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Abstract. If R is a relativizable notion of randomness, we say that van Lam-

balgen’s theorem holds for R if for all A,B P 2ω , we have A ‘ B P R if and
only if A P R ^ B P RA. Van Lambalgen proved that this holds for Martin-

Löf randomness. We show that van Lambalgen’s theorem fails for Demuth

randomness, but holds for the partial relativization DemuthBLR.

1. Introduction

1.1. Partial relativization vs. full relativization. Studies in algorithmic ran-
domness have identified a hierarchy of effective randomness notions, of which the
best known is Martin-Löf’s. A notion of randomness is determined by a collection
of statistical tests; these formalize the notion that a sequence is random if it lacks
patterns which can be discerned in some sufficiently effective way. Formally, tests
are null sets of reals, and a randomness notion is defined by specifying a count-
able collection of tests, whose union is the resulting collection of non-random reals
(which we here identify, via binary expansion, with infinite binary sequences). For
example, a Martin-Löf test is the intersection of a nested sequence of sets xUny
which are uniformly effectively open and which satisfy µpUnq ď εpnq, where µ is
the usual Lebesgue measure and εpnq is a computable sequence of rational numbers
tending to 0. In general, the less effectivity we require, the larger the collections of
tests and the stronger the resulting notion of randomness.

A particular way of expanding the collection of tests is by appealing to an or-
acle, a “black box” containing non-computable information. An oracle (such as
the halting problem) may be sufficiently powerful to detect patterns in sequences,
which cannot be found effectively. This process gives rise to the notion of relative
randomness. Full relativization is the process of replacing all effective aspects of
the definition of a statistical test by concepts which appeal to an oracle. To give
an example, given an oracle A, an A-Martin-Löf test is a nested sequence xUny of
sets which are A-effectively open (their basic open subsets can be enumerated with
oracle A), such that µpUnq ď εpnq, where now ε is an A-computable sequence of
rational numbers tending to 0.

Nies has pointed out that sometimes full relativization is not desirable. While
trying to convert lowness notions to weak reducibilities, transitivity is usually ob-
tained by letting only some of the computable processes allowed by the definition
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to appeal to an oracle, while barring others from doing so. The main example is
the generalization of lowness for Martin-Löf randomness to obtain LR-reducibility:
A ďLR B if every B-random sequence is also A-random, whereas full relativization
to B would require every B-random sequence to be A ‘ B-random. Here only
partial relativization results in a transitive relation.

When applied to randomness notions, often partial relativization does not give
new notions. For example, in relativizing Martin-Löf randomness, one can require
the measure-bounding function ε to be computable rather than A-computable, with-
out changing the resulting notion of A-randomness. This is not always so.

The partial relativization of a randomness notion was first utilized by Franklin
and Stephan [4] when studying lowness for Schnorr randomness, although this is
not the context in which it interests us. An important basic tool in the study of
relative randomness is van Lambalgen’s theorem, which states that for every pair
A,B of sets of natural numbers, the join A‘B is Martin-Löf random if and only if
A is Martin-Löf random, and B is Martin-Löf random relative to A. Liang Yu [12]
proved that this theorem fails when Martin-Löf randomness is replaced by Schnorr
randomness. Franklin and Stephan defined an alternate relativization of Schnorr
randomness (truth-table Schnorr randomness), and Miyabe [8] (later corrected [9])
showed that van Lambalgen’s theorem holds for this notion of relative Schnorr
randomness.

This prompts a general question: given a notion of randomness, is there one best
way of defining its relativization to an oracle (which may not be necessarily the full
relativization)? If so, what are the criteria for relativizations which are better than
others? Alternately, should one think of different relativizations of a randomness
notion as distinct notions, which happen to coincide when no oracles are present? In
this context, Miyabe suggested that van Lambalgen’s theorem should be a criterion
for the “proper” relativization of a randomness notion.

Another example where a partially relativized randomness notion is better be-
haved than the full randomness notion comes from a paper of Bienvenu, Downey,
Greenberg, Nies, and Turetsky [2]. They were interested in characterizing lowness
for Demuth randomness—identifying when being Demuth random relative to a set
A is equivalent to simply being Demuth random. In order to find their characteriza-
tion, they were motivated to identify a partial relativization of Demuth randomness,
DemuthBLR, which was easier to work with than the full relativization. Demuth
randomness is defined using Demuth tests, which are Martin-Löf tests where the
index of the nth member of the test can change a computably bounded number of
times.

Definition 1. Given a set W Ď 2ăω, rW să denotes the set of reals

tZ P 2ω : Dσ PW rσ ă Zsu.

A Demuth test is a sequence of c.e. open sets xVny such that µpVnq ď 2´n for all
n, and there is an ω-c.e. function f such that Vn “ rWfpnqs

ă.
A real Z passes the test xVny if Z is contained in only finitely many of the test

elements. A real Z is Demuth random if it passes every Demuth test.

The full relativization of this definition to an oracle A replaces the c.e. open sets
with open sets which are c.e. in A, and the ω-c.e. function by a function which is
ω-c.e. relative to A; that is, both the approximation and the bound on the number
of changes are A-computable. In contrast, a DemuthBLRpAq test is a Demuth



A VAN LAMBALGEN THEOREM FOR DEMUTH RANDOMNESS 3

test relative to A where the function f is ω-c.e. by A—the approximation is A
computable, but the bound on the number of changes is actually computable. The
passing notion is the same for DemuthBLR tests and for Demuth tests: a real Z
passes the test xVny if it is contained in only finitely many of the test elements.

By applying the partial relativization DemuthBLR, Bienvenu et al. were able
to characterize lowness for Demuth randomness. This is an example where un-
derstanding the partial relativization aids in understanding the full relativization.
Bienvenu et al. write that the characterization of lowness for DemuthBLR is “the
fundamental one”, and the characterization of lowness for Demuth randomness is
simply a corollary of that result and a related result of Downey and Ng [3].

In the present work, we show that van Lambalgen’s theorem holds for DemuthBLR,
but not for Demuth randomness. If one accepts Miyabe’s thesis, this would imply
that DemuthBLR is the correct relativization of Demuth randomness, rather than
the full relativization. That the characterization of lowness for Demuth randomness
[2] goes through DemuthBLR, which is described as the more fundamental result,
gives further evidence that Miyabe’s thesis is correct, at least in the case of Demuth
randomness.

1.2. Survey of van Lambalgen’s theorem for various randomness notions.
If R is a relativizable notion of randomness, we say that van Lambalgen’s theorem
holds for R if for every pair A,B, we have

A‘B P R ðñ A P R^B P RA.

Van Lambalgen’s theorem has been investigated for notions of randomness including
Schnorr and computable randomness, n-randomness, and weak 1-randomness. Per-
haps surprisingly, the right-to-left or “hard” direction of this equivalence, though
harder to prove in the case of Martin-Löf randomness, holds for nearly all of the
most-studied randomness notions. On the other hand, the easier to prove (in the
case of Martin-Löf randomness) left-to-right direction is the one that is known to fail
for several important randomness notions. We summarize the situation in Table 1.

We remark that in many of the cases where the “hard” direction is known to hold,
the proof is a straightforward modification of the proof for Martin-Löf randomness.
For Kolmogorov-Loveland randomness, it is not known whether the hard direction
of van Lambalgen’s theorem holds, but Merkle, Miller, Nies, Reimann, and Stephan
[7] proved the weaker statement

A‘B P KLR ðñ A P KLRB
^B P KLRA.

Table 1. Van Lambalgen’s Theorem

Randomness notion “easy” direction “hard” direction
weak 1-randomness false true
Schnorr false [7] [12] true [5] [9]
computable false [7] [12] ?
Kolmogorov–Loveland true [7] ?
Martin-Löf true [11] true [11]
weak 2-randomness false [1] true [1]
n-randomness true [11] true [11]
Π1

1 true [6] true [6]
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1.3. Notation. Notation is generally standard and follows Nies [10]. We use µ
to denote the Lebesgue measure on 2ω, and write µpU |V q to denote the relative

measure µpUXV q
µpV q of U inside V . For W Ď 2ăω, we use µpW q as an abbreviation for

µprW săq.

2. A van Lambalgen theorem for Demuth randomness

Theorem 1. A‘B is Demuth random if and only if A is Demuth random and B
is DemuthBLRpAq random.

We will prove the two directions separately.

Lemma 2. If A ‘ B is Demuth random, then A is Demuth random and B is
DemuthBLRpAq random.

Proof. By contraposition. If A is not Demuth random, it is clear that A‘B is not
Demuth random. Suppose xrWgpnqs

ăy is a DemuthBLRpAq test that B fails, where

g has an A-computable approximation ΦApn, sq with mind-changes bounded by a
computable function f . We can assume Φ is total and has mind-changes bounded
by f on all oracles X, as we are only interested in the limit, and we can also assume
that for all n, s,X, the measure µpWΦXpn,sqq is bounded by 2´n.

What we want is to say that A‘B fails the test
@

tX ‘ Y : Y P rWlims ΦXpn,sqs
ău

D

n
.

This object is well-defined; the limit lims ΦXpn, sq always exists because Φ is total
and has mind-changes bounded by f on all oracles. Furthermore, it must have mea-
sure at most 2´n by Fubini’s theorem, and captures A‘B since B P rWlims ΦApn,sqs

ă

for all n. However, it is not a Demuth test, because the natural approximation to it
changes whenever ΦXpn, sq changes, for any X, so potentially infinitely often, and
certainly not bounded by f . To fix this, the idea is to enlarge each test element
slightly by absorbing changes (increasing the measure by at most some set amount),
until ΦXpn, sq has changed at least once for some large measure of oracles, and only
then changing our approximation to the nth test element.

To be more precise, for each n we define (uniformly in n) a (hopefully finite)
sequence of n-stages s0 ă s1 ă . . . by s0 “ 0, and si is the least stage t after si´1

such that

µ

˜

t
ď

s“si´1

tX ‘ Y : Y P rWΦXpn,sqs
ău

¸

ą 2 ¨ 2´n.

For all n, t, let pnptq be the greatest n-stage t1 ď t, and let snptq be the least n-stage
t1 ą t (or snptq “ 8 if there is no n-stage after t). Then we can define

Vnrts “
ď

pnptqďsăsnptq

tX ‘ Y : Y P rWΦXpn,sqs
ău,

and will have µpVnrtsq ă 2 ¨ 2´n for all t. As Vnrts is a c.e. open set (uniformly in n
and t) and changes only at n-stages, xlimt Vnrtsyn will be a Demuth test, provided
we can exhibit a computable bound on the number of n-stages. If this is the case,
limt Vnrts will contain tX‘Y : Y P rWlims ΦXpn,sqs

ău, and hence will contain A‘B.
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We will show the number of n-stages is bounded by 2nfpnq. By the definition of
si, we have

µ

˜

si
ď

s“si´1

tX ‘ Y : Y P rWΦXpn,sqs
ău

¸

ą 2 ¨ 2´n.

Furthermore,

si
ď

s“si´1

tX ‘ Y : Y P rWΦXpn,sqs
ău

Ď tX ‘ Y : Y P rWΦXpn,si´1qs
ău Y tX ‘ Y : ΦXpn, ¨q|rsi´1,sis non-constantu.

Thus
µtX : ΦXpn, ¨q|rsi´1,sis non-constantu ą 2´n.

Suppose there are more than 2nfpnq n-stages, and for 1 ď i ď 2nfpnq, let

Si “ tX : ΦXpn, ¨q|rsi´1,sis non-constantu.

Since µpSiq ą 2´n for each i, by the pigeonhole principle there must be some X
such that X P Si for more than fpnq distinct i, which implies that ΦXpn, ¨q changes
more than fpnq times. This contradicts the definition of Φ. �

The other direction is very similar to the proof of van Lambalgen’s theorem for
Martin-Löf randomness. In that proof, given a Martin-Löf test xVny, two tests xV̂ny
and xUXn y are constructed, the second being an oracle test, such that if A‘B fails

xVny, then either A fails xV̂ny or B fails xUAn y. Here we follow the same strategy,

and observe that if the original test xVny was a Demuth test, then xV̂ny is also a
Demuth test, and xUXn y is a DemuthBLRpXq-test.

Lemma 3. If A is Demuth random and B P DemuthBLRpAq, then A‘B is Demuth
random.

Proof. Again by contraposition. Suppose A ‘ B is not Demuth random, and let
xVny “ xlims Vnrssy be a test that it fails. Without loss of generality, assume there
are infinitely many n such that A‘B P V2n — if not, replace 2n with 2n` 1. For
strings σ, τ , let rσ ‘ τ să denote the clopen set tX ‘ Y : σ ă X, τ ă Y u. Let

V̂n “ tσ : µpV2n | rσ ‘∅săq ą 2´nu.

Then µpV̂nq ď 2´n, or else V2n violates the measure condition. Furthermore, the

approximation V2nrss to V2n induces an approximation V̂nrss to V̂n which is c.e.
(uniformly in n and s) and changes only when V2nrss changes, and so witnesses

that xV̂ny is a Demuth test.
If A fails this Demuth test, then it is not Demuth random and we are finished.

Otherwise, there is a finite set F such that for all n,m with n R F ,

µpV2n | rAæm‘∅sq ď 2´n.

Fix n R F , and let
Un “ tτ : rAæ|τ | ‘ τ să Ď V2nu.

Let U ln be the set of strings of length l in Un. Then

µpU lnq ď µpV2n | rAæ l ‘∅săq ď 2´n.

Moreover, Un is closed upwards under ă, and hence µpUnq “ liml µpU
l
nq ď 2´n.

Using the approximation Unrts to Un induced by the approximation V2nrts to V2n,
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we see that Un is the limit of a sequence of open sets which are c.e. in A, and change
only at stages when the approximation to V2n changes (so at most fp2nq times).
Hence xUny is a DemuthBLRpAq test, which B fails. �

Remark. As Demuth randomness is invariant under computable permutations, the
results in this paper hold if the usual join is replaced by the Z-join

A‘Z B
def
“ fZpAq Y fZ̄pBq,

where Z is some infinite, coinfinite computable set, and fX is the function that
enumerates X in increasing order.

3. Does a stronger version of van Lambalgen’s theorem hold for
Demuth randomness?

In the previous section, we showed that a version of van Lambalgen’s theorem
holds for the partial relativization of Demuth randomness. But what about the full
relativization? Is it true that A‘B is Demuth random if and only if A is Demuth
random, and B is A-Demuth-random? Note that the “hard” direction is simply a
weakening of Theorem 1, so the only question is the “easy” direction. This fails,
because of the existence of a real in DemuthBLRpAq which is not Demuth random
relative to A. Rod Downey and Keng Meng Ng [3] proved that lowness for Demuth
randomness implies being computably dominated, by directly constructing, for each
non-dominated set A, a Demuth random set B which is not Demuth random relative
to B. Their construction can be partially relativized, to give the following theorem.

Theorem 4. If A is not computably dominated, there is some B P DemuthBLRpAq
which is not Demuth random relative to A.

Proof. The proof is a straightforward partial relativization of the Downey–Ng proof,
so rather than rewriting their proof, we describe only the needed modifications to
their proof.

Their proof is a construction, relative to a non-computably-dominated set A, of
a real Z which is Demuth random, but not Demuth random relative to A. To make
Z P DemuthBLRpAq, all that is needed is to replace the eth Demuth test Ue “ xUexy
with the eth DemuthBLRpAq test UepAq “ xUexpAqy. The rest of the construction
is identical.

As this is an A-oracle construction, these sets can be uniformly enumerated just
as easily as the sets Uex , so this does not affect the complexity of the construction.
We still get the same property that UexpAq does not have a change of index until
the eth partial order-function he converges on input x, and the number of changes
of index is bounded by he. As these are DemuthBLR tests, the functions he are
computable, not merely A-computable. The verification now proceeds exactly as in
Downey–Ng, and shows that there is a ∆0

2pAq set Z which is not Demuth random
relative to A, but which is not captured by any of the tests UepAq, and is therefore
DemuthBLRpAq random. �

We now get the following corollary.

Corollary 5. There is a Demuth random real A ‘ B such that B is not Demuth
random relative to A. Moreover, A can be chosen to be an arbitrary Demuth ran-
dom.
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Proof. Let A be Demuth random. By a result of Miller and Nies [10], A is not com-
putably dominated. By Theorem 4, there is some B P DemuthBLRpAqzDemuthpAq.
By Theorem 1, A‘B is Demuth random. �
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