
DNR AND INCOMPARABLE TURING DEGREES

MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Abstract. We construct an increasing ω-sequence xany of Turing degrees

which forms an initial segment of the Turing degrees, and such that each an`1

is diagonally nonrecursive relative to an. It follows that the DNR principle

of reverse mathematics does not imply the existence of Turing incomparable
degrees.

1. Introduction

In [10], Kučera and Slaman solved a long-standing open problem by showing
that no Scott set is “hourglass-shaped”: if S is a Scott set of reals and x P S is
noncomputable then there is some y P S which is Turing incomparable with x. In
other words, Turing incomparability holds in every ω-model of the system WKL0

(weak König’s lemma) — the system ensuring the existence of completions of Peano
Arithmetic. This was improved by Conidis [6] to show that the statement holds
in ω-models of the weaker system WWKL0, the system which ensures the existence
of a Martin-Löf random set. A prominent system below WWKL0 is DNR0, the
system which ensures the existence of a diagonally nonrecursive function (DNR):
a function f : ω Ñ ω which disagrees with the Turing Jump function (Jpeq “
ϕepeq) on the latter’s domain. These functions were introduced by Jockusch [8],
who showed that their Turing degrees conicide with the degrees of fixed-point-free
functions, those functions which escape the recursion (fixed-point) theorem. The
two systems WWKL0 and DNR0 were first separated by Ambos-Spies et al. [1]. They
used a tame version of the “bushy tree” forcing technique first used by Kumabe in
his construction of a fixed-point-free minimal degree (see [11]). In this paper we
extend this technique to show:

Theorem 1.1. There is an initial segment a1 ă a2 ă a3 ă ¨ ¨ ¨ of the Turing
degrees such that each an`1 is a DNR degree relative to an.

Corollary 1.2. The system DNR0 does not imply Turing incomparability, in fact
it does not imply the existence of a pair of Turing incomparable reals.

We prove Theorem 1.1 in four steps. The third step (in Section 4) provides the
construction, for each n ă ω, of an initial segment a1 ă ¨ ¨ ¨ ă an of the desired
infinite sequence xaky. The fourth and last step (in Section 5) shows how to string
these constructions together and so prove Theorem 1.1. The first two steps serve as
an introduction to the construction of Section 4. In Section 2 we recast Kumabe’s
construction in the language of forcing that we subsequently use. In Section 3 we

Cai was supported by NSF Grant DMS-1458061; Greenberg was supported by the Marsden

Fund and a Rutherford Discovery Fellowship from the Royal Society of New Zealand, and by
a Turing Research Fellowship “Mind, Mechanism and Mathematics” from the John Templeton
Foundation.

1

2 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

discuss the case n “ 2 (the construction of a minimal DNR degree a1 and a strong
minimal cover a2 of a1 which is DNR relative to a1).1

1.1. Fast-growing functions. Below we use trees (or tree systems) which are
fairly “bushy” but associated with them we will have sets of “bad” strings which
we want to avoid. In the first step we use infinite trees and for example declare
every string which is not DNC to be bad. We then extend the bad set of strings
when we force divergence or force a functional to be constant on a tree. We cannot
simply remove the bad strings from the tree because the trees will be computable
whereas the set of bad strings will be c.e. To ensure that most strings are not bad,
and that the construction can proceed, we will require that the tree is h-bushy
and that the bad set of strings is b-small above the stem of the tree, where h grows
much more quickly than the order-function b. Here we discuss the notion of relative
quickness that we will use.

For an equivalence notion of rate of growth we close under relative elementary
recursive functions. (We could use relative primitive recursive functions but this
is not needed.) For any order function h one defines the class of order functions
which are obtained from h using a list of rules such as substitution and bounded
summation and multiplication.

We are only concerned with rates of growth. If h grows sufficiently quickly then g
is bounded by a function elementary in h if and only if it is dominated by an iterated
composition of h with itself. In particular, the elementary recursive functions are
those which are bounded by iterated exponentials.

It will be convenient to consider functions that may be undefined on a finite
initial segment of ω.

Definition 1.3. Let Q denote the collection of nondecreasing computable func-
tions h : ω Ñ r2, ωq satisfying hpnq ě 2n for all n.

For h P Q let hp1q “ h and for k ě 1, hpk`1q “ h ˝ hpkq. For two functions h
and g in Q we say that h majorises g if hpnq ě gpnq for all n (and write h ě g). We
say that h ě g above m if hpnq ě gpnq for all n ě m. We say that h dominates g if
h ě g above some m (and write h ě˚ g).

We will use the fact that iterated exponentials of h are dominated by iterates
of h. For example:

Example 1.4. Let h P Q. Let gpnq “
ś

mPr0,nq hpmq. Then g ď˚ hp3q. For g ď hh

whereas hp2q ě 2h and hp3q ě 22h , and 22h ě˚ hh.

Definition 1.5. Let h, g P Q. We say that h dominates the iterates of g uniformly,
and write h " g, if there is a computable sequence xdky such that for all k ě 1,
h ě gpkq on the interval pdk, ωq.

The relation " on Q is transitive. Indeed if h " g, h1 ě˚ h and g ě˚ g1 then
h1 " g1. Further, h " gpkq for all k, and so for example h " 2g.

The following density lemma will be used to keep extending conditions.

Lemma 1.6. For all h, g P Q such that h " g there is some f P Q such that
h " f " g.

1Recall that b is a strong minimal cover of a if b ą a, but for all c ă b we have c ď a.

DNR AND INCOMPARABLE TURING DEGREES 3

Proof. The idea is to gradually let f copy gpkq. If f is bounded by gpkq for a long

time, then for a shorter time we can ensure that f pkq is bounded by gpk
2
q, so we

do this until the point where h starts to majorise gppk`1q2q, and only then start
copying gpk`1q.

Since g is nondecreasing and dominates the identity, each gpkq is nondecreasing
and gpk`1q ě gpkq.

Let k ě 1, e ě 0 and let f be a function. Suppose that f ď gpkq on the interval

r0, gpk
2
qpeqs (actually the interval r0, gpk

2
´kqpeqs will suffice). Then f pkq ď gpk

2
q on

the interval r0, es: by induction on j ď k we see that f pjq ď gpkjq on the interval
r0, gpkpk´jqqpeqs.

Let xdky witness that h " g. We may assume that xdky is nondecreasing.
We define a computable sequence ´1 “ a0 ď a1 ď ¨ ¨ ¨ and then define f by

letting f “ gpkq on the interval pak´1, aks. So the sequence xak´1y witnesses that
f " g. But also f ď gpkq on the interval r0, aks for all k ě 1. So we let ak “

gpk
2
qpdpk`1q2q. This ensures that f pkq ď gpk

2
q on r0, dpk`1q2s, which in turn shows

that h ě f pkq on the interval pdk2 , dpk`1q2s. Since f P Q, f pmq ě f pkq if m ě k, so
the sequence xdk2y witnesses that h " f . �

1.2. Other notation and conventions. A string is a finite sequence of natural
numbers, an element of ωăω. If σ is a string then we let σď be the collection of
strings which extend σ, and rσsă be the set of elements of Baire space ωω which
extend σ. If C is a set of strings then Cď “

Ť

σPC σ
ď and so rCsă “

Ť

σPCrσs
ă.

We may assume that for any Turing functional Γ and for any string τ , the
domain of Γpτq is downwards closed. Thus Γ determines a monotone computable
map τ ÞÑ Γpτq from strings to strings, which induces a partial computable function
on Baire space: Γpxq “

Ť

tΓpτq : τ ă xu.
We let lowercase Greek letters denote strings, lowercase Roman letters denote

elements of Baire space, and uppercase Roman letters denote sets of strings and
sometimes subsets of Baire space.

1.3. Compactness, splittings and computability.

Definition 1.7. A subset X of Baire space is computably bounded if some com-
putable function majorises every element of X.

Every computably bounded and closed subset of Baire space is compact.

The following is well-known.

Lemma 1.8. Let X Ď ωω be Π0
1 and computably bounded; let f : X Ñ 2ω be a

computable function.2

‚ If f is constant on X then this constant value is computable.
‚ If f is 1-1 on X then for all x P X, x ”T fpxq.

Proof. Suppose that f is constant on X; let f rXs “ tyu. The fact that X is
computably bounded implies that the set of α P 2ăω such that X “ f´1 rrαsăs is
c.e.; this is the set of initial segments of y, so y is computable.

Suppose that f is 1-1 on X. Let Y “ f rXs. Then Y a Π0
1 subset of 2ω and f

is a homeomorphism between X and Y . And f´1 is computable: the set of pairs
pα, τq such that rαsă X Y Ď f rrτ săs is c.e. �

2Here we think of X and 2ω as computable metric spaces. A computable function from X
to 2ω is given by a uniform Turing reduction.

4 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

If X Ď pωωq
2

and x P ωω we let Xx “ ty : px, yq P Xu.

Lemma 1.9. Let X Ď pωωq
2

be Π0
1 and computably bounded. Let f : X Ñ 2ω be

computable and suppose that the collection of sets f rXxs for x P domX are pairwise
disjoint. Then for all px, yq P X, x ďT fpx, yq.

Proof. For τ P ωăω let Xτ “
Ť

xPrτsă Xx. The set of pairs pτ, Cq where C Ď 2ω is

clopen and f rXτ s “ C X f rXs is c.e. �

1.4. Forcing with closed sets.

Definition 1.10. Let P be a notion of forcing. Suppose that with each condition
p P P we associate a closed subset Xp of Baire space. We call this assignment
acceptable if:

(a) for all p P P, Xp is nonempty;
(b) if q extends p then Xq Ď Xp; and
(c) for every m, the set of conditions p P P such that Xp Ď rσsă for some

string σ of length m is dense in P.

(Below we will consider finite powers pωωqn of Baire space, but these are of course
effectively isomorphic to Baire space.)

Recall the Borel codes for Borel subsets of Baire space. These can be identified
with propositional sentences in Lω1,ω. To be precise:

‚ Every finite set of strings C is a Borel code;
‚ If C is a Borel code then C is a Borel code;
‚ If C is a countable set of Borel codes, then

Ž

C and
Ź

C are Borel codes.

The semantics are obvious (a finite set of strings C defines the set rCsă); if C is
a Borel code then we let tCu be the Borel subset of Baire space defined by C.

Suppose that P is a notion of forcing equipped with an acceptable assignment of
closed sets Xp. We define the forcing relation p , C between conditions in P and
Borel codes C. We start with strong forcing.

Definition 1.11. Let C be a Borel code and let p P P. We say that p strongly
forces C if Xp Ă tCu. We write p ,˚ C.

Now by recursion on Borel codes C we define forcing.

‚ For a finite set of strings D, p , D if the collection of conditions which
strongly force D is dense below p.

‚ p , C if no extension of p forces C.
‚ p ,

Ź

C if p , C for all C P C.
‚ p ,

Ž

C if the set of conditions which force some element of C is dense
below p.

The basic properties of forcing hold.

Lemma 1.12. Let p P P and let C be a Borel code.

(1) No condition forces both C and C.
(2) The set of conditions which decide C is dense in P.
(3) If q extends p and p , C then q , C.
(4) If the set of conditions which force C is dense below p then p , C.

DNR AND INCOMPARABLE TURING DEGREES 5

Forcing equals truth. It will be convenient to consider directed subsets of P
rather than filters; of course the upwards closure of a directed set is a filter, so we
can always pass to filters without adding information. Genericity for directed sets
is defined using dense open sets: dense subsets of P which are closed downwards
(closed under taking extensions). Note that the dense sets of conditions mentioned
above are all open.

Suppose that G Ă P is a directed set. If G meets all of the dense open sets of
conditions guaranteed by (c) above, then

Ş

pPPX
p is a singleton that we denote

by txGu. (This uses the completeness of Baire space; we do not need the sets Xp

to be compact.)
In the rest of the paper, the statement “for all sufficiently generic G Ă P ...”

means: there is a countable collection D of dense open subsets of P such that for
every directed subset of P meeting all the sets in D, ...

Lemma 1.13. Let C be a Borel code. If G Ă P is a sufficiently generic directed
set then xG P tCu if and only if p , C for some p P G.

Proof. First note that if p P G and p ,˚ C then xG P tCu. On the other hand,
suppose that D is a finite set of strings, and suppose that xG P rDsă: there is
some τ ă xG such that τ P D. By assumption, there is some string η of length |τ |
and some p P G such that Xp Ď rηsă. Then η “ τ , and so p ,˚ D, which implies
that p , D.

The rest of the argument follows the usual proof of the equivalence of forcing
and truth for generic filters. �

Since every condition can be extended to a sufficiently generic directed set, we
conclude:

Corollary 1.14. Let p P P and let C be a Borel code.

(1) p , C if and only if for every sufficiently generic directed set G, if p P G
then xG P tCu.

(2) If tCu Ď tC 1u and p , C then p , C 1.
(3) If p ,˚ C then p , C.

In light of (2) we write p , xG P A when A is a Borel subset of Baire space,
rather than a code for such a set.

1.5. Simplified iterated forcing. We give a not-completely-standard definition
for restriction maps between notions of forcing.

Definition 1.15. Let P and Q be partial orderings. A restriction map from Q
to P is an order-preserving map i from Q to P such that for all q P Q, the image of
Qpď qq (the set of extensions of q) under i is dense below ipqq.

That is, for all q P Q and p ď ipqq there is some r ď q in Q such that iprq ď p.

Lemma 1.16. Let i : QÑ P be a restriction map.

(1) If G Ă Q is a directed set then irGs Ă P is a directed set.
(2) If D Ď P is dense and open then i´1rDs Ď Q is dense and open.

Hence for any collection D of dense open subsets of P there is a collection E of
dense open subsets of Q such that if G Ă Q is a directed set which meets every set
in E , then irGs is a directed set which meets every set in D. In other words, if G is
sufficiently generic then so is irGs.

6 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Suppose that P and Q have acceptable assignments of closed sets Xp Ď ωω for
p P P and Y q Ď pωωq

2
for q P Q. Suppose that i : QÑ P is a restriction map and

further that for all q P Q, Xipqq Ě domY q. Let G Ă Q be sufficiently generic; we
denote the generic pair of reals by pxG, yGq. Then xirGs “ xG.

1.6. The plan. To prove Theorem 1.1, for each n ă ω we define a notion of
forcing Pn which adds an initial segment of the degrees of length n, each degree
DNC relative to the one below it. We then show that there are restriction maps
from each Pn to Pn´1. This will allow us to obtain generic Gn Ă Pn which are
coherent, from which we will obtain the desired ω-sequence of degrees.

2. A DNR minimal degree

Khan (see [9]) showed that for any x P 2ω there is a DNRx function of minimal
Turing degree. He presented an elaboration on the Kumabe-Lewis construction
using the language of forcing in computability (rather than give an explicit con-
struction). The extra complication is due to the fact that the set of strings which
are not DNRx is c.e. in x, rather than merely c.e. We have no access to this set
when defining the computable trees. For this reason Khan needs to use trees with
terminal elements (and the set of terminal elements is co-c.e. but not computable).

In this section we present a proof of the original Kumabe-Lewis theorem using
the language of forcing. We use c.e. sets of bad strings and trees with no terminal
elements.

2.1. Trees and forests. We follow [1, 7, 9] and use trees which are sets of strings
rather than function trees (as in [5, 11]). We localise to basic clopen sets.

Recall that for a string σ, σď is the set of strings extending σ. A tree above σ
is a nonempty subset of σď which is closed in σď under taking initial segments. A
set of strings A is prefix-free if no two distinct elements of A are comparable. If A
is a finite prefix-free set of strings then a forest above A is a set T Ď Aď such that
for all σ P A, T Xσď is a tree above σ. In particular we require that A Ď T . When
we just say “tree” we mean a tree above σ for some σ; the string σ will usually be
clear from the context or unimportant. The same holds for forests. We will mostly
only use finite forests, but will use both finite and infinite trees.

Let T be a forest and let τ P T . An immediate successor of τ on T is a string
τ 1 ą τ on T such that |τ 1| “ |τ | ` 1. A leaf of a forest T , also known as a terminal
element of T , is a string on T which has no proper successors on T .

A subtree of a tree T is a subset S Ď T which is a tree. Note that the stem of S
may equal the stem of T , or properly extend the stem of T . If T is a tree and τ P T
then the full subtree of T above τ is T X τď, the set of strings on T which extend τ .

If T is a tree above σ then rT s is the set of infinite paths of T , the set of x P ωω

such that xænP T for all n ě |σ|. This is a closed subset of ωω. Recall that rσsă is
the set of extensions of σ in Baire space; in our notation, rσsă “ rσďs.

A tree T is bounded by a function h if for all τ P T , τpnq ă hpnq for all n ď |τ |.
It is computably bounded if h can be taken to be computable. If T is computably
bounded then so is rT s (Definition 1.7).

2.2. Bushy notions of largeness. The basic notions of “bushiness” were ex-
tended from constant bounds to order functions, see [4, 9]. We recall the defini-
tions and basic properties. A bounding function is a computable function from ω
to r2, ωq.

DNR AND INCOMPARABLE TURING DEGREES 7

Definition 2.1. Let T be a forest above a finite prefix-free set of strings A; let h
be a bounding function. We say that T is h-bushy if every nonterminal τ P T has
at least hp|τ |q many immediate successors on T .

Definition 2.2. Let A be a finite prefix-free set of strings and let B be a set of
strings. Let h be a bounding function. The set B is h-big above A if there is a finite
forest T above A which is h-bushy, all of whose leaves are elements of B.

If A is an infinite set of strings then we say that B is h-big above A if B is h-big
above every finite, prefix-free subset of A.

If B is not h-big above A then we say it is h-small above A.

If A is a singleton tσu then we say that B is h-big (or h-small) above σ. If A Ď B
then B is h-big above A for all bounding functions h. A set B is h-big above A if
and only if the set of minimal strings in B is h-big above A. We thus often use the
notion for either prefix-free sets of strings, or for open sets of strings – those that
are upwards closed (closed under taking extensions). Also note that sometimes we
do not assume that B only contains extensions of A, but of course for this notion
it suffices to look at B XAď.

The following remark is trivial. Its generalisations in later sections will be less
so.

Remark 2.3. Suppose that B is a set of strings, h-big above A, and that A,B Ď T
for some tree T . Then any forest S which witnesses that B is h-big above A is a
subset of T .

The basic combinatorial properties of this notion of largeness have been repeat-
edly observed [8, 11, 7, 9].

Lemma 2.4 (Big subset property). Let h and g be bounding functions. Let B
and C be sets of strings, let σ be a string, and suppose that B Y C is ph ` gq-big
above σ. Then either B is h-big above σ or C is g-big above σ.

Here it is important that we work above a single string σ and not above any
finite A.

Proof. Let T be a tree which witnesses that B YC is ph` gq-big above σ. Label a
leaf τ of T “B” if it is in B, and “C” otherwise. Now if ρ P T and all immediate
successors of ρ have been labelled then since ρ has at least hp|ρ|q`gp|ρ|q immediate
successors on T , either at least hp|τ |q of these are labelled “B” or at least gp|τ |q
of them are labelled “C”. In the first case label ρ “B”, in the other label it “C”.
Eventually σ is labelled. If σ is labelled “B”, then the set of ρ P T labelled “B” form
a tree which witnesses that B is h-big above σ; and similarly if σ is labelled “C”. �

Lemma 2.5 (Concatenation property). Let h be a bounding function. Let A,B
and C be sets of strings. Suppose that B is h-big above A, and that C is h-big above
every τ P B. Then C is h-big above A.

Proof. Let A1 be a finite, prefix-free subset of A. Let T be a forest which witnesses
that B is h-big above A1. For a leaf τ of T let Rτ be a tree which witnesses that C
is h-big above τ . Then T Y

Ť

Rτ , where τ ranges over the leaves of T , witnesses
that C is h-big above A1. �

8 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

The concatenation property will sometimes be used to recursively build bushy
trees meeting infinitely many big sets. Again the following are fairly immediate;
their generalisations in the next sections will be less so.

Definition 2.6. A forest R is an end-extension of a forest S if every string in RzS
extends some leaf of S.

(This is not the same as the usual definition for partial orderings, but under the
usual definition, any tree extension is an end-extension.) The argument proving
the concatenation is broken up to show:

Lemma 2.7. Let A,B,C be sets of strings, and let h be a bounding function.

(1) Suppose that C is h-big above every τ P B. Then C is h-big above B.
(2) Suppose that A is prefix-free and finite; suppose that B is h-big above A and

that C is h-big above B. Then any forest which witnesses that B is h-big
above A has an end-extension which witnesses that C is h-big above A.

Remark 2.8. Throughout, we will assume that whenever we are given a set of
strings which is guaranteed to have some largeness property, then this set is the
set of leaves of a forest witnessing this property. For example, suppose that we
are given a set B which is h-big above some σ. We will assume, often without
mentioning it, that B is finite, that it is prefix-free, and that every string in B
extends σ.

2.3. The notion of forcing and the generic. Let BDNR be the set of strings σ
that are not initial segments of diagonally nonrecursive functions: σpeq “ JpeqÓ
for some e ă |σ|, where J is a fixed universal jump function. This is traditionally
taken to be Jpeq “ ϕepeq, but any universal partial computable function would do.

Let T be a tree. We say that a set of strings B Ď T is open in T if it is upwards
closed in T : if σ P B and τ ě σ is in T then τ P B.

We let P1 be the set of tuples p “ pσp, Tp, Bp, hp, bpq satisfying:

(1) Tp is a computably bounded, computable tree above σp with no leaves.
(2) hp P Q and Tp is hp-bushy.
(3) Bp Ă Tp is c.e. and open in Tp, and Bp Ě BDNR X T

p.
(4) bp P Q and Bp is bp-small above σp.
(5) hp " bp and hp ě bp above |σp|.

Lemma 2.9. P1 is nonempty.

Proof. The set BDNR is c.e. and is 2-small above the empty string xy. Fix some
b P Q (and recall that b ě 2); and find some h P Q such that h " b and h ě b (for
example hpnq “ bpn`1qpnq). Recall that hăω is the set of h-bounded strings. Then
p “ pxy, hăω, BDNR X h

ăω, h, bq is a condition in P1. �

We define a partial ordering on P1 as follows. A condition q extends a condition p
if σp ď σq, Tq is a subtree of Tp, Bp X Tq Ď Bq, and hq ď hp and bq ě bp

above |σq|.

To use the machinery of forcing developed in Section 1.4 we need to associate
with each condition p P P1 a closed set Xp.

Lemma 2.10. The assignment of closed sets Xp “ rTpszrBpsă “ rTpzBps for
p P P1 is acceptable (Definition 1.10).

DNR AND INCOMPARABLE TURING DEGREES 9

Proof. Requirement (b), that Xq Ď Xp if q extends p, follows directly from the
definition of the partial ordering on P1.

Let p P P1. Suppose that rTps Ď rBpsă. Since Tp is bounded, rTps is compact.
This implies that there is a prefix-free, finite set C Ă Bp such that every τ P Tp is
comparable with some element of C. The collection of strings in Tp extended by
some string in C witnesses that Bp is hp-big above σp. Since hp ě bp above |σp|

this implies that Bp is bp-big above σp. We get requirement (a): Xp is nonempty.

Again let p P P1. Let m ě |σp|. There is some τ P Tp of length m above
which Bp is bp-small; otherwise, the concatenation property implies that Bp is
bp-big above σp. If Bp is bp-small above τ then q “ pτ, Tp X τď, Bp X τď, hp, bpq
is a condition in P1 extending p and satisfying Xq Ď rTqs Ď rτ să. This gives
requirement (c) of Definition 1.10. �

As discussed in Section 1.4, if G Ă P1 is sufficiently generic then
Ş

pPGrT
pzBps

is a singleton txGu. In fact

xG “
ď

tσp : p P Gu .

Let p P P1; since BDNRXT
p Ď Bp we see that Xp Ď DNR. Since strong forcing

implies forcing (Corollary 1.14(3)) we get:

Proposition 2.11. Every condition in P1 forces that xG P DNR.

Remark 2.12. Let A be an open set of strings and let g be a bounding function.
We say that A is g-closed if every string above which A is g-big is an element of A.

The concatenation property implies that every set A has a g-closure: the set of
all strings above which A is g-big is g-closed.

Let p P P1. We could require that Bp be bp-closed by replacing it by its bp-
closure. In this case TpzBp is an php ´ bpq-bushy tree with no leaves.

In later sections we will use notions of largeness for which the concatenation
property fails, and so will not be able to quite mimic this operation. A very weak
form of such closure will however be used to get a restriction map from Pn to Pn´1.

2.4. Totality. Recall that for a set of strings C we let rCsă “
Ť

σPCrσs
ă be the

set of x P ωω which extend some string in C.

Lemma 2.13. Let p P P1. Let C Ď Tp be c.e. and open in Tp. Suppose that
p , xG P rCsă. Let τ P Tp; let g P Q such that hp " g, and hp ě g ě bp above |τ |.
Then the set Bp Y C is g-big above τ .

Proof. Otherwise q “ pτ, TpX τď, pBpYCqX τď, hp, gq is a condition extending p
which strongly forces that xG R rCsă. (We need g ě bp above |τ | not to ensure
that q is a condtion but to ensure that it extends p.) �

Remark 2.14. Let p P P1, let C Ď Tp be c.e. and open in Tp, and suppose that p
strongly forces that xG P rCsă. By compactness there is some level m such that all
strings in Tp of length m are in Bp Y C. This shows that Bp Y C is hp-big above
every τ P Tp.

The following proposition shows that we when we force totality of ΓpxGq (for
some Turing functional Γ), we in fact can force strong totality.

Proposition 2.15. Let C Ď ωω be Π0
2 and let p P P1. Then p , xG P C if and

only if the set of conditions which strongly force that xG P C is dense below p.

10 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Proof. It suffices to show that if p , xG P C then p has an extension which strongly
forces that xG P C. Fix such p.

By Lemma 1.6, find some g P Q such that hp " g " bp. As discussed above, every
level of Tp contains a string above which BpX Tp is bp-small. So by extending σp

(and taking the full subtree above that string) we may assume that hp ě g ě bp

above |σp|.
Let xCky be a uniform sequence of c.e. subsets of Tp, open in Tp, such that

CXrTps “ rTpsX
Ş

krCks
ă. Lemma 2.13 says that for all τ P Tp, for all k, the set

Bp Y Ck is g-big above τ .

We effectively define an increasing sequence xSky of finite g-bushy trees with the
following properties:

‚ Sk is g-bushy;
‚ Sk`1 is an end-extension of Sk, and no leaf of Sk is a leaf of Sk`1;
‚ Sk Ă Tp; and
‚ the leaves of Sk`1 lie in Bp Y Ck.

We start with S0 “ tσ
pu. We know that BpXC0 is g-big above σp; Lemma 2.7

shows that for all k ą 0, BpYCk is g-big above BpYCk´1. Thus, given Sk we can
find a g-bushy end-extension S1k of Sk with leaves in Bp Y Ck; Remark 2.3 shows
that S1k Ă Tp. Since Tp has no leaves, we can extend S1k to the required Sk`1 by
adding children from Tp to each leaf of S1k (using the fact that hp ě g above |σp|).

Having defined the trees Sk we let S “
Ť

k Sk. Then S Ď Tp, S is g-bushy,
and S has no leaves. Also, S is computable: a string of length k is in S if and only
if it is in Sk.

Every path in S lies in rBpYCks
ď for all k and so rSzBps Ď C. We required that

g " bp, so q “ pσp, S,Bp X S, g, bpq is a condition which extends p and strongly
forces that xG P C. �

2.5. Minimality. We prove:

Proposition 2.16. Every condition in P1 forces that degTpx
Gq is minimal.

Let Γ: ωω Ñ 2ω be a Turing functional. There are three ways to ensure
that ΓpxGq does not violate the minimality of degTpx

Gq: ensuring that it is partial,
ensuring that it is computable, or ensuring that it computes xG.

For the rest of this section, fix a Turing functional Γ: ωω Ñ 2ω.

Definition 2.17. Let B be a set of strings. Two sets A0 and A1 of strings Γ-split
mod B if Γpτ0q K Γpτ1q for all τ0 P A0zB and τ1 P A1zB.

Lemma 2.18. Suppose that p P P1 strongly forces that ΓpxGq is total, and forces
that ΓpxGq is noncomputable.

Let τ P Tp. Let g P Q such that hp " g, and hp ě 3g and g ě bp above |τ |.
Then there are A0, A1 Ă Tp, each g-big above τ , which Γ-split mod Bp.

Proof. Suppose that τ and g witness the failure of the lemma; we find an extension
of p which forces that ΓpxGq is computable.

For α P 2ăω let

Aα “ Bp Y tρ P Tp : Γpρq ě αu

and

AKα “
ď

Aβ vβ P 2ăω & β K αw.

DNR AND INCOMPARABLE TURING DEGREES 11

Let α P 2ăω and suppose that Aα is 2g-big above τ . By Remark 2.14 the set
Aα 0̂YAα 1̂ is hp-big above every ρ P Aα. Since hp ě 2g above |τ |, the concatenation
property implies that Aα 0̂ Y Aα 1̂ is 2g-big above τ . By the big subset property
there is some i ă 2 such that Aα î is g-big above τ [Here we use that the range of Γ
is in Cantor rather than Baire space; we also use this in the proof of Lemma 2.20].

The assumption implies that AKα î is g-small above τ . Since Aα î Y AKα î is
hp-big above τ and 3g ď hp above |τ | it must be that in fact Aα î is 2g-big above τ .

By recursion define the unique z P 2ω such that for all α ă z, Aα is 2g-big
above τ . Note that z is computable. The set

AKz “
ď

kăω

AKzæk

is g-small above τ because it is the union of an increasing sequence of sets, each
g-small above τ ; since largeness is witnessed by a finite tree, g-smallness above τ is
preserved when taking the union. The fact that z is computable shows that AKz is
c.e., whence the tuple pτ, Tp X τď, AKz X τď, hp, gq is a condition extending p as
required (recalling that Bp Ď AKz). �

The following lemma will allow us to construct a “delayed splitting” subtree
of Tp.

Lemma 2.19. Suppose that p P P1 strongly forces that ΓpxGq is total, and forces
that ΓpxGq is noncomputable. Suppose that τ1, τ2, . . . , τk P T

p. Let g P Q such that
hp " g, and g ě bp and hp ě 3kg above mint|τ1|, |τ2|, . . . , |τk|u. Then there are
sets A1, A2, . . . , Ak Ă Tp, each Aj g-big above τj, which pairwise Γ-split mod Bp.

To prove Lemma 2.19 we need the following, which (mod B) is Lemma 6.2 of [11].

Lemma 2.20. Let g, h P Q; let B be a set of strings. Suppose that:

‚ τ and τ˚ are strings;
‚ A is a set of strings, 3g-big above τ ;
‚ For all ρ P A, Eρ,0 and Eρ,1 are 3g-big above ρ and Γ-split mod B; and
‚ F is a set of strings, 3h-big above τ˚, satisfying |Γpσq| ą |Γpνq| for all
σ P F zB and all ν P EzB, where E “

Ť

Eρ,i vρ P A, i ă 2w.

Then there are E1 Ď E, g-big above τ , and F 1 Ď F , h-big above τ˚, which Γ-split
mod B.

We delay the proof of Lemma 2.20 until the end of the section.

Proof of Lemma 2.19, given Lemma 2.20. The proof is by induction on k. The
lemma is vacuous for k “ 1. Assume the lemma has been proven for k. Let τ1, . . . , τk
and τ˚ be strings on Tp; suppose that hp " g, and hp ě 3k`1g and g ě bp above
mint|τ˚|, |τ1|, |τ2|, . . . , |τk|u. The hypothesis for k holds for the bound 3g instead
of g, and so by induction we find finite sets A1, . . . , Ak Ă Tp, each Aj 3g-big
above τj , which pairwise Γ-split mod Bp. As per Remark 2.8 we assume that
Aj Ă τď

j .
For every j “ 1, . . . , k, for every ρ P Aj , by Lemma 2.18 find finite Eρ,0 and Eρ,1,

subsets of Tp, each 3g-big above ρ and contained in ρď, which Γ-split mod Bp. Let
Ej “

Ť

Eρ,i vρ P Aj , i ă 2w. Note that the Ej also pairwise Γ-split mod Bp.
Since

Ť

jďk Ej is finite, p strongly forces totality of ΓpxGq and 3k`1g ď hp

above |τ˚|, by Remark 2.14 we find F Ă Tp which is 3kg-big above τ˚, such that
|Γpσq| ą |Γpνq| for all σ P F zBp and ν P

Ť

jďk EjzB
p.

12 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Let Fk “ F . By (reverse) recursion on j “ k, k´ 1, . . . , 1 we define sets E1j Ď Ej
and Fj´1 Ď Fj such that every E1j is g-big above τj , Fj is 3jg-big above τ˚ and E1j
and Fj´1 pairwise Γ-split mod Bp. To do this, given Fj apply Lemma 2.20 with
τ “ τj , A “ Aj , g, τ˚ and Eρ,i as themselves, F “ Fj and h “ 3j´1g.

In the end the sets E1j for j ď k and F0 are as required. �

Proposition 2.21. Every condition in P1 forces that if ΓpxGq is total and non-
computable then ΓpxGq ”T xG.

Proof. It suffices to show that if p P P1 forces that ΓpxGq is total and noncom-
putable then p has an extension which forces that ΓpxGq ”T xG. By Proposi-
tion 2.15 we may assume that p strongly forces that ΓpxGq is total.

By Lemma 1.6 find some g P Q such that hp " g " bp. Let ḡpnq “
ś

măn gpmq.
As above by extending σp we may assume that hp ě 3ḡg and g ě bp above |σp|

(see Example 1.4).
We effectively define an increasing sequence x`ky and a sequence xSky of finite

subtrees of Tp such that: (a) Sk`1 is an end-extension of Sk; (b) the leaves of Sk
all have length `k; and (c) Sk is exactly g-bushy: every nonterminal τ P Sk has
precisely gp|τ |q many immediate extensions on Sk.

Let `0 “ |σ
p| and S0 “ tσ

pu. Suppose that Sk and `k have been defined. For
every leaf τ of Sk we find a finite tree Rτ Ă Tp, exactly g-bushy above τ , such that
the sets of leaves of the various Rτ pairwise Γ-split mod Bp. This can be done
since the number of leaves of Sk is

ś

mPr|σp|,`kq
gpmq, which is bounded by ḡp`kq.

We assumed that hp ě 3ḡg and so hp ě 3ḡp`kqg above `k; so Lemma 2.19 applies.
Let S1k be the union of Sk with the trees Rτ for all leaves τ of Sk. Let `k`1 be

greater than the height of S1k; obtain Sk`1 by appending a subtree of Tp, exactly
g-bushy above ρ, to every leaf ρ of S1k.

Let S “
Ť

k Sk. As in the proof of Proposition 2.15, S is computable, computably
bounded and has no leaves. It is g-bushy, and Γ is 1-1 on rSzBps: if x, x1 P rSzBps

and xæ`k‰ x1æ`k then Γpxæ`k`1
q K Γpx1æ`k`1

q. The tuple pσp, S,Bp X S, g, bpq is a
condition as required (Lemma 1.8). �

Proof of Proposition 2.16. Let p P P1. Let Γ be a Turing functional. If p has an
extension which forces that ΓpxGq is partial then we are done. Otherwise p forces
that ΓpxGq is total. We can extend p to a condition q which decides whether ΓpxGq
is computable or not. If the former then we are done. Otherwise, Proposition 2.21
says that q forces that ΓpxGq ”T xG. �

Proof of Lemma 2.20. Let E “
Ť

Eρ,i vi ă 2 & ρ P Aw.
For a string α P 2ăω let

Fěα “ pF XBq Y tσ P F : Γpσq ě αu ,

and similarly define FKα, Eěα, Eďα and so on.

If F X B is h-big above τ˚ then we can let F 1 “ F X B and E1 “ E. Similarly
if E XB is g-big above τ .

Suppose otherwise. In that case, for sufficiently long α, Fěα is h-small above τ˚

(as it equals F X Bq. Let α be a string, maximal with respect to Fěα being h-big
above τ˚. We will show that either

(1) EKα is g-big above τ , or
(2) Eěα is g-big above τ and FKα is h-big above τ˚.

DNR AND INCOMPARABLE TURING DEGREES 13

In both cases we can find E1 and F 1 as required.
We examine two cases, depending on Eďα.

First, suppose that Eďα is g-big above τ . Let R be a tree witnessing this. Every
leaf of R extends some element of A, so every element of R is comparable with
some element of A. Since A is an antichain, the restriction of R to initial segments
of elements of A is g-bushy. This shows that A1, the set of ρ P A such that Eďα is
g-big above ρ, is g-big above τ . We show that EKα is g-big above every ρ P A1; with
the concatenation property this implies (1). Let ρ P A1; there are two possibilities.
If BXE is g-big above ρ then we are done. Otherwise for some i ă 2, Eρ,i intersects
EďαzB. But then Eρ,1´i Ď EKα, and Eρ,1´i is 3g-big above ρ.

In the second case, suppose that Eďα is g-small above τ . Since E “ EKα Y
EěαYEďα is 3g-big above τ , either (1) holds, or Eěα is g-big above τ . Assume the
latter. We assumed that E XB is g-small above τ ; together, we see that EěαzB is
nonempty. In turn this implies that |Γpσq| ą |α| for all σ P F zB; so F “ FŋαYFKα.

The maximality of α ensures that Fŋα is 2h-small above τ˚ [Here again we use
the fact that Γ maps into Cantor space]. Since F is 3h-big above τ˚ it must be
that FKα is h-big above τ˚, so (2) holds. �

3. A relative DNR strong minimal cover of a DNR minimal degree

We now construct two sequences x, y P ωω such that x P DNR, x has minimal
Turing degree, y P DNRx and degTpx, yq is a strong minimal cover of degTpxq.

We use the mechanism of tree systems that was used by Cai [3, 2, 5] to show that
there is a generalised high degree which is a minimal cover of a minimal degree.
This is a more versatile approach than the homogenous trees which are usually used
to construct initial segments of the Turing degrees (as in [12]).

3.1. Length 2 tree systems. Let A Ď ωăωˆωăω be a set of pairs of strings. For
τ P ωăω we let

Apτq “ tρ P ωăω : pτ, ρq P Au .

Of course domA “ tτ : Dρ rpτ, ρq P Asu.

Definition 3.1. A tree system of length 2 above a pair pσ, µq is a set T of pairs of
strings satisfying:

‚ domT is a tree above σ;
‚ For all τ P domT , T pτq is a finite tree above µ; and
‚ If τ ă τ 1 are in domT then T pτ 1q is an end-extension of T pτq.

In this section we only consider systems of length 2 and so we omit mentioning
the length.

A tree system S is a subsystem of T if S Ď T . This means that domS is a
subtree of domT and for all τ P domS, Spτq is a subtree of T pτq. If pτ, ρq P T
then T X pτ, ρqď is a tree system, the system whose domain is the full subtree
of domT above τ and which maps all τ 1 in its domain to the full subtree of T pτ 1q
above ρ. Here of course pτ, ρqď “ τď ˆ ρď is the upwards-closure of tpτ, ρqu in

the partial ordering ď on pωăωq
2

defined by the product of extension on strings:
pτ, ρq ď pτ 1, ρ1q if τ ď τ 1 and ρ ď ρ1.

A tree system is h-bounded if for all pτ, ρq P T , τpnq ă hpnq for all n ă |τ | and
ρpnq ă hpnq for all n ă |ρ|. It is computably bounded if it is bounded by some
computable function.

14 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

If T is a computable and computably bounded tree system then domT is com-
putable and the map τ ÞÑ T pτq is computable (for each τ P domT we obtain a
canonical index for T pτq as a finite set).

Forest systems. To iterate largeness we require the notion of forest systems.
We call a set of pairs of strings A Ă pωăωq

2
prefix-free if domA is prefix-free and

for all τ P domA, Apτq is prefix-free. For a set of pairs A let Aď “
Ť

pσ,µqPApσ, µq
ď

be the upwards closure of A under ď. If A is prefix-free then Aď is the disjoint
union of pσ, µqď for pσ, µq P A. In other words, if pτ, ρq extends some element of A
then that element is unique. We denote this element by pτ, ρq´A.

Definition 3.2. A forest system of length 2 above a finite prefix-free set A Ă

pωăωq
2

is a set T of pairs of strings satisfying:

‚ domT is a forest above domA;
‚ For all τ P domT , T pτq is a finite forest above Apτ´ domAq (where again
τ´ domA is τ ’s unique predecessor in domA); and

‚ If τ ă τ 1 are in domT then T pτ 1q is an end-extension of T pτq.

A leaf of a forest system T is a pair pτ, ρq P T such that τ is a leaf of domT
and ρ is a leaf of T pτq. Equivalently, it is a maximal element of the set of pairs T ,
if T is partially ordered by double extension ď. The set of leaves of a finite forest
system is prefix-free.

Paths of tree systems. Let T be a tree system above pσ, µq. For x P rdomT s we let

T pxq “
ď

T pτq vσ ď τ ă xw.

We also let
rT s “ tpx, yq : x P rdomT s & y P rT pxqsu.

In general the set rT s need not be closed.

Lemma 3.3. Suppose that for all x P rdomT s the tree T pxq has no leaves. Then rT s
is a closed subset of rσ, µsă.

Proof. For τ P domT let

Eτ “
ď

rρsă vρ a leaf of T pτqw;

for n ě |σ| let

En “
ď

prτ să ˆ Eτ q vτ P domT & |τ | “ nw.

Each En is clopen. We show that rT s “
Ş

En. We always have rT s Ď
Ş

ně|σ|En.

For suppose that px, yq P rT s, and let n ě |σ|. Let τ “ xæn; so τ P domT . Let m
be greater than the height of T pτq, and let ρ “ y æm. Since ρ P T pxq there is
some τ 1 ă x such that ρ P T pτ 1q. Since ρ R T pτq we must have τ ă τ 1, and so ρ
extends some leaf of T pτq; this shows that y P Eτ , so px, yq P En.

In the other direction we use our assumption. Suppose that px, yq P
Ş

ně|σ|En.

For all n ě |σ|, px, yq P En implies that xænP domT , so x P rdomT s. For all n ě |σ|,
some leaf of T pxænq is an initial segment of y. To show that y P rT pxqs it suffices
to show that the minimum length of a leaf in T pxænq is unbounded as nÑ8. But
otherwise T pxq would have a leaf. �

We will require that the pairs in tree systems appearing in our conditions can
be extended to paths. It is not enough to require that the system not have leaves.

DNR AND INCOMPARABLE TURING DEGREES 15

Lemma 3.4. Let T be a bounded tree system and suppose that domT has no leaves.
The following are equivalent:

(1) For all k there is some m such that for every τ P domT of length m, every
leaf of T pτq has length at least k.

(2) For all x P rdomT s, T pxq has no leaves.

Proof. That (1) implies (2) is immediate. Suppose (2) holds. By Lemma 3.3, rT s
is closed; since T is bounded, rT s is compact. Let k ă ω. The collection of clopen
rectangles rτ, ρsă where τ P domT , ρ is a leaf of T pτq, and |ρ| ě k is an open cover
of rT s; a finite sub-cover gives the desired m. �

To simplfy the combinatorics of finding big splittings, we restrict ourselves to
“balanced” tree systems.

Definition 3.5. Let T be a tree system and let n ă ω. We say that m is a balanced
level of T if for all τ P domT of length m, every leaf of T pτq has length m. We
say that T is balanced if domT has no leaves and T has infinitely many balanced
levels.

If T is bounded and balanced then it satisfies the conditions of Lemma 3.4 and so
by Lemma 3.3, rT s is closed. If T is balanced, computable and computably bounded
then rT s is effectively closed (this is really where we use the requirement that if τ 1

extends τ in domT then T pτ 1q is an end-extension, rather than any extension,
of T pτq).

3.2. Bushiness for forest systems.

Definition 3.6. Let g and h be bounding functions. A forest system T is pg, hq-
bushy if domT is g-bushy and for all τ P domT , T pτq is h-bushy.

Lemma 3.7. Let A Ă pωăωq
2

be finite and prefix-free, and let g and h be bounding
functions. The following are equivalent for a set B of pairs of strings:

(1) There is a finite pg, hq-bushy forest system above A, all of whose leaves lie
in B.

(2) The set of τ such that Bpτq is h-big above Apτ´ domAq is g-big above domA.

Proof. Assume (2). We define a forest system S by first defining domS, and then
for all τ P domS, defining Spτq. We let domS be a g-bushy forest above domA such
that for every leaf τ of domS, Bpτq is h-big above Apτ´ domAq. Now let τ P domS;
let σ “ τ´ domA. There are two cases. If τ is a leaf of domS then we let Spτq be
an h-bushy forest above Apσq which witnesses that Bpτq is h-big above Apσq. If τ
is not a leaf of domS then we let Spτq “ Apσq. �

These equivalent conditions define the notion of B being pg, hq-big above A; if
they fail, we say that B is pg, hq-small above A. If A is infinite then we say that B
is pg, hq-big above A if it is pg, hq-big above every finite prefix-free subset of A.

For brevity we let for B Ď pωăωq
2
, a bounding function h and a finite prefix-free

set of strings D
πhDpBq “ tτ : Bpτq is h-big above Du .

Note that πhDpBq “
Ş

ρPD π
h
ρ pBq, where of course we let πhρ pBq “ πh

tρupBq. A set B

is pg, hq-big above a finite prefix-free set A if and only if for all σ P domA, πhApσqpBq

is g-big above σ.

The big subset property (the analogue of Lemma 2.4) holds.

16 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Lemma 3.8. Let g, g1 and h, h1 be bounding functions and let pσ, µq P pωăωq
2
.

Suppose that B,C Ď pωăωq
2

and that B Y C is pg ` g1, h ` h1q-big above pσ, µq.
Then either B is pg, hq-big above pσ, µq or C is pg1, h1q-big above pσ, µq.

Proof. The set πh`h
1

µ pBYCq is pg`g1q-big above σ. The big subset property implies

that πh`h
1

µ pB YCq Ď πhµpBq Y π
h1

µ pCq. Utilising the big subset property again, this

time on the left coordinate, we see that either πhµpBq is g-big above τ or πh
1

µ pCq is
g1-big above τ . The first means that B is pg, hq-big above pσ, µq; the second, that C
is pg1, h1q-big above pσ, µq. �

Weak concatenation. The concatenation property (Lemma 2.5) fails. Suppose thatA
is pg, hq-big above pσ, µq, and that B is pg, hq-big above every pτ, ρq P A. It is pos-
sible that B is not pg, hq-big above pσ, µq: take for example two strings ρ1 and ρ2

and a string τ such that pτ, ρ1q, pτ, ρ2q P A. Then πhρ1pBq and πhρ2pBq are both g-big
above τ , but the trees witnessing these facts need not be the same. That is, it is
possible that πh

tρ1,ρ2u
pBq is g-small above τ . As a result, it is possible that a set B

is pg, hq-small above some pσ, µq but the set of pairs above which B is pg, hq-big is
pg, hq-big above pσ, µq. Instead, we will employ a weak version of the concatenation
property.

Definition 3.9. Let S and R be forest systems. We say that R is an end-extension
of S if:

‚ domR is an end-extension of domS;
‚ If τ P domS is not a leaf of domS, then Rpτq “ Spτq;
‚ If τ is a leaf of domS then Rpτq is an end-extension of Spτq.

Note that this relation is transitive. Now if T is a finite (length 1) forest above A,
E is the set of leaves of T , and U is a forest above E, then T Y U is a forest
above A, an end-extension of T whose leaves are the leaves of U . For forest systems
we cannot take unions. Suppose that S is a finite forest system above A; let D be
the set of leaves of S, and suppose that R is a forest system above D. We define
the concatenation SˆR of S and R:

‚ dompSˆRq “ pdomSq Y pdomRq;
‚ For τ P domSzdomD, pSˆRqpτq “ Spτq;
‚ For τ P domR, pSˆRqpτq “ pSpτ´ domDqq YRpτq.

This is a forest system above A, an end-extension of S whose leaves are the leaves
of R. Note that if τ P domD then we do not assume that Rpτq “ Dpτq, and so it
is possible that pSˆRqpτq ‰ Spτq. If both S and R are pg, hq-bushy then so is SˆR.
We conclude:

Lemma 3.10. Suppose that B is pg, hq-big above A, and that C is pg, hq-big
above B. Then C is pg, hq-big above A. Indeed, every finite pg, hq-bushy forest
system whose leaves are in B has a finite pg, hq-bushy end-extension whose leaves
are in C.

A set B of pairs of strings is open if it is upwards closed in the partial ordering ď:
closed under taking extensions in either coordinate.

The following lemma concerns sets of strings, not pairs of strings. It is a con-
sequence of the concatenation property, and is formally proved by induction on
|B|.

DNR AND INCOMPARABLE TURING DEGREES 17

Lemma 3.11. Let B be a finite collection of open sets of strings, and let A be
a finite, prefix-free set of strings. Suppose that each B P B is g-big above every
σ P Aď. Then

Ş

B is g-big above A.

Lemma 3.12. Let A and B be sets of pairs of strings, and let g and h be bounding
functions. Suppose that B is open. Suppose that for all pσ, µq P A, for all σ1 ě σ,
B is pg, hq-big above pσ1, µq. Then B is pg, hq-big above A.

Proof. It suffices to show that for any σ P domA and any finite, prefix-free E Ď

Apσq, πhEpBq is g-big above σ. We apply Lemma 3.11 to the collection of sets πhµpBq

for µ P E. The fact that B is open implies that each πhµpBq is open; the assumption

is that each πhµpBq is g-big above every extension of σ. �

Corollary 3.13 (Weak concatenation property). Let A, B and C be sets of pairs of
strings, and suppose that C is open. Suppose that B is pg, hq-big above A, and that
for all pτ, ρq P B, for all τ 1 ě τ , C is pg, hq-big above pτ 1, ρq. Then C is pg, hq-big
above A.

Working within tree systems. We will need to apply the weak concatenation prop-
erty while working within a given tree system T .

Remark 3.14. Suppose that B is pg, hq-big above A, that T is a tree system and
that A,B Ď T . Then the forest system constructed in the proof of Lemma 3.7 is a
subset of T .

Fix a tree system T . Suppose that S is a finite forest system; let D be the set
of leaves of S. Let R be a forest system above D. Suppose that both S and R
are subsets of T . Then SˆR is also a subset of T . Thus, Remark 3.14 can be
extended. Suppose that B is pg, hq-big above A, that C is pg, hq-big above B, and
that A,B,C Ď T . Then not only is there a finite pg, hq-bushy forest system S Ď T
above A whose leaves are in B, but further, any such system S can be end-extended
to a finite pg, hq-bushy forest system R Ď T above A whose leaves are in C.

If T is a tree system and B Ď T then we say that B is open in T if it is
upwards closed in the restriction of the partial ordering ď to T . Lemma 3.11 can
be “restricted to a tree S”: if A,B Ď S and each B P B is open in S and g-big
above AďXS, then

Ş

B is g-big above A. We then obtain a version of Lemma 3.12
restricted to T :

Lemma 3.15. Let T be a tree system; let A,B Ď T , and let g and h be bounding
functions. Suppose that B is open in T , and that for all pσ, µq P A, for all σ1 ě σ
in domT , B is pg, hq-big above pσ1, ρq. Then B is pg, hq-big above A.

And so we get the weak concatenation property within a tree system:

Corollary 3.16. Let T be a tree system, let A,B,C Ď T , and suppose that C is
open in T . Suppose that B is pg, hq-big above A, and that for all pτ, ρq P B, for
all τ 1 ě τ in domT , C is pg, hq-big above pτ 1, ρq. Then C is pg, hq-big above A,
and in fact every finite pg, hq-bushy forest system S Ď T which witnesses that B is
pg, hq-big above A has an end-extension R Ď T which witnesses that C is pg, hq-big
above A.

We obtain a lemma which will allow us to take full subsystems as extensions.

18 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Lemma 3.17. Let T be a bounded and balanced pb, cq-bushy tree system above pσ, µq
and let B Ă T be open in T and pb, cq-small above pσ, µq. Then for every m there
is some pτ, ρq P T such that |τ |, |ρ| ě m and above which B is pb, cq-small.

Proof. Let m be some balanced level of T . Let D be the set of pairs pτ, ρq P T such
that |τ | “ |ρ| ě m. Then D is pb, cq-big above pσ, µq. If there is no pair as required
then the weak concatenation property localised to T (Corollary 3.16) shows that B
is pb, cq-big above pσ, µq. �

Remark 3.18. We use the same convention discussed in Remark 2.8; we assume that
large sets given to us are sets of leaves of tree systems witnessing their largeness.
For example, if we are given a set B of pairs, pg, hq-big above some A, then we
assume that B is finite and prefix-free; that for all τ P domB, Bpτq is h-big above
Apτ´ domAq; and that B Ď Aď.

3.3. The notion of forcing and the generic. Let BDNR2 be the set of pairs pτ, ρq
such that τ P BDNR or ρ P BDNRτ ; the latter means that ρpeq “ Jτ peqÓ for some
e ă |ρ|. Note that this set of pairs is p2, 2q-small above pxy, xyq.

We let P2 be the set of tuples p “ ppσp, µpq, Tp, Bp, hp, bpq satisfying:

(1) Tp is a computably bounded, computable, balanced tree system above pσp, µpq;
(2) hp P Q and Tp is php, hpq-bushy;
(3) Bp Ă Tp is c.e. and open in Tp, and Bp Ě BDNR2 X Tp;
(4) bp P Q and Bp is pbp, bpq-small above pσp, µpq; and
(5) hp " bp and hp ě bp above mint|σp|, |µp|u.

We define a partial ordering on P2 as follows. A condition q extends a condition p
if pσp, µpq ď pσq, µqq, Tq is a subsystem of Tp, Bp X Tq Ď Bq, and hq ď hp and
bq ě bp above mint|σq|, |µq|u.

Lemma 3.19. The assignment of closed sets Xp “ rTpszrBpsă for p P P2 is
acceptable (Definition 1.10).

Note that TpzBp may not be a tree system and so we have not defined rTpzBps.

Proof. As discussed above, the fact that Tp is balanced implies that rTps is closed.
That Xq Ď Xp when q extends p again follows directly from the definition of the
partial ordering on P2.

Let p P P2. Suppose that rTps Ď rBpsă. Since Tp is bounded, rTps is compact.
There is some finite C Ă Bp such that rTps Ď rCsă. We may assume that C is
prefix-free. Then C shows that Bp is php, hpq- and so pbp, bpq-big above pσp, µpq.
Hence Xp is nonempty.

Let m ă ω. Since hp ě bp above mint|σp|, |µp|u Lemma 3.17 shows that there
is some pair pτ, ρq P Tp with |τ |, |ρ| ě m above which Bp is pbp, bpq-small. Then
q “ ppτ, ρq, Tp X pτ, ρqď, Bp X pτ, ρqď, hp, bpq is a condition in P2 extending p
satisfying Xq Ď rTqs Ď rτ, ρsă. Thus for every m, the set of conditions p P P2 such
that Xp Ď rτ, ρsă for some strings τ, ρ, both of length at least m, is dense in P2;
this implies requirement (c) of Definition 1.10. �

As in the previous section, if G Ă P2 is sufficiently generic then
Ş

pPGrT
pszrBpsă

is a singleton which we denote by tpxG, yGqu. In fact xG “
Ť

tσp : p P Gu and
yG “

Ť

tµp : p P Gu.
Let p P P2; since BDNR2 Ď Bp we see:

DNR AND INCOMPARABLE TURING DEGREES 19

Proposition 3.20. Every condition in P2 forces that xG P DNR and that yG P

DNRxG .

The restriction of P2 to P1. We do not actually have a restriction map to P1 from P2

but from a dense subset of P2. Note that if Q Ď P is dense and G Ă Q is a generic
directed set, then it is also a generic directed subset of P.

Proposition 3.21. There is a dense subset Q2 Ď P2 and a restriction map i : Q2 Ñ

P1 such that for all p P Q2, Xippq Ě domXp.

In particular this shows that P2 is nonempty.

Proof. We define i : P2 Ñ P1 by letting

ipqq “ pσq,domTq, πb
q

µqpBqq, hq, bqq

where we recall that πb
q

µqpBqq is the set of τ such that Bqpτq is bq-big above µq.
Let q P P2. It is routine to check that ipqq P P1.
However, we cannot show that i is order-preserving. For this reason we let

Q2 “

!

p P P2 : πb
p

µppBpq “ tτ P domTp : µp P Bppτqu
)

.

Suppose that q P Q2; then Xipqq Ě domXq. To check this we observe that if
px, yq P rTqszrBqsă then for all τ ă x, pτ, µqq R Bq and so τ R Bipqq; so x P
rdomTqszrBipqqsă. (In fact Xipqq “ domXq; if x P Xipqq then Bqpxq is bq-small
above µq, so TqpxqzBqpxq has a path.)

Let q P P2. Define a set B Ă Tq: for τ P domTqzπb
q

µqpBqq we let Bpτq “ Bqpτq;

for τ P πb
q

µqpBqq we let Bpτq “ Tqpτq. Let νpqq “ ppσq, µqq, Tq, B, hq, bqq. The

concatenation property implies that πb
q

µqpBqq “ πb
q

µqpBq, which shows that νpqq P
P2, in fact that νpqq P Q2, and it extends q. Hence Q2 is dense in P2. We observe
that ipqq “ ipνpqqq.

To show that the restriction of i to Q2 is order-preserving we need to check
that if q, s P Q2 and q extends s, then Bipsq X T ipqq Ď Bipqq. If τ P Bipsq (and
τ P T ipqq) then pτ, µsq P Bs; since Bs is open in T s, this means that pτ, µqq P Bs;
since Bs X Tq Ď Bq, pτ, µqq P Bq and so τ P Bipqq.

Let q P Q2 and let p P P1 extend ipqq; we need to find r P Q2 extending q such
that iprq extends p. Using the map ν, it suffices to find r P P2.

Let T be the restriction of Tq to Tp: domT “ Tp and for τ P Tp, T pτq “ Tqpτq.
The system T is php, hqq-bushy above pσp, µqq.

Also define B Ď T ; if τ P Bp then Bpτq “ T pτq; if τ P TpzBp then Bpτq “
Bqpτq. The set B is open in T , is c.e., and is pbp, bqq-small above pσp, µqq. To see
that let S be pbp, bqq bushy above pσp, µqq; by Remark 3.14 we may assume that
S Ă T . Since domS is a subtree of Tp we find a leaf τ of domS which is not in Bp.
Since p extends ipqq, τ R Bipqq and so Bpτq “ Bqpτq is bq-small above µq, so Spτq
has a leaf ρ which is not in Bpτq.

Since hp ě bp above |σp| and hq ě bq above |µq|, T is pbp, bqq-bushy. By
Lemma 3.17 we can find pσ, µq P T such that |σ|, |µ| ě maxt|σp|, |µq|u and above
which B is pbp, bqq-small.

We now define r “ ppσ, µq, T X pσ, µqď, B X pσ, µqď, hp, bpq. The point is that
hp ď hq and bp ě bq above mint|σ|, |µ|u and so T r is php, hpq-bushy and Br is
pbp, bpq-small above pσ, µq. This also shows that r extends q. To show that iprq

20 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

extends p we need to show that BpXdomT r Ď Biprq. Let τ P BpXdomT r. Then
τ ě σ and so µ P T pτq “ Bpτq, so τ P Biprq. �

Corollary 3.22. Every condition in P2 forces that xG has minimal Turing degree.

Totality.

Proposition 3.23. Let C Ď pωωq
2

be Π0
2 and let p P P2. If p , pxG, yGq P C

then p has an extension which strongly forces that pxG, yGq P C.

Proof. The proof is similar to the proof of Proposition 2.15. We choose a func-
tion g P Q such that hp " g " bp. By Lemma 3.17 we may assume that hp ě g ě bp

above mint|σp|, |µp|u.
We fix a sequence of c.e. sets Ck Ď Tp, open in Tp, such that CXrTps “ rTpsX

Ş

krCks
ă. For all pτ, ρq P Tp, for all k, the set Bp Y Ck is pg, gq-big above pτ, ρq;

otherwise ppτ, ρq, TpXpτ, ρqď, pBpYCkqXpτ, ρq
ď, hp, gq is a condition extending p

which forces that pxG, yGq R C.
We define a sequence of finite tree systems Sk Ă Tp such that: each Sk is pg, gq-

bushy; Sk`1 is a proper end-extension of Sk; the leaves of Sk`1 are in Ck Y B
p; if

k ą 0 then there is some `k such that for every k ě 1, for every leaf pτ, ρq of Sk,
|τ | “ |ρ| “ `k. We begin with S0 “ tpσ

p, µpqu. Given Sk, Corollary 3.16 says that
CkYB

p is pg, gq-big above the set of leaves of Sk, so we can find a finite pg, gq-bushy
end-extension S1k Ă Tp of Sk with leaves in Ck YB

p.
Now find some `k`1, greater than |τ | and |ρ| for any leaf pτ, ρq of S1k, which is a

balanced level for Tp (Definition 3.5). Then the set of pτ, ρq P Tp such that |τ | “
|ρ| “ `k`1 is pg, gq-big above the set of leaves of S1k. Hence we can find Sk`1 Ă Tp

to be an end-extension of S1k as required.
It follows that S “

Ť

k Sk is a computable, pg, gq-bushy and balanced tree system
above pσp, µpq and that the condition ppσp, µpq, S,Bp X S, g, bpq extends p and
strongly forces that pxG, yGq P C. �

3.4. Minimal cover. We work toward showing that degTpx
G, yGq is a strong min-

imal cover of degTpx
Gq.3 We do this in two steps. First we show that it is a minimal

cover. This mostly uses the tools of the previous section.
Let Γ: pωωq

2
Ñ 2ω be a Turing functional. For a condition p P P2, a bounding

function g and a string µ let Γ-Spgµppq be the set of τ P domTp such that Tppτq
contains two sets A0pτq and A1pτq, both g-big above µ, which Γpτ,´q-split mod
Bppτq.

Lemma 3.24. Suppose that p P P2 strongly forces that ΓpxG, yGq is total and forces
that ΓpxG, yGq ęT xG.

Let pσ, µq P Tp. Let g P Q such that hp " g, and hp ě 3g and g ě bp above
mint|σ|, |µ|u. Then Γ-Spgµppq is g-big above σ.

Proof. Suppose that pσ, µq and g witness the failure of the lemma; we find an
extension of p which forces that ΓpxG, yGq is computable from xG.

Let Θ be the (c.e.) set of pairs pτ, αq such that τ P domTp, α P 2ăω and Aαpτq
is g-big above µ, where as before Aα “ Bp Y tpτ, ρq P Tp : Γpτ, ρq ě αu.

For brevity let C “ Γ-Spgµppq. The set C is open in domTp. If τ P domTpzC
then the strings in Θpτq are pairwise comparable.

3For x P ωω , degTpxq denotes the Turing degree of x.

DNR AND INCOMPARABLE TURING DEGREES 21

Let τ P domTpzC. The argument of the proof of Lemma 2.18 shows that if
|Γpτ, ρq| ě m for every leaf ρ of Tppτq which is not in Bppτq then Θpτq contains
a string of length m. Also, Bppτq is g-small above µ and so Θpτq is finite; in this
case we let Θτ “

Ť

Θpτq be the longest string in Θpτq.

If τ ď τ 1 are in domTpzC then Θτ ď Θτ 1 . This follows from the fact that
Aαpτq Ď Aαpτ

1q for all α.

Let D “ tpτ, ρq P Tp : τ P C or Γpτ, ρq K α for some α P Θpτqu. The set D
is c.e. and is open in Tp. Also, D Y Bp is pg, gq-small above pσ, µq. To see this,
suppose that S Ă Tp is a finite pg, gq-bushy tree system above pσ, µq (as above we
use Remark 3.14). Then there is a leaf τ of domS which is not in C; and then Spτq
must contain a leaf ρ R Bppτq such that Γpτ, ρq is compatible with Θτ .

Now suppose that px, yq P rTpszrD Y Bpsď. No initial segment of x is in C. A
compactness argument shows that Θpxq “

Ť

τăx Θτ is total, and so Γpx, yq “ Θpxq.
Certainly Θpxq ďT x. Therefore the condition ppσ, µq, Tp X pσ, µqď, pD Y Bpq X

pσ, µqď, hp, gq extends p and (strongly) forces that ΓpxG, yGq ďT xG. �

Definition 3.25. Let B Ď pωăωq
2
. Two sets A0 and A1 of pairs of strings locally

Γ-split mod B if for all τ , A0pτq and A1pτq form a Γpτ,´q-splitting mod Bpτq. That
is, if pτ, ρ0q P A0zB and pτ, ρ1q P A1zB then Γpτ, ρ0q K Γpτ, ρ1q.

We introduce the notion of uniform largeness.

Definition 3.26. Let A be finite and prefix-free, and let B be a collection of sets of
pairs of strings. We say that the sets in B are uniformly pg, hq-big above A if the set
of τ such that for all B P B, Bpτq is h-big above Apτ´ domAq, is g-big above domA.

The conclusion of Lemma 3.24 is that there are A0 and A1, subsets of Tp uni-
formly pg, gq-big above pσ, µq, which locally Γ-split mod Bp.

Lemma 3.27. Suppose that p P P2 strongly forces that ΓpxG, yGq is total and forces
that ΓpxG, yGq ęT xG.

Let σ P domTp, and let µ1, µ2, . . . , µk be elements of Tppσq. Let g P Q such that
hp " g, and hp ě 3kg and g ě bp above mint|σ|, |µ1|, |µ2|, . . . , |µk|u. Then there
is a set A Ă Tp, pg, gq-big above tpσ, µjq : j ď ku, such that the sets AX pσ, µjq

ď

pairwise locally Γ-split mod Bp.

Proof. The idea is to extend bushily on the first coordinate so that we can emulate
the proof of Lemma 2.19 on the second coordinate. Formally this is done by induc-
tion on k. Suppose this has been shown for k; let µ1, . . . , µk and µ˚ be elements of
Tppσq; suppose that h " g, and hp ě 3k`1g and g ě bp above mint|σ|, |µ˚|, |µj | :
j ď ku. Then h " 3g; so by induction we can find a set A, p3g, 3gq-big above
tpσ, µjq : j ď ku such that the sets A X pσ, µjq

ď pairwise locally Γ-split mod Bp.
In fact we only need pg, 3gq-big.

Let pζ, νq P A. By Lemma 3.24, for all ζ 1 ě ζ on domTp, Γ-Sp3g
ν ppq is 3g-

big above ζ 1 (again we only need g-big). By repeatedly extending we see that for
all ζ P domA, Qζ “ ζďX

Ş

νPApζq Γ-Sp3g
ν ppq is 3g-big above ζ. We extend the set A

by letting Apτq “ Apζq for all τ P Qζ . Let Q “
Ť

ζPdomAQζ ; it is 3g-big above σ.

For every τ P Q and all ν P Apτq we can find sets Eν,0pτq, Eν,1pτq Ă Tppτq, each
3g-big above ν, which Γpτ,´q-split mod Bppτq.

Further, by extending in domTp, we may assume that for all τ P Q we can find
F pτq Ă Tppτq which is 3kg-big above µ˚ and such that |Γpτ, ρq| ą |Γpτ, ηq| for all
ρ P F pτqzBppτq and all η P Eν,ipτq (for both i ă 2 and all ν P Apτq).

22 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Overall we see that for all τ P Q we can run the argument proving Lemma 2.19
inside Tppτq and using Lemma 2.20 find F 1pτq Ď F pτq, g-big above µ˚ and for
j ď k, E1jpτq Ă Tppτq, g-big above µj , with every string in E1jpτq extending some

string in Ajpτq, such that F 1pτq and E1jpτq form a Γpτ,´q-splitting mod Bppτq; the

fact that strings in E1jpτq extend strings in Apτq X µď
j shows that the sets E1jpτq

also pairwise Γpτ,´q-split mod Bppτq. �

Proposition 3.28. Every condition in P2 forces that if ΓpxG, yGq is total and
ΓpxG, yGq ęT xG then ΓpxG, yGq ‘ xG ěT yG.

Proof. As in the proof of Proposition 2.21 we take some p P P2 which strongly forces
that ΓpxG, yGq is total and forces that ΓpxG, yGq ęT xG, and find an extension of p
which forces that ΓpxG, yGq ‘ xG ěT yG.

Find some g P Q such that hp " g " bp. Let ḡpmq “
ś

kăm gpkq. By
Lemma 3.17 we can extend pσp, µpq so that hp ě 3ḡg and g ě bp above mint|σp|, |µp|u.

We define an increasing sequence x`ky and a sequence xSky of finite subsystems
of Tp such that: domSk is g-bushy and for all τ P domSk, Skpτq is exactly g-bushy;
Sk`1 is a proper end-extension of Sk; for every leaf pτ, ρq of Sk, |τ | “ |ρ| “ `k.

To begin we find some `0 ą |σ
p|, |µp|, a balanced level for Tp. We let domS0 “

domTp æωď`0 and for each leaf τ of domS0 we let S0pτq be an exactly g-bushy
subtree of Tppτq whose leaves all have lenght `0. As usual if τ P domS0 is not a
leaf then we let S0pτq “ tµ

pu.
Given Sk we note that for every leaf σ of domSk, the number of leaves of Skpσq is

precisely
ś

mPr|µp|,`kq
gpmq which is bounded by ḡp`kq; and hp ě 3ḡp`kqg above `k.

By Lemma 3.27 we can find for each leaf σ of domSk a finite pg, gq-bushy for-
est system Rσ Ă Tp above tpσ, νq : ν a leaf of Skpσqu, such that for every leaf τ
of domRσ, the sets Rσpτq X νď for the leaves ν of Skpσq pairwise Γpτ,´q-split
mod Bp. By shrinking we may assume that for all leaves τ P domRσ, Rσpτq is
exactly g-bushy. Let R “

Ť

σ Rσ and let S1k “ SkˆR.
Now as in the proof of Proposition 3.23 we let `k`1 be a balanced level of Tp,

greater than the length of any string appearing in S1k, and let Sk`1 Ă Tp be an
end-extension of S1k with the desired properties.

Let S “
Ť

k Sk. Then for all x P rdomSs, Γpx,´q is 1-1 on rSpxqszrBppxqsă. The
tuple ppσp, µpq, S,BpXS, g, bpq is a condition as required (relativise Lemma 1.8 to
each x). �

3.5. Strong minimal cover. The following is the usual definition of splitting,
restated for pairs of strings.

Definition 3.29. Let B Ď pωăωq
2
. Two sets A0 and A1 Γ-split mod B if for all

pτ, ρq P A0zB and pτ 1, ρ1q P A1zB, Γpτ, ρq K Γpτ 1, ρ1q.

Lemma 3.30. Let g1, g2, h1, h2 P Q; let B be an open set of pairs of strings.
Suppose that:

‚ pσ, µq and pσ˚, µ˚q are pairs of strings;
‚ A is p3g1, 3g2q-big above pσ, µq;
‚ E0 and E1 are uniformly p3g1, 3g2q-big above A; and for all pτ, ρq P A,
E0 X pτ, ρq

ď and E1 X pτ, ρq
ď locally Γ-split mod B; and

‚ F is p3h1, 3h2q-big above pσ˚, µ˚q, and |Γpλ, νq| ą |Γpζ, ηq| for all pλ, νq P
F zB and all pζ, ηq P EzB, where E “ E0 Y E1.

DNR AND INCOMPARABLE TURING DEGREES 23

Then there are E1 Ď E, pg1, g2q-big above pσ, µq, and F 1 Ď F , ph1, h2q-big above pσ˚, µ˚q,
which Γ-split mod B.

Proof. The proof is very similar to that of Lemma 2.20. As above, for a string α P
2ăω let Fěα “ pF XBqYtpτ, ρq P F : Γpτ, ρq ě αu , and similarly define FKα, Eěα,
Eďα and so on. If F XB is ph1, h2q-big above pσ˚, µ˚q then we can let F 1 “ F XB
and E1 “ E. Similarly if E XB is pg1, g2q-big above pσ, µq.

Suppose otherwise. In that case, for sufficiently long α, Fěα is ph1, h2q-small
above pσ˚, µ˚q. Let α be a string, maximal with respect to Fěα being ph1, h2q-big
above pσ˚, µ˚q. As above we show that either

(1) EKα is pg1, g2q-big above pσ, µq, or
(2) Eěα is pg1, g2q-big above pσ, µq and FKα is ph1, h2q-big above pσ˚, µ˚q.

In both cases we can find E1 and F 1 as required.
Again we examine two cases, depending on Eďα.

First suppose that Eďα is pg1, g2q-big above pσ, µq. Let R witness this. Fix ζ, a
leaf of domR. The argument of the proof of Lemma 2.20 is now carried out within
Rpζq. Let τ “ ζ´ domA. Every ν P Epζq extends some unique ρ P Apτq. The tree
Rpζq restricted to initial segments of strings in Apτq shows that Apτq X Rpζq is
g2-big above µ; for each ρ P Apτq X Rpζq, Eďαpζq is g2-big above ρ. The previous
argument shows that for each such ρ, EKαpζq is g2-big above ρ. The concatenation
property shows that EKαpζq is g2-big above µ. And then domR shows that EKα is
pg1, g2q-big above pσ, µq.

Next suppose that Eďα is pg1, g2q-small above pσ, µq; the argument is now iden-
tical to the comparable one in Lemma 2.20, using Lemma 3.8. It shows that (2)
holds. �

Lemma 3.31. Suppose that p P P2 strongly forces that ΓpxG, yGq is total and forces
that ΓpxG, yGq ęT xG.

Let C Ă Tp be prefix-free and finite; let g P Q such that hp " g, and hp ě 3|C|
2

g
and g ě bp above mint|σ|, |µ| : pσ, µq P Cu.

Then there is a set A Ă Tp, pg, gq-big above C, such that the sets A X pσ, µpqď

(for σ P domC) pairwise Γ-split mod Bp.

Proof. We prove the lemma by induction on |C|. Let C˚ “ C Y tpσ˚µ˚qu Ă Tp be
finite and prefix-free, and suppose that the lemma is already known for C. Let g
satisfy the assumptions of the lemma for C˚. The assumptions of the lemma hold
for the set C and the function 3|C|g. Let A be as guaranteed by the lemma for C
and 3|C|g.

Let pσ1, µ1q, pσ2, µ2q, . . . , pσk, µkq list the elements of C such that σj ‰ σ˚. By
reverse recursion on j ď k we define a set Aj Ă Tp, p3jg, 3jgq-big above C˚. We
will ensure that AjXC

ď Ă Aď, and so the sets AjXpσ, µ
pqď for σ P domC pairwise

Γ-split mod Bp. Further, we will ensure that Aj´1Xpσ
˚, µ˚qď and Aj´1Xpσj , µjq

ď

Γ-split mod Bp; and that Aj´1 Ă Aď
j . Thus in the end, the set A0 is as required.

We start with Ak “ AYtpσ˚, µ˚qu. Now suppose that j ą 0 and we are given the
sets Aj . Let τ P pdomAjqXσ

ď
j . Lemma 3.24 says that for all τ 1 ě τ in domTp, for

all ρ P AjpτqXµ
ď
j , the set Γ-Sp3jg

ρ ppq is 3jg-big above σj . So applying Lemma 3.11

to these sets, and repeating this process for all such τ , we find (finite) Ej,0 Ă Tp

and Ej,1 Ă Tp, uniformly p3jg, 3jgq-big above Aj X pσj , µjq
ď, such that for every

pτ, ρq P Aj X pσj , µjq
ď, Ej,0 X pτ, ρq

ď and Ej,1 X pτ, ρq
ď locally Γ-split mod Bp.

24 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Given Ej “ Ej,0 Y Ej,1 we can find Fj Ă Tp, p3jg, 3jgq-big above Aj X pσ
˚, µ˚qď

(and lying above that set) such that |Γpτ, ρq| ą |Γpτ 1, ρ1q| for all pτ, ρq P FjzB
p and

all pτ 1, ρ1q P Ej . We then appeal to Lemma 3.30 with Fj in the role of F , Ej,i in
the role of Ei, Aj X pσj , µjq

ď in the role of A, and using the function 3j´1g we get
F 1j Ď Fj , p3

j´1g, 3j´1gq-big above pσ˚, µ˚q and E1j Ď Ej , also p3j´1g, 3j´1gq-big
above pσj , µjq, which Γ-split mod Bp.

We now define the set Aj´1. We first define domAj´1, and we do this by
defining pdomAj´1q X σ

ď for all σ P domC˚. Let σ P domC˚. If σ ‰ σj , σ
˚ then

pdomAj´1q X σď “ pdomAjq X σď. We let pdomAj´1q X pσ
˚qď “ domF 1j and

pdomAj´1q X pσjq
ď “ domE1j .

Now for τ P domAj´1 we define Aj´1pτq. Fix such τ ; let ζ “ τ´ domAj and

let σ “ τ´ domC˚ “ ζ´ domC˚ . If σ ‰ σ˚, σj then ζ “ τ and we let Aj´1pτq “
Ajpτq. Otherwise, we define Aj´1pτq by defining Aj´1 X µď for all µ P C˚pσq.
Suppose that σ “ σ˚. If µ ‰ µ˚ then we let Aj´1pτq X µď “ Ajpζq X µď (which
inductively will just equal Apτ´ domAq X µď). We let Aj´1pτq X pµ

˚qď “ F 1jpτq.

Similarly, if σ “ σj and µ ‰ µj then we let Aj´1pτq X µď “ Ajpζq X µď; we let
Aj´1pτq X pµjq

ď “ E1jpτq. �

Proposition 3.32. Every condition in P2 forces that if ΓpxG, yGq is total and
ΓpxG, yGq ęT xG then ΓpxG, yGq ěT xG.

Proof. The construction is similar to the one in Propositions 2.21 and 3.28. It is
here that we really use the fact that Tp is balanced, for we ensure that each Sk we

build is exactly pg, gq-bushy. We assume that hp " 3ḡ
2

g above mint|σp|, |µp|u and
then apply Lemma 3.31 to C being the set of leaves of Sk. We use Lemma 1.9. �

And as a result:

Proposition 3.33. Every condition in P2 forces that degTpx
G, yGq is a strong

minimal cover of degTpx
Gq.

Remark 3.34. We could combine the proofs of Lemmas 3.27 and 3.31 to build a
“totally Γ-splitting” extension: a set A such that if pσi, µiq P C (for i ă 2) and
pτi, ρiq P A X pσi, µiq

ďzB, then Γpτ0, ρ0q K Γpτ1, ρ1q provided that either σ0 ‰ σ1,
or τ0 “ τ1 (and ρ0 ‰ ρ1). We could then have a single construction (replacing
Propositions 3.32 and 3.33) giving a condition forcing that ΓpxG, yGq ”T px

G, yGq.

4. The general step

We now generalise to get a linearly ordered initial segment of length n. Once
the correct definitions are in place, much of the development closely follows the
previous section.

4.1. Length n forest systems. We work with n-tuples of strings. We use boldface
notation for tuples. If τ is a tuple then τi denotes the ith component of τ . The
partial ordering of extension ď on pωăωq

n
is defined as expected. For a set A Ď

pωăωq
n

we let Aď be the upward closure of A under this partial ordering. If τ is
an n-tuple and k ď n then we let τæk“ pτ1, . . . , τkq and τæpk,ns“ pτk`1, . . . , τnq.

For a set A Ď pωăωq
n

and k ă n we let domk A be the domain of A thought of
as a relation between k-tuples and pn´ kq-tuples:

domk A “ tτæk : τ P Au .

DNR AND INCOMPARABLE TURING DEGREES 25

For τ P pωăωq
k

we let

Apτ q “
!

ρ P pωăωq
n´k

: pτ ,ρq P A
)

.

We will frequently need to chop off the last bit, so for compact notation we let
τ Ó“ τ æn´1 for all τ P pωăωq

n
, and let AÓ“ domn´1A “ tτÓ : τ P Au for all

A Ď pωăωq
n
.

Definition 4.1. By induction on n we define the notion of a prefix-free set of tuples
of strings: a set A Ă pωăωq

n
is prefix-free if AÓ is prefix-free, and for all τ P AÓ,

Apτ q is a prefix-free set of strings.

If A is prefix-free and τ P Aď then there is a unique σ P A such that σ ď τ
(formally this is proved by induction on n); we denote this σ by τ´A. Note that
if A is prefix-free and τ P Aď then τÓP pAÓqď and pτÓq´AÓ “ τ´AÓ.

Definition 4.2. By induction on n we define the notion of a length n forest system.
Let A Ă pωăωq

n
be prefix-free and finite. A length n forest system above A is a

set T Ď Aď such that:

‚ TÓ is a length n´ 1 forest system above AÓ;
‚ for all τ P TÓ, T pτ q is a finite forest above Apτ´AÓq;
‚ if τ ď τ 1 P TÓ then T pτ 1q is an end-extension of T pτ q.

A forest system S is a subsystem of T if S Ď T . We write `pT q for the length
of T . If A is a singleton σ then we say that T is a tree system above σ.

Lemma 4.3. Let T be a tree system and let σ P T . Then T Xσď is a tree system
above σ.

(In fact σ can be replaced by any finite, prefix-free subset of T).

Proof. By induction on `pT q. Let R “ T X σď. The point is that RÓ“ TÓ XpσÓqď.
For suppose that τ P T Ó XpσÓqď. Then T pσÓq Ď T pτ q and σ P T imply that
pτ , σnq P T and witnesses that τ P RÓ. Finally we also observe that for τ P RÓ we
have Rpτ q “ T pτ q X pσnq

ď. �

The definition of an h-bounded (and so of a computably bounded) tree system
is as expected. If T is computable and computably bounded then for all k ă `pT q,
domk T is computable and the map τ ÞÑ T pτ q is computable.

A leaf of a forest system T is a ď-maximal element of T . A tuple τ is a leaf
of T if and only if τÓ is a leaf of TÓ and τ`pT q is a leaf of T pτÓq. The set of leaves
of a forest system is prefix-free.

If T and S are length n forest systems then we say that T is an end-extension
of S if:

‚ TÓ is an end-extension of SÓ;
‚ If τ P SÓ is not a leaf of SÓ then T pτ q “ Spτ q;
‚ If τ is a leaf of SÓ then T pτ q is an end-extension of Spτ q.

Note that this is a transitive relation.

Lemma 4.4. Let xSmy be a sequence of forest systems above A, with each Sm`1

an end-extension of Sm. Then
Ť

m Sm is a forest system above A.

26 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Proof. Let S “
Ť

m Sm. Then SÓ“
Ť

m SmÓ, and so by induction on the length,
SÓ is a forest system above AÓ. Let τ P SÓ. Then Spτ q “

Ť

m Smpτ q is the union
of a sequence of end-extensions above Apτ´AÓq, and so is a forest above that set;
note that if τ P SmÓ but is not a leaf of SmÓ then Spτ q “ Smpτ q. �

Other breaking points. We don’t have to isolate only the last coordinate. For ex-
ample:

Lemma 4.5. Let A Ď pωăωq
n

. The following are equivalent:

(1) A is prefix-free;
(2) For some k P t1, . . . , n´ 1u, domk A is prefix-free and for all τ P domk A,

Apτ q is prefix-free; and
(3) For all k P t1, . . . , n ´ 1u, domk A is prefix-free and for all τ P domk A,

Apτ q is prefix-free.

The proof relies on the fact that pAÓqpτ q “ pApτ qqÓ, and induction. For forest
systems we do not get as nice a result.

Lemma 4.6. Let A Ă pωăωq
n

be prefix-free and let T Ď Aď.

(1) Suppose that T is a forest system above A. Then for all k P t1, 2, . . . , n´1u:
(a) domk T is a forest system above domk A; (b) For all τ P domk T , T pτ q
is a forest system above Apτ´ domk Aq; and (c) if τ ď τ 1 are in domk T then
T pτ q Ď T pτ 1q.

(2) Let k P t1, 2, . . . , n´1u; suppose that domk T is a forest system above domk A,
that for all τ P domk T , T pτ q is a forest system above Apτ´ domk Aq, and
that if τ ď τ 1 are in domk T then T pτ q is an end-extension of T pτ 1q.
Then T is a forest system above A.

Again the proof is routine. In the situation of (1) we don’t always get that
T pτ 1q end-extends T pτ q. Suppose for example that τ ă τ 1 are in dom1 T and
that ρ ă ρ1 are in dom1 T pτq (and so also in dom1 T pτ

1q). It is possible that
T pτ 1, ρq ‰ T pτ, ρq, even though ρ is not a leaf of T pτq. For example we could
have T pτ 1, ρ1q “ T pτ 1, ρq “ T pτ, ρ1q which is a proper end-extension of T pτ, ρq. For
end-extending, though, we do get full invariance of breaking point:

Lemma 4.7. Let S and T be forest systems of length n. The following are equiv-
alent:

(1) T is an end-extension of S;
(2) For some k P t1, . . . , n´ 1u, domk T is an end-extension of domk S, for all

τ P domk S, T pτ q is an end-extension of T pτ q, and if τ P domk S is not a
leaf of domk S, then T pτ q “ Spτ q.

(3) For all k P t1, . . . , n ´ 1u, domk T is an end-extension of domk S, for all
τ P domk S, T pτ q is an end-extension of T pτ q, and if τ P domk S is not a
leaf of domk S, then T pτ q “ Spτ q.

Also note that if S is a forest system then τ P S is a leaf of S if and only if for
some (all) k P t1, 2, . . . , `pSq ´ 1u, τæk is a leaf of domk S and τæpk,`pSqs is a leaf of
Spτækq.

Paths of tree systems. We simplify our presentation by restricting ourselves to bal-
anced tree systems.

DNR AND INCOMPARABLE TURING DEGREES 27

Definition 4.8. Let T be a tree system and let m ă ω. We say that m is a
balanced level of T if for all τ P dom1 T of length m, every component of every leaf
of T pτq has length m. We say that T is balanced if dom1 T has no leaves and T has
infinitely many balanced levels.

For a balanced tree system T we let

rT s “
!

x P pωωq
`pT q

: xæmP T for every balanced level m of T
)

.

The set rT s is a closed subset of pωωq
n
.

For x P rT Ós we let T pxq “
Ť

τăx T pτ q. This is a tree with no leaves. If T
is balanced then so is T Ó, and rT s “ tpx, yq : x P rTÓs & y P rT pxqsu. If T is
balanced, computable and computably bounded then rT s is effectively closed.

Bushiness for forest systems. Let g “ pg1, . . . , gnq be a tuple of bounding functions,
and let T be a length n forest system. We say that T is g-bushy if TÓ is gÓ-bushy
and for all τ P TÓ, T pτ q is gn-buhsy. As usual, T is g-bushy if and only if for some
(all) k P t1, 2, . . . , n ´ 1u, domk T is gæk-bushy and for all τ P domk T , T pτ q is
gæpk,ns-bushy.

We say that a set B Ď pωăωq
n

is g-big above some finite prefix-free set A Ă

pωăωq
n

if there is a g-bushy finite forest system R above A whose leaves lie in B.
This is extended to all sets A as above. For k ă n, B Ď pωăωq

n
, a finite, prefix-free

A Ď pωăωq
n

and h, an pn´ kq-tuple of bounding functions, we let

πhApBq “

τ P pdomk Aq
ď : Bpτ q is h-big above Apτ´ domk Aq

(

.

Note that this notation is different from the one used in the previous section;
however, if A is a singleton σ then we revert to the old notation and write πhσæpk,nspBq

instead of πhσpBq. A set B is g-big above A if and only π
gæpk,ns
A pBq is g æk-big

above A. The proof of this follows the proof of Lemma 3.7, using Lemma 4.6(2)
(and the fact that every finite prefix-free set is a forest system above itself, and any
forest system R above A is an end-extension of A). The proof gives the analogue
of Remark 3.14: if B is g-big above A, T is a forest system and A,B Ď T then a
finite forest system S witnessing the largeness can be taken to be a subset of T .

Remark 4.9. Let 1 ď k ă m ă n, let σ P pωăωq
m´k

, µ P pωăωq
n´m

, g be
an pm ´ kq-tuple of bounding functions, and h and pn ´ mq-tuple of bounding
functions. Let B Ď pωăωq

n
. Then

πgσpπ
h
µpBqq “ πg,hσ,µpBq.

The big subset property holds for largeness over singletons, with the same proof
as that of Lemma 3.8.

For the weak concatenation property, we will straightaway work within tree
systems. But first we discuss concatenations. Suppose that S is a finite forest
system, that A is the set of leaves of S, and that R is a forest system above A.
Since S is finite, AÓ is the set of leaves of SÓ. We then define SˆR by letting:

‚ pSˆRqÓ“ SÓ̂ RÓ;
‚ For τ P SÓ, not a leaf of SÓ, we let pSˆRqpτ q “ Spτ q;
‚ For τ P RÓ we let pSˆRqpτ q “ Spτ´Aq̂ Rpτ q “ Spτ´Aq YRpτ q.

28 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Then SˆR is an end-extension of S, whose leaves are the leaves of R. Also note that
if S,R Ď T for some forest system T then SˆR Ď T . If both S and R are g-bushy
then so is SˆR. We thus get the restricted analogue of Lemma 3.10. From now we
fix a forest system T .

‚ Suppose that B is g-big above A, and that C is g-big above B. Then C is
g-big above A. If A,B,C Ď T then every forest system S Ď T witnessing
that B is g-big above A has an end-extension R Ď T which witnesses that C
is g-big above A.

We get an analogue of Lemma 3.11. The notion of an open subset of T is as
expected.

Lemma 4.10. Let B be a finite family of subsets of T which are open in T . Let A Ď
T be finite and prefix-free. Suppose that each B P B is g-big above Aď X T (recall
that this means that it is g-big above every finite, prefix-free subset of Aď X T).
Then

Ş

B is g-big above A.

We can now prove the analogue of Lemma 3.12.

Lemma 4.11. Let T be a forest system and let A,B Ď T ; suppose that B is open
in T . Suppose that for all τ P AďXT , B is g-big above τ . Then B is g-big above A.

Proof. By induction on the length of T . We may assume that A is finite and prefix-
free. We need to show that C “ πgnA pBq is gÓ-big above AÓ. Let τ P pAÓqď X TÓ.
We claim that C is g Ó-big above τ (and then apply the induction hypothesis).
Let σ “ τ´AÓ. Then CXσď equals

Ş

µPApσq π
gn
µ pBq. By assumption, each πgnµ pBq

is g Ó-big above every tuple in σď X T Ó; we apply the analogue of Lemma 3.11
mentioned above. �

Corollary 4.12. Let T be a tree system, let A,B,C Ď T , and suppose that C is
open in T . Suppose that B is g-big above A, and that C is g-big above every tuple
in BďXT . Then C is g-big above A, and in fact every finite g-bushy forest system
S Ď T which witnesses that B is g-big above A has an end-extension R Ď T which
witnesses that C is g-big above A.

As a corollary we get the analogue of Lemma 3.17:

‚ If T is a bounded and balanced b-bushy tree system above σ, and B Ă T
is open in T and b-small above σ, then for every m there is some τ P T
such that |τi| ě m for all i ď `pT q, and above which B is b-small.

4.2. The notion of forcing and restriction maps. We let BDNRn be the set of
tuples τ P pωăωq

n
such that either τÓP BDNRn´1 , or τn P BDNRτÓ , that is, if there

is some e ă |τn| such that τnpeq “ JτÓpeq.
For brevity, for a tuple σ P pωăωq

n
we let |σ| “ min t|σi| : i ď nu. When a tuple-

length n is clear from the context, then for a function g we let g “ pg, g, . . . , gq.

We let Pn be the set of tuples p “ pσp, Tp, Bp, hp, bpq satisfying:

(1) Tp is a computably bounded, computable, balanced tree system above σp;
(2) hp P Q and Tp is hp-bushy;
(3) Bp Ă Tp is c.e. and open in Tp, and Bp Ě BDNRn X T

p;
(4) bp P Q and Bp is bp-small above σp; and
(5) hp " bp and hp ě bp above |σp|.

DNR AND INCOMPARABLE TURING DEGREES 29

We define a partial ordering on Pn as follows. A condition q extends a condition p
if σp ď σq, Tq is a subsystem of Tp, Bp X Tq Ď Bq, and hq ď hp and bq ě bp

above |σq|.

The assignment of closed sets Xp “ rTpszrBpsă for p P Pn is acceptable; the
proof is identical to the proof of Lemma 3.19.

If G Ă Pn is sufficiently generic then we denote the generic tuple (the element
of the singleton

Ş

pPGrT
pszrBpsă) by xG. As above, every condition in Pn forces

that xGn is DNR relative to xGÓ.

The restriction maps. For all n ě 2, define in : Pn Ñ Pn´1 by letting

inpqq “
`

σqÓ, TqÓ, πb
q

σq
n
pBqq, hq, bq

˘

,

where we have

πb
q

σq
n
pBqq “ tτ P TqÓ : Bqpτ q is bq-big above σq

nu .

It is routine to check that inpqq P Pn´1 for all q P Pn. Inductively we define
Qn Ă Pn: Q1 “ P1, and Qn is the set of conditions q P Qn such that:

‚ inpqq P Qn´1; and
‚ πb

q

σqpBqq “ tτ P TqÓ : σq
n P B

qpτ qu.

We again observe that for all q P Qn, XqÓ“ Xinpqq; the proof is the same as above.
The proof that the restriction of in to Qn is order-preserving is identical to that in
the proof of Proposition 3.21.

Lemma 4.13. There is a map νn : Pn Ñ Qn such that:

(1) νnpqq ď q for all q P Pn; and
(2) in ˝ νn “ νn´1 ˝ in.

In particular, Qn is dense in Pn.

Proof. We omit the indices n and n ´ 1 from in, νn etc.; they will be clear from
the context.

Let q P Pn. For brevity we let Cn “ Bq and for k P t1, . . . , n ´ 1u we let
Ck “ πb

q

σqæpk,ns
pBqq. Remark 4.9 says that if k ă m ď n then Ck “ πb

q

σqæpk,ms
pCmq.

We define a tuple νpqq “ pσq, Tq, Bνpqq, hq, bqq by letting

Bνpqq “ tτ P Tq : τæk P Ck for some k ď nu .

The set Bνpqq is bq-small above σq. For let D be the set of leaves of a bq-
bushy finite tree system S Ă Tq above σq. Since C1 is bq-small above σq

1 we find

some τ1 P pdom1DqzC1. Since C1 “ πb
q

σq
2
pC2q, C2pτq is bq-small above σq

2 ; we find

some τ2 such that pτ1, τ2q P pdom2DqzC2; and so on, we find some τ P DzBνpqq.
We conclude that νpqq P Pn (and νpqq ď q).

Now Bipqq “ Cn´1; so Bνpipqqq is the set of tuples τ P TqÓ such that τæk P Ck
for some k ď n´ 1.

Let τ P Tq. If τÓP Bνpipqqq then Bνpqqpτ q “ Tqpτ q, in particular σq
n P B

νpqqpτ q.
Otherwise, Bνpqqpτ q “ Bqpτq, and since in this case τ R Cn´1 we see that Bνpqqpτ q
is bq-small above σq

n. We conclude that Bipνpqqq “ πb
q

σq
n
pBνpqqq “ Bνpipqqq and so

that ipνpqqq “ νpipqqq.
We also conclude that τ P πb

q

σq
n
pBνpqqq if and only if σq

n P B
νpqqpτ q. By induction,

νpipqqq P Qn´1, so νpqq P Qn. �

30 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

Proposition 4.14. inæQn is a restriction map from Qn to Qn´1.

Proof. It remains to show that if q P Qn and p P Qn´1 extends inpqq then there is
some r P Qn extending q such that inprq ď p. By using the map νn, it suffices to
find r P Pn. The proof is identical to that of Proposition 3.21. �

Lemma 4.15. inæQn is onto Qn´1.

Proof. Let p P Qn´1. We define q P Qn such that inpqq “ p by letting, for
σ P Tp, Tqpσq “ phpqď|σ|, and let Bqpσq “ Tqpσq if σ P Bp, otherwise Bqpσq “
BDNRσ . �

Totality.

Proposition 4.16. Let C Ď pωωq
n

be Π0
2 and let p P Pn. If p , xG P C then p

has an extension which strongly forces that xG P C.

The proof is identical to the proof of Proposition 3.23.

4.3. Minimality. Let Γ: pωωq
n
Ñ 2ω be a Turing functional.

Definition 4.17. Let B Ď pωăωq
n
. Two sets A0, A1 Ă pωăωq

n
form a local Γ-

splitting mod B if for all τ P pωăωq
n´1

, the sets A0pτ q and A1pτ q Γpτ ,´q-split
mod Bpτ q.

Definition 4.18. Let A Ă pωăωq
n

be finite and prefix-free, and let B be a collection
of subsets of pωăωq

n
. We say that the sets in B are uniformly g-big above A if

Ş

BPB π
gn
A pBq is gÓ-big above AÓ.

Lemma 4.19. Suppose that p P Pn strongly forces that ΓpxGq is total, and forces
that it is not computable from xGÓ. Let σ P Tp; let g P Q such that hp " g, and
hp ě 3g and g ě bp above |σ|. Then there are sets A0, A1 Ă Tp, uniformly g-big
above σ, which locally Γ-split mod Bp.

Proof. Identical to the proof of Lemma 3.24. �

Lemma 4.20. Let g and h be n-tuples of bounding functions; let B Ď pωăωq
n

be
open. Suppose that:

‚ σ,σ˚ P pωăωq
n

;
‚ A is 3g-big above σ;
‚ E0 and E1 are uniformly 3g-big above A; and for all τ P A, E0 X τ

ď and
E1 X τ

ď locally Γ-split mod B; and
‚ F is 3h-big above σ˚, and |Γpρq| ą |Γpζq| for all ρ P F zB and all ζ P EzB,

where E “ E0 Y E1.

Then there are E1 Ď E, g-big above σ, and F 1 Ď F , h-big above σ˚, which Γ-split
mod B.

Proof. Identical to the proof of Lemma 3.30. �

Lemma 4.21. Suppose that p P Pn strongly forces that ΓpxGq is total, and forces
that it is not computable from xGÓ. Let k P t0, 1, . . . , n´ 1u. Let C Ă Tp be finite

and prefix-free. Let g P Q such that hp " g, and hp ě 3|C|
2

g and g ě bp above |σ|
for all σ P C.

DNR AND INCOMPARABLE TURING DEGREES 31

Then there is a set A Ă Tp, g-big above C, such that for all τ P domk A, the
sets in the collection

Apτ q X pρ,σpæpk`1,nsq
ď : ρ P dom1Apτ q

(

pairwise Γpτ ,´q-split mod Bppτ q.

Proof. The notation for the case k “ 0 is slightly easier. In this case we closely
follow the proof of Lemma 3.31. For simplicity of notation, for a set A Ď Tp and
some tuple τ P domk T

p (for some k ă n) we let A X pτ qď “ A X pτ ,σpæpk,nsq
ď.

We prove the lemma by induction on |C|; we let C˚ “ C Y tσ˚u; by induction we
are given A which is 3|C|g-big above C, and the sets A X pρqď (for ρ P dom1 C)
pairwise Γ-split mod Bp. We list the elements σ1,σ2, . . . ,σm of C such that
pσjq1 ‰ σ˚1 . By reverse recursion on j ď m we define sets Aj Ă Tp with Aj´1 Ă Aď

j

and AmXσ
ď Ă Aď for all σ P C. We ensure that Aj is 3jg-big above C˚ and that

Aj´1 X σ
ď
j and Aj´1 X σ

˚ form a Γ-splitting mod B.

We start with Am “ A Y tσ˚u. Say we are given Aj , j ą 0. For brevity
let Dj “ pAj Xσ

ď
j qÓ. For τ P Aj Xσ

ď
j we let Qτ be the set of ζ P Dj

ď
XTpÓ such

that either:

‚ τÓę ζ; or
‚ in Tppζq there are G0 and G1, 3jg-big above τn, which Γpζ,´q-split mod
Bppζq.

Then Lemma 4.19 says that for all µ P Dď
j X TpÓ the set Qτ is 3jg-big above µ.

By Lemma 4.11, Qτ is 3jg-big above Dď
j XT

pÓ. By Lemma 4.10,
Ş

τPAjXσ
ď
j
Qτ is

3jg-big above Dj . Thus, we can find Ej,0 and Ej,1, finite subsets of Tp which are
uniformly 3jg-big above Aj X σ

ď
j , which locally Γ-split mod Bp. We obtain Fj as

before. Applying Lemma 4.20 we finally get F 1j Ă Aď
j Xpσ

˚qď, 3j´1g-big above σ˚,

and E1j Ă Aď
j X σ

ď
j , 3j´1g-big above σj , which Γ-split mod Bp.

In this proof we emply the following notation: for a set X Ă pωăωq
n

and k ď n
we let Xk “ domkX. To define a set X it suffices to first define X1; then, for all
τ1 P X1, define X2pτ1q (a set of strings); then, for all pτ1, τ2q P X2, define X3pτ1, τ2q,
and so on.

We define the set Aj´1. First, we consider all σ P C˚ such that σ1 ‰ σ˚1 , pσjq1.
For all such σ we let Aj´1 X σ

ď “ Aj X σ
ď. We let Aj´1,1 X pσ

˚
1 q

ď “ pF 1jq1 and

Aj´1,1 X ppσjq1q
ď “ pE1jq1.

Next, consider all σ P C˚ such that σ1 “ σ˚1 , but σ2 ‰ σ˚2 . For all τ1 P pF
1
jq1 we

let Aj´1pτ1qXpσæp1,nsq “ Ajpτ
´Aj,1
1 qXpσæp1,nsq; this completely defines Aj´1Xσ

ď.

We similarly define Aj´1 X σ
ď for σ P C˚ such that σ1 “ pσjq1 but σ2 ‰ pσjq2.

Then, for all τ1 P pF
1
jq1 we let Aj´1,2pτ1q “ pF

1
jqpτ1q; this defines Aj´1,2Xpσ

˚æ2q
ď,

and similarly define Aj´1,2 X pσj æ2q
ď. The process continues similarly until all

of Aj´1 is defined.

The case k ą 0 is very similar. Morally it follows the idea of the proof of
Lemma 3.27, extending bushily on the first k coordinates so that we can emulate
the proof of the case k “ 0 (but with n´ k replacing n) within the image. We give
a sketch. Again we work by induction on |C|; we start with some C for which we
inductively already have A as required; and add to C a tuple σ˚ to get C˚. We
now let the list σ1,σ2, . . . ,σm contain those elements σ P C such that σæk“ σ

˚æk

but σk`1 ‰ σ˚k`1. We start with Am “ AY tσ˚u and build sets Aj with the same

32 MINZHONG CAI, NOAM GREENBERG, AND MICHAEL MCINERNEY

properties as above. Given Aj we aim to find Ej,0, Ej,1 and Fj as above, except
that we also require that domk Ej “ domk Fj ; this is possible because σjæk“ σ

˚æk:
we first get Ej as above, and then extend domk Ej to domk Fj ; and “relabel” Ej
by letting Ejpζq “ Ejpτq for all ζ P domFj extending τ P domEj . Then we obtain
E1j and F 1j but require that domk E

1
j “ domk F

1
j “ domFj ; we apply Lemma 4.20

within Tppζq for each ζ P domFj . We then define Aj´1 as above. �

Proposition 4.22. Every condition in Pn forces that degTpx
Gq is a strong minimal

cover of degTpx
GÓq.

Proof. Let p P Pn which strongly forces that ΓpxGq is total, and forces that it is
not computable from xGÓ. Fix k P t0, 1, . . . , n ´ 1u. Using Lemma 4.21 and the
by now familiar construction we obtain an extension q of p which (strongly) forces
that ΓpxGq ‘ pxGækq ěT xGk`1. Iterating for each k we obtain a condition which

forces that ΓpxGq ”T x
G. �

5. Proof of the main theorem

We prove Theorem 1.1. We have obtained a directed sequence of forcing notions

Q1 Q2 Q3 Q4

i2 i3 i4 i5
¨ ¨ ¨

With each in a restrction map. For m ă n let inÑm “ im`1 ˝ im`2 ˝ ¨ ¨ ¨ ˝ in (and
of course let inÑn “ idQn). A composition of restriction maps is a restriction map,
so each inÑm is a restriction map.

As sets, the forcing notions Qn are pairwise disjoint. Let Qăω “
Ť

nQn. We
order Qăω as follows: if p P Qn and q P Qm then q extends p if m ě n and
imÑnpqq ď p in Qn. Note that the ordering on each Qn agrees with this ordering.

For n ă ω let Qďn “
Ť

mďnQm, ordered as a sub-order of Qăω. Define
jωÑn : Qăω Ñ Qďn by letting, for q P Qm, jωÑnpqq “ q if m ď n, and other-
wise jωÑnpqq “ imÑnpqq. For m ě n let jmÑn : Qďm Ñ Qďn be jωÑn æQďm .
These maps are restriction maps and they commute: for n ď m ď α ď ω,
jαÑn “ jmÑn ˝ jαÑm.

Let Găω Ă Qăω be very generic. Let Gďn be the filter in Qďn generated by
the generic directed set jωÑnrGăωs. By Lemma 4.15, each Qn is dense in Qďn; so
Gn “ Gďn XQn is a fairly generic filter of Qn; and imÑnrGms Ď Gn.4

This gives us a sequence x1, x2, . . . of elements of Baire space such that px1, . . . , xnq “
xGn . By Proposition 4.22, each tuple px1, . . . , xnq is a strong minimal cover of

px1, . . . , xn´1q; and xn P DNRpx1,...,xn´1q.

References

[1] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman. Compar-
ing DNR and WWKL. J. Symbolic Logic, 69(4):1089–1104, 2004.

[2] Mingzhong Cai. A 2-minimal non-GL2 degree. J. Math. Log., 10(1-2):1–30, 2010.
[3] Mingzhong Cai. A hyperimmune minimal degree and an ANR 2-minimal degree. Notre Dame

J. Form. Log., 51(4):443–455, 2010.

4By “very generic” and “fairly generic” we mean that if we need Gn to be sufficiently generic,

then we can ensure that by making Găω sufficiently generic. Technically, for any countable
collection D of dense subsets of Qn we can find a countable collection E of dense subsets of Qăω ,

such that if Găω meets every set in E, then Gn meets every set in D.

DNR AND INCOMPARABLE TURING DEGREES 33

[4] Mingzhong Cai. Elements of classical Recursion Theory: degree-theoretic properties and com-

binatorial properties. PhD thesis, Cornell University, 2011.

[5] Mingzhong Cai. 2-minimality, jump classes and a note on natural definability. Ann. Pure
Appl. Logic, 165(2):724–741, 2014.

[6] Chris J. Conidis. A measure-theoretic proof of Turing incomparability. Ann. Pure Appl. Logic,

162(1):83–88, 2010.
[7] Noam Greenberg and Joseph S. Miller. Diagonally non-recursive functions and effective Haus-

dorff dimension. Bull. Lond. Math. Soc., 43(4):636–654, 2011.

[8] Carl G. Jockusch, Jr. Degrees of functions with no fixed points. In Logic, methodology and
philosophy of science, VIII (Moscow, 1987), volume 126 of Stud. Logic Found. Math., pages

191–201. North-Holland, Amsterdam, 1989.

[9] Mushfeq Khan and Joseph S. Miller. Forcing with bushy trees. In preparation.
[10] Antońın Kučera and Theodore A. Slaman. Turing incomparability in Scott sets. Proc. Amer.

Math. Soc., 135(11):3723–3731, 2007.
[11] Masahiro Kumabe and Andrew E. M. Lewis. A fixed-point-free minimal degree. J. Lond.

Math. Soc. (2), 80(3):785–797, 2009.

[12] Manuel Lerman. Degrees of unsolvability. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1983. Local and global theory.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA

E-mail address: Mingzhong.Cai@dartmouth.edu

School of Mathematics Statistics and Operations Research, Victoria University of

Wellington, P.O. Box 600, Wellington, New Zealand

E-mail address: greenberg@msor.vuw.ac.nz

URL: http://homepages.mcs.vuw.ac.nz/~greenberg/

School of Mathematics Statistics and Operations Research, Victoria University of
Wellington, P.O. Box 600, Wellington, New Zealand

E-mail address: michael.mcinerney@msor.vuw.ac.nz

http://homepages.mcs.vuw.ac.nz/~greenberg/

	1. Introduction
	1.1. Fast-growing functions
	1.2. Other notation and conventions
	1.3. Compactness, splittings and computability
	1.4. Forcing with closed sets
	1.5. Simplified iterated forcing
	1.6. The plan

	2. A DNR minimal degree
	2.1. Trees and forests
	2.2. Bushy notions of largeness
	2.3. The notion of forcing and the generic
	2.4. Totality
	2.5. Minimality

	3. A relative DNR strong minimal cover of a DNR minimal degree
	3.1. Length 2 tree systems
	3.2. Bushiness for forest systems
	3.3. The notion of forcing and the generic
	3.4. Minimal cover
	3.5. Strong minimal cover

	4. The general step
	4.1. Length n forest systems
	4.2. The notion of forcing and restriction maps
	4.3. Minimality

	5. Proof of the main theorem
	References

