
EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY

ENUMERABLE DEGREES

ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Abstract. Toward establishing the decidability of the two quantifier theory
of the ∆0

2
Turing degrees with join, we study extensions of embeddings of

upper-semi-lattices into the initial segments of Turing degrees determined by
computably enumerable sets, in particular the degree of the halting set 0′. We
obtain a good deal of sufficient and necessary conditions.

Contents

1. Introduction 1
2. Almost contiguity and the global anti-cupping property 10
3. The generalized anti-cupping condition 14
4. Joins that imply other joins 18
5. A multi-generic set 20
6. No least join 23
7. The join property below non-generalized-low2 degrees. 40
References 42

1. Introduction

Since the introduction of the structure of the Turing degees D by Kleene and Post
[KP54], one of the main interests of computability theory has been to understand
its order-theoretic and algebraic properties; this pursuit was extended to many
other degree structures as well. Particular attention was paid to countable classes
of Turing degrees, with the ordering inherited from D. These are usually classes
which consist of the degrees of sets which are definable in arithmetic by formulas
of some fixed complexity. For example, classes which were investigated extensively
were the classes of computably enumerable degrees, of arithmetic degrees, and of
hyper-arithmetic degrees.

In this paper we concentrate on another important such collection, which is also
a principal initial segment of this structure: the upper-semi-lattice of the degrees
computable from the greatest c.e. degree 0′, that we denote by D(60′). The sets

that are computable in 0′ are the ∆0
2-definable sets. They form a very natural

Key words and phrases. Turing degrees, decidability, Extensions of embeddings.
The first two authors were spported by the Marsden Fund of New Zealand. The third author

was supported by a Royal Society University Research Fellowship. The fourth author was par-
tially supported by NSF Grant DMS-0600824, and by the Marsden Fund of New Zealand via a
postdoctoral fellowsihp.

1

2 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

class of sets, one of the reasons being that they are exactly the sets that can be
computably approximated [Sho59].

Extensions of embeddings. Much is known about the upper-semi-lattice D(60′),
but we are far from having a clear understanding of what the structure really looks
like. We do know it is a complicated structure; for instance we know that its
theory is undecidable [Eps79,Ler83]. Moreover, its theory is one-to-one equivalent
to true first order arithmetic (Shore [Sho81]). On the other hand, if we look only
at existential sentences, we can decide which such sentences hold in D(60′): every
existential sentence that does not obviously contradict the axioms of upper-semi-
lattices holds in D(60′) (this follows from results in [KP54]). In other words, the
one-quantifier theory of D(60′) is decidable.

In order to understand where the complexity of a certain structure lies, one nat-
ural question to ask is what fragments of its theory are decidable. It has always
been the case that answers to this question, by exposing either decidability pro-
cedures or coding methods, have given us a good deal of information about the
algebraic properties of the structure. In Figure 1 we show the results known so
far for D(60′). We note that when dealing with fragments which are determined
by few quantifier alterations, it makes sense to enrich the structure by functions
and relations which are definable, but not by quantifier-free formulas. The work in
this paper is oriented towards addressing the one question-mark left in the table:
whether the two-quantifier theory of D(60′), expanded by adding the join (least
upper bound) operation, is decidable or not.

These investigations have also been undertaken for the whole structure D of the
Turing degrees, for the structure R of the computably enumerable degrees, and for
many other structures. We refer the reader to [Sho06] for a recent survey of known
results.

Decidability results of ∃-theories and ∀∃-theories are closely related to embed-
dability results. Given a finite relational language L and an L-structure A, the
existential theory ∃ThL(A) is decidable if and only if the set of finite L-structures
P which embed into A is computable; the fragment ∀∃ThL(A) is decidable if and
only if given a finite tuple of L-structures (P ,Q1, ...,Qm) with P ⊆ Qi for all
i 6 m, it is decidable whether every embedding P →֒ A has an extension Qi →֒ A
for some i. The extensions-of-embeddings problem for A is the restriction of this
latter problem to the case m = 1. Hence, in terms of computational complexity, the
extensions-of-embedding problem for A lies between the ∃-theory and the ∀∃-theory
of A.

For a recent survey of embeddability results in the Turing degrees see [Mon].

Definition 1.1. An upper-semi-latice (usl) is a partial ordering in which every pair
of elements has a least upper bound. We denote the least upper bound of a and b

by a ∨ b. All the usls we consider will have a top element 1 and a bottom element
0. A usl embedding has to preserve not only the ordering, non-ordering, and join
operation, but also the top and bottom elements. When we write P ⊆ Q we mean
that the top and bottom elements of P and Q coincide, that is, the identity on P
is a usl embedding into Q.

Let E be the set of pairs of usls (P ,Q), such that P ⊆ Q and such that every
usl embedding of P into 〈D(60′),6,∨,0,0′〉, can be extended to an embedding
of Q into 〈D(60′),6,∨,0,0′〉. Thus E is the extensions-of-embeddings problem for
D(60′).

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 3

∃ ∀∃ ∃∀∃
(D(60′),6) decidable decidable undecidable
(D(60′),6,∨) decidable ? undecidable
(D(60′),6,∨,∧) decidable undecidable undecidable

Figure 1. The decidability of ∃Th(D(60′),6,∨) follows from
the work of Kleene and Post [KP54]. The decidability of
∃Th(D(60′),6,∨,∧), where ∧ is the partial binary operation that
is the greatest lower bound operation, follows from the Lachlan and
Lebeuf lattice embedding theorem [LL76]. The undecidability of
∃∀∃Th(D(60′),6) is due to Schmerl and Lerman [Ler83]. The de-
cidability of ∀∃Th(D(60′),6) is due to Lerman and Shore [LS88].
The undecidability of ∀∃Th(D(60′),6,∨,∧), where ∧ is any total
binary operation that is the greatest lower bound operation when
this exists, is due to R. Miller, Nies and Shore [MNS04].

In order to find a procedure for deciding ∀∃Th(D(60′),6,∨) we definitely have
to start by solving the extensions-of-embeddings problem for this structure, that
is, by showing that E is a computable set.

Conversely, in some occasions, deciding the extensions-of-embeddings problem
has been sufficient to show the decidability of ∀∃-theories. This was the case with
the decidability of ∀∃Th(D,6,∨) by Jockusch and Slaman [JS93] and the decidabil-
ity of ∀∃Th(D(60′),6T) by Lerman and Shore [LS88]. The extension-of-embedding
problem for (R,6T), proved decidable by Slaman and Soare [SS01], was the first
one whose decision procedure was not trivial. This result did not produce a decision
procedure for ∀∃Th(R,6). We expect a similar behavior for D(60′), in the sense
that solving the extension of embeddings problem for D(60′) will not be enough to
decide its ∀∃-theory. We will give evidence for this suspicion below.

We have not yet found a decision procedure for the extension-of-embedding prob-
lem for D(60′). However, we have found a good deal of necessary and sufficient
conditions that we expect will eventually lead to a solution of the problem. Many
of the theorems we proved for this purpose are interesting in their own right, and
provide a better understanding of the structure D(60′).

Known results. Let us start analyzing whether (P ,Q) ∈ E for the simplest cases.
Suppose P = {0 < a < 1} is a 3-element chain, and that Q ⊃ P is generated
from P by adding a single element x; we write Q = P [x]. We identify P with its
image under an embedding of P into D(60′), so 1 = 0′. There are four different
possibilities for Q.

0′

x

a

0
√

0′

CC

x

a

0

?? √

0′

a ∨ x
LL

L
sss

a x

0

uuuu
HHHH √

0′

a

x

0 ×

First, if a < x < 1, since 0′ is c.e. over a, by the downwards density of the c.e.
degrees (Sacks Splitting Theorem [Sac63]), we know that 0′ is not minimal over a.

4 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Therefore, there is a degree x as wanted, and every embedding of P into D(60′)

can be extended to an embedding of Q into D(60′).
Second, suppose that a and x are incomparable and x ∨ a = 1. In this case, the

extension is possible by the following theorem.

Theorem 1.2 (Robinson [Rob72], Posner and Robinson [PR81]). For every degree
a < 0′, there exists x < 0′ such that a ∨ x = 0′.

Third, comes the case where a and x are incomparable but x ∨ a < 1. Since 0′

is c.e. over a, there is a 1-a-generic degree x below 0′ (see [Soa87, Ex. VI 3.9]).
Therefore, x is incomparable to a and x ∨ a does not compute 0′ (as it does not
compute any a-c.e. set). So the extension is possible.

The last case is 0 < x < a. In this case the extension will not be possible
when a is a minimal degree, and we know there are minimal degrees below 0′

(Sacks [Sac61]). The analysis for this last case can be extended to a much more
general setting:

Definition 1.3. If P ⊆ Q are usls, we say that Q is an end extension of P , if no
element of Q \ P lies below an element of P , with the obvious exception of 1.

Lemma 1.4. If (P ,Q) ∈ E, then Q is an end extension of P.

Proof. Suppose Q is not an end extension of P . An embedding of P , where P \1 is
an initial segment below 0′, would not have an extension to Q. The existence of such
an embedding of P was proved by Lerman and Shore [LS88]. So, (P ,Q) 6∈ E �

There is another necessary condition for extension-of-embeddings of a different
nature that follows from known results. Here is the key theorem.

Theorem 1.5 (Cooper [Coo89], Slaman, Steel [SS89]). There are c.e. degrees 0 <
b < c such that for no x < c do we have b ∨ x = c.

We say that c fails the join property, witnessed by b. Using Jockusch and Shore’s
pseudo-jump inversion theorem [JS83], we obtain a c.e. degree a, relative to which
0′ fails the join property: there is some b, strictly between a and 0′, such that
there is no x strictly between a and 0′ such that b ∨ x = 0′.

Therefore, if P = {0 < a < b < 1} and Q = P [x] where a < x < 1 and
b ∨ x = 1, then (P ,Q) 6∈ E.

We will see that if (P ,Q) ∈ E, then the configuration we just described cannot
appear inside (P ,Q) in a sense we will specify later. We will also extend Theo-
rem 1.5 and get other necessary conditions to have the extensions-of-embeddings
property.

The ∀∃-theory. When Jockusch and Slaman [JS93] proved the decidability of
∀∃Th(D,6,∨), they proved that a pair of usls P and Q (with a bottom element,
but without a top element) has the extensions-of-embedding property if and only
if Q is an end extension of P . The fact that this condition is necessary follows
from the fact that any usl can be embedded as an initial segment of the Turing
degrees. It then follows that given (P ,Q1, ...,Qk) with P ⊆ Qi, we have that every
embedding of P into (D,6,∨) has an extension to some Qi if and only if some Qi is
an end extension of P . Hence, ∀∃Th(D,6,∨) is decidable. A very similar behavior
occurred with Lerman and Shore’s proof of the decidability of ∀∃Th(D(60′),6T).
The following example shows that proving the decidability of ∀∃Th(D(60′),6T ,∨)
will require more work than just solving the extensions-of-embedding problem.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 5

Example 1.6 (Montalbán [Mon]). Let P = {0 < a < b < 1}; let Q1 be the one
element extension P [x], where 0 < x < a; let Q2 be the one element extension
P [x], where a < x < 1 and x ∨ b = 1. See Figure 2. By our observations above,
we see that there is an embedding of P which has no extensions to Q1, namely
the one where a is a minimal degree. Also, there is an embedding of P which
has no extension to Q2, namely the one we obtained by inverting the pseudo-jump
operator given by the Cooper or the Slaman-Steel constructions, making 0′ fail the
join property relative to a, as witnessed by b. However, every embedding of P into
D(60′) can be extended to either Q1 or Q2: On the one hand, if a is not minimal,
then we can extend to Q1; on the other hand, if a is minimal, then a is low2, and
hence 0′ is high over a, and hence we can get x by Posner’s [Pos77] join theorem.
Posner’s theorem is the generalization of Theorem 1.2 to any high degree in place
of 0′.

1
��

b
@@

a

0 P

1
��

b
@@

a

x

0 Q1

1
CCC��

b x

a
yyy

@@

0 Q2

Figure 2. The ∀∃Th(D(60′),6,∨) is not immediately com-
putable from the extensions-of-embeddings problem.

We show in this paper how Posner’s Theorem and Theorem 1.2 can be extended
to any non-low2 degree, furthermore, to any non-generalized-low2 degree.

Theorem 1.7. Let c be a non-GL2 degree. Then for every non-zero degree a < c

there is some x < c such that a ∨ x = c.

We will prove this theorem in Section 7, using ideas from Slaman and Steel’s
[SS89] uniform proof of the join theorem for 0′. We believe that this theorem, and
maybe other theorems regarding non-low2 degrees, will be important to solve the
decidability of ∀∃Th(D(60′),6,∨), as illustrated in the following example.

Example 1.8. Let P = {0 = a0 < b1 < a1 < b2 < ... < an = 1}; for each
i = 1, ..., n, let Qi be the one element extension P [x], where ai−1 < x < ai and
bi∨x = ai. See Figure 3, which illustrates the case n = 3. Then, as in the previous
example, we can show that for each i, there is an embedding of P which has no
extension to Qi. However, for every embedding of P there is some i such that the
embedding extends to Qi. The reason is that for some i we have to have that ai is
non-low2 over ai−1, because otherwise 0′ = an would be low2 over 0 = a0. Then
we apply Theorem 1.7 relative to ai−1.

Extensions below a c.e. set. In computability theory, most of the proofs are
relativizable, and one would expect that the solution of the extension-of-embeddings
problem (if decidable) will also be relativizable. So, it makes sense to study the
following extension-of-embeddings set, as it is possible it might end up being equal
to E.

6 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

a3 = 1

ss
s

b3
LLL

L

a2
rrr
r

b2
LLL

L

a1
rrr
r

b1
KK

K

a0 = 0 P

a3 = 1

ss
s

b3
LLL

L

a2
rrr
r

b2
LLL

L

a1
rrr
r

b1
KK

K x

MMMMM

rrr
r

a0 = 0 Q1

a3 = 1

ss
s

b3
LLL

L

a2
rrr
r

b2
LLL

L x

MMMMM

qqq
qq

a1
rrr
r

b1
KK

K

a0 = 0 Q2

a3 = 1

ss
s

b3
LLL

L x

LLLL

qqq
qq

a2
rrr
r

b2
LLL

L

a1
rrr
r

b1
KK

K

a0 = 0 Q3

Figure 3. Example 1.8

Definition 1.9. Let Ejump = {(P ,Q) finite usls: every embedding h : P →֒ D
with h(1) ≡T h(0)′, has an extension to Q →֒ D }.

The method of pseudo-jump inversion used in Example 1.6 suggests that it will
also be useful to study the extension-of-embeddings problem below any c.e. degree:
essentially, given any c.e. degree c, there is some degree a < 0′ such that relative
to a, 0′ behaves like c.

Definition 1.10. Let Ec.e. = {(P ,Q) finite usls: every embedding h : P →֒ D
where h(1) is c.e. in h(0), has an extension to Q →֒ D }.

It is not hard to see that

(P ,Q) ∈ Ec.e. =⇒ (P ,Q) ∈ Ejump =⇒ (P ,Q) ∈ E.

The first of these implications cannot be reversed: take P = {0 < a < 1} and
Q = P [x] where a∨x = 1. By Theorem 1.5, (P ,Q) 6∈ Ec.e., but, using a relativized
form of Theorem 1.2 we get (P ,Q) ∈ Ejump.

However, there is a restatement of the implication above that might be reversible.
Given a usl P , let P∗ be P ∪ {0∗} were 0∗ is strictly below all the elements of P .
If Ec.e.,Ejump and E are decidable, and proofs are relativizable, the pseudo-jump
inversion technique would lead us to expect the following equivalence:

(P ,Q) ∈ Ec.e. ⇐⇒ (P∗,Q∗) ∈ Ejump ⇐⇒ (P∗,Q∗) ∈ E.

We thus believe that understanding Ec.e. is a key to understanding E. The rest of
the paper is dedicated to the study of Ec.e..

Necessary conditions. We have already shown that if (P ,Q) ∈ E, then Q is an
end extension of P . Since Ec.e. ⊆ E, the same holds for Ec.e.. So, from now on, we
will always assume that Q is an end extension of P .

The other negative extension-of-embeddings result we have mentioned is Theo-
rem 1.5. We would like to get a result saying that if (P ,Q) contains a configuration
similar to the one of that theorem, then (P ,Q) 6∈ Ec.e..

The first extension of Theorem 1.5 that we obtain is the following one.

Theorem 1.11. There are c.e. degrees a,b and c such that 0 < a < b < c, and
for every x 6 c, if b 66 x, then b 66 x∨a. That is, in D(6c), no degree non-trivially
joins a above b.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 7

This theorem follows from the following two lemmas, that use a notion similar to
contiguity. Recall that a degree a is strongly contiguous if any two sets A,B ∈ a are
weak truth-table equivalent. This notion was defined by Downey [Dow87], based on
work by Ladner and Sasso [LS75]. We will not use contiguous degrees, but rather,
the similar notion of a contiguous pair, which is a pair as in the following lemma.
We will prove this lemma in Subsection 2.1.

Lemma 1.12. There exist c.e. sets B and C such that ∅ <T B <T C, and such
that for every set X, if B 6T X 6T C, then B 6wtt X.

Then, we will use the global anti-cupping theorem for weak truth-table degrees.

Lemma 1.13 (Downey [Dow87]). For every noncomputable c.e. set B, there exists
a noncomputable c.e. set A <T B such that for every set X,

X ⊕A >wtt B =⇒ X >T B.

To prove Theorem 1.11, let B and C be the sets guaranteed by Lemma 1.12, and
let A be the anti-cupping witness for B given by Lemma 1.13, and let a = degT (A),
b = degT (B), and c = degT (C).

Now, suppose that P ⊆ Q are two usls, and suppose that there are a < b in P
and some x ∈ Q \P which in Q non-trivially joins a above b; that is, in Q, x 6> b,
but a∨x > b. We would like to use Theorem 1.11 to deduce that (P ,Q) 6∈ Ec.e.. In
order to do this, we would like to find an embedding of P into D(6c) for some c.e.
degree c, where the images of a and b satisfy the non-join property in D(6c) as in
Theorem 1.11; this would preclude an extension of this embedding to Q. However,
this plan is impossible if already in P there is some y which non-trivially joins a

above b.

Example 1.14. Suppose P = {0 < a0, a1 < b < 1} where a0 ∨ a1 = b, and that
Q = P [x] where a0 ∨ x > b and a1 ∨ x > b. As we said above, we will not
be able to get an embedding of P where for no x 6> b we have that a0 ∨ x > b

because a1 already has this property. However, by merging the proofs of the next
lemma and Lemma 1.12 we can get an embedding of P such that for no x 6> b we
simultaneously have that a0 ∨ x > b and a1 ∨ x > b, and so nonetheless we get
(P ,Q) /∈ Ec.e.. We will merge these proofs and other proofs in Theorem 1.17.

Lemma 1.15. There exist Turing-incomparable, disjoint c.e. sets A0 and A1 such
that for every set X ⊆ ω,

X ⊕A0 >wtt B & X ⊕A1 >wtt B =⇒ X >T B,

where B = A0 ∪ A1.

(We recall that degT (B) = degT (A0) ∨ degT (A1).)
We will prove this lemma in Subsection 2.2. Of course, instead of having B split

into two sets A0 and A1, we could split B into as many sets as we want.
We will exploit Example 1.14 and show that if a similar configuration occurs

inside a pair (P ,Q), then (P ,Q) 6∈ Ec.e.. Let us describe this in more detail.

Definition 1.16. Let P be an usl and Q be an extension of P . We say that (P ,Q)
satisfies the anti-cupping condition, and write (P ,Q) |= ACC, if for every x ∈ Q\P

8 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

and for every b ∈ P such that b 66 x, there exists c ∈ P (c might be 0) such that
c 6> b and for every a < b in P we have that

x ∨ a > b =⇒ c ∨ a > b.

In Section 3 we will prove the following theorem that says that this is a necessary
condition.

Theorem 1.17. Let P be a usl, and let Q = P [x] be an extension of P generated
by a single element. If (P ,Q) ∈ Ec.e., then (P ,Q) |= ACC.

We do not know whether the anti-cupping condition is sufficient for a pair
(P ,P [x]) to be in Ec.e.. We suspect that it is not. The reason for this suspicion is
the following theorem.

Theorem 1.18. There exist c.e. sets A,B,C,D and E such that A,B,D and E
are all Turing reducible to C and pairwise incomparable, and such that any ∆0

2 set
X which is computable in C and joins A above B also joins D above E.

While Theorem 1.18 does not construct a usl P and some Q = P [x] satisfying
the ACC but failing the extension of embedding property, it hints that such a
construction is possible. It does so by showing that in some D(6c), not all joins are
“independent”. We suspect that a modification of Theorem 1.18 may show that
the anti-cupping condition is not sufficient for membership in Ec.e..

Theorem 1.18 says, in a sense, that if X 6T C joins A above B, then there is
a certain amount of information encoded in X , and this information is enough to
join D above E. The natural question that follows is whether this information can
compute some non-zero degree.

Question 1.19. Is there a c.e. set C, incomparable sets A,B <T C and a non-
computable set E such that for any ∆0

2 set X which is computable in C, if X joins
A above B, then X computes E?

Sufficient Conditions. There are some cases where we know we always have the
extensions-of-embeddings property. We start by looking at free extensions.

Definition 1.20. We say that Q is a free extension of P if Q = P [F] for some
finite set F , and given p0 ∨

∨
A0 and p1 ∨

∨
A1 with p0, p1 ∈ P , and A0, A1 ⊆ F ,

we have that

p0 ∨
∨

A0 6 p1 ∨
∨

A1 ⇐⇒ p0 6 p1 & A0 ⊆ A1

Lemma 1.21. Every free extension belongs to Ec.e..

To prove this lemma it is enough to consider F with one element because if
F = {x1, ...,xk}, then P [F] = P [x1][x2]....[xk], where each of these 1-generator
extensions is free.

In the case where P has one element, that we discussed above, we used a 1-a-
generic set to get the free extension and the fact that there are 1-generic degrees
below any c.e. set. When P has more elements, we would like to get a set G,
computable from 1, that is 1-generic relative to all the elements of P \ {1}. This
set G is easily obtainable if P \ {1} has a maximal element. However, we prove
that we can get such a set G even if this is not the case.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 9

Theorem 1.22. Let C be a c.e. set and let {Ai : i ∈ ω} be a uniformly C-
computable list of sets. Then, there exists a set G 6T C such that G is 1-generic
relative to Ai, for every i ∈ ω such that Ai <T C.

Lemma 1.21 follows from Theorem 1.22 using two basic properties of 1-generic
sets: 1-generic sets do not compute c.e. degrees; and if A <T B and G is 1-B-
generic, then A⊕G 6>T B [Joc80].

Let us now go back to the extension of Theorems 1.5 and 1.11. Suppose we have
0 < a < d < c where c is c.e., and we want to get x 6 c such that

d 66 x & d 6 x ∨ a.

Theorem 1.11 tells us that we might find a,d and c such that no such x exists.
Suppose now that we know there is some b < d such that a ∨ b = d. In this case
we can find x as above just by letting x = b. However, suppose we do not want to
cheat, and we want to get such an x that is not above b. Can we still find a,b,d, c
so that there is no such x? In other words, is it possible that b is the least degree
below c such that a ∨ b > d? The answer is no.

Theorem 1.23 (No-least-join theorem). Let c be a noncomputable c.e. degree. Let
a,b < c such that a
 b and b > 0. Then there is a degree x 6 c such that
a ∨ x > b but x 6> b.

Figure 4 reflects the situation of the theorem in the particular case when a∨x < c

and a and b are incomparable.

c

a ∨ x

a ∨ b

oo
b ∨ x

OO

a

vvv
b

pppp
NNNN

x

III

Figure 4. No least join

The restricted difference Filter. The questions we have raised in this paper
indicate that an important object that we need to understand better is the following.

Definition 1.24. Given Turing degrees b and a, we define the difference filter as

a → b = {x ∈ D : x ∨ a > b}.
For the work in this paper, a more interesting notion is the restricted difference
filter

a →c b = {x 6 c : x ∨ a > b},
where c is a c.e. degree.

We call this set a filter just because it is closed upwards.
The following are known observations about the difference filter. Let a 6> b.

Then a → b is never an upper cone. Moreover, it always contains 1-generic degrees
and minimal degrees. To see this let d = b∨0′. It follows from Slaman and Steel’s
proof of the join theorem for 0′ [SS89] that there are 1-generic degrees x such that

10 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

x ∨ a = d > b. Using the minimal complementation theorem [Lew05], we get a
minimal degree x with x ∨ a = d > b.

Jockusch and Slaman [JS93] proved the following result (stated in a different
way):

a → b ⊆ d → e ⇐⇒ either d > a & e 6 b ∨ d, or e 6 d.

The behavior of the restricted difference filter is rather different. Theorem 1.11
states that there are c.e. degrees 0 < a < b < c such that a →c b is the cone of
degrees above b, of course, restricted to D(6c). On the other hand, the no-least-join
theorem 1.23 states that if 0 < a,b < c, c is c.e. and a|b, then a →c b is never an
upper cone.

Jockusch’s and Slaman’s condition does not hold anymore for the restricted
filter: Theorem 1.18 provided c.e. degrees a,b,d, e, all incomparable and below a
c.e. degree c, such that a →c b ⊆ d →c e.

Background and Notation. Our notation is standard and mostly follows [Soa87].
In particular, we use Lachlan’s modifier [s] to denote that an entire expression is
evaluated at a stage s.

Many of our constructions will be organized on a tree of strategies. We assume
the reader is familiar with this type of construction. See [Soa87, Chapter XIV] for
background on tree constructions. Let us very quickly refresh the reader about
the notation on this type of construction: Each node α in the tree of strategies is
assigned a requirementRα. These requirements have certain possible outcomes, and
for each of these outcomes o, α⌢o is another node in the tree of strategies. The idea
is that each node in the tree of strategies codes the outcomes of the requirements
of higher priority. The set of outcomes is linearly ordered, and this induces a
lexicographic partial ordering <L on the whole tree, where nodes comparable under
⊆ are incomparable under <L. Nodes to the left have higher priority than nodes to
the right. Also, nodes that are initial segments of other nodes have higher priority.
At each stage s we will pick a node αs in the tree to be our current approximation
to the true path. At this stage we will act for each requirement Rα for α ⊆ αs. If
α ⊆ αs, we say that α is accessible at s, and that s is an α-stage. The true path of
a construction is the leftmost path visited infinitely often. The requirements will
be satisfied by nodes lying on the true path.

A set G is 1-A-generic if for every A-c.e. set of strings W , there exists σ ⊂ G
such that either σ ∈ W , or no extension of σ is in W . If G is 1-A-generic, then G
does not compute any A-c.e. set and if D <T A, then D ⊕G 6>T A.

A degree c is GL2 if (c ∨ 0′)′ > c′′. If f1 is computable in c ∨ 0′, and c is not
GL2, then there exists a c-computable function f2 that is not dominated by f1.

2. Almost contiguity and the global anti-cupping property

In this section we prove Lemmas 1.12 and 1.15, getting Example 1.14 as a corol-
lary. The ideas used in the proofs will be used in later sections.

2.1. An almost contiguous pair. As we said in the introduction, a degree a is
strongly contiguous if any two sets A,B ∈ a are wtt-equivalent. Downey [Dow87]
used these degrees to transfer properties about the structure of wtt-degrees to the
structure of Turing degrees. We use the same idea here. However, we do not need
to use strongly contiguous degrees. We just need the following lemma.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 11

Lemma 2.1 (Lemma 1.12). There exist c.e. sets B,A, such that 0 <T B <T A
and such that for every set X with B 6T X 6T A, we have B 6wtt X.

Proof. We meet three types of requirements:

PB,A
e : Ψe(B) 6= A,

P∅,B
e : Ψe(∅) 6= B,

Me : Φe(A) = X total ∧ Γe(X) = B =⇒ B 6wtt X.

Here 〈Ψe,Φe,Γe〉 is an effective list of all triples of Turing functionals.
The requirements will be arranged on a tree of strategies as usual. To each node

σ in the tree of strategies we assign a requirement Rσ. If |σ| = 3e then we let
Rσ = Me, if |σ| = 3e+ 1 let Rσ = PB,A

e and if |σ| = 3e+ 2 let Rσ = P∅,B
e .

We also need to make sure that B 6T A. To achieve this, we code B into
A: whenever we enumerate any number into B, we also immediately enumerate it
into A. Hence B can be computed from A by observing that for all x and s, if
As ↾ x = A ↾ x then Bs ↾ x = B ↾ x.

We specify the construction by detailing, at a stage s, the following, for any
node σ which is accessible at stage s: what σ’s action is at the stage, whether
it terminates the stage, and if it does not terminate the stage, what its outcome
is. The tree of strategies is defined recursively; if σ is a string which has already
been decided to be a strategy, then for every possible outcome o of σ, σ⌢o is also
a strategy. Our instructions will define the path αs of nodes that are accessible
at stage s, assuming of course that the root of the tree is always accessible. If σ
is the last node which is accessible at stage s, then we initialise all nodes which
are weaker than σ, which means that they lose the followers that may have been
previously assigned to them.

Suppose, then, that σ is a node, accessible at stage s. Of course, σ’s action
depends on the requirement Rσ which has been assigned to σ.

2.1.1. Rσ = PB,A. We use a Friedberg-Muchnik strategy [Fri57,Muc56]. If σ does
not have a follower, it picks a new large one, and halts the stage. If σ has a follower
x, Φe(B)(x) ↓ [s] = 0, and x /∈ As, then σ enumerates x into As+1, and halts the
stage. The node σ has only one outcome, and so if σ does not halt the stage, the
unique immediate successor of σ on the tree of strategies is next accessible.

2.1.2. Rσ = P∅,B
e . The node σ works in exactly the same way as nodes working

for PB,A, appointing a follower x, and then monitoring a computation Φe(∅, x),
and enumerating x into Bs+1 when Φe(∅, x) converges to 0. It also halts the stage
whenever it acts. Note that if σ enumerates x into Bs+1, it also enumerates it into
As+1 as guaranteed above.

2.1.3. Rσ = Me. The outcomes of σ are ∞ and fty, ordered by ∞ < fty. We
define the length of agreement ℓs(σ) to be the greatest x such that Γe(Φe(A)) ↾ x =
B ↾ x [s]. We let ∞ be σ’s outcome at stage s if s is the least σ-stage, or if ℓs(σ) is
greater than any number mentioned during the previous σ⌢∞ stage. Otherwise,
we let fty be σ’s outcome at stage s.

12 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

2.1.4. Verification. The true path consists of the nodes σ which are accessible at
infinitely many stages, but no node to the left of σ is accessible at infinitely many
stages. The true path is a downward closed, ⊆-linearly ordered subset of the tree
of strategies. By induction, we can show that if σ lies on the true path, then σ has
an immediate successor on the true path. If Rσ = Me, then this follows from the
fact that σ never halts the stage, and that σ has finitely many outcomes. If Rσ is
a positive requirement (PB,A

e or P∅,B
e), we need to show that σ does not halt the

stage infinitely often.

Lemma 2.2. If σ lies on the true path, and Rσ is a positive requirement, then Rσ

is met, and σ only halts the stage finitely often.

Proof. This is argued as is usual in finite injury constructions. If Rσ = PB,A
e , then

by induction, there is a stage s0 which is the last stage at which σ is initialised.
At the first stage s1 > s0 at which σ is accessible, σ appoints a new follower x, so
x /∈ As1 . The follower x is never cancelled. The fact that at stage s1, σ initialises
all weaker nodes, together with the fact that no node stronger that σ enumerates
numbers into A after stage s0, shows that x ∈ A if and only if σ enumerates x into
A. It does so, at some stage s2 > s1, only if Φe(B, x)[s2] = 0, in which case σ’s
initialisation of weaker nodes at stage s2 ensures that Bs2 ↾ u = B ↾ u, where u is
the use of the computation Φe(B, x)[s2], and so Φe(B, x) 6= A(x). If Φe(B, x) = 0
than the finite use principle shows that σ will indeed enumerate x into A at some
stage. Otherwise, as we have ensured, x /∈ A. Hence the requirement PB,A

e is met.
We have observed that σ only ends the stage at most once after stage s1.

A slightly simpler argument is made if Rσ = P∅,B
e . If σ enumerates x into B,

then it also enumerates x into A, but since the computation Φe(∅, x) cannot be
injured, this action does not hurt σ’s success. �

Hence the true path is infinite, every positive requirement is met, and any node
on the true path is initialised finitely many times. We turn to show that every
requirement Me is met. Let σ be a node on the true path such that Rσ = Me. We
suppose that X = Φe(A) is total, and that B = Γe(X); we show that B 6wtt X .
The finite use principle shows that there are infinitely many σ⌢∞-stages (also
known as “σ-expansionary” stages), and so, as ∞ < fty, the node σ⌢∞ lies on
the true path. Let s0 be the last stage at which σ, and hence σ⌢∞, are initialised.

For a σ⌢∞-stage s, let u(s) be the A-use of the computation Γe(Φe(A)) ↾ ℓ(σ) =
B ↾ ℓ(σ) [s], and let Xs = Φe(A); so Xs is a finite string, and Γe(Xs) ⊇ Bs ↾ ℓs(σ).
For n > 0, let sn be the least σ⌢∞-stage s > s0 such that ℓs(σ) > n; the map
n 7→ sn is computable, and so the map n 7→ v(n) = |Xsn | is computable.

Lemma 2.3. If t > sn is a σ⌢∞-stage and Xt ↾ v(n) is X-correct, then B(n) =
Bt(n).

Lemma 2.3 gives a weak truth-table procedure for computing B from X , as a
stage t as in the lemma can be effectively obtained from X , with use v(n).

To prove Lemma 2.3, fix n and t > sn as in the lemma, and suppose that n /∈ Bt;
we need to show that n /∈ B. As all elements of B are followers for nodes τ with
Rτ = P

∅,B
i for some i, we suppose that there is a node, τ , such that Rτ is a positive

requirement, and such that n is a follower for τ at a stage t′ > t; we show that τ
does not enumerate n into B after stage t.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 13

We may assume that τ is not stronger than σ, for as t > s0, nodes that are
stronger than σ do not act after stage t. Let s be the stage at which τ appointed
n as a follower.

Claim 2.4. τ ⊇ σ⌢∞, so s is a σ⌢∞-stage; it is, in fact, the greatest σ⌢∞-stage
before stage sn.

Proof. At stage s, n is large. Since n < sn, we have s < sn. At stage sn, all nodes
that lie to the right of σ⌢∞ are initialised, and so if τ lies to the right of σ⌢∞,
then any follower it may have at a stage r > t must be appointed at a stage after
stage sn, and not before it. Since we assume that τ is not stronger than σ, we have
τ ⊇ σ⌢∞.

It follows that s is a σ⌢∞-stage. Since n is mentioned at stage s, at the next
σ⌢∞-stage s′ we have ℓs′(σ) > n, and so s′ > sn; so s′ = sn. �

Claim 2.5. At ↾ u(sn) = As ↾ u(sn).

Proof. If not, then some node ρ enumerates a follower x < u(sn) into A at some
stage r ∈ [s, t). The argument for Claim 2.4 shows that ρ ⊇ σ⌢∞. Since n is a
follower for τ at stage r and is not cancelled at that stage, ρ must be weaker than
τ . This implies that ρ is initialised at stage s, so ρ appoints x at a stage w > sn. As
new followers are chosen large, this implies that x > u(sn), for a contradiction. �

It follows that Xsn is an initial segment of Xt, and so, by the choice of t, that
Xsn is an initial segment of X . It follows that Bs agrees with B up to ℓs(σ), and
so that B(n) = Bs(n) = 0 as required. �

2.2. The global anti-cupping property.

Lemma 2.6 (Lemma 1.15). There exist Turing-incomparable disjoint c.e. sets A0

and A1 such that for every set X,

X ⊕A0 >wtt B & X ⊕A1 >wtt B =⇒ X >T B,

where B = A0 ∪ A1.

Proof. We meet three types of requirements:

PA0,A1

e : Ψe(A0) 6= A1,

PA1,A0

e : Ψe(A1) 6= A0,

Ne : Φ̂e(A0 ⊕X) = Φ̂e(A1 ⊕X) = B =⇒ X >T B,

where we use Φ̂e to denote a weak truth-table functional with use ϕe. We agree
that if x /∈ domϕe then Φ̂e(X, x) ↑ for any X , and that for all s, domϕe,s is an
initial segment of ω.

We again use a tree of strategies for the construction; the requirements are
effectively ordered in order-type ω; the requirement in place e is assigned to all
nodes of level e of the tree. We again fully describe the tree and the construction
by describing how to act when a node σ is accessible at a stage s; at the end of a
stage, we again initialise all nodes weaker than the last accessible node.

14 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

2.2.1. Rσ = P
Ai,A1−i

e . The node σ acts exactly as the nodes working for positive
requirements did in the construction proving Lemma 1.12, adopting the Friedberg-
Muchnik strategy of appointing followers and initialising when necessary. Such
nodes, again, have a single outcome.

2.2.2. Rσ = Ne. The node σ guesses whether ϕe is total or not. It has two out-
comes, ∞ < fty. If s is the least σ-stage, or if ϕe,s(x) ↓ , where x is the greatest
number mentioned in the previous σ⌢∞-stage, then ∞ is σ’s outcome at stage s;
otherwise, fty is σ’s outcome at stage s.

2.2.3. Verification. The verification of the fairness of the construction (the fact
that on the true path, every node is initialised only finitely often), and that every
positive requirement is met, is precisely as in the verification of the proof of Lemma
1.12. The sets A0 and A1 are disjoint since each number can be a follower for at
most one node. We show that each requirement Ne is met; let σ be the node on
the true path such that Rσ = Ne. Let X ∈ 2ω, and suppose that ϕe is total and
that Φ̂e(A0 ⊕X) = Φ̂e(A1 ⊕X) = B. We show that X >T B. Certainly σ⌢∞ lies
on the true path. Let s0 be the last stage at which σ is initialised.

With oracle X , we compute B ↾ n by recursion on n. Suppose that B ↾ n has
been computed; we can find a σ⌢∞-stage sn > s0, n such that B ↾ n = Bsn ↾ n.
The arguments for Lemma 1.12 show that unless at stage sn, n is a follower for some
node extending σ⌢∞, then B(n) = Bsn(n). Suppose then that τ ⊇ σ⌢∞ is a node
such that Rτ is positive and that at stage sn, n is a follower for τ . Without loss of

generality, suppose that Rτ = P
A0,A1

i , so n is targeted for A1. Let s be the stage
at which τ appointed n as a follower. Again, the previous arguments show that s is
the greatest σa∞-stage before stage sn, and that by virtue of τ ’s initialising action
at stage s, no follower x for any node at stage sn lies in the interval (n, ϕe(n)]. Now
the fact that Bsn ↾ n = B ↾ n implies that Bsn(x) = B(x) for all x 6 ϕe(n), except
possibly for x = n, and since n is targeted for A1, we know that A0(n) = 0, and
so A0,sn ↾ ϕe(n) = A0 ↾ ϕe(n). Given A0 ↾ ϕe(n) we can now compute, with oracle

X , the desired value B(n) = Φ̂e(A0 ⊕X,n).
Note that in the last argument we only needed X ↾ ϕe(n), so in fact we get

B 6wtt X . �

3. The generalized anti-cupping condition

This section is dedicated to proving Theorem 1.17, the necessity of the anti-
cupping condition for membership in Ec.e..

3.1. Upper-semi-lattice embeddings into the c.e. degrees. We start by de-
scribing the standard method of embedding a usl in the c.e. degrees. We include
the proof here because we will use a modification of it later; and so we describe it
in a way that is compatible with this modification.

Lemma 3.1 (Friedberg,Muchnik [Fri57,Muc56]). Every finite usl can be embedded
into the c.e. degrees.

Proof. Let P be a finite usl. We build c.e. sets Aa for each a ∈ P such that the
map a 7→ degT (A

a) is a usl-embedding.
Let P be a usl. A subset F of P is said to be a filter if it is closed upwards and

whenever a ∨ b ∈ F , at least one of a or b is in F .

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 15

When a 6 b, we need to get Aa 6T Ab. For this purpose, we impose the condi-
tion that whenever we enumerate some x into Aa we also enumerate it immediately
into Ab; we saw in the previous section that this indeed implies that Aa 6T Ab.

When a ∨ b > c we want to have that Aa ⊕ Ab >T Ac. For this purpose,
we impose the condition that whenever we enumerate some x into Ac, we also
immediately enumerate it into either Aa or Ab.

We summarize these two conditions into one, recalling that at each stage, at
most one number is enumerated into sets:

(F1) If a number x is enumerated into a set at stage s, then the collection of a
such that x is enumerated into Aa at stage s forms a filter of P .

In fact, the only filters we use will be the complements of principal ideals: for
d ∈ P ,

Fd = {z ∈ P : z 66 d}.
The next thing we need is that whenever d 6> e, Ad 6>T Ae. Note that since P

is an upper-semi-latice, e ∨ d ∈ P and it is enough to get Ad 6>T Ae∨d. Hence, it
is enough to satisfy the following requirements, for each d, e ∈ P with d < e, and
each e ∈ ω:

Pd,e
e : Ψe(D) 6= E.

As in the previous section, these requirements are effectively ordered in order-
type ω. Since all requirements are finitary, we have no need for a tree of strategies;
we carry out a finite injury argument. At each stage, we consider each requirement
in turn, and either pass to the next requirement, or act for the requirement under
consideration, halt the stage, and initialise all weaker requirements.

3.1.1. The requirement Pd,e
e . Our action for this requirement is identical to our

action for positive requirements in the previous section; the coding we need to
undertake so as to meet condition (F1) is similar to our promise, in the proof of
Lemma 1.12, to enumerate every follower targeted for B into the set A as well. The
requirement Pd,e

e will appoint a large follower x, wait for Φe(A
d, x)↓= 0, and then

enumerate x into Aa for all a ∈ Fd, that is, into every a not below d. Note that
d < e implies that e ∈ Fd, so x is enumerated into Ae.

3.1.2. Verification. Again this is identical to the verification for Lemma 1.12. The
only point is that we obeyed the condition (F1), thus obtaining the reductions
required, while making sure not to injure the computations Φe(A

d, x) = 0 against
which we diagonalised, and so we managed to preserve them. �

3.2. A negative condition. In this subsection we put together the constructions
of the previous three subsections and prove Theorem 1.17. So, let us consider a
pair of usls P ⊂ Q such that (P ,Q) 6|= ACC. There has to be some x ∈ Q \ P and
a b ∈ P , b 66 x such that if a1, ..., ak are the P-minimal elements below b such
that ai ∨ x > b, then for every c ∈ P with c 6> b, there exists some i such that
ai ∨ c 6> b.

We want to construct an embedding a 7→ degT (A
a) of P into the c.e. degrees

which has no extension to an embedding of P [x] into D(6 degT (A
1)).

We use A to denote A1 and B to denote Ab. To ensure that this embedding
of P has no extension to an embedding of P [x] into D(6 degT (A)), we construct
the embedding so that there is no X 6T A such that X 6>T B and for every
i = 1, ..., k, X ⊕Aai >T B. For this purpose, we build B and A such that for every

16 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Y , if B 6T Y 6T A, we have B 6wtt Y , and such that for every X , if for every
i = 1, ..., k, X ⊕Aai >wtt B, then X >T B.

For each d, e ∈ P with d < e, we meet the requirements:

Pd,e
e : Ψe(A

d) 6= Ae,

Me : Φe(A) total ∧ Γe(Φe(A)) = B =⇒ B 6wtt Φe(A),

Ne : ∀i = 1, ..., k Φ̂e(A
ai ⊕X) = B =⇒ X >T B.

Also, if d, e ∈ P with d 6 e, we need to get that Ad 6T Ae, and for any d

and e, we need Ad∪e 6T Ae ⊕ Ad. We will obtain these by obeying a condition
similar to (F1). We cannot use condition (F1) verbatim, because this would injure
meeting the requirements Ne. What made the argument for Lemma 1.15 work was
the fact that if x entered B = A0 ∪ A1, then it entered exactly one of A0 and A1,
and not both, thus preserving a Φ̂e-computation, or in a sense, “forcing a change
in X”. In the current construction, we need to avoid the situation that a number
enters B, but at the same time enters every Aai for i = 1, . . . , k. Call a filter F of P
amenable if b /∈ F , or if ai /∈ F for some i 6 k. Now we will not be able to require
that condition (F1) holds, strengthened by the requirement that the promised filter
is amenable: for d < e, there may not always be an amenable filter F containing e

but not d – this is the case if for all i 6 k, ai ∨ d > e. We relax the condition as
follows:

(F2) Suppose that numbers are enumerated into sets at stage s. There are two
possibilities:
(a) Exactly one number x is enumerated into sets at stage s. The collection

of a ∈ P such that x enters Aa at stage s is an amenable filter of P .
(b) Exactly two numbers, x0 < x1, are enumerated into sets at stage s.

For each i = 0, 1, the collection Fi of a ∈ P such that xi enters A
a at

stage s is a filter of P , with F0 amenable, F0 ⊂ F1, and b ∈ F0.

Before we specify the construction, we first note that if our construction meets
the condition (F2), then it is still the case that for any stage s and any number x,
the collection of a ∈ P such that x enters Aa at stage s is a filter of P . It follows
that the positive relations are met: if d < e, then Ad 6T Ae, and for any d and e,
Ad∨e 6T Ad ⊕Ae.

We also verify that every Friedberg-Muchnik type requirement can find filters
that meet condition (F2):

Lemma 3.2. Suppose that d and e are elements of P, and that d < e. Then
either:

(1) there is an amenable filter F of P such that e ∈ F and d /∈ F ; or
(2) there are nonempty filters F0 ⊂ F1 of P such that F0 is amenable, b ∈ F0,

e ∈ F1, and d /∈ F1.

Proof. If there is some i 6 k such that ai ∨ d 6> e, then F = Fai∨d is amenable,
contains e, and not d. Otherwise, d ∨ b > e, and so d
 b; so since (P ,P [x]) 6|=
ACC, there is some i 6 k such that d ∨ ai 6> b. We then let F0 = Fd∨ai

, and
F1 = Fd. �

We are now ready to describe the construction. As before, we describe the tree
of strategies by describing, for a node σ which is accessible at stage s, what action

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 17

we take for σ, depending on the nature of Rσ; and if σ does not halt the stage,
which outcome of σ is taken at stage s. As before, if σ halts the stage, then all
nodes weaker than σ are initialised.

3.2.1. Rσ = Me. The node σ acts exactly like its counterparts in the construction
for Lemma 1.12 (Subsection 2.1.3). It monitors the length of agreement ℓs(σ)
between Γe(Φe(A)) and B; the outcome is ∞ if this is greater than the largest
number mentioned in the previous σ⌢∞-stage, and fty otherwise.

3.2.2. Rσ = Ne. The node σ acts exactly like its counterparts in the construction
for Lemma 1.15 (Subsection 2.2.2). It monitors the length of convergence of ϕe; the
outcome is ∞ if this is greater than the largest number mentioned in the previous
σ⌢∞-stage, and fty otherwise.

3.2.3. Rσ = Pd,e
e . If there is an amenable filter F of P such that e ∈ F and d /∈ F ,

then the node σ chooses such a filter F and acts as the requirement acted in the
construction for Lemma 3.1: appointing a follower x, waiting for Φe(A

d, x) ↓= 0,
and then enumerating x into Aa for all a ∈ F .

If there is no such filter F , the node σ chooses filters F0 and F1 as guaranteed
by Lemma 3.2. At the first visit to σ (after it is initialised), σ appoints a fresh
agitator x0, and halts the stage. At the next visit to σ, it appoints a fresh follower
x1, and again halts the stage. At later visits, we wait for Φe(A

d, x1)↓= 0. If this
occurs, σ enumerates x0 into Aa for all a ∈ F0, and x1 into Aa for all a ∈ F1, and
halts the stage.

3.2.4. Verification. The fairness of the construction, the infinity of the true path,
and the success of the positive requirements are argued as in the previous con-
structions. If σ is on the true path and Rσ = Pd,e

e , then σ eventually appoints
a follower x and possibly also an agitator y < x, and neither are later cancelled.
The only point to mention is that if Φe(A

d, x)↓= 0 at some later σ-stage s, then σ
enumerates x into Ae at stage s, and does not enumerate any number (either x or
the associated agitator if it exists) into Ad, and so preserves the computation and
meets its requirement.

The verification that the requirements Me are met is identical to the verification
of Lemma 1.12. To prove Lemma 2.3 again, we let τ be a node such that at some
stage r > t, n is either a follower or an agitator for τ . It does not matter which of
them is the case; the verification proceeds verbatim in either case.

The use of amenable filters shows that the N-requirements are met. Suppose
that σ lies on the true path and that Rσ = Ne. Let X ∈ 2ω; suppose that ϕe is
total, and that for all i 6 k, Φ̂e(A

ai ⊕ X) = B; we show that X >T B. Again,
with oracle X , we compute B ↾ n by induction on n. We let s0 be the last stage
at which σ is initialised. We know that there are infinitely many σ⌢∞-stages.
Once B ↾ n has been determined, we again find a σ⌢∞-stage sn > s0, n such that

B ↾ n = Bsn ↾ n. Suppose that τ ⊇ σ⌢∞ is a node with Rσ = P
d,e
i for some i, d,

and e, and that at stage sn, n is either a follower or an agitator for τ . (If there is
no such node τ , then certainly B(n) = Bsn(n)).

Now we claim that we may assume that there is an amenable filter F of P such
that τ targets n to enter Aa if and only if a ∈ F ; and does not enumerate any
smaller number into any set after stage sn. This holds if there is an amenable filter
F such that e ∈ F and d /∈ F (in which case n is the follower for τ , and τ has no

18 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

agitator); and also if n is the agitator for σ (in which case F = F0 as chosen by τ).
Otherwise, n is the follower for τ , and τ has an agitator y < n targeted for all Aa

for a ∈ F0, and we required that b ∈ F0; so τ targets y for B. Since n /∈ Bsn , we
have y /∈ Bsn , and so the inductive assumption implies that y /∈ B; so τ does not
enumerate either y or n into B, and so B(n) = Bsn(n) = 0.

The argument of the verifications of Lemmas 1.12 and 1.15 shows that the stage
s at which τ appointed n is the greatest σ⌢∞-stage before stage sn. This means
that if n is the agitator for τ , then the associated follower x for τ is appointed not
before stage sn, and so that x > ϕe(n).

With the amenable filter F , we can proceed with following the verification of
Lemma 1.15. If b /∈ F , then τ does not target n for B, and so B(n) = Bsn(n) = 0.
If b ∈ F , then there is some i 6 k such that ai /∈ F ; so τ does not target n for Aai .
If τ targets its follower x for Aai , we know that x > ϕe(n). Hence the previous
argument shows that Aai

sn
↾ ϕe(n) = Aai ↾ ϕe(n), and so that X can compute

B(n) = Φ̂(Aai ⊕X,n).

4. Joins that imply other joins

In this section we prove the following theorem.

Theorem 4.1 (Theorem 1.18). There exist c.e. sets A,B,C,D and E such that
A,B,D and E are all Turing reducible to C and pairwise incomparable, and such
that any ∆0

2 set X which is computable in C and joins A above B also joins D
above E.

We meet two types of requirements:

PZe,Ye

e : Ye 6= Ψe(Ze),

Me : (Ψe(C) = X and Φe(A⊕X) = B) ⇒ X ⊕D >T E.

Here 〈Ψe, Ye, Ze〉 is an effective list of all triples consisting of a Turing functional
and of a pair of distinct sets from {A,B,D,E}.

In this construction, in order to meet the requirements Me, we will ensure that
whenever a number (a follower) enters either A or E, an even smaller number (an
agitator) immediately enters either B or D. We can thus let C = B ⊕ D; our
action will ensure that A,E 6T C. The reason for this action is the following.
Suppose that X = Ψe(C) is total and that Φe(A ⊕X) = B; we want to compute
E with oracle X ⊕D. Suppose that we have already recursively computed E ↾ n,
and wonder whether n will later enter E. Such an entry will force an agitator to
enter either D or B; but with the oracle D, we can find a stage after which the
first option is impossible. Now with X fixed, the equation Φe(A ⊕X) = B means
that any agitator entering B must cause an A-change, necessarily by some follower
entering A. This, in turn, necessitates an even smaller agitator to enter B, and so
perpetrates an infinite descending sequence of natural numbers. Note that ideally,
all agitators would enter B, but of course this is impossible for requirements PB,Y

e ;
this is why we need the set D. We mention that this argument is similar to the
Slaman-Steel argument [SS89] producing a c.e. degree which fails the join property.

As before, we specify the construction by observing the action of a node σ,
accessible at stage s.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 19

4.0.5. Rσ = PZ,Y
e . The node σ acts similarly to the previous construction (for

Theorem 1.17). When first visited after initialisation, σ picks an agitator y, and
halts the stage. The agitator is targeted for B, unless Z = B, in which case it
is targeted for D. At the next stage at which σ is visited, σ picks a follower x,
targeted for Y , and halts the stage. We then wait for a σ-stage s at which we
observe that Ψe(Z, x)↓= 0, in which case we enumerate x into Y , the agitator into
the set for which it is targeted, and halt the stage.

4.0.6. Rσ = Me. The node σ works in a similar way to the nodes working for
requirements M and N of the previous constructions. It monitors the length of
agreement ℓs(σ) between Φe(A,Ψe(C)) and B, and picks the outcome ∞ if this is
greater than the greatest number mentioned in the previous σ⌢∞-stage; otherwise
the outcome is fty.

4.0.7. Verification. Again, the fairness of the construction, the infinity of the true
path, and the success of all positive requirements is straightforward and identical
to previous constructions; note that all of these reductions are weak truth-table
reductions. We verify that each requirement Me is met. Fix e, and let σ be the
node on the true path such that Rσ = Me. Suppose that X = Ψe(C) is total, and
that Φe(A ⊕ X) = B. There are infinitely many σ⌢∞-stages. Let s0 be the last
stage at which σ is initialised. By recursion on n, with oracle X ⊕D we compute
E ↾ n. Given E ↾ n, we find a σ⌢∞-stage s > s0, n at which Es ↾ n = E ↾ n,
Ds ↾ n = D ↾ n, and ℓs(σ) > n; and also such that Ψe(C)[s] ↾ u = X ↾ u, where
u is the use of computing Bs ↾ n from As ⊕ Ψe(C)[s] via Φe (and we assume that
u > n). We show that E(n) = Es(n).

Suppose, towards a contradiction, that n enters E after stage s. Let m be the
smallest follower which is enumerated into any set after stage s; so m 6 n. Let
τ be the node which enumerates m. Let t be the stage at which τ picked m as a
follower; and let r be the stage at which τ picked the associated agitator, y. The
fact that m is not cancelled at stage s implies that τ does not lie to the right of
σ⌢∞; as s > s0, we conclude that τ ⊇ σ⌢∞. As s > n > m, we conclude that
t < s.

We argue that y cannot be enumerated into either D or B, contradicting the
fact that m is enumerated into the set for which it is targeted. The fact that
Ds ↾ n = D ↾ n and y < m 6 n implies that y /∈ D. It remains to show that y /∈ B.

As both r and t are σ⌢∞-stages, we know that ℓt(σ) > y. Let v be the A⊕Ψe(C)-
use of computing B(y) via Φe at stage t, and let w > v be the C-use of computing
Ψe(C)[t] ↾ v. As m is chosen large at stage t, we have m > w. The follower m is
not cancelled between stages t and s. At stage t, no number is enumerated into any
set, and all nodes weaker than τ are initialised. We conclude that Ct ↾ w = Cs ↾ w.
This implies that Ψe(C)[s] ↾ v = Ψe(C)[t] ↾ v, and also that As ↾ v = At ↾ v (as A
is reducible to C with constant use). Hence v 6 u. As m is the smallest follower
to enter any set after stage s, and only followers enter A, we have As ↾ m = A ↾ m.
As m > w > v, we have As ↾ v = A ↾ v. Since Ψe(C)[s] ↾ u = X ↾ u, we have
Ψe(C)[s] ↾ v = X ↾ v. It follows that

B(y) = Φe(A⊕X, y) = Φe(A⊕Ψe(C), y)[s] = 0,

so y /∈ B for the desired contradiction.

20 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

5. A multi-generic set

This section is dedicated to the proof of the following theorem.

Theorem 5.1 (Theorem 1.22). Let C be a c.e. set and let {Ai : i ∈ ω} a uniformly
C-computable list of sets. Then, there exists a set G 6T C such that G is 1-generic
relative to Ai, for every i with Ai <T C.

We have to satisfy the following genericity requirements.

Re,i: Either Ai computes C, or there is some σ ⊂ G such that either σ ∈ WAi
e

or no extension of σ is in WAi
e .

If such a σ exists, then, in the former case we say that Re,i has been satisfied
by forcing inside WAi

e , and in the latter case we say we have forced outside WAi
e .

During the construction we use a computable enumeration of C, and use this
enumeration of C to obtain uniform computable approximations 〈Ai,s : s ∈ ω〉 of
the sets Ai. The requirements are associated with levels of the tree of strategies
as usual. The requirements will work roughly as follows. Suppose α is in the
tree of strategies and Re,i = Rα. Requirement Rα monitors WAi

e , looking for a
possible σ ∈ WAi

e so that we can make σ an initial segment of G and satisfy the
requirement by forcing inside WAi

e . But not every σ ∈ WAi
e will be eligible to be

an initial segment of G. First, we have to respect the work done by higher priority
requirements, and hence σ will have to extend a string that we will call r(α) given
to Rα as its input by the requirement of immediately higher priority. Second, since
we want to get G 6T C, we will only consider strings σ that are permitted by C
in a sense we will specify later. Third, even if we see that σ ∈ WAi

e at a stage s,
our approximation Ai might change later, and σ might be removed from this set.
So, the plan for Rα is to collect, into a set P (α), pairs (τ, σ), where σ ∈ W τ

e , τ is a
potential initial segment of Ai, and σ is eligible according to certain conditions we
will specify later. Then, if we see that one of these strings τ is actually an initial
segment of Ai, we will try to make σ an initial segment of G.

As we mentioned above, requirement Rα will be given an input string r(α) that
Rα must keep as an initial segment of G. The possible outcomes of Rα are ∞ or

a pair (τ, σ) ∈ (2<ω)
2
. The outcome ∞ means that Rα will be satisfied by forcing

outside of WAi
e . In this case, the next requirement Rα⌢∞ will receive input r(α)

too. An outcome (τ, σ) ∈ (2<ω)
2
codes that σ ∈ W τ

e , that τ ⊂ Ai, and that σ is an
initial segment of G. Therefore, it is coding that Rα is being satisfied by forcing
inside WAi

e . In this case, the next requirement Rα⌢(τ,σ) will receive input σ.
Let us now describe the construction in more detail.
The tree of strategies consists of those finite strings α such that:

• For all i < |α|, either α(i) = ∞ or α(i) ∈ (2<ω)
2
;

• If i < j < |α|, α(i) = (τ1, σ1) and α(j) = (τ2, σ2), then σ1 ⊆ σ2.
• If i < |α|, α(i) = (τ, σ) and α ↾ i works for requirement Re,j , then σ ∈ W τ

e .

The restraint r(α) imposed on a node α is the union of all strings σ where for
some τ and some i < |α|, α(i) = (τ, σ).

Each node α enumerates auxiliary sets Q(α, t) and P (α). The set Q(α, t) consists
of triples (τ, σ,m), indicating that at stage t, α has observed that (τ, σ) would be
a desirable outcome, but it still needs a change in C ↾ m to allow α to pick this
pair as an outcome. The set P (α) consists of those desirable pairs (τ, σ) which
have been permitted by C to become outcomes of α. The set P (α) is computably

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 21

enumerable, uniformly in α. For s < ω, we let Ps(α) be the collection of pairs
enumerated into P (α) by the beginning of stage s.

5.1. Construction. At each stage s we will define an approximation αs to the
true path, where αs is a string in the tree of strategies of length s. We will use
r(αs) as our stage-s-approximation to G.

At stage 0, only the root 〈〉 is accessible, so α0 = 〈〉. We do not do anything else
at stage 0.

At stage s > 0, we first inductively decide which nodes α are accessible at stage
s (we also say that s is an α-stage). Only after we have defined αs, the node of
length s which is accessible at stage s, do we define Q(α, s) and enumerate new
elements into P (α), where αa∞ is accessible at stage s.

As usual, the root 〈〉 is accessible at stage s.
Suppose that we have already decided that a node α is accessible at stage s. If

|α| = s, then we halt the stage, and so let αs = α.
Suppose that |α| < s. Let |α| = (e, i), so α works to meet Re,i.
If there is some pair (τ, σ) in Ps(α) such that τ ⊂ Ai,s, then we let α⌢(τ, σ) be

the next accessible node; we take no further action for α.
Otherwise, we let α⌢∞ be the next accessible node.
This defines αs. Now let α be any node such that α⌢∞ is accessible at stage s.
Suppose that τ ⊆ Ai,s, |τ | < s, σ ∈ W τ

e , and that σ ⊇ r(α). If σ ⊆ r(αs), then
we enumerate (τ, σ) into P (α). Otherwise, we let m be the greatest integer such
that σ ↾ m = r(αs) ↾ m. We then enumerate (τ, σ,m) into Q(α, s).

Suppose that (τ, σ,m) ∈ Q(α, t) for some t < s, and that Ct ↾ m 6= Cs ↾ m. We
then enumerate (τ, σ) into P (α).

5.2. Verifications.

Lemma 5.2. A true path exists: if α is accessible infinitely often, then either
αa(∞) is accessible infinitely often (and for no (τ, σ) is αa(τ, σ) accessible infinitely
often), or there are strings τ, σ such that from some stage, whenever α is accessible,
so is αa(τ, σ).

Proof. If for some (τ, σ) ∈ P (α) we have τ ⊂ Ai, then once the approximation to
Ai settles on τ , at every α-stage will have that αa(τ, σ) is accessible. Otherwise, for
every (τ, σ) ∈ P (α), there will be a point after which αa(τ, σ) is never accessible.
Therefore, for every given s, there is a later stage t that is not αa(τ, σ) accessible
for any (τ, σ) ∈ Ps(α). So, there has to be some α⌢∞-stage after s, for every given
s. Hence αa(∞) is accessible infinitely often and for no (τ, σ) is αa(τ, σ) accessible
infinitely often. �

We define

G =
⋃

{r(α) : α ∈ true path}.
(To show that G is actually an infinite string one can use the fact that for every

n there exists an e such that for every X , WX
e = 2>n, and we will always be able

to force inside this set.)

Lemma 5.3. Every requirement Re,i is met.

Proof. Let e, i ∈ ω, and suppose that no initial segment of G forces either into or
out of WAi

e . We show that Ai >T C.

22 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Let α on the true path work for Re,i. So αa∞ is on the true path as well,
because otherwise we would have forced inside WAi

e .
Suppose that at an αa∞-stage r, there is some string τ , an initial segment of

both Ai and of Ai,r, and some string σ ∈ W τ
e extending both r(αr) ↾ n and r(α).

Then we know that C ↾ n = Cr ↾ n, because otherwise at some later stage we would
add (τ, σ) to P (α).

On the other hand, for each n, there are infinitely many such stages, because
WAi

e is dense around G. We can then use Ai to find these stages and compute
C. �

The main difficulty in proving that G is computable from C comes from the fact
that the true path is not necessarily computable from C. This is the most interesting
part of the proof. The idea is the following: to compute G↾n using C, we will wait
until a stage s where we are sure that for every stage t > s, r(αs ↾ n) = r(αt ↾ n),
and hence r(αs ↾ n) is an initial segment of G.

Definition 5.4. We say that a stage s is n-correct if, for every β ⊂ αs↾n the
following conditions hold, where γ = r(αs↾n) and |β| = 〈e, i〉:

(1) C↾|γ| = Cs↾|γ|.
(2) If βa(τ, σ) ⊆ αs for some τ and σ, then for all t > s, τ ⊂ Ai,t.
(3) If βa∞ ⊆ αs, then for every (τ, σ) ∈ Ps(β), either σ ⊇ γ, or for all t > s,

τ 6⊂ Ai,t.
Further, for all u < s, for all (τ, σ,m) ∈ Q(β, u), if C ↾ m 6= Cu ↾ m then

either (τ, σ) ∈ Ps(β) or σ ⊇ γ.

As the approximations 〈Ai,s〉 were obtained from the enumeration 〈Cs〉, the fact
that C is c.e. means that C can compute the modulus function for each approxi-
mation 〈Ai,s〉, uniformly in i. This implies that C can decide whether a stage s is
n-correct or not.

We now prove that such stages exists, and that if s is n-correct then r(αs↾n) is
an initial segment of G.

Lemma 5.5. Suppose that s is n-correct. Then for every t > s, r(αt) ⊇ r(αs↾n).

Proof. Let γ = r(αs↾n). By induction on j 6 n we prove the following statement:

For every αs↾(n− j)-stage t > s, r(αt) ⊇ γ.

Note that this is enough, since every t is an 〈〉-stage, and 〈〉 = αs↾(n− n).
For the induction basis j = 0, it is clear that at every αs↾n-stage t we have

αs↾n ⊆ αt, and hence r(αt) ⊇ r(αs↾n).
For the induction step, let β = αs↾(n− j). Let Re,i be the requirement for which

β works.
If β⌢(τ, σ) ⊆ αs for some τ and σ, then every β-stage t > s is also a β⌢(τ, σ)-

stage, and by induction, for every such stage t we have γ ⊆ r(αt).
So suppose that β+ = β⌢∞; we need to show that if t > s is a β-stage but is not

a β⌢∞-stage, then γ ⊆ r(αt). Let t be such a stage. Then for some (τ, σ) ∈ Pt(β)
we have β⌢(τ, σ) ⊂ αt, which implies that σ ⊆ r(αt); so it suffices to show that
σ ⊇ γ.

If (τ, σ) ∈ Ps(β), then σ ⊇ γ follows from τ ⊂ Ai,t. Suppose, then, that (τ, σ)
is enumerated into P (β) at some stage w ∈ [s, t). There are two possibilities. If
σ ⊇ r(αw), then we note that the node β⌢∞ is accessible at stage w, and so by
induction γ ⊆ r(αw); so certainly σ ⊇ γ as required.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 23

Otherwise, there is some u < w and some m such that (τ, σ,m) ∈ Q(β, u), and
Cw ↾ m 6= Cu ↾ m. If u < s, then (τ, σ) /∈ Ps(β) implies that σ ⊃ γ. If u > s,
then we note that u is a β⌢∞-stage, and σ ↾ m = r(αu) ↾ m. Again by induction,
r(αu) ⊇ γ. Since w > u > s we have Cw ↾ |γ| = Cu ↾ |γ|, so m > |γ|; we get that
σ ⊇ γ. �

Lemma 5.6. For every n there exists a stage s that is n-correct.

Proof. Let α be the node of length n that is in the true path. Let γ = r(α).
By induction on i 6 n we prove the following statement:

There exists a stage si such that for every α↾(n − i)-stage t > si,
r(αt) ⊇ γ.

For i = 0, this is clearly true; further, let s0 be such that C↾|γ| = Cs0↾|γ|. Let
β = α↾(n− i) and suppose that we have shown the claim for i− 1. Let 〈e, i〉 = |β|.
If β⌢(τ, σ) ⊆ α for some τ and σ, then let si > si−1 be such that for every t > si,
τ ⊆ Ai,t. Then, every β-stage t > si is a β⌢(τ, σ)-stage, and hence by the induction
hypothesis, r(αt) ⊇ γ.

Suppose now that β⌢∞ ⊆ α. We know that for all (τ, σ) ∈ P (β), τ 6⊂ Ai. Since
for every stage u, Q(β, u) is finite, there are β-stages si > ui > si−1 such that:

• For all t < si−1, for all (τ, σ,m) ∈ Q(β, t), if (τ, σ) ∈ P (β), then (τ, σ) ∈
Pui

(β); and
• For all (τ, σ) ∈ Pui

(β), for all t > si, τ 6⊆ Ai,t.

Suppose that a new pair (τ, σ) is enumerated into P (β) at some stage t > ui.
If σ ⊇ r(αt), then as t is a β⌢∞-stage and t > si−1, by induction r(αt) ⊇ γ, so
σ ⊇ γ.

Otherwise, (τ, σ,m) ∈ Q(j, w) for some βa∞-stage w < t and Ct ↾ m 6= Cw ↾ m.
Since t > ui, w > si−1, so again by induction, r(αw) ⊇ γ. Since si−1 > s0, we know
that Ct ↾ |γ| = Cw ↾ |γ|; so m > |γ|. By definition of Q(β,w), σ ↾ m = r(αw) ↾ m;
so altogether, σ ⊇ γ. We have thus shown that for all (τ, σ) ∈ P (β) \ Pui

(β) we
have σ ⊇ γ.

Let t > si be a β-stage. If t is a β⌢∞-stage, then by induction, γ ⊆ r(αt).
Otherwise, β⌢(τ, σ) is accessible at stage t, for some (τ, σ) ∈ P (β) such that
τ ⊆ Ai,t. Since t > si, (τ, σ) /∈ Pui

(β). Hence γ ⊆ σ. As t is a β⌢(τ, σ)-stage, we
have σ ⊆ r(αt). It follows that γ ⊆ r(αt). This completes the induction for i.

An examination of the induction shows that in fact, for all i 6 n, for every
α-stage t > si, the conditions (1)–(3) of Definition 5.4 hold for β = α ↾ (n − i).
This shows that every α-stage t > sn is n-correct. �

To compute G, all we need to do is use C to find n-correct stages s and then
we know that r(αs↾n) ⊆ G. As the length of r(αs ↾ n) is unbounded with s and n,
this allows us to compute all of G from C.

6. No least join

Theorem 6.1 (Theorem 1.23). Let A and B be ∆0
2 sets; assume that B is non-

computable and that B does not compute A. Suppose that C is a c.e. set which
computes both A and B. Then there is some X 6T C which does not compute B,
but such that B 6T A⊕X.

24 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

6.1. Discussion. The heart of the argument is its reliance on non-uniformity. That
is, we build two sets X0 and X1, one of which will satisfy the conditions required
of the set X of the theorem. To explain why we are driven to this non-uniformity,
we first describe a näıve, uniform plan, and show the problem with carrying it out.

So, suppose that we computably approximate a ∆0
2 set X such that B
T X

but B 6T A⊕X . To ensure that B
T X we meet, for each e, the requirement

Re: Ψe(X) 6= B,

where 〈Ψe〉 is an effective enumeration of all Turing functionals. Here is a plan to
meet a single requirement Re. Let 〈As〉 and 〈Bs〉 be computable approximations
for A and B, respectively.

Suppose that the work we do to meet Re′ for e
′ < e certifies that α ⊂ A, β ⊂ B,

and forces us to make ξ ⊂ X for some finite binary strings α, β and ξ; for simplicity,
assume that |α| = |β|. Let n = |α|.

Suppose that for a long time, we see that As(n) = i, and that Bs ↾ n+ 1 has
also been stable for a while. A certification of A(n) = i will come in the form of
a pair of strings σ and τ , possible initial segments of X , which both extend ξ, and
which form a Ψe-splitting: Ψe(σ) ⊥ Ψe(τ). If we do not find such a splitting, then
we argue that Re is met without work; for if Ψe(X) = B, the assumption that B
is not computable will ensure the existence of such a splitting.

Given such certification, we can make a computable promise, that if Bs ↾n+ 1 ⊂
B, then A(n) = i. For then we have two possibilities: if A(n) 6= i, then a subsequent
change in As ↾ n+ 1 will force a change in C, which will allow us to ensure that
either σ ⊂ X or τ ⊂ X , choosing so that we can make Ψe(X) ⊥ B and meet the
requirement Re (while placing only finitely much restraint on weaker requirements).
And if A(n) = i, then we record this fact, and move to try to compute A(n + 1)
with oracle B in the same fashion. Since we assume that A
T B, this process
must stop after finitely many iterations.

Now here is the difficulty. To ensure that B 6T A⊕X , we enumerate a Turing
functional Γ and intend that Γ(A,X) = B. The challenge is to keep Γ a consistent
functional. Suppose that we discover a Ψe-splitting σ and τ , and receive permission
to direct X to extend, say σ. But in a past life, a different requirement, possibly
weaker than Re, has asked X to extend σ, and has enumerated an axiom into Γ
which is compatible with σ and the new version of A, but which outputs a pre-
historic, and incorrect, version of B. This would make σ ineligible for usage, and
derail our strategy.

Indeed, we are not familiar with any direct way to prevent this occurrence. This
is where the non-uniformity gives a way to overcome the problem. We now build
X0 and X1. We ensure that for both j < 2, we have Xj 6T C and B 6T A⊕Xj;
and we make sure that either B
T X0 or B
T X1. Using a Posner-style trick, it
is sufficient to meet the following requirements:

Re: either Ψe(X0) 6= B or Ψe(X1) 6= B.

Lemma 6.25 below is the driver of the constructions, and explains how the fact
that we build two sets rather than just one allows us to overcome the difficulty we
outlined. To meet requirement Re, we again threaten to compute A from B, and
this time, A-configurations will be certified by two strings, possible initial segments
of X0 and X1 which both diagonalize against B when applying Ψe. What Lemma
6.25 says is that in this situation, we can pick at least one of these strings as an
initial segment of X0 or X1 without introducing inconsistencies to the functional

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 25

Γj computing B from A ⊕ Xj . Essentially, the reason we can always find strings
ζj such that Ψe(ζj) is incompatible with B and such that for at least one j < 2 we
can pick ζj as an initial segment of Xj without introducing inconsistencies to Γj is
the following. Whenever we decide, at some stage s, to act to positively to meet a
requirement Ri, for some j < 2, we let Xj extend a string ζj as above; at the same
time, we re-route the other set X1−j to a completely new configuration that has
not previously been seen. In the language of the construction below, we use a free
extension to define X1−j . We will then argue that this action frees X1−j from the
burden of old Γ1−j-computations, allowing Lemma 6.25 to hold beyond stage s.

6.2. Preliminaries. As mentioned above, we are given computable approxima-
tions 〈As〉 and 〈Bs〉 for A and B respectively.

6.2.1. The role of C. The fact that C is computably enumerable means that we
may assume, by choosing appropriate computable approximations for A and B,
that C can compute a modulus function for A and B. Specifically, we let, for
n < ω, m(n) be the least stage s such that for all t > s, At ↾n+ 1 = A↾n+ 1 and
Bt ↾ n+ 1 = B ↾ n+ 1. We pick approximations 〈As〉 and 〈Bs〉 so that m 6T C.
From now, we avoid all reference to C, and use the oracle m instead.

The function m : ω → ω has a left-c.e. approximation. For s < ω, let ms be the
stage s approximation for m: ms(n) is the greatest s̄ 6 s such that for all t ∈ [s̄, s],
we have At ↾ n+ 1 = As ↾ n+ 1 and Bt ↾ n+ 1 = Bs ↾ n+ 1. The approximation
being “left-c.e.” means that if s < t, µ ⊂ ms and µ 6⊂ mt, then µ 6⊂ m, indeed
µ 6⊂ mu for any u > t; for all s, ms lies lexicographically to the left of ms+1. We
have ms ↾n 6= ms+1 ↾n if and only if either As ↾n 6= As+1 ↾n or Bs ↾n 6= Bs+1 ↾n.

6.2.2. Functionals. Rather than defining X0 and X1 directly, we enumerate Turing
functionals Ξ0 and Ξ1, and in the end, let, for j < 2, Xj = Ξj(m). We mention
now that these functionals need not be, strictly speaking, consistent; but we will
show that Ξ0(m),Ξ1(m) ∈ 2ω. See the discussion in Section 6.2.7.

We also enumerate functionals Γ0 and Γ1, and will show that for both j < 2,
B = Γj(A,Xj); these functionals will be consistent.

For axioms, we use the following notation: µ 7→ η means that if µ is an initial
segment of the oracle, then the output extends η. As Γ0 and Γ1 use two oracles,
the axioms will be of the form (σ, η) 7→ β, where σ is an initial segment of the
first oracle, η is an initial segment of the second, and β is an initial segment of the
output.

We thus think, set-theoretically, of Γ0 and Γ1 as binary relations, and denote,
for j < 2, domΓj , to be the collection of pairs (σ, τ) such that there is some axiom
(σ, η) 7→ β in Γj .

At stage s, we let Ξ0,s,Ξ1,s,Γ0,s and Γ1,s be the collection of axioms enumerated
into the corresponding functionals by the end of stage s.

We note that as the intended oracle of Ξj is m, at every stage s, we only enu-
merate into Ξj axioms of the form µ 7→ η where µ ⊂ ms.

6.2.3. Procedures. Recall that we try to meet the requirements

Re: Either Ψe(X0) 6= B, or Ψe(X1) 6= B.

To work toward meeting a requirement Re, we will, from time to time, appoint
a procedure p. The procedure may, at some times, call another procedure to work

26 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

on the next requirement; see Section 6.2.6. The procedure may also be cancelled
at a later stage.

The following pieces of information are attached to a procedure.

(1) A number ep; this is the index of the requirement toward meeting which
the procedure p works.

(2) A (computable) function αp. This function records the attempt to compute
A from B; setting σ = αp(β) denotes that p has obtained certification that
if β ⊂ B, then σ ⊂ A. We will ensure that for all β ∈ domαp, |αp(β)| = |β|.

(3) A finite string µp. The procedure p guesses that µp ⊂ m. Since 〈ms〉 is
left-c.e., whenever the guess seems incorrect, it is verified to be incorrect,
and the procedure is cancelled.

(4) The domain of αp will in fact be a tree of binary strings, with extensions
being one-bit extensions. The root of this tree will be a string denoted
by ρp; we will ensure that |ρp| = |µp|. If β ∈ domαp is not ρp, then
β− = β ↾ |β| − 1, the immediate predecessor of β in 2<ω, is also in domαp.

(5) Two binary strings ηp,0 and ηp,1. The procedure p declares that if it is
never cancelled, then ηp,0 ⊂ X0, and ηp,1 ⊂ X1.

(6) Suppose that β ∈ domαp and β 6= ρp. Then the reduction σ = αp(β) must
be certified. This certification comes in the following form: we define a
number kp(β) and some jp(β) < 2. For every binary string δ ⊃ β of length
kp(β), we appoint a binary string ζp(δ). The meaning of this is that if
β ⊂ B and αp(β) 6⊂ A, and β is minimal with respect to this property, then
we want ζp(δ) ⊂ Xjp(β), where δ is the unique extension of β of length kp(β)
which is an initial segment of B. This will be useful for diagonalization,
because we will require that Ψep(ζp(δ)) ⊥ δ. The choice of jp(β) indicates
that the strings ζp(δ) are eligible to be initial segments of Xjp(β), and that
such an appointment would not make the functional Γjp(β) inconsistent.

We remark that it seems that for definiteness, we should have used the notation
ζp,β(δ), rather than merely ζp(δ). The point is that we shall ensure that if β, β′ ∈
domαp are not ρp, then kp(β) 6= kp(β

′); indeed, kp(β) will be chosen large at the
stage at which β is added to domαp, and at most one string is added to domαp

at each stage. Thus |δ| = kp(β) determines β, and there is no overlap between
δ ⊃ β of length kp(β) and δ′ ⊃ β′ of length kp(β

′), and so no ill-definedness for the
expression ζp(δ).

6.2.4. Some notation for strings. For binary strings σ and τ , we let σ ⊆ τ denote
that σ is an initial segment of τ , and σ ⊂ τ denote that σ is a proper initial segment
of τ . We let σ ⊥ τ denote that σ and τ are incomparable.

For a non-empty string σ, we let ¬(σ) be the string of length |σ| which agrees
with σ on all but the last bit.

6.2.5. Free extensions. For any stage s, let #(s) be the largest number used or
observed at stage s. We may assume that for all s, #(s) < #(s+ 1). A number is
called large at stage s if it is greater than #(s− 1).

Whenever we choose a string ηp,j or ζr(δ) (as a potential initial segment of some
Xj), we always choose a string whose last digit is 1.

Definition 6.2. Let s < ω, and let η be any string. A free extension of η at stage
s is any string of the form ηa0k1, where k > #(s− 1).

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 27

Free extensions are useful because no old axioms apply to them:

Lemma 6.3. If η is a free extension of η̄ at stage s, and a string ζ was chosen as
a potential initial segment of some Xj (that is, as some ηp,j or ζr(δ)) at a stage
t < s, then ζ ⊆ η implies that ζ ⊆ η̄.

Proof. Since η̄ ⊂ η, if ζ ⊆ η then ζ 6⊥ η̄. Suppose that the lemma fails; then η̄ ⊂ ζ.
But |ζ| 6 #(s − 1), and the last bit of ζ is 1, so if k > #(s − 1) we must have
ζ ⊥ η̄a0k. Then ζ ⊥ η, contradicting our assumption. �

Hence, if η is a free extension of η̄ at stage s, then for any σ, we have Γj,s−1(σ, η) =
Γj,s−1(σ, η̄).

6.2.6. The combined tree of procedures. At the end of every stage, there will be
finitely many procedures running. These are linearly ordered by a priority ordering:
apart from p0, the first procedure (which is never cancelled), every procedure is
called by the previous procedure on the list. We write p < q to denote that q was
called by p or by some descendant of p, and thus has weaker priority than p. We
maintain this nested structure of procedures by following two rules:

• If a procedure p is cancelled at a stage s, then every procedure weaker than
p is also cancelled at stage s.

• Only the weakest procedure running is allowed to call a new procedure.

Say that a procedure p called a procedure q. This calling will be done for the
benefit of one particular string β ∈ domαp; the idea is that q guesses that β
witnesses the success of the procedure p to meet its requirement Rep . We will call
p the mother of q and β the father of q; and call q the child of p (and β). To sum
this information up, we write parents(q) = (p, β).

The following will be useful notation. We let Ps be the collection of pairs (p, β)
such that p is a procedure which is running at the end of stage s, and such that
β ∈ domαp at the end of stage s.1

On Ps we put a partial ordering, which we also denote by <. This is the transitive
closure of the following two cases:

(1) If β ⊂ γ are elements of domαp, then (p, β) < (p, γ);
(2) If q is not the strongest procedure, then parents(q) < (q, ρq).

The fact that the priority ordering linearly orders domPs, the collection of proce-
dures which are running at the end of stage s, and that ancestry implies stronger
priority, implies that < is indeed a partial ordering on Ps. The fact that p < q iff
p can be obtained from q by a sequence of ancestries, implies that the image of <
under the projection map (p, β) 7→ p is exactly the priority ordering on domPs.

In fact, the map p 7→ (p, ρp) is an order-preserving injection of domPs into Ps.
So we sometimes identify p with (p, ρp).

We let Qs be the collection of pairs (p, β) in Ps such that β ⊂ Bs and αp(β) ⊂ As.
Recall that β guesses that β ⊂ B, and β and p guess together that αp(β) ⊂ A.
Thus Qs is the collection of pairs (p, β) ∈ Ps which seem, at stage s, to be guessing
correctly.

1For any t we let P<t =
⋃

s<t
Ps, P<ω =

⋃
s
Ps, etc.

28 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

6.2.7. The pseudo-consistency of Ξj. Strictly speaking, the functionals Ξ0 and Ξ1

need not be consistent: it is possible, for example, that at some stage t, we enu-
merate an axiom mt ↾ k 7→ ζ into Ξj (j < 2), and at a later stage s such that
ms ↾k 6= mt ↾k, we enumerate an axiom ms ↾n 7→ ζ′ into the same Ξj , with n < k,
ms ↾n ⊂ mt ↾k, and ζ′ ⊥ ζ.

The point is that the approximation 〈ms〉 of m is left-c.e.; since ms moved to
the right of mt ↾ k, we know that mt ↾ k is not an initial segment of m, and so at
stage s we can consider the axiom mt ↾ k 7→ ζ as if it’s been discarded from Ξj .
Formally, what we will actually want is that Ξj(m) ∈ 2ω.

Lemma 6.4. Let j < 2. Suppose that for all s, Ξj,s(ms) ∈ 2<ω. Then Ξj(m) ∈
26ω.

Proof. Standard, for those familiar with working with left-c.e. oracles. Say for
i < 2, both axioms m ↾ ni, 7→ ζi are in Ξj . For sufficiently late s, for both i < 2,
m ↾ ni ⊂ ms, and the axiom m ↾ ni 7→ ζi is in Ξj,s. Thus ζ0, ζ1 ⊆ Ξj,s(ms), and
hence are comparable. �

We will need to prove that Ξj,s(ms) ∈ 2<ω during the verification (Section
6.4.5). However, we will need this consistency in order for the instructions of the
construction to make sense. Circularity will be avoided by a step-by-step induction.

To perform stage s of the construction,
we assume that Ξj,s−1(ms−1) ∈ 2<ω.

Lemma 6.5. If Ξj,s−1(ms−1) ∈ 2<ω, then Ξj,s−1(ms) ∈ 2<ω.

Proof. Since the approximation 〈ms〉 is left-c.e., and since at all stages t < s, we
only enumerate axioms of the form mt ↾n 7→ ζ into Ξj , we have

Ξj,s−1(ms) ⊆ Ξj,s−1(ms−1). �

For brevity, we let, for n < ω, ξj,t,n = Ξj,t(mt ↾ n) and ξ∗j,t,n = Ξj,t−1(mt ↾ n).
The proof of Lemma 6.5 shows:

Lemma 6.6. If Ξj,s−1(ms−1) ∈ 2<ω, then for all n, ξj,s−1,n ∈ 2<ω and ξ∗j,s,n ∈
2<ω; indeed ξ∗j,s,n ⊆ ξj,s−1,n.

6.3. Construction.

At stage 0, we call the first procedure p0, set ep0
= 0, µp0

= 〈〉, let ρp0
= 〈〉, and

define αp0
(〈〉) = 〈〉, and ηp0,0 = ηp0,1 = 〈〉.

Let s > 0. Stage s consists of three steps.

1. Cancelling procedures. We cancel every procedure p such that µp 6⊂ ms.

2. Extending trees. Let p ∈ domPs−1 be a procedure which is still running, i.e.,
was not cancelled at step 1, and suppose that it is not the weakest such procedure;
let q be the child of p. Let β be the longest initial segment of Bs in domαp such
that αp(β) ⊂ As.

2 Let β+ = Bs ↾ |β|+ 1 = βaBs(|β|), and let α+ = As ↾ |β|+ 1 =

2β is the longest string such that (p, β) is in both Ps−1 and Qs, unless p is cancelled at stage
s. Lemma 6.15 ensures the existence of β.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 29

αp(β)
aAs(|β|). Let j < 2 be such that there are no σ ⊇ ¬(α+) and ζ ⊆ ηq,j such

that (σ, ζ) ∈ domΓj,s−1.
3

Let k be large. The procedure p requires attention if (p, β+) /∈ Ps−1, and for
every γ ⊃ β+ of length k we can find a long string ζγ ⊃ ηq,j such that Ψep(ζγ) ⊥ γ.

If there is a procedure which requires attention, let p be the strongest one. We
then do the following:

(1) Set kp(β
+) = k and jp(β

+) = j; for every γ ⊃ β+ of length k, let ζp(γ) = ζγ .
(2) Define αp(β

+) = α+.
(3) Cancel all procedures weaker than p; end stage s.

3. Calling a new procedure. If no procedure requires attention, let p be the weakest
procedure running. Define β and β+ as in step 2.

We define an integer k as follows:

• If (p, β+) /∈ Ps−1, let t be the least stage such that (p, β) ∈ Pt, and for all
u ∈ [t, s], (p, β) ∈ Qu; let k = #(t) + 1.4

• Otherwise, we let k = kp(β
+).

Let γ = Bs ↾ k. We call a new procedure q, weaker than p. We set it up as
follows:

(1) eq = ep + 1.
(2) µq = ms ↾k.
(3) parents(q) = (p, β).
(4) ρq = γ and αq(γ) = As ↾k.
(5) If (p, β+) /∈ Ps−1, then for both j < 2, we let ηq,j be some free extension of

ξ∗j,s,k.

(6) If (p, β+) ∈ Ps−1, then for j = jp(β
+) we let ηq,j be some free extension of

ζp(γ); for j 6= jp(β
+), we let ηq,j be some free extension of ξ∗

j,s,|β|.

We also enumerate new axioms: for both j < 2, we enumerate the axiom µq 7→ ηq,j
into Ξj , and the axiom (αq(ρq), ηq,j) 7→ ρq into Γj .

6.4. Verification. The verification has four main parts. First, we prove that for
both j < 2, Ξj(m) is consistent, thus showing that the construction can be carried
out at every stage. Then, we show that both functionals Γ0 and Γ1 are consistent.
Thirdly, we prove the main lemma (Lemma 6.25), which states exactly that the fact
that we build two sets X0 and X1 rather than just one allows us to find suitable
initial segments for either X0 or X1, free from historical computations, that will
meet the requirements. At the end, we use the main lemma to show that every
requirement is met.

Our first goal is to show that the construction can be indeed carried out: that
for every stage s, for both j < 2, Ξj,s(ms) ∈ 2<ω. We will need a little more:

Proposition 6.7. For every stage s, for both j < 2,

(1) Ξj,s(ms) ∈ 2<ω.
(2) For all p ∈ domPs, ξj,s,|ρp| = ηp,j.

3Corollary 6.26 ensures the existence of such j. We do not need to assume the lemma holds
for the construction to make sense; if there were no such j, p simply would not require attention.

4If t = s, then instead of #(s), we take the greatest number seen so far in the construction.

30 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Proposition 6.7 will be proved by induction on s. It holds for s = 0. We fix a
stage s > 0, and assume that the proposition holds at every stage t < s; and so the
construction can be performed, up to and including stage s.

We prove that Proposition 6.7 holds at stage s by proving a series of Lemmas
about the construction at stage s. These are all proved simultaneously, as part of
the induction proving Proposition 6.7. That is, for every lemma we prove on the
way to the proof of Proposition 6.7 (on page 34), we assume right now that the
lemma holds at every stage t < s, and prove it for stage s.

The proof of Proposition 6.7 at stage s relies on two lemmas.

Lemma 6.8. Let p, q ∈ domPs, and suppose that p < q. Then for both j < 2,
ηp,j ⊂ ηq,j .

Lemma 6.9. Suppose that q ∈ domP<s \ domPs, but that µq ⊂ ms. Suppose that
the procedure p is called at stage s. Then for both j < 2, ηq,j ⊂ ηp,j.

The point is the following: to show that Ξj,s(ms) is consistent, we need to show
that if p is called at stage s, then the axiom µp 7→ ηp,j , which is enumerated into Ξj

at stage s, is consistent with an older axiom µq 7→ ηq,j in Ξj,s−1 which still applies
to ms, i.e. such that µq ⊂ ms. We need to show that ηp,j and ηq,j are comparable.
How to do so depends on whether q is still running at the end of stage s. If it is,
Lemma 6.8 does the trick; if not, we need Lemma 6.9.

We prove Lemma 6.8 on page 32, and Lemma 6.9 on page 33.

6.4.1. Basic facts. We start by proving several facts about the construction.

Lemma 6.10. p0 is not cancelled at stage s.

Proof. Because 〈〉 ⊂ ms. �

Lemma 6.11. For all (p, β) ∈ Ps, if β 6= ρp, then kp(β) > |β|.
Proof. kp(β) is chosen to be large, at a stage t 6 s such that (p, β) ∈ Pt−1. Hence
kp(β) > #(t− 1) > |β|. �

Lemma 6.12. Suppose that q 6= p0 and q ∈ domPs. Then the length of ρq is
greater than the length of the father of q.

Proof. Let (p, β) = parents(q); let t 6 s be the stage at which q is called; let
k = |ρq|. If (p, β+) ∈ Pt−1, then k = kp(β

+) > |β+| > |β| by Lemma 6.11.
Otherwise, k > #(u) where u 6 t is a stage such that (p, β) ∈ Pu; so #(u) > |β|. �

Corollary 6.13. If (p, β), (q, γ) ∈ Ps and (p, β) < (q, γ), then β ⊂ γ.

Proof. We show that if β is the father of q then β ⊂ ρq; the rest is immediate. So
let q ∈ domPs, q 6= p0, and let (p, β) = parents(q). Let t 6 s be the stage at which
q is called. At stage t, we define ρq ⊂ Bt. We also have β ⊂ Bt. Since |β| < |ρq|
(Lemma 6.12), we get β ⊂ ρq. �

Lemma 6.14. If p, q ∈ domPs and p < q, then µp ⊂ µq.

Proof. Let t 6 s be the stage at which q is called. Since p ∈ domPt, we have
µp ⊂ mt; and we have µq ⊂ mt. We have |µp| = |ρp| and |µq| = |ρq|; by Corollary
6.13, ρp ⊂ ρq, so |ρp| < |ρq|. �

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 31

6.4.2. Comparability of α’s, and Qs.

Lemma 6.15. If p ∈ domPs, then (p, ρp) ∈ Qs.

Proof. For p = p0, we always have 〈〉 ⊂ Bs and 〈〉 ⊂ As.
Suppose that p 6= p0. Let t 6 s be the stage at which p was called; let k = |ρp|.

At stage t, we set ρp = Bs ↾ k and αp(ρp) = As ↾ k; and we set µp = ms ↾ k. So
(p, ρp) ∈ Qt. If t = s we are done. Otherwise, by induction, (p, ρp) ∈ Qs−1. If
(p, ρp) /∈ Qs then either ρp 6⊂ Bs or αp(ρp) 6⊂ As. Then either Bs−1 ↾k 6= Bs ↾k or
As−1 ↾k 6= As ↾k. In either case, we get ms−1 ↾k 6= ms ↾k. Hence µp 6⊂ ms; so p is
cancelled at step 1 of stage s, contradicting p ∈ domPs. �

Lemma 6.16. If (p, β), (q, γ) ∈ Ps and (p, β) < (q, γ), then αp(β) ⊂ αq(γ).

Proof. We prove two cases:

(1) If parents(q) = (p, β), then αp(β) ⊂ αq(ρq);
(2) If β+ is an immediate successor of β in domαp, then αp(β) ⊂ αp(β

+).

For (1), let t 6 s be the stage at which q was called. We have (p, β) ∈ Qt, so
αp(β) ⊂ At. We also define αq(ρq) = At ↾ |ρq|. Since |αp(β)| = |β| and |ρq| > |β|
(Lemma 6.12), we get the desired result.

For (2), let t 6 s be the stage at which β+ was added to domαp. Again, we
have αp(β) ⊂ At and define αp(β

+) ⊂ At; and we have |αp(β)| = |β|, whereas
|αp(β

+)| = |β+| = |β|+ 1. �

Corollary 6.17. If (q, γ) ∈ Qs, (p, β) ∈ Ps, and (p, β) < (q, γ), then (p, β) ∈ Qs.

Proof. By Corollary 6.13, β ⊂ γ. By Lemma 6.16, αp(β) ⊂ αq(γ). Since γ ⊂ Bs

and αq(γ) ⊂ As, we get β ⊂ Bs and αp(β) ⊂ As. �

Thus, Qs is a linearly ordered initial segment of Ps.

Lemma 6.18. Suppose that q ∈ domPs, q 6= p0. Let (p, β) = parents(q). Then β
is the longest string such that (p, β) ∈ Qs.

Proof. We have (p, β) < (q, ρq) and (q, ρq) ∈ Qs (Lemma 6.15). By Corollary 6.17,
we get that (p, β) ∈ Qs.

Let t be the stage at which q was called. By design, the lemma holds at stage
t. Suppose that t < s; by induction, the lemma holds at stage s− 1. If the lemma
fails at stage s, then (p, β+) ∈ Qs, where β+ = Bs ↾ |β|+ 1.

The fact that (p, β+) ∈ Ps and that q ∈ domPs implies that (p, β+) ∈ Ps−1;
otherwise, adding β+ to domαp at stage s would cancel q at stage s. Now, the fact
that (p, β+) ∈ Qs \ Qs−1 implies that ms ↾ |β+| 6= ms−1 ↾ |β+|. Since |β| < |ρq|
(Lemma 6.12) and |β+| = |β|+1, we get ms ↾ |ρq| 6= ms−1 ↾ |ρq|, which would imply
that q gets cancelled at step 1 of stage s. This is a contradiction. �

6.4.3. Comparability of η’s.

Lemma 6.19. If p is in both domPs−1 and domPs, then for both j < 2, ξ∗
j,s,|ρp|

=
ηp,j.

Proof. The assumption implies that ms ↾ |ρp| = ms−1 ↾ |ρp| = µp. Hence ξ∗
j,s,|ρp|

=

ξj,s−1,|ρp|. So the conclusion follows from our assumption that Proposition 6.7(2)
holds at stage s− 1. �

32 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Proof of Lemma 6.8. As by induction we assume that the lemma holds at every
stage t < s, it remains to prove that if q is called at stage s, and p is the mother of
q, then for both j < 2 we have ηp,j ⊂ ηq,j .

Let β be the father of q. There are two cases.
The first case is when ηq,j is chosen to be a free extension of ξ∗j,s,|β| or of ξ

∗
j,s,|ρq|

.

We note that (p, β) ∈ Ps−1, so p ∈ domPs−1, domPs, so by Lemma 6.19, ηp,j =
ξ∗
j,s,|ρp|

. Of course ξ∗
j,s,|ρp|

⊆ ξ∗
j,s,|β|, ξ

∗
j,s,|ρq |

.

The second case is when ηq,j is chosen to be a free extension of ζp(ρq). Let
β+ = ρq ↾ |β|+ 1 = Bs ↾ |β|+ 1; in this case we have (p, β+) ∈ Ps−1. Let t < s be
the stage at which β+ was added to domαp, and let q̄ be p’s child at stage t. By
induction, we have ηp,j ⊂ ηq̄,j . Chosen at stage t, ζp(ρq) is required to extend ηq̄,j,
so ζp(ρq) extends ηp,j . Again we get the desired result. �

6.4.4. What happens when q ∈ domP<s \ domPs but µq ⊂ ms. In this section we
prove Lemma 6.9.

Lemma 6.20. Let q ∈ domP<s \ domPs such that µq ⊂ ms. Let t < s be a stage
such that q ∈ domPt, and let r be the weakest procedure in domPt which is also in
domPs. Let q̄ be r’s child at stage t, and let u be the stage at which q̄ is cancelled.
Let β be q̄’s father.

(1) At stage u, a one-bit extension β+ of β is added to domαr, and (r, β+) ∈
Ps.

(2) If a procedure p is called at stage s, then |ρp| > |ρq|.
(3) For both j < 2, ηq,j = ξ∗

j,s,|ρq|
.

(4) If p ∈ domPs and (r, γ) = parents(p), then (r, γ) /∈ Pu−1.
(5) If (r, γ) ∈ Ps \ Pu−1 and |γ| > |ρq|, then for all δ ⊃ γ of length kr(γ), we

have ζr(δ) ⊃ ηq,jr(γ).

Note that r exists, since p0 ∈ domPt and in domPs. The procedure q̄ exists
because q ∈ domPt and q /∈ domPs, so r < q; so r is not the weakest procedure in
domPt. By the maximality of r, q̄ /∈ domPs, so u exists, and u ∈ (t, s].

Proof. Since r < q, we have q̄ 6 q. Hence (Lemma 6.14), µq̄ ⊆ µq. Since µq̄ ⊂ mt,
we must have µq̄ ⊂ mu. It follows that q̄ was cancelled not at step 1 of stage u, but
because at stage u, some string is added to domαr.

By Lemma 6.18, β is the maximal string such that (r, β) ∈ Qt. Because |β| < |ρq|
(Corollary 6.13), as (r, β) < (q, ρq)), we get mt ↾ |β|+ 1 = mu ↾ |β|+ 1 = ms ↾

|β|+ 1. It follows that β is the longest string such that (r, β) is in both Pu−1 and
Qu. Hence, at stage u, the string β+ = Bu ↾ |β|+ 1 is added to domαr. By the
definition of αr(β

+), we have (r, β+) ∈ Qu. Since mu ↾ |β|+ 1 = ms ↾ |β|+ 1, we
get (r, β+) ∈ Qs, establishing (1).

For (2), suppose that a procedure p is called at stage s. Let p̄ be the child of r
at stage s; so p̄ 6 p. If p̄ < p, then, since p̄ was called after stage u but before stage
s, we have, by induction, |ρp̄| > |ρq|. By Corollary 6.13, we have ρp̄ ⊂ ρp, so we’re
done in this case.

Suppose then that r is p’s mother; let δ be p’s father. The string δ is the longest
string such that (r, δ) ∈ Qs. Since (r, β+) ∈ Qs, we have β+ ⊆ δ.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 33

Let δ+ = Bs ↾ |δ|+ 1, and let k = |ρp|. If (r, δ+) ∈ Ps−1, then k = kr(δ
+).

Since δ+ is added to domαr after stage u, and kr(δ
+) is chosen large, we have

kr(δ
+) > #(u) > #(t) > |ρq| as required.

Suppose that (r, δ+) /∈ Ps−1. We have k = #(v) + 1 for some stage v such that
(r, δ) ∈ Pv. Again, since δ ⊇ β+, δ is added to domαr not before stage u; so v > u.
Again we get k > #(u) > #(t) > |ρq|.

It follows that if p is called at stage s, then ρq ⊂ ρp (as they are both extended
by Bs), αq(ρq) ⊂ αp(ρp) (they are both extended by As), and µq ⊂ µp (they are
both extended by ms).

Let j < 2. We show that ξ∗j,s,|ρq|
= ξj,t,|ρq|. If µ ⊆ mt ↾ |ρq| then µ ⊂ ms; so if

µ 7→ ζ is in Ξj,t, then ζ ⊆ ξ∗j,s,|ρq|
; so ξj,t,|ρq| ⊆ ξ∗j,s,|ρq|

.

On the other hand, suppose that µp 7→ ηp,j is an axiom which is enumerated
into Ξj at a stage v ∈ (t, s). Applying part (2) at stage v, we get |µp| > |ρq|, so
this new axiom does not apply to the computation Ξj,s−1(ms ↾ |ρq|). Hence we get
the desired equality.

Now by induction (Proposition 6.7(2) at stage t < s), ηq,j = ξj,t,|ρq|, which
establishes (3).

Part (4) follows from the fact that (r, β+) ∈ Qs. By Lemma 6.18, β+ ⊆ γ. Since
β+ was added to domαr at stage u > t, γ must have been added at a stage no
earlier than u.

Finally, we turn to part (5). Let v ∈ [u, s] be the stage at which γ is added to
domαr. Let o be r’s child at stage v − 1. Let j = jr(γ). Let δ ⊃ γ have length
kr(γ). At stage v, we pick ζr(δ) to extend ηo,j .

• By part (3), applied at stage v 6 s, ηq,j = ξ∗
j,v,|ρq|

.

• We have ξ∗
j,v,|ρq|

⊆ ξj,v−1,|ρq| (and in fact we have equality, as mv ↾ |ρq| =
mv−1 ↾ |ρq|).

• We have |ρo| > |γ| > |ρq|. Hence ξj,v−1,|ρq | ⊆ ξj,v−1,|ρo|.
• By Proposition 6.7(2), applied at stage v− 1 < s, we have ξj,v−1,|ρo| = ηo,j.

Hence overall we get ηq,j ⊆ ηo,j ⊂ ζr(δ). �

Proof of Lemma 6.9. Let p̄ be the child of r at stage s. If p̄ < p, then the result
follows by induction on s, since p̄ ∈ domPs−1, and ηp̄,j ⊂ ηp,j (Lemma 6.8). So we
assume that r is p’s mother. Let δ be p’s father. By Lemma 6.20(4), (r, δ) /∈ Pu−1.

If ηp,j is chosen to be an extension of ξ∗
j,s,|ρp|

, then we note that |ρp| > |ρq|
(Lemma 6.20(2)); so by Lemma 6.20(3), ξ∗

j,s,|ρp|
⊇ ξ∗

j,s,|ρq|
= ηq,j .

Otherwise, (r, δ+) ∈ Ps−1, where δ
+ = Bs ↾ |δ|+ 1. We first argue that |δ| > |ρq|.

Let v be the stage at which δ+ is added to domαr. Since (r, δ) /∈ Pu−1, we
have u < v < s. We have (r, δ+) ∈ Qv, but (r, δ+) /∈ Qs (Lemma 6.18). Hence
ms ↾ |δ+| 6= mv ↾ |δ+|. As ms ↾ |ρq| = mv ↾ |ρq|, we get |δ+| > |ρq|, so |δ| > |ρq|.

Now if ηp,j is chosen as an extension of ξ∗
j,s,|δ| (if j 6= jr(ρp)), then ηq,j ⊂ ηp,j

follows again from Lemma 6.20(3).
Otherwise, j = jr(ρp), and ηp,j is chosen as an extension of ζr(ρp). The desired

result now follows from Lemma 6.20(5). �

6.4.5. The consistency of Ξj(m). We are finally ready to prove that Proposition
6.7 holds at stage s, and so complete the induction that started the verification.

34 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

Proof of Proposition 6.7. Fix j < 2. For (1), we need to show that if a new proce-
dure p is called at stage s, then the axiom µp 7→ ηp,j which is enumerated into Ξj

at stage s does not contradict any older axiom in Ξj which applies to ms. Suppose
that µq 7→ ηq,j is an axiom in Ξj,s−1, and that µq ⊂ ms; we need to show that
ηq,j 6⊥ ηp,j . In fact, ηq,j ⊂ ηp,j . For if q ∈ domPs, then q < p; by Lemma 6.8,
ηq,j ⊂ ηp,j . And if q /∈ domPs, then by Lemma 6.9, ηq,j ⊂ ηp,j .

For (2), let p ∈ domPs. If p ∈ domPs−1, then ms−1 ↾ |ρp| = ms ↾ |ρp|. Also, if a
new axiom µ 7→ ζ is enumerated into Ξj at stage s, then |µ| > |ρp|, as µ = µq for
some q > p. Hence ξj,s,|ρp| = ξj,s−1,|ρp|, and so ηp,j = ξj,s,|ρp| follows by induction.

Suppose then that p is called at stage s. At stage s we enumerate the axiom
µp 7→ ηp,j into Ξj , and so ηp,j ⊆ ξj,s,|ρp|. We have just seen, while proving part (1),
that in fact Ξj,s(ms) ⊆ ηp,j ; that is, if µq 7→ ηq,j is any axiom in Ξs which applies
to ms, then µq ⊆ µp and ηq,j ⊆ ηp,j . It follows that ξj,s,|ρp| = Ξj,s(ms) = ηp,j . �

6.4.6. Consistency of Γj. We now work toward our second major goal: showing
that for both j < 2, the functional Γj is consistent. The real reason that Γj is
consistent is that when we add a string β+ to domαr for some procedure r, we
chose j = jr(β

+) so that no Γj,s−1-axioms applied to σ ⊇ α+ and ζ ⊆ ηq,j . How
this fact is utilized is a bit involved, though.

From the definition of the functional Γj , it is evident that the following lemma
is exactly what we need to show that Γj,s is consistent, assuming that Γj,s−1 is
consistent.

Lemma 6.21. Suppose that p is called at stage s; let q ∈ domP<ω, and let j < 2.
If ηq,j ⊆ ηp,j then either αp(ρp) ⊥ αq(ρq), or ρq ⊆ ρp.

We prove Lemma 6.21 using a couple of lemmas which we shortly state. we carry
out a “grand induction” similar to the one we used for the consistency of Ξj(m).
We fix a stage s > 0, and we assume that Lemma 6.21, and all the lemmas that we
need for its proof, hold at stage s− 1; we prove they hold at stage s.

The proof of Lemma 6.21 is as follows. Let p and q be as in the statement of the
lemma, and let j < 2. We may assume that p 6= q. Since |ηq,j | 6 |ηp,j |, and ηq,j is
chosen to be long at the stage at which q is called, assuming that p 6= q, we must
have q ∈ domP<s.

Let (r, β) = parents(p). There are two cases for the choice of ηp,j . If ηp,j is
chosen to be an extension of ξ∗

j,s,|ρp|
or of ξ∗

j,s,|β|, then let n = |ρp| or n = |β|
accordingly. Since ηq,j was chosen before stage s and since ηp,j is a free extension
of ξ∗j,s,n at stage s, ηq,j ⊆ ηp,j implies that ηq,j ⊆ ξ∗j,s,n. We have Bs ↾n ⊆ ρp and

As ↾n ⊆ αp(ρp). We then use the following lemma:

Lemma 6.22. For all q ∈ domP<s, for all n < ω and j < 2, if ηq,j ⊆ ξ∗j,s,n, then

either As ↾n ⊥ αq(ρq), or ρq ⊆ Bs ↾n.

Lemma 6.22 implies that either As ↾ n ⊥ αq(ρq), or ρq ⊆ Bs ↾ n. Hence either
αp(ρp) ⊥ αq(ρq), or ρq ⊆ ρp, verifying Lemma 6.21 in this case.

Otherwise, for β+ = Bs ↾ |β|+ 1 and α+ = As ↾ |β|+ 1, we have ρp ⊃ β+,
|ρp| = kr(β

+), and j = jr(β
+). We have αp(ρp) ⊇ ¬αr(β

+), and ηp,j is chosen to
be a free extension of ζr(ρp). As before, the assumption ηq,j ⊆ ηp,j implies that
ηq,j ⊆ ζr(ρp). Now we use the following lemma:

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 35

Lemma 6.23. Let (r, β+) ∈ Ps, with β+ 6= ρr. Let j = jr(β
+). Let δ be an

extension of β+ of length kr(β
+). For all q ∈ domP<s, if ηq,j ⊆ ζr(δ), then either

ρq ⊂ β+, or αq(ρq) ⊥ ¬(αr(β
+)).

Using Lemma 6.23, we see that either ¬αr(β
+) ⊥ αq(ρq), whence αp(ρp) ⊥

αq(ρq), or ρq ⊂ β+ ⊂ ρp. The proof of Lemma 6.21 is thus complete, once we prove
Lemmas 6.22 and 6.23.

We start with the former.

Proof of Lemma 6.22. Suppose that ηq,j ⊆ ξ∗j,s,n. Then there is some p̄ ∈ domP<s

such that µp̄ ⊂ ms and such that |ρp̄| 6 n and ηq,j ⊆ ηp̄,j . By the assumption that
Lemma 6.21 holds before stage s, either αp̄(ρp̄) ⊥ αq(ρq), or ρq ⊆ ρp̄. In the first
case, we note that µp̄ ⊂ ms implies that αp̄(ρp̄) ⊂ As, so As ↾n ⊇ αp̄(ρp̄). In the
second case, we note that µp̄ ⊂ ms implies that ρp̄ ⊂ Bs, so ρq ⊆ ρp̄ ⊆ Bs ↾n. �

We now work toward the proof of Lemma 6.23.

Lemma 6.24. Let r ∈ domPs, and suppose that a string β+ 6= ρr is added to
domαr at stage s. Let β = (β+)− be β+’s immediate predecessor on domαr. Let
p be the child of r at stage s− 1. Let δ be an extension of β+ of length kr(β

+). Let
j = jr(β

+).

(1) (r, β) = parents(p), and αr(β
+) ⊆ αp(ρp).

(2) If (σ, ζ) 7→ γ is an axiom in Γj,s−1, ζ ⊆ ζr(δ), and σ + αr(β
+), then

ζ ⊆ ηp,j .
(3) For every string σ comparable with ¬(αr(β

+)), Γj,s−1(σ, ζr(δ)) ⊆ β.

Proof. We note that (r, β) is in both Ps−1 and Qs, that β
+ = Bs ↾ |β|+ 1, and that

(r, β+) ∈ Qs. At stage s, we choose ζr(δ) ⊃ ηp,j .

That (r, β) = parents(p) follows from Lemma 6.20(1) (using t = s − 1 and p
for q̄, so u = s), which states that if γ is p’s father, then a one-bit extension γ+ is
added to domαr at stage s; so γ+ = β+, so γ = β.

The instructions at stage s say that µp ⊂ ms. This implies that αp(ρp) ⊂ As.
Since αr(β

+) ⊂ As and |ρp| > |β| (Corollary 6.13), from |αr(β
+)| = |β| + 1 and

|ρp| = |αp(ρp)| we get αr(β
+) ⊆ αp(ρp). So (1) holds.

We prove part (2). Let (σ, ζ) 7→ γ be an axiom in Γj,s−1, and suppose that
ζ ⊆ ζr(δ) and σ 6⊇ αr(β

+). Since ηp,j ⊂ ζr(δ), ζ and ηp,j are comparable; we need
to show that |ζ| 6 |ηp,j |. Suppose otherwise.

Let q be the procedure such that σ = αq(ρq), ζ = ηq,j , and γ = ρq. So |ηp,j | <
|ηq,j |.

Let t < s be the stage at which p was called. Since ηp,j is chosen long at stage
t, we get that q is called at a stage u ∈ (t, s). Since p is in both domPt and
in domPs−1, we have p ∈ domPu, so p < q. This implies that αp(ρp) ⊂ αq(ρq)
(Lemma 6.16). Since αr(β

+) ⊆ αp(ρp), we get αr(β
+) ⊆ αq(ρq) = σ, contradicting

our assumptions.

We turn to part (3). Let σ be any string comparable with ¬(αr(β
+)). Let

γ = Γj,s−1(σ, ζr(δ)). Let σ̄ ⊆ σ and ζ ⊆ ζr(δ) be strings such that the axiom
(σ̄, ζ) 7→ γ is in Γj,s−1. The string σ̄ is comparable with ¬(αr(β

+)), and so does
not extend αr(β

+). By part (2), ζ ⊆ ηp,j .
By the choice of j at stage s, we know that there are no σ′ ⊇ ¬(αr(β

+)) and
ζ′ ⊆ ηp,j such that (σ′, ζ′) ∈ domΓj,s. Hence we must have σ̄ ⊂ ¬(αr(β

+)), that
is, σ̄ ⊆ αr(β).

36 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

The axiom (αp(ρp), ηp,j) 7→ ρp is in Γj,s−1, and is compatible with the axiom
(σ̄, ζ) 7→ γ. By our assumption that Γj,s−1 is consistent, we have γ 6⊥ ρp. As
σ̄ ⊆ αr(β), we have |γ| = |σ̄| 6 |β|. Hence γ ⊆ ρp ↾ |β| = β. �

Proof of Lemma 6.23. Let u be the stage at which q is called, and let t be the stage
at which β+ is added to domαr. Since ζr(δ) is chosen at stage t, and ηq,j is chosen
to be long at stage u, the assumption that ηq,j ⊆ ζr(δ) implies that u < t. If t < s,
then the conclusion holds because by induction, the lemma holds at stage s − 1.
Suppose then that t = s, that is, β+ is added to domαr at stage s.

The axiom (αq(ρq), ηq,j) 7→ ρq is in Γj,s−1. Suppose that αq(ρq) is comparable
with ¬(αr(γ

+)). Lemma 6.24(3), applied to σ = αq(ρq), says that

ρq ⊆ Γj,s−1(αq(ρq), ζr(δ)) ⊂ β+

as required. �

6.4.7. The main lemma. We now turn to our third main goal, which is the proof
of the main lemma. For brevity, for any s < ω, let ξj,s = Ξj,s(ms) =

⋃

k ξj,s,k and
ξ∗j,s = Ξj,s−1(ms) =

⋃

k ξ
∗
j,s,k.

Lemma 6.25. Let s < ω. For every k > 0 there is some j < 2 such that there are
no σ ⊇ ¬(As ↾k) and ζ ⊆ ξj,s such that (σ, ζ) ∈ domΓj,s.

The main lemma allows us to prove the following corollary, which tells us that if
some procedure p requires attention, then we can find some j < 2 for which there
are no disturbing historical Γj,s−1 axioms involving ¬(α+) and ηq,j .

Corollary 6.26. Let s > 0. Suppose that q 6= p0, q ∈ domPs−1 and µq ⊂ ms.
Let (p, β) = parents(q); let β+ = Bs ↾ |β|+ 1 and α+ = As ↾ |β|+ 1. Then
there is some j < 2 such that there are no σ ⊇ ¬(α+) and ζ ⊆ ηq,j such that
(σ, ζ) ∈ domΓj,s−1.

Proof. Let k = |β|+ 1; so α+ = As ↾k. Since q ∈ domPs−1 and µq ⊂ ms, we have,
for both j < 2, ηq,j ⊆ ξ∗j,s ⊆ ξj,s. The result now follows from the main Lemma
6.25 for k. �

Toward proving the main lemma, we investigate a third scenario (akin to Lemmas
6.20 and 6.24).

Lemma 6.27. Suppose that a procedure p is called at a stage s > 0. Let (r, γ) =
parents(p) and γ+ = Bs ↾ |γ|+ 1. Suppose that (r, γ+) ∈ Ps−1. Let t < s be the
stage at which γ+ was added to domαr.

(1) |γ| is the greatest n such that At ↾n = As ↾n.
(2) If q ∈ domP<s and µq ⊂ ms, then q ∈ domP<t.
(3) Let j < 2. Suppose that (σ, ζ) ∈ domΓj,s−1 and either:

• ζ ⊆ ξj,t; or
• ζ ⊆ ζr(δ) for some δ ⊃ γ+ of length kr(γ

+).
Then (σ, ζ) ∈ domΓj,t.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 37

Proof. By definition, we have αr(γ
+) ⊂ At, hence αr(γ) ⊂ At; since (r, γ+) /∈ Qs,

and γ+ ⊂ Bs, we have αr(γ
+) 6⊂ As. On the other hand, αr(γ) ⊂ As. This

establishes (1).

We turn to prove (2). Let q ∈ domP<s and suppose that µq ⊂ ms. Again, as
γ+ ⊂ Bs and ¬(αr(γ

+)) ⊂ As, let u be the least stage such that for all v ∈ [u, s]
we have γ+ ⊂ Bv and ¬(αr(γ

+)) ⊂ Av. We have u > t because αr(γ
+) ⊂ At.

The minimality of u implies that mu−1 ↾ |γ|+ 1 6= mu ↾ |γ|+ 1.
The procedure r is the weakest procedure in domPt. We show that if q is a child

of r which is called at some stage v ∈ (t, s), then µq 6⊂ ms.
Let q be such a child. There are two cases.
First suppose that v < u. Let β be the father of q. By Lemma 6.18, β is

the longest string such that (r, β) ∈ Qv. Now γ is the longest string such that
(r, γ) ∈ Qu. Hence, if β 6= γ, then mv ↾ |β|+ 1 6= mu ↾ |β|+ 1. If β = γ, then
we already concluded that mu−1 ↾ |β|+ 1 6= mu ↾ |β|+ 1; since v < u, we get
mv ↾ |β|+ 1 6= mu ↾ |β|+ 1. Now |µq| > |β| (Lemma 6.12), and µq ⊂ mv, so
µq 6⊂ mu. Hence µq 6⊂ ms.

The other case is that v > u. In this case we know that the father of q is γ.
Since p is a child of r which is called at stage s, and v < s, we know that q must be
cancelled at a stage w ∈ (v, s]. Since w > u, we know that Bw ↾ |γ|+ 1 = γ+; and
since w > t, we know that (r, γ+) ∈ Pw−1. So it is impossible that q is cancelled at
step 2 of stage w: such a cancellation can only occur in order to add γ+ to domαr.
Hence µq 6⊂ mw, so µq 6⊂ ms.

This establishes (2), which implies that for both j < 2, ξ∗j,s ⊆ ξj,t. We turn

to (3). Let q be any procedure which is called at a stage v ∈ (t, s). The string
ηq,j is chosen to be a free extension at stage v. Both |ξj,t| and |ζr(δ)| are bounded
by #(t). Hence we cannot have ηq,j ⊆ ξj,t or ηq,j ⊆ ζr(δ). �

Lemma 6.28. Let p ∈ domP<ω and j < 2. There are no σ ⊃ αp(ρp) and ζ ⊆ ηp,j
such that (σ, ζ) ∈ domΓj.

Proof. Let (σ, ζ) ∈ domΓj ; there is some q ∈ domP<ω such that σ = αq(ρq) and
ζ = ηq,j . Suppose that ζ ⊆ ηp,j . By Lemma 6.21, either σ ⊥ αp(ρp) or ρq ⊆ ρp. In
the first case, certainly σ 6⊃ αp(ρp). In the second case, |σ| = |ρq| 6 |ρp| = |αp(ρp)|
so again we cannot have σ ⊃ αp(ρp). �

Proof of Lemma 6.25. The lemma is proved by induction on s. The lemma clearly
holds for s = 0. Let s > 0, and suppose the lemma holds at every t < s.

We first note that it is sufficient to show, for every k > 0, that there is some j < 2
such that there are no σ ⊇ ¬(As ↾ k) and ζ ⊆ ξj,s such that (σ, ζ) ∈ domΓj,s−1.
The reason is that such (σ, ζ) cannot be added to domΓj at stage s, because at
stage s we only enumerate axioms such that σ ⊂ As.

If there is a procedure which is called at stage s, call that procedure p; let
(r, γ) = parents(p), and let γ+ = Bs ↾ |γ|+ 1.

There are three cases:

(1) No new procedure is called at stage s.
(2) (r, γ+) /∈ Ps−1.
(3) (r, γ+) ∈ Ps−1.

38 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

For each case, we use the inductive hypothesis relative to some previous stage t.
In cases (1) and (2), let t = s − 1. In case (3), let t be the stage at which γ+ is
added to domαr.

In all of the cases, let n be the length of the longest common initial segment of
As and At.

Let k 6 n. Since At ↾ k = As ↾ k, ¬(As ↾ k) = ¬(At ↾ k). By induction, there
is some j < 2 for which there are no σ ⊇ ¬(As ↾ k) and no ζ ⊆ ξj,t such that
(σ, ζ) ∈ domΓj,t. We claim that the same j witnesses the lemma at stage s for k.
Let ζ ⊆ ξj,s and σ ⊇ ¬(As ↾ k). We argue that (σ, ζ) /∈ domΓj,s−1. Assume, for
contradiction, that (σ, ζ) ∈ domΓj,s−1.

In case (1), we have ξj,s = ξ∗j,s ⊆ ξj,s−1, so ζ ⊆ ξj,t; so by induction, (σ, ζ) /∈
domΓj,s−1.

In case (2), We have ξj,s = ηp,j . Now ηp,j is chosen, at stage s, to be a free
extension of ξ∗

j,s,|ρp|
. The assumption that ζ ⊆ ηp,j and the fact (which we obtained

by the assumption, for contradiction, that (σ, ζ) ∈ domΓj,s−1) that ζ is observed by
stage s− 1, together with the freeness of ηp,j , show that ζ ⊆ ξ∗

j,s,|ρp|
, so ζ ⊆ ξj,s−1.

This contradicts the inductive assumption that the Lemma holds at stage s− 1.
In case (3), there are two sub-cases, depending on the value of j. If j 6= jr(γ

+),
then the argument is similar to that of case (2). We have ξj,s = ηp,j is chosen as a
free extension of ξ∗

j,s,|γ|; the contradictory assumption that ζ is observed by stage

s− 1 implies that ζ ⊆ ξ∗
j,s,|γ| ⊆ ξ∗j,s. By Lemma 6.27(2), we have ξ∗j,s ⊆ ξj,t, and by

Lemma 6.27(3), (σ, ζ) ∈ domΓj,t, contradicting the induction assumption.
Suppose that j = jr(γ

+). Then ξj,s = ηp,j is chosen to be a free extension
of ζr(δ), for δ = Bs ↾ kr(γ

+). Again, the contradiction assumption implies that
ζ ⊆ ζr(δ). By Lemma 6.27(3), (σ, ζ) ∈ domΓj,t. By Lemma 6.27(1), n = |γ|; so
k 6 n and σ ⊇ ¬(At ↾ k) implies that σ 6⊇ αr(γ

+). By Lemma 6.24(2), we have
ζ ⊆ ηq,j , where q is the child of r at stage t− 1; since µq ⊂ mt, we have ηq,j ⊆ ξj,t.
So ζ ⊆ ξj,t, contradicting the induction assumption.

Now let k > n. There is some j < 2 such that ξj,s = ξ∗j,s or ξj,s is chosen, at
stage s, as a free extension of an initial segment of ξ∗j,s: both j < 2 would do in

cases (1) and (2), and in case (3), we choose j 6= jr(γ
+). We claim that such j

witnesses the lemma at stage s for k. Suppose that σ ⊇ ¬(As ↾k). Then σ ⊃ As ↾n.
Let ζ ⊆ ξj,s, and suppose, for contradiction, that (σ, ζ) ∈ domΓj,s−1. As argued
above, the choice of j implies that ζ ⊆ ξ∗j,s.

Now let q ∈ domP<s be a procedure such that µq ⊂ ms and ηq,j = ξ∗j,s. We

claim that |µq| 6 n. In cases (1) and (2), this follows from the fact that µq ⊆ ms

and ms ↾n+ 1 6= ms−1 ↾n+ 1. In case (3), Lemma 6.27(2) states that q ∈ domP<t,
so |µq| 6 n follows from the fact that ms ↾n+ 1 6= mt ↾n+ 1.

Now |µq| 6 n implies that |αq(ρq)| 6 n; µq ⊂ ms implies that αq(ρq) ⊂ As, so
αq(ρq) ⊆ As ↾n ⊂ σ. So ζ ⊆ ηq,j contradicts Lemma 6.28. �

6.4.8. Uncancelled procedures. The following is immediate:

Lemma 6.29. The following are equivalent for (p, β) ∈ P<ω:

(1) There are infinitely many s such that (p, β) ∈ Qs;

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 39

(2) For almost all s, (p, β) ∈ Qs;
(3) p is never cancelled, β ⊂ B and αp(β) ⊂ A.

Let Q∞ denote the collection of pairs (p, β) which satisfy the conditions of
Lemma 6.29. We note that if (p, β) ∈ Q∞ then (p, γ) ∈ Q∞ for all γ such that
ρp ⊆ γ ⊆ β, and that if p is a procedure which is never cancelled, then (p, ρp) ∈ Q∞.

In this section, let p be some procedure which is never cancelled. Note that if
p ∈ domPs, then no procedure stronger than p requires attention at stage s, as the
strongest such would cancel p.

Claim 6.30. There are only finitely many strings β such that (p, β) ∈ Q∞.

Proof. This is because we assume that A 66T B. If the claim fails, then for every
β ⊂ B such that |β| > |ρp| we have (p, β) ∈ Q∞, which implies that αp(β) ⊂ A;
thus A =

⋃{αp(β) : ρp ⊆ β ⊂ B} which shows that A 6T B. �

Since p is never cancelled, we know that (p, ρp) ∈ Q∞ (and so ρp ⊂ B). Let β
be the longest initial segment of B such that (p, β) ∈ Q∞. Let β+ = B ↾ |β|+ 1.

If β+ ∈ domαp, let s0 be a stage such that (p, β+) ∈ Ps0 ; otherwise, let s0
be a stage such that (p, β) ∈ Ps0 . Also, choose s0 sufficiently large such that
ms0 ↾ |β|+ 1 ⊂ m.

Claim 6.31. p doesn’t require attention after stage s0.

Proof. If (p, β+) ∈ P<ω, the conclusion follows from the fact that for all s > s0,
β+ = Bs ↾ |β|+ 1. If (p, β+) /∈ P<ω, the conclusion follows from the fact that if
p required attention at some stage s > s0, then since (p, β) ∈ Qs, it would try to
add Bs ↾ |β|+ 1 = β+ to domαp; and then we’d have (p, β+) ∈ P<ω, contrary to
assumption. �

It follows that for all s > s0, if after step 1 of stage s, p does not have a child,
then such a child is called for p at stage s. So for all s > s0, p has a child in domPs.

Claim 6.32. There is some child of p which is never cancelled.

Proof. If (p, β+) ∈ P<ω, let k = kp(β
+). Otherwise, let k = #(s0) + 1. Let s1 > s0

be a stage such that for all s > s1, ms ↾ k ⊂ m. If q is a child of p which is called
after stage s1, then |ρq| 6 k, and so the stability of ms ↾ k after stage s1 ensures
that q is never cancelled. �

6.4.9. The end. We know that p0 is never cancelled (Lemma 6.10). By recursion,
given a procedure pe which is never cancelled, we let, by Claim 6.32, pe+1 be the
child of pe which is never cancelled. Note that epe

= e.
Let j < 2. Let Xj = Ξj(m). For every e, we have µpe

⊂ m, so ηpe,j ⊂ Xj . Since
ηpe,j ⊂ ηpe+1,j , we have Xj ∈ 2ω. We have Xj 6T m 6T C.

For every e < ω, since µpe
⊂ m, we have ρpe

⊂ B and αpe
(ρpe

) ⊂ A. Since
ηpe,j ⊂ Xj, and the axiom (αpe

(ρpe
), ηpe,j) 7→ ρpe

is in Γj , we have ρpe
⊆ Γj(A,Xj).

Since |ρpe
| < |ρpe+1

|, we have B =
⋃

e ρpe
. Hence B ⊆ Γj(A,Xj). Since Γj is

consistent, we have B = Γj(A,Xj). Hence B 6T A⊕Xj .
To complete the proof of the theorem, we need to show that for all e, the re-

quirement Re is met. To see this, we look at two cases. Let p = pe; define β, β+

40 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

and s0 as in the section above. Let q = pe+1, and let s1 > s0 be a stage by which
q has been called.

If (p, β+) ∈ P<ω, let j = jp(β
+). We know that Xj ⊃ ηq,j ⊃ ζp(ρq), that

β+ ⊂ B, and that Ψe(ζp(ρq)) ⊥ β+. Hence Ψe(Xj) 6= B.
Now suppose that (p, β+) /∈ P<ω, and suppose, for contradiction, that the re-

quirement Re fails: Ψe(X0) = Ψe(X1) = B. Since B is not computable, for both
j < 2 there is some string τj ⊃ ηq,j such that Ψe(τj) ⊥ B. Again for both j < 2,
let σj ⊂ Xj be a string such that σj ⊃ ηq,j and such that Ψe(σj) ⊥ Ψe(τj). Let
s > s1, |σ0|, |σ1|, |τ0|, |τ1|.

By Corollary 6.26, let j < 2 be such that there are no σ ⊇ ¬(As ↾ |β|+ 1) and
ζ ⊆ ηq,j such that (σ, ζ) ∈ domΓj,s−1. Let k be large at stage s. Let γ ⊃ β+ have
length k. If γ 6⊥ Ψe(σj), let ζγ = τj ; since |γ| = k > |Ψe(τj)|, we have Ψe(τj) ⊥ γ.
Otherwise, we let ζγ = σj . Then in either case, we have Ψe(ζγ) ⊥ γ. All the
conditions hold for p to require attention at stage s, contradicting Claim 6.31.

7. The join property below non-generalized-low2 degrees.

In this section we prove Theorem 1.7. That is, we show that every non-generalized-
low2 degree has the join property: if d is not GL2 and 0 < a < d, then there exists
b < d such that a ∨ b = d.

So suppose we are given D of degree which is not GL2, and A which is of non-
zero degree strictly below that of D. We want to construct B <T D such that
A ⊕ B ≡T D. Moreover, we will build B to be 1-generic. This will imply that
B 6≡T D, as 1-generic sets are GL1.

The general plan is that we construct B by finite approximations, first trying
to satisfy a genericity requirement, then coding one bit of D, then trying another
genericity requirement, and then another bit of D, etc. The property of non-GL2

sets we will use is the following: For every D⊕ ∅′-computable function f1, there is
a D-computable function f2 not dominated by f1 (see [Ler83]). We will use this
function to bound our searches when we are trying to force inside some c.e. set. To
get D 6T A ⊕ B, we will have to use a trick, due to Slaman and Steel [SS89]: we
will try to satisfy the genericity requirements in a way that can be decoded by A
so that A can read off the bits of B that are coding D.

Define

σn = 000 · · ·
︸ ︷︷ ︸

n zeros

1.

We can assume that A is not computably enumerable (for instance by considering
either it or its complement).

Given any string σ ∈ 2<ω and any e, s ∈ ω, we let n(σ, e, s) be the least number
n such that one of the following two conditions holds:

n ∈ A, and there is no τ ∈ We,s extending σ⌢σn;
n /∈ A, and then there is some τ ∈ We,s extending σ⌢σn.

Note that the set of n such that there is some τ ∈ We,s extending σ⌢σn is com-
putable, and hence different from A. So, there has to be an n as above, and
so n(σ, e, s) is well-defined. If n(σ, e, s) ∈ A, define g(σ, e, s) = σ⌢σn(σ,e,s). If
n(σ, e, s) /∈ A then let g(σ, e, s) be the first string τ enumerated into We with
τ ⊇ σ⌢σn(σ,e,s). The functions n(σ, e, s) and g(σ, e, s) are computable in A.

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 41

Given any f : ω → ω we define a set Bf that uses the function f to bound the
searches of the function g(σ, e, s). Let Bf =

⋃

s τf,s be defined as follows:
Stage 0. Define τf,0 = D(0).
Stage t+ 1. Define τf,t+1 = g(τf,t, e, f(t))

⌢D(t+ 1), where t = 〈e, x〉.

Note that Bf is computable in D⊕ f . We will show later how, if we use a large
enough function f , we get that Bf is 1-generic. That D is computable in A ⊕ Bf

(without appealing to f) follows using precisely the same argument as originally
provided by Slaman and Steel when proving that 0′ satisfies the join property. The
point is that using Bf , A can reconstruct the whole sequence τf,0 ⊂ τf,1 ⊂ τf,2 ⊂ · · ·
as follows. Given τf,k, let n be such that τf,k

⌢σn ⊆ Bf . If n ∈ A, then we know that
g(τf,k, e, f(k)) = τf,k

⌢σn. If n 6∈ A, then g(τf,k, e, f(k)) is the least τ ⊇ τf,k
⌢σn

enumerated into We; here again we note that we do not need to consult f . Then,
we get τf,k+1 by adding, at the end of the string g(τf,k, e, f(k)), the bit D(k + 1),
that we can read off from Bf . So D 6T A⊕Bf .

Given σ and e, let n∗(σ, e) = lims n(σ, e, s) be the least natural number n such
that one of the following conditions holds:

n ∈ A, and there is no τ ∈ We extending σ⌢σn; or
n /∈ A, and there is some τ ∈ We extending σ⌢σn.

Note that the set of numbers n such that there is some τ ∈ We extending σ⌢σn is
c.e., and hence different from A; so such an n exists, and so n∗(σ, e) is well-defined.
We then let g∗(σ, e) = lims g(σ, e, s), and let h∗(σ, e) be the least stage s such that
for all t > s, g(σ, e, s) = g∗(σ, e). The stage h∗(σ, e) is the least stage s such that:

• if n∗(σ, e) /∈ A, then there is some τ ∈ We,s extending σ⌢σn∗(σ,e); and
• for all k < n∗(σ, e), if k ∈ A, then there is some τ ∈ We,s extending σ⌢σk.

The functions n∗(σ, e), g∗(σ, e) and h∗(σ, e) are A ⊕ ∅′-computable. The string
g∗(σ, e) is an extension of σ that either forces inside We or forces outside We as we
need for the genericity requirements.

For t ∈ ω let Πt = {τf,t | f : ω → ω}. This set is finite, and (a canonical index
for it) is effectively obtained from t with oracle D⊕∅′. This is because given τf,t−1,
the possible values for τf,t are

{g(τf,t−1, e, s)
⌢D(t+ 1) : s 6 h∗(τf,t−1, e)} ,

where t = 〈e, x〉.
So let f0 be an increasing function computable in D ⊕ ∅′ such that, for all t

and all τ ∈ Πt, f0(t) is greater than h∗(τ, e), where t = 〈e, x〉. Let h be a com-
putable and increasing function such that, for all t and all e 6 t, there exists x with
t < 〈e, x〉 < h(t). Define f1(t) = f0(h(t)) for all t. Since D is not GL2, we may let
f2 be an increasing function computable in D which is not dominated by f1 and
then define B = Bf2 6T D.

It remains to show that B is 1-generic. In order to see this, fix e ∈ ω and let t > e
be such that f2(t) > f1(t). Then there exists t′ = 〈e, x〉 such that t < t′ < h(t). We
have that f2(t

′) > f2(t) > f1(t) = f0(h(t)) > f0(t
′), so that f2(t

′) > h∗(τf2,t′ , e) as
required.

42 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

References

[Coo89] S. B. Cooper. The strong anticupping property for recursively enumerable degrees. J.
Symbolic Logic, 54(2):527–539, 1989.

[Dow87] R. G. Downey. ∆0

2
degrees and transfer theorems. Illinois J. Math., 31(3):419–427, 1987.

[Eps79] Richard L. Epstein. Degrees of unsolvability: structure and theory, volume 759 of Lecture
Notes in Mathematics. Springer, Berlin, 1979.

[Fri57] Richard M. Friedberg. Two recursively enumerable sets of incomparable degrees of un-
solvability (solution of Post’s problem, 1944). Proc. Nat. Acad. Sci. U.S.A., 43:236–238,
1957.

[Joc80] Carl G. Jockusch, Jr. Degrees of generic sets. In Recursion Theory: its Generalisation
and Applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979), volume 45 of London
Math. Soc. Lecture Note Ser., pages 110–139. Cambridge Univ. Press, Cambridge, 1980.

[JS83] Carl G. Jockusch, Jr. and Richard A. Shore. Pseudojump operators. I. The r.e. case.
Trans. Amer. Math. Soc., 275(2):599–609, 1983.

[JS93] C.G. Jockusch Jr and T.A. Slaman. On the Σ2 theory of the upper semilattice of the
Turing degrees. Journal of Symbolic Logic, 58:193–204, 1993.

[KP54] S.C. Kleene and E.L. Post. The upper semi-lattice of the degrees of recursive unsolv-
ability. Annals of Mathematics, 59:379–407, 1954.

[Ler83] M. Lerman. Degrees of Unsolvability. Springer-Verlag, Berlin, Heidelberg, New York,
Tokyo, 1983.

[Lew05] Andrew E. M. Lewis. The minimal complementation property above 0′. MLQ Math.
Log. Q., 51(5):470–492, 2005.

[LL76] A. H. Lachlan and R. Lebeuf. Countable initial segments of the degrees of unsolvability.
J. Symbolic Logic, 41(2):289–300, 1976.

[LS75] Richard E. Ladner and Leonard P. Sasso, Jr. The weak truth table degrees of recursively
enumerable sets. Ann. Math. Logic, 8(4):429–448, 1975.

[LS88] Manuel Lerman and Richard A. Shore. Decidability and invariant classes for degree

structures. Trans. Amer. Math. Soc., 310(2):669–692, 1988.
[MNS04] Russell G. Miller, Andre O. Nies, and Richard A. Shore. The ∀∃-theory of R(6,∨,∧) is

undecidable. Trans. Amer. Math. Soc., 356(8):3025–3067 (electronic), 2004.
[Mon] Antonio Montalbán. Embeddings into the Turing degrees. To appear.
[Muc56] A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory of

algorithms. Dokl. Akad. Nauk SSSR, N.S., 108:194–197, 1956.
[Pos77] David Posner. High degrees. PhD thesis, University of California, Berkeley, 1977.
[PR81] D. B. Posner and R. W. Robinson. Degrees joining to 0

′. J. Symbolic Logic, 46(4):714–
722, 1981.

[Rob72] R. W. Robinson. Degrees joining 0
′. Notices of the American Mathematical Society,

19:A–615, 1972.
[Sac61] Gerald E. Sacks. A minimal degree less than 0

′. Bull. Amer. Math. Soc., 67:416–419,
1961.

[Sac63] Gerald E. Sacks. On the degrees less than 0
′. Ann. of Math. (2), 77:211–231, 1963.

[Sho59] J. R. Shoenfield. On degrees of unsolvability. Ann. of Math. (2), 69:644–653, 1959.
[Sho81] Richard A. Shore. The theory of the degrees below 0

′. J. London Math. Soc., 24:1–14,
1981.

[Sho06] Richard A. Shore. Degree structures: Local and global investigations. Bulletin of Sym-
bolic Logic, 12:369–389, 2006.

[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1987. A study of computable functions and computably
generated sets.

[SS89] T. A. Slaman and J. R. Steel. Complementation in the Turing degrees. J. Symbolic
Logic, 54(1):160–176, 1989.

[SS01] Theodore A. Slaman and Robert I. Soare. Extension of embeddings in the computably
enumerable degrees. Ann. of Math. (2), 154(1):1–43, 2001.

E-mail address: Rod.Downey@msor.vuw.ac.nz

URL: http://www.mcs.vuw.ac.nz/∼downey

http://www.msor.vuw.ac.nz/~downey/index.html

EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 43

School of Mathematics, Statistics and Computer Science, Victoria University, P.O.

Box 600, Wellington, New Zealand

E-mail address: greenberg@msor.vuw.ac.nz

URL: http://homepages.mcs.vuw.ac.nz/∼greenberg/

School of Mathematics, Statistics and Computer Science, Victoria University, P.O.

Box 600, Wellington, New Zealand

E-mail address: andy@aemlewis.co.uk

URL: http://aemlewis.co.uk/

School of Mathematics, University of Leeds, Leeds, UK

E-mail address: antonio@math.uchicago.edu

URL: www.math.uchicago.edu/∼antonio

Department of Mathematics, University of Chicago, 5734 S. University ave., Chicago,

IL 60637, USA

http://homepages.msor.vuw.ac.nz/~greenberg/
http://aemlewis.co.uk/
http://www.math.uchicago.edu/~antonio/index.html

	1. Introduction
	2. Almost contiguity and the global anti-cupping property
	3. The generalized anti-cupping condition
	4. Joins that imply other joins
	5. A multi-generic set
	6. No least join
	7. The join property below non-generalized-low2 degrees.
	References

