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1. Introduction

In [RS07, RS08], Reimann and Slaman raise the question “For which
infinite binary sequences X do there exist continuous probability measures µ
such that X is effectively random relative to µ?”. They defined the collection
NCR1 of binary sequences for which such measures do not exist (we give
formal definitions below), and showed, for example, that NCR1 is countable,
indeed that every sequence in NCR1 is hyperarithmetic. In this paper we
contribute toward the understanding of NCR1 by showing that it contains
all sets which are Turing reducible to an incomplete, recursively enumerable
set. In particular, NCR1 contains all K-trivial sets.

1.1. Randomness relative to continuous measures. We begin by re-
viewing the basic definitions needed to precisely formulate this question.

Notation 1.1.

• For σ ∈ 2<ω, [σ] is the basic open subset of 2ω consisting of those
X’s which extend σ. Similarly, for W a subset of 2<ω, let [W ] be
the open set given by the union of the basic open sets [σ] such that
σ ∈W .
• For U ⊆ 2ω, λ(U) denotes the measure of U under the uniform

distribution. Thus, λ([σ]) is 1/2`, where ` is the length of σ.

Definition 1.2. A representation m of a probability measure µ on 2ω pro-
vides, for each σ ∈ 2<ω, a sequence of intervals with rational endpoints, each
interval containing µ([σ]), and with lengths converging monotonically to 0.

Definition 1.3. Suppose that Z ∈ 2ω. A test relative to Z, or Z-test, is
a set W ⊆ ω × 2<ω which is recursively enumerable in Z. For X ∈ 2ω, X
passes a test W if and only if there is an n such that X 6∈ [Wn].

Definition 1.4. Suppose that m represents the measure µ on 2ω and that
W is an m-test.

• W is correct for µ if and only if for all n, µ([Wn]) ≤ 2−n.
• W is Solovay-correct for µ if and only if

∑
n∈ω µ([Wn]) <∞.

Definition 1.5. X ∈ 2ω is 1-random relative to a representation m of µ
if and only if X passes every m-test which is correct for µ. When m is
understood, we say that X is 1-random relative to µ.
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By an argument of Solovay, see [Nie09], X is 1-random relative to a rep-
resentation m of µ if an only if for every m-test which is Solovay-correct for
µ, there are infinitely many n such that X 6∈ [Wn].

Definition 1.6. X ∈ NCR1 if and only if there is no representation m of a
continuous measure µ such that X is 1-random relative to the representation
m of µ.

In [RS08], Reimann and Slaman show that if X is not hyperarithmetic,
then there is a continuous measure µ such that X is 1-random relative to µ.
Conversely, Kjøs-Hanssen and Montalbán, see [Mon05], have shown that if
X is an element of a countable Π0

1-class, then there is no continuous measure
for which X is 1-random. As the Turing degrees of the elements of countable
Π0

1-classes are cofinal in the Turing degrees of the hyperarithmetic sets, the
smallest ideal in the Turing degrees that contains the degrees represented in
NCR1 is exactly the Turing degrees of the hyperarithmetic sets.

In (author?) [RSte], Reimann and Slaman pose the problem to find
a natural Π1

1-norm for NCR1 and to understand its connection with the
natural norm mapping a hyperarithmetic set X to the ordinal at which X
is first constructed. As of the writing of this paper, this problem is open in
general, but completed in [RSte] for X ∈ ∆0

2.
Suppose that X ∈ ∆0

2 and that for all n, X(n) = limt→∞Xt(n), where
Xt(n) is a computable function of n and t. Let gX be the convergence
function for this approximation, that is for all n, gX(n) is the least s such
that for all t ≥ s and all m ≤ n, Xt(m) = X(m). Let fX be function
obtained by iterated application of gX : fX(0) = gX(0) and fX(n + 1) =
gX(fX(n)).

For a representationm of a continuous measure µ, the granularity function
sm maps n ∈ ω to the least ` found in the representation of µ by m such
that for all σ of length `, µ([σ]) < 1/2n. Note that, sm is well-defined by
the compactness of 2ω.

Theorem 1.7 (Reimann and Slaman [RSte]). Let X be a ∆0
2 set and let fX

be the function defined as above. If X is 1-random relative the representation
m of µ, then the granularity function sm for µ is eventually bounded by fX .

In the proof of Theorem 1.7, the possibility that sm eventually bound fX
is ruled out since it would imply that X is recursive in m, contradicting
X’s being 1-random. The possibility that neither function bound the other
is ruled out by the direct construction of a Martin-Löf test for µ, defined
using g and the recursive approximation to X, which X would fail, again
contradicting X’s being 1-random.

It follows that, for ∆0
2 sets X, there is a continuous measure relative to

which X is 1-random if and only if there is a continuous measure whose
granularity is eventually bounded by fX . The latter condition is arithmetic,
again by a compactness argument.
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1.2. K-triviality. K-triviality is a property of sequences which character-
izes another aspect of their being far from random. We briefly review this no-
tion and the results surrounding it. A full treatment is given in Nies [Nie09].

For σ ∈ 2<ω, let K(σ) denote the prefix-free Kolmogorov complexity of
σ. Intuitively, given a universal computable U with domain an antichain
in 2<ω, K(σ) is length of the shortest τ such that U(τ) = σ. Similarly,
for X ∈ 2ω, let KX(σ) denote the prefix-free Kolmogorov complexity of σ
relative to X. That is, KX is determined by a function universal among
those computable relative to X.

Definition 1.8. A sequence X ∈ 2ω is K-trivial if and only if there is a
constant k such that for every `, K(X � `) ≤ K(0`) + k, where 0` is the
sequence of 0’s of length `.

By early results of Chaitin and Solovay and later results of Nies and
others, there are a variety of equivalents to K-triviality and a variety of
properties of the K-trivial sets. For example, X is K-trivial if and and only
if for every sequence R, R is 1-random for λ if and only if R is 1-random for
λ relative to X.

In the next section, we will apply the following.

Theorem 1.9 (Nies [Nie09], strengthening Chaitin [Cha76]). If X is K-
trivial, then there is a computably enumerable and K-trivial set which com-
putes X.

The following lemma follows from the work of Nies and others [Nie09].
Some versions of this property have been used by Kučera extensively, e.g.
in [Kuč85].

Lemma 1.10. Suppose that X is K-trivial and {UX
e : e ∈ ω} a uniformly

Σ0,X
1 family of sets. Then, there is a computable function g and a Σ0

1 set V

of measure less than 1 such for every e, if λ(UZ
e ) < 2−g(e) for every oracle

Z, then UX
e ⊆ V .

Proof. Let
(
(Ee

i )
)
e∈N be a uniform sequence of all oracle Martin-Löf tests.

A standard construction of a universal oracle Martin-Löf test (Ti) (e.g. see

[Nie09]) gives a recursive function f such that ∀Z ⊆ ω (Ee,Z
f(i,e) ⊆ T

Z
i ) for all

e, i ∈ N. Let T := T2 and f(e) := f(2, e) for all e ∈ N, so that µ(T Y ) ≤ 2−2

for all Y ∈ 2ω and Ee
f(e) ⊆ T for all e ∈ N. In [KH07] it was shown that

X is K-trivial iff for some member T of a universal oracle Martin-Löf test,
there is a Σ0

1 class V with TX ⊆ V and µ(V ) < 1.
Now given a uniform enumeration (Ue) of oracle Σ0

1 classes we have the
following property of T :

There is a recursive function g such that for each e,
either ∃Z ⊆ ω (µ(UZ

e ) ≥ 2−g(e)−1), or ∀Z ⊆ ω (UZ
e ⊆ TZ).

To see why this is true, note that every Ue can be effectively mapped to the
oracle Martin-Löf test (Mi) where MZ

i = UZ
e [si] and si is the largest stage
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such that µ(UZ
e [si]) < 2−i−1 (which could be infinity). Effectively in e we

can get an index n of (Mi). It follows that if µ(UZ
e ) < 2−f(n)−1 for all Z,

then UX
e = MX

f(n) = En,X
f(n) ⊆ T

X ⊆ V . So g(e) = f(n) + 1 is as wanted. �

1.3. Our results. Intuitively, X ∈ NCR1 asserts that X is not effectively
random relative to any continuous measure and X is K-trivial asserts that
relativizing to X does change the evaluation of randomness relative to the
uniform distribution. In the next section, we connect the two notions.

Theorem 1.11. Every K-trivial set belongs to NCR1.

A recursively enumerable (r.e.) set W is called incomplete if it does not
compute the halting problem ∅′.

Theorem 1.12. If W is an incomplete r.e. set and X ≤T W , then X ∈
NCR1.

As we mentioned above, Theorem 1.12 implies Theorem 1.11, because
every K-trivial set is computable from a r.e. K-trivial set, and every K-
trivial set is incomplete. However we believe that the technique in the direct
proof of Theorem 1.11 is of independent interest.

2. K-trivial sets and NCR1

In this section we prove Theorem 1.11.
Let Y be K-trivial and let µ be a continuous measure with representa-

tion m; we want to show Y is not µ-random. By Theorem 1.9, let X be
a computably enumerable K-trivial sequence that computes Y . Let f be
the iterated convergence function as defined above for the computable ap-
proximation to Y given by approximating X’s computation of Y . Since X
is computably enumerable, X can compute the convergence function for its
own enumeration and hence f is computable from X.

Let sm be the granularity function for µ as represented by m. By The-
orem 1.7, f eventually dominates sm. By changing finitely many values of
f , we may assume that f dominates sm everywhere. So, we have that for
every n

µ([Y � f(n)]) ≤ 2−n.

Further, we may assume that f can be obtained as the limit of a computable
function f(n, s) such that for all s, f(n− 1, s) ≤ f(n, s) ≤ f(n, s+ 1).

We will build an m-test {Si : i ∈ ω} which is Solovay-correct for µ and
which Y does not pass, thereby concluding that Y is not µ-random. That
is, we plan to build {Si : i ∈ ω} to be a uniformly Σ0,m

1 sequence of sets such
that

∑
i∈ω µ(Si) is bounded and such that there are co-finitely i for which

Y ∈ [Si]. Our construction will not be uniform.
X’s K-triviality is exploited in the form of Lemma 1.10. Let V and g

be given by Lemma 1.10 where {UX
e : e ∈ ω} is a listing of all Σ0,X

1 sets.
We will build an oracle Σ0

1 class U along the construction. We use the
recursion theorem to assume that in advance we know an index e such that
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U = Ue. During the construction we will make sure that for every oracle
Z, λ(UZ) < 2−g(e). Lemma 1.10 then implies that UX ⊆ V where V is a
Σ0

1 class of measure less than 1. To simplify our notation, let a denote g(e).
Furthermore, assume a is large enough so that λ(V ) + 2−a < 1.

We use the approximation to X as a computably enumerable set to enu-
merate approximations to initial segments of Y into the sets Si; we rely on
the K-triviality of X to keep the total µ-measure of the Si’s bounded.

For each n > a we have a requirement Rn whose task is to enumer-
ate Y � f(n) into Sn. Let yn,s = Ys � f(n, s) the stage s approximation to
Y � f(n). Let xn,s be the initial segment of Xs necessary to compute yn,s
and f(n, s). So, if yn,s+1 6= yn,s, it is because xn,s+1 6= xn,s. In this case,
xn,s+1 is not only different than xn,s, but also incomparable. At stage s,
Rn would like to enumerate yn,s into Sn, but before doing that it will ask
for confirmation using the fact that UX ⊆ V . Since we are constrained
to keep λ(UX) less than or equal to 2−a, we will restrict Rn to enumerate
at most 2−n measure into UX . The reason why we need a bit of security
before enumerating a string in Sn is that we have to ensure that

∑
i µ(Si) is

bounded. For this purpose, we will only enumerate mass into Sn when we
see an equivalent mass going into V .

Action of requirement Rn:

(1) The first time after Rn is initialized, Rn chooses a clopen subset of
2ω, σn, of m-measure 2−n, that is disjoint form Vs and UXs

s . Note
that since V and UXs have measure less than λ(V ) + 2−a < 1, we
can always find such a clopen set. Furthermore we can chose σn to
be different from the σi chosen by other requirements Ri, i > a. We
note the value of σn might change if Rn is initialized.

(2) To confirm xn,s, requirement Rn enumerates σn into Uxn,s . Require-
ment Rn will not be allowed to enumerate anything else into UXs

unless Xs changes below xn,s. This way Rn is always responsible for
at most 2−n measure enumerated in UXs .

(3) Then, we wait until a stage t > s such that
(a) either xn,s 6⊆ xn,t (as strings),
(b) or σn ⊆ Vt.

Observe that if xn,s is actually an initial segment of X, then we
will have σn ⊆ UX ⊆ V . So, we will eventually find such a stage t.
• In Case 3(a), we start over with Rn. Note that in this case
σn has come out of UXt , and hence Rn is responsible for no
measure inside UXt at stage t.
• In Case 3(b), if µ([yn,t]) ≤ 2−n, enumerate yn,t into Sn. (Recall

that we are allowed to use the representation of µ as an oracle
when enumerating Sn.)
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Since we only enumerate yn,t of µ-measure less than 2−n when σn is
enumerated in V , we have that∑

i

µ(Si) ≤ λ(V ) < 1.

It is not hard to check that λ(UX) ≤
∑∞

n=a+1 2−n = 2−a, so we actually

have that UX ⊆ V . Also notice that once xn,s is a initial segment of X, we
will eventually enumerate σn into V and an initial segment of Y into Sn.

This completes the proof of Theorem 1.11.

3. Incomplete r.e. degrees and NCR1

We turn to the proof of Theorem 1.12. Let W be an incomplete r.e. set,
and let X ≤T W .

The fact thatW is recursively enumerable andX ≤T W implies that there
is a recursive approximation X = limtXt such that the modulus functions
gX is recursive in W , hence fX ≤T W .

Suppose, for contradiction, thatX is 1-random relative to a representation
m of a continuous measure µ. By Theorem 1.7, by changing fX at finitely
many inputs, we obtain a function f ≤T W which bounds the granularity
function sm. Let h(n) = X � f(n). So h ≤T W , and for all n, µ([h(n)]) <
2−n.

Let J be a universal partial recursive function. For n ∈ N, let Un =
{J(n)} if n ∈ dom J and J(n) is a binary string such that µ(J(n)) < 2−n.
Otherwise, Un is empty. Then the test U is recursively enumerable in m,
and is correct for µ. Since X must pass U , we see that for all n ∈ dom J ,
h(n) 6= J(n).

The function h is diagonally nonrecursive. By Jockusch [Joc89], h com-
putes a fixed-point-free function. This contradicts Arslanov’s completeness
criterion [Ars81], which states that an incomplete r.e. set cannot compute a
fixed-point-free function.

This completes the proof of Theorem 1.12.

The question of which ∆0
2 sets belong to NCR1 remains open.
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