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Abstract. We show that a ∆0
2 Turing degree computes solutions to all com-

putable instances of the finite intersection principle if and only if it computes

a 1-generic degree. We also investigate finite and infinite variants of the prin-

ciple.

1. Introduction

The axiom of choice has always occupied a central place in mathematical logic
and in applications of logic to the rest of mathematics. Classically, the axiom of
choice has many equivalent forms. These forms, however do not remain equivalent
when examined through the microscope of either computability theory or of reverse
mathematics. In [DM13] Dzhafarov and Mummert examined a sequence of choice-
like principles concerning the existence of maximal subfamilies with intersection
properties. Their motivation was to investigate the strength of analogues of the
axiom of choice within the framework of second order arithmetic. Among the prin-
ciples they introduced was the finite intersection principle, which says that every
(necessarily countable) collection of sets of natural numbers has a subcollection,
maximal with respect to the property that the intersection of finitely many sets
in the subcollection have nonempty intersection. They also investigated variants
stating that the intersection of n many sets in the subcollection is nonempty, for
a fixed natural number n ¥ 2. They showed that these intersection principles are
related to other mathematical principles such as the atomic model theorem (from
model theory) and the existence of cohesive sets (from computability theory).

Some of the complexity of these concepts arises from the fact that second order
arithmetic does not admit abstract sets. A collection A of subsets of ω has to come
with an enumeration: a sequence of sets xAmy such that tAm : m   ωu � A. We
allow repetitions in the sequence. Of course there are many ways to enumerate
a family of sets and different enumerations will usually not be computationally
equivalent.

Nonetheless below we use notation which blurs the difference between families
and their enumerations. For example, if A and B are sequences of sets then we
write B � A to denote that every element of the sequence B also appears somewhere
in A, but possibly in a different location.

Definition 1.1. An instance of an intersection problem (or simply a family of
sets) is a sequence A � xAm : m   ωy of subsets of ω. A FIP-solution for A is
an sequence B of subsets of ω such that B � A and the intersection of any finitely

Downey was supported by the Marsden Fund. Greenberg was supported by the Marsden Fund
and by a Rutherford Discovery Fellowship from the Royal Society of New Zealand. Diamondstone
and Turetsky were supported by the Marsden Fund via postdoctoral scholarships.

1



2 D. DIAMONDSTONE, R. DOWNEY, N. GREENBERG, AND D. TURETSKY

many sets from B is nonempty. For n ¥ 2, a nIP-solution1 for A is a sequence B
of subsets of ω such that B � A and the intersection of any n many sets from B
is nonempty. A solution is maximal if it is not properly contained in any other
solution for A.

This paper investigates these principles from the point of view of computability
theory. We thus ignore the effects of restricted induction by concentrating on ω-
models, in other words on the behaviour in the Turing degrees. We thus define:

Definition 1.2. A FIP-degree is a Turing degree which computes a maximal FIP-
solution for any computable family. Similarly we define nIP-degrees for each n ¥ 2.

In [DM13] the authors showed that a FIP-degree is also a nIP-degree for each
n ¥ 2, and that any pn� 1qIP-degree is also a nIP-degree. They showed that every
2IP-degree is hyperimmune (not 0-dominated). They also showed that the degrees
in the following collections are all FIP-degrees:

 nonzero computably enumerable (c.e.) degrees;
 degrees which are not 01-dominated;
 degrees that compute generics which meet any prescribed sequence of dense

Π0
1 sets of binary strings.

A property common to all degrees in the collections above is that they compute
1-generic sets. Indeed this is sufficient. We show:

Theorem 1.3. Every 1-generic degree is a FIP-degree.

On the other hand there is no known example of a FIP or even a 2IP degree
which does not compute a 1-generic set. So it is natural to ask:

(1) Are the FIP degrees the same as those which compute 1-generic sets?
(2) Are the FIP degrees and the 2IP degrees the same?

While these questions remain open, in this paper we answer them in the affir-
mative for the case of ∆0

2 degrees (degrees computable from the halting problem).

Theorem 1.4. A ∆0
2 degree is FIP if and only if it is 2IP if and only if it computes

a 1-generic set.

Theorem 1.3 will be proved in Section 2; Theorem 1.4 will be proved in Section 3.
In Section 4 we investigate variants in which we require elements of the collections
to be finite, or intersections to be infinite.

1.1. Preliminaries. Let A � xAm : m   ωy be a computable instance of an in-
tersection problem. An index-set of a solution B is a set B of numbers such that
B � tAm : m P Bu. A Turing degree which can enumerate an index-set B can
compute some enumeration of the indexed solution B. Technically the converse
does not hold, but as is noticed in [DM13], when one constructs families one can
ensure that the converse does hold. When we build a family, into every nonempty
set in that family we insert a unique identifying marker – some element i P ω which
we do not include in any other set of the family. All sets in a solution are nonempty,
so for any set in the solution, we can search it until we find an identifying marker,
at which point we know the set’s index in the original family. Hence any solution B
for the family we build has a unique index-set B, and any degree which computes B

1The notation for the corresponding principle in [DM13] is D̄2IP .
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can enumerate B. We can then identify a solution B with an enumeration of its
index-set B.

We also note that the discovery of intersections is a c.e. event. Conversely, for
every c.e. family A we can construct a computable family Â such that the index-
sets of solutions for A are precisely the index-sets of solutions for Â. Initially let
each Âm be empty. When we notice that

�
mPF Am � H for some finite set F ,

enumerate some large element into
�
mPF Âm. Since the elements enumerated are

large, Â is computable.
For that reason it does not matter if the instances and solutions are uniformly

computable or uniformly c.e.: a degree d is a FIP-degree if and only if for every
c.e. family A there is a maximal FIP-solution for A which is d-c.e.

In the main construction below we will use the recursion theorem to force our
opponent to reveal, during the construction, a maximal solution for a family that
we are building. For this to work we need to show that the opponent can compute
solutions uniformly in indices for families. This is done by constructing a universal
(and acceptable) family.

Proposition 1.5. Both FIP and 2IP have acceptable universal families. That is,
there is a computable family U such that every maximal FIP-solution for U has FIP-
degree. Furthermore, from a computable index for a family A one can effectively
find an index for a Turing functional Φ such that for any maximal FIP-solution Q
for U , ΦpQq is a maximal FIP-solution for A. The same holds for 2IP.

Proof. Let xAmy be an effective enumeration of all uniformly c.e. families, where
Am � xAm,nyn ω. Enumerate a family U � xUm,nym,n ω satisfying: (1) every

nonempty Um,n has a unique identifying marker; and (2) for all finite F � ω2,�
pm,nqPF Um,n � H if and only if for all m,

�
nPF rms Am,n � H. As discussed

above every solution for U enumerates its index-set. If Q is an index-set for a
maximal FIP-solution for A then for all m, Qrms � tn : pm,nq P Qu is an index-set
for a maximal FIP-solution for Am. The proof for 2IP is similar. �

2. Genericity implies FIP

In [DM13] the authors implicitly describe a natural notion of forcing which ap-
proximates an enumeration of an index-set of a maximal FIP-solution for a given
instance. Let A be a computable family. We let PA be the collection of finite
strings σ whose range is an index-set of a FIP-solution for A. That is, strings σ
such that

�
m |σ|Aσpmq is nonempty. Equivalently we can think of the conditions

in PA as solutions of finite length. The set of conditions PA is c.e.; it is ordered by
extension. If G � PA is a filter then fG �

�
G is an enumeration of an index-set of

a solution.
Let pQ,¤Qq be a c.e. partial ordering of a c.e. set Q. Recall that a filter G � Q

is 1-generic for Q if for all c.e. sets of conditions D � Q the filter G meets or
avoids D: either GXD is nonempty or some condition in G has no extension in D
(for more see for example [GM03]). The usual notion of 1-genericity is 1-genericity
for Cohen forcing 2 ω; equivalently for ω ω since the latter can be effectively
densely embedded into the former.

Lemma 2.1. The solution given by a 1-generic filter G � PA is maximal.
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Proof. Suppose that An intersects
�
mPK Am for all finite K � range fG. Then the

collection of conditions σ P PA whose range contains n is dense around G, and is
c.e. Since G is 1-generic it meets this collection of conditions and so the solution it
indexes contains An. �

Thus, any degree which can enumerate a 1-generic filter for PA can compute
a maximal solution for A. We show that any 1-generic set (in the Cohen sense)
does. The point is that provided that A does not have a finite maximal solution,
there is an effective isomorphism i from ω ω to PA. We can define it by recursion,
starting by mapping the empty string to itself. Let σ P ω ω and suppose that
ipσq P PA is defined (and has length |σ|). Since A does not have a finite maximal
solution, ipσq has infinitely many one-bit extensions in PA: if only finitely many
sets in A intersect

�
m |σ|Aipσqpmq then tAipσqpmq : m   |σ|u can be extended to

a finite maximal solution for A. The one-bit extensions of ipσq can be enumerated
effectively; we let ipσ k̂q be the kth one on the list.

If G � ω ω is 1-generic then irGs is a 1-generic filter for PA; irGs is c.e. in G.
Hence G can enumerate an index-set for a maximal FIP-solution for A, and so can
compute such a maximal solution. This proves Theorem 1.3.

3. 2IP sometimes implies genericity

To prove Theorem 1.4 it remains to show that every ∆0
2 2IP degree computes a

1-generic set. It is easier to show that every ∆0
2 FIP degree computes a 1-generic

set; we will give the simplified proof first and then elaborate on the argument to
get the full result. We first motivate the construction by considering hyperimmune
degrees (which are the degrees which compute weakly 1-generic sets).

3.1. Hyperimmunity. As mentioned above, in [DM13] the authors showed that
every 2IP-degree is hyperimmune. We give a simplified proof of this fact.

We enumerate a family X � xXny of sets (as mentioned above we can make these
sets uniformly computable rather than merely uniformly c.e.) Every nonempty set
in X will contain a unique identifier, implying that given a solution (or even an
enumeration of a solution) we can enumerate the index-set for the solution.

There are two kinds of sets in X . We let tbpeq : e   ωu Y tape, kq : e ¤ k   ωu
be an enumeration of ω. The set Xbpeq will be a marker which gives us evidence
toward believing that ϕe is total. The set Xape,kq will indicate that ϕepkqÓ. The
following rules determine the family:

(1) Xbpeq is nonempty if and only if ϕepeqÓ.
(2) Xape,kq is always nonempty. It intersects Xbpeq if and only if Xbpeq is already

nonempty (by rule (1)), and further ϕepkqÓ.
(3) These are the only restrictions on intersection. If e � e1 then every nonempty

set with an e index (Xbpeq or Xape,kq) intersects every nonempty set with
an e1 index. Every Xape,kq and Xape,k1q intersect as well.

Let d be a 2IP-degree; letQ be a d-c.e. index-set of a maximal 2IP-solution for X .
There are many nonempty sets in X , and so Q only contains indices of nonempty
sets. For each e, each Xape,kq intersects all nonempty elements of X except possibly
for Xbpeq. Hence, if bpeq R Q then ape, kq P Q for all k ¥ e. If bpeq P Q then
ape, kq P Q if and only if ϕepkqÓ.

We define a d-computable function g which will escape each computable function.
Given an input k we will try to define gpkq to escape ϕepkq for all e ¤ k. The
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question of course is which of these actually converge. We consult Q. Using d,
enumerate Q up to a stage s � spkq ¡ spk� 1q such that for all e ¤ k, either bpeq P
Qs or ape, k � 1q P Qs (or both). Now there are two cases. For e � k, we check
if bpkq P Qs; if so we know that ϕkpkqÓ and so we can define gpkq to escape ϕkpkq.
For e   k, we check if both bpeq and ape, kq are in Qs; if so then we know that ϕepkqÓ
and so we can define gpkq to escape ϕepkq. If these conditions don’t hold for e then
we give up on trying to escape ϕepkq.

To show that g is not majorised by any computable function, suppose that ϕe is
total. Then Xbpeq intersects every nonempty set in X and so necessarily bpeq P Q;
similarly ape, kq P Q for all k ¥ e. Let s be the stage at which bpeq is enumerated
into Q. There are two possibilities. If no ape, kq is in Qs then speq ¥ s and so g
escapes ϕe on input e. Otherwise let k be the greatest such that ape, kq P Qs.
Then spkq ¥ s (recall that to find spkq we search for either bpeq or ape, k � 1q) and
so g escapes ϕe on input k.

3.2. Genericity and ∆0
2 FIP degrees. We prove that every ∆0

2 FIP-degree com-
putes a 1-generic set.

3.2.1. Discussion. We enumerate a family X � xXny of sets. Näıvely, we aim to
define a monotone map Γ, mapping finite pieces B of solutions for X to binary
strings, and extend it continuously with the aim that on a maximal solution Q the
map will produce a 1-generic set. The very basic and imprecise idea is as follows.
We want to meet or avoid the eth c.e. set of strings We. To this we devote one of
the sets Xbpeq. We see a finite solution B � X such that ΓpBq is defined, has not
met We yet, but also has not avoided We yet: it has an extension ρ in We. We
intersect

�
B with Xbpeq, ensuring that B Y tXbpequ is a solution as well, which we

map to ρ. If Q is a maximal solution and We is dense around ΓpQq then Xbpeq will
intersect all finite pieces of Q and so by maximality Xbpeq P Q. Ideally this would
mean that some finite piece of Q which contains Xbpeq is mapped to a string in We,
and so ΓpQq meets We.

We can think of this process dynamically, working with a particular ∆0
2 solu-

tion Q: As we see strings in We extend longer and longer initial segments of ΓpQq,
we intersect Xbpeq with more and more of Q; since eventually Xbpeq P Q our oppo-
nent will have to present Xbpeq at some finite stage. To do this the opponent needs
to change their current approximation to Q and in that way “give us permission”
to map ΓpQq to extend some string in We.

This does not quite work, as we now discuss.

Sets vs. sequences. As mentioned above, a solution Q for X can be identified with an
enumeration of its index-set Q. Rather than mapping initial segments of solutions
to strings, we actually will map finite subsets of its index-set to strings. The
functional Γ will forget the order. The reason for this, essentially, is that the
family X is determined by its intersections and these do not notice order. More
specifically, suppose that B0 and B1 are two finite solutions which enumerate the
same set. Suppose that we define ΓpB0q and ΓpB1q to be distinct. We then see an
extension ρ of ΓpB0q in We, intersect Xbpeq with

�
B0 and map B0ˆXbpeq to ρ. This

intersection means that B1ˆXbpeq is also an initial segment of a solution, but it is
possible that currently we do not see a string in We extending ΓpB1q, so we cannot
now define ΓpB1ˆXbpeqq to be a string in We. We have to define it somehow, since it
is a legitimate solution and we do not know if an extension in We will ever appear.
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Once we did this, the set Xbpeq is useless to us when we try to force ΓpQq for maximal
extensions Q of B1ˆXbpeq into We. Dynamically thinking, Xbpeq already appears in
the presented solution and keeping intersecting it with sets in the solution will not
cause a change and a permission.

Thus, Γ is defined on finite index-sets of solutions.

Witnesses. Even so, the plan above requires elaboration. The role of Xbpeq is to

translate a Π0
2 fact – We being dense around ΓpQq – to a Σ0

1 event, the appearance
of bpeq in Q. This is similar to the hyperimmune construction above, where the
set Xbpeq was used to translate the Π0

2 fact, namely the totality of ϕe, to a c.e.
event. To make use of this we need to adjoin to bpeq a witness (or blocker).

In detail, we explain why we cannot map any finite index-set to a string in We

simply on the merit of containing bpeq. Suppose that the solution which is presented
to us at stage s is Qs � t0, 1, 2, . . . , su. Say that we defined Γpt0, 1, . . . , kuq � σk,
and that gradually we discover extensions ρk of σk in We. The plan is to gradually
intersect Xbpeq with

�
Xi, and for Q to change as to contain bpeq. However the

opponent may place bpeq in various locations. For example, after intersecting Xbpeq

with X0 X X1 the opponent presents the solution t0, 1, bpequ and we map that
solution to ρ1. The opponent then returns to the solution t0, 1, 2, 3, . . . u and we
intersect bpeq with X0XX1XX2XX3 (as the strings ρ2 and ρ3 are revealed). Then
the opponent presents the solution t0, 1, 2, 3, bpequ. However we cannot map this
solution to ρ3 since ρ3 may not extend ρ1, but t0, 1, bpequ � t0, 1, 2, 3, bpequ.

This is why we use sets with a-type indices. Roughly, in the scenario above, a
special set Xape,t0,1uq will be also intersected with X0 X X1 X Xbpeq, and we wait
for the appearance of both bpeq and ape, t0, 1uq to define a new Γ computation
mapping to ρ1. The set Xape,t0,1uq will not intersect the set Xape,t0,1,2,3uq so no
solution contains both. We can then map the solution t0, 1, bpeq, ape, t0, 1uqu to ρ1
and t0, 1, 2, 3, bpeq, ape, t0, 1, 2, 3uqu to ρ3 without violating the monotony of Γ.

Solutions and paths. For simplicity, to ensure that Γ is monotone we define it on a
tree of finite sets. Sets will be added to the domain of Γ by the following rule:

(�) At stage s we may select a set E P dom Γ, some e ¤ s such that bpeq R E
and some ρ P We,s which properly extends ΓpEq. We then let D � E Y
tbpeq, ape, Equ. We ensure that D is an index-set of a solution for Xs�1 (by
enumerating an element into

�
mPDXm) and let ΓpDq � ρ.

We are not intending to take every action permitted by this rule; rather, in prepa-
ration for the construction, we are promising that all actions we do take will obey
this rule. There will be many selections permitted by this rule which we do not
take.

From each D P dom Γ we can read off how it was created; its predecessor is the
�-greatest E such that ape, Eq P D for some e. So we can recover the sequence
e0, e1, . . . of indices which were used (the order of e’s for which bpeq were added
to D). On the other hand this sequence of e’s completely determines the set D.
Notationally it would be more convenient to track these sequences of e’s. Thus,
during the construction we enumerate a tree T � ω ω consisting of injective strings
of numbers. We index the sets in X by bpeq for e   ω and apτq for τ P ω ω; Xapτq

will be nonempty if and only if τ P T . We then define

Dpτq � tbpeq : e P range τu Y tapσq : σ ¤ τu.
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In the notation of the above rule, apτq � aτp|τ |�1q,Dpτæ|τ|�1q. The map τ ÞÑ Dpτq is

a bijection, and so for simplicity we define Γ on T . As usual we let Dpτq � tXm :
m P Dpτqu.

The entire construction will be determined by the enumerations into T and
the definition of Γ. At the beginning of stage s we already have Ts and have
enumerated the family Xs � xXn,syn ω. If τ is a string which is added to T at
stage s (τ P Ts�1�Ts) then we enumerate a large number into

�
Dpτq at that stage.

These and the unique identifiers for nonempty sets are the only enumerations we
make into X . We can reformulate the principle above using this language:

(�) At stage s we may select a string τ P Ts, some e R range τ such that τ ê R Ts
and some ρ P We,s which properly extends Γpτq. We then enumerate τ ê
into Ts�1 and let Γpτq � ρ.

We start with T0 consisting only of the empty string, mapped by Γ to the empty
string. For s   ω the tree Ts is finite and so Xs contains only finitely many
nonempty sets. Since T is a tree it is easy to see that Γ is strictly monotonic:
if τ   τ 1 then Γpτq   Γpτ 1q. Inductively we see that if τ P T and e P range τ
then Γpτq extends some string in We.

For compactness of presentation we let Tω � T and Xω � X . Let s ¤ ω (so s
is either finite or is ω). If τ and τ 1 are incompatible strings on Ts then we never
intersect Xapτq and Xapτ 1q. On the other hand if τ   τ 1 then Dpτq � Dpτ 1q.
Let τ   τ 1 P Ts, let D � Xs be finite and suppose that Xapτ 1q,s intersects

�
D.

Numbers entering Xapτ 1q come from enumerations of extensions of τ 1 into T . Hence
Xapτq,s also intersects

�
D. Note also that Xapxyq,s is nonempty and that it intersect�

F for any finite solution F � Xs.
Let Qs be an index-set of a maximal FIP-solution for Xs. The discussion above

shows that: (1) apxyq P Qs; (2) if apτq, apτ 1q P Qs then τ and τ 1 are comparable;
and (3) if apτ 1q P Qs and τ   τ 1 then apτq P Qs. That is, the set of strings τ P Ts
such that apτq P Qs is a nonempty but possibly finite path in Ts. We call that
path fs (if it is finite then fs is the longest τ such that apτq P Qs). If fω is infinite
then we let Dpfωq �

�
τ fω

Dpτq.

Lemma 3.1. For all s ¤ ω, Dpfsq � Qs. If Qs is finite then Qs � Dpfsq and fs is
a leaf of Ts.

Proof. We already know that apτq P Qs if and only if τ ¤ fs if and only if apτq P
Dpfsq. Suppose that F � Qs is finite. For any finite τ ¤ fs,

�
mPF Xm,s is

nonempty and intersects Xapτq,s, so there is some τ 1 ¥ τ such that F � Dpτ 1q.
Since Dpτq � Dpτ 1q this shows that for all n P Dpτq, Xn,s intersects

�
mPF Xm,s

for all finite F � Qs; by maximality, n P Qs. So we have shown that Dpτq � Dpfsq
for all finite τ ¤ fs, so Dpfsq � Qs.

Suppose that Qs is finite. Apply the reasoning above to F � Qs and τ � fs
and get some τ 1 ¥ fs on Ts such that Qs � Dpτ 1q. But Dpτ 1q is an index-set of a
solution for Xs; by maximality, Qs � Dpτ 1q, and so by definition, τ 1 � fs. If fs is
not a leaf of Ts then Dpfsq is not maximal. �

Where we use ∆0
2. The most expansive construction would carry out (�) – adding τ ê

to Ts�1 – whenever possible, for all appropriate strings τ P Ts and all e ¤ s: the
only necessary conditions are that e R range τ (no need to force into We again if
we already have); that τ ê is not already on Ts; and that some proper extension
of Γpτq is found in We,s.
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Suppose that Qω is an index-set of a maximal solution for Xω. Any oracle which
can enumerateQω can compute the path fω and then compute Γpfωq �

�
τ¤fω

Γpτq;

we assume for now that fω is infinite. If e P range fω then Γpfωq meets We. On the
other hand suppose that We is dense around Γpfωq. If the construction is maximally
expansive then for all τ   fω, if e R range τ then τ ê P T . This implies that Xbpeq

intersects
�

Dpτq. This would imply that bpeq P Qω, provided that Qω � Dpfωq.
This is an important “niceness” property of Qω. We already know that apτq P Qω if
and only if τ   fω and that Dpfωq � Qω. So the question is whether there is some
bpeq P Qω such that e R range fω. If not then the construction succeeds: if Γpfωq is
in the closure of We then bpeq P Qω which implies that e P range fω which implies
that Γpfωq meets We.

This is the crux of the issue: if we could show that any maximal solution for
the “maximally expansive” X is nice then we will have shown that every FIP-
degree computes a 1-generic set. However there is no reason to assume that we
get this niceness. This is where we use the assumption that the FIP-degree under
consideration is ∆0

2.

Let d be a ∆0
2 FIP-degree. By Proposition 1.5 and the recursion theorem, during

the construction we have access to a computable approximation of a d-computable,
maximal FIP-solution Qω for X � Xω with index-set Qω.

Claim 3.2. From Qω we can obtain a sequence xQsy such that each Qs is a maximal
FIP-solution for Xs, and such that for all m P Q, m P Qs for almost all s.

Proof. Let
@
Q̄s

D
be a computable approximation of Qω (recall that we can think

of Qω as an enumeration of Qω). We can guarantee that for all s there is some t ¥ s
such that some initial segment of Q̄t is a maximal solution for Xs. At stage s
before we do anything else we wait for such t to appear. If no such t ever appears
then Xω � Xs. But then Qω is an enumeration of a finite family and some finite
initial segment of Qω enumerates the entire family, which is a maximal solution
for Xs; this is a contradiction.

We thus let Qs be such an initial segment (the first we find). It remains to
show that limsQs � Qω, which implies that every m P Qω lies in almost every Qs.
This clearly holds if the lengths of Qs (as initial segments of the Q̄t) tend to 8.
Otherwise there is a constant subsequence of the Qs, and this constant value is a
finite maximal solution for infinitely many Xs, and so is a maximal solution for Xω.
This solution is contained in Qω and so equals Qω. �

Now we only need to ensure that ΓpQωq is 1-generic for this particular solu-
tion Qω which is gradually revealed to us during the construction; we do not need
to perform the maximally expansive construction. If bpeq P Qω then bpeq P Qs for
almost all s. As analysed above, if bpeq P Qs then e P range fs. Because of our
restricted expansion, we will be able to show that if e P range fs for almost every s,
then e P range fω as required.

Ensuring the path is infinite. There is one last issue which we have not yet discussed,
which is ensuring that fω is infinite. If we are not careful then the finite paths fs
could get arbitrarily long, extending a finite fω, but Qω may be infinite, containing
infinitely many bpeq’s but only apτq for τ ¤ fω. For any finite set F of these bpeq’s
there is an extension τ of fω such that F � Dpτq, but the approximation does not
settle on any one of these strings τ .



THE FINITE INTERSECTION PRINCIPLE AND GENERICITY 9

We counter that problem by ensuring that fω has only finitely many immediate
extensions on T . This we do by imposing restraint on which τ ê can be enumerated
into T ; if τ d̂ is already on T and d   e then we postpone trying to force into We

and only enumerate σ ê for longer strings σ. This introduces some finite injury
but is of course easily handled. The effect would be that one of the immediate
successors τ of fω must occur in infinitely many fs. Maximality of Qω will show
that apτq P Qω.

3.2.2. Construction. At stage s, for any e ¤ s and τ ¤ fs such that:

(i) e R range τ ;
(ii) there is no d ¤ e with τ d̂ P Ts; and
(iii) there is some string ρ in We,s properly extending Γpτq,

we enumerate τ ê into Ts�1 and define Γpτ êq � ρ. As discussed above this deter-
mines new enumerations into X .

3.2.3. Verification. Observe that T is finitely branching: if τ ê is the first extension
of τ enumerated into T then τ has at most e� 1 many immediate extensions on T .

Claim 3.3. fω is infinite.

Proof. We first show that Qω is infinite. Otherwise fω is a leaf of T (Lemma 3.1).
In this case for almost all s, fs � fω. There is some e R range fω such that We

contains a proper extension of Γpfωq. If this appears by stage s and fs � fω then
at stage s we enumerate fω ê into T , a contradiction.

Now suppose for a contradiction that fω is finite despite Qω being infinite. For
almost all s, fs extends fω. Let F � Qω be finite. For almost all s, F � Qs � Dpfsq.
Since for most such F we will have F � Dpfωq, for almost all s, fs is a proper
extension of fω, and so contains one of the immediate extensions of fω on T . Since
there are only finitely many of these, there is an immediate extension τ of fω such
that τ ¤ fs for infinitely many s. Again let F � Qω be finite. Suppose that s
is large and that τ ¤ fs. Then F � Dpfsq and so

�
F intersects Xapτq. By

maximality of Qω, apτq P Qω, contradicting the definition of fω. �

We can now show that Qω is nice. This directly relies on the fact that we only
try to attack what we believe to be Q at any stage and do not perform an expansive
construction.

Claim 3.4. Qω � Dpfωq.

Proof. We show that there are infinitely many stages s at which fs   fω. This
implies the claim since every element of Q is an element of Qs for almost all s;
if fs   fω then Qs � Dpfsq � Dpfωq.

Let t0 be any stage. Let σ � Tt0 Xfω be the longest initial segment of fω on Tt0 .
Let τ � σ f̂ωp|σ|q be the initial segment of fω which extends σ by one element.
Let t1 ¡ t0 be the least stage after t0 such that τ P Tt1 ; so τ is a leaf of Tt1 .
If τ � ft1 then we are done. Otherwise let s ¡ t1 be the least stage after t1 at
which τ ¤ fs. Since τ is not an initial segment of fr for any stage r P rt1, sq, no
extensions of τ are enumerated into T at any such stage r. Hence τ is a leaf of Ts,
whence τ � fs, and s is a stage as required. �

The rest of the proof mostly proceeds as described above. Since Γ is strictly
monotone and fω is infinite, G � Γpfωq is an element of 2ω. As we mentioned
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above, d can enumerate Q and so compute fω and so compute G. We want to show
that G meets or avoids We. Since Q is nice, it suffices to show that if We is dense
around G then bpeq P Q; this would imply that e P range fω. To deal with the finite
injury we need to show this inductively.

Claim 3.5. For every e there are only finitely many τ   fω such that τ ê P T ;
and G meets or avoids We.

Proof. By induction on e. Suppose this is known for all e1   e. If G avoids We then
for some τ   fω, Γpτq has no extension in We. Then for all σ ¥ τ on T , σ ê R T .
If e P range fω then G meets We; if τ   fω and e P range τ then again for all σ ¥ τ
on T , σ ê R T .

We show that one of these cases must happen. If not then for every τ   fω,
Γpτq has a proper extension in We. By induction, for all but finitely many τ   fω,
τ d̂ R T for all d   e. For each such τ , we will eventually see a late stage s
such that τ ¤ fs and we also see an extension of Γpτq in We; at such a stage,
since e R range τ , we enumerate τ ê into T . This shows that Xbpeq intersects Dpτq
for all τ   fω. Since Qω � Dpfωq, maximality of Qω shows that bpeq P Qω. Again
since Qω � Dpfωq this shows that e P range fω after all, a contradiction. �

This concludes the verification, and so the proof of the fact that every ∆0
2 FIP-

degree computes a 1-generic set.

3.3. Genericity and ∆0
2 2IP degrees. We now show how to modify the preceding

argument to prove Theorem 1.4. We start of course by observing what goes wrong
if we just take a 2IP-solution to the family X enumerated above and hope to run
the same argument.

The first place where we run into a serious difficulty is when trying to prove
Lemma 3.1. It is possible that, for example, bpe0q, bpe1q, bpe2q are all elements of Qs,
but

�
i�0,1,2Xbpeiq is empty. It is possible that Ts contains the strings τ x̂e0, e1y,

τ x̂e0, e2y and τ x̂e1, e2y but not any string containing all of e0, e1 and e2. We could
then have Qs properly containing Dpτq (where τ � fs) and so would not be “nice”.

The solution for this problem is in a sense to force such Qs to be nice by “giving
it more opportunity” to be nice. Namely in that situation we add a new 1-bit
extension τ 1 to τ coding this possibility and intersect Xapτ 1q with

�
i�0,1,2Xbpeiq.

A solution containing all Xbpeiq (and Xapτq) will not be maximal unless it also
contains Xapτ 1q. We would then have fs � τ 1 and Qs will be nice again.

Of course we still need to make progress on some requirement, even if the op-
tion τ 1 is taken. Since each ei appears in some extension of τ we already know
that Γpτq has extensions in each Wei . We choose one ei, say e0, and let Γpτ 1q be
an extension of Γpτq in We0 ; we cannot hope to deal with more than one Wei since
the various extensions could be incomparable.

This creates a new problem: the sets Xbpe1q and Xbpe2q are now useless for forcing
the solution to meet We1 or We2 when the solution contains τ 1. We have already
thrown them into the intersection but did not use that to meet the corresponding re-
quirements. As a result, when working above τ 1 we need to discard the indices bpe1q
and bpe2q and choose fresh indices b1pe1q and b1pe2q to take the role of bpe1q and bpe2q
above τ 1. If we don’t do this stupidly, i.e. if we choose e0 smaller than e1 and e2,
then this only introduces finite injury over the previous construction and does not
trouble us too badly.
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3.3.1. The set-up and construction. As in the FIP-case we enumerate a c.e. tree T ,
define a map Γ: T Ñ 2 ω, and enumerate a family X . The strings on the tree will
not be strings of natural numbers but of pairs pe, F q consisting of a natural number e
and a finite set F of natural numbers such that either F � H or e   minF . If τ is a
nonempty sequence of such pairs we let pepτq, F pτqq be the pair pe, F q which appears
at the end of τ (the “last bit” of τ). We will ensure that for all nonempty τ P T ,
Γpτq PWepτq. We will ensure that the sequence xepσqyσ¤τ is injective.

The elements of X will be indexed by apτq for τ P T and numbers bpd, τq for
nonempty τ P T . However the numbers bpd, τq and bpd, τ 1q are not always distinct.
bpd, τq is the version of bpdq which τ gets to work with. The guiding rule, as discussed
above, is: extensions of τ need to get new versions of bpdq for all d ¡ epτq. Thus we
define bpd, τq by recursion on the length of τ . For any τ P T and d   ω we will define
bpd, τ�q, the indices provided by τ to its immediate successors; if σ is an immediate
successor of τ then bpd, σq � bpd, τ�q. The numbers bpd, xyq are not defined. We

start by choosing a fresh bpd, xy
�
q for every d. If τ is nonempty and bpd, τq are

already defined then for d ¤ epτq we let bpd, τ�q � bpd, τq but for d ¡ epτq we
choose a new value for bpd, τ�q.

We can then define for τ P T

Dpτq � tapσq : σ ¤ τu Y tbpepσq, σq : σ ¤ τu Y tbpd, σq : σ ¤ τ & d P F pσqu .

Since epxyq and F pxyq are not defined, Dpxyq � tapxyqu.
The family X is determined by T : when a string τ is added to T we enumerate a

number into
�

Dpτq. We will ensure that for s   ω, Ts is finite, and so only finitely
many sets in Xs are nonempty.

As above we are given a ∆0
2 2IP-degree d and a d-c.e. index-set Qω for a maximal

2IP-solution for X � Xω. The proof of Claim 3.2 holds for the current construction
as well; we obtain a sequence xQsy such that each Qs is an index-set for a maximal
2IP-solution for Xs and for all m, if m P Qω then m P Qs for almost all s.

Let τ, τ 1 P T . As in the previous construction we observe that if τ and τ 1 are
incomparable then Xapτq and Xapτ 1q are disjoint, but that if τ ¤ τ 1 then Dpτq �
Dpτ 1q. Also Xapxyq is nonempty and intersects every nonempty set in Xs. Let s ¤ ω.
Then apxyq P Qs. Suppose that apτ 1q P Qs and that τ ¤ τ 1. Let m P Qs. Then
Xm X Xapτ 1q is nonempty, which means that m P Dpτ2q for some τ2 ¥ τ 1 in Ts.
Then Xm XXapτq is nonempty since apτq P Dpτ2q. Thus apτq P Qs. It follows that
tτ : apτq P Qsu is a nonempty path of Ts, possibly finite, which we again name fs.
We will need to work a little more to prove an analogue of Lemma 3.1 and so we
postpone this to the verification.

We now state the construction. We start with T0 consisting of the empty se-
quence, mapped by Γ to the empty sequence. Stage s ¥ 0 consists of two parts.

(a) For all τ ¤ fs and e ¤ s such that:
(i) For all σ ¤ τ , e � epσq;
(ii) For all immediate extensions σ of τ on T , epσq ¡ e; and

(iii) There is a proper extension ρ of Γpτq in We,s

we enumerate τ p̂e,Hq into T and map it to ρ.
(b) For any finite set F consisting of at least two numbers and any τ P Ts such

that for all d P F there is some ν ¥ τ such that:
(i) ν p̂d,Hq is currently on T (either in Ts or added during step (a)); and
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(ii) bpd, ν�q � bpd, τ�q
we let d � minF and enumerate τ p̂d, F � tduq into T and map it to
Γpν p̂d,Hqq where ν witnesses that d P F .

Verification.

Lemma 3.6. Let τ P T .

(1) The sequence xepσqyσ¤τ is injective.
(2) Γpτq PWepτq.
(3) For all σ   τ , Γpσq   Γpτq.

Proof. By induction on the stages we show this for all τ P Ts. All three are clear for
strings τ p̂d,Hq is enumerated into T at step (a) of stage s. Suppose that τ p̂d, F q
is added to T at step (b) of stage s. Then ν p̂d,Hq is already on T , where ν ¥ τ .
By induction epσq � d for all σ ¤ ν and hence all σ ¤ τ . (2) follows from the
fact that Γpτ p̂d, F qq � Γpν p̂d,Hqq which is in Wd. (3) follows by induction since
Γpτq ¤ Γpνq and Γpνq is properly extended by Γpν p̂d,Hqq. �

For the following claim, let d ¥ 0 and let τ P T be nonempty. Consider the
shortest initial segment µ of τ such that bpd, τq � bpd, µ�q. This is the string which
introduced the index bpd, τq to its successors. If this string µ is nonempty then it
is the longest proper initial segment µ of τ such that epµq   d; if it is empty then
epµq ¥ d for all nonempty proper initial segments µ of τ . If σ is any string such
that bpd1, σq � bpd, τq then d1 � d and σ also properly extends µ.

Claim 3.7. Let s ¤ ω. Let d   ω and let τ P Ts be nonempty; let m � bpd, τq.
Let µ be the shortest initial segment of τ such that m � bpd, µ�q. Let n   ω.
If Xn,s intersects Xm,s then it also intersects Xapµq,s (and in fact intersects Xapσq,s

for some immediate successor σ of µ on Ts.)

Proof. Since Xn,s and Xm,s intersect there is some σ1 P Ts such that n,m P Dpσ1q.
Then m � bpd, σ0q for some σ0 ¤ σ1. σ0 properly extends µ and Xn,s intersects
Xapσq,s for all σ ¤ σ1. �

Let s ¤ ω and let τ ¤ fs be finite. Let m P Qs and let n P Dpτq. Then Xm,s

intersects Xapτq,s. Hence m P Dpτ 1q for some τ 1 ¥ τ . It follows that Xm,s inter-
sects Xn,s. We conclude that Dpfsq � Qs.

Claim 3.8. Let s ¤ ω be such that fs is finite. Every m P Qs � Dpfsq is of the
form bpd, f�s q for some d, and there is some ν ¥ fs such that m � bpd, ν�q and
ν p̂d,Hq P Ts.

Proof. Let m P Qs�Dpfsq. Since Xm,s intersects Xapfsq,s we know that m P Dpσ1q
for some σ1 ¥ fs. m cannot equal apσq for any σ and so there is some σ0 and some
pair pe, F q such that σ0 p̂e, F q ¤ σ1, m � bpd, σ�0 q and d P teuYF . Since m R Dpfsq,
σ0 ¥ fs.

By the instructions, there is some ν ¥ σ0 such that m � bpd, ν�q and ν p̂d,Hq P
Ts: If F � H then we of course take ν � σ0. Otherwise σ0 p̂e, F q is added at
step (b) of some stage t   s and then we take ν to be a witness for d P teu Y F .

Let µ be the shortest initial segment of σ0 such that m � bpd, µ�q. Since Qs is a
solution, Claim 3.7 says that for all n P Qs, Xn,s intersects Xapµq,s. By maximality

of Qs, apµq P Qs. Hence µ ¤ fs. Since fs ¤ σ0 and m � bpd, σ�0 q, we conclude
that m � bpd, f�s q. �
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Lemma 3.9. Let s ¤ ω. If Qs is finite then Qs � Dpfsq and fs is a leaf of Ts.

Proof. Let F be the set of numbers d such that bpd, f�s q P Qs � Dpfsq, which
we assume is nonempty. If F � tdu is a singleton, find some ν ¥ fs such that
bpd, f�s q � bpd, ν�q and τ � ν p̂d,Hq P Ts (Claim 3.8). Then Qs � Dpτq; by
maximality, Qs � Dpτq, a contradiction.

Suppose that F is not a singleton. Let d� � minF . Since for every d P F there
is some ν ¥ fs such that bpd, f�s q � bpd, ν�q and ν p̂d,Hq P Ts, by step (b) of
stage s � 1 we will have enumerated τ � fs p̂d

�, F � td�uq into Ts. This requires
that fs P Ts�1, but this holds because fs   ν p̂d,Hq P Ts shows that fs is not a
leaf of Ts, and all elements of Ts�Ts�1 are leaves by construction. But then again
Qs � Dpτq which is impossible. �

Claim 3.10. Let τ P T . There are only finitely many numbers d such that bpd, τ�q
is an element of Dpτ 1q for any proper extension τ 1 of τ .

Proof. We assume that τ is not a leaf of T . The first proper extension of τ ever
enumerated into T is of the form τ p̂c,Hq for some c   ω. By induction on the
stages we show that if bpd, τ�q P Dpτ 1q and τ 1 properly extends τ then d ¤ c.

As in the previous construction, if τ p̂d,Hq P T then d ¤ c.
If τ p̂d, F q is added to T where F � H then for all e P tdu Y F , bpe, τ�q is

in Dpτ 1q for some proper extension τ 1 of τ which is already on T . By induction,
every element of tdu Y F is bounded by c.

Now consider extensions of τ which are not immediate extensions. Suppose
that σ is a proper extension of τ and that an immediate extension of σ is added
to T . Say τ p̂e,Gq ¤ σ. By induction e ¤ c. If bpd, σ�q � bpd, τ�q then d ¤ e. �

As a consequence, T is finitely branching. We know that every node τ P T
has only finitely many immediate extensions of the form τ p̂d,Hq. If τ p̂d, F q P T
where F is nonempty then for all e P tdu Y F , bpe, τ�q belongs to some Dpτ 1q for
some proper extension τ 1 of τ . So there can only be finitely many such sets F .

Lemma 3.11. fω is infinite.

Proof. Suppose, for a contradiction, that fω is finite. Claims 3.8 and 3.10 together
imply that Qω �Dpfωq is finite, and so that Qω is finite. By Lemma 3.9, fω is a
leaf of T .

We then argue as in the previous construction (Claim 3.3). There is some e
such that e � epσq for all σ ¤ fω and We contains a proper extension of Γpfωq.
This shows that at some stage a proper extension of fω is enumerated into T , a
contradiction. �

It follows that G � Γpfωq P 2ω. As in the previous construction, G is d-
computable. The rest of the verification follows as in the previous construction.
This completes the proof of Theorem 1.4.

4. Variants

4.1. Finite variants. A natural question to ask is what happens if we require every
set in the given family to be finite. In some cases the answer is not interesting. For
example:

Proposition 4.1. Suppose that A is a computable family consisting of finite sets.
Then every maximal FIP-solution for A is computable.
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Proof. Let Q be a maximal FIP-solution for A. Then in fact the intersection
�

Q
of all the sets in Q is nonempty (a finite discrete space is compact). Let F �

�
Q.

Then the collection of all sets in A which contain F is a computable FIP-solution.
By maximality, it equals Q. �

Here the behaviour of FIP and 2IP diverges.

Proposition 4.2. Suppose that A is a computable family consisting of finite sets.
Then A has a computable maximal 2IP-solution. However, there is a computable
family consisting of finite sets which has continuum many maximal 2IP-solutions,
and hence noncomputable ones.

Proof. For the first part, let A be a computable family consisting of finite sets
(we have a computable index for each set but not a canonical (strong) index as a
finite set). We enumerate an index-set Q for a maximal 2IP-solution, essentially by
repeating a greedy algorithm. By stage s we have enumerated Qs. If there is one,
we add to Q the least n ¤ s which is not already in Qs such that An XAm X r0, ss
is nonempty for all m P Qs. To see that this gives a maximal solution consider any
n R Q. Let t ¡ maxAn be sufficiently late so that Qt æn� Q æn. Then there is
some m P Qt such that An X Am X r0, ts is empty. But this means that An X Am
is empty.

We now construct a computable family X which consists of finite sets but has
continuum many maximal 2IP-solutions. We index the sets in X by finite binary
strings σ P 2 ω rather than by natural numbers. First let taσ,i : σ P 2 ω, i   2u
be a partition of ω. Let Xxy � taxy,0, axy,1u. Let σ P 2 ω be nonempty; let j be the
last bit of σ. We let Xσ � taσ,0, aσ,1u Y taτ,j : τ ¬ σu.

The important properties of these sets are: (1) if σ ¤ τ then Xσ and Xτ intersect;
and (2) for all σ, Xσ 0̂ and Xσ 1̂ are disjoint. For every f P 2ω, tXfæn : n   ωu is
a 2IP-solution for X , so is contained in some maximal 2IP-solution Qf . This will
often be a larger solution; for example, each Xσ 0̂ intersects every X0n . Nonetheless
the maximal solutions Qf are distinct; if f, g P 2ω are distinct and σ � f X g then
one of Qf and Qg contains Xσ 0̂ and the other contains Xσ 1̂, and no solution can
contain both. �

4.1.1. C.e. families. As mentioned early in the paper, for general intersection prob-
lems, in terms of computation power there is no difference between computable
families and c.e. families. This breaks down if we insist that the families consist
only of finite sets.

The proof of Proposition 4.1 holds for c.e. families as well. However 2IP behaves
differently.

Proposition 4.3. There is a c.e. family X consisting of finite sets such that every
degree which can enumerate a maximal 2IP-solution for X is hyperimmune.

Proof. We modify the proof given in Section 3.1. To make the sets in the family X
finite we consider the priority between them. Again the sets have indices bpeq
and ape, kq. Again each nonempty set contains an individual identifying marker.
Recall that the required intersection pattern is:

(1) Xbpeq is nonempty if and only if ϕepeqÓ;
(2) Xbpeq and Xape,kq intersect if and only if both ϕepeqÓ and ϕepkqÓ;
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(3) these are the only restrictions on intersections; in particular, every set
Xape,kq is nonempty.

We show how to achieve this pattern while keeping all sets finite. Apart from the
individual markers we reserve numbers re for all e   ω and pairs of numbers pn
and qn for all n   ω. We then act as follows:

(a) To intersect Xbpeq with Xape,kq, we enumerate re into both.
(b) If n   m and we want to intersect Xn and Xm because of condition (3)

then:
(i) if Xm is a Xbpeq then we enumerate pn into Xn XXm;
(ii) if Xm is a Xape,kq then we enumerate qn into Xn XXm.

The point is that we do not accidentally intersect Xbpeq with Xape,kq by acting for
condition (3). �

4.2. Bounded variants. An even stronger condition than all sets being finite is
having a finite bound on the size of all sets. Here even coding into c.e. families fails.

Proposition 4.4. Let N,n   ω. Let A be a c.e. family of sets, all of which have
fewer than N elements. Then every maximal nIP-solution for A is computable.

Proof. Let Q be a maximal nIP-solution for A. We define a finite tree T , labelled
by finite sets of numbers. We define it inductively, starting with T0 consisting of a
root labelled by the empty set. At step s we have a finite tree Ts; we will either stop
the process or add finitely many children to one of the leaves of Ts to obtain Ts�1.
We ensure that the following properties holds for every tree Ts:

(1) Sets at level k of Ts have size k.
(2) For every set X on Ts there is some set D P Q such that X � D.
(3) If X is a set on Ts which is not a leaf of Ts, D P Q and X � D, then there

is some child Y of X on Ts such that Y � D.

Since we start by placing the empty set at the root, inductively, (3) implies that
every set D P Q contains some leaf of Ts. We stop the process when we have built
a tree T � Ts satisfying:

(4) Any n leaves of T have nonempty intersection.

If this is successful then the collection of sets in A which contain at least one leaf
of T is a computable nIP-solution containing Q; by maximality, it equals Q.

As mentioned we start by placing the empty set at the root. Properties (1)–(3)
are all trivially satisfied.

At step s, suppose that we have Ts, satisfying (1)–(3) but not (4). We show
that there is a way to take a leaf X of the current tree and add finitely many
children X Y tzu (where z R X) so that (1)–(3) hold in the new tree Ts�1 as well.
Let T �

�
s Ts. The tree T is finitely branching. Every set on T is contained in

some set from Q and so has fewer than N many elements. By (1), T has at most N
many levels, so T is finite. Since each Ts�1 is strictly bigger than Ts there is some t
such that T � Tt. This implies that Tt satisfies (4), so the construction succeeds.

So consider Ts failing (4). Let X1, X2, . . . , Xn be leaves of Ts witnessing this
failure (for example if s � 0 then Xi � H for all i ¤ n). For every ` P t0, 1, 2, . . . , nu
consider all intersections

X1 XX2 X � � � XX` XD`�1 X � � � XDn,
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where the sets D`�1, . . . , Dn are chosen from Q. For ` � 0 all the sets are chosen
from Q and so we get nonempty intersections. For ` � n we simply get X1X� � �Xn

which is empty. So we let ` be the least such that some choice of D`�1, . . . , Dn re-
sults in an empty intersection; so 0   ` ¤ n (if s � 0 then ` � 1). Let D`�1, . . . , Dn

be such a choice.
Now let X � X`. By choice of `, the set

Z � X1 XX2 X � � �X`�1 XD`�1 X � � � XDn

is disjoint from X. We let

Z 1 � tz P Z : there is some D P Q such that X Y tzu � Du .

Suppose that D P Q and X � D. By choosing D` � D, the minimality of ` shows
that D X Z is nonempty. Since there is such a set D – (2) holds for Ts – we see
that Z 1 is nonempty. Certainly Z is finite, as it is contained in some Xi or some Di.
We then define Ts�1 by letting the children of X be X Y tzu for z P Z 1. Then:

 Ts�1 � Ts, as Z 1 is nonempty.
 Ts�1 is finitely branching, since Z 1 is finite.
 (1) holds for Ts�1 since X and Z (and hence X and Z 1) are disjoint.
 (2) holds for Ts�1 by definition of Z 1.
 The argument above shows that (3) holds for Ts�1: if D P Q, D � X then
D X Z 1 is nonempty.

This concludes step s of the construction, and proves the proposition. �

4.3. An infinite variant. Another variant of 2IP requires the pairwise intersection
of any two sets in a solution to be infinite.

Proposition 4.5 (with R. Kuyper). The following are equivalent for a Turing
degree d:

(1) If A is a computable instance of an intersection problem then d computes
a subfamily B of A, maximal with respect to the property “for all B,C P B,
B X C is infinite”.

(2) d ¥ 02.

Proof. Since 02 can tell whether two elements of A have infinite intersection or not
it can easily build a maximal “infinitary solution”.

The direction (1)ùñ (2) goes in two steps. We first show that we can code 01.
Define the following family X : every Xe contains a unique identifying marker (say
p0, eq). Also p1, sq P Xe if and only if e R H1

s. The family X is computable and has
a unique maximal solution, whose index-set Q is the complement of H1. Thus a
degree satisfying (1) enumerates Q and so computes H1.

Next we compute H2 with the aid of H1. We define a family Y. The sets Ye each
have unique identifying markers. On top of these, if e, d   k and s is the least stage
such that both ϕe,spkqÓ and ϕd,spkqÓ then we enumerate pe, d, k, sq into Yd X Ye.
This family is computable. Again it has a unique maximal infinitary solution whose
index-set Q is the set of indices of total computable functions. If d satisfies (1)
then Q is d-c.e. This shows that together with H1, d can compute H2. �

Note that the proof can be easily modified to deal with the infinitary version
of FIP as well.
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