n < w and all s < wk.

Proof. We start with an arbitrary enumeration (Us) of the universal higher-c.e.
prefix-free machine U, and let K, = Ky,_. As usual we assume that the enumeration
of U is continuous, i.e. Uy = Ut<s U; for every limit ordinal s < w‘fk. Hence
K = lim;_, ¢ K; for every limit ordinal s.

ck

There is an w$*-computable sequence of trees (Ts) ok such that:

s<w

e For all limit s < wfk, Ts = limy_, s T}; and
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e A is the unique path of T e

For let b be a K-triviality constant for A. There are only finitely many K-trivial
sequences with constant b. For s < w$* let S, be the tree of finite binary strings
which are Kg-trivial with constant b. Let o be a string on Swi‘k which isolates A on
Syec. We let T be the restriction of Ss to strings comparable with o.

In [HNO7], Hjorth and Nies show that there is an w{-computable closed and
unbounded set C' S w{* such that for all s € C, the tree T, has only finitely many
paths. A similar argument shows that after thinning to a possibly smaller set of
stages we may assume that for all s € C, T has a path (for all n, if T} contains a
string of length n for all ¢ in some set B of stages, then by continuity Ty,p g also
contains a string of length n.) We define the approximation (A, for s € C' by
letting A, be the leftmost path in Ts. Then A = limgec As. This approximation
is collapsing: if A [,€ Ty, and s(w) = sup,, s(n) then A is a path in Tj(,y; if
s(w) < w§* then Ts(w) is hyperarithmetic, and so each of its finitely many paths is
hyperarithmetic.

Finally we renumber our approximations using the increasing w{-computable
enumeration of C, and let p, = 27 %=, g

The fact that a set A has a collapsing approximation allows us to relativise to A
many familiar techniques, with arguments along the lines of that of Proposition 2.2.
In the language of [BGHM], it is a “good oracle”. For example:

Lemma 4.2. Suppose that A has a collapsing approximation. Then there is an
optimal higher A-c.e. discrete measure p“, and a sequence Z is higher A-ML-
random if and only if u(Z |,,) <* 27". Further, there is a universal higher A-c.e.
prefix-free machine U4 and p? =* 27K *
Proof. To get a universal higher A-c.e. prefix-free machine we show that we can uni-
formly transform a given enumeration functional W to an enumeration functional V'
such that V4 is the graph of a function with prefix-free domain (indeed this is true
for every oracle), and if W4 is a graph of such a function then V4 = W4. As in
the proof of Proposition 2.2, if we see that o = A, [, is not an initial segment of Ay
for any ¢ < s, and W/ is the graph of a function with prefix-free domain, then we
let VI =W/.

In the same way we get u?; if p € 2<% x w x QT then we let, for each n < w and
X e 2% uX(n) = sup{qge QT : (o,n,q) € u for some o < X}; and let p*(w) =
Y e 45 (n). We can transform each higher c.e. such y into some v such that
vA(w) < 1 and if p4(w) < 1 then v4 = p?: when we see a “fresh” 7 < Ay, we
copy 7, provided that u?(w) < 1.

The key step in the standard (“lower”) proof of the Levin-Schnorr theorem (the
equivalence of discrete measures and tests in capturing ML-randomness) is taking
an effectively open set U and obtaining a c.e. prefix-free set generating U. In the
higher setting this is impossible; using the projectum funcion and approximations
of closed sets from above by clopen sets, we can get a set of strings generating U
whose weight is bounded by A(U) + ¢ for any prescribed ¢ > 0. However working
relative to an oracle A with a collapsing approximation makes the situation easier:
in some sense the collapsing approximation brings us closer to w-computability.
If A has a collapsing approximation and U4 is higher A-effectively open then there
is a higher A-c.e. prefix-free set of strings W4 generating U: if 7 < A, is fresh then
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we enumerate into W7, all strings o of length |7| such that [o] € U2 but [o] is
disjoint from [WT].

In a similar way, relative to A we can follow the standard proof of the Kraft-
Chaitin / coding theorem without having to resort to the necessary complications
of the proof of the unrelativised theorem in the higher setting (see [HN07]).> O

Suppose that A is low for higher K. Then it is higher K-trivial. With Lemma 4.2
we can then conclude that it is also low for higher c.e., discrete measures, and low
for higher ML-randomness.

4.2. Hungry sets. We next show that if A is a base for higher randomness
(A <,y Z for some higher A-ML-random set Z) then A is higher K-trivial.

e We could modify the argument to obtain lowness for higher K. We will
later show though that higher K-triviality implies lowness for higher K.

e The higher version of the Kucera-Gacs theorem shows that if A is low
for higher ML-randomness then it is a base for higher randomness. So
we also conclude that lowness for higher ML-randoness implies higher K-
triviality and therefore lowness for higher K. A more direct argument is
likely possible but for brevity we omit it.

We need to carry out the “hungry sets” construction of [HNS07]. In [HNO7] the
authors claim that the proof carries over with only notational changes; they ignore
the typical topological problems. These problems are present even if one assumes
that the reduction of A to Z is a fin-h reduction; the problems increase slightly
when inconsistent functionals are admitted. Here we discuss these problems and
show how to overcome them.

We recall the structure of the proof. Suppose that ®(Z) = A where ® is a higher
Turing functional and Z is higher A-ML-random. We fix ¢ > 0. We enumerate
“hungry sets” C* = C%(g) for every finite binary string «; we ensure that C* <
®~[a]. An attempt to show that A is K-trivial is made by ensuring that a —
A(C®) is a higher-c.e. discrete measure, and attempting to show that \(C4l») =
p(n). So we aim to ensure three things:

(1) the measure of | J,_ 4, C® is bounded by &;
(2) either for all a < A, A(C?) = ep(|al]), or Z |
(3) the sum ) oo A(C?) is finite.

We ensure that for all s and a, MCS) < epy(Ja]); this ensures (1). In the stan-
dard proof, (3) is obtained by ensuring that the hungry sets are pairwise disjoint.
The usual topological reasons preculde this from hapenning in the higher setting;
at an infinite stage s, ®;![a] — C¢ may have positive measure but no interior.
Further, if ® is inconsistent then we do not automatically get that C* and C# are

C%; and

a<A

5 Another way to understand the situation is to observe that a collapsing approximation of A
gives us an wfk-A-computable w-sequence {ay, ) cofinal in w‘fk. From this we get a relation Swng
A such that (w, E) = (wak’ €) (and as is the situation with O, we can make the map n > n(«¥)
computable). This means that the higher A-c.e. sets are precisely those which are ¥1-definable in
the structure (wak’ €,A). So when designing higher A-c.e. sets we don’t have to consider other
oracles, as is usually the case with desining oracle-c.e. sets; and we can enumerate such sets using
a recursion of length w along the sequence (). All familiar constructions can be performed this
way. For example when enumerating a higher A-effectively open set U we may assume that by
stage ap, only strings of length n have been enumerated into U.
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disjoint if & and f are incomparable. As above, we remedy this by allowing overlap,
but ensuring that it is small.

Fix positive rational numbers d, for all strings o € 2=, so that )} o< 0o is
finite. For notational simplicity at each stage of the construction we consider a
single string o (at stage t + n, t limit, consider the n'" finite binary string). Let
Cs = UBEQQ CB. We find a clopen B, C C, such that A(C, — B,) < 6,277(). We
now consider:

e Gy =&, ![a] — B, — this is potential fodder;
o ¢ = cus(|al) — M(C) — this is the amount we would like to add to C*.

If A(Gs) < g5 then we let C¢, = CF U G,. If \(Gs) > g5 we find some hyper-
arithmetic open set Us © G of measure exactly g, and let C¢, ; = C¢ v Us. It is
easy to check that the bound A(C%) < ep(]a|) is maintained at stage s + 1; that if
MGs) > gs then epg(|a]) — A(C2 ;) < 3,27P(); and that that A(ES) < §,27P),
where E¢ = (C¢ — C) n Cs.

Suppose that Z ¢ U6<A C*; since @ is consistent on Z and C# < ®71[3], Z ¢
C = Upeg=<w CP. Let a < A, and suppose for a contradiction that \(C%) < epu(|a);
let A(C®) < r < q < ep(|a]) be rational numbers. For all but a bounded set of
stages s we have ep,(Ja|) > ¢, A(C) < r, and §,27P() < ¢ — r. Suppose that s is
a late stage at which « is considered; so Z € ®~![a]. The fact that Z ¢ C implies
that A(Gs) > ¢s, but then enough measure is added to C¢,, to bring it to within
60277) of ep(|r|); this is a contradition, which yields (2).

It remains to verify (3). For each « let E* = [ J, E$; so A(E) < 64. The sets
C* — E“ are pairwise disjoint: a real X € C* — E* enters C'* before it enters any
other C?. Hence

DIAC = D AMCT—E™+ D MEY) <1+ )] b

ae2=w ae2=w ae2=w ae2=w

which is finite.

4.3. The main lemma. Unlike the hungry sets construction, there are no ma-
jor topological complications associated with the golden run argument. The proof
translated to the higher setting without many modifications. Proposition 4.1 gives
a useful approximation with which to run the construction. In the standard con-
struction we assume that the given enumeration is first sped-up so that at every
stage s, As |5 is Ks-trivial; here we can assume that A, in its entirety is K-trivial.
When drip-feeding measure we are instructed to put some weight on a fresh num-
ber n, and this usually means larger than any number chosen so far. This of course
we cannot do. However we can choose a number as large as necessary (larger than
the length of some initial segment of A which we are trying to certify) without
needing to re-use followers; at stage s we choose from the p(s)*™" column of w.
This allows us to prove the higher version of the main lemma [Nie09, Lemma
5.5.1]. Suppose that (A;) ac Is an w§¥-computable approximation of a set A. For
s < wfk let A; A Agiq1 be the longest common initial segment of A; and Ag.q.
Let u” be a higher A-c.e. discrete measure. If (A,) is a collapsing approximation
then we may assume that we have an enumeration {us) of p such that for all
s < w§k, pfs is a higher c.e. discrete measure as well (in fact as discussed above
we may assume that u*X is a discrete measure for all oracles X). Recall that for a

s<w
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discrete measure v we let v(w) = > v(n). The quantity

pe (w) — e Ao (w)

is the total mass assigned by u#s which was believed at stage s but thought to be
incorrect at stage s + 1.

Proposition 4.3. Let A be higher K -trivial, and suppose that u? is a higher A-c.e.
discrete measure. Then there is an approximation (As) of A such that the sum

3 (it (w) = g )

s<wsk
is finite.

Further, we may assume that if (As) is a given collapsing approximation of A
and {u,) is an enumeration of y such that for all s, us(w) < 1, then there is an
w§-computable closed unbounded set C' < w§* such that

A nA
> (@) = " @) < e,
seC
where sT = min(C — (s + 1)).
We obtain familiar corollaries:

e Every higher K-trivial set is low for higher K; this completes the proof of
Theorem 1.5.

e Every higher K-trivial set is higher Turing reducible to a higher c.e., higher
K-trivial set.

e Every higher K-trivial set is higher w-c.a.

5. HIGHER WEAK 2-RANDOMNESS

Recall that a higher weak 2-test (a generalised higher ML test) is a sequence
(Up) of uniformly IT} open sets (higher c.e. open sets) whose intersection is null.
Note that we can suppose that the U,, are nested, i.e., U, 11 € U, for all n (indeed,
if they are not, one can consider V,, = [, <n Uk and observe that the V;, are nested
and that their intersection is the same as (), Uy,).

A sequence is higher weak 2-random if it avoids all higher weak 2-tests. In
this section we find alternative, Demuth-like characterisations of higher weak 2-
randomness; we consider their Borel rank through an effective lens; and we investi-
gate the interaction with classes of higher Ay sequences. These considerations will
culminate in a separation of II} randomness from higher weak 2-randomness.

5.1. Compact approximations and higher weak 2-randomness. Defini-

tion 1.10 describes compact approximations. We recall the notational convention

discussed in Remark 3.2: if (f,), <wsk is an w$k-computable approximation of a

function f then we write fwik for f.

Proposition 5.1. No sequence X € 2% with a higher closed approximation is higher
weakly 2-random.

Proof. Let (X,), .,
s < wik}. We let U, = |, <ws<[Xs In]. The sequence (Uy) is uniformly higher
effectively open. Certainly X € (), U,. If Y € U,, then the distance of Y from C' is

o be a closed approximation of X = Xec. Let C ={X; :
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at most 27", Hence if Y € (), U, then the distance of Y from C'is 0. Since C is
closed, this implies that (), U, < C.

The set C' is countable, and so null. This shows that (), U, is null, and so is a
higher weak 2-test. [

Even if (X;) is a higher left-c.e. approximation, we do not know how to directly
show that the measure of the sets U,, tends to 0.

A generalisation of Proposition 5.1 gives a Demuth-style characterisation of
higher weak 2-randomness, a weakening of the class higher MLR[O] (introduced
later in Section 7). In the lower setting of course weak 2-randomness is equivalent
to MLR[¥']. Recall that we let W, denote the e higher c.e. open set.

Proposition 5.2. The following classes of tests precisely capture higher weak 2-
tests.
(1) Nested tests of the form <Wf(n)> where A\(Wy(,)) < 27" and f has a finite-
change approximation.
(2) Nested tests of the form (W) ) where \(Wy(,)) < 27" and f has a com-
pact approximation.

Proof. Every function which has a finite-change approximation also has a compact
approximation (Lemma 1.14). So we need to show that:

(a) Every weak 2-test can be covered by a test with a finite-change index func-
tion (as in (1)).

(b) Every test with a compact index function (as in (2)) can be covered by a
weak 2-test.

For (a), let (U, be a higher weak 2-test; let U, s be a uniform enumeration
of Up,. For s < wi let fs(k) be the least n such that A\(U, ) < 27%. Since the
measures of U, ; are non-decreasing, the functions fs(k) are non-decreasing in s,
and converge to a limit since for all k there is an n such that A\(U,) < 27%. So {(f,)
is a finite-change approximation of f = fw<1:k. Passing to canonical indices we get a
test with a finite-change index function which covers the test (U, ).

For (b), the argument is inspired by that of Proposition 5.1. Let (f,)

compact approximation of a function f such that A(Wy,)) < 27" and <Wf(n)> is
nested.

A priori, the sets Wy () (for a fixed s) may not be nested. We replace Wy ()
by (yu<n W.(m)- This changes the index function. However the first n values of
the new index function g5 are determined by the first n bits of fs. In particular,
the map f, — gs is continuous, and hence the set {g; : s < w{*} is compact (and
of course g = lim; g5). Thus, without loss of generality, we may assume that each
test (W, () ) is nested. We may also assume that A(Wy,(,)) < 27" for all s and n.

Let U, = Us<w§k W, (ny- Since U, 2 Wy, the test (U, covers the given test

<Wf(n)>; and the sets U,, are uniformly I1} open. We show that M,, Un is null.
For each s < wi*, let A, =), Wy, (n), and let A = UsSwgk A,. Each Ay is null;

since w{* + 1 is countable, A is null. We show that (1), U, € A. For let Y €, U,.
For each n there is some s(n) such that Y € Wy ). Since the set {f; : ¢ < wsk}
is compact, the set {fs(,) : n < w} has a limit point, and that limit point equals f;

s<wsk be a

for some t < w§*. Then Y € A;: to see this, let n < w. There is some k > n such
that fi [n41= fs(k) In+1- Then Y € Wi o) S Wiy (n) = Wi, (n) as required. [
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5.2. A short proof of a theorem of Chong and Yu’s. Chong and Yu [CY15]
showed that every hyperdegree above that of Kleene’s O contains a higher ML-
random set which is not higher weak 2-random. The above results give us a short
proof of this fact. Let ¥ >, O. There is some X =5, Y such that X > ap O, for
example X = Y @O. By the higher Kucera-Gécs theorem there is some Z = ek X
which is higher ML-random. Since Z Z ek Q and higher  is not higher weak 2-
random, neither is Z (Theorem 1.2). And Z =, Y.

5.3. The effective Borel rank of higher weak 2-randomness. Every higher
null weak 2-set is G5, and so the set of higher weak 2-random sequences is Hg.
Yu showed that this is sharp. There is a natural higher lightface version of the
Borel hierarchy. For example a set is higher II9 if it is the uniform intersection of
I1] open sets (so the higher null weak 2-sets are precisely the null higher ITJ sets).
A set is higher X9 if it is the uniform union of higher IT3 sets, and so on. We
investigate this hierarchy in detail in [GM]. Here we show that the set of higher
weakly 2-random sequences is not higher II. Thus, picking out the null higher IT9
sets requires an oracle. This follows from Proposition 5.1 and Lemma 1.14 and the
following proposition.

Proposition 5.3. Every higher 11 set of measure 1 contains a sequence which has
a finite-change approximation.

Proof. Let F be a higher 11 set of measure 1. So F = [ __ F°, where F¢ are
uniformly higher 39, and since F € F¢, each F has measure 1. We write F'¢ =
Uy, Fe* where <F e=k>k<w is an increasing sequence of uniformly higher effectively
closed sets, namely, ¥1 closed sets.

We define a real x € F' by recursion on e < w. To ensure that x € F' we will, for
each e, pick one of the closed sets F¢* and ensure that € F**. We denote the
index k chosen by c(e). We define z . and ¢ [, by simultaneous recursion. At step
e < w, given x |, and ¢ [, let H® = (), F¥*(9). For e = 0 we have H® = 2“.
Inductively we ensure that A(H® | z [.) = 27¢. We then choose:

e z(e) € {0,1} to be the least so that A(H® | 2 [o41) = 27°.

e Since F° has measure 1, A\(H® N F° | & lo41) = 27, and so there is some
k < w such that A (H® n F&F | z1.4q) > 27(+D. We let c(e) be the least
such k.

Foralle <wand d > e, H® N[z 4] 2 H? A [x 4] are not null and so nonempty.
Since H* is closed, z € H®. And H¢ < F? for all d < e, and so (| H. < F. Thus
rzekF.

It remains to show that z has a finite-change approximation. To do so, we
approximate the set I’ and the sets it is built up from. The sets F'** have (uniform)
co-enumerations F&* for s < wsk; each F&F is hyperarithmetic and if s < ¢ then
Fek o FF - We also assume that these co-enumerations are continuous: for limit
s < Wik, FoF = N,_, FO*. Welet F¢ = | J, F©*. We then repeat the construction
above at each stage s < w{*: we define z, € 2 and ¢, € w* coding choices of indices
so that letting H¢ = (),_, F¢ we have:

(1) ACHS |2, 1) > 27
(2) x4(e) is least such that AM(HE | x5 [eq1) = 27¢; and
(3) cs(e) is the least k such that A(HE n F&F | zg1oyq) =27+,
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We will show that {xs) is a finite-change approximation of x. To begin, we note
that if e < w, s < t < w§ and ¢4 le= ¢ [ then HE 2 Hf. This implies the
following:

(*) Suppose that ¢; o= ¢; e and x4 o= 2t [.. Then zs(e) < z:(e).

(**) Suppose that cs le= ¢t e and x4 fey1= x4 lex1. Then cs(e) < ¢i(e).

The following claim shows that we cannot cycle through infinitely many values
of ¢.(e) while ¢, | remains stable. We use the following notation. If I < w‘fk is an
interval of stages and =z, | is constant for all € I, then we denote this constant
value by z7 |¢; similarly for ¢, or x(e), etc.

Claim 5.3.1. Let e < w. Let I € w$k be an interval of stages on which ¢, [. and
zy | are constant. Then coupr [e= crle and Teup 1 [e= 21 [e-

Proof. By induction on e. Assume we know this for e. Let s = sup . We assume
that ¢, lex1 and z, le41 are constant on I; we need to show that z4(e) = xs(e)
and cs(e) = ¢s(e). By induction and continuity of the co-enumeration of the closed
sets FoF HE¢ = (. HE. For all r € I, c,.(e) is the least i € {0,1} such that
MHE | 21 e ") = 27¢. By induction, x4 .= 2 [, and by continuity, A\(HS | zr |
1) = infrey A(HE | @1 e ") and so is at least 27¢. On the other hand, if ¢ = 1, then
AMHE | zrte "0) <2 ¢ forall r € I, and so N(HE | zs [ "0) < 27¢. Overall we see
that zs(e) = z7(e). The argument for c,(e) is the same. O

We show that () changes only finitely often on each input. Claim 5.3.1 would
then imply that x = lim, , o xs. By induction on e we show that w + 1 can
be partitioned into finitely many closed intervals of stages on which both z [,
and ¢ [ are constant. Suppose that this has been shown for e; let I be a closed
interval of stages on which z, . and ¢, [ are constant. For i < 2 let I; be the
set of stages s € I at which z4(e) = i. By (*), both Iy and I; are intervals, with
Iy < I. Claim 5.3.1 shows that they are closed. Now fix i < 2; let ¢t = max I; and
let k = ¢i(e). For m < k let I, ,,, be the set of stages at which ¢,(e) = m. By (**),
each I; ,, is an interval with [0 < [;1 < --- < I; , and Umgk = I;. Claim 5.3.1
shows that each I; ,,, is closed. This concludes the proof of Proposition 5.3. ([l

5.4. Separating II} randomness from higher weak 2-randomness. In this
section we construct a sequence x € 2% which is higher weak 2-random but not I}
random. This sequence will be O-computable. The construction is an elaboration
on that of the previous section. Here too we need to build an element of a Hg
set of measure 1 which is the intersection of higher 9 sets, namely all of the
ones of measure 1. To ensure that x is not II} random we need to show that
it collapses wSX, as in the presence of higher weak 2-randomness (and in fact A}
randomness), being 11} random is equivalent to preserving w$k. So we will ensure
that we can give = a collapsing approximation. On the other hand, Proposition 5.1
shows that we cannot give x a compact approximation, let alone a finite-change one.
The difficulty of course compared to the previous construction is that we cannot
effectively enumerate all of the higher X9 sets of measure 1. In the indices of such
sets, the property of having measure 1 is higher IT{ but not decidable.
Technically, it is the key Claim 5.3.1 which may fail: if F¢ does not really
have measure 1, then it is possible that at every stage r in an interval I, F° has
measure 1, but for s = sup I, F¢ does not have measure 1. (For example, let I = w,
and F¢* = 2% when r < k and empty when r > k; then F¢ = 2% for all 7 < w but
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Ft = ¢&). Tt is then possible that ¢.(e) cycles through all of w during the stages
in I. At stage s we know that we didn’t need to ensure that x € F'*. But by then
it is too late, the approximation changed infinitely often.

Thus, we devise a wider class of approximations which is compatible with being
higher weakly 2-random, but still implies collapsing w$k.

Definition 5.4. An w$k-computable approximation {f,) of a function f is finite-
change along true initial segments if for no n is there an increasing infinite se-
quence (t(k)) of stages such that fy) ln= f I, for all k but fysi1)(n) # fum(n)
for all k.

To see that such an approximation is collapsing we isolate another notion.

Definition 5.5. An w$*-computable approximation {f) of a function f is a club
approximation if for all n, the set of stages s such that f; [,= f I, is a closed set
of stages.

Lemma 5.6. Every function which has a finite-change-along-true-initial-segments
approximation also has a club approximation. If (f;) is a club approximation of
f ¢ Al then (f,) is a collapsing approximation.

Proof. Suppose that {f,) is an w$k-computable approximation of f which is finite-

change along true initial segments. By induction on n < w we see that if s is a
limit stage and for unboundedly many ¢ < s, f; ln= f In, then f |,=lim; s f; [n.
Similarly to what we did with finite-change approximations, we can make the ap-
proximation partially continuous by requiring, for every limit stage s < w§® and
n < w, that if lim;_ 4 f;(n) exists, then it equals fs(n). This makes it a club
approximation.

If {fs) is a club approximation of f and s is least such that f lies in the closure

of {f; : t < s} then f = f,. Hence if s < w$* then f is hyperarithmetic. O

The separation of II} randomness from higher weak 2-randomness then follows
from the following proposition.

Proposition 5.7. There is a sequence x which is higher weak 2-random and has an

w§k-computable approzimation which changes finitely along true initial segments.

The rest of this section is devoted to the proof of Proposition 5.7.

5.4.1. Discussion. The new idea is to “banish” strings which would contradict the
property of the approximation being finite-change along true initial segments. That
is, if I is an interval of stages, z, |, is constant on I, but we see z,(e) changes
infinitely often on I, then we require that xj [ is not an initial segment of z. We
simply do not allow any future z; to extend x; .. The construction is dynamic:
rather than defining « and c a priori and then giving them approximations, we first
define the approximation and then show it converges and has the desired properties.

We need to show that the construction can actually be carried out: at every stage
there are non-banished strings that can be chosen to construct x,, particularly non-
banished strings relative to which we can make the sets HS not too small.

This is done as follows:

1. At each length, we will banish at most one string. The continuity properties of
the approximations to our sets will ensure that if we do see ¢, (e) cycle through all
possible values in w on an interval I of stages, then this will witness that F'¢ does
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not have measure 1. Once we see that, we no longer need to force x to enter F°
(we can replace F® by 2¢). After this event there will be no need to banish another
string of length e.

2. Nonetheless, even if just one string is banished, it is possible that this was the
string on which H¢ was large. L.e., it is possible that one string of length e + 1 is
banished and the other is useless. To counter this we rely on a measure-theoretic
observation which is the basis of Kuc¢era’s coding technique [Kuc85]. We spread
out the levels of the construction, adding more than one bit between step e and
e + 1. If the levels are sufficiently spread out, then every good string at level e has
at least two good strings at the next level. So if one of them is banished, the other
can still be used.

These are the ideas needed for the construction. We can now give the formal
details.

5.4.2. Construction. We start with an effective enumeration (F©) of all higher %9
sets. So F*¢ = |, Fe* an increasing sequence, with each F** a closed ¥} set.
Each of these have co-enumerations <F§k> v Welet F¢=J,_, FoF. Ifsisa

limit ordinal then F&F =), _, FP*
We require that F9F = 2¢ for all k.
Let ((e)),_,, and {e)__  be computable sequences such that:

e {{(e)) is an increasing sequence of natural numbers with £(0) = (0).

e (£°) is a decreasing sequence of positive rational numbers with £ = 1.

e For any e < w, for any measurable set A, and for any string o of length
l(e), if M(A | o) = €°/2 then there are at least two extensions 7 of o of
length £(e + 1) such that A\(A | 7) > e°*1,

If A\(F©) < 1 then we may define during the construction a string p® of length
£(e); this will be the “banished” string of length £(e). We will ensure that the real
we build does not extend p¢. [We required F? to have measure 1 to ensure that p°
is never defined, as we would not have been able to avoid it.]

c
S<u)1

e<w e<w

At every stage s we will define:

e A sequence x4 € 2%;

e A sequence of closed sets (HE);

e A function ¢s € (w + 1)¥ which codes our choices which define the closed
sets HS. [A choice k = cs(e) < w indicates as before the choice of F&*;
cs(e) = w indicates that A\(F¢) < 1.]

At a limit stage s < w$k we first see if we need to banish some strings. Let e < w
and suppose that A(F¢) < 1 but that there is some final segment I = [sg,s) of s
such that

e MFEf)=1forallrel;
e ¢, [, is constant on the interval I; and
e The string z, [ is constant on I.

Then we define p® = x7 [4(). We do this for all e for which this is needed. Note
that A(FY) is nonincreasing in ¢, and so for all e there may be at most one stage at
which we want to define p°.
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We then define x5, our choice function ¢, and the closed sets HS. To start, we
let H? = 2*. At step e we already have Mee)s Cs Te and HS. By induction,
AHE | @ lyey) = e°[s].

At step e of stage s we first define c4(e) and HET:

o If A(F?) = 1 then we let cs(e) be the least & < w such that N(H® n
FeF | @ 1ye)) = €%/2[s]. We then let HETH = HE Foes(©
o If \(F¢) < 1 then we let c¢s(e) = w and HE! = HE.
We then define xs [ g(eq1):

e If p°! is undefined then we let z Me(e+1) be the leftmost extension o of
g Ty(e) of length £(e + 1) such that A(HSH | o) = et

e If p**1is defined then we let M¢(e+1) be the leftmost extension o of @, [)
of length £(e + 1) other than p** such that A(HE*! | o) > e+l

This concludes the construction.

5.4.3. Verification. As above, if e < w, s <t < w$¥ and ¢, |.= ¢; | then Hf < HE.
This implies:
(*) Suppose that ¢, [o= ¢; le and @, [ge)= ¢ [4(e)- Then cq(e) < e(e).
(**) Suppose that cg ley1= ¢t ler1 and s Tyey= Tt lge)- Then x [yeqn)<
Tt [ g(es1) (lexicographically).

For (**) note that if p*?! is first defined between stages s and t, this only pushes
Tt Ly(e+1) further to the right. For (*) again note that if A\(F’) = 1 then A(FY) = 1.

The following claim shows that banishing conforms to out original intention.
Suppose that ¢, . and z, [y, are constant on an interval I of stages. Suppose
that ¢.(e) < w for all r € I. By (*), sup,¢;¢-(e) = w if and only if ¢.(e) changes
infinitely often on I (there is an infinite increasing sequence (t(k)) of stages in I
such that c;,41)(e) # iy (e))-

Claim 5.7.1. Let s < w$¥ be a limit stage. Let e < w. Suppose that both ¢, . and
T, [ g(e) are constant on a final segment I of s. Suppose that c,(e) < w for all 7€ I
but that sup,¢; ¢.(e) = w. Then at stage s we define p® = 27 ().

Proof. Let 0 = 1 lyy. If r < tarein I then Hf € Hf. Let HS, = (., Hf.

If t € I and k < ¢;(e) then N(HE n FE* | 0) < €9/2, and so A(HE, n F&F | o) <
€%/2. Tt follows that A(HE, N F¢ | o) < e%/2.

On the other hand, for all t € I, A(Hf | o) > €° and so A(HS, | o) = €°. This
shows that A\(F'¢) < 1. The conditions for defining p. = o at stage s are fulfilled. O

Since each string of length ¢(e) has only finitely many extensions of length ¢(e+1),
(**) and Claim 5.7.1 together imply:

Claim 5.7.2. Let s < w$k be a limit stage. Let e < w. Suppose that both ¢, |,
and . [¢(c) are constant on a final segment I of s. Suppose that x; [yc41) changes
infinitely often on I (but not on a proper initial segment of I). Then at stage s we
define p® = 1 fy(e)-

By induction on e we can show that eventually each s [ ..) and ¢ [ are constant.
We can let x = lims_,wgk rs and ¢ = hms_)w;:k Cs.

Claim 5.7.3. z is higher weak 2-random.
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Proof. Let e < w, and suppose that A(F¢) = 1. We show that z € F¢. Let I be a
final segment of wSk on which ¢; 41 is constant. Since A\(F¢) =1, k = c(e) < w.
For all t € I and all d > ¢, H! < F*; and [z, Mol N HE is not null, and
so nonempty. It follows that [z [4q)] N F ¢k is nonempty. We then use the fact
that F** is closed. O

The proof of 5.7 is concluded by showing that {(z,) is an approximation which
changes finitely often along true initial segments. To see this, it suffices to show that
for no e < w is there an increasing sequence {t(k)) of stages such that Ty Toge)=
T rf(e) for all k¥ < w, but that Tt(k+1) ré(e+1)7& LTe(k) rZ(e+1) for all k¥ < w (to
verify Definition 5.4 for an arbitrary n, consider the greatest e such that £(e) < n).
Suppose that such a sequence {(t(k)) is given; let s = sup,t(k). Let d be the
greatest such that both lim, ., @, 4y and lim, s ¢, [4q) exist. So d < e. Either
the conditions of Claim 5.7.1 or Claim 5.7.2 hold at stage s for d, so at stage s we
define p¢ = z | ¢(d)- However the construction ensures that for all d > 1, x does not
extend p? (and that p° is never defined).

6. CLASSES OF HIGHER AY FUNCTIONS

Motivated by the their usage in investigating higher weak 2-randomness, we
study the classes of higher AY functions which we introduced above. We first
consider the higher limit lemma.

6.1. The higher limit lemma. The proof of the higher limit lemma (Proposi-
tion 1.8) is not complicated. The equivalence of f <t O and f Sk O was
established in Proposition 2.1. If f = ®(O) (where ® is either c.e. or higher c.e.)
then we can give f an w$¥-computable approximation by letting f, = ®,(Os), where
(O, is an wsk-computable enumeration of O. And if {f,) is an w$k-computable ap-
proximation of f then the graph of f is Ay over ngk; since a set is X over wak if
and only if it is c.e. in O, we see that f is O-computable.

In fact, the higher limit lemma relativises to every oracle. Recall that a subset X
of Lex is A-wi-computable (where A € 2¢) if there is an wi*-c.e. ® € 2% x L,
such that X = ®(A). Also recall that we let J4 be the higher jump of A, the
effective join of all subsets of w which are higher A-c.e.

Proposition 6.1. Let A€ 2¥. The following are equivalent for f: w — w.
(1) f <gorr JA
(2) f has an A-w§<-computable approzvimation {fs)

ck .
s<wy

Proof. Recall that we use an w$k-computable projection function p: w§* — w.

Assume (2); Let m: w — w$k be the modulus of the sequence (fs)s<wge: The
value m(n) is the least s such that for all ¢ > s we have fi(n) = fs(n). Let
W = {(n,p(s)) : s < m(n)}; the set W is higher A-c.e.: to enumerate (n,p(s))
into W, what we need from A is the value fs(n) and a different value f;(n) for
some t > s; both are given with finitely much use of A. So W < ey JA. Now,
from one pair (n,p(s)) ¢ W and finitely much of A we output f(n) = fs(n). So
f éwng AW gwfkT JA.

Assume (1). Recall that we regard J as a higher enumeration functional. The
sequence <J;4 rp(5)> is an A-w$*-computable approximation of J4 (using the fact
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that for all n there is some t < w{* such that p(s) = n for all s > t). Note that the
sequence <J;4> is not A-w§¥-computable.

If ¥ is a higher Turing functional then <\I/S (Jfr”(s))> is an A-w§k-computable

approximation of W(A).
We remark that it is not the case that for all A, J4 has an A-w{*-computable
enumeration (an w§*-computable sequence {(Ag), <we such that As € A for s <

). O

6.2. Equivalent characterisations of classes. A couple of classes we defined
have equivalent characterisations, some related to the limit lemma.

6.2.1. Higher w-computably approzimable functions. These were defined in Defini-
tion 1.13: functions approximable by finite-change approximations which moreover
have hyperarithmetic bounds on the number of changes. In complete analogy with
the lower case, this notion can be characterised by using strong reducibilities.
o Let X, Y € 2. We say that X is higher truth-table reducible to Y if there is
a hyperarithmetic sequence (F,,) of finite subsets of 2<“ such that X (n) =1
if and only if Y extends some string in F,,. Nerode’s argument shows that
X is higher truth-table reducible to Y if and only if X = ®(Y") for some
higher turing functional Y which is total and consistent on all oracles.
e Let f,g € w”. We say that f is higher weak truth-table reducible to g if
there is a higher Turing functional ® such that ®(g) = f and there is a
hyperarithmetic function h such that for all axioms (7,0) € @, |7| < h(|o]).

The lower-case arguments carry over to show that X € 2¥ is higher w-c.a. if and
only if it is higher truth-table reducible to O; and that f € w® is higher w-c.a. if
and only if it is higher weak truth-table reducible to O.

6.2.2. Finite-change approximations. As discussed above, a finite-change approxi-
mation can be made continuous at limit stages. Hence, f € w* has a finite-change
approximation if and only if it has an approximation {fs) such that for all limit
s < w‘fk7 fo = limy 4 fy.

We give a characterisation using a strong variant of the limit lemma.

Proposition 6.2. The following are equivalent for f e w®:
(1) f has a finite-change approximation.
(2) f is higher O-computable by a higher Turing functional ® which is total
(and consistent) on every subset of O.

Proof. (2)==(1): Let {(O,) be an w$k-computable enumeration of O. For s < wk
let f; = ®(O,). For a limit s < w*, O, = U, O:. Since @ uses only finitely much
of an oracle, fs = lim;_, fi, so {fs) is a finite-change approximation of f.

(1)=(2): this is a modification of the argument that every function which
is higher w-c.a. is higher weak truth-table reducible to O. Let {fs) be a finite-
change approximation of f. For all n and k we can compute some d = d(n, k)
such that d € O if and only if there are at least k changes in {(fs(n)). We then let
®(X,n) = m if m is the k*" value of f,(n) observed, where k is the least such that
d(n, k) ¢ X. In other words, the procedure ® queries an oracle X as if it were O,
asking successively whether {fs(n)) changes once, twice, thrice,... until it finds X’s
opinion on the number of changes; and outputs the corresponding value. If X = O
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the answer is correct. If X € O then the answer could be smaller than the actual
number of changes but not larger, so the search for the k** value will terminate. O

6.2.3. Compact approximations.

Lemma 6.3. The following are equivalent for z € 2¢:

(1) z has a closed approximation.
(2) z has an w$k-computable approximation {(z,) such that the closure of the
set {zs : s < w§} is countable.

Proof. The idea is similar to that of the proof of Lemma 1.11. In the nontrivial
direction, we first note that if y is a limit point of {x, : s < w$*} other than x then
there is an increasing sequence (t(k)) of stages such that y = limy_,,, Zy(r). Further,
for all limit s < w$¥, since the closure of {x; : t < s} is countable, this closure can
be effectively obtained (again using the Cantor-Bendixon analysis). We now fatten
the approximation (x,) by inserting, for each limit s < w$¥, between {@y),_, and
xs, all the limit points of {z; : ¢ < s} which were not previously inserted. If a; I,
has stabilised before s, then all limit points extend this string, and so the fattened
approximation still approximates x. ([l

6.2.4. Club approximations. The class of approximations given by Definition 6.5
is mostly a tool which we use later, because it is easier to deal with than club
approximations. To motivate that definition we first consider a “pointwise version”.

Definition 6.4. An approximation {fs) is almost finite-change if for all n < w,
if (t(i)) is an increasing sequence of stages such that fi;1)(n) # fis)(n) for all
i < w, then f;(n) is constant on [sup; #(7), wsk).

Suppose that an approximation {xs) consists of elements of Cantor space and
that it is partially continuous: for all n < w and limit s < w§*, if lim;_, f;(n) exists
then it equals fs(n). Then the approximation is almost finite-change if and only if
for all n < w, for all s < w$¥ and i < 2, if the set {t < s : fi(n) =14} is not a closed
subset of s, then fs(n) # i.

Definition 6.5. An approximation (fs) is locally almost finite-change if for all n <
w and all strings o € w™, if (¢(i)) is an increasing sequence of stages such that
fii) n= 0 and fyi41)(n) # fi)(n) for all i < w, then fi(n) is constant on the
stages t > supt(i) at which o < f;.

Call an approximation {(fs) locally continuous if for all n < w and all o € w™,
the function f;(n) is continuous on the set of stages ¢ at which o < f; (using the
subspace topology). Namely, letting F, be that set of stages, if s is a limit point
of F, which is also in F,, and f;(n) is constant on a final segment of s n F;, then
fs(n) equals that constant value.

Lemma 6.6. Let (x4 be a locally continuous approximation consisting of elements
of Cantor space. Then the approximation is locally almost finite-change if and only
if for all strings o € w=<“ and all s < w$*, if the set {t < s : o < f;} is not a closed
subset of s, then o < fs.

Lemma 6.7. Every locally almost finite-change approximation is a club approxima-
tion. If x € 2 has a club approximation then it has a locally almost finite-change
approximation.
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Proof. Let {xs) be a club approximation of x € 2¢. We may assume it is locally
continuous (making it so does not change it being a club approximation). We define
a locally continuous sequence (ysy by recursion. At stage s we have already defined
(Yt),—s- For any string o let F, be the set of stages t at which o < y;.

We call a string o forbidden at stage s if the set F, n s is not a closed subset
of s. Otherwise a string is permitted at stage s. By induction, for all ¢ < s, every
initial segment of y; is permitted at stage .

The empty string is always permitted. Every string which is permitted at stage s
has an immediate extension which is also permitted. To see this, suppose that o
is permitted but suppose, for a contradiction, that both ¢"0 and o1 are forbidden
at stage s. For i < 2 let ; be the least stage r < s which is a limit point of F,~;
but is not in F,~;. Since y,, (Jo]) has just two possible values, 1o # r1. Say 1o < r1.
But this means that ¢°0 is forbidden at stage r1, so by induction we cannot have
00 < yy,, a contradiction.

We define y; by induction. Suppose that o = y, I, is defined; by induction this
string is permitted at stage s. We then act as follows:

(1) If one extension ¢7i is forbidden at stage s then we let ys(n) =1 —i.
(2) Otherwise, we let ys(n) = z4(n).
The fact that (x;) is locally continuous at s implies that so is (y;). Hence, by the
construction and by Lemma 6.6, the sequence (y;» is locally almost finite-change.
By induction on s < w$k we observe that: (a) no initial segment of x is forbidden
at s; and (b) if o is an initial segment of both x and z, then o < y,. We conclude
that z = lim y,. [

6.3. Enumerating approximations. In the next subsection we will prove non-
implications between classes we defined above. When trying to diagonalise against a
class of higher AJ functions we need to enumerate an effective list of approximations.
We discuss here when this is possible.

A partial approzimation is a sequence {f;), . for some s < wsk.

Lemma 6.8. There is an effective w-enumeration of all w§-computable partial ap-
proximations. That is, there is a partial array {(f/') for n < w and t < w$* such
that the function (n,t) — fP is partial w{¥-computable, and every w{-computable

partial approximation equals {f{*),_, for some n < w.

Proof. There is a universal partial w{¥-computable function. This allows us to de-
vise an array ( f*) for a, t < w§* such that every w§-computable partial approxima-
tion is (f*) for some a < w$¥. Now renumber using the projection function p. [

Uniformly we can totalise approximations: transform a given w{-computable
partial approximation (gs) into an w{¥-computable approximation (fs), <wsk such

that if (g, is total and converges to some g, then lim; f; = g as well. This is similar
to how it is done in lower computability, with care taken at limit stages. Namely,
we define a non-decreasing function #(s) which indicates the next expected g;. At
a successor stage s, if gy(s_1) is revealed by stage s, we let f; = g;,—1) and let
t(s) = t(s—1)+1; otherwise we let t(s) = t(s—1) and fs = fs_1. At a limit stage s
we let t(s) = sup,_, t(r) and let fs(n) = lim;—¢ fr(n) when the limit exists, and 0
otherwise.

Thus, we can give an w-list of total sequences {f), not all of which converge but
for which the convergent ones list all higher A9 functions. In some cases we can
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do better. For example, as in the lower case, we can enumerate all higher w-c.a.
functions:

Lemma 6.9. There is a (total) w§-computable array {f) o such that:

n<w,t<w

e For every n, (f{*), <tk is a higher w-computable approximation of a func-
tion f".
e Every higher w-c.a. function equals f™ for some n.

The construction is as expected. There is an w§*-list of all hyperarithmetic func-
tions. Using the projection function p we can give a partial w{*-computable function
n +— h™ which enumerates all hyperarithmetic functions. In fact by coupling it with
partial approximations we can get a partial w{-computable array (h", g") which
lists all pairs (h,{g:)) of hyperarithmetic functions and partial approximations.

We totalise as above, so we assume that each (g*) is total. We then produce a
total approximation {f{*). If h™ is not yet defined at stage t then f;* is the zero
function. If A™ is defined at stage ¢ and for no k have we seen more than h™(k)
many changes on {g;(k)), ., then we let f{ = g'. Otherwise f;" is again the zero
function.

6.3.1. Enumerating other approzimations. On the other hand, many of the classes
we listed above cannot be enumerated with corresponding approximations. For
example, if (fI*) is a list of finite-change approximations, then it does not contain
all functions with a finite-change approximation, as direct diagonalisation would
verify. Informally, when we try to enumerate only finite change approximations,
we track a sequence {g;) up to a limit stage s at which we first see infinitely many
changes on some input. At each stage ¢t < s we have only seen finitely many changes
so we copy ¢g:- By stage s we have seen infinitely many changes but it is too late
to go back and change the sequence.

A different difficulty is met when we try to enumerate almost finite-change or
locally almost finite-change approximations (Definitions 6.4 and 6.5). Again diag-
onalisation shows we cannot list such approximations yielding all functions with
these approximations. When we totalise approximations as above, starting with
an almost-finite-change approximation we might inadvertently ruin this property.
Take such an approximation {g;» and suppose that the totalising process yields
{ft). Let s be a limit stage and suppose that at stage s we have seen f;(k) change
infinitely often. We need to define f; but since we are working uniformly, we can-
not rely on the fact that (g;) is total; we cannot wait to see what gs(k) is; the
procedure above has us declare an arbitrary value for fs(k). When we later see
that gs(k) is different it is too late. Either we change a later value of fi(k); this
means that (f;) is no longer an almost finite-change approximation. Or we can stick
with the value fs(k); in this case (f;) is an almost finite-change approximation, but
limt ft #* hmt gt.

Luckily, for our purposes, we do not need tight restrictions on the kind of ap-
proximations we list. We will use the following two listings.

Lemma 6.10. There is a total w{*-computable array (') of elements of Cantor
space such that:

e For all n, (x}") converges to a real z"; and
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e If a real x € 2 has an approximation which changes finitely along true
initial segments, then there is some n such that z = z,, and (x,,) changes
finitely along true initial segments.

Proof. Given a partial approximation, we totalise it to a sequence <ys>5<w§k as
above, except that at limit stages we make the approximation locally continuous
(for limit s we inductively define ys(n) to be the limit of y;(n) over the stages t < s
at which y¢ [,= ys [n, O if the limit does not exist). If the original approximation
changes finitely along true initial segments, so does {ys». We can then transform
the approximation to be locally almost finite-change, in particular ensuring it has a
limit. This follows the construction in the proof of Lemma 6.7, tracking forbidden
strings. Again, if (ysy changes finitely along true initial segments, so does the new

approximation. [l

Lemma 6.11. There is a total w$k-computable array (x7) of elements of Cantor
space such that:

e For all n, (x}") converges to a real z".
e Every real x € 2% which has a club approximation equals ™ for some n.

Proof. The idea is to transform partial approximations {(z;) into “nearly” locally
almost finite-change total approximations. Totalise as above, making the approxi-
mation (ys) locally continuous. Once we have seen, for some o € 2", infinitely many
changes in y;(n) on the set of stages at which o < y;, we set ys(n) = 0, but later
allow one last change, if we see the value 1 show up in the approximation {(z;). O

6.4. Separations between classes. None of the classes we defined in the previous
sections coincide. For a summary see Fig. 1. All implications were discussed above.
In this section we show that no other implications hold. In fact, all separations are
made in Cantor space.

6.4.1. A real with a finite-change approximation which is not w-c.a. This is a simple
diagonalisation argument, using Lemma 6.9, but working in Cantor space. Let {z}"
be as given by the lemma (with 2 € 2¢). Define y € 2* by letting y(n) = 1 —a™(n).
Then {(z}}(n)) is a finite-change approximation of y.

6.4.2. A real with a finite-change approximation along true initial segments, but
no compact approximation. An example for such a real is given by Proposition 5.7
(using Proposition 5.1).

6.4.3. A higher AY real which collapses wS* but has no collapsing approzimation.
In [BGHM] we construct a higher A9 real y below which higher Turing and fin-h re-
ducibility differ. By Proposition 2.3, the real y collapses w$*. By Proposition 2.2, y
does not have a collapsing approximation.

6.4.4. A real with a club approximation but no approximation which is finite-change
along true initial segments. This is a slightly finer diagonalisation argument. Let
(x}y) be the array given by Lemma 6.10. We build an approximation {(y;), <wsk
and diagonalise against each ™ by showing that y [,+1% 2™ 41, provided (a}')
changes finitely along true initial segments.

To ensure that y has a club approximation we follow the construction of the
proof of Lemma 6.7. As in that construction, define the sets F,, and the notion of
a string being permitted or forbidden at stage s. We again ensure that all initial
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finite-change

finite-change along
true initial segments

AY and w! > wek

FIGURE 1. Classes of higher A9 reals

segments of each x; are permitted at stage t and that the approximation is locally
continuous.

At stage s, given (y;),_,, define y, by recursion. We are given o = y, |,,, which
by induction is permitted at stage s. Then:

(1) If an immediate extension o"i of ¢ is forbidden at stage s, then we let
ys(n) =1—1.

(2) If s is a limit stage, F, is cofinal in s and z} is a constant ¢ on a final
segment of F, N s, then we let ys(n) = ¢ (note that the assumption implies
that o"i is permitted at every stage t < s, and so also at s).

(3) Otherwise, we consider the set A, = {t < w{ : o < 27}. If 27(n) changes
infinitely along the stages in A, n s (there is an increasing sequence {t(i))
of stages t(i) € A, n s such that :r?(i+1)(n) # Ty) (n) for all ¢ < w) then
we let ys(n) = 0. Otherwise, ys(n) is a constant ¢ on a final segment of
Ay n 8% we let ys(n) =1 — .

By construction, the sequence (y;) is locally almost finite-change, and so y =
lim; ys has a club approximation. Let n < w such that {(z}") changes finitely along
true initial segments. Let 0 = y |,. If 0 # 2" |,, we are done, so we assume that
o < z™ as well. The value z}'(n) changes finitely often on A,. By induction on
5 < w§* we see that the value y;(n) changes only finitely often on F, and that both
"0 and ¢"1 are permitted at s. We then succeed in ensuring that y(n) # 2™ (n).

6This includes the case that A, N s has a greatest element ¢; then i = x}*(n).
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6.4.5. A real with a compact approximation but no club approximation. To show
that there are no more implications in Fig. 1, it remains to show that there is a
real x € 2% which has a closed approximation but not a club approximation. Note
that this also shows that there is a real which has a collapsing approximation but
not a club approximation.

To construct a real with a closed approximation we use the following.

Lemma 6.12. Let (x,) be an w{¥-computable approximation of x € 2*. Suppose
that for all limit s < w$¥ there are at most finitely many n such that lim;_,, z4(n)
does not exist. Then z has a closed approximation.

Proof. We use Lemma 6.3. Since w§* is countable, it suffices to show that for all
limit s < w$¥ there are at most countably many y which are the limit lim; ., Zy(s)
where (t(7)) is increasing and s = sup, t(¢). But the condition implies that for a
fixed s, all such y differ on only finitely many bits. O

We in fact show the following.

Proposition 6.13. No uniform listing of higher AY elements of Cantor space con-
tains all reals with closed approzimations. That is, if (x}) is an wSk-computable
array such that for all n, {x}) converges to a real x™, then there is some y € 2%

with a closed approximation which equals none of the x™.
We then use Lemma 6.11 to obtain the desired separation.

To prove Proposition 6.13 we will in fact build an approximation (y;) such that
for all limit s < w{* there is at most one k < w such that lim;_,, y;(k) does not
exist.

The naive approach, letting y;(n) = 1 — z*(n), will of course not work, since it
is likely that for some limit s < w§*, z7(n) change infinitely often up to s for more
than one n. However we can choose other witnesses k to diagonalise y against z™.
Adding bounded injury to the argument makes it work.

In detail, along with {(y;) we also define a sequence of witnesses k}* for all n < w
and t < w{*. Witnesses for different n are distinct; this is achieved by requiring
that k7 € wl™ (the n'" column of w) for all n. Once the witnesses kP are defined,
y; is determined by letting:

o y(kY) =1—aP (k) for all n < w; and

o y (k) =0if k # k* for all n.
The idea is that if we see y change on kj* then we discard kj* for m > n. In detail:
at stage s, we need to define a new witness k7' in case either

(1) sis a limit stage and kJ* is not stable below s (k* is not constant on a final
segment of s); or
(2) for some m < n, it is not the case that k = k™, and i = 2™, are well-defined
and 27 (k) = i. In other words, either
e s is a successor stage and for k = k" ; we have 2™ (k) # z™(k); or
e s is a limit stage, and either k" is not stable below s; or it is, with
value k, but z}*(k) is not stable below s; or it is, with value i, but
(k) #i.”

"We could omit the very last case by requiring that (z}") is partially continuous.
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In all cases, we let k? be the p(s)' element of the column w(™. If none of these
cases hold, then we let kI = k”_, where as usual this means k7_; if s is a successor
stage, or the stable value k} for some final segment I of s if s is a limit stage.

This concludes the construction. By induction on n we see that each k' reaches
a limit k™ and that y(k™) # ™ (k™). It remains to show the condition which implies
compactness. Let s < w$* be a limit stage. Suppose that there is n < w such that
ky is stable on a final segment I of s (with value £7), but that lim, sz} (k?) does
not exist. For all m < n, both kJ* and z}*(k}") are stable on I. If k # kI* for all
m < n then on a final segment of s, k # k" for all m < w (if it is ever chosen, it
is discarded before stage s), and so y;(k) = 0 on a final segment of s. This shows
that lim;, y:(k) exists for all k& # k2.

If no such n exists, then by induction on n we see that both k] and z} (k7)) are
stable below s (though likely there is no single final segment I of s on which they
are all stable). Thus if k = k7 for some n, then lim;_, s y;(k) exists. Suppose that
k # k7 for all n. Say k € wl™. Then k # kJ* for all m # n and all t; and k # k
on a final segment of s, so again y;(k) = 0 on a final segment of s.

6.5. A remark on club approximations. We can weaken Definition 5.5 as fol-
lows.

Definition 6.14. An w$*-computable sequence <fs>s<w<1:k is a club quasi-
approzimation of a function f if for all n < w, the set of stages s at which
f1n= fsn is a closed and unbounded subset of wSk.

The point is that we do not require that f = limg fs. If {fs) is a club ap-
proximation of any function, then this function is determined uniquely: for each
string o, {s : o < fs} is an w$k-computable set, and the intersection of finitely
many w§¥-computable club subsets of w§* is a club subset of wk.

For elements of Cantor space we get nothing new: if x € 2* has a club quasi-
approximation then it has a club approximation, in particular it is higher AJ.
However there are elements of Baire spaces which have club quasi-approximations
but are not higher AY.

To see this, following the discussion in Section 6.3, fix a total w{-computable
array {ff') of functions which contains all w{*-computable approximations. We
define a sequence (g ), <wsk which is a club quasi-approximation of g € w*, ensuring
that if {f}*) converges to some f" € w* then g(n) # f™(n). In fact we will ensure
a stronger property than required: for all n, the set of stages ¢t < w$k such that
gt(n) = g(n) is closed and unbounded. The definition is simple: at a limit stage s we
let gs(n) = limy, s g¢(n) if the limit exists, and 0 otherwise. At a successor stage s
we compare gs—1(n) and f'(n). If they are distinct we let gs(n) = gs—1(n). If they
are equal to a nonzero value, we let gs(n) = 0. If they are both equal to 0 then we
let gs(n) = p(s), where as usual p: Wk — w is w*-computable and injective. Now
the point is that for all k # 0, the set of stages {t < w§* : g;(n) = k} is an interval
of stages and so closed; and that the set of stages {t < w$* : g¢(n) = 0} is closed.

By admissibility of w§*, one of these sets must be unbounded.

Finally we remark that the proof of the second part of Lemma 5.6 (that every
club approximation of f ¢ Al) shows that every club quasi-approximation of f ¢ Al
is “quasi collapsing” in that the sequence of stages s(n) at which we first observe
f 1 is unbounded in w§*. Hence if f ¢ Al has a club quasi-approximation then
wl > wsk even if f is not higher AY.
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7. THE CLASS MLR[O]

It is not very hard to prove that one can characterize weak 2 randomness using
a restricted relativisation of ML-randomness to ¢J'. Define an MLR[A]-test to be
a nested test (U, satisfying A\(U,) < 27", where each U, is effectively open (not
A-effectively open), but an index for each U, is given by A. That is, U, = Wy,
where (W, ) enumerates effectively open sets and f <t A. Weak 2 randomness is
equivalent to MLR[(']-randomness.

One direction is straightfoward; given a weak 2 test (V,,», &' can find the least m
such that A(V;,) < 27". The other direction requires a time-trick: if that (W, )
is a test as described then we cover it with the null ITJ set ﬂmt Us=t Wy, (n)- Trying
to lift the argument to the higher setting fails since the intersection would be over
w x wk-many higher open sets, and we have no way to effectively covert this to an
w-list.

We shall indeed prove that the notion of higher Martin-Lof randomness, where
Kleene’s O can be used for the index of each component is much stronger than
higher weakly 2-randomness, and even stronger than II}-randomness. We now let
(W,) enumerate the higher effectively open sets.

Definition 7.1. Let A € 2. A higher MLR[A]-test is a nested sequence (W, )
where f < ap A and A(Wy(,)) < 27". The null set determined by such a test is
() We(ny- A sequence is in MLR[A] if it is not captrued by any MLR[A]-test.

Of course for Kleene’s O the index-function f can be taken to be O-computable
(Proposition 2.1); however the building blocks are still higher effectively open sets.

We start by giving an alternate characterisation of MLR[O]. A long (higher) ML-

test is a sequence (Us,),, <wsk of uniformly higher effectively open sets such that

(., Ua is null. No assumption is made about nesting.
Lemma 7.2. Higher MLR[O] tests and long ML-tests capture the same null sets.

Proof. One direction follows the failed time trick: if (), Wy, is an M LR[O] test
then for n < w and s < w§* we let V,,; = Usst W¥.(n)- We can reorder the array
(V.5 effectively in ordertype w§* using an effective bijection between w x w§k
and w$k. If ¢ is sufficiently late then V,, , = Winy-

In the other direction let <U5>s<w§k be a long ML-test. Using O, for each n we
can find a finite set F' < w{* such that A\((,.p Us) < 27" (the measure of a higher
effectively open set is O-computable, uniformly). (]

Hirschfeldt and Miller (see [DH10]) showed that a ML-random sequence is weak 2
random if and only if it forms a minimal pair with ¢¥’; the witness for failure of this
property can be taken to be c.e. The situation is more complicated in the higher
setting. Higher weak 2 randomness does not seem to align with such a property.
In [GM] the authors show that II}-randomness partly corresponds to this property:
a higher ML-random sequence X is II}-random if and only if there is no higher-
c.e., non hyperarithmetic set higher Turing reducible to X. However, not every
I1}-random sequnece forms a minimal pair with Kleene’s O in the higher Turing
degrees; by the Gandy basis theorem, there is a ITi-random sequence computable
from O.
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Higher MLR[O] gives a certain analogue of the Hirschfeldt-Miller property. Recall
that we extended the notion of higher Turing reducibility to subsets of w{* in the
obvious way.

Proposition 7.3. The following are equivalent for a higher ML-random se-
quence X :
(1) X ¢ MLR[O].
(2) X higher Turing computes an w§<-c.e. subset of w§< which is not w§<-
computable.
(3) X higher Turing compute a Ag subset of w$* which is not w§<-computable.
(4) There is some higher AY subset of w which is not higher c.e., but is higher
ce.in X.

We note that the lower setting analogue of property (4) does characterise weak
2 randomness, a fact which has not been observed so far.

Proof. (1) — (2): the lowercase argument can be copied to the higher setting.
Let (V,) be a long ML-test capturing X. Using an indexing of all finite subsets
of w§* (and taking finite intersections) we may assume that for all € > 0, there are
unboundedly many « such that A(V,) < . We enumerate an w$k-c.e. subset A <
w$k, attempting to meet the requirements Pg: the complement of A is not Wiy,

where (Wp) is an wSk-effective sequence of all wk-c.e. subsets of w§¥. Suppose

that a requirement Pg has not been initialised since stage ¢t < w$k, is not yet
met at stage s > ¢, and that at stage s > t we see that some o € Wg, and

AMVa.s) < 2775 for some a € wSk %] Then we enumerate o into A4, and initialise

every requirement P, where p(y) > p(8). We also let G, = V5. If a ¢ A then we
let G, = . Then (G,) is a higher Solovay test, and if X is not captured by this
test then A < o X.

(3) = (4): Say B < exq O is not wi*-computable and that B < ey X. Then
p[B] is higher X-c.e. but is not hyperarithmetic.

(4) — (1): Let C < w be O-computable, not higher c.e., but higher X-c.e. The
usual majority-vote argument shows that the set of oracles Y such that C' is higher
Y-c.e. is null. Let (C), <wsk be an w{¥-computable approximation of C, and let T
be a higher enumeration functional. For n,k < w and t < wfk let V,, k.+ be the set
of Y € 2% such that for some s > t, either:

e neCyand nelY; or
e n¢ Cyand n¢ DXM*,
Then (V}, k. is a long ML-test which captures the oracles Y such that v=c. 0O

Finally we show that higher MLR[O]-randomness is strictly stronger than II}-
randomness.

Proposition 7.4. Higher MLR[O]-randomness is strictly stronger than TIi-
randomness.

Proof. As mentioned before, there is an O-computable ITi-random sequence; no
higher MLR[O]-random sequence can be O-computable.

Suppose that X is not IT-random; we show it is not higher MLR[O]-random. We
assume that X is higher ML-random. By [Mon14], there exists a uniformly higher
effectively open sequence (U, such that X € (), U, but X is not an element of
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any higher effectively closed set F < (), Up,. The set of canonical indices of higher

effectively closed subsets of (), U, is higher c.e.; this gives us a sequence (Py),, _ wek

which enumerates the higher effectively closed subsets of (), U,,. Then the sequence
(U,,) together with the sequence of the complements of the P,’s gives a long ML-test
which captures X. O

8. HIGHER OBERWOLFACH RANDOMNESS (WITH DAN TURETSKY)

Oberwolfach randomness [BGK ™ 16] is the notion of randomness which captures
computing all K-trivials: a ML-random sequence computes all K-trivial sets if and
only if it is not Oberwolfach random. The higher analogue holds.

Definition 8.1. A higher Oberwolfach test is a pair ((G4), «) where:
e For 0 € 2<¥, G, is (uniformly) higher effectively open, and A\(G,) < 2~1!;
e The array is nested, in the sense that if o < 7 then G, € G,; and
e « € 2 is a higher left-c.e. sequence.

The null set determined by the test is (), _, Gar,.- A sequence is higher Oberwolfach
random if it is not captured by any higher Oberwolfach test.

Proposition 5.2 shows that every higher weak 2 random sequence is higher Ober-
wolfach random; higher difference randomness can be characterised using “version-
disjoint” higher Oberwolfach tests and so higher Oberwolfach randomness implies
higher difference randomness (this follows from the proof of one of the implications
in Proposition 1.8, and is identical to the lower setting). In fact both implications
are strict. It is not difficult to build a higher Oberwolfach random sequence with
a compact approximation, and then appeal to Proposition 5.1 to separate between
higher weak 2 randomness and higher Oberwolfach randomness. To separate be-
tween higher Oberwolfach randomness and higher difference randomness we need
to appeal to the forcing used by Day and Miller [DM15] to construct a difference
random set which is not a density one point in effectively closed sets; the argument
can be performed in the higher setting without change, both constructing such a
random and showing that such a random cannot be higher Oberwolfach random.

The characterisation of higher Oberwolfach randomness in terms of computing
K-trivial sets consists of two steps:

Theorem 8.2. If X is higher ML-random but not higher Oberwolfach random,
then it higher Turing computes every higher K-trivial set.

Theorem 8.3. There is a higher K -trivial set which is not higher computable from
any higher Oberwolfach random sequence.

A set A as given by Theorem 8.3 is called a “smart” K-trivial set: any higher
ML-random sequence which higher computes A, must higher compute all higher
K-trivial sets.

The usual proof of the lower-setting analogue of Theorem 8.2 passes through
a characterisation of Oberwolfach randomness in terms of weak 2 tests which are
bounded by additive cost functions. These are weak 2 tests (U,,) whose measure is
bounded by « — a,, where {«, ) is an increasing approximation of a left-c.e. real a.
By their very definition these use a time-trick. We can emulate the time trick by
working over a K-trivial oracle.
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First proof of Theorem 8.2. Let X be higher ML-random but not higher Oberwol-
fach random. Since X is not higher weak 2 random, the Hirschfeldt-Miller ar-
gument shows that there is some non-hyperarithmetic, higher c.e. set B which is
higher Turing reducible to X (in fact this is true for any higher ML-random which
is not I1}-random). We may assume that X is higher difference random, and so the
Hirschfeldt-Nies-Stephan argument shows that B is higher K-trivial. The idea is
to work relative to B and emulate the proof in [BGK™16].

Since B has a collapsing approximation, working relative to B we can revert
to computability of length w (see Lemma 4.2 and its footnote). Let {g(n)) be an
increasing, cofinal sequence in w$k which is w§-computable from B; let ((G,), )
be a higher Oberwolfach test capturing X. We let U,, = U@g(n) Ga,t,- Then (U,)
is nested and uniformly higher B-c.e.; and A(Up,) < 27" + (@ — a4(p)). By delaying
the approximation of U,, we can also suppose A(Up g(m)) < 27" + (Qg(m) — Qg(n))
for each n and m.

Let c(k, s) = as—agy). The aim is to find a higher B-computable approximation
(Ap), ., of A such that letting k(n) = [A,—1 A Ay| (the least &k such that A, (k) #
An_1(k)), we have X _ (ag(n) — Qg(k(n))) is finite (we may assume that k(n) < n;
otherwise we replace () — Qg(k(n)) by 0). Once we have such an approximation
we can define a higher B-Solovay test (Gy) by letting Gy = Uy, 4¢n) if n is the
greatest such that k = k(n) (and G = J if there is no such n). Since B is
higher K-trivial, X cannot be captured by this test, and then the usual argument
builds a higher B-c.e. functional ® such that ®(X) = A. Since B < ap X we get
A <oy X @ B < aep X as required.

To obtain the required approximation (A, ) we can operate in two ways. We
define the higher B-c.e. oracle discrete measure 7 (n) = ag(n41) — Qq(n) (for all
strings 7 of length n). One way is to use the fact that A is higher K-trivial
relative to B; we repeat the proof of the main lemma in (ngk;e,B) and use it
for the measure . Another way is to directly use the unrelativised main lemma
(Proposition 4.3). Recall that we can let g(n) be the least s such that B, I,= B I,
for some fixed higher enumeration <BS>S<w§k of B. For t < w{* we let g;(n) be
the least t < s such that By |,= B; |,. Note that sup, gs(n) = s and that
gs(n) < g(n). For all 7 of length n we let pZ<1®7(n) = ay_ (p1) — g, (n). Let (Ag)
be a collapsing approximation of A. The main lemma gives us an w‘fk—computable
closed and unbounded set C' € w§¥, such that the sum > _(c; — Qg (k(s))) is finite;
here k(s) = |As(k) A Ag+ (k)|, where sT is the next element of C beyond s. We define
the required B-computable approximation of A by letting A, = Agny for some
s(n) € C, s(n) = g(n) (for example s(n) = min(C' — g(n))). Let k = |A,_1 A Ay
Then there is some s € [s(n), s(n + 1)) such that k > |As A Ag+]|. Since s = g(n),
Qg(n) ~ Qg(k) S Qs — g, (k) -

We can however eliminate the time trick, with an argument which also works in
the lower setting. Rather than use additive cost functions, we use cost functions
which in the lower setting are “subadditive”. If p is a discrete measure then we
let ¢, (n) = .,=, #(m). If {us) is an increasing enumeration of a left-c.e. discrete
measure y then we let c,(n,s) = > -, ps(m). We say that an approximation
<AS>S<w§k of a set A witnesses that A obeys c,, if the sum ZKW;»;( c(|As A Asial,8)
is finite. If p is the optimal left-c.e. discrete measure then any set obeying ¢,, must
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be higher K-trivial. If A is higher K-trivial then the main lemma (Proposition 4.3)
shows that A obeys c,, for any left-c.e. discrete measure p.

A ¢,-bounded test is a higher weak 2 test (U, ) such that A(U,) <* ¢,(n); if
(Uy) is such a test then we may assume that A(Uy, s) <* ¢,(n,s) (where of course
the multiplicative constant is the same for all s). The usual argument shows that
if X is a higher ML-random sequence which is captured by some c,-bounded test
and A obeys ¢, then A < ap X. So Theorem 8.2 follows from:

Proposition 8.4. A sequence is higher Oberwolfach random if and only if it is not
captured by any c,,-bounded test.

Proof. In one direction, let ((G,),«) be a higher Oberwolfach test. For all n < w
and s < wsk, let:

o kns=H#H{aln: t <s}and

e m, s be the integer m such that m2™" < a; < (m + 1)27".
We define a higher left-c.e. discrete measure v with the aim that c¢,(n,s) =
27"k s + (s — 27™my, 5). We would then let U, = Us<wik Ga,; MUp) =
27"k e < ¢, (n). The measure v is not difficult to define. We may assume that
for limit s, oy = lim;_,5 oy and so we can let v, = sup,_, ;. Let 0 = as A asy1-
We may assume that a1 = 010, We then let vgy1(n) =vs +27 " if n > |o| + 1
and a,(n) = 0; otherwise we let vs41(n) = vs(n).

In the other direction let (U, ) be a ¢, -bounded test; say A(U,) < d- cu(n).
Let = d-p (so A(Up) < c,(n)). By taking a tail of the measure p (and of the test)
and renumbering, we may assume that p(w) < 1. We let a; = ¢,(0,s) = ps(w).
We define indices k,(n) for n < w and s < w§; we let Ga,p,.s = Uk, (n),s- To keep
the sets G, nested we ensure that ks(n) is increasing in n. We redefine kq(n) if
0 [n# as—1 . To redefine it we pick a new value k such that ¢,(k,s) < 27"
Let t < w§€ and let ¢ = a; |,; let s be the least stage such that o < ay; let
k = ks(n) = ki(n). We claim that AM(Gy:) < 2-(n=1)  For Got = Uk and
A(Ug,t) < cu(k,s); if this is greater than 2 - 27" then as ¢, (k,s) < 27" we have
ar — o = ¢y (k,t) — ¢k, s) > 27™; this implies that oy [, # o . O

The proof in [BGK™16] constructing a smart K-trivial set works with subaddi-
tive, rather than only with additive cost functions. This proof can be adapted to
the higher setting using the usual techniques for overcoming topological problems.
However to prove Theorem 8.3 we use a streamlined argument by Turetsky.

Proof of Theorem 8.3. Let I" be a “universal” higher Turing functional; I'(0¢1X) =
®.(X). Since higher Oberwolfach randomness is invariant under the shift, it suf-
fices to enumerate a higher K-trivial c.e. set A and a c,-bounded test (U,,) which
captures every sequence X such that I'(X) = A. In this proof let ¢ = c,,.

We may assume that for all n, ¢(n,0) > 0. We enumerate A and (U,,) as follows.
At each stage we have a “follower” z,, 5; the sequence {z,, s) increases with n. We
also enumerate a global error set &; & is the set of oracles X such that I's(X) lies
to the left of A,. Let

Grs = {X : Tu(X) = Aglur 11} -

We will have U, s € & v Gy, s. We will change z,, s only finitely many times (for
each n), and so at limit stages we can take limits of all objects. We ensure that
AUn,s —&) < c(n,s). Let s be a stage and let n < w. If A(G s — &) < e(m, s) for
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all m < n then we let Uy, 541 = Uy, s U Gy 5. If n is least such that MG, s — &) >
c(n, s) then we enumerate z,, s into As11; we cancel z,, s for all m > n; for all
m > n, we choose unused ,, s+1 > m for m > n, and let Uy, 541 = U,, s. Note
that the enumeration of =, s into A;1; means that Uy, s41 S &4 for all m > n.

The fact that G416 € Gps (88 Tpy1,s > Tn,s) ensures that Uyq1,s € U, s for
all n (and all s). If z, , is enumerated into Agyq1 then A(Esp1 — &) > ¢e(n,s) =
¢(n,0). This shows that z,, s is enumerated into A, at only finitely many stages s.
In turn this shows that z, 541 # %, s for only finitely many stages s.

The enumeration (A) witnesses that A obeys ¢, and so is higher K-trivial. To
see this, suppose that © = z,, s is enumerated into As+1. Then ¢(z,s) < ¢(n, s);
this shows that the total cost paid along this enumeration is bounded by A(£).

Finally we need to show that A(U,,) <* ¢(n). We enumerate a left-c.e. measure v,
with the aim of having M€ N U, 5) < ¢,(n, s) for all n and s. We would then have
AUp) < cu(n) + c(n) <* ¢(n) as required. At stage s we need to have

Cu<n7 s+ 1) - Cu(na 8) 2 min{c(n7 S>7 )‘(gerl - gs>};

this suffices since Uy, 531 N (Es41 — &) € U5 — Es. Since ¢(n,s) — 0 as n — w
we can distribute a total of A(Es+1 — &) among the natural numbers (so that
Vsy1(w) < vs(w) + A(Es41 — Es)) to achieve the desired increase in ¢, (n,s + 1). Of
course v is indeed a discrete measure since v(w) = A(E). O
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