
STRONG JUMP TRACEABILITY AND DEMUTH

RANDOMNESS

NOAM GREENBERG AND DANIEL D. TURETSKY

Abstract. We solve the covering problem for Demuth randomness, showing

that a computably enumerable set is computable from a Demuth random set if
and only if it is strongly jump-traceable. We show that on the other hand, the

class of sets which form a base for Demuth randomness is a proper subclass of

the class of strongly jump-traceable sets.

1. Introduction

The notion of relative information content for sets of natural numbers was first
formalised by Turing [41]. A set B contains at least as much information as a
set A if given answers to membership queries regarding B, as a “black box”, one
can compute A by following a finite algorithm. Colourful terminology envisions a
computer with access to an “oracle” (the set B). Formally, we say that A is Turing
reducible to B. The information content of a set A is captured by its Turing degree,
the collection of all sets which are bi-reducible (or Turing equivalent) to A.

It is not surprising that much complexity is observed in the structure of the
Turing degrees (partially ordered by the relation induced by Turing reducibility).
After all, we can describe sets with much information, beginning with the halting
problem (the set of halting Turing machines), through true arithmetic (the set of
correct first-order statements about the semi-ring of natural numbers), and up to
sets which code complicated set-theoretic information such as sharps. A number of
results formalise the intuition that the structure of the Turing degrees itself is as
complicated as possible, for example Simpson’s [39] result showing that the theory
of the structure is equivalent to second-order arithmetic.

If the Turing degrees are complicated because we can devise complex sets of
numbers, a natural question to ask is whether this complexity can be contained
by considering the degrees of only fairly simple sets. Studied more than any other
collection of degrees is the sub-structure of degrees of computably enumerable sets
– those sets which can be enumerated effectively, but membership thereof cannot
necessarily be effectively decidable. In arithmetic, these are the sets which are
definable by very simple formulas, allowing only a single existential quantifier, which
corresponds to one operation of unbounded search.

The computable sets – those which contain the least amount of information – are
c.e., as well as the halting problem, which is the most complicated c.e. set. Again,
the main thrust of research since the 50’s was to find whether the structure of the
c.e. degrees is complicated or not. Beginning with Friedberg and Muchnik’s [22, 33]

2010 Mathematics Subject Classification. 03D25,03D32.
Both authors were supported by the Marsden Fund of New Zealand, the second author as a

postdoctoral fellow.

1

2 NOAM GREENBERG AND DANIEL D. TURETSKY

construction of an incomplete c.e. degree (showing the structure has more than two
elements), via minimal pair results [32, 42] refuting Shoenfield’s conjecture that
the structure is saturated and so homogenous, up to coding results [26, 38], showed
that again, the structure of c.e. degrees is as complicated as possible (with theory
equivalent to first-order arithmetic). So even sets which are easily described and
do not contain outlandish information can interact in very complicated ways. To
date, seemingly simple problems, such as whether there are intermediate definable
degrees, whether the structure is rigid, or identifying the finite lattices embeddable
in the structure, remain open.

One path to further understanding of the structure of the c.e. degrees is to look
not at particular degrees, but to instead look at classes of degrees. There we have
a number of nice definability results (as in [2, 20, 16]), usually showing that there
are several ways of understanding the degrees by separating them into “simple”
and “complex” degrees, and sometimes even giving a hierarchy of such simplicity.
In particular, attention is given to lowness notions, classes of c.e. degrees which
resemble the computable ones in some ways. The striking aspect of this study is
the relationship we sometimes get between the algebraic structure of the degrees
(as a partial ordering) and the dynamic properties of the degrees in a particular
class. Each nicely behaved class is characterised by the way sets of those degrees
can be enumerated. Often this captures a class of constructions which can be
performed by degrees in the class. For example, the promptly simple degrees are
those which allow prompt permitting [2]; the array-non-recursive degrees [19] are
those which allow multiple permitting; and the K-trivial degrees are those which
have an enumeration which is amenable to the decanter method [36]. In the nice
cases, these dynamic properties are matched up with the algebraic structure of the
classes, sometimes even giving natural definitions of the class, as in the cases of
the promptly simple degrees, which coincide with the non-cappable degrees [2]; the
contiguous degrees [20, 1]; and the totally ω-c.a. degrees [14].

Among the notions of lowness, two which have been studied are K-triviality
[40, 18] and strong jump-traceability [21]. These classes are collections of degrees
of sets which contain very little information: they are either useless as oracles
in performing some tasks, are easy to compute, or can be described as efficiently
as computable sets. Again, these classes are characterised by constructions – the
decanter method for K-trivials, and the box-promotion method for strong jump-
traceable degrees – which exhibit fascinating dynamics not present in previously
known constructions. And the close proximity of these sets to the computable ones
allows these two collections to exhibit pleasing regularity in terms of their algebraic
structure, for instance they form ideals [36, 6]. Thus, new light is shed on the c.e.
degrees, and the notion of computation as a whole, by investigating these classes.
The full picture, though, comes to light only when considering interactions with
randomness.

Randomness is quite the opposite of computable enumerability. Random sets –
those which escape a variety of statistical tests – are by nature hard to pin down
individually, and cannot have concise definitions. In general, relative information
content, i.e. Turing reducibility, has limited use when considering randomness. The
intuition is that random sets contain much “white noise”, and so are both far
from being computable, but also cannot contain useful information. The quickly
expanding study of algorithmic randomness (see [17, 37]) analyses the notion via

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 3

a different approach – giving a hierarchy of randomness notions, which attempts
to capture the notion of amount of randomness by specifying, for each notion of
randomness, the collection of statistical tests which define it. Unlike the Turing
degrees, this hierarchy is almost linear.

It would seem that random sets and computably enumerable sets are so different,
that there could be no interaction between them. And mostly, this intuition is
correct; for example, no incomplete c.e. degree can compute a random set, and
a sufficiently random set cannot compute a non-computable c.e. set. However,
surprisingly, some interaction using Turing reducibility is observed between random
sets and very low c.e. sets. The first step was taken by Kučera [29], who showed
that every random set which itself is computable from the halting problem, does in
fact compute a non-computable c.e. set. He used this result to give an injury-free
solution to Post’s problem.

Recently it was found that this interaction between random sets and c.e. sets
concentrates on the very low c.e. sets. Hirschfeldt, Nies and Stephan [27] showed
that every c.e. set which is computable from an incomplete Martin-Löf random set is
K-trivial. Greenberg, Hirschfeldt and Nies [25, 24] showed that a c.e. set is strongly
jump-traceable if and only if it is computable from many random sets. Incidentally,
together, these results show the containment of the strongly jump-traceable degrees
in the K-trivial degrees, a result earlier obtain by a combinatorial argument in [6].
Since unlike K-triviality, strong jump-traceability has a purely discrete definition,
avoiding any reference to Lebesgue measure or to prefix-free Kolmogorov complex-
ity, the result from [24] shows that this notion has “dual nationality”: it lives in
both the discrete and the continuous worlds. In particular, this was the first in-
stance of a definition of a class of c.e. degrees using their interaction with random
sets. Consequently, attempts were made to go the other way and give a discrete,
combinatorial characterization of K-triviality, using the notion of traceability, but
the problem of doing so remains open.

After Greenberg [23] constructed a ∆0
2 Martin-Löf random set which only com-

putes strongly jump-traceable c.e. sets, Kučera and Nies [30] showed that any c.e.
set computable from any Demuth random set is strongly jump-traceable. Demuth
randomness was introduced by Demuth [8, 9] in order to study differentiability of
constructive functions; he showed that every constructive function satisfies the Den-
joy alternative at any Demuth random real (the converse fails, but it is known that
some strengthening of Martin-Löf randomness is required; see for example [10]).
Demuth randomness is a strengthening of Martin-Löf randomness which has some
nice properties which resemble Cohen 1-genericity: it implies generalised lowness
(and so in particular incompleteness), but unlike weak 2-randomness is compatible
with being ∆0

2.
Kučera’s and Nies’s result, much like the Hirschfeldt-Nies-Stephan result men-

tioned above, raises the question of whether the converse holds. In this paper, we
provide a positive solution to this problem.

Theorem 1.1. A c.e. set is strongly jump-traceable if and only if it is computable
from some Demuth random set.

Theorem 1.1 is the analogue of the recent covering result for difference random-
ness, which characterises K-triviality ([3, 4, 7]). We note that recently, the authors,
together with D. Diamondstone, showed [12] that every strongly jump-traceable set
is computable from a computably enumerable one. Thus we get a characterisation

4 NOAM GREENBERG AND DANIEL D. TURETSKY

of the strongly jump-traceable sets: a set A P 2ω is strongly jump-traceable if and
only if it is computable from a c.e. set which is computable from a Demuth random
set.

The proof of Theorem 1.1 is involved, combining novel techniques with the box-
promotion method used in the investigation of strongly jump-traceable sets. This
is the first example using the full power of strong jump-traceability, rather than an
approximation in the form of h-jump-traceability for some sufficiently slow growing
order function h. A general argument in the style of [24] is impossible here, since
no ∆0

2 Demuth random set computes all strongly jump-traceable c.e. sets. The
Demuth random set constructed computing a given c.e., strongly jump-traceable
set can be made ∆0

3; it remains open whether it can be made ∆0
2. We also do

not know yet if there is a single Demuth random set which computes all strongly
jump-traceable sets.

Being a base for a notion of randomness is a lowness notion emanating from
the interplay of randomness and Turing reducibility. If R is a relativisable class
of randomness, then we say that a set A is a base for R if there is some X P RA

which computes A. That the cone above A intersects RA is taken as evidence that
A is too weak to comprehend that this cone is null. The robustness of the class of
K-trivial degrees is witnessed by its coincidence with the class of bases for Martin-
Löf randomness (Hirchfeldt, Nies and Stephan [27]). Nies [35] showed that every
base for Demuth randomness is strongly jump-traceable, and asked if the converse
holds. That is, whether Theorem 1.1 can be improved to produce not merely a
Demuth random set computing a given strongly jump-traceable set A, but indeed
a DemuthA random set computing A. We show that the converse fails.

Theorem 1.2. There is a strongly jump-traceable c.e. set which is not a base for
Demuth randomness.

Nies showed that the class of c.e. bases for Demuth randomness properly contains
a sub-ideal of the c.e. jump-traceable sets, namely those c.e. sets computable from
every ω2-computably approximable Martin-Löf random sets. Thus, the collection
of bases for Demuth randomness forms a new class, about which we know close to
nothing. For example, it is not clear if it induces an ideal in the Turing degrees.

It is easy to prove that every K-trivial set is a base for Martin-Löf randomness,
once it is shown that K-triviality implies lowness for Martin-Löf randomness. That
is, if A is K-trivial, then every Martin-Löf random set is Martin-Löf random relative
to A. By the Kučera-Gács theorem, A is computable from a Martin-Löf random set
Z (indeed every K-trivial set is ∆0

2, so A is computable from Chaitin’s Ω), and so
Z witnesses that A is a base for Martin-Löf randomness. A näıve attempt to show
that every c.e., strongly jump-traceable set is a base for Demuth randomness would
start by utilising Theorem 1.1 as an analogue to the Kučera-Gács theorem, and
then go on to show that every strongly jump-traceable set is low for Demuth ran-
domness. Unfortunately, the latter fails. Indeed, Downey and Ng [15] showed that
lowness for Demuth randomness implied hyperimmune-freeness, whereas Downey
and Greenberg [13] showed that every strongly jump-traceable set is ∆0

2, and so
the only strongly jump-traceable sets that are low for Demuth are the computable
ones.

The proof of Theorem 1.2 relies on the fact that the full relativisation of Demuth
randomness to an oracle A allows for an A-computable bound on the number of

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 5

mind-changes for the value of the function giving the index for components of a
Demuth test. So does the Downey-Ng theorem. Further investigations into low-
ness for Demuth randomness [5] yield the observation that the partial relativisation
of Demuth randomness, which allows only computable bounds on the number of
changes of each component of a test, is much better behaved. As a relation be-
tween oracles and random sets, this partial relativisation, denoted by DemuthBLR

can be seen as either a separate notion of randomness (which coincides with De-
muth randomness on the hyperimmune-free oracles), or as in some way a “correct”
relativisation of Demuth randomness. Evidence for this come from the exact char-
acterisation of lowness for DemuthBLR by a tracing notion [5], and the fact that
van-Lambalgen’s theorem holds for DemuthBLR but not for the full relativisation
of Demuth randomness [11].

Now we see another way in which DemuthBLR is better behaved than the full
relativisation of Demuth randomness: we can fully characterise the sets which are
bases for DemuthBLR. We first note that Nies’s result from [35] actually shows that
every set which is a base for DemuthBLR is strongly jump-traceable. We also note
that by [5], every superlow c.e. set, and so certainly every strongly jump-traceable
c.e. set, is low for DemuthBLR. We can now carry out the näıve plan discussed
above. Armed with Theorem 1.1 and with the fact, mentioned above, that every
strongly jump-traceable set is computable from a c.e. one, we get:

Corollary 1.3. The sets which are bases for DemuthBLR are precisely the strongly
jump-traceable sets.

We prove Theorem 1.1 in Section 3, and Theorem 1.2 in Section 4.

2. Definitions of Demuth randomness and other notions

We begin with some basic notation which we will need later.

Definition 2.1. For d P ω, let ωrds � txn, dy : n P ωu, where x�, �y : ω � ω Ñ ω is
the standard pairing function.

For finite or infinite binary strings σ, τ P 2 ω Y 2ω, we write σ ¤ τ to indicate
that σ is a (not necessarily proper) initial segment of τ , and σ τ to indicate that
σ is a proper initial segment of τ .

We next recall the definition of strong jump-traceability.

Definition 2.2.

(1) An order function is a computable, nondecreasing and unbounded function
h : ω Ñ ωzt0u.

(2) A c.e. trace is a uniformly c.e. sequence of finite sets. A c.e. trace T �
xT pxqyx ω traces a partial function ψ : ω Ñ ω if for all x P domψ, ψpxq P
T pxq.

(3) If h is an order function, then an h-trace is a c.e. trace T � xT pxqy such
that for all x ω, |T pxq| ¤ hpxq.

(4) A set A is strongly jump-traceable if for every order function h, every A-
partial computable function ψ is traced by an h-trace.

Next, we discuss notation for subsets of Cantor space 2ω, and define Demuth
randomness.

6 NOAM GREENBERG AND DANIEL D. TURETSKY

Definition 2.3. A sequence of functions xfsys ω is an approximation of a function
f : ω Ñ ω if for all n, for all but finitely many s, fspnq � fpnq. We often write
fpn, sq for fspnq. A computable approximation is a uniformly computable sequence
which is an approximation. Shoenfield’s limit lemma says that a function has a
computable approximation if and only if it is computable from 01.

If xfsy is an approximation, then the associated mind-change function mxfsy is
defined by

mxfsypnq � # ts : fs�1pnq � fspnqu .
A computable approximation xfsy is an ω-computable approximation if mxfsy is
bounded by a computable function. A function is ω-computably approximable (or
ω-c.a.) if it has an ω-computable approximation.

Definition 2.4. For a finite binary string σ P 2 ω, we let vσw, the clopen subset
defined by σ, be the collection of reals X P 2ω which extend σ. If W is a set of
strings, then

vW w �
¤
σPW

vσw

is the open (or Σ0
1) subset of 2ω defined by W . If W is c.e., then vW w is called

effectively open (or Σ0
1). By compactness, a subset V of Cantor space is clopen if

and only if V � vDw for some finite subset D of 2 ω.
If W � vW w and xWsy is an effective enumeration of the c.e. set W , then we

often write Ws for vWsw. We call xWsy an effective enumeration of W.

We interrupt the stream of definitions to remark that we will be using Lachlan’s
notation [31] of appending the stage in square brackets to a complicated expression
to indicate that every element of the expression is intended to be evaluated at
that stage. For example, if xfsy is a computable approximation of a function f ,
and Vs is an effective enumeration of V, then we write VY vWfpnqw rss rather than
Vs Y vWfspnq,sw.
Definition 2.5. A test is a sequence xVnyn ω of open subsets of Cantor space 2ω

such that for all n, λpVnq ¤ 2�n; here λ denotes the fair coin measure on Cantor
space. We say that a set X P 2ω passes the test xVny if X P Vn for only finitely
many n. Otherwise, the set X fails the test. The collection of sets which fail a test
is a null class.

A test xVny is effectively open if each Vn is an effectively open subset of Cantor
space. If xVny is effectively open, then an index function for xVny is a function
f : ω Ñ ω such that for all n, Vn � vWfpnqw; here xWey is an effective list of all
c.e. sets. Thus, for example, an effectively open test is a Martin-Löf test if it has
a computable index function. A Demuth test is an effectively open test which has
an ω-c.a. index function. A set X P 2ω is Demuth random if it passes all Demuth
tests.

Rather than working with Demuth tests, it will be convenient to work with a
more restrictive (yet equally powerful) notion of tests.

Definition 2.6. A test xVny is clopen if each Vn is a clopen subset of 2ω. If xVny
is a clopen test, then a clopen index function for xVny is a function f : ω Ñ ω such
that for all n, Vn � vDfpnqw; here xDey is an effective list of all finite sets of strings.
Thus, for example, a Kurtz test is a clopen test which has a computable clopen

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 7

index function. A Demuth clopen test is a clopen test which has an ω-c.a. clopen
index function.

The following lemma is implicit in [28]. We give a proof for completeness.

Lemma 2.7. A set X P 2ω is Demuth random if and only if it passes every clopen
Demuth test.

Proof. Every clopen Demuth test is a Demuth test. Hence every Demuth random
set passes every clopen Demuth test.

For the converse, we show that for any Demuth test xVny there is a clopen
Demuth test xUny such that every set which fails the test xVny also fails the test
xUny. Let xVny be a Demuth test.

The idea is to copy
�
n Vn into various Un’s in discrete steps. For each Un, we

set a threshold εpnq. We then copy Vn into Un only at stages at which the measure
of Vn passes some integer multiple of εpnq. At other stages, the part of Vn which
hasn’t yet been copied to Un is split up and copied to Um for various m ¡ n,
depending on the measure of that part and its relation to the thresholds εpmq. At
a later stage, if the measure of Vn crosses another integer multiple of εpnq, we recall
that part of Vn which has been passed to Um for m ¡ n, and copy it to Un. Because
εpnq is fixed, Un is changed only a finite number of times, and so Un is clopen.

Actually, this description is not quite correct, because we can set εpnq to be
greater than λpVnq, so λpVn,sq never crosses an integer multiple of εpnq. What we
in fact track, when defining Un, is the total measure of the parts of Vk,s for k n
which are passed down to Un.

To assist with the construction, we will define auxiliary clopen sets xSn,sy. These
consist of the measure passed on to Un by Un�1, together with Vn,s. Let f be an
ω-c.a. index function for xVny, and let xfsy be an ω-computable approximation for
f . We let Vn,s � vWfspnq,sw. Since each set We,s is finite, each set Vn,s is clopen
(in fact, a canonical index d such that Wfspnq,s � Dd can be obtained effectively

from n and s). We may assume that for all n and s, λpVn,sq ¤ 2�n, and that for
all s, for all n ¥ s, Vn,s � H.

For all n, we let εpnq � 2�n.

Construction. At stage 0, we let Un,0 � Sn,0 � H for all n. At stage s ¡ 0 we
define Sn,s and Un,s for all n by recursion on n. We first let S0,s � H. Let n ω,
and suppose that Sn,s is already defined.

If

λ pSn,szUn,s�1q ¡ εpnq,
then Un needs to change; we let Un,s � Sn,s, and for all m ¡ n we let Um,s �
Sm,s � H. Otherwise, we let Un,s � Un,s�1, let

Sn�1,s � Vn,s Y pSn,szUn,sq ,
and proceed to define Un�1,s.

Verification. For all n and s,

λ pSn�1,sq ¤ εpnq � λ pVn,sq ¤ 2�n�1.

Hence, for all n and s, λ pUn,sq ¤ 2�n�1.
We also see that even though this was not required for the construction to be

computable, every stage of the construction is in fact finite. We show, by induction

8 NOAM GREENBERG AND DANIEL D. TURETSKY

on s, that for almost all n, Sn,s � Un,s � H. Suppose this holds at stage s � 1.
Suppose, for contradiction, that for infinitely many n we have Sn,s � H; so no Un
“acts” at stage s, and for all n we have Un,s � Un,s�1. Since for all n ¥ s, Vn,s � H,
and for almost all n, Un,s�1 is empty, for almost all n, we have Sn�1,s � Sn,s; so
we are assuming that this stable set is nonempty, and hence has positive measure.
Since εpnq Ñ 0, there is some n such that εpnq λpSn,sq, and this n would act at
stage s and set Sm,s � H for all m ¡ n, yielding a contradiction. Hence, for almost
all n, Sn,s � H; this implies that for almost all n, Un,s � Un,s�1 � H.

There is a uniformly computable sequence xhsy of functions such that for all n
and s, Un,s � vDhspnqw.
Claim 2.7.1. The sequence xhsy is an ω-computable approximation.

Proof. Fix n ω. Let s0 ¡ 0 be a stage s such that Un,s � Un,s�1. Suppose further
that for all m n, Um,s0 � Um,s0�1. Hence at stage s0 we define Un,s0 � Sn,s0 ,
but for all m n, we have Sm�1 � Vm Y pSmzUmq rs0s.

Suppose that there is some stage s ¡ s0 such that Un,s � Un,s�1; let s1 be the
least such stage. We claim that there is some m n for which one of the following
holds:

(1) Um,s1 � Um,s1�1.
(2) There is some s P rs0, s1q such that fspmq � fs�1pmq.
(3) λ pVm,s1zVm,s0q ¡ εpnq{n.

Suppose that (1) and (2) do not hold. To show that (3) holds, we show that in this
case,

Sn,s1zUn,s0 �
¤
m n

pVm,s1zVm,s0q ;

(3) then follows from the fact that the minimality of s1 ensures that Un,s1�1 � Un,s0 ,
and from the fact that λ pSn,s1zUn,s1�1q ¡ εpnq. To verify the containment, let
X P Sn,s1zUn,s0 . Since (1) does not hold, for allm n, Sm�1 � VmYpSmzUmq rs1s.
By minimality of s1, and since (2) does not hold, for all m n, Um,s1 � Um,s0 .
Since Sn �

�
m n Vm rs1s, there is some m n such that X P Vm,s1 ; pick m� to be

the greatest such m. Then X P Sn,s1 implies that for all m P pm�, nq, X R Um,s1 .
Now if X P Vm�,s0 , then the fact that X R Vm,s0 for all m P pm�, nq would imply
that X P Sn,s0 and so X P Un,s0 . Hence X P Vm�,s1zVm�,s0 as required.

This analysis allows us to recursively define a bound kpnq for mxhsy. Let g be a
bound for mxfsy. We can let kp0q � 0, as U0,s � H for all s. If kpmq is defined for
all m n, then we can let

kpnq �
� ¸
m n

kpmq
�
�
� ¸
m n

gpmq
�
� n2

εpnq .

Note that k depends only on g and not on f . �

Let h � lims hpsq; for n ω, let Un � vDhpnqw � lims Un,s. Hence xUn�1yn ω is
a clopen Demuth test. It remains to see that every set X P 2ω which fails the test
xVny also fails the test xUn�1y. This follows from the following claim.

Claim 2.7.2. For all n ω,

Vn �
¤
m¡n

Um.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 9

Proof. Let n ω and let X P Vn. Let s0 be a stage sufficiently late so that for all
s ¥ s0, X P Vn,s, and so that for all s ¥ s0, Un,s � Un,s�1. Hence for all s ¥ s0,
we let Sn�1 � Vn Y pSnzUnq rss, and so for all s ¥ s0, X P Sn�1,s.

First, we see that for all s ¥ s0 there is some m ¡ n such that X P Um,s. We
saw above that there is some m ¡ n such that Sm,s � H; so there is some m ¡ n
such that X P Sm,szSm�1,s. Either Um,s � Sm,s, or Sm�1,s � Sm,szUm,s; in either
case, X P Um,s. For s ¥ s0, let mpsq be the least m ¡ n such that X P Um,s.

The function mpsq is nonincreasing. To see this, let s ¡ s0, and suppose that
mpsq � mps � 1q. Suppose, for contradiction, that mpsq ¡ mps � 1q. Then for all
m P pn, ks, we have X R Um,s. Since X P Uk,s�1, we have Uk,s � Uk,s�1. This
implies that for all m ¡ k, Um,s � H, contradicting mpsq ¡ m and X P Umpsq,s.

Hence m � limsmpsq exists, and for almost all s, X P Um,s. Hence X P Um, as
required. �

This completes the proof of Lemma 2.7. �

We would like to draw the reader’s attention to certain terminology that was
used in the last proof, and will be used throughout the paper. In a couple of
instances, the word “measure” meant “a nonempty clopen subset of Cantor space”,
as in “the measure passed on to Un by Un�1”. This incorrect usage of the word
“measure” makes for smoother sentences, but also emphasises that we often don’t
quite care which particular nonempty clopen sets we are dealing with, but rather
care about their measure.

To keep future calculations smoother, we employ quick tests.

Definition 2.8. A test xVny is quick if for all n, λpVnq ¤ 2�2n.

Lemma 2.9. A set X is Demuth random if and only if it passes every quick clopen
Demuth test.

Proof. Let xVny be a clopen Demuth test. For n ω, let Un � V2n�1 Y V2n�2.
Then

λpUnq ¤ 2�2n�1 � 2�2n�2 2�2n,

so xUny is a quick test, and it is easy to see that xUny is a clopen Demuth test. If
X fails xVny then it fails xUny. �

In general, it can be shown that if xqny is a computable, nonincreasing sequence
of rational numbers, and

°
n qn converges to a computable real number, then a set

is Demuth random if and only if it passes all clopen Demuth tests xVny satisfying
λpVnq ¤ qn for all n. In this paper we do not make use of this more general fact.

We fix an enumeration of quick clopen Demuth tests. Using a uniform enumer-
ation of all ω-c.a. functions, we fix an effective list

@
Ven,s

D
of clopen sets (that is,

canonical indices are given effectively), and an effective list xgey of partial com-
putable functions, such that:

 For all n, e and s, λpVen,sq ¤ 2�2n;

 For all n and e, if n P dom ge, then #

s : Ven,s � Ven,s�1

(¤ gepnq;

 For all n and e, Ven,0 � H;

 For all n and e, if n R dom ge, then for all s, Ven,s � H;

 For all e, the domain of ge is an initial segment of ω;

10 NOAM GREENBERG AND DANIEL D. TURETSKY

 For every quick clopen Demuth test xVny, there is an e such that ge is total
and Vn � Ven, where Ven � lims V

e
n,s; and

 g0 is total.

3. Proof of Theorem 1.1

By the Kučera-Nies result from [30], it is sufficient to show that every strongly
jump-traceable c.e. set is computable from some Demuth random set. Let A be a
strongly jump-traceable c.e. set. Let xAsy be an effective enumeration of A.

We want to construct a Demuth random set that computes A. To do so, we
enumerate a Turing functional Γ. A typical axiom, enumerated into Γ at a stage s
of the construction, will map a clopen subset C of Cantor space to some initial
segment of As. At the end we let, for X P 2ω,

ΓX �
¤
α vfor some clopen C we have X P C & pC, αq P Γw.

Because A is c.e., to keep Γ consistent it is sufficient (and necessary) to ensure that
if C is added to the domain of Γ at stage s, then C is disjoint from the error set:

Es �

Y P 2ω : ΓYs ¦ As

(
.

Our aim is to construct Γ so that there is some X such that ΓX � A, and X passes
every Demuth test. There are therefore three tasks at hand:

 Ensure that X R E, where

E �
¤
s

Es �

Y P 2ω : ΓY ¦ A

(
;

 Ensure that for all k, |ΓX | ¥ k;

 Ensure that for all e such that ge is total, there is some ne such that for all
n ¥ ne, X R Ven.

3.1. Towards a full strategy. We begin by illustrating simplified approaches
to the construction, explain what goes wrong, and discuss the added complexity
needed to address these issues.

For every k, we would like to have some clopen set Uk with ΓpUkq � A æk. We
would also like these to be nested, so that Uk�1 � Uk. Then by compactness there
is some X P �k U

k. For such an X we would have ΓX � A.
The simplest approach to constructing these is to simply select some clopen

set Uk and define ΓpUkq � Ak æk. Of course, assuming A is non-computable, there
will be k such that Ak æk� Aæk. When we see Aæk change, all the measure in Uk

becomes “bad” (it enters E), so we need to select new measure from Uk�1 and use
that to redefine Uk (defining ΓpUkq � As æk for this new Uk). Now given A æk�1,
Aæk can change at most once, and so we can prepare for this eventuality by splitting
every version of Uk�1 into two potential versions for Uk. For understanding the
current construction, it is best to view this dynamically. We imagine that when
Uk�1 is established, it carves out a piece of itself and passes it down as Uk to an
agent who is responsible for defining Γ on Uk. When that agent observes that it
defined Γ incorrectly, it passes that measure back to Uk�1, and asks for replacement.
Uk�1 has in reserve some measure, free of extra Γ definitions, and so not yet in E,
which it gives as replacement measure, to define a new version of Uk. All we need
to do is make sure that Uk�1 always has sufficiently much free measure to provide
when asked to. This is done by counting how many times it may need to replace

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 11

measure (in this simplified scenario, only once), and then making the measure of
Uk sufficiently small relative to the measure of Uk�1 (in this case, at most half).

Of course, the above approach makes no effort to ensure that X is Demuth
random. So suppose xVny were some Demuth test; we wish to ensure that X is
not captured by (i.e. passes) xVny. The easiest approach would be to assign to
some k the task of avoiding the test. The Solovay passing condition for Demuth
tests implies that Uk has to consider all Vn or at least all but finitely many. The
natural instructions would be, whenever any Vn,s covers part of Uk, remove Vn,sXUk
from Uk and take replacement measure from Uk�1. Of course, if n is small compared
to k, it might be that Uk�1 � Vn,s, so there would be no good replacement measure
to take. This can be solved by choosing an appropriately large value nk and only
considering Vn,s with n ¥ nk. Making Uk disjoint from all Vn for n ¥ nk suffices
to ensure every element of Uk passes xVny.1

There are still problems with this approach, however. First, because Uk is trying
to avoid infinitely many Vn, it will never settle; there will always be an n for
which Vn is still “moving” — the ω-computable approximation function is still
changing. This Vn will cause measure to move out of Uk, and so Uk will always be
changing. Thus there is no good limit for Uk: if we use the inner limit of the Uks ,
the result could be empty, since each Vn could potentially move “through” all of
Uk�1 before settling; if we use the outer limit, the result will not in general be a
closed set, and the compactness argument above will fail; if we take the closure of
the outer limit, we may include reals that are captured by xVny.

Our solution here is the same as in Lemma 2.7: we only change Uk when a critical
amount of “badness” has built up. In particular, we only remove measure from Uk

when the amount that needs to be replaced is at least 1{4 the total measure of Uk.
Because the Vn shrink quickly, there will be some m such that only those Vn with
nk ¤ n ¤ m need be considered; the total combined measure of the Vn for n ¡ m
cannot possibly be enough to trigger a change in Uk. Once the approximation
function has settled for n ¤ m, Uk will have settled. So Uk will be closed (actually
clopen) as desired.

However, letting Wk �
�
n¥nk

Vn, the set Uk XWk of reals in Uk which may

be captured by the test is nonempty. This will be an open set (not necessarily
effectively so) of measure at most 1{4 the measure of Uk, so Uk � Wk will be
a closed, nonempty set. So we use Uk � Wk in place of Uk in the compactness
argument above.

Now we need to worry about the sequence being nested. Uk XWk may only be
a fraction of the size of Uk, but it could be that Uk�1 � Wk. So Uk�1 will need
to avoid Wk in addition to avoiding whatever test xV1ny it is assigned. Again, Uk�1

only replaces measure when the amount needing replacement is at least 1{4 its total
measure. Now, however, it concerns itself not only with replacing measure covered
by its “own” test xV1ny, but also with replacing measure covered by Wk. Since Wk

is small compared to Uk, and because Uk�1 chooses a large nk�1 for its own test,
the amount covered at any one time is small, so Uk�1 should always be able to find
good replacement measure in Uk when it needs it.

1As we shall later see, measure considerations cause us to consider all Vn for n ¥ nk, rather

than letting subsequent Uk
1

consider more and more Vn’s. Once we decided nk, we have to avoid
Vn for all n ¥ nk. The measure of Uk�1 will be much smaller than the measure of Uk, so will not

be able to supply, for example, Uk�2 with replacement measure for areas covered by (say) Vnk�1.

12 NOAM GREENBERG AND DANIEL D. TURETSKY

Now we revisit the first part of our construction, ensuring that ΓpUkq � A æk,
and consider how it interacts with this new process. Suppose Uk is assigned the
task of avoiding xVny, and Vn is some component of the test such that λpVnq is
smaller than 1{4 the measure of Uk, but larger than 1{4 the measure of Uk�1. So,
on its own, Vn is enough to cause Uk�1 to change, but not enough to cause Uk to
change. For the moment we ignore the actions of any other components of the test.

At stage s, ΓpUkq � As æk and ΓpUk�1q � As æk�1. Suppose that at this stage, Vn
changes to cover measure in Uk�1. Then Uk�1 will remove that measure and seek
replacement measure from Uk. However, the Γ-computation for As æk�1 still exists
on the removed measure. If Vn changes again to cover new measure in Uk�1,
then Uk�1 will again seek new measure. There is a bound on the number of times Vn
can change, but it could potentially be large with respect to λpUkq{λpUk�1q. So
in this fashion, Uk could be filled with Γ-computations for As æk�1. All of this
measure is being “risked”: suppose that after this happens, k enters A. Then all
of the measure in Uk is bad, since it miscomputes A, while all the Γ-computations
defined by the agent monitoring Uk are correct. This process magnifies itself when
we consider the action for various Uk�` and possibly more tests. Cumulatively, the
measure in Uk could all go bad because of numbers much larger than k entering A,
numbers which are far beyond the scope of comprehension of Uk. The end result
is that E covers the entire space and a set X as required cannot be found.

Partly, this happened because Uk was wasteful when it gave replacement measure
to Uk�1 when Vn moved. Say that a piece of measure C1, covered by Vn, is rejected
by Uk�1 and is replaced by another piece, C2. Then Vn moves and covers C2.
This movement may have uncovered C1, which is now free to return to Uk�1. The
measure in C1 was already risked, so it would be foolish to risk new measure when
we could use C1.

But this is not the whole story. Even if Uk is economical with its replacement
measure, it is still the case that the cumulative effect of the work of agents Ul for l
far greater than k may make all the measure in Uk go bad. Suppose n is such that
λpVnq is smaller than 1{4 the measure of Uk, but larger than 1{4 the measure of
Uk�1, and δ is a positive rational number with δ λpVnq � 1{4 � λpUk�1q. Let l
be far greater than n and k. At stage s, we have ΓpUl�1q � As æl�1. Suppose Vn
then changes to cover measure in Uk�1, and in particular covers all of Ul�1. Then
Uk�1 will remove that measure and seek replacement measure from Uk, some of
this replacement measure will eventually be provided to Ul�1, and Ul�1 will put
Γ-computations on it.

Suppose the measure with Γ-computations for As æl�1 is now smaller than δ (this
measure consists of the measure which is currently in Ul�1 and the measure which
just left Ul�1). Then Vn is large enough that it can cover all the measure with Γ-
computations for As æl�1, and also cover at least 1{4 the measure of Uk�1. So it can
cover all the measure with Γ-computations for As æl�1 and also force Uk�1 to seek
replacement measure. Suppose Vn changes to do this. Then again Uk�1 will get
replacement measure; some of this measure will have been newly uncovered by the
Vn change, since Uk is being economical, but none of it will have Γ-computations
for As æl�1 on it, since Vn covers all of that measure. So Ul�1 will put down new
Γ-computations on λpUl�1q much measure. We can continue in this fashion until
Ul�1 has put Γ-computations on at least δ measure. If l then enters A, δ much
of Uk has gone bad because of the action of l. This process can then be repeated

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 13

multiple times with greater l, and so all of Uk might go bad because of numbers
much larger than k entering A.

This is where the strong jump-traceability of A is used. The idea is that every
piece of measure C which is risked needs to be claimed by some actor O. When
C is moved to O, then from that moment on, actor O claims responsibility for all
Y P C. The actor keeps being responsible for such Y until Y is moved to some
other actor, at which time O is no longer responsible for Y . It will be possible
for this to happen without Y leaving O: for example, if Y is part of the measure
that Uk provides to Uk�1, then Uk�1 has claimed responsibility for Y , and Uk has
discharged its responsibility, without Y leaving Uk.

Before such measure is claimed (and so before the actor puts Γ computations
on C), the actor O can ask for some evidence that this piece of measure C will not
go bad. There may be already some Γ computations defined on subsets of C; and
the actor O may plan to put some new computation on C. There is some initial
segment α of As so that if α A then none of the measure in C will go bad. The
actor O will want some evidence that α A. Strong jump-traceability allows us to
devise a process of testing of such initial segments α.
O will perform a test by selecting some input x for some partial functional Ψ

and enumerating the axiom Ψαpxq � α. O then waits. Eventually, either we will
observe that α is no longer an initial segment of At (and so cannot be an initial
segment of A), or the test will be successful, meaning we will see α P T pxq, where T
is a trace for ΨA. We delay for the moment any discussion of where Ψ, x or T come
from. In the first case, the measure C is rejected by O, and any measure in C which
went bad because of the change in A is charged to other actors, whoever claimed it
before it was offered to O. In the second case, the actor O accepts C and may put
a new computation on C. Certainly, the fact that the test returned positively does
not guarantee that α is in fact an initial segment of A, so some measure under O’s
watch may yet go bad. But the testing procedure will be designed so that this can
happen only a small number of times, which we determine in advance. We do this
by controlling the h for which T is an h-trace.

The bound on the total amount of measure in E which will be charged to the
actor O will be the product of two numbers: the number of times measure under
its watch can go bad; and a bound on the amount of measure which can be claimed
by O at any given time. We then bound the total size of E by distributing “garbage
quotas” to the actors, whose sum is bounded away from 1.

What are the actors? First, each Uk is an actor, responsible for the measure in
the set Uk itself. Thus, the bound on the amount of measure claimed by Uk at each
stage will be given by a fixed bound on the size of Uk. This means that measure C

returned by Uk�1 to Uk, say at some stage s, must no longer be claimed by Uk�1:
it only claims the measure in its new version Uk�1

s�1 , which does not include C. Who
claims this rejected measure? If C is part of Es, then no-one needs to claim it: it
was already charged to the last actor which claimed it. Otherwise, it would seem
that we could return C to Uk’s guardianship. After all, before C was ever given to
Uk�1 by Uk, it was part of Uk, and so Uk took responsibility for it then, say at
stage t s; and the fact that C is not bad at stage s indicates that the tests which
prompted Uk to claim C at stage t are still valid at stage s. But not all claims
are alike. Between stages t and s, Uk�1 and actors Ul for l ¡ k � 1 could have
taken some parts of C and defined long Γ computations on them. Thus, to take

14 NOAM GREENBERG AND DANIEL D. TURETSKY

responsibility for C at stage s, we need to test a longer initial segment of A than
was necessary for claiming C at stage t. In other words, the measure in C got riskier
with time.

We cannot require Uk to re-test on behalf of C. The proper use of strong jump-
traceability requires that we find out in advance how many possible tests would
be run in parallel by each actor. For Uk, this will correspond to the number of
possible versions of Uk. The return of C to Uk has prompted a change in Uk�1, but
Uk may stay the same, and so a new test for Uk is not budgeted for. (The reader
may ask why this restriction on the number of tests for Uk. Can’t Uk figure out
how many times Uk�1 will move and budget for that? The answer is no, but the
reason may not yet be apparent, because we did not introduce the tree of strategies
yet. In reality, we will have infinitely many versions of Uk�1, which will in total
move infinitely many times, and Uk is only allowed to have finitely many tests.)

For this reason we introduce another kind of actors, the bins. Their task is to
take responsibility for measure which is rejected by Uk�1 and has not yet gone
bad. Recall that such measure is rejected because it is covered by some Vn. A bin
associated with Uk and Vn takes control of such measure. The frugality, discussed
above, of Uk when choosing measure to give to Uk�1, is used to get the bound on
the amount of measure claimed by a bin at any given time. The size of the bin
associated with Vn will be bounded by the size of Vn, which is 2�2n; thus, whenever
new measure is given to the bin, we need to extract from the bin (and return to
Uk�1) measure which Vn no longer covers. The number of tests for the bin that
we need to budget for will be tied to the number of times Vn can move. Because
Vn is a component of a Demuth test, we can find out this number in advance as is
required for setting up the testing mechanism for the bin.

These are the ideas which make the construction work. What is left is to provide
the details. We start with setting up the overall mechanism of the tree of strategies.
We will then give the construction, so that the reader has some global picture
of what is going on; only afterwards will we flesh out the details. Much of the
verification is in showing that the construction makes sense – that it can actually
be performed – and we will provide the arguments for this as we go along. Along
the way, we will specify rules which we promise the construction abides by, and use
them in our verifications. We also make claims about the construction which we
will only be able to prove after we have explained all or most of the construction.
Actually, we have already made one such claim, which we restate:

Claim 3.1. If a new axiom, defining a computation on a clopen set C, is added to
Γ at stage s, then C is disjoint from Es.

We rely on the various claims while we describe the construction. While this
may seem circular, what really is happening is a grand induction on the stages; we
assume all the claims and rules hold at stage s�1, use that information to describe
what we do at stage s, and then show that the claims and rules hold at the end of
stage s as well.

3.2. Strategies. Continuing the discussion from above, Suppose for simplicity that
Uk needs to avoid the tests among

@
V0
n

D
,
@
V1
n

D
, . . . ,

@
Vkn

D
. To calculate a bound on

the number of versions of Uk, we need to know a bound on how many times various
components Ven which may trouble Uk will move; the bound for xVenyn ω is given

by ge. Some of the functions ge may be partial; we cannot wait forever, so Uk will

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 15

guess which of the bounding functions ge is total. Hence the need for a tree of
strategies, and so for a number of versions for each Uk, which will be indexed by
strategies on the tree.

We need even more guessing. This has to do with the testing procedure. The
testing is done by defining A-partial computable functions ΨA, and observing the
results which show up in a c.e. trace for the function. The bound on the number of
possible errors by some actor is eventually determined by an order function which
bounds the trace. As we go down the tree2, we need more and more tests and so
set up more functions ΨA and require the traces to be bounded by slower-growing
order functions.

There is no reason to believe that there is a uniform procedure which produces,
given a partial function ΨA and an order function h, an h-trace for ΨA. All we can
do is uniformly list all h-traces, and then guess which one is the correct trace for
ΨA.

Now the natural thing to do would be to have three kinds of nodes – for intro-
ducing Demuth tests (and guessing whether the next one on the list is total); for
providing “boxes” for testing, i.e., introducing A-partial computable functions and
bounds, and guessing traces; and for enumerating Γ-computations. It turns out
this is not a wise choice. To see why, suppose that σ is a node (a strategy) which
introduces a new test xVeny. The node σ would have two children, corresponding
to the guesses whether ge is total or not, say σpfin and σptot. Suppose that the
strategy σptot is used for testing, so it defines some ΨA and has infinitely many
children, each guessing a trace for ΨA. Because σptot instructs its children to
avoid a tail of the test xVeny, the number of movements of the sets Uτ for children
τ of σptot is influenced by the number of movements of the test components, i.e.,
by the function ge. In turn, the number of movements of the children determines
the amount of space which is required for testing on behalf of these children. So a
node ρ which defines a function ΦA which is used for testing for σptot’s children
must have access to the values of ge, hence must extend σ. On the other hand, in
order to find the results of the tests, σptot needs to guess a trace for ΦA, which
means that σptot must properly extend ρ. The only possibility then is ρ � σ, but
we already have given σ a different task. The reasonable way to deal with this is
to give both tasks to the children of σ: to guess whether ge is total or not, and to
guess traces for the function defined by σ.

Hence, we have only one kind of node. A node σ, of length e, will define a p.c.
functional Ψσ and an order function hσ. The node will have a child σpfin which
guesses that ge is partial. If instead ge is total, then so will be hσ, and so ΨA

σ will
have some hσ-trace. We let

@
Tσpd

D
d ω

be a list of all hσ-traces3, and let σpd be

the child of σ which guesses that Tσpd is a trace for ΨA
σ . We order these outcomes

as 0 L 1 L 2 L � � � L fin. Finally, we will give σ the task of enumerating
axioms into Γ which map clopen sets to strings of length e � 1 (we later explain
why not e).

2We like to imagine our tree growing downward, so going down the tree means moving further
from the root. As k grows larger, the strategy responsible for building Uk will be located lower
on the tree.

3The function hσ may be partial. This listing means: enumerate nothing into Tσpdpzq until

we see that hσpzqÓ. Then copy (say) W
rzs
d , but stop after hσpzq many elements.

16 NOAM GREENBERG AND DANIEL D. TURETSKY

As mentioned, at each stage, each node σ is equipped with a clopen set Uσs .
These sets mirror the tree structure:

Rule 1. If τ extends σ then Uτs � Uσs , but if σ and τ are incomparable then Uτs and
Uσs are disjoint.

The aim is that if σ lies on the true path, then Uσs eventually stabilises to a final
value Uσ. The node σ aims to let Γ map (most of) Uσ to Aæ|σ|�1.

Let F be the set of nonempty nodes that do not end with fin, that is, nodes
of the form πpd. This is the set of nodes ρ which have a guess for a trace for
the A-partial computable function introduced before them, and guess that g|ρ|�1 is
total; and so, these are the nodes which must avoid another test. Throughout, for
a nonzero node τ , we let τ� be τ ’s immediate predecessor, technically the string

τ æ|τ |�1. For each ρ P F , we let xVρny �
A
V
|ρ�|
n

E
be the test which ρ instructs its

descendants to avoid, and gρ � g|ρ
�| be the bound on the changes of this test.

For every ρ P F , if ever accessible, we will choose some nρ ω. This will be the
point from which ρ’s descendants have to avoid the test xVρny. For every node σ,
we let

F�σ � tρ P F : ρ � σu
and

F�σ � tρ P F : ρ � σu ;

we let

Wσ
s �

¤
Vρn,s vρ P F�σ & nρ ¤ n ¤ sw.

This is a clopen set which consists of the measure which is currently covered by
those test components which σ has been instructed to avoid by its predecessors. Its
“limit” is

Wσ �
¤

Vρn vρ P F�σ & nρ ¤ nw,
which is open, but not effectively so. If σ lies on the true path, we need to ensure
that X R Wσ, and of course to make sure that X R E, so at the end, we let X be
the unique element in the intersection of the sets UσzpWσYEq where σ ranges over
nodes on the true path.

Of course, to do this, we need to ensure that for no σ do we get Uσ � Wσ Y E.
We do this by ensuring that the measure of pUσ X pWσ Y Eqq rss is smaller than the
measure of Uσs . We will set a rational number δσ (in fact an integer power of 2),
and stipulate that:

Rule 2. If σ is accessible at stage s, then the measure of Uσs is 4δσ.

and

Rule 3. If σ is accessible at stage s, then the measure of Uσs XpWσ
s Y Esq is bounded

by δσ.

The aim is to ensure that at most a quarter of Uσ is covered by Wσ Y E. To
ensure that Rule 2 holds, whenever σ� is accessible and thinks that σ may be the
next accessible node, if the measure of Uσs is smaller than 4δσ then rather than
letting σ be accessible, the parent will try to give Uσ more measure. To ensure
that Rule 3 holds, whenever σ� is accessible and thinks that σ may be the next

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 17

accessible node, if the measure of Uσ X pWσ Y Eq rss has grown beyond δσ, σ� will
try to extract most of it from Uσs and give replacement measure.

As discussed above, each strategy σ sets up bins which are used to accommodate
measure rejected by the children of σ. Each bin corresponds to some test component
Vρn which these children are instructed to avoid. A child τ of σ is instructed to avoid
the components Vρn for ρ P F�τ and n ¥ nρ. Noting that F�τ � F�σ, the node σ
defines bins Bσs pn, ρq � Uσ for ρ P F�σ and n ¥ nρ. Again, we keep all “playing
grounds” disjoint:

Rule 4. The bins Bσs pn, ρq are pairwise disjoint, and are each disjoint from Uτs for
all children τ of σ, and from Es�1.

Note that in contrast with the description in the previous subsection, measure
in the bin comes from a variety of children of σ and so can be exchanged between
them. It is not possible for us to limit the amount of measure which was rejected
by a single child τ of σ, but for each component Vρn we can limit the total amount
of measure which was rejected, by any child of σ, because of Vρn.

Finally, we recall that the construction involves actors. Each Uτ is an actor,
and there will be actors associated with bins (in fact, actors Bσpn, ρ, lq for ρ P
F�σ, n ¥ nσ and infinitely many numbers l). Each actor O has a dual existence.
At each stage, temporal instantiation of the actor O is a clopen set Os (so Uτs ,
and Bσs pn, ρ, lq � Bσs pn, ρq). But the ideal form of the actor is an agent in the
construction, which has personality just as nodes on the tree of strategies do. It
takes responsibility for measure, rejects measure, and so on. While the sets Os may
change from stage to stage, each actor O is constant and indivisible.4

While we delay until Section 3.4 the full description of the actors (and the ex-
planation why we don’t take a full bin to be an actor, rather than a collection of
“sub-bins”), we remark now that each actor O will be associated with a unique node
σ � σpOq which “owns” the actor. The actors associated with σ are the sub-bins
Bσpn, ρ, lq and the sets Uτ for τ a child of σ. Note that Uσ is not associated with
σ but with its parent σ�.

3.3. The construction, skeleton. We give the construction. This is the correct
construction; we are no longer describing failed constructions as we did in Sec-
tion 3.1. The specifics of some of the steps, however, will be left for the following
sections. Thus this section gives the basic skeleton of the construction, and it will
have specified spots into which later sections will insert the appropriate details.

For us to be able to carry out stage s of the construction, we need to make an
inductive assumption.

Claim 3.2. λpEsq ¤ 1{4.

Given the claim holds at stage s, we describe our actions at stage s by recursively
defining a path of nodes which are accessible at that stage, and for each accessible
node, indicate the node’s actions at that stage. The actions are:

 Extending the definition of hσ;

4Of course, we could have formally defined the actor to be some other stationary “object”,

such as the node τ , or a triple pσ, n, ρ, lq, or some such. But this would actually mask the idea
behind the actors. Their role is to take responsibility, at each stage, for the measure in their

corporeal body Os.

18 NOAM GREENBERG AND DANIEL D. TURETSKY

 Defining Uτs�1 for children τ of σ;

 Defining the bins Bσs�1pn, ρq for ρ P F�σ and n ¥ nρ;

 Enumerating axioms into Γ; and

 Choosing a child τ to attend to next.

The root xy is accessible at every stage, and we always let U
xy
s � 2ω. At stage 0,

for all other actors O we let O0 � H.
Let σ be a node which is accessible at stage s. If |σ| � s we halt the stage.

Otherwise, the action of σ depends on circumstances, and is done in a number of
steps.

First step: Executing a swap. Let t s be the last stage at which σ was accessible
(with t � 0 if there was no such previous stage). It is possible that at stage t, the
node σ planned to swap some measure with one of its children τ . Before making
the swap, the pieces involved in the swap needed to be tested for the actors involved
(see Sections 3.8 and 3.11 for details). If these tests were not cancelled between
stage t and stage s, then these tests have now returned and they either all failed or
all succeeded.

If the tests were cancelled or if they failed, then the planned swap of measure is
abandoned, and we proceed to the next step below. Of course if no tests for σ were
started at stage t, we also proceed to the next step.

Otherwise, tests were started, not cancelled, and have now succeeded. We per-
form the swap, as described in Section 3.8. This gives a new value for Uτs�1, as well
as for other actors associated with σ. This also influences τ and its descendants, as
follows.

Let D � UτszUτs�1 be the clopen set which is extracted from Uτ at stage s. For
every actor O which is associated with a node π � τ , we let Os�1 � OszD. If a
test is currently performed for such an actor O, then we cancel that test (the test
is cancelled because even if successful, the planned swap the test is running for can
not take place anymore.)

Let C � Uτs�1zUτs be the clopen set which was added to Uτ at stage s. We
enumerate the axiom C ÞÑ As æ|σ| into Γs�1. We then end the stage.

Second step: extending hσ. Let t s be the last σ-expansionary stage before stage s
(with t � 0 if there was no such previous stage). The stage s is σ-expansionary if and

only if dom g
|σ|
s ¡ t, and there is some d s such that for all z P ωrds X dom ΨA

σ rss
we have ΨApzq P Tσpdpzq rss.5

If s is a σ-expansionary stage, then we extend the definition of hσ, as is described
in Section 3.10. In either case, we then move to the next step.

Third step: planning a swap. We choose a child τ of σ to attend to. If s is not
σ-expansionary then we choose τ � σpfin. If s is σ-expansionary, we find the least
d witnessing this fact, and choose τ � σpd.

If σ � xy and τ � xfiny, then we end the stage. This is because we required g0
to be total, so xfiny will not be on the true path. We discuss in Section 3.9 why
this matters.

5The inputs in ωrds will be the ones used by σpd and some of its extensions for testing.
Definitions of ΨAσ pzq for z P ωrds will only be made at stages when σpd is accessible; this will be

important for ensuring the existence of the true path (see Section 3.13.)

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 19

We consider whether Uτ needs to change. If either λpUτs q 4δτ ,6 (recall Rule 2)
or λ pUτ X pWτ Y Eqq rss ¥ δτ (recall Rule 3), then we select measure from Uτ to
extract, as specified in Section 3.6, and τ requests to perform a swap with σ, as
explained in Section 3.8.

It is important to note that we do not perform the swap immediately (this was
alluded to in the first step). Rather, now that the desired measure swap has been
determined, each actor which is supposed to take control of a piece of measure tests
it. The details of how the testing is performed are provided in Section 3.11. We
start the tests and then end the stage.

It is possible, though, that the desired tests cannot be performed, because the
required “testing grounds” have not yet been prepared (this is explained in Sec-
tion 3.6). In that case, we give up: no swap is planned, and we end the stage. (Of
course, we will argue that if τ is truly the outcome we want, and the bad measure
in Uτ persists, then eventually the required testing grounds will be available and
we will be able to plan and later execute a required swap.)

On the other hand, if σ � xy (and τ � xdy), then we do not need to perform
tests (see Section 3.9). We prepare a swap and execute it immediately (again, the
details are found in Section 3.8), and then end the stage.

If λpUτs q � 4δτ and λ pUτ X pWτ Y Eqq rss δτ then no change to Uτs is required.
We set Uτs�1 � Uτs , and let τ be the next accessible node.

End of Stage. If the value of any set Uτ at stage s�1 has not been explicitly defined
during stage s, then we let Uτs�1 � Uτs . If the contents of a sub-bin Bσpn, ρ, lq at
stage s� 1 have not been explicitly defined at stage s, then we set Bσs�1pn, ρ, lq �
Bσs pn, ρ, lqzEs.

This is the skeleton of the construction. In what follows we flesh out the details.
We note a claim which we stated during the construction:

Claim 3.3. If a node σ plans a swap with Uτ (for a child τ of σ) at some stage t,
and s is the next stage at which σ is accessible, then the tests which we started at
stage t for actors owned by σ have either all been cancelled by stage s, or are all
successful at stage s, or have all failed by stage s.

It is not that important that the tests all return by stage s; we could have
simply instructed σ to wait – but we can arrange for the tests to return at stage
s and this makes for a smoother presentation of the construction. However, it is
very important that it is not the case that some tests succeed while others fail.
Claim 3.3 is proved on page 33.

3.4. Actors and certainty. In giving the details, we start by working toward
defining the numbers δσ and nρ. The main driver behind these definitions is the
attempt to limit the size of E. We first explain how the bound on λpEq will be
achieved. Recall that we decided to employ actors, which claim responsibility for
pieces of measure on which Γ-computations have been defined. Eventually, limiting
the size of E boils down to:

Claim 3.4. Let s be a stage. Every real in EszEs�1 is the responsibility of some
actor O at stage s, with σpOq � xy.

6This happens if s is the first stage at which we consider τ , and so Uτs � H; or if at a previous
stage an ancestor of τ was involved in a swap and this led to measure being extracted from Uτ .

20 NOAM GREENBERG AND DANIEL D. TURETSKY

Thus, each addition to E can be charged to some actor.

The main concept is the level of certainty of a claim. Each actor O (with σpOq �
xy) will be assigned a level of certainty k � kpOq.
Claim 3.5. For every actor O, there is a set of stages RpOq, such that RpOq has
size at most kpOq, and if O is responsible for a real Y at the stage it enters E, then
Y P Os for some s P RpOq.
Rule 5. For all s, λpOsq ¤ 2 � 2�kpOq.
Corollary 3.6. The total amount charged to an actor O is bounded by 2kpOq2�kpOq.

We indicated earlier what the actors are, and now give all the details and explain.
An important point to note is that in order to set up the testing for an actor O,
we will need to calculate how many parallel tests we will need to possibly run for
O. Roughly, this number of tests is tied to the number of possible changes to the
contents of the actor. For Uτ we will be able to do this directly, and so we declare
each Uτ to be an actor, and set:

 kpUτ q � � log2 δτ � 1,

motivated by Rules 2 and 5; this will give λpUτs q ¤ 4δτ � 2 � 2�kpUτ q, as desired.
However, even though we will be provided with a number gepnq which will bound

the number of changes to Vρn, we cannot in advance tell how many times the bin
Bσpn, ρq will change. The reason is that if a new version of Vρn appears at some
stage s, it may interfere with Uσpds for many d, much larger than n (but smaller
than s). Each such Uσpd will in turn cause a change in the bin Bσpn, ρq, when it
rejects measure covered by Vρn, and so the number of changes to Bσpn, ρq will be
related to the number of changes to Uσpd, which may be much larger than gepnq.

To overcome this problem, we split the bin Bσpn, ρq into infinitely many pieces.
We will set a bound 2�k

σpn,ρq for the possible size of Bσpn, ρq, and partition the bin
Bσs pn, ρq into clopen sets Bσs pn, ρ, lq, for l ¡ kσpn, ρq. Each “sub-bin” Bσpn, ρ, lq is
an actor, and we set

 kpBσpn, ρ, lqq � l.

We note that we will not only allow pieces of measure to be swapped between bins
and sets Uτ , but also pieces of measure will be transferred inside the bin, between
the various “sub-bins”.

3.5. Defining δσ and nσ. To limit λpEq, we distribute “waste targets” among all
actors, ensure that no actor exceeds the bound, and then ensure that the sum of
the waste targets is bounded by 1{4. We then find conditions on the numbers δσ
and nσ which will ensure that the waste targets are respected.

For every node σ we computably define a rational number εσ. We aim to ensure
that the total amount of bad measure charged to the actor Uτ is at most ετ , and
for ρ P F , the total amount of bad measure charged to all actors Bσpn, ρ, lq (for σ
extending ρ, n ¥ nρ, and l ¡ kσpn, ρq) is bounded by ερ. Hence, to bound the size
of E, we just need to ensure that ¸

σ

2εσ ¤ 1

4
.

The details of how εσ is defined are less important. For example, we can let εσ �
2�pn�5q, where σ is the nth node in some effective ω-listing of all nodes.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 21

We first consider an actor Uτ . By Rule 2, the total amount of measure ever
claimed by Uτ at any given stage is 4δτ . From Corollary 3.6 we conclude that the
total contribution of Uτ to E will be bounded by 2�kpUτ q�2�kpUτ q � 4p�1�log2 δτ q�
δτ . Some differentiation tells us that limxÑ0� 4p�1 � log xqx � 0, and further it
approaches 0 monotonically for x p2eq�1. Hence we can (by search if necessary)
find a positive rational number cτ p2eq�1 such that 4p�1 � log cτ qcτ ετ . If we
ensure that (a): δτ ¤ cτ , then we will have ensured that the total amount from E

charged to Uτ is bounded by ετ as required.

Next, we consider the bins. For ρ P F , we need to ensure that the total contribu-
tion to E of all actors Bσpn, ρ, lq for σ � ρ, n ¥ nρ, and l ¡ kσpn, ρq is bounded by
ερ. From Corollary 3.6 we conclude that the total amount charged to each sub-bin
Bσpn, ρ, lq is bounded by 2l � 2�l, and so the contribution of a single bin Bσpn, ρq
is bounded by

(3.1)
¸

l¡kσpn,ρq

2l2�l � 2pkσpn, ρq � 2q2�kσpn,ρq.

We wish to choose the number kσpn, ρq, so that 2�k
σpn,ρq bounds the possible size

of the bin Bσs pn, ρq at any stage s. That is, for l � kσpn, ρq � 1, the entire contents
of Bσs pn, ρq could fit in Bσs pn, ρ, lq without violating Rule 5. The following rule gives
the necessary bounds on this size:

Rule 6. For ρ P F , σ � ρ, n ¥ nρ, and s ω, we have

λpBσs pn, ρqq ¤ mint2�2n, δσu.
The bound 2�2n � λpVρnq will be obtained by extracting from the bin, whenever

new measure is transferred to the bin, measure which Vρn no longer covers. The
second bound, if σ � ρ, follows from the fact that Vρn � Wσ, and from Rule 3. If
σ � ρ then the second bound will follow from the choice of nρ (item f below).

Hence we will set:

 2�k
σpn,ρq � min

2�2n, δσ

(
.

For m ¥ 9 we have

2pm� 2q2�m ¤ 2�m{2.

Fixing a bin Bσpn, ρq, we have n ¥ nρ, and so kσpn, ρq ¥ 2nρ. So if we require that
(b): nρ ¥ 5 for all ρ P F , then kσpn, ρq ¥ 10 and by Equation (3.1) we will have
ensured that the total amount charged to the sub-bins of Bσpn, ρq is bounded by
2�k

σpn,ρq{2. The definition of kσpn, ρq shows that this charge is bounded by both
2�n and by

?
δσ.

We sum the bounds of charges to all bins (as σ and n vary) in two parts: the
bins Bσpn, ρq for σ � ρ, and for all proper extensions of ρ. We require that the
total charge to each part is bounded by ερ{2.

First we consider σ � ρ. The charge to the bin Bσpn, ρq is bounded by 2�n, and
the total charge to all such bins (for n ¥ nρ) is bounded by

°
n¥nρ

2�n � 2�nρ�1.

Then 2�nρ�1 ¤ ερ{2 is guaranteed once we require that (c): nρ ¥ 2� log ερ.
Next, we consider the proper extensions of ρ. Fix some σ � ρ. We saw that

the total charge to Bσpn, ρq is bounded by both 2�n and by
?
δσ. For any number

p ω we can bound the total charge to all the bins Bσpn, ρq (for n ¥ nρ) by
using the bound 2�n for n ¡ p and the bound

?
δσ for n P rnρ, ps and obtain the

total p
?
δσ � 2�p (as nρ ¡ 0). For each σ � ρ we choose some pσ � pσpρq ω

22 NOAM GREENBERG AND DANIEL D. TURETSKY

so that
°
σ�ρ 2�pσ ¤ ερ{4. How this is done is unimportant; for example, we can

enumerate all the extensions σ as xσiy, and let 2�pσi � 2�i�3ερ. The total bound
will be obtain by arranging that

°
σ�ρ pσ

?
δσ ¤ ερ{4. This is done by requiring

δσ to be small. For example, again using the enumeration xσiy, we arrange that
pσi

a
δσi ¤ 2�i�3ερ by requiring that δσi ¤ 2�2i�6ε2ρ{ppσiq2. So that we can forget

the enumeration, we let δσipρq � 2�2i�6ε2ρ{ppσiq2. Focussing on σ, the requirement
translates to requiring that (d): for all ρ P F�σ, δσ ¤ δσpρq.

This concludes the calculations giving the bound on the measure of E, but in
order for the construction to work, we have some other concerns when choosing our
constants δσ and nσ.

First, recall that a node σ may be required to give fresh measure to a child τ .
Some replacement measure will come from the bins, but all the measure from the
bins may not suffice to make the measure of the new Uτ the required 4δτ (Rule 2),
and so some extra measure will be provided by σ. To keep Rule 1, this fresh measure
will need to be disjoint from Uτ

1

for all children τ 1 of σ. We will also want this
extra piece of measure to be disjoint from E and from Wτ .7 By Rule 3, the measure
of Wσ Y E in Uσ is bounded by δσ. If σ P F , though, then Wτ �Wσ Y�

n¥nσ
Vσn.

To ensure that σ has enough free measure to give Uτ we require:

Rule 7. For any node σ and any stage s ω, the total measure of Uτs , as τ ranges
over the children of σ, is bounded by δσ.

and

Rule 8. For any node σ P F and any stage s ω,

λ

� ¤
n¥nσ

Vσn

�
¤ δσ.

Then, at least δσ from the total 4δσ consisting of Uσ is free to give Uτ (some of it
may need to be extracted from bins). By Rule 2, Rule 7 is guaranteed by requiring
that (e): the sum of 4δτ , as τ ranges over the children of σ, is bounded by δσ. As
λ
��

n¥nσ
Vσn

� ¤ 2�nσ , Rule 8 is guaranteed by requiring that (f): 2�nσ ¤ δσ.

Further restrictions on δσ and nσ are required to make the testing possible. As
will be described in Section 3.9 and later, a node η will provide space for performing
tests on behalf of a variety of actors. This will drive the definition of the function
hη. This function needs to be unbounded, and this requirement translates into a
restriction on the number of actors O which depend on η for testing and whose
level of certainty kpOq is bounded by a number k.

Consider an actor O which belongs to some node σ extending ηpd for some
d ω. If O is a sub-bin of some bin Bσpn, ρq, then the strongest possible certainty
required by O is kσpn, ρq � 1, which is bounded below by both 2nρ and 1� log δσ.
If O � Uτ for some child τ of σ, then the level of certainty required is �1� log δτ ,
which is greater than 1 � log δσ. Hence, putting lower bounds on � log δσ and on
nσ (in case σ � ρ) related to d will bound the number of children ηpd of η which
may make hη small. The way to do this is to require that (g): if ρ � ρ�pd then
nρ ¥ d; and that (h): if σ � σ�pd then δσ ¤ 2�d�3.

7Although the difference in time between the stage at which the swap is planned and the stage
at which the swap is executed may mean that changes in Wτ will result in this piece being covered

by Wτ . See Section 3.7 for more details.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 23

Choosing δσ and nσ obeying the restraints (a)–(h) is now straightforward. We
start by letting δxy � 1{4 (here again xy denotes the empty string, that is, the
strategy at the root of the tree). We then proceed recursively. Given δσ, for
τ � σpfin we let

δτ � min

cτ , 2

�3δσ, δτ pρq : ρ P F�σ
(
,

and for τ � σpd
δτ � min

cτ , 2

�4�dδσ, δτ pρq : ρ P F�σ
(
.

Then, for τ � σpd, we let

nτ � max t5, d, 2� log ετ ,� log δτu .
By choosing cτ , εσ and pσpρq (and hence δσpρq) judiciously, or alternatively

shrinking δσ, we may assume that each δσ is indeed an integer power of 2. Also, if
πpd � σ then δσ ¤ 2�d.

We note a restriction on the size of Vρn inside Uσ, related to Rule 6.

Claim 3.7. Suppose that σ is accessible at stage s. Let ρ P F�σ and n ¥ nρ. Then

λ ppVρn X Uσq rssq ¤ 2�k
σpn,ρq.

Proof. The bound λpVρn,s X Uσs q ¤ 2�2n follows, of course, from the fact that

λpVρn,sq ¤ 2�2n. We need to show that λpVρn,s X Uσnq ¤ δσ.

If σ � ρ, then this bound follows from the bound 2�nσ ¤ δσ which we just
arranged ((f) above), and again noting that λpVρn,s X Uσnq ¤ 2�2n ¤ 2�2nσ .

If σ is a proper extension of ρ, then Vρn,s �Wσ
s , and the required bound follows

from Rule 3. �

3.6. What we actually extract. Suppose that at some stage t, a node σ is
accessible. It has decided that its child τ should be next accessible, but notices
that λ pUτ X pWτ Y Eq rtsq ¥ δτ , and so, instead of letting τ be accessible, it plans
to exchange measure with Uτ so that Rule 3 will hold. We will soon (Section 3.8)
give the complete details of how this exchange is planned and executed. But we
start by examining the part of Uτt which Uσ tries to extract from Uτ (and then
replace).

It would seem reasonable to try to extract all of pUτ X pWτ Y Eqq rts. However,
trying to do so will run into problems. As we described above, measure extracted
from Uτ XWτ will need to be claimed by various bins, and before they accept the
measure, they test it. The “testing ground” is a collection of boxes which will be
provided by some ancestor η of σ, which we identify later (Section 3.9). Boxes
are simply inputs z for ΨA

η , and we call hηpzq the size of the box (really, this is

a bound on the size of the trace T ηpdpzq). What is important now is that a test
for an actor O is carried out on boxes of size kpOq; the size of the box (roughly)
gives a bound on the number of incorrect successful tests. Because hη needs to
be both computable and monotone, before the test can begin, the node η needs to
know how many boxes of size kpOq will ever be required by anyone appealing to η
for boxes of this size, not only O. This information will be calculated by (finitely
many) values of functions gρ for ρ P F�η, and g|η|, and so, as indicated during the
construction, we may need to give up on tests if the required convergences of gρ

have not yet occurred.

24 NOAM GREENBERG AND DANIEL D. TURETSKY

Now the point is that when we plan an exchange at some stage t, if we want to
extract pUτ XVρnq rts from Uτt for all n t, the certainty required by the bin would
be at least kσpn, ρq ¥ 2n, and possibly l much larger than kσpn, ρq, which will
roughly correspond to the amount of measure we plan to move to the bin. That is
l � � log λpVρn,tXUτt q, which can be as large as t. The functions gρ might converge
slowly, and so at no stage t would we have sufficiently many boxes to test a planned
swap.

However, to obey Rule 3, it is sufficient to extract only most of Wτ
t from Uτ , and

this can be done while bounding the n’s involved. For each node τ we compute a
number mτ such that |F�τ |°n¡mτ

2�2n δτ {4. The following will suffice:

Definition 3.8. Let mτ � � log pδτ {4 � |F�τ |q.
What we get is that for all s,

λ
�¤

Vρn,s vρ P F�τ & n ¡ mτ w
	
¤ δτ {4.

We let

Ŵτ
s �

¤
Vρn,s vρ P F�τ & n P rnρ,mτ sw.

It is then sufficient to extract Ŵτ Y E from Uτ , rather than Wτ Y E, and this is
what we will do.

3.7. Bounding the number of tests. Before we can perform tests for an actor
O, we need to find a bound on the total number of tests for O which will either
succeed or be cancelled. The reason is the following. Say that we test a string
α At for some actor O. If α A, then the test will be successful, but this also
means that the boxes which were used for the test will not be available for other
tests. Similarly, cancelled tests could potentially also test correct initial segments
of A, and so the boxes used are also lost. And so, we need to set up in advance
sufficiently many boxes, so that we never run out.

We introduce some notation which will be useful now and later.
Suppose that a node σ is accessible at some stage s. We let s�pσq be the previous

stage at which σ was accessible (if there was one; otherwise we let s�pσq � 0). We
let s�pσq be the next stage at which σ will be accessible (if there is one; otherwise
we let s�pσq � ω).

Let O be an actor, associated with a node σ � xy. We let SpOq be the set of
stages t at which a test is started on behalf of O, and that test returns successfully at
stage t�pσq (in particular, t�pσq ω). We let CpOq be the set of stages t at which
a test is started on behalf of O, and that test is later cancelled (this cancellation
will happen before stage t�pσq).

We wish to effectively find a bound bpOq on |SpOqYCpOq|. However, calculating
bpOq will depend on a variety of (finitely many) values of functions gρ. In order to
run a test for O, we will have to wait for convergences of functions gρ, so that we can
find bpOq. This is why sometimes we will not be able to test and will immediately
abandon an intended swap.

We start with O � Uτ .

For any node τ with |τ | ¡ 1, let SRejpUτ q be the set of stages t P SpUτ q at which
λ pUτ X pWτ Y Eq rtsq ¥ δτ . At stages t P SRejpUτ q, a test is started because Uτ

wants to reject some of its measure. For τ � xdy, let SpUxdyq be the set of stages

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 25

t at which Uxdy exchanges measure with its parent, the root xy; let SRejpUxdyq �
SpUxdyqztminSpUxdyqu; note that for all t P SRejpUxdyq, λpUxdy

t X Etq ¥ δxdy.

We first bound the size of SRejpUτ q. In order to do that, we need two more rules.

Rule 9. Replacement measure which at some stage t, a parent τ� plans to give τ ,
is disjoint from Et.

and:

Rule 10. Suppose that at stage t, as part of a planned swap, we intend to add a
clopen set C to a bin Bσpn, ρq and to extract a clopen set D from Bσt pn, ρq. Then
C � V

ρ
n,tzEt and D is contained in Et Y pUσt zVρn,tq).

Let τ be any nonzero node.
Let t P SRejpUτ q. At stage s � t�pτ�q, Uτt X Et is extracted from Uτs , and by

Rule 9, the new measure given to Uτs�1 is disjoint from Et.
8 By induction on stages

v ¥ s�1, using Rule 9, and the fact that xEvy is increasing, we see that Uτv is disjoint
from Et. This shows that there can be at most 4{δτ many stages t P SRejpUτ q with
λpUτt X Etq ¥ δτ {4.

If t P SRejpUτ q and λpUτt X Etq δτ {4, then |τ | ¡ 1 and λpUτt XWτ
t q ¡ 3δτ {4.

By the definition of mτ , we see that λpUτt X Ŵτ
t q ¡ δτ {2.

Claim 3.9. Suppose that I is an interval of stages during which V
ρ
n,� is constant

for all ρ P F�τ and n P rnρ,mτ s, and that no new measure is added to Uτ
�

during
stages in I. Then there are at most 2{δτ many stages t P I X SRejpUτ q at which

λpUτt X Ŵτ
t q ¡ δτ {2.

Proof. Let V
ρ
n,I � V

ρ
n,t for t P I. For brevity, for t P I let, in this proof, Dt �

Uτt X Ŵτ
t .

Suppose that t t1 are stages in I X SRejpUτ q. Let s � t�pτ�q. By Claim 3.3,
we have s t1. At stage s, Dt is extracted from Uτ , and DtzEs is distributed to
bins Bρ (again, ρ P F�τ and n P rnρ,mτ s). Each piece added to a bin Bσpn, ρq is
contained in V

ρ
n,t � V

ρ
n,I , and so by Rule 10, parts of it are only extracted from the

bin if they enter E or are extracted from Uτ
�

. In either case, such measure cannot
be returned to Uτ during I. Hence, Dt and Dt1 are disjoint. The Claim follows. �

It follows that the number of possible stages t in SRejpUτ q with λpUτtXŴτ
t q ¡ δτ {2

is bounded by 2{δτ multiplied by the number of possible versions of xVρny (for the
appropriate pairs pn, ρq), multiplied by the number of times measure is added to

Uτ
�

. The number of versions of xVρny is bounded by the sum of the numbers gρpnq
for the appropriate pairs pn, ρq, for which gρpnqÓ. It will actually turn out that:

Rule 11. Suppose that at some stage t, a node τ� starts a test for Uτ . Then for
all ρ P F�τ , for all n P rnρ,mτ s, we have gρt pnqÓ.

(Otherwise, we will not have enough information to set up boxes for the testing
to begin.) Note that the rule holds vacuously for |τ | � 1.

Overall, we see that the number of stages t P SRejpUτ q with λpUτt X Etq ¤ δ{4 is
bounded by

|SpUτ�q| � 2{δτ �
¸
gρpnq vρ P F�τ & n P rnρ,mτ sw.

8In fact, it will also be disjoint from Es, but this will require proof (and ensure that Claim 3.1
holds).

26 NOAM GREENBERG AND DANIEL D. TURETSKY

Next, we consider other stages in SpUτ q YCpUτ q. Let t P CpUτ q. Then between
stage t and t�pτ�q, some node π ¬ τ exchanges measure with its parent, and
by considering accessibility, we see that this exchange was planned at some stage
between t and t�pτ�q as well; that stage is in SpUπq. Hence, |Cτ | ¤ °

π¬τ |SpUπq|.
Suppose that t P SpUτ qzSRejpUτ q. For example, minSpUτ q is such a stage. If t �

minSpUτ q, let t1 be the last stage in SpUτ q before stage t. At stage v � pt1q�pτ�q�1
we have λpUτvq � 4δτ , and v ¤ t. In fact, v t because λpUτt q 4δτ . Between
stages v and t, measure was extracted from Uτ , and this happened because of a
swap of measure out of Uπ for some π ¬ τ . That swap was also planned at some
stage between v and t. So the interval pt1, tq contains a stage in SpUπq, which shows
that |SpUτ qzSRejpUτ q| ¤ 1�°

π¬τ |SpUπq|.
We thus define τ ÞÑ bpUτ q by recursion on τ . For τ � xdy we let bpUxdyq �

1� 4{δxdy. Suppose that bpUτ q has been defined for every nonzero π ¬ τ , and that
gρpnqÓ for all ρ P F�τ and n P rnρ,mτ s. Then we let

bpUτ q � 4{δτ � bpUτ�q�2{δτ �
¸
gρpnq vρ P F�τ & nρ ¤ n ¤ mτ w � 1�2

¸
π¬τ

bpUπq.

As mentioned above, this function is partial computable. The calculations and
Rule 11 ensure:

Claim 3.10. If a test is started for Uτ at some stage t, then btpUτ qÓ. For such τ we
have |SpUτ q Y CpUτ q| bpUτ q.

The bound bpUτ q is not the sharpest (we just picked the shortest formula to
define it). However, it turns out that with the definition that we gave, the number
bpUτ q bounds the number of stages s such that Uτs�1 � Uτs . We will not really make
use of this fact.

Before we go on to the sub-bins, we stop to discuss an aspect of the construction
which is somewhat counter-intuitive. The reason for swapping measure is to “clean
the system”: extract bad measure from Uτ , and, it would seem reasonable to
assume, replace it by good measure. The construction does not quite work that
way. We already mentioned (footnote in page 22) that the time elapsed between
the stage t at which a swap is planned and the stage s at which it is executed could

make the swap useless; Ŵτ would have shifted between stages t and s, possibly
causing extraction of measure which has become good and giving Uτ measure which
has become bad. We could try to review the situation before making the swap and
cancelling the swap if necessary, but it turns out this is unnecessary. We can make
a lousy swap, and then at the next stage, Uτ will complain again, and require a new

swap. The fact that Ŵτ eventually stabilises means that eventually, good swaps do
not become bad when executed; and this is good enough for us.

However, even this is not the whole picture. It may be that sometimes we plan

a bad swap. Consider, for simplicity, two test components Vρn and V
ρ1

n1 . At some

point Vρn covers much of Uτ , and we plan to give Uτt XV
ρ
n,t to the bin Bτ

�pn, ρq. In

return, the bin Bτ
�pn, ρq plans to give some measure C to Uτ . Rule 10 says that C

must be disjoint from V
ρ
n,t, but it could be that C is covered by V

ρ1

n1,t. The reason

for C being in the bin Bτ
�pn, ρq in the first place was that in some prehistoric time,

it was covered by Vρn; in the meantime, Vρn moved away from C, but C got covered

by V
ρ1

n1 .

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 27

This seems silly, and indeed we could do it otherwise: instead of giving C to
Uτ , the bin Bpn, ρq would give C directly to the bin Bpn1, ρ1q, and as part of a
triple exchange, the bin Bpn1, ρ1q will give some other measure to Uτ . Of course in
turn this new measure could be covered by some other test, so we might need to
plan some grand swap involving many bins. This is possible, but is unnecessarily
complicated. We simply give the bad measure C to Uτ , and Uτ can later complain

and reject C (and it would pass to Bpn1, ρ1q). Again, the fact that Ŵτ stabilises
will show that this does not go on forever, and that eventually, Uτ will get good
measure.

We now turn to defining bpOq for O � Bσpn, ρ, lq. To bound the number of tests
required by Bσpn, ρ, lq, we need new information on its action. The only purpose of
the following rule is, in fact, to bound the number of tests required by the sub-bin.

Rule 12. Suppose that at some stage we plan to add a clopen set C to Bσpn, ρ, lq
(and test C for O). Then λpCq ¥ 2�l.

The following claim will be proved on page 30.

Claim 3.11. Let I be an interval of stages such that Vρn,s is constant as s ranges
over I, and during which no new measure is added to Uσ. Suppose that t0 t1 are
stages in I at which we start testing pieces of measure (C0 and C1, respectively)
for Bσpn, ρ, lq. Suppose further that t0 P SpBσpn, ρ, lqq, i.e. the test for C0 which
began at stage t0 is successful. Then C1 is disjoint from C0.

So we let bpBσpn, ρ, lqq � bpUσq � 2lgρpnq � 1. Similarly to Rule 11, we have:

Rule 13. Suppose that at some stage t, we start a test for Bσpn, ρ, lq. Then gρt pnqÓ.
Therefore:

Claim 3.12. If a test is started for Bσpn, ρ, lq at some stage t, then btpBσpn, ρ, lqqÓ.
For such a sub-bin we have |SpBσpn, ρ, lqq Y CpBσpn, ρ, lqq| bpBσpn, ρ, lqq.

Note that in all of the calculations in this section, we used the fact that if a test
for an actor O returns successfully, then the planned swap is executed. This relies
on the important part of Claim 3.3.

3.8. Planning and executing a swap. We now describe how to do a swap.
Recall that at some stage t, an accessible node σ decides to pay attention to a child
τ , and τ requests new measure. Rules 1 and 9 say that any new measure which we
plan to give Uτ must be disjoint from any Uτ

1

t for any child τ 1 of σ and from Et.
We also want any extra measure given to Uτ directly from Uσ (not as part of an
exchange with a bin) to be disjoint from Wτ and from bins Bσt pn, ρq for n ¡ mτ .
We first argue that this is possible.

Claim 3.13. Suppose that σ is accessible at stage t. For any child τ of σ,

λ

�
Uσ X

�
Wτ Y EY

¤
τ 1 a child of σ

Uτ
1 Y

¤
ρPF�σ & n¡mτ

Bσpn, ρq
�
rts
�
¤ 3.5 � δσ.

Thus, at least δσ{2 of Uσt is good measure, and we recall that 4δτ ¤ δσ{2.

Proof. By Rule 7, λ
��

τ 1 U
τ 1

t

	
¤ δσ. If σ � xy, then because σ is accessible at

stage t, we know that λ pUσ X pWσ Y Eqrtsq ¤ δσ (otherwise it would ask its parent

28 NOAM GREENBERG AND DANIEL D. TURETSKY

for more measure and not be accessible). For σ � xy we apply Claim 3.2 and
note that δxy � 1{4 and that Wxy � H. If σ R F then Wσ

t � Wτ
t . Otherwise,

Wτ
t � Wσ

t Y
�
nPrnσ,tq

Vσn,t. By Rule 8, λp�nPrnσ,tq
Vσn,tq ¤ δσ. Finally, by Rule 6

we know that λ
��

ρPF�σ & n¡mτ
Bσt pn, ρq

	
 δτ {4 δσ{2. �

If nonempty, the node τ wants to return Uτ X pŴτ Y Eqrts to Uσ. It then needs
new measure, so that in the end it has 4δτ in total. Rejected measure in Et does not

need to be tested, but measure in Uτ X pŴτ zEqrts needs to be distributed among
bins Bσpn, ρq. In exchanging with the bins, we need to follow Rules 10 and 6.

We plan to exchange measure between the bins and Uτ , and from Uσ and Uτ .
Thus, we are seeking clopen sets:

 Cpn, ρq � Ctpn, ρq – measure passed from Uτ to Bσpn, ρq;

 Ypn, ρq � Ytpn, ρq – measure passed from Bσpn, ρq to Uτ ;

 Y� � Y�t – measure passed directly from Uσ to Uτ .

Here and below, pn, ρq and pn1, ρ1q range over ρ P F�σ and n P rnρ,mτ s. We make
the following requirements of these sets:

 tCpn, ρqu is a partition of C � pUτ X pŴτ zEqq rts, and for all pairs pn, ρq,
Cpn, ρq � V

ρ
n,t.

 Ypn, ρq � Bσt pn, ρq and is disjoint from V
ρ
n,t.

 Y� is disjoint from each Ypn, ρq, from each Uτ
1

t , from Wτ
t , and from bins

Bσpn, ρq for n ¡ mτ .

 All pieces mentioned are disjoint from Et.

We also need to make sure that the bins do not get too full and that the correct
amount of measure is given to Uτ . Recall that 2�k

σpn,ρq � mint2�2n, δσu. Let

Y � Y� Y
¤
n,ρ

Ypn, ρq

be the set we intend to give to Uτ ; let

Dpn, ρq � Ypn, ρq Y pBσt pn, ρq X pY� Y Etqq
be the set which we plan to extract from the bin Bσt pn, ρq, and note that Cpn, ρq is
the set which we intend to give the bin Bσpn, ρq. We require:

 λpUτt q � λpYq � λpCq � λpUτt X Etq � 4δτ ; and

 for each pair pn, ρq, λpBσt pn, ρqq � λpCpn, ρqq � λpDpn, ρqq is bounded by

2�k
σpn,ρq.

We order all the pairs pn, ρq (with n ¥ nρ) by an ordering σ of order-type ω;
we arrange pρ, nq σ pρ1, n� 1q and so the collection of pairs pn, ρq with n ¤ mτ is
an initial segment of σ. We carve out maximal pieces from C in order. That is, if
Cpn1, ρ1q has been defined for all pn1, ρ1q σ pn, ρq, then we let

Cpn, ρq � pCX V
ρ
n,tqz

¤
pn1,ρ1q τ pn,ρq

Cpn1, ρ1q.

Now, for each pair pn, ρq (again n ¤ mτ), we find some clopen

Ypn, ρq � pBσt pn, ρqzpEt Y V
ρ
n,tqq

with λpYpn, ρqq ¤ λpCpn, ρqq and

λpBσt pn, ρqq � λpCpn, ρqq � λpYpn, ρqq � λpBσt pn, ρq X Etq ¤ 2�k
σpn,ρq.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 29

This is possible because Cpn, ρq � V
ρ
n,t, λpBσt pn, ρqq ¤ 2�k

σpn,ρq (Rule 6) and λpUσt X
V
ρ
n,tq ¤ 2�k

σpn,ρq (Claim 3.7). Since Ypn, ρqYpBσt pn, ρqXEtq � Dpn, ρq, it will follow
that

λpBσt pn, ρqq � λpCpn, ρqq � λpDpn, ρqq ¤ 2�k
σpn,ρq.

So far, we plan to give
�
pn,ρq Ypn, ρq to Uτ and extract C and Uτt X Et from it.

Let

q � λpUτt q � λpCq � λpUτt X Etq �
¸
pn,ρq

λpYpn, ρqq.

Because we picked λpYpn, ρqq ¤ λpCpn, ρqq, we see that q ¤ 4δτ . So we need to find
Y� as above, disjoint from each Ypn, ρq, of measure 4δτ � q. This is possible by
Claim 3.13; note that

°
λpYpn, ρqq ¤ q. Note that Bσt pn, ρq X Y� is disjoint from

Ŵτ
t � V

ρ
n,t and so Dpn, ρq satisfies Rule 10.

We have now decided which sets are intended for which actors. We start a test
on Y for Uτ . If σ � xy (and τ � xdy) then there will be no bins (C � H) and
actually no need to test Y; we then immediately let Uτt�1 � pUτt zEtq Y Y.

For each pair pn, ρq, we need to start a test on some clopen set (including Cpn, ρq)
for some actor Bσpn, ρ, lq. Recall that we have to obey Rules 5 and 12: the set we
add to the actor has to have measure at least 2�l, but the total resulting measure
claimed by the actor has to be bounded by twice that amount. Also, in light of
the planned Claim 3.11, the new piece needs to be new to the actor (since the last
move of Vρn). For l ¥ kσpn, ρq, let B1pn, ρ, lq � Bσt pn, ρ, lqzDpn, ρq. We find some
k ¡ kσpn, ρq such that:

 λ
�
Cpn, ρq Y�

l¥k B
1pn, ρ, lq� ¤ 2 � 2�k; and

 λ pCpn, ρq Y�
l¡k B

1pn, ρ, lqq ¥ 2�k.

Claim 3.14. Such k exists.

Proof. Note that the sets B1pn, ρ, lq are pairwise disjoint, and they are all disjoint
from Cpn, ρq. Let k be the least k ¡ kσpn, ρq such that

(�) λpCpn, ρqq �
¸
l¡k

λpB1pn, ρ, lqq ¥ 2�k.

Such k exists; for example, any k with 2�k ¤ λpCpn, ρqq. If k ¡ kσpn, ρq � 1, then
the failure of (�) for k� 1 shows that k is as required. If k � kσpn, ρq� 1, then the
suitability of k follows from

λpCpn, ρqq �
¸

l¡kσpn,ρq

λpB1pn, ρ, lqq � λ ppCpn, ρq YBσt pn, ρqqzDpn, ρqq ¤ 2�k
σpn,ρq

which was our design. �

For later application, we note that the k we chose is bounded by m such that
2�m ¤ λpCq 2 � 2�m. I.e.:

Porism 3.15. k ¤ 1� log λpCq.
Having chosen a suitable k, we test Cpn, ρq Y�

l¡k B
1pn, ρ, lq for Bσpn, ρ, kq. We

halt the narrative to note that all clopen sets which are tested are disjoint from Et.
If the tests are successful then when we perform the swap, at some stage s, we

will set:

 Uτs�1 � pUτt zpŴτ
t Y Etqq Y Y; and

30 NOAM GREENBERG AND DANIEL D. TURETSKY

 for each n, ρ, with k chosen as above, we let, for l ¡ kσpn, ρq,

Bσs�1pn, ρ, lq �

$'&'%
Bσt pn, ρ, lqzDpn, ρq, for l k;��

l¥k B
σ
t pn, ρ, lqzDpn, ρq

�Y Cpn, ρq, for l � k;

H, for l ¡ k.

Thus, the sub-bins for l ¡ k have been moved to the kth sub-bin. Note that this is
one-directional: from larger to smaller l. This allows us to prove Claim 3.11.

Proof of Claim 3.11. Let I be an interval of stages such that Vρn,s is constant as
s ranges over I, and during which Uσ receives no new measure. Let t0 P I X
SpBσpn, ρ, lqq, and let C0 be the set tested for the sub-bin at stage t0; let s0 � t�0 pσq
be the stage at which C0 is added to the sub-bin.

We follow the fate of pieces of C0 along I after stage s0. It is possible that parts
of C0 are passed to sub-bins Bσpn, ρ, l1q for l1 l. From these sub-bins they will
never be directly returned to Bσpn, ρ, lq. It is also possible that pieces of C0 are
removed from Uσ; but during I, they are not returned to Uσ. Otherwise, if a part
C1 of C0 leaves the bin at any stage s ¡ s0 in I, then it must be that C1zEs is disjoint
from Vρn,s. No part of Es is ever returned to the bin, and as long as Vρn does not
change, the rest of C0 remains disjoint from Vρn and so none of it is moved back
to the bin. Thus, no part of C0 can be offered to Bσpn, ρ, lq at any stage t ¡ s0
in I. �

We observe that Rule 6 is observed in the construction. When we planned the
swap, we were careful to extract unnecessary measure so that the measure of the
resulting bin does not exceed 2�k

σpn,ρq. At other stages, if a swap is not performed,
the only change to the bin could be the removal of measure due to a swap performed
by an ancestor of σ.

Later, we will need:

Claim 3.16. Let σ be any node. For every ρ P F�σ and n ¥ nρ, there is some stage
after which no new measure is ever added to the bin Bσpn, ρq.
Proof. This is proved by induction on σ. Fix some pair pn, ρq.

Let s0 be a stage such that the component Vρn,s is constant for s ¥ s0, and no
bin Bσpn1, ρ1q for pn1, ρ1q σ pn, ρq ever receives new measure. We may assume that
bins Bσpn, ρq with n ¥ s0 are empty at stage s0; and that for all pn, ρq, the sub-bins
Bσpn, ρ, lq for l ¥ s0 are empty at stage s0.

Now we note that if any Uτ plans to extract any piece of V
ρ
n,tzEt, then our

partition algorithm shows that this piece will be distributed among bins Bσpn1, ρ1q
with pn1, ρ1q ¤σ pn, ρq. So if this happens after stage s0, the measure will be given
to Bσpn, ρq. By induction, at every stage t ¥ s0, every bin Bσt pn1, ρ1q with n1 ¥ s0
is disjoint from Vρn, and every sub-bin Bσpn1, ρ1, lq with l ¥ s0 and pn1, ρ1q � pn, ρq
is also disjoint from Vρn.

Let s1 ¡ s0 be a stage after which no sub-bin Bσpn1, ρ1, lq for l s0 and n1
s0 receives any measure (recall that SpBσpn1, ρ1, lqq is finite). So no Uτ receives
measure from such sub-bins after stage s1. All measure given to Uτ ’s from Bσpn, ρq
after stage s0 is disjoint from Vρn. Any set Y� given by Uσ to such Uτ at t ¥ s0 is
disjoint from Wτ

t and so from Vρn. Overall, we see that no measure given to any
Uτ after stage s1 intersects Vρn. So by induction, we see that for all d ¥ s1, for all
t ¥ s1, Uσpdt is disjoint from Vρn.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 31

Let s2 ¡ s1 be a stage after which Uσpfin and Uσpd for d s1 never receive any
new measure. Then after stage s2, no Uτ ever extract any measure which intersects
VρnzEt. Hence after stage s2, no new measure is added to Bσpn, ρq. �

3.9. The identity of the examiners. Our last task is to describe precisely how
the testing works. We now identify which node sets up boxes for tests for a given
actor O. It would seem natural that an actor O associated with a node σ would use
inputs for ΨA

σ to run these tests, but this will not work. Though σ is constructing
hσ and can see ΨA

σ rss, it does not know the trace for ΨA
σ ; only the child σpd which

correctly guesses a trace can know what the trace is. Thus, we need to choose some
predecessor of σ to perform the test. As we just mentioned, σ needs access to a
trace for the function defined by that predecessor. So we choose some tester π for
σ which is in F ; we use the inputs for ΨA

π� to run tests for actors owned by σ, and
observe the trace Tπ in order to find if the test succeeded or not. The fact that σ
needs access to the trace gives one restriction on the choice of π:

 We need to choose π P F�σ.

On the other hand, the node π� needs to know how many boxes to allocate to O,
and so needs to be able to calculate bpOq. For O � Uτ (where τ is a child of σ), it
needs access to values of gρ for ρ P F�τ � F�σ. For O � Bσpn, ρ, lq, we also need
gρpnq, where again ρ P F�σ. For ρ P F�σ, the nodes which guess that gρ is total
and so have access to the values of gρ when they are accessible are the siblings of ρ

in F (as gρ � g|ρ
�|). In particular, ρ P F�σ is the shortest predecessor of σ which

“knows” gρ. Hence:

 We need to choose π extending every string in F�σ.

The only possible choice is to take π to be the longest string in F�σ.

From the point of view of π�, we see that the nodes σ which require boxes
of π� are the extensions of π�pd for some d ω for which there is no element
of F properly extending π�pd and extended by σ. That is, nodes of the form
π�pdpfinm for some d,m ω.

We note, however, that this assignment of tester π does not make sense in special
cases, namely, nodes σ for which F�σ is empty. There are two kinds of such nodes:
the root xy, and certain nodes extending xfiny.

As mentioned during the construction, nodes σ � xfiny do not play a role in
the construction: we required g0 to be total and so we know that fin is not the
correct outcome of the root. Indeed, the reason that we made this requirement is
precisely our inability to find a suitable tester for such nodes σ.

Of course, this solution does not work for the root, which definitely has a role
in the construction. The root needs to apportion measure to its children xdy and
replace it when necessary. We note, however, two facts:

(1) A node xdy does not put any Γ computations on Uxdy, as those computations
would map to strings of length 0 (this is why we mapped Uτ to As æ|τ |�1

rather than As æ|τ |).
(2) Wxdy � H because F�xdy � H.

The second fact shows that there is no need for bins held by the root. And both
facts together show that measure can be given to Uxdy without testing it. All
measure which the root ever gives to Uxdy is measure which has never been given
to any child of the root: any measure rejected by any Uxdy is rejected because it is

32 NOAM GREENBERG AND DANIEL D. TURETSKY

in E, and so it is never given back to anyone. Thus, measure given to Uxdy is free of
any Γ-computations, and Uxdy does not put any new Γ-computation on it. Hence
no testing is required, as was indicated in the construction.

3.10. Definition of hη. For any node η, in order to define hη, we need to find,
for any given k ω, the collection Oηpkq of all actors O with kpOq � k which

ask η for boxes to perform their tests. Each such actor O will require 2bpOq many
k-boxes from the appropriate column of ω. As we shall see, for each O, the testing
mechanism will utilise a hypercube of boxes devoted to O, with one axis for every
test; hence the required number of boxes.

Fix k ω. The node η first needs to find the actors in Oηpkq. This is easily
done.

Claim 3.17. The map

q ÞÑ tσ : δσ ¥ qu
defined on positive rational numbers q, is computable.

Proof. Say q � 2�k. We know that if τ is a child of σ then δτ δσ{2 (in fact δσ{8).
Hence if δσ ¥ q then |σ| k. We also know that if σ extends some node τpd then
δσ 2�d. Hence we can bound the search to the finitely many nodes of length at
most k which do not mention numbers greater than k. �

Given k ω, the actors O with kpOq ¤ k are either Uτ with δτ ¥ 2�k�1,
or Bσpn, ρ, lq with l ¤ k, which implies kσpn, ρq k, which implies 2n k and
δσ ¥ 2�k. From Claim 3.17 we see that we can effectively find all such actors. We
then check which ones have kpOq precisely equal to k and which ones appeal to η
for boxes, and obtain Oηpkq. Note that this is done effectively, without waiting for
any functions gρ to show us any values.

However, to find bpOq for O P Oηpkq, we need such values. For every O P�
kOηpkq we can find a number u � upOq such that bpOq can be calculated given

gρ æupOq for ρ P F�η, and g|η| æupOq. At each stage s, for some K � Kη,s, we will
have already set up the k-boxes k K; the collection of k-boxes is an interval Ik and

these intervals are consecutive. If s is η-expansionary, and dom g
|η|
s ,dom gρs ¡ upOq

for ρ P F�η and all O P OηpKq, then we can define IK to be long enough so

that there are disjoint sets IpOq � IK for O P OKpηq with |IpOq| � 2bpOq and
IpOq � ωrds, where σpOq � ηpd. Then hη is extended to IK (by letting hηpzq � K
for z P IK), and we let Kη,s�1 � Kη,s � 1.

If the node σ associated with O is accessible at some stage t and at that stage
plans a swap with a child, and asks to test for O, then carrying out this test is only
possible if Kη,t ¡ kpOq, i.e., if Ik has been defined by stage t. If this fails for some
actor O for which σ asks for a test, then as indicated above, the planned swap is
abandoned and no test is started.

We note that now we can verify that Rules 11 and 13 are followed. If τ is
accessible at some stage s, then at some stage t s, τ� tested measure that would
go into Uτ , and so the required boxes were set up by stage t. In order to set up
the boxes for Uτ , we need to calculate bpUτ q. The same argument holds for the
sub-bins.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 33

3.11. Testing. The set IpOq is the collection of inputs (boxes) z such that tests
performed for O use ΨA

η pzq. We want to think of IpOq as a hypercube of dimension
bpOq (and axis length 2). We write DpOq � t1, 2, . . . , bpOqu for the set of axes of
this hypercube, and so write

IpOq � tzνpOq : ν : DpOq Ñ t0, 1uu .
When O is clear from context, we write zν for zνpOq, D for DpOq, etc. What is
important is to notice that hηpzq � kpOq for all z P IpOq.

When at some stage t, we start a test for the actor O, we assign some axis
at � atpOq P DpOq to this test. We then use the boxes in some flat subset LtpOq
of IpOq.

We will test some string αt At. So that Claim 3.3 holds, we need to test the
same string for all actors testing at stage t. Let CtpOq be the clopen set which we
plan to give O at stage t. Also, let TtpOq be the set of stages r t at which a test
for O was started, such that αr At. We let

αtpOq �
¤

rPTtpOq

αr Y
¤

XPCtpOq

ΓXt .

We noted (in Section 3.8) that CtpOq is disjoint from Et, and so αtpOq is an initial
segment of At. We then consider all actors O for which a test is started at stage t.
Let σ be the node which owns all of these actors. We let

αt � At æ|σ| Y
¤
αtpOq va test for O is started at stage tw.

To perform the test for O, we let, for all z P LtpOq, ΨAt
η,t�1pzq � αt with use |αt|.

So what remains is to describe how to pick at and Lt, and then to show that Ψη is
consistent.

Let π be σ’s tester; so η � π�. The test on LtpOq is successful at stage s ¡ t if
αt As, and for all z P LtpOq we have αt P Tπs pzq. The test on LtpOq has failed by
stage s ¡ t if αt ¢ As. Note that it is possible for a test to be successful at stage
s1 and then for the same test to fail by stage s2 ¡ s1.

Proof of Claim 3.3. Suppose that a node σ � xy plans a swap with a child τ at
stage t, and is next accessible at stage s. Let π be the tester for σ, and η � π�.
At stage t we begin tests for actors O associated with σ; we set Ψαt

η pzq � αt for
all z P LtpOq for every actor O involved. If αt ¢ As then all of these tests have
failed by stage s. Otherwise, ΨA

η pzq rss � αt for all such z. Since π is accessible at
stage s, we have αt P Tπs pzq for all such z, and so all the tests have succeeded by
stage s. �

What we need to note is that if a test which began at stage t has failed by stage
s, then the computations ΨAt

η pzq, for z P Lt, no longer apply to As, and so these
boxes have been “released” by that test and are available for tests which begin after
stage s.

Still using the same scenario, we note that at a stage t at which σ wants to
perform tests, we can calculate both CtpOq � CpOq X t0, . . . , t � 1u and StpOq �
SpOq X t0, . . . , t � 1u. The set CtpOq is the set of stages r t at which a test,
started for O at r, was cancelled before stage r�pσq ¤ t. The set StpOq is the set
of stages r t at which a test, started for O at r, returned successfully at stage
r�pσq ¤ t.

34 NOAM GREENBERG AND DANIEL D. TURETSKY

The calculations of Section 3.7 show the following important claim:

Claim 3.18. If O requests a test at some stage t, then

tar : r P St Y Ctu
is a proper subset of DpOq.
Proof. This is essentially a restatement of Claims 3.10 and 3.12. �

Hence, at such a stage t, we can choose some at P DpOq, distinct from ar for
r P St Y Ct. It does not matter which one. Then Claim 3.3, which was used
implicitly above, ensures that:

Corollary 3.19. The map t ÞÑ at is injective on CpOq Y SpOq.
To find Lt, we let

 Ps � PspOq be the set of stages r P Ss such that the test started at stage
r has failed by stage s; and

 Qs � Cs Y pSszPsq.
The set Ps increases with time. As mentioned above, the boxes in Lr, for r P Ps,
have been released to be used by other tests starting after stage s. Moreover, the
traces Tπs pzq for z P Lr contain the string αr, which lies strictly to the left of As.
These boxes have been “promoted” – their trace Tπpzq has “used up” one of its
k � hηpzq many “slots”. Of course, the price for this is that at some stage s1 s we
erroneously believed that αr A, and the actor O took responsibility for Cr. The
fact that the test then failed shows that some of this measure entered E, and this
was charged to O (unless in the mean time, O passed the responsibility to some
other actor). The grand plan is to keep reusing such boxes for future tests, so that
each time this happens, some traces Tπpzq will lose more and more of their slots.
Each such Tπpzq has at most k slots, and we will use this to bound the number of
errors by k.

What guides us in the choice of Lt is that we must have Lt disjoint from Lr for all
r P Qt, because the tests started at such r have not yet released their boxes; using
these boxes could make Ψη inconsistent. The flat Lr is contained in the hyperplane
tzν : νparq � 1u, and so we let

Lt � tzν P IpOq : νpatq � 1 & νparq � 0 for all r P Qtu .
Corollary 3.19 implies that Lt is nonempty.

Claim 3.20. Ψη is consistent.

Proof. First note that if z P IpOq, then ΨAt
η pzq is defined only at stages t at which

a test is started for O; the cubes for distinct actors are disjoint. Suppose that
such a test is started at stage t, and that ΨAt

η,tpzqÓ for some z � zν P IpOq, so
already converges by a computation defined at some stage r t. The use of that
computation was |αr|, and so αr At. Thus, the test started at stage r has not
yet failed, and since σpOq is accessible at stage t, we see that r P Ct Y St, and that
in fact r P Qt. Hence νparq � 1, and so z R Lt, whence no new computation is
defined on z at stage t. �

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 35

3.12. Bounding the size of E. We have finished giving the details of the con-
struction. Our first task is to make sure that the construction makes sense, that is,
that the instructions we gave can actually be carried out. To do this, we need to
observe that all the rules were obeyed, and that all the claims we stated along the
way hold. What is left is to verify Claims 3.1 and 3.2, using Claims 3.4 and 3.5.

Recall from Section 3.1 how the claiming of responsibility works: if a clopen set
C is moved to some actor O at some stage s, then from stage s � 1, the actor O
claims responsibility for all Y P C. The actor keeps being responsible for such Y
until a stage at which Y is moved to some other actor. Note that this can happen
without Y leaving O: if Y enters Uτ , and then at some later stage s it enters Uτ pd,
then from stage s� 1, Uτ pd is responsible for Y and Uτ is not.

Claim 3.21. If ΓYs � xy and Y R Es�1 then at stage s, Y is the responsibility of
some actor O with σpOq � xy.
Proof. By induction on s. At the first stage s at which a Γ-computation pertaining
to Y is enumerated (into Γs), Y is claimed by some Uτ with |τ | ¥ 2. We then observe
that once a real Y is claimed by some O with σpOq � xy, it can only move to another
actor O1 with σpO1q � xy, or into E; as we mentioned earlier, measure returned to
Uxy is in E, and measure given to any Uxdy is free from Γ-computations. �

Claim 3.4 follows. Next, we check that Γ actually works.

Claim 3.22. Suppose that a swap is planned at stage t and is executed at stage s.
Then αt As.

Proof. The tests which were started at stage t are all successful at stage s. �

Claim 3.23. Suppose that at some stage u, an actor O is responsible for a real
Y . Let s u be the stage at which the actor took responsibility of Y , and let
t � s�pσpOqq be the stage at which the swap, which was executed at stage s, was
planned (we assume that σpOq � xy). Then ΓYu ¤ αt.

Proof. By the definition of αt, we have ΓYt ¤ αt. We have Y P Uσt � Uσs , and σ
is not accessible between stages t and s. It follows (really by Rule 1) that no new
Γ-computation is defined on Y between stages t and s, so ΓYs � ΓYt .

At stage s we may add a Γ-definition which pertains to Y . (This may happen if
O � Uτ for some τ , a child of σ.) The axiom, added to Γs�1, maps the new clopen
subset of Uτ to As æ|σ|. By Claim 3.22, αt As, and by design, |αt| ¥ |σ|. Hence

ΓYs�1 ¤ αt. Between stages s � 1 and u, no new Γ-computation applies to Y , as
new computations always involve a shift in responsibility. �

Proof of Claim 3.1. In fact, if a clopen set C is moved to any actor O (not only
Uτ) at stage s, then C is disjoint from Es. For let Y P C and let t � s�pσpOqq.
Claim 3.23 implies that ΓYs ¤ αt (as ΓYs ¤ ΓYs�1). By Claim 3.22, αt As. Hence
Y R Es. �

So Γ is a consistent functional.

Proof of Claim 3.5. Let P pOq � �
s PspOq, i.e., it is PspOq for sufficiently late s.

For every t P P pOq, let vptq be the stage at which t enters P pOq, i.e. the least stage
v such that αt ¢ Av. Let P 1 be the set of t P P pOq such that the interval pt, vptqq
contains no element of P pOq.

36 NOAM GREENBERG AND DANIEL D. TURETSKY

First, we observe that |P 1| ¤ kpOq. Define ν : DpOq Ñ t0, 1u by letting νpatq � 1
for all t P P 1 and νpbq � 0 for all other b P DpOq. Let t P P 1, and consider t1 t in
P 1. As vpt1q ¤ t, we see that t1 P PtpOq. It follows that zν P Lt. Since P pOq � SpOq,
we know that αt P T ρpzνq for all t P P 1. However, if t1 t are in P 1, then vpt1q ¤ t
and αt At implies that αt1 lies strictly to the left of αt. In particular, the strings
αt for t P P 1 are distinct. Hence |P 1| ¤ |T ρpzνq| ¤ kpOq.

The proof of the claim will be finished once we show that if at some stage u, a
real Y for which O is responsible at stage u enters Eu, then Y P Opt1q�pσpOqq�1 for
some t1 P P 1. Let Y be such a real and u be such a stage. Let s be the last stage
before u at which Y was moved to O, and let t � s�pσpOqq; note that σpOq � xy.

By Claim 3.23, we have ΓYu ¤ αt, and since Y P Eu we conclude that αt ¢ As.
So t P P pOq and vptq ¤ u.

We note: if t t1, a test for O is started at stage t1, and vptq ¡ t1 then αt ¤ αt1 .
This follows from the definition of αtpOq, as αt At1 (we have t P Tt1pOq). It
follows that if in addition t1 P P pOq then vpt1q ¤ vptq.

Let t1 be the greatest element of P pOq in the interval of stages rt, vptqq. The
argument in the previous paragraph shows that t1 P P 1. Let s1 � pt1q�pσpOqq;
because t1 P SpOq, α1t As1 and so s1 vpt1q ¤ vptq ¤ u. As s1 ¥ s we have
Y P Os1�1, as required. �

Finally, the calculations in Section 3.5 show that Claim 3.2 holds, and with that,
we conclude that the construction can be carried out as described.

3.13. The true path. The true path is defined recursively, starting with the root.
If σ is on the true path, then the child of σ which is on the true path is the
leftmost one which is accessible infinitely often. Here the ordering on outcomes
is 0 L 1 L 2 L � � � L fin. We need to show that the true path is infinite.
Suppose that σ lies on the true path.

We first show that there is a leftmost child of σ which is considered by σ infinitely
often. Then we will show that this child is accessible infinitely often.

We need:

Claim 3.24. Suppose that σ lies on the true path, and that g|σ| is total. Then hσ
is total.

Proof. Let ρ P F�σ. Because ρ P F is on the true path, we see that gρ is total
(otherwise there are only finitely many ρ�-expansionary stages). The calculations
in Sections 3.7 and 3.10 show that for any k, we eventually set up k-boxes (define
Ik). �

We identify the “correct child” τ .

 If g|σ| is partial, then we let τ � σpfin.

 Otherwise, we let τ � σpd for d the least such that for all z P ωrdsXdom ΨA

σ

we have ΨA
σ pzq P Tσpd. Such d exists: as hσ is total, there is some d ω

such that Tσpd is a trace for ΨA
σ .

Claim 3.25. Every child τ 1 of σ which lies to the left of τ is considered by σ only
finitely many times.

Proof. If τ � σpfin then there are only finitely many σ-expansionary stages, and
no σpd is considered at stages which are not σ-expansionary.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 37

Suppose that τ � σpd, and let τ 1 L τ ; τ 1 � σpd1 for some d1 d. Then
Tσpd

1 æωrd1s is not a trace for ΨA
σ æωrd1s , which means that there is some z P ωrd1s X

dom ΨA
σ such that ΨA

σ pzq R Tσpd
1pzq. There is some stage s such that for all t ¥ s,

ΨA
σ pzqrts � ΨA

σ pzq. After stage s, σpd1 will not be considered by σ. �

Let r0 be a stage after which no τ 1 L τ is considered by σ.

Claim 3.26. τ is considered infinitely often by σ.

Proof. There are infinitely many stages s at which σ does not perform a previously
planned swap with one of its children.

If τ � σpfin, then at every stage s ¡ r0 at which σ is accessible and is not
performing a swap, σ will consider τ .

Suppose that τ � σpd. Definitions of ΨA
σ pzq for z P ωrds are only made when

τ is accessible. If τ is not considered infinitely often, then eventually ΨA
σ rts æωrds

stablises and equals ΨA
σ æωrds . As T τ æωrds traces ΨA

σ æωrds , there is some stage s0 ¡ r0
such that for every t ¥ s0, for every z P ωrds X dom ΨA

σ rts, we have ΨA
σ pzq P T τ rts.

Thus, τ would be considered at every σ-expansionary stage after stage s0. Hence,
there are no σ-expansionary stage after stage s0. Let t ¡ s0 be a stage at which

dom g
|σ|
t ¡ s0, and σ is accessible at stage t and is not performing a swap at stage

t. Then t is a σ-expansionary stage; contradiction. �

We recall that SpUπq is finite for all π ¤ τ (Section 3.7). It follows that Uπ�
eventually stabilises to a clopen set Uπ; we increase r0 so that Uπt � Uπ for all
t ¥ r0 and π ¤ τ . Note that no test which is started for Uτ after stage r0 can
be cancelled. We can also make r0 sufficiently large so that V

ρ
n,� is stable for all

ρ P F�τ and n P rnρ,mτ s.
Claim 3.27. τ is accessible infinitely often.

Proof. We suppose that it is not, for a contradiction. There is a stage r1 ¡ r0 after
which τ is never accessible. We note that since no new measure is added to Uτ after
stage r1, and τ is never accessible after stage r1, no new Γ-computations are put
on any subset of Uτ after stage r1. So only finitely many Γ-axioms apply to reals
in Uτ . This means that eventually, EtXUτ is stable. So by choosing r1 sufficiently
large, we may assume that Uτt X Et � Uτ X E for all t ¥ r1.

At every stage t ¡ r1 at which τ is considered by σ, Uτ requests new measure
from Uσ (otherwise τ would be accessible). A swap is planned. Either we cannot
perform the test because of a lack of boxes, or we do test. The test cannot be
cancelled, and cannot succeed, so it must fail by stage t�pσq.

Let t ¡ r1 be a stage at which σ considers τ . Consider some ρ P F�σ and
n P rnρ,mτ s; at stage t we may plan to give the bin Bσpn, ρq a clopen set Ctpn, ρq.
Porism 3.15 states that we plan to test Ctpn, ρq for Bpn, ρ, lq for some l bounded by
1� log λpCtpn, ρqq. Because Uτ�, Vρn,� and Uτ�XE� are all constant after r1, the set

C� � Uτ�XŴτ
� is constant after r1. Since the process of carving Ct up into Ctpn, ρq

is fixed, we see that after stage r1, Ctpn, ρq does not depend on t. This implies that
there is a fixed bound N on the certainty kpOq for any actor O which is involved
in any plan to swap measure for Uτ , after stage r1. As we noted above, because
σ lies on the true path, gρ is total for all ρ P F�σ. The analysis in Section 3.10
shows that eventually, η � π� will set up k-boxes for all k ¤ N , where π is σ’s

38 NOAM GREENBERG AND DANIEL D. TURETSKY

tester. Hence, after some stage r2 ¡ r1, we can perform the test for Uτ whenever
we choose to.

So it remains to show, for the contradiction, that at some stage t ¡ r2 we will
start a test for Uτ which does not fail. This will immediately follow from a bound
M we find for |αt| for all t at which a test for Uτ is started.

We just saw that the set Ctpn, ρq offered to the bin Bσpn, ρq at stages t ¡ r2 is
constant. By assumption, it never leaves Uτ ; as Uτ is never accessible, after stage
r2, no new Γ-computations are added that pertain to any reals in CtpOq.

There is a finite set B of bins Bσpn, ρq which are involved in tests for Uτ after
stage r2. By Claim 3.16, there is a stage r3 ¡ r2 after which none of these bins
receive any measure.

Consider a set CtpOq offered to some sub-bin O � Bσpn, ρ, lq when testing for Uτ

after stage r2. This set comprises of measure from Uτ and of measure from other
sub-bins of Bσpn, ρq. No new Γ-computations were added to either since stage r3.
Hence αtpOq is bounded after stage r3.

It remains to consider O � Uτ . Measure offered to Uτ is either some Ypn, ρq or
Y�. The sets Ypn, ρq come from bins in B, and so no new Γ-computations apply to
reals in these sets after stage r3. The set Y� is always chosen to be disjoint from
bins outside B, so it is composed of measure which was never in Uτ

1

for any child τ 1

of σ, and of measure from bins in B. In either case, no Γ-computations enumerated
after stage r3 apply. So αtpUτ q is bounded after stage r3. This completes the proof
of the claim. �

3.14. Endgame. So the true path is infinite. For any node σ, we let Uσ be the
final version of Uσt .

Claim 3.28. If σ lies on the true path, then λpUσq � 4δτ , and λpUσXpWσYEqq ¤ δσ.

Proof. There is a stage s at which σ is accessible, and such that Uσs � Uσ. Then
λpUσq � 4δσ follows from Rule 2.

Suppose that λpUσXpWσYEqq ¡ δσ; let q λpUσXpWσYEqq�δσ be a positive
rational number. The significant components of Wσ eventually stabilise, and so
there is some stage s such that λpEzEsq q{4 and for all t ¡ s, λpWσ4Wσ

t q q{4.
Then for all sufficiently large stages t, we have λpUσ X pWσ Y Eqrtsq ¡ δσ. This
includes some stage at which σ is accessible, which contradicts Rule 3. �

If τ extends σ then Wσ � Wτ . It follows that xUσzpWσ Y Eqy, as σ ranges
over the true path, is a decreasing sequence of closed, nonempty sets, and so the
intersection contains some real X. On page 10, just before Section 3.1, we detailed
three properties of X which are sufficient for the proof of the theorem. We verify
that X has these properties. The first is immediate from the definition of X: X R E.

The second is not too difficult.

Claim 3.29. ΓX is total.

Proof. Fix e ¡ 0 and find σ on the true path of length e. Let τ be the child of σ
on the true path. Since X P Uτ , there is some stage s at which X is added to Uτ .
At that stage we enumerate into Γ an axiom which makes dom ΓX ¥ e. �

The third is also easy.

Claim 3.30. X is Demuth random.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 39

Proof. Suppose that ge is total. Let σ on the true path have length e. We showed
that the child ρ of σ on the true path is in F . We have gρ � ge and xVρnyn ω �
xVenyn ω. Let τ be the child of ρ on the true path. Then

�
n¥nρ

Vρn is a subset of

Wτ . Since X RWτ , X passes the test xVeny. �

4. Proof of Theorem 1.2

We enumerate a c.e. set A. To ensure that A is strongly jump-traceable, we meet
the following requirements:

Ne: if he is an order function, then JA has an he-trace xT exyx ω.

Here xhey is an effective list of all partial computable functions whose domain is an
initial segment of ω and which are nondecreasing on their domain, and JA denotes
a universal A-partial computable function.

We will find the following approximation to the use function helpful: if JApxq rss
converges, we define jspxq to be the use of the computation JApxq rss. Otherwise,
we define jspxq � 0.

To ensure that A is not computable from an A-Demuth random set, we meet
the following requirements:

Pe: Every X P 2ω such that ΦepXq � A fails an A-Demuth test xUnyn ω.

This will be a single Demuth test shared by all Pe. To meet Pe, we meet subre-
quirements:

Pe,m: If ΦepXq � A then there is some n ¡ m such that X P Un.

To guess which functions he are in fact order functions, we use a tree of strategies.
To define the tree, we list the possible outcomes of each strategy (node on the tree).
Let σ be a node. If σ works for Ne, then the possible outcomes of σ are inf and
fin (denoting whether or not he is an order). Otherwise, σ has only one outcome.

For a node σ, accessible at stage s and of length ¤ s, we describe what actions
σ takes at stage s, and if |σ| s, which outcome of σ is next accessible.

4.1. Strategy for Ne-requirements. Let `speq be the greatest n such that there
is some x ¤ s such that he,spxqÓ� n.

At stage s, σ attends to all x such that hepxq `speq: if JApxqÓ� y rss and
y R Tσx,s, then we enumerate y into Tσx and initialise all τ � σfin.

Also, σ aggregates restraint: for all n `speq, we let Rspσ, nq be the maximum
of jspxq where hepxq ¤ n.

Let t s be the last stage at which σinf was accessible (t � 0 if there is no such
stage). If `speq ¡ 2t�2 and `speq ¡ 2ntpτq for every τ � σinf such that ntpτq is
defined9, let σinf be accessible at stage s. Otherwise, σfin is accessible at stage s.

4.2. A Basic Strategy for Pe,m. When we see measure that appears to com-
pute A (using Φe), we have two possible ways in which we can satisfy Pe,m: we can
cover that measure with our test, or we can change A. We employ a combination
of the two.

First, we choose an unclaimed test component Un with n ¡ m and a large y.
We keep y out of A. We study the open set

Vs � tX P 2ω | ΦXe,s � As æy�1u.

9ntpτq will be defined in the Pe,m-strategy

40 NOAM GREENBERG AND DANIEL D. TURETSKY

While λpVsq ¤ 2�n, we can cover it with Un. When Vs grows to be too large, we
can enumerate y into As�1. Then all of Vs is wrong (it is in E, to use the notation
of the previous proof), so Pe,m need no longer concern itself with it. We can then
empty Un, choose a new y, and start again. This can happen at most 2n many
times (since at least 2�n measure goes bad each time it happens), so we have a
computable bound on the number of times we empty Un.

This strategy is insufficient, however, because the strongly jump-traceable strate-
gies Ne1 act to ensure the trace at x by putting restraint on A. If a higher priority
strategy places restraint that prevents y from entering A, it will interfere with the
Pe,m-strategy.

Our response is to modify the strategy slightly. If y is restrained from entering A,
we empty Un, choose a new large y, and start again. Every Ne1 -strategy will only
impose restraint for x at most hepxq many times, so eventually this stops occurring.

It would seem that we have just constructed a strongly jump traceable c.e. set A
which is not computable from a Demuth random, in contradiction with the previous
theorem. There is a complication, however, in the bound on the number of changes
to Un; specifically, how many x are there with higher priority?

When a Pe,m-strategy is initialised, it chooses a test component Un to work
with. This indicates that it will enumerate at most n many elements y into A.
This then determines which x are higher priority than Pe,m; those pairs pe1, xq such
that he1pxq is large enough to tolerate n many changes are lower priority, and the
rest are higher. Thus this choice of n would seem to indicate how many higher
priority pairs there are. However, we will not actually know how many such x
there are until all the he1 have grown sufficiently large.

To guess which functions he1 are in fact order functions, we use a tree of strategies.
The first time a Pe,m-strategy is accessible, the value n is chosen. We will not let
this strategy be accessible again until every he1 which it guesses to be an order grows
large relative to n (this is why we required `speq ¡ ntpτq in the Ne-strategy in order
for σinf to be accessible). So the second time the Pe,m-strategy is accessible, we
know how many higher priority pe1, xq pairs there are, and thus what the bound on
the number of changes to Un is. Unfortunately, this means that if a Pe,m-strategy
is accessible precisely once, the computable bound we define will not be defined
at n.

Our strategy then is to define the bound on the number of changes to Un to be 0
when the Pe,m-strategy is first accessible. The second time the strategy is visited,
we cause a change in A and redefine the bound to be whatever we now know
it should be. Because our redefinition accompanied a change in A, the resulting
function is A-computable. Hence xUny will be an A-Demuth test. Indeed, the only
part of our A-test which requires the oracle is the bound on the number of changes.

4.3. The Full Strategy for Pe,m. σ is associated with a test component nspσq ¡
m, a coding marker xspσq and a witness yspσq. These become undefined whenever σ
is initialised. Whenever σ changes the definitions of any of these or undefines them,
all τ � σ are initialised. Let s0 be the stage at which σ was last initialised. There
are three cases.

Case 1. nspσq is not defined.
We set nspσq and xspσq to be large and pass to the next accessible node.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 41

Case 2. nspσq and x � xspσq are defined and x R A
Let b � 2s0�2. If there is some β inf � σ such that β works for some Nd-require-

ment10, and Rspβ, bq ¥ xspσq, then we undefine both xspσq and nspσq. Otherwise,
we enumerate x into A. Either way, we then pass to the next accessible node.

Case 3. n � nspσq and x � xspσq are defined and x P A.
Let k � 2n�2. If there is some β inf � σ such that β works for some Nd-require-

ment10, and Rspβ, kq ¥ yspσq (or if yspσq is not defined), then we set yspσq to be
some large number and declare Un � H.

Let

Vspσq �

X P 2ω : ΦXe,spxq � As æy�1

(
.

If λVspσq ¥ 2�n, we:

 enumerate y into A, and declare yspσq to be undefined;

 declare Un � H.

Otherwise, we declare Un � Vspσq. We then pass to the next accessible node.

4.4. Construction. We build a tree of strategies by devoting each level to a single
requirement. Every strategy at level 2e is devoted to the Ne-requirement, while
every strategy at level 2xe,my � 1 is devoted to the Pe,m-requirement.

At stage s, we begin by letting the root be accessible and then proceed to let
every accessible node σ with |σ| s act in order of length. At the end of stage s, for
every σ with |σ| s, we let xs�1pσq � xspσq, ys�1pσq � yspσq and ns�1pσq � nspσq.
4.5. Verification. We perform the verification as a sequence of claims.

Claim 4.1. Let σ work for some Pe,m. Let t ¡ s, and suppose that n � nspσq �
ntpσq. Then between stages s and t, σ enumerates at most 2nspσq many witnesses
into A.

Proof. Let s0 ¤ s be the stage at which the location n � nspσq � ns0pσq was
chosen. Let s1 s2 . . . be the stages, after stage s0, at which a new witness
yi � ysipσq is chosen. Since each yi is chosen large, we have y1 y2

Let Vi � Vsi�1
pσq. We claim that if nsi�1

pσq � n (so in particular, if si�1 t),
then Vi is disjoint from every Vj for j i. This is because for all X P Vj we have
ΦXe pyjq � 0, as yj R Asj�1

, but for all X P Vi we have ΦXe pyjq � 1, as yj P Asi�1
.

Since, for all j such that sj�1 is defined, we have λVj ¥ 2�n, we see that s2n�1

cannot exist. �

Claim 4.2. Let σ work for some Ne, and suppose that m `speq. Then there are
fewer than m many stages s1 ¥ s at which some τ � σinf enumerates an element
into A below Rs1pσ,mq.
Proof. Such elements come in two sorts: xs1pτq and ys1pτq. We count these sepa-
rately.

By construction, in order for xs1pτq Rs1pσ,mq to be enumerated into A at
stage s1, it must be that 2s0�2 m, where s0 s1 is the last stage at which τ was
initialised. But since |τ | s0 and the priority tree is at most binary branching,

10Since σ is accessible, we know that `spdq is greater than b and k, and thus that Rspβ, bq
and Rspβ, kq are defined.

42 NOAM GREENBERG AND DANIEL D. TURETSKY

there are at most 2s0 many strategies τ which were initialised at stage s0. Thus a
bound on the number of such xs1pτq is¸

2s0�2 m

2s0 m{2.

By construction, in order for ys1pτq Rs1pσ,mq to be enumerated into A at
stage s1, it must be that 2n�2 m, where n � ns1pτq. Since strategies always
choose their n large, the same n never occurs more than once. For a fixed n,
by Claim 4.1, at most 2n many witnesses are enumerated. Thus a bound on the
number of such ys1pτq is ¸

2n�2 m

2n m{2.

So there are fewer than m many such elements enumerated in total. Since
no element is enumerated more than once, there are fewer than m many such
stages. �

Claim 4.3. Let σ work for some Ne. Let t ¡ s, and suppose that he,spxqÓ `speq,
σ is not initialised between stages s and t. Then between stages s and t, at most
hepxq many elements are enumerated into T ex .

Proof. Let s1 s2 . . . be the stages between s and t at which σ enumerates an
element into T ex . Then by construction, JApxq rsis � JApxq rsi�1s, and so between
stages i and i� 1 some accessible node τ must have enumerated an element into A
below jsipxq.

By assumption, τ � σ. If τ is to the left of σ, then when τ was accessible, σ
would have been initialised, contrary to hypothesis. If τ is to the right of σ or
τ � σfin, then τ was initialised at stage si, and so the element xs1pτq or ys1pτq
which was enumerated would have been chosen after stage si, and thus would be
larger than jsipxq.

So it must be that τ � σinf. But the number of stages at which this can happen
is less than hepxq by Claim 4.2. Thus there can be no shepxq�1. �

Claim 4.4. Let σ be working for some Pe,m-requirement. Let t ¡ s be such that
n � nspσq � ntpσq. Then if Un is not declared empty between stages s and t,
Un,s � Un,t.

Proof. By hypothesis, Un,t � Vtpσq, Un,s � Vspσq, y � yspσq � ytpσq and y R At.
If Vspσq � Vtpσq, then As æy�1� At æy�1. So some element less than y was
enumerated into A by some accessible strategy ρ between stages s and t.

If ρ � σ or ρ is to the left of σ, then σ would have been initialised between
stages s and t when ρ was accessible, contradicting nspσq � ntpσq.

If ρ � σ or ρ is to the right of |s, then ρ would have been initialised when σ
chose y, so any values chosen by ρ would be larger than y. �

Claim 4.5. There is an A-computable total function gpnq bounding the number of
times Un is declared empty.

Proof. By construction, if n is not selected by some Pe,m-strategy by stage n, it
will never be selected, and thus gpnq can be set to 0.

Otherwise, let σ be the Pe,m-strategy which selects n, let s be the stage at
which σ selects n, and let x � xspσq. Note that by construction, if σ is accessible
at stage t ¡ s, `tpdq ¡ 2s0�2 and `tpdq ¡ 2n�2 for all Nd-strategies βinf � σ.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 43

If x R A, there are two possibilities: either σ was never again accessible after
stage s, or x and n were undefined before the next time σ was accessible after
stage s. In both cases, gpnq � 0 suffices.

If x P A, then σ was accessible at some stage t ¡ s. At this stage, for every
Nd-strategy β with βinf � σ, we can compute #tx | hdpxq ¤ 2n�2u. By Claim
4.3, each such x can cause Rpβ, 2n�2q to change at most 2n�2 many times.

By construction, whenever Un is declared empty, either a new y was chosen
because the previous y was below some restraint, or because the previous y was
enumerated into A. We can use the previous paragraph to bound the first number,
and Claim 4.1 to bound the second. Thus if x P A,

gpnq � 2n �
¸

τ inf�σ

2n�2 �#tx | hdpxq ¤ 2n�2u

suffices. �

Claim 4.6. xUny is an A-Demuth test.

Proof. Claims 4.4 and 4.5. �

Define the True Path in the usual fashion.

Claim 4.7. Every strategy along the true path is initialised only finitely many times.

Proof. Proof by induction.
Let σ be along the true path, and let s0 be a stage such that for every τfin � σ

with τ an Ne-strategy, `speq will never change after stage s0, and for every ρ � σ, ρ
will never again enumerate an element into A. Then by construction, σ will never
again be initialised. �

Claim 4.8. Every strategy along the true path guarantees its requirement.

Proof. By construction, if he is an order, T ex traces JA. By Claims 4.3 and 4.7, T ex
is eventually smaller than the order he, which suffices to meet the Ne-requirement.

Let σ be a Pe,m-strategy along the true path. Let s0 be the final stage at which σ
is initialised. The next time σ is accessible after s0, we will choose an n and x, and
from then after never again consider Case 1.

By Claim 4.3, Rspβ, bq will eventually stabilise for every βinf � σ. Thus we will
eventually enumerate some x into A and never again consider Case 2.

By Claim 4.3 again, Rspβ, kq will eventually stabilise for every βinf � σ. Thus
we will eventually stop rechoosing y because of restraint.

By Claim 4.1, we enumerate only finitely many of these y into A. After we have
enumerated the last one, Un will cover all X which compute A. �

This completes the proof of Theorem 1.2.

References

[1] Klaus Ambos-Spies and Peter A. Fejer. Embeddings of N5 and the contiguous degrees. Ann.
Pure Appl. Logic, 112(2-3):151–188, 2001.

[2] Klaus Ambos-Spies, Carl G. Jockusch, Jr., Richard A. Shore, and Robert I. Soare. An al-
gebraic decomposition of the recursively enumerable degrees and the coincidence of several
degree classes with the promptly simple degrees. Trans. Amer. Math. Soc., 281(1):109–128,

1984.
[3] Laurent Bienvenu, Adam Day, Noam Greenberg, Antonin Kučera, Joseph Miller, André Nies,

and Daniel Turetsky. Covering by incomplete Martin-Löf random sets. Submitted.

44 NOAM GREENBERG AND DANIEL D. TURETSKY

[4] Laurent Bienvenu, Noam Greenberg, Antonin Kučera, André Nies, and Daniel Turetsky.

K-triviality, Oberwolfach randomness, and differentiability. In preparation.

[5] Laurent Bienvenu, Rod Downey, Noam Greenberg, André Nies, and Daniel Turetsky. Lowness
for Demuth randomness. Submitted.

[6] Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-traceabilty I: The computably

enumerable case. Adv. Math., 217(5):2045–2074, 2008.
[7] Adam Day and Joseph Miller. Density and random covering. In preparation

[8] Osvald Demuth. Some classes of arithmetical real numbers. Comment. Math. Univ. Carolin.,

23(3):453–465, 1982.
[9] Osvald Demuth. Remarks on the structure of tt-degrees based on constructive measure theory.

Comment. Math. Univ. Carolin., 29(2):233–247, 1988.

[10] Osvald Demuth. Remarks on Denjoy sets. In Mathematical logic, pages 267–280. Plenum,
New York, 1990.

[11] David Diamondstone, Daniel Turetsky, and Noam Greenberg. A van Lambalgen theorem for
Demuth randomness. Submitted.

[12] David Diamondstone, Daniel Turetsky, and Noam Greenberg. Inherent enumerability of

strong jump-traceability. Submitted.
[13] Rod Downey and Noam Greenberg. Strong jump-traceability II: K-triviality. To appear in

Israel J. Math.

[14] Rod Downey, Noam Greenberg, and Rebecca Weber. Totally ω-computably enumerable de-
grees and bounding critical triples. J. Math. Log., 7(2):145–171, 2007.

[15] Rod Downey and Keng Meng Ng. Lowness for Demuth randomness. In Mathematical theory

and computational practice, volume 5635 of Lecture Notes in Comput. Sci., pages 154–166.
Springer, Berlin, 2009.

[16] Rod Downey and Richard A. Shore. Degree-theoretic definitions of the low2 recursively enu-

merable sets. J. Symbolic Logic, 60(3):727–756, 1995.
[17] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. The-

ory and Applications of Computability. Springer, New York, 2010.
[18] Rodney G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals. In

Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore, 2003.

Singapore Univ. Press.
[19] Rodney G. Downey, Carl G. Jockusch, Jr., and Michael Stob. Array nonrecursive sets and

multiple permitting arguments. In Recursion theory week (Oberwolfach, 1989), volume 1432

of Lecture Notes in Math., pages 141–173. Springer, Berlin, 1990.
[20] Rodney G. Downey and Steffen Lempp. Contiguity and distributivity in the enumerable

Turing degrees. J. Symbolic Logic, 62(4):1215–1240, 1997.

[21] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and approximations
of the jump. Ann. Pure Appl. Logic, 152(1-3):51–66, 2008.

[22] R. M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsolvability

(solution to post’s problem, 1944). Proc. Nat. Acad. Sci. USA, 43:236–238, 1957.
[23] Noam Greenberg A random set which only computes strongly jump-traceable c.e. sets. J.

Symbolic Logic, 76:700–718, 2011.

[24] Noam Greenberg, Denis Hirschfeldt and André Nies. Characterising the strongly jump-
traceable sets via randomness. Submitted.

[25] Noam Greenberg and André Nies. Benign cost functions and lowness notions. J. Symbolic
Logic, 76:289–312, 2011.

[26] Leo A. Harrington and S. Shelah. The undecidability of the recursively enumerable degrees.
Bull. Amer. Math. Soc, 6:79–80, 1982.

[27] Denis R. Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles. J. Lond.

Math. Soc. (2), 75(3):610–622, 2007.

[28] Rupert Hölzl, Thorsten Kräling, Frank Stephan and Guohua Wu. Initial segment complexities
of randomness notions. Proceedings of the 6th IFIP International Conference on Theoretical

Computer Science, 2010, AICT 323:259–270.
[29] A. Kučera. An alternative, priority-free, solution to Post’s problem. In Mathematical founda-

tions of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Comput.

Sci., pages 493–500. Springer, Berlin, 1986.

[30] Antonin Kučera and André Nies. Demuth randomness and computational complexity. Ann.
Pure Appl. Logic, 162:504–513, 2011.

STRONG JUMP TRACEABILITY AND DEMUTH RANDOMNESS 45

[31] A. H. Lachlan. Bounding minimal pairs. J. Symbolic Logic, 44(4):626–642, 1979.

[32] Alistair H. Lachlan. Lower bounds for pairs of recursively enumerable degrees. Proc. Lond.

Math. Soc. (2), 16:537–569, 1966.
[33] A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory of algorithms.

Dokl. Akad. Nauk SSSR (N.S.), N. S. 108:194–197, 1956.

[34] Joseph S. Miller and André Nies. Randomness and computability: open questions. Bull.
Symbolic Logic, 12(3):390–410, 2006.

[35] André Nies. Computably enumerable sets below random sets. To appear in Ann. Pure Appl.

Logic.
[36] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.

[37] André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford Uni-

versity Press, Oxford, 2009.
[38] André Nies, Richard A. Shore, and Theodore A. Slaman. Interpretability and definability in

the recursively enumerable degrees. Proc. London Math. Soc. (3), 77(2):241–291, 1998.
[39] Stephen G. Simpson. First-order theory of the degrees of recursive unsolvability. Ann. of

Math. (2), 105(1):121–139, 1977.

[40] Robert M. Solovay. Draft of paper (or series of papers) related to Chaitin’s work. IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.

[41] Alan M. Turing. Systems of logic based on ordinals. 45:161–228, 1939.

[42] C. E. M. Yates. A minimal pair of recursively enumerable degrees. Journal of Symbolic Logic,
31:159–168, 1966.

School of Mathematics, Statistics and Operations Research, Victoria University of

Wellington, Wellington, New Zealand
E-mail address: greenberg@msor.vuw.ac.nz

URL: http://homepages.mcs.vuw.ac.nz/~greenberg/

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Vienna,
Austria

E-mail address: turetsd4@univie.ac.at

URL: http://tinyurl.com/dturetsky

mailto:greenberg@msor.vuw.ac.nz
http://homepages.mcs.vuw.ac.nz/~greenberg/
mailto:turetsd4@univie.ac.at
http://tinyurl.com/dturetsky

	1. Introduction
	2. Definitions of Demuth randomness and other notions
	3. Proof of Theorem 1.1
	3.1. Towards a full strategy
	3.2. Strategies
	3.3. The construction, skeleton
	3.4. Actors and certainty
	3.5. Defining and n
	3.6. What we actually extract
	3.7. Bounding the number of tests
	3.8. Planning and executing a swap
	3.9. The identity of the examiners
	3.10. Definition of h
	3.11. Testing
	3.12. Bounding the size of E
	3.13. The true path
	3.14. Endgame

	4. Proof of Theorem 1.2
	4.1. Strategy for Ne-requirements
	4.2. A Basic Strategy for Pe,m
	4.3. The Full Strategy for Pe,m
	4.4. Construction
	4.5. Verification

	References

