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INHERENT ENUMERABILITY OF STRONG

JUMP-TRACEABILITY

DAVID DIAMONDSTONE, NOAM GREENBERG, AND DANIEL TURETSKY

Abstract. We show that every strongly jump-traceable set obeys every be-

nign cost function. Moreover, we show that every strongly jump-traceable

set is computable from a computably enumerable strongly jump-traceable set.
This allows us to generalise properties of c.e. strongly jump-traceable sets to

all such sets. For example, the strongly jump-traceable sets induce an ideal in

the Turing degrees; the strongly jump-traceable sets are precisely those that
are computable from all superlow Martin-Löf random sets; the strongly jump-

traceable sets are precisely those that are a base for DemuthBLR-randomness;

and strong jump-traceability is equivalent to strong superlowness.

1. Introduction

An insight arising from the study of algorithmic randomness is that anti-random-
ness is a notion of computational weakness. While the major question driving the
development of effective randomness was “what does it mean for an infinite binary
sequence to be random?”, fairly early on Solovay [27] defined the notion of K-trivial
sets, which are the opposite of Martin-Löf random sequences in that the prefix-free
Kolmogorov complexity of their initial segments is as low as possible. While Chaitin
[5, 4] showed that each K-trivial set must be ∆0

2, a proper understanding of these
sets has only come recently through work of Nies and his collaborators (see for
example [9, 21, 22, 15]). This work has revealed that K-triviality is equivalent to
a variety of other notions, such as lowness for Martin-Löf randomness, lowness for
K, and being a base for 1-randomness. These other notions express computational
weakness, either as the target of a computation or as an oracle: they either say
that a set is very easy to compute, or is a weak oracle and cannot compute much.

The computational weakness of K-trivial sets is reflected in more traditional
measures of weakness studied in pure computability theory. For example, every K-
trivial set has a low Turing degree. Recent developments in both pure computabil-
ity and in its application to the study of randomness have devised other notions
of computational weakness, and even hierarchies of weakness, and attempted to
calibrate K-triviality with these notions. One such attempt uses the hierarchy of
jump-traceability.

While originating in set theory (see [26]), the study of traceability in computabil-
ity was initiated by Terwijn and Zambella [28, 29].

Definition 1.1. A trace for a partial function ψ : ω Ñ ω is a sequence T �
xT pzqyz ω of finite sets such that for all z P domψ, ψpzq P T pzq.

Thus, a trace for a partial function ψ indirectly specifies the values of ψ by
providing finitely many possibilities for each value; it provides a way of “guessing”
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the values of the function ψ. Such a trace is useful if it is easier to compute than the
function ψ itself. In some sense the notion of a trace is quite old in computability
theory. W. Miller and Martin [19] characterised the hyperimmune-free degrees as
those Turing degrees a such that every (total) function h P a has a computable trace
(the more familiar, but equivalent, formulation, is in terms of domination). In the
same spirit, Terwijn and Zambella used a uniform version of hyperimmune-freeness
to characterise lowness for Schnorr randomness, thereby giving a “combinatorial”
characterisation of this lowness notion.

In this paper we are concerned not with how hard it is to compute a trace, but
rather, how hard it is to enumerate it.

Definition 1.2. A trace T � xT pzqy is computably enumerable if the set of pairs
tpx, zq : x P T pzqu is c.e.

In other words, if uniformly in z, we can enumerate the elements of T pzq. It is
guaranteed that each set T pzq is finite, and yet if T is merely c.e., we do not expect
to know when the enumeration of T pzq ends. Thus, rather than using the exact
size of each element of the trace, we use effective bounds on this size to indicate
how strong a trace is: the fewer options for the value of a function, the closer we
are to knowing what that value is. The bounds are known as order functions; they
calibrate rates of growth of computable functions.

Definition 1.3. An order function is a nondecreasing, computable and unbounded
function h such that hp0q ¡ 0. If h is an order function and T � xT pzqy is a trace,
then we say that T is an h-trace (or that T is bounded by h) if for all z, |T pzq| ¤ hpzq.

In addition to measuring the sizes of c.e. traces, order functions are used to
define uniform versions of traceability notions. For example, computable traceability,
the uniform version of hyperimmune-freeness used by Terwijn and Zambella, is
defined by requiring that traces for functions in a hyperimmune-free degree a are
all bounded by a single order function.

Zambella (see Terwijn [28]) observed that if A is low for Martin-Löf randomness
then there is an order function h such that every function computable from A
has a c.e. h-trace. This was improved by Nies [21], who showed that one can
replace total by partial functions. In some sense it is natural to expect a connection
between uniform traceability and K-triviality; if every function computable (or
partial computable) from A has a c.e. h-trace, for some slow-growing order function
h, then the value ψpnq of any such function can be described by log n � log hpnq
many bits.

Following this, it was a natural goal to characterise K-triviality by tracing, prob-
ably with respect to a family of order functions. While partial results have been
obtained [1, 16] this problem still remains open. The point is that while K-triviality
has been found to have multiple equivalent definitions, all of these definitions use
analytic notions such as Lebesgue measure or prefix-free Kolmogorov complexity in
a fundamental way, and the aim is to find a purely combinatorial characterisation
for this class.

An attempt toward a solution of this problem lead to the introduction of what
seems now a fairly fundamental concept, which is not only interesting in its own
right, but now has been shown to have deep connections with randomness.

Definition 1.4 (Figuiera, Nies, and Stephan [11]). Let h be an order function.
An oracle A P 2ω is h-jump-traceable if every A-partial computable function has a
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c.e. h-trace. An oracle is strongly jump-traceable if it is h-jump-traceable for every
order function h.

Figueira, Nies, and Stephan gave a construction of a non-computable strongly
jump-traceable c.e. set. Their construction bore a strong resemblance to the con-
struction of a K-trivial c.e. set. J. Miller and Nies [18] asked if strong jump-
traceability and K-triviality coincided.

Cholak, Downey, and Greenberg [6] answered this question in the negative. They
showed however that one implication holds, at least for c.e. sets: the strongly jump-
traceable c.e. sets form a proper subclass of the c.e. K-trivial sets. They also showed
that restricted to c.e. sets, the strongly jump-traceable sets share a pleasing feature
with the K-trivials, in that they induce an ideal in the c.e. Turing degrees.

In view of these results it might seem that strong jump-traceability might be an
interesting artifact of the study of randomness, but as it turned out, the class of
c.e., strongly jump-traceable sets has been shown to have remarkable connections
with randomness. Greenberg, Hirschfeldt, and Nies [12] proved that a c.e. set is
strongly jump-traceable if and only if it is computable from every superlow random
sets, if and only if it is computable from every superhigh random set. Greenberg
and Turetsky [14] complemented work of Kučera and Nies [17] and showed that a
c.e. set is strongly jump-traceable if and only if it is computable from a Demuth
random set, thus solving the Demuth analogue of the random covering problem,
which was only recently solved [2].

The restriction to c.e. sets appeared to be a major technical drawback. The
major tool introduced in [6] for working with strongly jump-traceable oracles, called
the box-promotion method, works well for c.e. oracles; but technical difficulties
restricted its application to other sets. Early on, Downey and Greenberg showed
that all strongly jump-traceable sets are ∆0

2, and more recently in [7], they showed
that all such sets are in fact K-trivial, giving a full implication, not restricted to
c.e. sets. In this paper we show how to overcome the difficulties in adapting the
box-promotion method to work with arbitrary strongly jump-traceable oracles and
to yield the following definitive result.

Theorem 1.5. Every strongly jump-traceable set is computable from a c.e., strongly
jump-traceable set.

This shows that strong jump-traceability, much like K-triviality, is inherently
enumerable. It cannot be obtained by devising a suitable notion of forcing, but
essentially, only through a computable enumeration. While it is impossible for
every strongly jump-traceable set to be c.e., as this notion is closed downward in
the Turing degrees, Theorem 1.5 says this downward closure is the only reason for
the existence of non-c.e., strongly jump-traceable sets.

Theorem 1.5 has a slew of corollaries. It enables us to extend characterisations
of c.e. strong jump-traceability to all strongly jump-traceable sets.

Corollary 1.6. The Turing degrees of strongly jump-traceable sets form an ideal
in the Turing degrees.

Proof. The Turing degrees of c.e., strongly jump-traceable sets form an ideal in the
c.e. Turing degrees [6]. �
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Figueira, Nies and Stephan introduced a notion seemingly stronger than strong
jump-traceability, called strong superlowness, which can be characterised using plain
Kolmogorov complexity.

Corollary 1.7. A set is strongly jump-traceable if and only if it is strongly superlow.

Proof. Figueira, Nies, and Stephan [11] showed that every strongly superlow set is
strongly jump-traceable, and that the notions are equivalent on c.e. sets. Strong
superlowness is also closed downward in the Turing degrees. �

Unlike K-triviality, strong jump-traceability has both combinatorial and analytic
characterisations.

Corollary 1.8. A set is strongly jump-traceable if and only if it is computable from
all superlow Martin-Löf random sets.

Proof. In [12] it is shown that every set computable from all superlow 1-random
sets is strongly jump-traceable, and that every c.e., strongly jump-traceable set is
computable from all superlow 1-random sets. �

We remark that the results of [12] imply that every strongly jump-traceable set
is computable from all superhigh random sets, but we do not yet know if all sets
computable from all superhigh random sets are strongly jump-traceable.

Another connection between strong jump-traceability and randomness passes
through a notion of randomness stronger than Martin-Löf’s, introduced by Demuth.
As mentioned above, the Demuth analogue of the incomplete Martin-Löf covering
problem was solved by Greenberg and Turetsky, giving yet another characterisation
of c.e. jump-traceability. This characterisation cannot, of course, be extended to
all sets, since every Demuth random is computable from itself. The analogue of
the covering problem for all sets is the notion of a base for randomness: a set
A is a base for a relativisable notion of randomness R if A is computable from
some RA-random set. Hirschfeldt, Nies and Stephan [15] showed that a set is a
base for Martin-Löf randomness if and only if it is K-trivial. On the other hand,
while every base for Demuth randomness is strongly jump-traceable (Nies [24]),
these two notions do not coincide (Greenberg and Turetsky [14]). However, this
relies on the full relativisation of Demuth randomness. Recent work of Bienvenu,
Downey, Greenberg, Nies and Turetsky [3] discovered a partial relativisation of
Demuth randomness, denoted DemuthBLR, which is better behaved than its fully-
relativised counterpart.

Corollary 1.9. A set is strongly jump-traceable if and only if it is a base for
DemuthBLR-randomness.

Proof. Nies [24] showed that every set which is a base for Demuth randomness is
strongly jump-traceable. An examination of his proof, though, shows that he uses
the hypothesis of being a base for Demuth randomness by building a Demuth test,
and this test has a computable bound. In other words, his proof shows that every
set which is a base for DemuthBLR randomness is strongly jump-traceable.

In the other direction, by [14], every c.e., strongly jump-traceable set A is com-
putable from a Demuth random set, and by [3], each such set is also low for
DemuthBLR randomness, and so in fact computable from a pDemuthBLRq

A-random
set, in other words, is a base for DemuthBLR randomness. Again this notion is
downwards closed in the Turing degrees. �
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Our proof of Theorem 1.5 utilises a concept of independent interest, that of a
cost function. Formalised by Nies (see [23]), cost function constructions generalise
the familiar construction of a K-trivial set (see [10]) or the construction of a set
low for K (Mučnik, see [8]). Indeed, the key to the coincidence of K-triviality with
lowness for K is the fact that K-triviality can be characterised by obedience to a
canonical cost function.

In this paper, we define a cost function to be a ∆0
2, non-increasing function

from ω to the non-negative real numbers R�. A cost function c satisfies the limit
condition if its limit limx cpxq is 0. A monotone approximation for a cost function
c is a uniformly computable sequence xcsy of functions from ω to the non-negative
rational numbers Q� such that:


 each function cs is non-increasing; and

 for each x   ω, the sequence xcspxqys ω is non-decreasing and converges to
cpxq.

Here we use the standard topology on R to define convergence, rather than the
discrete topology which is usually used to define convergence of computable ap-
proximations of ∆0

2 sets and functions. A cost function is called monotone if it has
a monotone approximation. In this paper, we are only interested in monotone cost
functions which satisfy the limit condition, and so when we write “cost function”,
unless otherwise mentioned, we mean “monotone cost function satisfying the limit
condition”.

If xAsy is a computable approximation of a ∆0
2 set A, then for each s   ω, we

let xs be the least number x such that As�1pxq � Aspxq. If xcsy is a monotone
approximation for a cost function c, then we write

°
cspAsq for

°
cspxsq. It is

understood that if As � As�1, then no cost is added at stage s to the sum
°
cspAsq.

Definition 1.10. A ∆0
2 set A obeys a cost function c if there is a computable

approximation xAsy of A and a monotone approximation xcsy of c such that the
sum

°
s ω cspAsq is finite.

Nies [25] showed that obedience does not depend on the monotone approximation
for c; that is, if A obeys c, then for any monotone approximation xcsy for c, there
is a computable approximation xAsy of A for which the sum above is finite. See
Proposition 3.2 below. However, different approximations for A may cause the sum
to be infinite.

Unlike K-triviality, strong jump-traceability cannot be characterised by a single
cost function; one way to see this is by considering the complexity of the index-set
of strong jump-traceability, which is Π0

4-complete (Ng [20]). Greenberg and Nies
[13] isolated a class of cost functions which together characterised strong jump-
traceability on the c.e. sets. Benignity is an effective witness for the limit condition.
It is a generalisation of the additive property of the canonical cost function for K-
triviality.

Let xcsy be a monotone approximation for a cost function c, and let ε ¡ 0 be
rational. We define an auxiliary sequence of markers m1pεq,m2pεq, . . . , by letting
m1pεq � 0, and given mrpεq, letting mr�1pεq be the least s ¡ mrpεq such that
cspmrpεqq ¥ ε, if there is such a stage s; otherwise, mr�1pεq is undefined. The fact
that lim cs � c and that lim c � 0 shows that the sequence xmrpεqy must be finite,
and so we can let rpεq � rxcsypεq be the last r such that mrpεq is defined.
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Definition 1.11. A cost function c is benign if it has a monotone approximation
xcsy for which the function ε ÞÑ rxcsypεq is bounded by a computable function.

Note that if xcsy witnesses that c is benign, then the last value mpεq � mrpεqpεq
need not be bounded by a computable function; it is ω-computably approximable
(ω-c.e.).

Greenberg and Nies showed that a c.e. set is strongly jump-traceable if and only
if it obeys all benign cost functions. Much like obeying the canonical cost function
captures the dynamics of the decanter and golden run methods which are used
for working with K-trivial oracles, this result shows that benign cost functions
capture the dynamics of the box-promotion method when applied to c.e., strongly
jump-traceable oracles.

Greenberg, Hirschfeldt and Nies [12] showed that every set, not necessarily c.e.,
which obeys all benign cost functions, must be strongly jump-traceable. In this
paper we show that obeying benign cost functions in fact characterises strong jump-
traceability on all sets.

Theorem 1.12. A set is strongly jump-traceable if and only if it obeys every benign
cost function.

The fact that every K-trivial set is computable from a c.e. one is also deduced
using obedience to the canonical cost function. It is easy to see that if a computable
approximation xAsy witnesses that A obeys a cost function c, then the associated
change-set, which records the changes in this approximation for A, is a c.e. set which
computes A and also obeys the cost function c. Hence Theorem 1.12 almost gives
us Theorem 1.5; the connection between benign cost functions and strong jump-
traceability established in [13] shows now that if A is a strongly jump-traceable
set, and h is an order function, then there is an h-jump-traceable c.e. set which
computes A. (We note that this result implies all the corollaries above). We get
Theorem 1.5 by showing:

Theorem 1.13. There is a benign cost function c such that for any ∆0
2 set A

obeying c, there is a c.e. set W computing A, which obeys all cost functions that A
obeys.

Theorem 1.5 is an immediate consequence of the conjunction of Theorems 1.12
and 1.13. We prove Theorem 1.12 in Section 2 and Theorem 1.13 in Section 3.

2. Strongly jump-traceable sets obey benign cost functions

In this section we prove Theorem 1.12. As we mentioned above, one direction
of the theorem is proved in [12]. For the other direction, we are given a strongly
jump-traceable set A, and a benign cost function c, and show that A obeys c.

2.1. Discussion. Our departure point is a simplified version of the original argu-
ment showing that every strongly jump-traceable set is ∆0

2. Suppose that we are
given a strongly jump-traceable set A, and we wish to find a computable approxi-
mation xAsy for A. The idea is to test binary strings, potential initial segments of
A. For example, to determine Ap0q, we try to test both strings x0y and x1y, and
hopefully get an indication which one is an initial segment of A. Our belief about
which one is correct may change from time to time, but we need to make sure that
it changes only finitely many times, and eventually settles on the correct value.
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While we fluctuate between x0y and x1y, we also test strings of length 2, and match
up our guess for which string of length 2 is an initial segment of A with the current
guess about which string of length 1 is an initial segment of A. Again, our belief
about strings of length 2 may change several times, indeed many more than the
changes between x0y and x1y, but eventually it should settle to the correct value.

How do we test strings of a given length? We define a functional Ψ, fix an
order function h, which will be designed to grow sufficiently slowly as to enable
the combinatorics of the construction, and by the recursion theorem (or by using a
universal trace), we have a c.e. trace xT pzqy for the partial function ΨA, bounded
by h. To test, for example, all strings of a length ` on some input z, we define
Ψσpzq � σ for every string σ of length `. We then only believe strings which show
up in the trace T pzq. If hpzq � 1 then we are done, since only one string may show
up in T pzq, and the correct string Aæ ` must appear in T pzq. However, h must be
unbounded, and once we tested a string σ on some input z, we cannot test any
extensions of σ on the same input; for the functional Ψ must be kept consistent.
What do we do, then, if hpzq ¡ 1, and more than one string of length ` shows up
in T pzq?

This is where length promotion comes into place. Suppose that initially, we use
inputs z such that hpzq � ` to test strings of length ` (such inputs are sometimes
called `-boxes). So when we test strings of length 3 on 3-boxes, of the eight pos-
sibilities, we believe at most three. At first, we believe the first string of length 3
which shows up in the relevant trace component, say x000y. If another string shows
up, say x001y, we move to test the length 3 on 2-boxes which we have reserved for
this occasion — we promote length 3 to 2-boxes. We then believe the first string of
length 3 which shows up in the trace for the 2-boxes, say x010y. If another string
shows up, say x011y, we promote length 3 to 1-boxes. Since trace components for
1-boxes can contain only a single element, we know that the first string of length
3 to show up in this component must be correct. In general, the promotion mech-
anism ensures that we have an approximation for A for which there are at most `
changes in our belief about Aæ `. We emphasize again, though, that we have only
finitely many n-boxes for each n, and so the main point of the argument is arrang-
ing the testing so that only finitely many lengths are ever promoted to be tested on
n-boxes, and moreover, that we can compute in advance a bound on the number of
such lengths. As explained in greater detail below, this is done by making sure that
all the lengths that are ever promoted from level n to level n� 1 interact in some
way in some n-box and “fill it up”, so that in fact no more than n many lengths
can be promoted beyond level n.

Let xcsy be a monotone approximation for c which witnesses that c is benign; let
mrpεq be the associated markers. To construct a computable approximation xAsy
for A for which the sum

°
s cspAsq is finite, we need, roughly, to give a procedure

for guessing initial segments of A such that for all n, the number of stages at which
we change our mind about a guess for Aæmrp2

�nq, for any r   2�n, is bounded by
(say) n. The computable bound on rp2�nq, the number of lengths we need “test at
level n”, allows us to apportion, in advance, sufficiently many n-boxes to deal with
all of these lengths, even though which lengths are being tested at level n is not
known in advance. The fact that the lengths themselves are not known in advance
necessitates a first step of “winnowing” the strings of new lengths mrp2

�nq, so that

instead of dealing with 2mrp2
�nq many strings, we are left with at most n such
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strings. This is done by testing all strings of the given length on an n-box reserved
for this length, as described above.

This technique of length promotion is a close cousin of the older technique of box
promotion. If A were a c.e. set, we could use some enumeration of it in combination
with the above tracing to determine our guesses for Aæ `; we would only believe a
string at stage s if that string happened to be Asæ `. If we later stopped believing
that string, it would mean that the approximation to A had changed away from
As æ `, and so that string is now known to be wrong. Any n-box for which the
relevant trace contains this string is effectively now an pn � 1q-box; this is the
fundamental mechanic of box promotion. In our setting, however, we are working
with arbitrary sets (we already know, in fact, that they are ∆0

2, but we will not use
this in the construction), and so we cannot know that any given string is wrong. We
will see incompatible strings occur in the traces, and so we will know at least one
of them is wrong, but we will not know which. The advantage of length promotion
is that in this case, we do not need to know which is wrong.

As is the case with all promotion constructions, the heart of the proof is in the
precise combinatorics which tell us which strings are tested on which boxes. One
main point is that while we need to prepare n-boxes for the possibility that lengths
tested at higher levels are promoted all the way down to level n, the number of such
promotions must be computably bounded in n, and cannot rely on the computable
bound on rp2�pn�1qq, rp2�pn�2qq, . . . . That is, the number of promotions must be
tied to the size (or level) of the boxes, and not on the number of lengths that may
be tested at that level. We shall achieve this by ensuring that if k lengths are
promoted from n�1-boxes to n-boxes, then some trace component for an n�1-box
contains at least k � 1 elements, and thus k ¤ n.

Consider, for example, the following situation: at some level n, we are testing two
lengths, `1   `2, and tests have returned positively for strings σ0 and σ1 of length `1,
and strings τ0 and τ1 of length `2. If, to take an extreme situation for an example,
the strings σ0, σ1, τ0, τ1 are pairwise incomparable, then when apportioning boxes
on which to test the strings, we could have arranged that there was a single input z
on which they were all tested; then z is an n-box with 4 elements in its trace
component after 2 lengths have been promoted, as desired. If, on the other hand,
τ0 extends σ0 and τ1 extends σ1, then we cannot test τ0 on boxes on which we
already tested σ0, and the same holds for τ1 and σ1. We do not want, though, to
let both lengths be promoted while only putting 2 elements into any given n-box.
In this case our action depends on timing:


 If σ0 and σ1 appear before τ0 and τ1 appear, we promote the length `1. We
do not promote `2, unless another string of length `2 appears. If no such
new string appears, then our belief about which of σ0 or σ1 is an initial
segment of A will dictate which of τ0 or τ1 we believe too.


 If τ0 and τ1 appear before we see both σ0 and σ1, then we promote the
length `2. In this case, certainly our belief about which of τ0 or τ1 is an
initial segment of A would tell us whether to believe σ0 or σ1.

In the first case, an important observation is that if another string ρ of length `2
appears, then ρ cannot extend both σ0 and σ1. If ρ does not extend σ0, say, then
we can test σ0, ρ and τ1 all on one box, and so the corresponding component will
eventually contain 3 elements, justifying the promotion of both lengths `1 and `2.
Of course, during the construction, we need to test strings on a large number of
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boxes, to allow for all possible future combinations of sets of strings involving the
ones being tested, including strings of future lengths not yet observed.

2.2. Construction. As mentioned above, let xcsy be a monotone approximation
for c which witnesses that c is benign; let mrpεq be the associated markers. We
force these markers to cohere in the following way. For n   ω and s   ω let

lspnq � max
�
tnu Y

 
mrp2

�qq : q ¤ n & r ¤ s & mrp2
�qq ¤ s

(�
.

Note that mrpεq is strictly increasing in r, and so mrp2
�qq ¤ s already implies

r ¤ s. The value lspnq is, roughly, a length at which the cost function cs becomes
small, relative to 2�n. We summarise the properties of the functions ls in the
following lemma.

Lemma 2.1.

(1) Each function ls is non-decreasing, with n ¤ lspnq ¤ maxtn, su.
(2) For each n, the sequence xlspnqys ω is non-decreasing, and takes finitely

many values. Indeed, the function

n ÞÑ # tlspnq : s   ωu

is computably bounded.
(3) For all n and s, csplspnqq   2�n.

We fix a computable function g bounding the function n ÞÑ # tlspnq : s   ωu.

For n ¥ 1, let αpnq �
�
n
0

�
�
�
n
1

�
�
�
n
2

�
be the number of subsets of t1, 2, . . . , nu of

size at most 2. We partition ω into intervals M1,I1, M2, I2, . . . ; the interval Mn

has size αpnqn�gpnq and the interval In has size n � gpnq. We define an order
function h by letting hpxq � n for every x PMn Y In.

As mentioned, we enumerate a functional Ψ. Either by using the recursion
theorem (as was done in [6]) or by using a universal trace (as in [13]), we obtain a
number o P ω and a c.e. trace T � xT pzqy for Ψ which is bounded by maxth, ou.

Each level n ¥ o will list an increasing sequence of lengths `n1 , `
n
2 , . . . which will

be tested at level n. The list is dynamic – we may extend it during the construction.
However, we will need to ensure that the length of the list is bounded by n� gpnq.

The testing of lengths at level n will be in two parts.

A. Initial testing of all strings of length `nk will be performed on a reserved input
from the interval In. We thus enumerate the elements of In as tyn1 , y

n
2 , . . . , y

n
n�gpnqu;

the input ynk is reserved for initial testing of all strings of length `nk . We note here
that as the list of lengths `n1 , `

n
2 , . . . may not necessarily reach its maximal length

n�gpnq, it is possible that some inputs ynk will never be used. This is one reason for
the fact that ΨA will be a partial function. In this way we use the full hypothesis of
strong jump-traceability of A; we cannot hope to make ΨA total, and so the proof
would not work for merely c.e. traceable oracles.

B. The main bulk of the testing of strings of length `nk would be performed on inputs
from Mn. To maximise the interaction between the various lengths (to justify
promotion as described above, we need to test large antichains of strings on inputs
from Mn), we organize Mn in a particular fashion. Let Dpnq � t1, 2, . . . , n�gpnqu,
and let P pnq be the collection of all subsets of t1, 2, . . . , nu of size at most 2. We
enumerate the elements of Mn as zν � znν , where ν ranges over all functions from
Dpnq to P pnq. Note that |Mn| � |P pnq||Dpnq|. Geometrically-oriented readers can
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envision Mn as a discrete |Dpnq|-dimensional cube, each of whose sides has length
|P pnq| � αpnq; the index ν gives the Cartesian coordinates of zν in Mn.

The construction begins at stage o. At stage s ¥ o, we act in turn on level s,
level s� 1, . . . , down to level o. The action at level n consists of: (1) extending the
sequence of lengths x`nky; (2) testing strings on the n-cube Mn; and (3) if n ¡ o,
promoting lengths to be tested on level n� 1.

Let n P ro, . . . , ss. The action at level n at stage s is as follows:

1. If n   s and some lengths have just been promoted from level n� 1, we append
them to the list of lengths `n1 , `

n
2 , . . . tested at level n, ordered by magnitude (we

will make sure that the promoted lengths are longer than lengths already tested at
level n).

If lspnq is greater than the lengths currently tested at level n (including the
lengths which have just been promoted), we add it too to the list of lengths tested
at level n.

We are assuming now that at every stage, the number of lengths tested at level
n is at most n� gpnq. We will prove this later (Section 2.3).

For each length `nk which was added to the list, we test all strings of length `nk
on ynk . This means we define Ψσpynk q � σ for every string σ of length `nk .

2. Suppose that `nk is defined by stage s. We list the elements of T pynk q by
σnk p1q, σ

n
k p2q, . . . as they appear. Because n ¥ o and ynk P I

n, we have |T pynk q| ¤ n,
so the list has length at most n.

Suppose that σnk piq has appeared in T pynk q. Recall that P pnq is the collection
of subsets of t1, 2, . . . , nu of size at most 2. For every ν : Dpnq Ñ P pnq such that
i P νpkq, we want to test σnk piq on zν � znν . Fix such ν. We need to ensure that
Ψ remains consistent; the point is that there may be strings comparable with σ �
σnk piq which are already tested on zν . To test σ on zν while keeping Ψ consistent,
we define Ψτ pzνq � τ for every extension τ of σ of length s which does not extend
any string already tested on zν .

Using other notation, we let Zν,s be the collection of strings ρ for which we
defined Ψρpzνq � ρ by the end of stage s, and let Zν,s � rZν,ss be the clopen
subset of Cantor space 2ω determined by the set of strings Zν,s (the collection of
all infinite extensions of strings in Zν,s). Testing a string σ on zν at stage s means
adding strings of length s to Zν,s�1 so as to keep Zν,s an antichain, but ensuring
that rσs � Zν,s.

3. For ν : Dpnq Ñ P pnq, we may assume that Tspzνq � Zν,s. (Otherwise, simply
ignore all other values, acting as though Tspzνq were replaced by TspzνqXZν,s.) We
let Tspzνq � rTspzνqs be the clopen subset of Cantor space determined by Tspzνq.

Let k ¤ n�gpnq such that `nk is defined by stage s, and let i ¤ n such that σnk piq
is defined by stage s, that is, T pynk q already contains at least i many elements by
stage s. The test of σnk piq is successful if for all ν such that i P νpkq, that is, for all
ν such that σ was tested on zν , we have rσs X Tspzνq � H. In other words, if some
string which is comparable with σ appears in T pzνq by stage s.

For the purpose of the following definition, let `n0 � 0. We say there is a conflict
at length `nk (and level n) if there are two strings σ0 � σnk piq and σ1 � σnk pjq of length
`nk , both of whose tests are successful by stage s, such that σ0æ `

n
k�1 � σ1æ `

n
k�1.

We note, for future reference, that if there is a conflict at length `nk at stage s, then
this conflict persists at every later stage.
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At stage s, if n ¡ o, then we promote to level n�1 all lengths `nk for which there
is a conflict at stage s, and which are longer than any length already tested at level
n� 1.

These instructions determine our action for level n at stage s, and so completely
describe the construction.

2.3. Justification. Before we show how the construction gives us the desired ap-
proximation for A, we first need to show that we can actually implement the con-
struction. We need to prove that we have allocated sufficiently many n-boxes to
each level n. Since the tests run on Mn are winnowed through In, it is immediate
that we have allocated sufficiently many n-boxes to Mn; it remains only to show
that we have allocated sufficiently many n-boxes to In. That is, we must show that
the list of lengths x`nky tested at level n has length at most n� gpnq.

For n ¥ o and s   ω, let kspnq be the number of lengths tested at level n by
the end of stage s. That is, at the end of stage s, the lengths `nk are defined for
k ¤ kspnq. We need to show that for all s, kspnq ¤ n� gpnq.

There are two streams contributing lengths to test at level n: lengths promoted
from level n�1, and lengths of the form lspnq. Of the latter, there are at most gpnq
many. Hence, it remains to show that there are at most n many lengths that are
promoted by level n � 1. Shifting indices, we show that level n promotes at most
n� 1 many lengths.

Indeed, we show the following:

Lemma 2.2. Let n ¥ o and let s ¥ o. Then there are at most n� 1 many lengths
`nk at which there is a conflict (for level n) at stage s.

To prove Lemma 2.2, fix n ¥ o and s ¥ o. Let N be the number of lengths at
which there is a conflict (at level n) at the end of stage s. We show that there is
some ν : Dpnq Ñ P pnq such that |Tspzνq| � 1 ¥ N . Using the fact that n ¥ o and
zν PM

n we see that |Tspzνq| ¤ n, which establishes the desired bound.
In order to define ν, we define an increasing sequence of antichains of strings,

indexed in reverse Ckspnq�1 � Ckspnq � Ckspnq�1 � � � � � C1, starting with
Ckspnq�1 � H. Each set Ck consists of strings of lengths `nk1 for k1 ¥ k. Let
k P t1, . . . , kspnqu; we assume that Ck�1 has been defined, and we show how to
define Ck.

The definition is split into two cases. First, suppose that there is no conflict
at stage s in length `nk . In this case, we let Ck � Ck�1; it will follow from the
definition below that νpkq � H.

We assume then that there is a conflict in length `nk at stage s. Let σ0 � σnk piq and
σ1 � σnk pjq be a pair witnessing this conflict. We let Ck be a maximal antichain
from Ck�1 Y tσ0, σ1u containing Ck�1. In other words, if neither σ0 nor σ1 are
comparable with any string in Ck�1, then we let Ck � Ck�1 Y tσ0, σ1u; otherwise,
if either σ0 or σ1 is incomparable with all the strings in Ck�1, then we let Ck be
one of Ck�1 Y tσ0u or Ck�1 Y tσ1u, making sure that we choose so that Ck is an
antichain; and finally, if both σ0 and σ1 are comparable with strings in Ck�1, then
we let Ck � Ck�1.

Now given the sequence of sets Ck, we can define the index function ν:


 For k P t1, 2, . . . , kspnqu, we let

νpkq � ti ¤ n : σnk piq P Cku .
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 For k P tkspnq � 1, . . . , n� gpnqu, we let νpkq � H.

Since the strings in Ck of length `nk are precisely the strings in CkzCk�1, we see
that for all k, νpkq is indeed a set of size at most 2, so ν is a function from Dpnq to
P pnq. The point of this definition is that the strings tested on zν are precisely the
strings in C1.

Letting `n0 � 0 again, for k P t1, . . . , kspnq � 1u, let

Dk �
 
σæ`nk�1 : σ P Ck

(
,

and let

pk � |Ck| � |Dk|.

Note that pkspnq�1 � 0, and that unless C1 is empty, |C1| � p1 � 1.

Claim 2.3. For all k ¤ kspnq, pk ¥ pk�1.

Proof. For every string τ in Dk which has no extension in Dk�1, there is an exten-
sion σ of τ in CkzCk�1. Therefore,

pk � pk�1 � |Ck| � |Ck�1| � |Dk�1| � |Dk| ¥ 0.

�

Claim 2.4. If `nk has a conflict at stage s, then pk ¡ pk�1.

Proof. Let σ0 and σ1 be the strings that were chosen at step k to witness that `nk
has a conflict at stage s. By definition of having a conflict, σ0æ`

n
k�1 � σ1æ`

n
k�1; we

let τ denote this string.
There are three cases. In all three cases, we note that every string in Dk other

than possibly τ has an extension in Dk�1.

If Ck � Ck�1 Y tσ0, σ1u then we need to show that |Dk| ¤ |Dk�1| � 1, which
follows from the fact we just mentioned, that every string in Dk other than τ has
an extension in Dk�1.

In the second case, we assume that Ck is obtained from Ck�1 by adding one
string, say σ0; we need to show that |Dk| ¤ |Dk�1|. But σ1 is comparable with
some string in Ck�1, and in fact must be extended by some string in Ck�1. Hence
σ1 P Dk�1, i.e. τ is extended by some string in Dk�1, and therefore every string in
Dk is extended by some string in Dk�1.

Finally, suppose that Ck�1 � Ck; we need to show that |Dk�1| ¤ |Dk|�1. Since
both σ0 and σ1 are comparable with elements of Ck, both are elements of Dk�1, and
so τ has two extensions in Dk�1, while every other string in Dk has an extension
in Dk�1. �

Hence p1 ¥ N . If C1 is empty, then N � 0, so we may assume that C1 is
nonempty, and so |C1| � p1 � 1 is at least one more than N . Then Lemma 2.2,
and with it our justification for the construction, is completed once we establish
the following claim.

Claim 2.5. |Tspzνq| ¥ |C1|.
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Proof. We show that Tspzνq contains only strings which are extensions of strings in
C1, and that each string in C1 has an extension in Tspzνq.

Recall that we let Zν,s be the collection of strings that were actually tested on
zν by stage s, that, is, the collection of strings ρ for which we defined Ψρpzνq � ρ
by the end of stage s.

Our instructions (and the definition of ν) say that the strings tested on zν are
precisely the strings in C1. Since C1 is an antichain, this means that at any stage t
before some string σ is tested on zν , we have rσs X Zν,t � H, and so when testing
σ, we only add extensions of σ to Zν,s. Since we assumed that Tspzνq � Zν,s, we
see that all strings in Tspzνq are extensions of strings in C1.

Let σ P C1. Then σ � σnk piq for some k and i is part of a pair of strings witnessing
that there is a conflict at length `nk (and level n) by stage s. So the test of σ on Mn

is successful by the end of stage s. Since σ is tested on zν , we have rσsXTspzνq � H.
Since no proper initial segment of σ is tested on zν , this means that some extension
of σ is an element of Tspzνq. �

2.4. The approximation of A. We now show how to find a computable approx-
imation for A witnessing that A obeys c.

For n ¥ o, let kpnq � lims kspnq be the number of lengths ever tested at level n.

Lemma 2.6. For all n ¥ o and all k ¤ kpnq, The string A æ `nk is eventually
successfully tested at level n.

Proof. Let s0 be the stage at which the length `nk is first tested at level n. Let
ρ � Aæ `nk . At stage s0, we define Ψρpynk q � ρ, and so ΨApynk q � ρ. Since T traces
ΨA, we have ρ P T pynk q; this is discovered by some stage s1 ¡ s0. At stage s1 we test
ρ on elements zν of Mn. Fix such an input zν . We need to show that rρs X Tpzνq
is nonempty.

At stage s1, we enumerate strings into Zν to ensure that rρs � Zν . Hence A P Zν ,
in other words, zν P dom ΨA. Since T traces ΨA, we have ΨApzνq P T pzνq. All
axioms of Ψ are of the form Ψτ pzq � τ for binary strings τ , so τ � ΨApzνq is an
initial segment of A, and so is comparable with ρ. Then rτ s � Tpzνq implies that
rρs X Tpzνq � H. �

For n P ro, . . . , ss, let `nrss � `nkspnq be the longest length tested at level n at

the end of stage s. Then for all s ¥ o, `orss ¤ `o�1rss ¤ � � � ¤ `srss � s, because
if we let `nrss � lspnq at stage s, then (Lemma 2.1) lspn � 1q ¥ lspnq and so we
define `n�1rss � lspn � 1q if this length is longer than previous lengths tested at
level n � 1. Also, since at stage s we test s � lspsq at level s, we see that for all
s ¥ n, `nrss ¥ n.

For n ¥ o, we let `n � `nkpnq � lims `
nrss be the longest length ever tested at

level n. Let ρ� � Aæ `o. Let so ¡ o be a stage sufficiently late so that `orsos � `o

and the string ρ� is successfully tested at level o by stage so.
We note that other than specifying ρ�, the construction is uniform (in the com-

putable index for xcsy). The reason for the nonuniform aspect of the construction
is the overhead o charged by the recursion theorem; if we had access to 1-boxes,
the construction would be completely uniform.

Let s ¥ so and n ¥ o. A string σ of length `nrss is n-believable at stage s if:
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 σ extends ρ�; and

 for all m P ro, ns, and for all k ¤ kspmq, the string σæ `mk is successfully

tested at level m by the end of stage s.

Lemma 2.6 shows that for all n, the string Aæ`n is n-believable at almost every
stage.

Claim 2.7. Let s ¥ so. For every n ¥ o, there is at most one string which is
n-believable at stage s.

Proof. By induction on n. For n � o this is clear, because ρ� has length `orss for
all s ¥ so.

Let n ¡ o, and suppose that there is at most one string which is pn � 1q-
believable at stage s. Suppose, for contradiction, that there are two strings τ0 and
τ1 which are both n-believable at stage s. Then both τ0æ `

n�1rss and τ1æ `
n�1rss

are pn � 1q-believable at stage s, and so are equal. Let k be the least index such
that τ0æ`

n
k � τ1æ`

n
k . Of course k exists, since τ0 � τ1 are both of length `nkspnq, and

`nk ¡ `n�1rss. In other words, `nk is longer than any length tested at level n� 1 at
stage s. But then the strings τ0æ `

n
k and τ1æ `

n
k witness that there is a conflict at

length `nk at stage s, and so we would promote `nk to be tested at level n � 1 by
the end stage s, contradicting the assumption that `nk is not tested at level n � 1
at stage s. �

We can now define the computable approximation for A. We define a computable
sequence of stages: the stage so has been defined above; we may assume that
so ¥ o � 1. For t ¡ o, given st�1, we define st to be the least stage s ¡ st�1 at
which there is a t-believable string σt. So st�1 ¥ t. We let At � σt 0̂ω. The fact
that Aæ `n is n-believable at almost every stage (and that `n ¥ n) implies that
limtAt � A.

For t ¥ o, let xt be the least number x such that Atpxq � At�1pxq. It remains
to show that

°
t¡o ctpxtq is finite. For all n ¥ 0, let

Sn �
 
t ¡ o : ctpxtq ¥ 2�n

(
.

Then
°
ctpxtq   8 will follow from any polynomial bound on |Sn|. Let n ¡ o, and

let t P Sn. Let s � st�1, and let s � st. Since t ¤ s and xcsy is monotone, we have
cspxtq ¥ ctpxtq ¥ 2�n. Since csplspnqq   2�n (Lemma 2.1), and the function cs is
monotone, we have xt   lspnq. So Atæ lspnq � At�1æ lspnq.

Suppose that t ¡ n. Then the strings σt and σt�1 are at least as long as `t�1rss
which is not smaller than `nrss, which in turn is not smaller than lspnq, by the
instruction for testing lspnq at level n at stage s if it is a large number. So we
actually have σtæ`

nrss � σt�1æ`
nrss.

Let m ¤ n be the least such that σtæ`
mrss � σt�1æ`

mrss; since both σt and σt�1

extend ρ� we have m ¡ o. Let k ¤ kspnq be the least such that σtæ`
m
k � σt�1æ`

m
k ;

the minimality of m implies that `mk ¡ `m�1rss.
Let τ0 � σt�1æ `

m
k and τ1 � σtæ `

m
k . So τ0 and τ1 are distinct. Since σt�1 is

pt� 1q-believable at stage s, and m ¤ n ¤ t� 1, the string τ0 is successfully tested
at level m by stage s, and similarly, τ1 is successfully tested at level m by stage s.
Thus there is a conflict at length `mk at stage s, which implies that `m�1rss ¥ `mk .
We observed that `mk ¡ `m�1rss, and so there is no conflict at level `mk at stage s.

This means that if t and u are two stages in Sn, and u ¡ t ¡ n, then there is
some m ¤ n and some length ` � `mk at which there is no conflict at stage st�1 but
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there is a conflict at stage st ¤ su�1. Lemma 2.2 states this can happen, for each
m, at most m� 1 times, and so overall, there are at most

�
n
2

�
many stages greater

than n in Sn; that is, |Sn| ¤ n �
�
n
2

�
. This gives a polynomial bound on |Sn| and

completes the proof. �

3. A c.e. set computing a given set

In this section we give a proof of Theorem 1.13: we construct a benign cost
function c such that for any ∆0

2 set A obeying c, there is a c.e. set W computing A
which obeys all cost functions that A obeys.

3.1. A simplification. Even though the cost function c works for any ∆0
2 set A,

we may assume that we are given a particular computable approximation xAsy to
a ∆0

2 set A which obeys c, and define c using the approximation.
To see why this seemingly circular construction is in fact legal, we enumerate as@@
Aks

D
s ω

D
k ω

all partial sequences of uniformly computable functions; we think

of
@
Aks

D
s ω

as the kth potential computable approximation for a ∆0
2 set Ak.

For each k   ω, we define a benign cost function ck, together with a monotone
approximation

@
cks
D

for ck and a computable function gk which together witness

that ck is benign; all of these, uniformly in k. The important dictum is: even if@
Aks

D
is not total, we must make

@
cks
D

and gk total. We ensure that ckpxq ¤ 1 for
all x and k.

Once these are constructed, we let c �
°
k ω 2�kck.

Lemma 3.1. c is a benign cost function.

Proof. For s   ω let cspxq �
°
k s 2�kckspxq. Then xcsy is a monotone approxima-

tion of c. For benignity, the point is that since ck ¤ 1, only finitely many ck can
contribute more that ε to c. We note that for all k, if I is a set of disjoint intervals
of ω such that for all rx, sq P I we have ckspxq ¥ ε, then |I| ¤ gkpεq. Fix ε ¡ 0, and
let m1pεq, m2pεq, � � � , mrpεqpεq be the sequence of markers associated with xcsy. Let
I be the set of intervals rmipεq,mi�1pεqq for i   rpεq. For all rx, sq P I we have

ε ¤ cspxq �
¸
k s

2�kckspxq.

Let K � � log2pεq � 1. Since ckspxq ¤ 1 for all k, we have¸
k¡K

2�kckspxq ¤
ε

2
.

It follows that for some k ¤ K we have ckspxq ¥ ε{4. Hence

rpεq ¤
¸
k¤K

gk
� ε

4

	

which is a computable bound on rpεq. �

Suppose that a ∆0
2 set A obeys c. By Nies’s result from [25], which is repeated as

Proposition 3.2 below, there is a computable approximation xAsy for A such that°
cspAsq ¤ 1. This means that for all k,

°
ckspAsq ¤ 2k; in particular for k such

that xAsy �
@
Aks

D
. Thus, it suffices to construct

@
cks
D

and gk, uniformly in k, such

that if
@
Aks

D
is indeed a ∆0

2 approximation for a set A, and
°
ckspA

k
sq ¤ 2k, then

there is some c.e. set W computing A which obeys all cost functions that A obeys.
The construction for each k is independent.
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In the remainder of the construction, we omit the index k; we assume that we
are given a partial sequence xAsy and construct total xcsy and g with the desired
property. Although we have to make xcsy and g total and cs bounded by 1, regard-
less of the partiality of xAsy, we note that unless xAsy is total and is a computable
approximation for a set A, and

°
cspAsq ¤ 2k, the construction of W need not be

total.

3.2. More on cost functions. Given the approximation xAsy for A, we need to
test whether A obeys a given cost function d, with a given approximation xdsy. But
of course it is possible that

°
dspAsq is infinite, while some other approximation

for A witnesses that A obeys d. Any other approximation can be compared with
the given approximation xAsy, and so it suffices to examine a speed-up of the given
approximation.

Further, it suffices to test cost functions bounded by 1. This is all ensured by
the following proposition. A version of this proposition appears in [25], but as we
give it in slightly different form, we include a proof for completeness.

Proposition 3.2. Let B be a ∆0
2 set which obeys a cost function d. For any

monotone approximation xdsy of d, there is a computable approximation xBsy of B
such that

°
dspBsq is finite.

Moreover, if xBsy is a given computable approximation of B, then there is an
increasing computable function h such that

°
dspBhpsqq ¤ 1.

Proof. Fix a computable approximation xBsy. It is sufficient to find a computable
function h such that

°
s dspBhpsqq is finite. Then, we can decrease the sum by any

finite amount by omitting finitely many initial stages and using monotony of xdsy:
let ys be the least x such that Bhps�1qpxq � Bhpsqpxq, so

°
s dspBhpsqq �

°
s dspysq.

Let r   ω such that
°
s¥r dspysq ¤ 1. Let hpsq � hps � rq; then

°
s dspBhpsqq �°

s dspys�rq which is bounded by
°
s ds�rpys�rq ¤ 1 by the monotony of xdsy.

Let xesy be a monotone approximation of d and x pBsy be a computable approx-

imation of B such that
°
esp pBsq is finite. We define increasing sequences xtsy of

stages and xxsy of numbers (lengths) as follows. We let t�1 � x�1 � 1. For s ¥ 0,
given ts�1 and xs�1, we search for a pair pt, xq such that t ¡ ts�1, x ¡ xs�1 and


 dtpxq   2�ps�1q;


 Btæx � pBtæx; and

 For all y   xs�1, 2etpyq ¥ dtpyq.

Such a pair pt, xq exists because lim es � lim ds, lim pBs � limBs, and limx dpxq � 0
(the limit condition for d). We let pts, xsq be the least such pair that we find. We
note that for all s ¥ 0, s   ts�1. We now let hpsq � ts�1 for all s ¥ 0.

We claim that

¸
dspBhpsqq ¤ 2

¸
esp pBsq �¸

s

2�s,

which is finite. For let s ¡ 0, and let ys be the least number y such that Bhpsqpyq �
Bhps�1qpyq; so

°
dspBhpsqq �

°
dspysq. There are two cases.

If ys ¥ xs�1, then dts�1
pysq   2�s, and by monotonicity, since ts�1 ¥ s, we have

dspysq   2�s.
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In the second case, we have ys   xs, xs�1, and so Bhps�1qpysq � Btspysq �pBtspysq and Bhpsqpysq � Bts�1
pysq � pBts�1

pysq. Hence pBts�1
pysq � pBtspysq. There

is some stage t P pts, ts�1s such that pBtpysq � pBt�1pysq. Let z be the least number

such that pBtpzq � pBt�1pzq. Since s ¤ ts, we have dspysq ¤ dtspysq. Since ys   xs�1,
we have dtspysq ¤ 2etspysq. Again by monotonicity, we have etspysq ¤ etpysq. And
since z ¤ ys, we have etpysq ¤ etpzq. Overall, we get

dspysq ¤ 2etpzq,

and etpzq is a summand in
°
esp pBsq, which is counted only against s, as hps�1q  

t   hpsq. �

To ensure that the set W obeys every cost function that A obeys, we need to
monitor all possible cost functions. So we need to list them: we need to show
that they are uniformly ∆0

2, indeed with uniformly computable monotone approx-
imations. This cannot be done effectively, because the limit condition cannot be
determined in a ∆0

2 fashion. However, we will not need the limit condition dur-
ing the construction, only during the verification, and so we list monotone cost
functions which possibly fail the limit condition.

Lemma 3.3. There is a list xdeye ω of all monotone cost functions (which possibly
fail the limit condition) bounded by 1, such that from an index e we can effectively
obtain a monotone approximation xdesys ω for de. We may assume that des ¤ 1 for
all e and s, and that for all e, s and x ¥ s we have despxq � 0.

Proof. The idea is delaying. In this proof we do not assume that cost functions
satisfy the limit condition, but we do assume that they are total. We need to
show that given a partial uniformly computable sequence xdsy we can produce,

uniformly, a total monotone approximation xpdsy of a cost function pd such that if

xdsy is a monotone approximation of a cost function d bounded by 1, then pd � d.
To do this, while keeping monotonicity, for every s   ω we let tpsq ¤ s be the
greatest t ¤ s such that after calculating for s steps, we see dupxq converge for all
pairs pu, xq such that u ¤ t and x ¤ t, each value dupxq is bounded by 1, and the
array xdupxqyu,x¤t is monotone (non-increasing in x and non-decreasing in u). We

let pdspxq � dtpsqpxq for all x ¤ tpsq, and pdspxq � 0 for all x ¡ tpsq. �

3.3. Discussion. Returning to our construction, recall that we are given a partial
approximation xAsy and a constant k, and need to produce a (total) monotone
approximation xcsy of a cost function c and a computable function g witnessing
that c is benign; and we need to ensure that if xAsy is a total approximation of a
∆0

2 set A and
°
cspAsq ¤ 2k, then there is a c.e. set W computing A which obeys

every cost function that B obeys.
The main tool we use is that of a change set. For any computable approximation

xBsy of a ∆0
2 set B, the associated change set W pxBsyq consists of the pairs px, nq

such that there are at least n many stages s such that Bs�1pxq � Bspxq. The
obvious enumeration xWsy of W enumerates a pair px, nq into Ws if there are at
least n many stages t   s such that Bt�1pxq � Btpxq. It is immediate that the
change set is c.e. and computes B. It is also not hard to show that for any monotone
approximation xdsy for a cost function we have¸

dspWsq ¤
¸
dspBsq,
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and so if xBsy witnesses that B obeys d � lim ds, then xWsy witnesses that W obeys
d as well. Nies used this argument to show that every K-trivial set is computable
from a c.e. K-trivial set.

Thus if A � limAs (if it exists) obeys some cost function d, we immediately get
a c.e. set computing A which also obeys d. The difficulty arises when we consider
more than one cost function. The point is that different cost functions obeyed by B
would require faster enumerations of B, and the associated change sets may have
distinct Turing degrees. In general, it is not the case that the change set for a
given enumeration of a ∆0

2 set B would obey all cost functions obeyed by B. For
an extreme example, it is not difficult to devise a computable approximation for
the empty set for which the associated change set is Turing complete. The point
is that a faster approximation of a ∆0

2 set may undo changes to some input Bpxq,
whereas the change set for the original approximation must record the change to
Bpxq (and also its undoing), and must pay costs associated with such recordings.

The idea of our construction is to let W be the change set of some speed-up of
the approximation xAsy. We define an increasing partial computable function f . If
xAsy is total, approximates A, and

°
cspAsq ¤ 2k, then f will be total, and we will

let W be the change set of the approximation
@
Afpsq

D
. Roughly, the role of f would

be to ensure that not too many undone changes in some Apxq would be recorded
by W and associated costs paid. To be more precise, we discuss our requirements
in detail.

Let
@
di
D
i ω

be a list of cost functions (possibly failing the limit condition)

bounded by 1, as given by Lemma 3.3 (with associated approximations
@
dis
D
), and

let
@
hj
D
j ω

be an effective list of all partial computable functions whose domain is

an initial segment of ω and which are strictly increasing on their domain. To save
indices, we renumber the list of pairs

@
di, hj

D
i,j ω

as xde, heye ω.

Let e   ω. The requirement Se states that if he is total and
°
despApf�heqpsqq ¤ 1,

then there is some total increasing computable function qe such that
°
despWqepsqq

is finite.

First, we explain why meeting the requirements is sufficient. Let d be a cost
function (with the limit condition) obeyed by A. Let M be a positive rational

bound on d, and let pd � d{M . Since summation is linear, A obeys pd. Let i be such

that pd � di. As f is total, the sequence
@
Afpsq

D
is a computable approximation

of A. By Proposition 3.2, there is an increasing computable function h such that°
dispApf�hqpsqq ¤ 1. There is an index e such that xdesy �

@
dis
D

and he � h. Then

requirement Se ensures that W obeys pd. By linearity again, W obeys d as well.

We now discuss how to use the cost function c to help meet a requirement Se.
Suppose, for now, that f is the identity function, and that qe � he. Let u � heptq
be a stage in rangehe. Let z be the least such that Au�1pzq � Aupzq. Then we have
to enumerate a pair pz, iq into Wu�1. This, in turn would mean that

°
despWqepsqq

will increase by at most det pzq. To keep
°
despWqepsqq bounded, we need to charge

this cost to some account. There are two possible accounts: the sum
°
cspAsq and

the sum
°
despAhepsqq.

Ideally, we define cu�1pzq ¥ det pzq. Let v � hept � 1q (which we may assume is
greater than u� 1). There are two possibilities:
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 If Avpzq � Aupzq (for example, if Apzq does not change back between stages
u�1 and v), then a cost of det�1pzq ¥ det pzq is added to the sum

°
despAhepsqq.


 If Avpzq � Aupzq then Avpzq � Au�1pzq and so a cost of at least cu�1pzq is
added to the sum

°
cspAsq. Since we defined cu�1pzq ¥ det pzq, again a cost

at least as large as that facing
°
despWqepsqq is borne by

°
cspAsq.

It is important to note that our action at stage u� 1 to assuage requirement Se

does not require us to wait until we see v � hept� 1q; it allows us to keep defining
c (and f) even if he is partial.

The catch is that we used the values of Au and Au�1 in order to define cu�1.
Our commitment to make xcsy total even if xAsy is not, means that our definition
of xcsy must be quicker than the unfolding of the values of xAsy. For s   ω, let s
be the greatest number below s such that Aupxq has converged by stage s for all
u, x ¤ s. Usually, s will be much smaller than s. At stage s we need to define cs,
but can read the values of xAuy only for u ¤ s.

This is where the function f comes into play. The speed-up of the approximation
of A that it allows us to define can be used to prevent unwanted elements from
entering W , if A changes back. We return to the situation above, this time with
f growing quickly, but still with qe � he. Suppose that n � heptq and u � fpnq,
and s is a stage with s � u � 1. We see that Au�1pzq � Aupzq, and so at stage s
we see that we would have liked to define cu�1pzq ¥ det pzq. But s is much greater
than u� 1; at stage u� 1, we were not aware of this situation, and so kept cu�1pzq
small. At stage s we would like to rectify the situation by defining s � fpn � 1q
and cspzq ¥ det pzq. Let v � fphept � 1qq, which is presumably greater than s. We
now have two possibilities:


 If Aspzq � Aupzq, that is, Apzq changed back from its value at stage u� 1,
then the change in Apzq between stages u and u� 1 need not be recorded
in W . In this case, W pays no cost related to z, and so we do not need to
charge anything to anyone.


 Otherwise, the change in Apzq from u to u � 1 persists at stage s, and
is recorded in W , which pays at most det pzq. If Avpzq � Aspzq, then
this change persists until stage v, and so the cost is paid by the sum°
det pApf�heqptqq. If Avpzq � Aupzq, then Apzq must have changed at some

stage after stage s, and so the cost can be charged to
°
cspAsq.

All is well, except that we did not consider yet another commitment of ours,
which is to make c benign (and in fact, to make the bound g uniformly computable
from the index k for the partial approximation xAsy). The idea is to again charge
increases in cspzq to either the sum

°
cspAsq or the sums

°
det pApf�heqptqq. Then

every time c increases beyond ε, one of these two sums would increase by at least
ε. Since these sums are bounded by 2k and 1, respectively, this would ensure
rpεq ¤ p1 � 2kq{ε, and thus c would be benign.

In the scenario above, before defining cspzq ¥ det pzq, we would like to have
evidence that Aspzq � Aupzq, so the cost would actually be paid by one of the
sums. To avoid this seeming circularity, we “drip feed” cost in tiny yet increasing
steps. In the scenario above, at stage s0 � s, we would increase cs0pzq by a little bit
– not all the way up to det pzq – and wait for a stage s1 ¡ s0 at which we see what
As0pzq is (that is, for a stage s1 such that s1 ¥ s0). If As0pzq � Aupzq then we can
let fpn � 1q � s0. We increased cs0pzq by something comparable to cu�1pzq, and
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the change in Apzq between stage u � 1 and stage s shows that this amount was
added to

°
cspAsq. If As0pzq � Aupzq, then we increase cs1pzq again (we can double

it), but again not necessarily all the way up to det pzq, and repeat, while delaying
the definition of fpn � 1q. Also, since there are infinitely many requirements Se,
we have to scale our target, so that only finitely many such requirements affect the
ε-increases in xcsy; that is, instead of a target of det pzq, we look for cpzq to reach
2�pe�1qdet .

The last ingredient in the proof is the function qe – we have not yet explained why
we need qe to provide an even faster speed-up of xWsy, compared with

@
Apf�heqpsq

D
.

Now the point is that as slow as the definition of f is, the function he shows its
values even more slowly. After all, even if xAsy and f are total, many functions he

are not. In the scenario above, there may be several stages added to the range of
f before we see that heptq � n. This means that in trying to define fpn � 1q, as
above, we may suddenly see more requirements Se worry about more inputs z, as
more stages enter the range of f � he. The argument regarding the scenario above
breaks down if the stage v � fphept� 1qq is not greater than the stage s.

We use the function qe to mitigate this problem. To keep our accounting straight,
we need to make the range of qe contained in the range of he (otherwise we
might introduce more changes which we will not be able to charge to the sum°
det pApf�heqptqq). In our scenario above, we now assume that n � heptq is in the

range of qe. The key now is that by delaying the definition of qeptq, we may assume
that Apzq does not change between stage u � fpnq and the last stage currently in
the range of f ; we use here the assumption that xAsy indeed converges to A. And
so the strategy above can work, because even though we declared new values of f
beyond u, at the time we declare that n P range qe, we see that these new values
would not spoil the application of our basic strategy.

3.4. Construction. Let xAsy be a uniformly computable sequence of partial func-
tions, and let k be a constant. As mentioned above, for all s   ω, we let s be the
greatest number below s such that for all x and u bounded by s, Aupxq converges
at stage s.

We define a uniformly computable sequence xcsy. We start with c0pzq � 2�z for
all z   ω. At every stage s, we measure our approximation for

°
cspAsq; this, of

course, would be the sum of the costs cupxuq, where u, xu ¤ s and xu is the least
x ¤ s such that Aupxuq � Au�1pxuq. If at stage s our current approximation for
this sum exceeds 2k, we halt the construction, and let c � cs.

Otherwise, we let ps ¤ s be greatest such that c
ps � c

ps�1 (ps � 0 if there is no
such stage). So cs � c

ps. Stage ps � 1 is the last stage before s at which we took
some action toward assuaging the fears of various requirements Se, which is a step
toward defining a new value of f . By the beginning of stage s ¡ 0, the function f
is defined (and increasing) on inputs 0, 1, . . . ,ms; we start with fp0q � 0. We will
ensure that fpmsq ¤ s.

For all e   ω, we define a function qe. To begin with, qe is defined nowhere.
Once we see that hep0qÓ, say at stage se, we define qep0q � hep0q. Henceforth, at
the beginning of stage s ¡ se, the function qe is defined on 0, 1, . . . , tes, is increasing,
and the range of qe is contained in both the range of he and the domain of f . That
is, qeptesq ¤ ms.
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Similarly to measuring the sum
°
cspAsq, for each e, we measure the sum°

det pApf�heqptqq; at stage s we add the costs det pytq, where t   s is such that
heptq ¤ ms, and yt is the least such that Afpheptqqpyq � Afphept�1qqpyq. The require-
ment Se is only active at stage s if this sum, as calculated at this stage, is bounded
by 1.

Let s ¡ 0. If s � s� 1, or s ¤ ps, then we let cs�1 � cs and do not change f
(so ms�1 � ms). Suppose otherwise. Let e   ms and z   ms. We say that the
requirement Se is worried about z at stage s if Se is active at stage s, tes is defined
(that is, s ¡ se), and:


 Aspzq � Afpqeptesqqpzq; and


 cspzq   2�pe�1qdetespzq.

Now there are two cases:

(1) If for all e   ms and z   ms, the requirement Se is not worried about
z at stage s, then we add ms � 1 to dom f by letting fpms � 1q � s (so
ms�1 � ms�1). Note that indeed fpms�1q ¤ s� 1. We also let cs�1 � cs.
In the discussion, we used s for the new value of f instead of s, but since
s ¥ ps, cs � cs, and so s will suffice.

(2) Otherwise, we let z be the least number about which some requirement
Se (with e   ms) is worried at stage s. For all y ¤ ms we let cs�1pyq �
maxtcspyq, 2cspzqu. For y ¡ ms we let cs�1pyq � cspyq. We do not change
f , so ms�1 � ms.

This determines cs, f , and ms�1 at the end of stage s. If ms�1 � ms then this is
the end of the stage. Otherwise, we now possibly make changes to the functions qe.
Let e   s such that se has been observed, that is, such that tes is already defined.
If there is some n P pqeptesq,ms�1s such that n is observed to be in the range of he

at stage s, and such that An1 æ pt
e
s � 1q is constant for n1 P rfpnq, fpms�1qs, then

we extend dom qe by letting qeptes � 1q be the least such n; so tes�1 � tes � 1. Note
that we can enquire about the values of An æ pt

e
s � 1q because fpms�1q � s and

tes ¤ ms   s.
If there is no such n, then we leave qe unchanged (so tes�1 � tes). This concludes

the construction.

3.5. Verification. The sequence xcsy is total. Each function cs is non-increasing,
and its limit is 0. For all z, cs�1pzq ¥ cspzq.

Lemma 3.4. For all s and z, cspzq ¤ 1.

Proof. By induction on s. The point is that if at stage s we let cs�1pyq � 2cspzq
for z as described in the construction, then for some e   ms we have

cspzq   2�e�1detespzq ¤ 1{2,

because by assumption det pzq ¤ 1 for all t and z. So

cs�1pyq � 2cspzq ¤ 1. �

Let c � lim cs. We will soon show that xcsy witnesses that c is benign, and so
c satisfies the limit condition. Moreover, the benignity bound for xcsy is uniformly
computable from k.

Fix ε ¡ 0 rational. LetN be such that 2�N   ε ¤ 2�N�1. Letm1pεq, . . . ,mrpεqpεq
be the markers associated with xcsy. After the current paragraph, we will never
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mention these again, so there should be no cause for confusion with the param-
eters ms of the construction. We would like to state that cmi�1pεq�1pmipεqq   ε
for all i, but unfortunately, this is only eventually true. Note that because we be-
gan by defining c0pzq � 2�z, the first several of these markers are predetermined:
mipεq � i�1 for all i ¤ N , and so our desired inequality fails for mipεq with i   N .
However, by a straightforward induction one can see that cspsq � 2�s for all s, and
thus cmi�1pεq�1pmipεqq   ε for all i ¥ N . Consequently, we define the set

S � tmipεq � 1 : i ¥ Nu.

Then for s0   s1 sequential elements of S, we have

cs1ps0 � 1q   ε ¤ cs1�1ps0 � 1q.

So if s P S is not the least element, we know that at stage s we defined cs�1 � cs
because some strategy e was worried about some element z   ms (here ms is the
parameter from the construction) with cspzq ¥ 2�N . We wish to separate out the
elements of S according to which strategy was worried, so we define the set Jpeq to
consist of those s P S other than the least element of S such that there is a z   ms

with cspzq ¥ 2�N and e worried about z at stage s. Note that multiple strategies
could be worried at the same stage, so Jpeq and Jpe1q might not be disjoint for
e � e1. This will not concern us.

Lemma 3.5. Jpeq is empty for all e ¥ N � 1.

Proof. If s P Jpeq, then there is some z with cspzq ¥ 2�N and e worried about z at
stage s. By the definition of “worry”, cspzq   2�pe�1qdetespzq. But de is bounded by

1, so 2�N   2�pe�1q, and thus e   N � 1. �

Lemma 3.6. Fix e   N � 1. If I is an interval of stages such that tes is defined
and constant on I, then |I X Jpeq|   N � e.

Proof. Let t be the unique value taken by tes on I. Then for s P I X Jpeq, from
the definition of “worry”, there is some z1   ms with cspz

1q   2�e�1det pz
1q. Since

det pzq � 0 for all z ¡ t, we know that z1 ¤ t.
Now, let I X Jpeq � ts1   s2   . . . u. We claim by induction that csi�1pzq ¥

2�N�i for all z   t. We begin with i � 1. Since s1 P Jpeq, we know that cs1�1pzq ¥
2�N�1 for all z ¤ ms1 . Since t ¤ ms1 , this includes all z ¤ t.

For the inductive step, since si�1 P Jpeq, there is some z1 ¤ t about which e is
worried at stage si�1. Let z2   msi�1 be the element chosen by the construction
for defining csi�1�1. Since z2 is chosen least, we know that z2 ¤ z1, so by mono-

tonicity and the inductive hypothesis we have csi�1pz
2q ¥ csi�1pz

2q ¥ 2�N�i. So

csi�1�1pzq ¥ 2�N�i�1 for all z ¤ t.
Now, if there were some sN�e P I X Jpeq, by the definition of “worry” we would

have that csN�e
pz1q   2�pe�1qdet pz

1q for some z1 ¤ t. But det pz
1q ¤ 1 and csN�e

pz1q ¥

csN�e�1�1pz
1q ¥ 2�pe�1q, a contradiction. �

Lemma 3.7. Fix e   N � 1. Suppose xr`i, riqy is a sequence of finite half-open
intervals such that:

(1) For each i, tes is defined and constant on r`i, riq;
(2) te`i � teri ;
(3) For each i, ri ¤ `i�1; and
(4) For each i, r`i, riq X Jpeq � H.
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Then the sequence has length at most 2N�e�1 � 2N�k.

Proof. The point is that each such interval contributes a distinct charge to either°
cspAsq or

°
despApf�heqpsqq.

For each i, let ti � te`i , ni � qeptiq and ki � qepteriq. Note that ni � qeptesq for
all s P r`i, riq. Fix some si P r`i, riq X Jpeq. Then there is some z   msi with
Asipzq � Afpniqpzq and 2�N ¤ csipzq   2�pe�1qdetipzq. Consider Afpkiqpzq.

If Afpkiqpzq � Asipzq, then Afpkiqpzq � Afpniqpzq, and ni, ki are in the range of
he. So there must be some s with ni ¤ heps�1q   hepsq ¤ ki and Apf�heqps�1qpzq �
Apf�heqpsqpzq. Since the range of qe is contained in the range of he and both are
increasing, we have s ¥ ti. So an amount of at least

despzq ¥ detipzq ¥ 2e�1csipzq ¥ 2�N�e�1

is added to
°
despApf�heqpsqq. Since ni   hepsq ¤ ki, the charges of this sort for

distinct i are disjoint, and so this case can occur at most 2N�e�1 times.
Otherwise, Afpkiqpzq � Asipzq. By the same argument as in Lemma 3.6, note

that z ¤ ti. So by qe’s choice of ki (which was made at stage ri� 1), we know that
fpkiq ¡ si. So there is some s P psi, fpkiqs with As�1pzq � Aspzq. By assumption
we have si ¥ psi, so csi � csi . So an amount of at least

cspzq ¥ csipzq � csipzq ¥ 2�N

is added to
°
cspAsq. Since ni is in the domain of f by stage si, we know fpniq ¤ si.

It follows that fpniq   s ¤ fpkiq, and thus the charges of this sort for distinct i are
disjoint, and so this case can occur at most 2N�k times. �

Lemma 3.8. rpεq ¤ N2 � 2N�k�1 �N .

Proof. Recall that rpεq � pN � 1q � |S|, and every element of S save the least
element occurs in some Jpeq. Thus

rpεq ¤ N �
¸
e

|Jpeq|.

By Lemma 3.5, we may restrict the sum to e   N � 1. To bound the size
of Jpeq, partition rse,8q into maximal intervals upon which tes is constant. Now,
restrict to those which contain an element of Jpeq. This collection may contain
a single interval of the form r`,8q, but all the rest will be of the form required
for Lemma 3.7. So there can be at most 2N�e�1 � 2N�k � 1 such intervals. By
Lemma 3.6, each such interval contains at most N � e� 1 many elements of Jpeq.

We thus have

rpεq ¤ N �
¸

e N�1

|Jpeq|

¤ N �
¸

e N�1

pN � e� 1qp2N�e�1 � 2N�k � 1q

¤ N �
¸

e N�1

N � 2N�k�1

¤ N �N2 � 2N�k�1. �

It follows that c is benign with the limit condition.
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We now assume that the sequence xAsy is total and converges to a limit A, and
that

°
cspAsq ¤ 2k. The construction is never halted.

Lemma 3.9. The function f is total.

Proof. Suppose, for contradiction, that f is not total; at some stage s� we define
the last value m� � ms� � 1 on which f is defined, and for all s ¡ s� we have
ms � m�. No function qe is extended after stage s�, so for all e   ω, the value tes
for all s ¡ s� is fixed.

Because xAsy is total, the function s ÞÑ s is unbounded. So there are infinitely
many stages s ¡ s� for which s ¡ ps; let T be the collection of these stages. By
assumption, at each stage s P T there is some number z   m� about which some
requirement Se (for e   m�) worries at that stage. For e   m� and z   m�, let
T pe, zq be the collection of stages s P T at which Se worries about z. There are
some e   m� and z   m� such that T pe, zq is infinite.

Let t � tes for s P T . At each stage s P T pe, zq we have cspzq   δed
e
t pzq. At

stage s we define cs�1pzq � 2cspyq for some y ¤ z, and cspyq ¥ cspzq. We note
that cspzq ¡ 0 because c0pzq � 2�z. This quickly (i.e. in z steps) leads to a
contradiction. �

We let W be the change set of
@
Afpnq

D
. Then W computes A. It remains to

show that every requirement Se is met. Fix e   ω. Suppose that he is total, and
that

°
det pApf�heqptqq ¤ 1.

Lemma 3.10. The function qe is total.

Proof. Suppose, for contradiction, that qe is not total; a final value t� is added to
dom qe at some stage s0, so tes � t� for all s ¡ s0. We note that Se is active at
every stage.

Let s1 ¡ s0 be a stage such that for all s ¥ s1, Asæ t
� � 1 � Aæ t� � 1. Let

k   ω such that fphepkqq ¡ s1. By Lemma 3.9, there is some stage s ¡ s1 such that
ms�1 ¡ ms and ms ¡ hepkq. Then at stage s we are instructed to define qept��1q,
a contradiction. �

The following lemma concludes the proof of Theorem 1.13.

Lemma 3.11. The sum
°
det pWqeptqq is finite.

Proof. For t P ω, let yt be the least number such that Wqeptqpytq � Wqept�1qpytq.
We need to show that

°
det pytq is finite.

Fix t. We may assume that yt   t, for otherwise det pytq � 0. Let yt � pzt, kq
for some k   ω. So zt ¤ yt (using the standard pairing function), and Afpnqpztq �
Afpn�1qpztq for some n P pqept � 1q, qeptqs. Taking the least such n, we have
Afpn�1qpztq � Afpqept�1qqpztq and so Afpnqpztq � Afpqept�1qqpztq.

Now there are two possibilities: either Afpnqpztq � Afpqeptqqpztq, or not.

In the first case, we have Afpqeptqqpztq � Afpqept�1qqpztq. Since both qept�1q and
qeptq belong to the range of he, and qepxq ¥ hepxq for all x, we see that there is some
x ¥ t such that Afphepxqqpztq � Afphepx�1qqpztq. This means that an amount of at
least dexpztq ¥ det pztq is added to the sum

°
det pApf�heqptqq, at a stage x such that

hepxq P pqept � 1q, qeptqs. Thus the charges for distinct such stages t are disjoint.
This shows that the total contribution to the sum

°
det pWqeptqq by stages t falling

under the first case is at most 1.
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In the second case, let s be the stage at which n is added to dom f , that is,
n � ms�1 ¡ ms. The main point is that tes � t � 1. For qeptq ¡ n � ms, so
tes   t or tes is undefined if s   se. But if tes   t� 1 or s   se, then qept� 1q is not
defined before stage s. Let u ¥ s be the stage at which qept � 1q is defined. The
number mu�1 is in the range of he, and mu�1 ¥ ms�1 � n. Since zt ¤ t � 1, the
condition for defining qept� 1q at stage u implies that Afpmqpztq is constant for all
m P rqept� 1q,mu�1s, but Afpqept�1qqpztq � Afpnqpztq.

At stage s, Se is not worried about zt (note that zt ¤ t � 1 � tes   ms). The
requirement Se is active at stage s. We have fpnq � s, and tes � t � 1, and
Afpqept�1qqpztq � Afpnqpztq, which rewriting gives Afpqeptesqqpztq � Aspztq. So the
only reason that Se does not worry about zt at stage s is that cspztq ¥ δed

e
t pztq. Now

fpnq � s ¡ ps, and cspztq � c
pspztq; so altogether, we see that cfpnqpztq ¥ δed

e
t pztq.

Because this is the second case, we have Afpnqpztq � Afpqeptqqpztq, so there is
some stage u P pfpnq, fpqeptqqs such that Aupztq � Au�1pztq. As u ¡ fpnq we have
cupztq ¥ cfpnqpztq ¥ δed

e
t pztq. So an amount of at least δed

e
t pztq is added to the

sum
°
cspAsq. We have u P pfpqept � 1qq, fpqeptqqs so the charges for distinct t

are disjoint. So the total amount contributed to the sum
°
det pWqeptqq by stages t

falling under the second case is bounded by 2k{δe, which is finite. �
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Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore, 2003.
Singapore Univ. Press.

[10] Rodney G. Downey, Denis R. Hirschfeldt, André Nies, and Sebastiaan A. Terwijn. Calibrating
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