
A RANDOM SET WHICH ONLY COMPUTES STRONGLY

JUMP-TRACEABLE C.E. SETS

NOAM GREENBERG

Abstract. We prove that there is a ∆0
2, 1-random set Y such that every

computably enumerable set which is computable from Y is strongly jump-

traceable.
We also show that for every order function h there is an ω-c.e. random

set Y such that every computably enumerable set which is computable from
Y is h-jump-traceable. This establishes a correspondence between rates of

jump-traceability and computability from ω-c.e. random sets.

1. Introduction

The study of the relationship between computably enumerable (c.e.) sets and
the ∆0

2 Martin-Löf random sets which compute them started with Kučera’s seminal
[7], in which he proved that every ∆0

2 random set computes a promptly simple c.e.
set. This led to his injury-free solution to Post’s problem.

More recently, this interaction has been found to be fundamental to the study
of lowness notions that arise from algorithmic randomness. The main notion of
lowness in this area is that of K-triviality, originally due to Solovay [10], but deeply
investigated only recently. In a sequence of results (see [9]), this class was shown
to be robust, as it could be characterised alternatively as the class of sets which
are far from random (K-trivial); the class of sets which do not have oracular power
of compression (low for K); or the class of sets which cannot detect patterns in
random sets (low for Martin-Löf randomness).

Another such characterisation – being a base for randomness – appeared in [6].
In that paper, Hirschfeldt, Nies and Stephan show the following:

(1) If Y is random, A is c.e., and Y computes A, then Y is random relative to
A.

(2) If Y is incomplete and random relative to A, and also computes A, then A
is K-trivial.

The second result implies that a set A is K-trivial if and only if it is computable
from a set Y which is random relative to A, that is, if A is too weak to realise that
it is not computable in the sense of measure (as any cone in the Turing degrees
has measure 0). The conjunction of both results shows that every c.e. set which
is computable from an incomplete random set, such as Kučera’s promptly simple
sets, is K-trivial. The question whether every K-trivial is computable from an
incomplete random set is considered one of the main open problems of the field of
algorithmic randomness (see [8]).

Another notion of lowness which has recently gained attention is that of strong
jump-traceability, defined by Nies, Figueira and Stephan [3]. Restricted to the c.e.

The author was partially supported by the Marsden Fund of New Zealand.
1

2 NOAM GREENBERG

degrees, this collection has been shown to be an ideal, strictly contained in the
ideal of K-trivial degrees [1]. In recent work, Nies and Greenberg showed that the
main question above can be solved in the affirmative if one restricts its domain to
the collection of strongly jump-traceable c.e. sets. Indeed, they showed that every
strongly jump-traceable c.e. set is computable from many incomplete random sets,
for instance, all ω-c.e. random sets, and all LR-hard random sets [5]. Even more
recently, Hirschfeldt, Greenberg and Nies [4] showed that the c.e., strongly jump-
traceable sets can in fact be characterised as those that are computable from all
ω-c.e. random sets, thus showing this class too is robust.

The focus of the main question, “which c.e. sets can be computed from incomplete
random sets”, is on the c.e. part of the equation; it is natural to also focus on the
random sets and investigate what kind of c.e. sets can be computed from a given
incomplete random set. The result mentioned above, that every ω-c.e. random set
computes all strongly jump-traceable c.e. sets, leads us to pay special attention
to incomplete ∆0

2 random sets. In [5], it was shown that a single ∆0
2-random set

cannot characterise strong jump-traceability; in particular, if Y is an ω-c.e. random
set, then apart from all strongly jump-traceable c.e. sets, there are c.e. sets that
are computable from Y , but are not strongly jump-traceable. Can we drop the
condition that Y be ω-c.e.?

In this paper we show that we cannot.

Theorem 1.1. There is a ∆0
2 random set Y such that every c.e. set which is

computable from Y is strongly jump-traceable.

Inspecting the proof of Theorem 1.1, we show a correspondence between rates
of jump-traceability and computablity from ω-c.e. random sets. Strong jump-
traceability is the culmination of a hierarchy of notions of traceability, indexed
by computable rates of growth, or “order functions”. For every order function h we
have the class of sets that are h-jump-traceable (we give precise definitions below);
this class shrinks the more slowly h grows. A set is strongly jump-traceable if it is
h-jump-traceable for every order function h. The result quoted from [5] was estab-
lished by showing that for every ω-c.e. random set Y there is an order function h
such that every h-jump-traceable c.e. set is computable from Y . Here we show the
converse:

Theorem 1.2. For every order function h, there is an ω-c.e. random set Y such
that every c.e. set computable from Y is h-jump-traceable.

The random set of Theorem 1.1, which cannot be ω-c.e., can be seen as some
kind of limit of the random sets guaranteed by Theorem 1.2.

2. Traceability and lowness

We define a pc functional to be a partial computable function Γ: 2<ω × ω → ω,
such that for all x < ω, the domain of Γ(−, x) is an antichain of 2<ω (in other
words, that domain is prefix-free). The idea is that the functional is the collection
of minimal oracle computations of an oracle Turing machine. For any A ∈ 26ω

and x < ω, we let ΓA(x) = y if there is some initial segment τ of A such that
Γ(τ, x) = y. Then ΓA is an A-partial computable function, and every A-partial
computable function is of the form ΓA for some pc functional Γ. We write ΓA(x)↓
if x ∈ dom ΓA; otherwise we write ΓA(x)↑; we also write ΓA(x) = ↑. The use of a

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 3

computation ΓA(x) = y is the length of the unique initial segment τ of A such that
Γ(τ, x) = y.

Among all pc functionals we fix one, denoted by J , which is universal; say
JA(e) = ΨA

e (e), where 〈Ψe〉 is an enumeration of all pc functionals. We let A′ =
dom JA.

Definition 2.1.

(1) A trace is a uniformly c.e. sequence of finite sets. That is, a collection 〈Sx〉
such that each Sx is finite, and there is a computable function g such that
for all x, Sx = Wg(x).

(2) A trace for a partial function ψ : ω → ω is a trace 〈Sx〉 such that for all
x ∈ domψ, ψ(x) ∈ Sx.

(3) An order function is a computable, non-decreasing and unbounded function
h : ω → ω such that h(0) > 0.

(4) A trace 〈Sx〉 is bounded by an order function h if for all x, |Sx| 6 h(x).

We say that a set A is h-jump-traceable if every function which is partial com-
putable in A has a trace which is bounded by h. We say that a set is strongly
jump-traceable if it is h-jump-traceable for every order function h. Because of the
existence of the universal A-partial computable function, a set A is strongly jump-
traceable if and only if for every order function h, JA has a trace bounded by
h.

A computable approximation for a function f ∈ ωω is a uniformly computable
sequence 〈fs〉s<ω of functions such that for every n, for almost all s, fs(n) = f(n).
Associated to every computable approximation 〈fs〉 is the mind-change function

m〈fs〉 = λn.#{s : fs+1(n) 6= fs(n)}.

Shoenfield’s limit lemma states that a function has a computable approximation if
and only if it is ∆0

2-definable if and only if it is computable from ∅′.
We also approximate partial functions. To this end, we add a symbol ↑ which

denotes that an input is not in the domain of the partial function. We allow our
approximations to take the value ↑.

Let h be an order function. We say that the approximation 〈fs〉 is h-c.e. if the
mind-change function m〈fs〉 is majorised by h. We say that a function f is h-c.e.
if it has some computable approximation which is h-c.e. We say that a function is
ω-c.e. if it is h-c.e. for some order function h. A function f is ω-c.e. if and only if
f 6wtt ∅′.

We note that Figueira, Nies and Stephan have showed [3] that a c.e. set A is
strongly jump-traceable if and only if A′ is h-c.e. for every order function h.

Let 〈As〉 be a computable enumeration of a c.e. set A, and 〈Γs〉 be a computable
enumeration of a pc functional Γ. For any s, we can apply the functional Γs to the
set As; by convention, we assume that the function ΓAss has computable domain and
in fact only contains numbers smaller than s, with uses smaller than s. We thus
obtain a uniformly computable sequence

〈
ΓAss

〉
of partial functions. We modify

this sequence according to the following “hat trick”. Suppose that x ∈ dom ΓAss ;
let u be the use of this computation. We say that the computation ΓAss (x) = y is

4 NOAM GREENBERG

destroyed at stage s+ 1 if As�u 6= As+1�u. We now define

ΓA(x) [s] =

{
↑, if x ∈ dom Γ

As−1

s−1 and that computation is destroyed at stage s;

ΓAss (x), otherwise.

In general, if A is c.e. and Γ is a pc functional, then dom ΓX may not be ∆0
2, and

so the sequence
〈
ΓA [s]

〉
may not be a computable approximation of any partial

function. However, the hat trick ensures that if
〈
ΓA [s]

〉
is a computable approxi-

mation, then it is an approximation of ΓA.
Recall that a set A is low if A′ 6T ∅′. The following is well-known:

Lemma 2.2. A c.e. set A is low if and only if there is an enumeration 〈As〉 of A
and an enumeration 〈Γs〉 of a pc functional Γ such that ΓA = JA and such that
the sequence

〈
ΓA [s]

〉
is a computable approximation. Computable indices for 〈As〉

and 〈Γs〉 can be effectively obtained from a c.e. index of A and a lowness index of
A (that is, an index of a Turing reduction of A′ to ∅′).

Just as ω-c.e.-ness is a strengthening of being ∆0
2, we can use order functions to

obtain superlowness, which is a strengthening of being low (but still much weaker
than strong jump-traceability). A c.e. set A is superlow if A′ is ω-c.e. Lemma 2.2
extends to characterise superlowness: a c.e. set A is superlow if and only if there
are enumerations 〈As,Γs〉 of A and a pc functional Γ such that ΓA = JA and the
approximation

〈
ΓA [s]

〉
is ω-c.e.

3. The proof of Theorem 1.1

We first mention that we make no special use of randomness: our constructions
work in arbitrary non-empty Π0

1 classes. We actually prove the following:

Proposition 3.1. Let P be a nonempty Π0
1 class. There is a ∆0

2 set Y ∈ P such
that every superlow c.e. set W 6T Y is strongly jump-traceable.

To see that Theorem 1.1 follows from Proposition 3.1, we apply the proposition
to any Π0

1 class of random sets, and obtain a random ∆0
2 set Y . Since there

are superlow c.e. sets that are not strongly jump-traceable, Y must be Turing
incomplete (in fact, the proof of the proposition can be modified to make Y low).
It follows by the result from [6] mentioned in the introduction that every c.e. set
that is computable from Y is K-trivial. Since every K-trivial set is superlow, it
follows that every c.e. set computable from Y is strongly jump-traceable.

We present the proof of Proposition 3.1 in a modular fashion. The proof will
involve guessing for superlowness, as appears in [2]. We first ignore this aspect of
the construction and assume that lowness (which is all that will be used) is given
to us uniformly. Recall that a uniformly c.e. collection of sets 〈Ai〉 is uniformly low
if effectively in i we can find an index for a Turing reduction of A′i to ∅′. We first
prove the following, in some ways weaker, version of Proposition 3.1.

Proposition 3.2. If P is a nonempty Π0
1 class, and A = 〈Ai〉 is a uniformly c.e.

collection of uniformly low sets, then there is some ∆0
2 set Y ∈ P such that for all

A ∈ A, if A 6T Y then A is strongly jump-traceable.

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 5

4. Proof of Proposition 3.2

4.1. Discussion. The proof of Proposition 3.2 paradoxically builds on the proof
from [4] of the fact that every set computable from every ω-c.e. random set is
strongly jump-traceable. The difference is that in that construction, an attempt
is made to build a superlow random set Z which does not compute A; the trace
for JA was manufactured from the necessary failure of such a construction. Now
we will need to construct a set Y that does exist. For some A ∈ A we may have
A 6T Y , and for such A, we hope to indeed build traces for JA. We need to
ensure though that manufacturing such an approximation, for some A, does not
prevent weaker requirements, which deal with some other A’s, to get their turn
and try to construct their own traces. The priority tree mechanism utilised in
Π0

2 constructions is employed. A strategy will have a Π0
2 outcome, indicating the

success of building traces, along with finitary outcomes, which tell how we fail to
obtain such an approximation, witnessing the failure of Y to compute the current
A; these outcomes impose finitary restraint on weaker strategies.

The Π0
2 mechanism can also guess which partial computable functions are order

functions. However, for notational convenience, mostly, we adopt a trick from [3],
using an unbounded function that is approximable from above and dominated by
all order functions.

Fact 4.1. There is a nondecreasing, unbounded ∆0
2 function h such that

• h has a computable approximation 〈hs〉 such that for all s, hs is an order
function, and for all x, the sequence 〈hs(x)〉s<ω is nonincreasing; and
• for every order function g, for almost all x, h(x) < g(x).

Now using the fact that there is a uniformly c.e., uniformly low enumeration of
the sets in A, quoting Lemma 2.2, we can effectively enumerate a sequence of pairs
〈〈Ae,s,Γe,s〉,Φe〉 such that for all e,

(1) 〈Ae,s〉 is an effective enumeration of a c.e. set Ae ∈ A;
(2) 〈Γe,s〉 is an enumeration of a pc functional Γe such that JAe = ΓAee ;
(3)

〈
ΓAee [s]

〉
is a computable approximation; and

(4) Φe is a Turing functional;

and such that for every A ∈ A and every Turing functional Φ, there is some e such
that A = Ae and Φ = Φe.

The requirement Re is: if Φe(Y) = Ae, then there is a run of a strategy associated
with Re which can build traces for JAe .

4.2. The tree of strategies. As mentioned above, we work with a tree of strate-
gies. The eth level of the tree consists of nodes that work for Re. To define the
tree, we mention the possible outcomes of a node α that works for a requirement
Re. The possible outcomes are:

• ∞, indicating that α succeeds in building approximations; and
• for every pair (τ, σ) of finite binary strings, the outcome (τ, σ), indicating

that some attempt to trace JAe fails. Here σ is assumed to be an initial
segment of Y , and τ an initial segment of Ae that is not computed correctly
by Φe(Y).

To each node α on the tree of strategies, we associate a Π0
1-subclass of P, defined

by recursion on the height of α:

6 NOAM GREENBERG

(1) P〈〉 = P;
(2) Pα

_∞ = Pα;
(3) Pα

_(τ,σ) = {X ∈ Pα ∩ [σ] : Φe(X) + τ} ,
where [σ] = {X : X ⊃ σ}. Note that if α ⊆ β, then Pβ ⊆ Pα.

We assume that every Π0
1 class Pα in the construction comes with a co-enumeration

〈Pαs 〉: a computable, decreasing sequence of clopen classes such that
⋂
s P

α
s = Pα.

We may also assume that these enumerations respect the recursive definitions of
the classes Pα: so for example, if we define Pβ ⊆ Pα ∩ [σ] for some immediate
predecessor α of β, then for all s, Pβs ⊆ [σ].

4.3. Construction. At every stage s we define a sequence of nodes on the tree
of strategies that are accessible at that stage. At the end of the stage we define a
(finite) set Ys ∈ 2ω.

The sequence of accessible nodes is defined by recursion. The root 〈〉 is always
accessible.

Suppose that a node α, working for requirement Re, is accessible at stage s. If
e < s, we need to determine which outcome of α is next accessible. There are
several cases.

(1) If s is the first stage greater than e at which α is accessible, we let ∞ be
the accessible outcome.

Otherwise, let t be the previous stage at which α was accessible.

(2) Suppose that at stage t, some (τ, σ) was the accessible outcome of α. If
either
(a) P

α_(τ,σ)
s is empty, or

(b) τ 6⊂ Ae,s,
then we let ∞ be the accessible outcome.

Otherwise, we let (τ, σ) be accessible again.
(3) Suppose that at stage t, ∞ was the accessible outcome of α.

For x ∈ dom ΓAee [s] with use u, let τ = Ae,s�u and σ = Yt�hs(x).

We look for some such x > α such that P
α_(τ,σ)
s is nonempty, for τ and

σ corresponding to x as above. If there is such x, we pick the least one,
and let (τ, σ) be α’s accessible outcome. We say that the outcome (τ, σ) is
chosen due to x. If there is no such x, we let ∞ be the accessible outcome.

When an accessible node δs of length s is reached, we halt the stage. Note that
by induction on the length of the accessible nodes, if α is accessible at stage s, then
Pαs is nonempty.

We then let Ys be the leftmost branch of Pδss . This ends stage s, and the de-
scription of the construction.

4.4. Verification. The instructions for which outcomes are accessible imply that
the true path — the path of nodes that are leftmost with respect to being accessible
at infinitely many stages — is infinite. If α is a node that is accessible infinitely
often, then either α_∞ is accessible infinitely often, or there is some outcome
(τ, σ) such that for almost all s, if α is accessible at stage s, then α_(τ, σ) is also
accessible at stage s.

Let α be a node, and suppose that α_∞ is accessible infinitely often. We can
show that for each finitary outcome (τ, σ), the node α_(τ, σ) is accessible at only
finitely many stages.

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 7

Lemma 4.2. Let α be a node and let τ and σ be strings. There is at most one
stage s at which α_(τ, σ) is accessible, such that at the previous stage t at which α
was accessible, α_∞ was accessible.

Proof. Suppose, for contradiction, that there are two such stages s0 < s1. By the
instructions, we know that there is a stage t ∈ (s0, s1) such that α_∞ is accessible
at stage t, such that if we let s be the last stage before t at which α was accessible,
α_(τ, σ) is accessible at stage s.

There are two possible reasons that (τ, σ) is not accessible at stage t: either

τ 6⊂ At, or P
α_(τ,σ)
t = ∅. Since A is c.e., and τ ⊆ As, we know that if τ 6⊂ At, then

τ 6⊂ As1 . If P
α_(τ,σ)
t = ∅, then certainly P

α_(τ,σ)
s1 = ∅. So in either case, we cannot

choose (τ, σ) as an outcome at stage s1. �

Hence there are two possibilities for an outcome (τ, σ) of a node α which is first
chosen at some stage s0: either it is always accessible whenever α is accessible at
a stage s > s0; or at the least stage s > s0 at which α is accessible and α_(τ, σ) is
not, we have α_∞ accessible, and α_(τ, σ) is never accessible after stage s.

Lemma 4.3. Let α be a node and let x < ω. There are only finitely many outcomes
(τ, σ) which are ever chosen due to x.

Proof. Let Re be the requirement for which α works. Suppose, for contradiction,
that there are infinitely many outcomes (τ, σ) of α which are chosen due to x. Of
course, each such outcome is chosen at a distinct stage, so there are infinitely many
stages s at which a new outcome (τ, σ) is chosen for α due to x.

Let s be any such stage. Then we have x ∈ dom ΓAee [s]. Since there are infinitely
many such stages s, and since lim ΓAee [s] = ΓAee = JAe , we have x ∈ dom ΓAee . Let
u be the use of this computation, and let τ∗ = Ae�u. There is some stage s0 such
τ∗ ⊂ As0 ; so for all s > s0, τ∗ ⊂ As.

Hence if (τ, σ) is chosen due to x at stage s > s0, we have τ = τ∗. Also, we
have |σ| = hs(x) 6 hs0(x), so there are at most 2hs0 (x)+1 − 1 many such strings σ.
That is, there are only finitely many outcomes that can be chosen due to x after
stage s0. Of course, there are only finitely many outcomes which are chosen prior
to stage s0. This is the contradiction. �

Corollary 4.4. Suppose that α_∞ is accessible infinitely often. For every n, there
are at most finitely many stages at which some α_(τ, σ) with |σ| 6 n is accessible.

Proof. Because h is unbounded, there are only finitely many inputs x such that for
any stage s we have hs(x) 6 n. The corollary then follows from Lemmas 4.2 and
4.3. �

Lemma 4.5. If α_(τ, σ) is on the true path, then σ ⊂ Ys for almost all s.

Proof. Let s∗ be a stage such that:

• α_(τ, σ) is accessible at stage s∗.
• If β_(τ ′, σ′) ⊆ α_(τ, σ), then for all s > s∗, if β is accessible at stage s,

then β_(τ ′, σ′) is also accessible at stage s.
• If β_∞ ⊆ α, then for all s > s∗, if β_(τ ′, σ′) is accessible at stage s, then
|σ′| > |σ|.

8 NOAM GREENBERG

Corollary 4.4 ensures that a stage that meets the third condition can be found.
By induction on s > s∗, we show that σ ⊂ Ys. Certainly at s = s∗, and any other
stage at which α_(τ, σ) is accessible, we have α_(τ, σ) ⊆ δs and so

Pδss ⊆ Pα
_(τ,σ)
s ⊆ [σ],

so since Ys ∈ Pδss , we have σ ⊂ Ys. Now suppose that that α_(τ, σ) is not accessible
at stage s > s∗. Since s > s∗, there must be some β and some (τ ′, σ′) such that
β_∞ ⊆ α, but β_(τ ′, σ′) is accessible at stage s. Let t be the last stage prior to s
at which β_∞ is accessible; t > s∗. Let s′ be the least stage after stage t at which
β was accessible; so s′ 6 s and β_(τ ′, σ′) was accessible at stage s′. By induction,
σ ⊂ Yt. Since s > s∗, we have |σ′| > |σ|.

Now by the instructions of case (3) of the construction, at stage s′ we choose
σ′ ⊂ Yt. Since σ ⊂ Yt, σ and σ′ are comparable; since |σ| 6 |σ′|, we must have
σ ⊆ σ′.

Since β_(τ ′, σ′) is accessible at stage s, we must have σ′ ⊂ Ys. Hence σ ⊂ Ys as
required. �

Lemma 4.6. For any n, there is some node α_(τ, σ) on the true path such that
|σ| > n.

Proof. It is sufficient to show that there are infinitely many nodes α on the true
path such that α_∞ is not on the true path, the reason being that if the true
outcome (τ, σ) of α is chosen due to x, then x > α and so |σ| > h(x) > h(α); and
h is unbounded.

By fudging our functionals, we may assume that the use of any computation
ΓAee (x) = y is never 0. For any set A ∈ A, let Φ be a Turing functional such that
for all X, ΦX ⊥ A, for example, we can have ΦX(0)↓6= A(0) for all X. Let e be an
index such that Ae = A and Φe = Φ. Let α on the true path work for Re.

For every nonzero τ ⊂ Ae, for any σ, we have Pα
_(τ,σ) = Pα ∩ [σ]. The set

dom JAe = A′e is infinite; let x be the least element of dom JAe which is greater
than α. Let u be the use of the computation x ∈ dom ΓAee ; by assumption, u > 0.
Let τ = Ae�u.

We call a stage s late if:

• τ ⊂ Ae,s and x ∈ dom ΓAee [s];
• for all x′ ∈ (α, x), x′ /∈ dom ΓAee [s];
• hs(x) = h(x);
• for all σ of length h(x), if Pα ∩ [σ] = ∅, then Pαs ∩ [σ] = ∅.

Suppose that α_∞ is accessible at some late stage t; let s be the next stage at
which α is accessible. Let σ = Yt�h(x). We have Yt ∈ Pαt , so Pαt ∩ [σ] 6= ∅; so
Pα ∩ [σ] 6= ∅; so Pαs ∩ [σ] 6= ∅. Then at stage s, we will choose the outcome (τ, σ)
for α because of x, and never revert to ∞. �

Corollary 4.7. The sequence 〈Ys〉 has a limit Y , which is a ∆0
2 element of P.

Proof. Let n < ω. By Lemmas 4.5 and 4.6, there is some σ of length n such that
for almost all n, σ ⊂ Ys. Then Y = lims Ys exists, and is, of course, ∆0

2. For each

n, for σ = Y �n, we have, for almost all s, σ ⊂ Ys, and Ys ∈ Pδss ⊆ P
〈〉
s = Ps, so for

almost all s we have [σ] ∩ Ps 6= ∅; it follows that [σ] ∩ P 6= ∅. Since P is closed, we
have Y ∈ P. �

In fact, the same argument shows that if α is on the true path, then Y ∈ Pα.

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 9

Lemma 4.8. Let α be the node on the true path that works for requirement Re. If
Φe(Y) = Ae then α_∞ is on the true path.

Proof. Otherwise, we have α_(τ, σ) on the true path, and so we have Y ∈ Pα
_(τ,σ).

But then τ ⊂ Ae, and for every X ∈ Pα
_(τ,σ) we have Φe(X) 6⊇ τ , which contradicts

the assumption that Φe(Y) = Ae. �

The following lemma completes the verification, and so the proof of Proposition
3.2.

Lemma 4.9. Let α be the node on the true path that works for requirement Re,
and suppose that α_∞ is on the true path. Then Ae is strongly jump-traceable.

Proof. We verify that for every order function g, JAe has a trace bounded by g.
Fix an order function g. Let x∗ > α such that for all x > x∗, 2h(x) < g(x).

We enumerate a trace 〈Sx〉x>x∗ . Let x > x∗. Suppose that at a stage s:

(1) α is accessible at stage s, and at the previous stage t at which α was
accessible, α_∞ was accessible.

(2) ΓAee (x)↓ [s], with a use u.
(3) 2hs(x) < g(x).

(4) Letting σ = Yt�hs(x) and τ = Ae,s�u, we have P
α_(τ,σ)
s = ∅.

At such a stage, we enumerate ΓAee (x) [s] into Sx.

Claim 4.10. For all x > x∗, we have |Sx| 6 g(x).

Proof. Suppose that a value y is enumerated into Sx at a stage s. Let τ and
σ be the associated strings. For all X ∈ Pαs ∩ [σ], we have Φe(X) ⊇ τ , and
Γe(τ, x) = y. Hence every σ can be responsible for at most one value y in Sx. Since
|σ| = hs(x) and 2hs(x) < g(x), there are at most g(x) many such strings σ. Hence
|Sx| 6 g(x). �

Claim 4.11. For all x > x∗, if x ∈ dom JAe(x), then JAe(x) ∈ Sx.

Proof. Let x > x∗.
Let u be the use of JAe(x), and let τ = Ae�u. Of course, for almost all s, we have

τ ⊂ Ae,s. By Lemma 4.3, for almost all stages s, we do not pick an outcome (τ, σ)

for α due to x. For large enough s, we have 2hs(x) < g(x). So if t is a late stage at
which α_∞ is accessible, and s is the next stage at which α is accessible, then the
conditions (1), (2), and (3) for enumerating JAe(x) = ΓAee (x) [s] at stage s hold.
But also, condition (4) holds, for otherwise we could choose (τ, σ) as an outcome
at stage s due to x, as x > α. Hence, the correct value JAe(x) gets enumerated
into Sx. �

The two claims together prove Lemma 4.9, and so complete the proof of Propo-
sition 3.2. �

5. Proof of Proposition 3.1

We discuss the additions we need to make in the previous proof to obtain a proof
of Proposition 3.1. Let 〈Ae, ge, 〈Ce,s〉,Φe〉 be an effective enumeration of all tuples
such that Ae is a c.e. set, ge is a partial computable function, 〈Ce,s〉 is a uniformly
computable sequence of sets, and Φe is a Turing functional, such that for all n,

• Ce,0(n) = 0;

10 NOAM GREENBERG

• If n ∈ dom ge, then #{s : Ce,s+1(n) 6= Ce,s(n)} 6 ge(n);
• If n /∈ dom ge, then for all s, Ce,s(n) = 0.

We construct a pc functional Θ – we view ΘAe as a column of JAe that we control.
If A is a superlow c.e. set, then for every Turing functional Φ there will be some e
such that:

• A = Ae and Φ = Φe;
• ge is total and lims Ce,s = dom ΘAe .

Then, we will be able to verify apparent computations JAe(x)↓ [s] to ensure that
only finitely many such computations will be believable (for any x). Essentially,
using Ce,s and Θ, we obtain a pc functional Γe such that ΓAee = JAe and such that〈
ΓAee [s]

〉
is a computable approximation, indeed an ω-c.e. approximation.

Even though we did not use superlowness in the proof of Proposition 3.2, as
lowness sufficed, we need to guess for superlowness in the current proof. It is
crucial that the mind-changes of 〈Ce,s〉 are bounded by ge; without such a bound,
we cannot effectively enumerate sequences such as 〈Ce,s〉 that we know necessarily
converge to some limit. This enumeration is needed to verify a lemma analogous
to Lemma 4.3.

Given the list above, and the “super slow order function” h from the previous
section, we can describe a construction. The requirement Re is now: if ge is to-
tal and lims Ce,s = dom ΘAe , and Φe(Y) = A, then there is a run of a strategy
associated with Re which succeeds in building traces for JAe .

If α is a node that works for requirement Re, then in addition to the outcomes
∞ and (τ, σ) which were described above, we have new outcomes finσ, one for each
binary string σ, indicating that ge is not total, or that a permanent disagreement
between lims Ce,s and dom ΘAe can be found.

The definition of Pα for all nodes α proceeds by recursion as before, with the
added clause that Pα

_finσ = Pα ∩ [σ].

5.1. Construction. For every e, let 〈Ae,s〉 be an enumeration of Ae. We also fix
an enumeration 〈Js〉 of the universal pc functional J .

To avoid clashes, we appoint, for every node α, a column ω[α] of numbers. The
node α will make definitions of ΘAe(m) only for numbers m ∈ ω[α]. For any x < ω,
let mα,x = 〈α, x〉 be the xth element of ω[α].

We say that a node α is active at stage s > |α| if it is accessible at stage s, and
α’s outcome at stage s is either ∞ or some (τ, σ) (so not finσ for any σ).

Suppose that a node α, working for Re, is accessible at stage s > |α|. We let t
be the last stage before s at which α was active. (If s is the least stage after stage
|α| at which α is accessible, then we let α_∞ be accessible at stage s.)

We first determine whether α is active at stage s: it is active if the following two
conditions hold:

(i) For all x < t, ge(mα,x)↓ at stage s; and
(ii) for all x < t, Ce,s(mα,x) = 1 iff ΘAe(mα,x)↓ [s].

If α is inactive at stage s, then the outcome if finσ, where σ is the longest initial
segment of Yt of length at most t such that Pαs ∩ [σ] 6= ∅.

Suppose that α was determined to be active at stage s. First, we determine the
outcome of α.

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 11

(1) Suppose that at stage t, some (τ, σ) was the accessible outcome of α. If

either P
α_(τ,σ)
s is empty or τ 6⊂ Ae,s, then we let ∞ be the accessible

outcome; otherwise, we let (τ, σ) again be the accessible outcome.
(2) Suppose that at stage t, ∞ was the accessible outcome of α. We search for

x ∈ (α, t) such that ΘAe(mα,x)↓ [s]. For such x, let u be the use of that
computation, let τ = Ae,s�u, and let σ = Yt�hs(x).

If there is such an x such that P
α_(τ,σ)
s is non-empty, we pick the least

such x, and let (τ, σ) be the outcome. If there is no such x, then we let ∞
be the outcome.

Before yielding control to the next accessible node, we update Θ: for every x < s
in dom JAe [s], we let ΘAe(mα,x)↓ with the same use (by enumerating the axiom
(τ,mα,x) 7→ 0 into Θ, where u is the use of JAe(x)↓ [s] and τ = Ae,s�u).

We halt the stage when we get to δs, the node, accessible at stage s, of length s.
We let Ys be the leftmost element of Pδss .

5.2. Verification.

Lemma 5.1. Suppose that A is a superlow c.e. set and Φ is a Turing functional.
Then there is some e such that Ae = A, Φe = Φ, ge is total, and lims Ce,s =
dom ΘAe .

Proof. Immediate, since dom ΘA is A-computably enumerable, so is ω-c.e. �

The following is also immediate:

Lemma 5.2. If ge is total, and limCe,s = dom ΘAe , and α, working for Re, is
accessible infinitely often, then α is active infinitely often.

Proof. We only make new computations ΘAe(mα,x) when α is active. �

Lemma 5.2 implies that a true path exists. If α is active infinitely many times,
and no outcome (τ, σ) is eventually accessible whenever α is active, then ∞ is
accessible infinitely many times. If there is a last stage t at which α is active,
then at every stage s > t at which α is active, the outcome of α is finσs where
σs ⊂ Yt�t; and if s < s′ are two such stages, then σs ⊇ σs′ . Hence, if α is not active
infinitely often, there is an outcome finσ which eventually is accessible whenever
α is accessible.

We also mention that at any stage s, if ΘAe(mα,x)↓ [s], then JAe(x)↓ [s] with
the same use; we use the fact that Ae is c.e.

Lemma 5.3. Suppose that α, working for Re, is active infinitely often. Let x < ω,
and suppose that there are infinitely many stages at which α_(τ, σ) is accessible,
due to x. Then x ∈ dom JAe .

Proof. Let m = mα,x. Let s∗ be a stage such that for all s > s∗, Ce,s(m) =
Ce,s∗(m). If α_(τ, s) is accessible at a stage s due to x, then ΘAe(m)↓ [s] and
Ce,s(m) = 1. Hence Ce,s∗(m) = 1.

Let t > s∗ be a stage at which some α_(τ, σ) is accessible due to x. Then
x ∈ dom Jτ . To show that x ∈ dom JAe , we show that τ ⊂ Ae. If not, let s > t be
the least stage at which α is active such that τ 6⊂ Ae,s. Then ΘAe

e (m)↑ [s]; since α
is active at stage s, we have Ce,s(m) = 0, contradicting s > s∗. �

12 NOAM GREENBERG

Using Lemma 5.3, the proof of Lemma 4.3 carries over to the current construc-
tion. The same holds for Corollary 4.4.

Lemma 4.5 holds too:

Lemma 5.4. If α_(τ, σ) is on the true path, then for almost all s, σ ⊂ Ys.

Proof. We need to update the proof of Lemma 4.5, by considering the outcomes
finσ. We find a stage s∗ satisfying:

• α_(τ, σ) is accessible at stage s∗.
• If β_(τ ′, σ′) ⊆ α_(τ, σ), then for all s > s∗, if β is active at stage s, then
β_(τ ′, σ′) is also accessible at stage s.
• If β_∞ ⊆ α, then for all s > s∗, if β_(τ ′, σ′) is accessible at stage s, then
|σ′| > |σ|.
• If β_finσ ⊆ α, then for all s > s∗, if β is accessible at stage s, then
β_finσ is accessible at stage s.

We argue by induction on s > s∗ that σ ⊂ Ys. The argument of the proof of Lemma
4.5 goes through, but there is one new possibility: that there is some β such that
β_∞ ⊆ α or β_(τ ′, σ′) ⊆ α_(τ, σ), but β_finρ is accessible at stage s. In this
case, we let t be the previous stage at which β was active. By induction, σ ⊂ Yt.
The fact that α_(τ, σ) is on the true path implies that [σ]∩Pβ 6= ∅. Hence σ ⊆ ρ,
and ρ ⊂ Ys. �

The proof of Lemma 4.6 goes through if we choose (by Lemma 5.1) e such that
Ae is superlow, and such that ge and 〈Ce,s〉 indeed witness Ae’s superlowness. By
Lemma 5.2, if α on the true path works for Re, then the outcome of α is either ∞
or some (τ, σ); the proof above of Lemma 4.6 now shows that indeed the outcome
must be (τ, σ) for some σ which can be made as long as we like. Hence we again
get Y = lims Ys exists, and is an element of P, and indeed of Pα for every α on the
true path.

The conclusion of the verifications follows the proof of Lemma 4.9, noting that if
Φe(Y) = Ae, and if ge is total and lims Ce,s = dom ΘAe , then for the corresponding
α, α_∞ is on the true path. In the instructions for enumerating 〈Sx〉, we replace
ΓAee (x)↓ [s] with ΘAe(mα,x)↓ [s]. To ensure that if x ∈ dom JAe then JAe(x) ∈ Sx,
we note that in this case we will have ΘAe(mα,x)↓ with the correct use. The rest
follows in the same way.

6. Proof of Theorem 1.2

To prove Theorem 1.2, we adapt the construction of the proof of Proposition
3.1.

Definition 6.1. Let g be an order function. We say that a set A is g-superlow if
every set which is c.e. in A is g-c.e.

We make use of the following fact, which follows from [9]:

Fact 6.2. There is a computable function g such that for every K-trivial c.e. set A
is g-superlow.

Unfortunately, a g-c.e. approximation of JA for a K-trivial c.e. set A cannot be
obtained effectively from A, even if a K-triviality constant for A is given. We thus
will need to guess for an approximation as we did in the proof of Proposition 3.1.

We will prove the following:

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 13

Proposition 6.3. Let h and g be order functions, and let P be a nonempty Π0
1

class. There is an ω-c.e. set Y ∈ P such that for every g-superlow c.e. set A 6T Y ,
JA has a trace which is bounded by 2h.

Theorem 1.2 follows by the argument proving Theorem 1.1, using a Π0
1 class

of random sets and the order function g given by Fact 6.2. We recall (see, for

example, [1]) that for every order function h there is an slower order function h̃

with the following property: for every set A, if JA has a trace bounded by 2h̃, then
every set which is c.e. in A has a trace bounded by h.

The rest of the section is devoted to the proof of Proposition 6.3.

6.1. Discussion; the strategies. We mostly follow the proof of Proposition 3.1.
Of course, we use the given order function h, rather than the “super slow order
function” that was used before. Also, since g is fixed, we do not need to wait for
convergence of ge.

The main difference is that in comparison to showing that 〈Ys〉 is a computable
approximation (in particular, Lemma 4.6), we need to be more proactive in order
to show that in the current construction, 〈Ys〉 will be an ω-c.e. approximation. We
add a new collection of requirements, Sn, which seek to stabilise Ys�n. We also add
a little information to the tree of strategies by giving more detailed outcomes.

We enumerate the tuples 〈Ae, 〈Ce,s〉,Φe〉 where Ae is a c.e. set, 〈Ce,s〉 is a g-c.e.
approximation of some set Ce, and Φe is a Turing functional.

For a node (a strategy) α, we define, by induction, which are the outcomes of α,
and which Π0

1 classes are associated to them. Nodes of length 2e work for Re, and
nodes of length 2n+ 1 work for Sn. As usual, we start with P〈〉 = P. Assume that
α is a node on the tree, and that Pα has been defined.

• If α is a strategy which works for Re, then the outcomes and trees associated
with the immediate descendants of α are as follows:

– An outcome ∞, with Pα
_∞ = Pα;

– For binary strings σ and τ , an outcome (τ, σ), with

Pα
_(τ,σ) = {X ∈ Pα ∩ [σ] : Φe(X) + τ} ;

– For t < ω and a binary string σ, an outcome fint,σ, with

Pα
_fint,σ = Pα ∩ [σ].

• If α is a strategy which works for Sn, then the outcomes are the binary
strings of length n. For σ of length n, Pα

_σ = Pα ∩ [σ].

Again, we enumerate a pc functional Θ, and for α on the tree of strategies, let
mα,x = 〈α, x〉.

6.2. Construction. At stage s we define the (infinite) path of nodes which are ac-
cessible at stage s, by recursion, starting at the root. We also define a (computable)
set Ys. By recursion, if α is accessible at stage s, then Pαs 6= ∅.

Suppose that α is a node which is accessible at stage s and works for Sn. We let
the accessible outcome of α be the leftmost string σ of length n such that Pαs ∩ [σ]
is nonempty.

Suppose that α is a node which is accessible at stage s, and works for Re. If α
was not accessible at any stage t < s, then let ∞ be the accessible outcome (and
declare α to be active).

14 NOAM GREENBERG

Otherwise, let t < s be the last stage before s at which α was active. We check
if for all x < t, Ce,s(mα,x) = 1 iff ΘAe(mα,x)↓ [s]. If not, the we declare α to be
inactive at stage s, and let the outcome be fint,σ, where σ is the longest initial
segment of Yt�t such that Pαs ∩ [σ] 6= ∅.

Otherwise, we declare α to be active at stage s. The rest of the instructions for
choosing the accessible outcome of α and adding axioms to Θ are precisely as are
described in the construction of the proof of Proposition 3.1 in Section 5.

We let Ys be the unique element of
⋂

Pα, as α ranges over the nodes which are
accessible at stage s. Note that for every n, the determination of Ys�n is made after
only finitely many steps of the stage, so the sequence 〈Ys〉 is uniformly computable.

6.3. Verification. Our main task is to show that 〈Ys〉 is an ω-c.e. approxima-
tion. To do this, we need to improve the “finiteness” lemmas (4.3 and 5.3) into a
“counting” lemma.

Counting short accessible nodes. The following notation will be useful.

(1) For any non-empty node β, let p(β) be the last bit of β, and let β̄ be the
immediate predecessor of β. Thus β = β̄_p(β).

(2) Let N be the collection of all non-empty nodes β such that p(β) 6=∞.
(3) If β ∈ N then there is some string σ such that p(β) is of the form (τ, σ),

fint,σ or σ. We let ρ(β) = σ.

If β ∈ N, then Pβ ⊆ Pβ̄ ∩ [ρ(β)], so we may assume that Pβs ⊆ [ρ(β)] at
every stage s. Thus, if β ∈ N is accessible at a stage s, then ρ(β) ⊂ Ys.

(4) Let A be the collection of all nodes which are accessible at some stage. It
follows from (3) that if β ∈ A ∩ N and α ⊂ β is also in N, then ρ(α) and
ρ(β) are comparable.

We thus let for β ∈ A,

ρ̂(β) =
⋃
{ρ(α) : α ⊆ β & α ∈ N} .

(5) For n < ω, we let

An = {β ∈ A : |ρ̂(β)| 6 n} .

Lemma 6.4. The function n 7→ #An is bounded by a computable function.

Proof. We note that every node of length 2n+ 3 works for Sn+1, so for every node
β of length 2n + 4 we have |ρ(β)| = n + 1. Hence every node in An has length
at most 2n + 3. By definition of ρ̂, if β 6= 〈〉 is in An, then β̄ ∈ An. We show
that there is a computable function f such that every α ∈ An has at most f(n)
many immediate (one-bit) extensions in An. This suffices, because we then get that
#An 6

∑
k62n+3 f(n)k.

We need, thus, to define the function f(n) appropriately. If α works for Sm and
has proper extensions in An, then m 6 n, and so α has 2m 6 2n many immediate
extensions. So to take care of such α’s, we just need to ensure that f(n) > 2n.

Now, consider some α ∈ An which works for Re. We first investigate the number
of outcomes (τ, σ) such that α_(τ, σ) ∈ An. Suppose that (τ, σ) is such an outcome.
This outcome is chosen on account of some x; we have |σ| = h(x), so h(x) 6 n.
Also, we required that x > α.

The proof of Lemma 5.3 yields that for each x, there are at most g(mα,x) many
strings τ such that for any σ, an outcome (τ, σ) for α is obtained due to x. Let xn
be the least number such that h(xn) > n; xn can be found effectively from n. Since

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 15

h is non-decreasing, if h(x) 6 n then x < xn. Hence, the total number of outcomes
(τ, σ) such that |σ| 6 n and α_(τ, σ) ∈ An is bounded by

max
α<xn

∑
x<xn

2h(x)g(mα,x),

which is computable given n.
Next, we investigate outcomes of the form fint,σ. Fix σ ∈ 26n. Suppose that

for i < 2, α_finti,σ is accessible at stage si, and that |σ| < t0 < t1. Then
t0 < s0 < t1 < s1. For both i < 2 we have σ ⊂ Yti . Let m = |σ|. We claim
that Yt0(m) 6= Yt1(m). For the fact that the outcome at stage s0 does not extend
Yt0�m+1 implies that [Yt0�m+1] ∩ Pαs0 = ∅, and so [Yt0�m+1] ∩ Pαt1 = ∅. However,
Yt1 ∈ Pαt1 , so we must have Yt1�m+1 6= Yt0�m+1. Since Yt0�m = Yt1�m = σ, we must
have Yt0(m) 6= Yt1(m) as required.

It follows that there are at most two stages t > |σ| such that α_fint,σ ∈ A. But
if α_fint,σ ∈ A, then |σ| 6 t. Hence in total, there are at most three stages t such
that α_fint,σ ∈ A. Hence the total number of pairs (t, σ) such that α_fint,σ ∈ An
is bounded by 3 · 2n+1.

Thus, letting

f(n) = 1 + 3 · 2n+1 + max
α<xn

∑
x<xn

2h(x)g(mα,x)

suffices. �

Initial and final stages. For β ∈ A ∩ N, we define the notion of initial and final
stages for β. We utilise the following notation: if α is accessible at stage s, we let
o(α)[s] be α’s outcome at stage s, and let α+[s] = α_o(α)[s] be the immediate
extension of α which is accessible at stage s.

Definition 6.5. Let β ∈ A ∩N. We define a set T (β) of stages:

• If p(β) = σ for some σ, or p(β) = fint,σ for some t and σ, then T (β) is the
collection of stages at which β̄ is accessible.

• If p(β) = (τ, σ) for some τ and σ, then T (β) is the set of stages at which β̄
is active.

Note that if β is accessible at stage s, then s ∈ T (β).
For s ∈ T (β) such that s 6= minT (β), we let s−(β) = max(T (β)∩ s), that is, the

greatest stage in T (β) which is smaller than s.

(1) We say that s is initial for β if β is accessible at stage s, s 6= minT (β), and
β is not accessible at stage s−(β).

(2) We say that s is final for β if s ∈ T (β), β is not accessible at stage s,
s 6= minT (β), and β is accessible at stage s−(β).

Lemma 6.6. Let β ∈ A∩N. If s is a final stage for β, then s−(β) is the last stage
at which β is accessible.

Proof. Let t = s−(β). Since β is accessible at stage t, we have p(β) = o(β̄)[t]; but
p(β) 6= o(β̄)[s].

Let r > t. Suppose, for contradiction, that β is accessible at stage r. Then
r ∈ T (β); so r > s.

There are three cases.
Suppose that p(β) = σ. Let <L be the lexicographic ordering on 2<ω. We

know that for all u < v in T (β), o(β̄)[u] 6L o(β̄)[v]. Since β is accessible at stage

16 NOAM GREENBERG

t but not at stage s, we have p(β) = o(β̄)[t] <L o(β̄)[s]. Since r > s, we have
o(β̄)[s] 6L o(β̄)[r]. Hence p(β) <L o(β̄)[r], so β cannot be accessible at stage r.

Suppose that p(β) = finu,σ. Let v, if it exists, be the least stage v > s at
which β̄ is active. If r < v (or if v does not exist), then o(β̄)[s] = finu,σ′ and
o(β̄)[r] = finu,σ′′ where σ) σ′ ⊇ σ′′, so p(β) 6= o(β̄)[r], so β is not accessible at
stage r. If r > v and o(β̄)[r] = finw,ρ then w > v > u so β is not accessible at
stage r.

Finally, suppose that p(β) = (τ, σ). The argument of the proof of Lemma 4.2 is
relevant here. The reason that o(β̄)[s] 6= (τ, σ) is that either τ 6⊂ As, or Pβs = ∅. In
the first case, since A is c.e., τ 6⊂ Ar. In the second case, since Pβ is Π0

1, Pβr = ∅.
Hence β cannot be accessible at stage r. �

Lemma 6.7. Let β ∈ A ∩N. If s is an initial stage for β, then s is the first stage
at which β is accessible.

Proof. Suppose that there is some stage r < s at which β is accessible. Let r be
the greatest such stage. Then r ∈ T (β). Since β is not accessible at stage s−(β),
we have r < s−(β). By maximality of r, then, β is not accessible at the next
stage t in T (β) beyond r. Then r is final for β; but β is accessible at stage s > r,
contradicting Lemma 6.6. �

Lemmas 6.6 and 6.7 immediately imply the following:

Corollary 6.8. Let β ∈ A ∩ N. There is at most one initial stage for β, and at
most one final stage for β.

We let Sn be the set of all stages which are either initial or final for some β ∈
An ∩N. By Corollary 6.8, #Sn 6 2#An. By Lemma 6.4, the function n 7→ #Sn is
bounded by some computable function.

Controlling initial segments of Y . Let α be a node which works for some Re. We
define a partial ordering <∗ on the outcomes of α:

• ∞ <∗ o for any outcome o 6=∞ of α;
• (τ, σ) <∗ fint,ρ for all τ, σ, t and ρ.

This partial ordering extends to a partial ordering of nodes: β0 <
∗ β1 if βi = α_oi,

α works for some Re and o0 <
∗ o1.

For the rest of this subsection, fix n < ω. For each stage s, we define nodes
βs = βs(n) and γs = γs(n), and a stage t(s) = t(s, n) 6 s.

We let βs = βs(n) be the shortest node β which is accessible at stage s such
that β /∈ An−1, that is, the shortest node β which is accessible at stage s such that
β ∈ N and |ρ(β)| > n.

• If β̄s works for Sn, then we say that s is a direct stage (for n), and we let
γs = βs. In this case, we define t(s) = s.

• Otherwise, β̄s works for some Re. We let t(s) be the last stage t prior to
stage s at which β̄s was accessible, and at which o(β̄s)[t] <

∗ p(βs). (Such
a stage exists because at the least stage at which β̄s is accessible, β̄s

_∞ is
accessible). By recursion, we let γs = γt(s).

We think of γs as the node which “controls” Ys�n – this is justified by Lemma
6.10. The node βs is the node which witnesses this control, and this control is
passed on from stage t(s) to stage s.

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 17

Lemma 6.9. For all s < ω, |ρ(γs)| > n, but |ρ̂(γ̄s)| < n.

Proof. By definition of βs, for all s, |ρ(βs)| > n but |ρ̂(β̄s)| < n. If s is a direct
stage for n, then the lemma holds at stage s because γs = βs. If s is an indirect
stage for n, then the lemma holds by induction on s. �

Lemma 6.10. For all s < ω, ρ(γs)�n ⊂ Ys.

Proof. If s is a direct stage for n, then γs = βs is accessible at stage s, and so
ρ(γs) ⊂ Ys. If s is an indirect stage for n, let t = t(s). At stage s, the instructions
of the construction tell us that the outcome (τ, σ) or fint,σ for β̄s is chosen such
that σ ⊂ Yt. By induction, ρ(γs)�n = ρ(γt)�n ⊂ Yt. Hence σ and ρ(γs)�n are
comparable. By definition of βs, we have |σ| > n. Hence ρ(γs)�n ⊆ σ. Because βs
is accessible at stage s, and σ = ρ(βs), we have σ ⊂ Ys, so ρ(γs)�n ⊂ Ys. �

Lemma 6.11. For all s, β̄s (γs. If s is an indirect stage, then γs <
∗ βs.

Proof. If s is a direct stage, then γs = βs, so certainly β̄s ⊂ γs. Suppose that s is
an indirect stage; assume, by induction, that the lemma holds at stage t = t(s).

At stage t, β̄s is accessible, and by minimality of βs, |ρ̂(β̄s)| < n; but βt is the
shortest node which is accessible at stage t such that |ρ̂(βt)| > n. Hence β̄s ⊂ βt,
so β̄s ⊆ β̄t. By induction, β̄t ⊂ γt, and by definition, γs = γt. Hence β̄s ⊂ γs.

By definition of t, o(β̄s)[t] <
∗ p(βs); since (β̄s)

+[t] = β̄s
_o(β̄s)[t] ⊆ βt, we have

βt <
∗ βs. If t is a direct stage, then βt = γt = γs, so γs <

∗ βs. If t is an indirect
stage, then by induction, γt <

∗ βt, and so γs = γt <
∗ βs. �

Lemma 6.12. Let s < ω and let α ⊆ γs. Let r be the greatest stage r 6 s at which
α was accessible. Then γr = γs.

Proof. Let t(k)(s) be the kth iteration of the function t. For every k, we have
γt(k)(s) = γs; for some k, t(k)(s) is direct for n, so γs, and so α, is accessible at stage

t(k)(s). Hence there is some k such that r > t(k)(s).
Let k be the least number such that r > t(k)(s). If k = 0 then t(k)(s) = s and

so r = s, so γr = γs. Suppose that k > 0. Since α is not accessible at stage
t(k−1)(s), and α, β̄t(k−1)(s) ⊆ γs (Lemma 6.11, using the fact that γs = γt(k−1)(s)),

we have β̄t(k−1)(s) (α; again by Lemma 6.11, since t(k−1)(s) is not direct, we have
γs <

∗ βt(k−1)(s), which implies that α <∗ βt(k−1)(s).

Now by definition, t(k)(s) is the greatest stage prior to t(k−1)(s) at which some
node δ ⊃ β̄t(k−1)(s) such that δ <∗ βt(k−1)(s) is accessible. Since α is such a node,

we must have r 6 t(k)(s). Hence r = t(k)(s) and so γr = γt(k)(s) = γs. �

The following is the main lemma of the verification.

Lemma 6.13. Suppose that γs−1 6= γs. Then s ∈ Sn.

Proof. Let α be the longest common initial segment of γs−1 and γs.

Claim 6.14. α is accessible at stage s.

Proof. Let r be the greatest stage r 6 s at which α is accessible. By Lemma 6.12,
since α ⊂ γs, γr = γs. Suppose, for contradiction, that r < s. Then r is the
greatest stage before stage s − 1 at which α is accessible. Then again by Lemma
6.12, since α ⊂ γs−1, γr = γs−1, which contradicts γs−1 6= γs. �

18 NOAM GREENBERG

We note that since α (γs, we have |ρ̂(α)| < n (Lemma 6.9). By minimality of
βs, α (βs, so α ⊆ β̄s.

We let r be the greatest stage r < s at which α was accessible. By Lemma 6.12,
γr = γs−1. The definition of βr implies that α ⊆ β̄r.

Suppose that α works for some Sm (for m 6 n). If m = n, then γs and γr = γs−1

are immediate successors of α, and both r and s are direct stages. Since γr 6= γs,
we have p(γr) <L p(γs). We note that r = s−1(γs), so s is final for γr and initial
for γs, so s is in Sn.

Suppose that m < n. Then for every immediate extension δ of α, we have
|ρ̂(δ)| < n. Hence, α+[r] ⊆ β̄r, and α+[s] ⊆ β̄s. As β̄r ⊂ γr, and β̄s ⊂ γs (Lemma
6.11), we must have α+[r] ⊂ γr and α+[s] ⊂ γs. By the definition of α (since
γr = γs−1), it follows that α+[r] 6= α+[s]. By definition of r, r is the predecessor of
s in T (α+[r]) = T (α+[s]). Hence s is final for α+[r] and initial for α+[s], so s ∈ Sn.

So from now, we assume that α works for some Re.

Claim 6.15. If α = β̄s then s ∈ Sn.

Proof. Suppose that α = β̄s, so o(α)[s] is of the from (τ, σ) or finu,σ where |σ| > n.
Then s is an indirect stage, and t(s) is the greatest stage t before stage s at which
α is accessible and o(α)[t] <∗ o(α)[s]; so t(s) 6 r. Since γs = γt(s) and γr = γs−1,
we have t(s) < r. This shows that o(α)[r] 6<∗ o(α)[s].

We argue that o(α)[s] = (τ, σ) for some τ and σ. Otherwise, o(α)[s] = fint(s),σ
for some σ such that |σ| > n. Since o(α)[r] 6<∗ o(α)[s], we must have o(α)[r] =
fint(s),σ′ for some σ′ ⊇ σ; so |σ′| > n. So α = β̄r, and t(r) = t(s), yielding
γr = γt(r) = γt(s) = γs which is not true.

Next, we show that o(α)[r] = finu,ρ for some ρ, where u = s−(α+[s]) is the last
stage before s at which α was active. Otherwise, since o(α)[r] 6<∗ o(α)[s], we would
have to have o(α)[r] = o(α)[s] = (τ, σ), so |ρ(β+[r])| > n. But then again α = β̄r
and t(r) = t(s) which is impossible.

Finally, we argue that |ρ| < n, that is, that α 6= β̄r. For otherwise, we would
have t(r) = u. If o(α)[u] = o(α)[s] = (τ, σ), then t(u) = t(s), so we would have
γr = γt(r) = γu = γt(u) = γt(s) = γs which is wrong. Otherwise, o(α)[u] = ∞, in
which case u = t(s) so t(r) = t(s), contradiction again.

We see that α+[r] ∈ An and certainly α+[r] ∈ N; that r and s are successive
stages in T (α+[r]), and that α+[r] is accessible at stage r but not at stage s. Hence
s is a final stage for α+[r], so s ∈ Sn. �

Hence, we assume from now that α+[s] ∈ An. We would be done if s is initial
for α+[s]. There are two possible reasons for why this would not be the case:

(1) α+[s] /∈ N, that is, o(α)[s] =∞; or
(2) α+[s] is accessible at stage u = s−(α+[s]).

The proof of the lemma will be complete when we show that in either case, s is
final for γr�|α|+1. We first note that α+[s] ⊆ β̄s implies that α+[s] ⊂ γs.

We first tackle the first case. Suppose that α+[s] = α_∞. Let α̂ = γs−1�|α|+1

be the immediate extension of α which is extended by γs−1. By the definition of
α, we have α̂ 6= α_∞. Let w be the greatest stage w 6 r at which α̂ is accessible.
If w < r then α = β̄r, and w = t(r); for if α = β̄t(r), then α_∞ is accessible at
stage t(t(r)), implying that α_∞ ⊂ γt(t(r)) = γr, which is not the case. In either

A RANDOM SET WHICH ONLY COMPUTES SJT C.E. SETS 19

case, since α_∞ is accessible at stage s, we see that w and s are successive stages
in T (α̂). Certainly α̂ ∈ An ∩N. Hence s is final for α̂, and s ∈ Sn.

Finally, suppose that the second, but not the first case, holds: α+[s] ∈ N, but
α+[s] is accessible at stage u = s−(α+[s]). Again by the definition of α, we cannot
have α+[r] = α+[s], because then α 6= β̄r and we would have α+[s] ⊂ γr. This
means that u < r, which in turn implies that o(α)[s] = (τ, σ) for some τ and
some σ such that |σ| < n; and that o(α)[r] = finu,ρ for some |ρ|. We must
have |ρ| < n, that is, |ρ(α+[r])| < n. Otherwise, α = β̄r, and u = t(r), so
α+[s] = α+[u] ⊂ γt(r) = γr, which is not the case. Thus, α+[r] ∈ An, r and s are

successive stage in T (α+[r]), and certainly α+[r] ∈ N; so s is final for α+[r], and
so s ∈ Sn. This concludes the proof of Lemma 6.13. �

Corollary 6.16. The sequence 〈Ys〉 is an ω-c.e. approximation of a set Y .

Proof. Let n < ω and let s be a stage. By Lemma 6.10, if Ys�n 6= Ys−1�n, then
γs(n) 6= γs−1(n). By Lemma 6.13, if γs(n) 6= γs−1(n), then s ∈ Sn. As mentioned
above, By Lemma 6.4 and Corollary 6.8, there is a computable bound on #Sn. �

The rest of the verification proceeds as in the previous sections.

References

[1] Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-traceabilty I: The computably
enumerable case. Adv. Math., 217(5):2045–2074, 2008.

[2] David Diamondstone. Promptness does not imply superlow cuppability. Jour. Symb. Logic,

74(4):1264–1272, 2009.
[3] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and approximations

of the jump. Ann. Pure Appl. Logic, 152(1-3):51–66, 2008.

[4] Noam Greenberg, Denis R. Hirschfeldt, and André Nies. Chracterizing the strongly jump-
traceable sets via randomness. In preparation.

[5] Noam Greenberg and André Nies. Benign cost functions and lowness properties. To appear

in Jour. Symb. Logic.
[6] Denis R. Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles. J. Lond.

Math. Soc. (2), 75(3):610–622, 2007.

[7] A. Kučera. An alternative, priority-free, solution to Post’s problem. In Mathematical founda-
tions of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Comput.

Sci., pages 493–500. Springer, Berlin, 1986.
[8] Joseph S. Miller and André Nies. Randomness and computability: open questions. Bull.

Symbolic Logic, 12(3):390–410, 2006.

[9] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.
[10] R. Solovay. Draft of paper (or series of papers) related to Chaitin’s work. IBM Thomas J.

Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.

School of Mathematics, Statistics and Operations Research, Victoria University of

Wellington, Wellington, New Zealand
E-mail address: greenberg@msor.vuw.ac.nz

	1. Introduction
	2. Traceability and lowness
	3. The proof of Theorem 1.1
	4. Proof of Proposition 3.2
	4.1. Discussion
	4.2. The tree of strategies
	4.3. Construction
	4.4. Verification

	5. Proof of Proposition 3.1
	5.1. Construction
	5.2. Verification

	6. Proof of Theorem 1.2
	6.1. Discussion; the strategies
	6.2. Construction
	6.3. Verification

	References

