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Abstract. We show that if a point in a computable probability space X sat-

isfies the ergodic recurrence property for a computable measure-preserving
T : X → X with respect to effectively closed sets, then it also satisfies

Birkhoff’s ergodic theorem for T with respect to effectively closed sets. As

a corollary, every Martin-Löf random sequence in the Cantor space satisfies
Birkhoff’s ergodic theorem for the shift operator with respect to Π0

1 classes.

This answers a question of Hoyrup and Rojas.

Several theorems in ergodic theory state that almost all points in a probability
space behave in a regular fashion with respect to an ergodic transformation of the
space. For example, if T : X → X is ergodic,1 then almost all points in X recur in
a set of positive measure:

Theorem 1 (See [5]). Let (X,µ) be a probability space, and let T : X → X be
ergodic. For all E ⊆ X of positive measure, for almost all x ∈ X, Tn(x) ∈ E for
infinitely many n.

Recent investigations in the area of algorithmic randomness relate the hierarchy
of notions of randomness to the satisfaction of computable instances of ergodic
theorems. This has been inspired by Kučera’s classic result characterising Martin-
Löf randomness in the Cantor space. We reformulate Kučera’s result using the
general terminology of [4].

Definition 2. Let (X,µ) be a probability space, and let T : X → X be a function.
Let C be a collection of measurable subsets of X. A point x ∈ X is a Poincaré
point for T with respect to C if for all E ∈ C of positive measure for infinitely many
n, Tn(x) ∈ E.

The Cantor space 2ω is equipped with the fair-coin product measure λ. The shift
operator σ on the Cantor space is the function σ(a0a1a2 . . . ) = a1a2 . . . . The shift
operator is ergodic on (2ω, λ).

Theorem 3 (Kučera [7]). A sequence R ∈ 2ω is Martin-Löf random if and only if it
is a Poincaré point for the shift operator with respect to the collection of effectively
closed (i.e., Π0

1) subsets of 2ω.
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1Recall that if (X,µ) is a probability space, then a measurable map T : X → X is measure

preserving if for all measurable A ⊆ X, µ
(
T−1A

)
= µ(A). We say that a measurable set A ⊆ X

is invariant under a map T : X → X if T−1A = A (up to a null set). A measure-preserving map
T : X → X is ergodic if every T -invariant measurable subset of X is either null or conull.
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Building on work of Bienvenu, Day, Mezhirov and Shen [2], Bienvenu, Hoyrup
and Shen generalised Kučera’s result to arbitrary computable ergodic transforma-
tions of computable probability spaces.

Theorem 4 (Bienvenu, Hoyrup and Shen [3]). Let (X,µ) be a computable proba-
bility space, and let T : X → X be a computable ergodic transformation. A point
x ∈ X is Martin-Löf random if and only if it is a Poincaré point for T with respect
to the collection of effectively closed subsets of X.2

One of the most fundamental regularity theorems is due to Birkhoff (see [5]).

Birkhoff’s Ergodic Theorem. Let (X,µ) be a probability space, and let T : X →
X be ergodic. Let f ∈ L1(X). Then for almost all x ∈ X,

lim
n→∞

1

n

∑
i<n

f
(
T i(x)

)
=

∫
f dµ.

Of particular interest is the case when f is the characteristic function of a mea-
surable subset of a space. Let (X,µ) be a probability space, and let T : X → X be
a measurable function. For any f ∈ L1(X) and n < ω we let

f (n)(x) =
1

n

∑
i<n

f
(
T i(x)

)
.

If A ⊆ X is measurable, we let 1A denote A’s characteristic function, so for all
n < ω and x ∈ X, we can define

1
(n)
A (x) =

#
{
i < n : T i(x) ∈ A

}
n

.

Birkhoff’s ergodic theorem implies that if T is ergodic, then for almost all x ∈ X,

lim
n→∞

1
(n)
A (x) = µ(A).

We can therefore make an analogue of Definition 2:

Definition 5. Let (X,µ) be a probability space, and let T : X → X be a function.
Let C be a collection of measurable subsets of X. A point x ∈ X is a Birkhoff point
for T with respect to C if for all E ∈ C,

lim
n→∞

1
(n)
E (x) = µ(E).

Gács, Hoyrup and Rojas [4] characterised the Schnorr random points as the
Birkhoff points for computable ergodic transformations with respect to effectively
closed sets whose measure is computable. They asked [8] what happens if we omit
the requirement that the measure of the sets be computable.

2Here we use the notion of a computable probability space of Gács, Hoyrup and Rojas [4],

although all reasonable definitions of this concept are equivalent. For completeness, we recall the
definition here. A computable metric space is a complete metric space (X, d) that is equipped with

an enumeration 〈si〉 of a countable dense subset of X such that (i, j) 7→ d(si, sj) is a computable

function. This enumeration gives rise to an enumeration 〈Bi〉 of basic open balls of X that form
a basis for its topology. A c.e. open subset of X is a set of the form

⋃
i∈S Bi where S ⊆ ω is

c.e. A function f : X → Y between two computable metric spaces is computable if uniformly,

the inverse of a c.e. open set is c.e. open. An effectively closed set is the complement of a c.e.
open set. A Borel probability measure µ on X is computable if uniformly, the measure of a finite

union of basic open balls is a left-c.e. real, equivalently, if it is a computable point in the space of

Borel probability measures on X equipped with the topology of weak convergence. A computable
probability space is a computable metric space equipped with a computable measure.
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Theorem 6. Let X be a computable probability space, and let T : X → X be a
computable ergodic map. Then a point x ∈ X is Martin-Löf random if and only if
it is a Birkhoff point for T with respect to the collection of effectively closed subsets
of X.

Of course if x ∈ X is a Birkhoff point for T with respect to C, then it is a Poincaré
point for T with respect to C. Our main result is an instance of the converse.

Theorem 7. Let (X,µ) be a computable probability space, and let T : X → X be a
computable, measure-preserving transformation. Let x ∈ X be a Poincaré point for
T with respect to the collection of effectively closed subsets of X. Then x is also a
Birkhoff point for T with respect to the collection of effectively closed subsets of X.

Theorem 6 follows immediately from the combination of Theorems 7 and 4 to-
gether with the fact that any Birkhoff point is a Poincaré point. We should note
that as the present paper was in preparation, Hoyrup independently announced a
proof of Theorem 6; see [1].

We set about to prove Theorem 7. To prove a limit exists and has the required
value, we discuss the partial limits, the inferior and superior, separately.

Proposition 8. Let (X,µ) be a computable probability space, and let T : X → X be
a computable, measure-preserving transformation. Let x ∈ X be a Poincaré point
for T with respect to the collection of effectively closed subsets of X. Then for any
effectively closed subset P of X,

lim inf
n

1
(n)
P (x) > µ(P ).

We first prove Proposition 8 and then show that it implies the full Theorem 7.
We need the concept of right-c.e. functions on a computable metric space. These
are the effectively upper semi-continuous functions.

Definition 9. Let X be a computable metric space. A function f : X → R is
right-c.e. if uniformly in q ∈ Q, f−1(−∞, q) is c.e. open in X.

Thus every computable function f : X → R is right-c.e., but not every right-c.e.
function is computable:

Example 10. Let P ⊆ X be effectively closed. Then 1P is right-c.e.: for q 6 0,
1−1
P (−∞, q) = ∅; for q ∈ (0, 1], 1−1

P (−∞, q) = X\P ; and for q > 1, 1−1
P (−∞, q) = X.

If P is not c.e. open, then 1P is not computable, since 1−1
P (−1/2,∞) = P . Indeed,

if P is not clopen, then 1P is not continuous, whereas every computable function
is continuous.

Lemma 11. Let X be a computable metric space.

(1) A finite sum of right-c.e. functions on X is right-c.e.
(2) If f : X → R is right-c.e. and q > 0 is a rational number, then qf is

right-c.e.
(3) If T : X → X is computable and f : X → R is right-c.e., then f ◦ T is

right-c.e.

Furthermore, all these closure operations are uniform: a right-c.e. index for f + g
can be effectively obtained from right-c.e. indices for f and g; for f ◦ T , from a
right-c.e. index for f and a computable index for T ; etc.
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Proof. For (1), (f +g)(x) < q if and only if there are rational numbers s and r such
that f(x) < s, g(x) < r and r+s 6 q. (2) is immediate. For (3), (f ◦T )−1(−∞, q) =
T−1[f−1(−∞, q)], and since T is computable, T−1 preserves c.e. open sets. �

Corollary 12. Let X be a computable metric space, let T : X → X be computable,
and let f : X → R be right-c.e. Then the sequence

〈
f (n)

〉
is uniformly right-c.e.

We are ready to prove Proposition 8. Let (X,µ) be a computable probability
space. Let P be an effectively closed subset of X, and let x ∈ X be a Poincaré
point for T with respect to the collection of effectively closed subsets of X. We

need to show that lim infn 1
(n)
P (x) > µ(P ).

In our proof we make use of another classical result (see [5]):

Maximal Ergodic Theorem. Let (X,µ) be a probability space, let T : X → X be
measure preserving, and let f ∈ L1(X). Let

E =
{
y ∈ X : f (n)(y) > 0 for some n < ω

}
.

Then ∫
E

f dµ > 0.

If µ(P ) = 0, we are done, so we assume that µ(P ) > 0. Let q < µ(P ) be a

positive rational number; we show that lim infn 1
(n)
P (x) > q. Define g : X → R by

letting g(y) = q − 1P (y). Note that for all n < ω and y ∈ X, g(n)(y) = q − 1
(n)
P (y).

Let

E =
{
y ∈ X : 1

(n)
P (y) 6 q for some n < ω

}
.

By the maximal ergodic theorem, ∫
E

g dµ > 0.

Lemma 13. µ(E) < 1.

Proof. Suppose, for a contradiction, that µ(E) = 1. Then∫
E

1P dµ = µ(P ),

and ∫
E

q dµ = q.

Then

0 6
∫
E

g dµ = q − µ(P ) < 0

by the choice of q, giving us a contradiction. �

In fact, calculations show that µ(E) 6 (1 − µ(P ))/(1 − q). Now E may not be
c.e. open, but a close associate of E is. Let

F =
{
y ∈ X : 1

(n)
P (y) < q for some n < ω

}
.

Lemma 14. F is a c.e. open subset of X.

Proof. Since P is effectively closed, by Example 10, 1P is a right-c.e. function. By

Corollary 12, the sequence
〈

1
(n)
P

〉
is uniformly right-c.e.; the result follows. �



1-RANDOMS ARE BIRKHOFF POINTS FOR Π0
1 CLASSES 5

It follows that X − F is an effectively closed subset of X. Since F ⊆ E, by
Lemma 13, µ(F ) < 1, so X − F has positive measure. Since x is a Poincaré point
for T with respect to all effectively closed subsets of X, there is an n < ω such that

Tn(x) /∈ F . That is, 1
(m)
P (Tn(x)) > q for all m < ω. Now for all m < ω,

1
(n+m)
P (x) > 1

(m)
P (Tn(x))

m

m+ n

and so for all m < ω,

1
(n+m)
P (x) > q

m

m+ n
.

As m/(m + n) → 1, we see that lim infm 1
(m)
P (x) > q as required. This concludes

the proof of Proposition 8.

Now we prove Theorem 7. We use the fact that the measure µ is effectively outer
regular.

Lemma 15. Let (X,µ) be a computable probability space. Then for all ε > 0, for
any effectively closed P ⊆ X there is a c.e. open A ⊇ P such that µ(A− P ) < ε.

Proof. This follows from the fact that the measure µ on X is σ-additive and the
fact that the topology on X originates from a metric.

Let 〈si〉 be the sequence of “ideal” (or “rational”) points of X. If B = B(si, q)
is a basic open ball, then the corresponding closed ball

B̄ = B̄(si, q) = {z ∈ X : d(z, si) 6 q}
is, uniformly in i and q, effectively closed, as its complement is the union of all basic
open balls B(sj , r) where r < d(si, sj)− q; the collection of such sj and rational r
is c.e. because r and q are rational numbers and d(si, sj) is computable.

Let P ⊆ X be effectively closed; there is a c.e. set S ⊆ ω2 such that

X − P =
⋃

(j,q)∈S

B(sj , q).

Let 〈Ss〉 be an effective enumeration of S. We let

Fs =
⋃

(j,q)∈Ss

B̄(sj , q − 2−s).

By [6], the intersection of finitely many c.e. open subsets of X is a c.e. open set,
so the union of finitely many effectively closed sets is effectively closed. It follows
that every Fs is effectively closed. We have X − P =

⋃
s Fs. Since µ is σ-additive,

for all ε > 0 there is an s such that µ(Fs) > µ(X − P ) − ε. Then X − Fs is c.e.
open, contains P , and µ(X − Fs)− µ(P ) < ε. �

For the proof of Theorem 7, let (X,µ) be a computable probability space, let
T : X → X be computable and measure preserving, and let P ⊆ X be effectively
closed. Let x ∈ X be a Poincaré point for T with respect to effectively closed sets.

We want to show that limn 1
(n)
P (x) = µ(P ). By Proposition 8, lim infn 1

(n)
P (x) >

µ(P ), so it only remains to be shown that lim supn 1
(n)
P (x) 6 µ(P ).

Let ε > 0; by Lemma 15, let A ⊇ P be c.e. open such that µ(A − P ) < ε. By
Proposition 8,

lim inf
n

1
(n)
X−A(x) > µ(X −A) = 1− µ(A).
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Since for all n, 1
(n)
A (x) + 1

(n)
X−A(x) = 1, we get that

lim sup
n

1
(n)
A (x) = 1− lim inf

n
1

(n)
X−A(x) 6 µ(A).

Since P ⊆ A, for all n, 1
(n)
P (x) 6 1

(n)
A (x). It follows that

lim sup
n

1
(n)
P (x) 6 lim sup

n
1

(n)
A (x) 6 µ(A) 6 µ(P ) + ε.

Since this inequality holds for all ε > 0, we are done. This completes the proof of
Theorem 7.
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